
Query Processing of Schema Design
Problems for Data-driven

Renormalization
by

Xiao Meng

M.Eng., Harbin Institute of Technology, 2010
B.Eng., Harbin Institute of Technology, 2008

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Xiao Meng 2017
SIMON FRASER UNIVERSITY

Fall 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Xiao Meng

Degree: Master of Science (Computing Science)

Title: Query Processing of Schema Design Problems for
Data-driven Renormalization

Examining Committee: Chair: Jiannan Wang
Assistant Professor

Jian Pei
Senior Supervisor
Professor

Arrvindh Shriraman
Supervisor
Associate Professor

Nick Sumner
Internal Examiner
Assistant Professor

Date Defended: October 16, 2017

ii

Abstract

In the past decades, more and more information has been stored or delivered in non-
relational data models—either in NoSQL databases or via a Software as a Service (SaaS)
application. Users often want to load these data sets into a BI application or a relational
database for further analysis. The data-driven renormalization framework is often used
to transform non-relational data into relational data. In this thesis, we explore how to
help users to make design decisions in such a framework. We formally define two kinds of
queries—the point query and the stable interval query—to help users making design deci-
sions. We propose two index structures, which can represent a list of FDs concisely but also
process the queries efficiently. We conduct experiments on two real datasets and show that
our algorithms greatly outperform the baseline method when processing a large set of FDs.

Keywords: functional dependencies; database design; renormalization; NoSQL

iii

To my family

iv

“I may not have gone where I intended to go, but I think I have ended up
where I needed to be.”

by Douglas Adams, (1952 – 2001)

v

Acknowledgements

I would like to express my deep gratitude to my senior supervisor Dr. Jian Pei for his
continuous support and guidance during my graduate studies. He always explains things
crystally clear even on very difficult topics and goes right to the core of problems, which
always encourage me to write more clearly and think harder. He gave me various opportu-
nities to explore my way in academia and industry and helped me out in difficult situations.
More importantly, he teaches me to think more strategically in my life and work. I was
fortunate to have such a wise and thoughtful mentor. I am a slow learner, but I certainly
benefit from what I learned from him in my future career.

My gratitude also goes to my supervisor Dr. Arrvindh Shriraman for his many insightful
suggestions in my research, especially on the topic of NoSQL databases. I am very thankful
to Dr. Nick Sumner for serving as the examiner and many suggestions to improve this thesis.
Special thanks go to Dr. Jiannan Wang for serving as the chair and many helpful discussions
for this thesis.

I am also grateful to many great people—the R&D group, the Memphis team, and the
driver’s team—in Simba Technologies (now a subsidiary of Magnitude Software) during
my internship there. George Chow, who was my mentor and a great friend, shared a lot
of knowledge in industry—making design decisions, leading teams and identifying business
values. It was a fun experience and also motivated the work of this thesis.

I have been fortunate to meet many great people during my time at SFU. Our IDEAL

(Intelligence and Data Engineering and Analytics Lab) is a large family now. My acknowl-
edgment goes to the current members—Xiangbo Mao, Juhua Hu, Chuancong Gao, Yu Yang,
Zicun Cong, Linyang Chu, Yanyan Zhang, Yajie Zhou and Xia Hu—and a long list1 of the
alumnus—Zijin Zhao, Xiaojian Wang, Dr. Guanting Tang and many others. It is an honor
to be part of the family. Also, I would like to thank many other friends in SFU—most of
them have already graduated. They make my graduate studies more enjoyable.

I would like to thank my dear friend Jaime Zhao who continuously encouraged me and
lit up my darkest moments. Finally, I would like to thank my parents for their love and
supports accompanying me along my journey.

1https://www.cs.sfu.ca/~jpei/students.htm

vi

https://www.cs.sfu.ca/~jpei/students.htm

Table of Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgements vi

Table of Contents vii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Data-driven Renormalization . 2
1.2 Contributions . 6
1.3 Thesis Organization . 6

2 Related Work 7
2.1 Computational Problems of Schema Design 7
2.2 Data Driven Renormalization . 8

3 Problem Definition 9
3.1 Preliminary . 9
3.2 Problem Definition . 11
3.3 Technical Ideas . 12

4 Index Structures 15
4.1 The Characteristics of Attribute Set Closures 15
4.2 Index Structures . 18
4.3 Constructing the Index Structures . 22

vii

4.3.1 The foundation: update the family of maximal sets incrementally . . 22
4.3.2 Index Construction Algorithm . 25

5 Query Processing 29
5.1 Point Query . 29

5.1.1 Core components of point query algorithms 29
5.1.2 BCNF Test . 32
5.1.3 Primality Test . 34

5.2 Stable Interval Query . 36
5.2.1 Stable Interval Query for the BCNF Test 36
5.2.2 Stable Interval Query for the Primality Test 37

6 Experiments 39
6.1 Dataset and Parameters . 39
6.2 Index Construction . 40
6.3 BCNF Test . 41

6.3.1 Point Query: BCNF Test . 41
6.3.2 Stable Interval Query: BCNF Test 41

6.4 Primality Test . 46
6.4.1 Point Query: Primality Test . 46
6.4.2 Stable Interval Query: Primality Test 49

6.5 Impact of noisy and sparse data . 52
6.5.1 Impact of sparse data . 52
6.5.2 Impact of noisy data . 53

6.6 Summary . 54

7 Conclusion 55

Bibliography 57

Appendix A Full Results of Primality Tests 59

viii

List of Tables

Table 6.1 The size of each index structure on each dataset 40

ix

List of Figures

Figure 1.1 The Data flow of generating a database schema from a universal table 2
Figure 1.2 JSON documents and the corresponding flatten table 2
Figure 1.3 A sample Course database . 5

Figure 3.1 The powerset lattice vs. the quotient set lattice vs. the maximal set
on U = {a, b, c, d}, Σ = {a → b, b → c}. Each ellipse shows the at-
tribute set and its closure in the format of [attribute set] : closure. 13

Figure 4.1 The powerset lattice vs. the quotient set lattice vs. the maximal set
on U = {a, b, c, d}, Σ = {a → b, b → c}. Each ellipse shows the at-
tribute set and its closure in the format of [attribute set] : closure. 16

Figure 4.2 The representation of a set of triples under (R(U), Σ2) and (R(U), Σ3)) 19
Figure 4.3 The improved representation of a set of triples under (R(U), Σ2) and

(R(U), Σ3)) . 20
Figure 4.4 The SIndex structure and the TIndex structure under the relational

schema (R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→ b, b→ c〉. . 21
Figure 4.5 Example of index construction on Σ = 〈a→ b, b→ c, cd→ a〉 . . . 27
Figure 4.6 The index construction of TIndex under the relational schema (R(U), Σ)

where U = {a, b, c, d} and Σ = 〈a → b, b → c, {c, d} → a〉. The
changes are marked with red. 28

Figure 5.1 The SIndex structure and the TIndex structure under the relational
schema (R(U), Σ) where U = {a, b, c, d} and Σ = 〈a → b, b →
c, {c, d} → a〉. 30

Figure 6.1 Index construction time versus k 40
Figure 6.2 Query execution time of the BCNF tests on the Flight dataset . . . 42
Figure 6.3 Query execution time of the BCNF tests on the Github dataset. The

sub-figure (g) shows two identical plots of |maxk(U)| versus k for
easily comparing with the sub-figures in the same column. We follow
this convention for all other figures in this chapter. 43

Figure 6.4 Query execution time of the stable interval queries for the BCNF
tests on the Flight dataset . 44

x

Figure 6.5 Query execution time of the stable interval queries for the BCNF
tests on the Github dataset . 45

Figure 6.6 Query execution time of the primality tests w.r.t. the attribute set
X1 on the Flight dataset . 47

Figure 6.7 Query execution time of the primality tests w.r.t. the attribute set
X1 on the Github dataset . 48

Figure 6.8 Query execution time of the stable interval queries for the primality
tests w.r.t. the attribute set X1 on the Flight dataset 50

Figure 6.9 Query execution time of the stable interval queries for the primality
tests w.r.t. the attribute set X1 on the Github dataset 51

xi

Chapter 1

Introduction

In the past decades, more and more information has been stored or delivered in non-
relational data models. Many companies use NoSQL databases (e.g., Couchbase [1] and
MongoDB [2]) as their data management systems. Also, Software as a Service (SaaS), which
delivers information via non-relational data models (e.g., JSON and XML), has become a
mainstream software licensing and delivery model. The industry has embraced the idea
of APIs as a product [3] and exposes internal and external data according to their APIs.
ProgrammableWeb, a leading source about Internet-based APIs, has collected 17, 406 APIs
as of May 2017 [4].

Those data sets have potential value waiting for discovery. Among many approaches
of data exploration, two widely used ones are loading data into a Business Intelligence
(BI) system, and loading data into a relational database. BI tools, such as Tableau [5] and
PowerBI [6], offer intuitive graphical interfaces and are popular among non-technical users.
Relational databases provide the support of a mature declarative query language—SQL—
which is common knowledge for data analytics practitioners. Also, users can benefit from
the query performance of relational databases, which has evolved and been improved over
decades.

The challenge here is to transform non-relational data into a more rigid tabular format. It
is a non-trivial task and requires significant engineering and human efforts. Recent works [7,
8] tackle one aspect of this technical challenge via exploring functional dependencies from
data. We use the term data-driven renormalization to refer such a framework. This thesis
aims to support critical design decision queries—BCNF Test and Primality Test—in such
a framework.

1

Universal Table
Functional Dependencies Relational Database

Schema
⌃ f

Renormalization

S
g

Data Profiling

Figure 1.1: The Data flow of generating a database schema from a universal table

1.1 Data-driven Renormalization

We illustrate the data-driven renormalization framework in this section. Figure 1.1 shows
the data flow of this process. We only introduce technical terms informally. We refer readers
not familiar with the relational data model to the preliminary section of Chapter 3.

First, the data-driven renormalization framework assumes that the initial input can be
transformed into a universal table. Using JSON data as an example, we can achieve such a
goal by flattening the tree structure of JSON into a set of attributes associated with values.1

Figure 1.2 gives an example of flattening JSON documents. We refer the set of flattening
attributes as the universal attribute set and the wide table as the universal table.

{
 Name: “Alice”,
 Loc: {
 City: “Vancouver”,
 Country: “Canada”
 }
}

US
Canada

Loc.CountryLoc.City

Seattle
Vancouver

Name

Bob
AliceFlatten

{
 Name: “Bob”,
 Loc: {
 City: “Seattle”,
 Country: “US”
 }
}

Figure 1.2: JSON documents and the corresponding flatten table

Given a universal table, the data-driven renormalization process consists of two phases,
as shown in Figure 1.1.

1. Data profiling. A data profiling procedure g finds a set of Functional Dependencies
(FDs) Σ with the universal attribute set U on the data instance I, denoted by (U, Σ) =
g(I). An FD is in the form of X → Y , where X and Y are both sets of attributes. It
implies that, as long as two rows have the same value of X, they must share the same
value of Y . Informally, we say that X determines Y .

1 If a JSON document contains a nested array, we can either treat the array as a binary object or an
independent table.

2

2. Renormalization. A normalization procedure f generates a relational database
schema S based on the set of FDs Σ discovered in the previous phase, denoted by
S = f(U, Σ). The relational database schema is represented by a collection of attribute
sets, and the union of attribute sets in such a collection equals the universal attribute
set.

In practice, however, the FDs discovered in the first phase—data profiling—may not
always be correct or accurate. Why? First, data profiling may produce incorrect FDs or
miss correct FDs due to poor data quality. The data source may have dirty data—given
that there is no enforcement of any integrity constraints, it is likely to happen—and thus
produce incorrect FDs or miss semantically correct FDs. Second, the FDs discovered may
be inaccurate due to the choice of FD discovery algorithms. Since discovering the exact FDs
is expensive2, we may use an approximate FD discovery algorithm. Given these practical
problems, many data profiling algorithms [9, 10, 11] use a ranking function to indicate the
plausibility of a discovered FD. Thus, we model the output of the data profiling phase as a
ranked list of FDs.

How do we proceed to the second phase—renormalization—under the assumption that
the data profiling phase outputs a ranked list of FDs? One approach, as used by [7], is
to introduce a parameter k and only use the top-k FDs as FDs of interest to generate
the normalized database schema.3 However, renormalization is hardly a fully automatic
procedure and often involves human interventions. Also, users may want to pick different
k and compare the resulted schema to make better design decisions. In this thesis, instead
of generating a database schema automatically, we study the query answering aspect of
renormalization and support two core design decision problems [12], which we will illustrate
shortly, for an arbitrary k. The process is independent of the schema generating algorithms
and thus can be used in the data-driven renormalization framework without any constraint
of the schema generating algorithm employed. The answers to these design decision problems
offer guidelines for schema design.

However, most of the design decision problems are known to be NP-complete [13]. It
may be expensive to answer these decision problems on the fly.

In this thesis, we study how to handle two fundamental design decision problems—
BCNF Test and Primality Test—by pre-computing a compact representation of FDs and
maintaining index structures for query processing.

BCNF Test. Given an attribute set X, does X satisfy Boyce-Codd Normal Form (BCNF)?
That is, for any subset Y ⊆ X, can Y either determine itself or attribute set X? The

2 For example, it takes about 61 hours to discover the 13 million FDs from the TPC-H dataset with 6
million records and 52 attributes in

3More precisely, they use a numeric threshold on the score function of FDs.

3

BCNF test helps users to evaluate whether a schema design is good in the sense of
data redundancy.

Primality Test. Given an attribute set X and an attribute p ∈ X, does attribute p belong
to some key of X? The primality test helps users to make decisions on the primary
key of a relation schema.

They can be answered by the point queries in this thesis—a user specifies the value of
k, a ‘point’ in the possible range of k.

Besides, a technically interesting extension of these problems is to study the stability
often these answers on k—the number of FDs we choose. The answer to these problems is an
interval. Thus, we refer to such queries as the stable interval queries and will formulate them
in Chapter 3. Why is it interesting? Such an interval indicates the stability of a property—
BCNF or primality—on k. Users can inspect the interval to make design decisions—whether
the FDs at the interval boundaries are semantically correct and whether to decompose a
relation or choose an attribute as part of a primary key. We will see it in action shortly in
Example 1.

How does our work fit into a real-world system? We give a use case to show how to
process a dataset and handle various real-world situations. Imagine a collection of JSON
documents and a data-driven renormalization system.

First, we want to flatten the JSON documents into a universal relational table. In
practice, a JSON document may contain complicated structures such as arrays. We can
handle it in two ways. If the array only contains values of the primitive types (e.g., number
and string), we can concatenate the primitive values into a string. If the array contains a
list of nested objects, we can introduce a foreign key and make the array as an auxiliary
table linked via the foreign key. Then, we can treat the auxiliary table as an independent
instance of our problem. Also, if a JSON document has missing values, we can use a special
value NULL to represent that some value is missing.

Next, the data profiling component produces a ranked list of FDs based on the data
instance. These FDs give users clues on the relationship between attributes. Users can choose
the top-k FDs—the value of k can be a rough guess—and use well-known normalization
algorithms to generate candidate database schemas. Then, users further inspect the database
schema to find the relation schemas that do not meet their expectations. Users can trace
back the cause of such a relation schema (either due to the data profiling algorithm and
due to the data source quality) and fix the issues by tuning the data profiling algorithms or
repairing errors in the data source. The stable interval query is helpful in such a scenario,
which provides the candidate FDs that may lead to the issues.

We wrap up this section with a complete example.

4

Example 1. Consider a Course database, the universal attribute set is

R(X) = (instructor, department, faculty, course, term).

A sample instance of such a database is shown in Figure 1.3.

Bob PythonCS 2016 FallApplied Science

David Science Algebra 2017 SummerMath

Carl 2017 SpringApplied ScienceCS OS

Term

2017 Spring

2017 SpringDatabase

Algebra

Course

Applied Science

Science

FacultyDepartment

CS

Math

Instructor

Bob

Alice

Figure 1.3: A sample Course database

Assume that we have discovered the following ranked list of FDs from data

f1 : instructor→ department

f2 : department→ faculty

f3 : course, term→ instructor

The BCNF test asks that, if we take the top-k FDs, does R(X) conform to BCNF?
For example, when we take k = 3, R(X) does not conform to BCNF. Why? The attribute
instructor can determine at most three attributes (instructor, department, faculty),
which do not equal to the universal attribute set. In other words, there exist data redundan-
cies for the attribute set (instructor, department, faculty). The answer—R(X) does not
conform to BCNF—guides users to decompose the relation if users want to get a redundancy-
free schema.

The primality test asks whether an attribute belongs to some key in a relation schema.
For instance, does instructor belong to some key of the schema R(X)? Among all super-
keys4 of R(X), the minimal one containing instructor is (instructor, course, term).
However, (instructor, course, term) is not a key since (course, term) is its subset and is
also a super-key.

Next, we give examples of interval queries.
For the BCNF test of the universal attribute set, the stable interval is [1, 3]. That is,

it does not conform to BCNF when k ∈ [1, 3]. Consider another schema (instructor,
department, faculty). It does not conform to BCNF when k = 1. But it conforms to

4 We say an attribute set is a super-key of R(X) if it can determine all attributes in X.

5

BCNF when k = 2, 3. Users can carefully examine whether the turning point—FD f2—is
semantically correct. If it is a valid FD, we can conclude that we do not need to decompose
such a relation for any k ≥ 2.

For the primality test, attribute instructor belongs to a primary key in the interval
1 ≤ k ≤ 2.

• when k = 1, (instructor, faculty, course, term) is a key;

• when k = 2, (instructor, course, term) is a key;

With the involvement of f3, attribute instructor is no longer a prime attribute since the
attribute can be determined by (course, term). The answer gives users guideline on choosing
the prime key on different k.

1.2 Contributions

In this thesis, we aim to support two core design decision problems—BCNF Test and
Primality Test—for the top-k FDs in a ranked list of FDs.
• We formally define two types of queries—the point query and the interval query—
under the data-driven renormalization framework.

• We design efficient index structures and query processing algorithms to support the
queries.

• We conduct experiments on two real datasets and study the performance of our query
processing algorithm.

As far as we know, this is the first work on supporting these two core design decision
problems in the context of the data-driven renormalization framework.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews related work. Chapter
3 formally defines two type of queries—the point query and the interval query. Chapter 4
proposes two index structures to store intermediate results efficiently. Chapter 5 presents
the query processing algorithms on our index structures. Chapter 6 concludes the thesis.

6

Chapter 2

Related Work

In this chapter, we review the related work and divide them into two categories—
computational problems of schema design and data-driven renormalization.

2.1 Computational Problems of Schema Design

The relational data model was first described by Edgar F. Codd in 1969 [14]. A lot of
research work was devoted to the area in 70’s and 80’s. In particular, Beeri and Bernstein [13]
proposed the first linear-time algorithm for computing the closure of an attribute set and
applied it to schema design problems. Besides, they also showed that the BCNF test for
sub-schema and the primality test are NP-complete. Mannila and Räihä [15] studied the
structure of Armstrong relations—a representation of FDs with a sample database instance
of minimal size. They drew the connection between the family of closed sets and the family
of maximal sets for a set of FDs, which are the major structures we study in this thesis.
For a complete review of the major results in this period, please refer to [16, 17].

Gottlob et al. [12] studied three schema design problems (primality test, 3NF test, and
BCNF test) whose sets of FDs have bounded tree width—the relational schema can be
represented by a hypergraph, and the treewidth is defined on the hypergraph. They devel-
oped sophisticated polynomial-time algorithms to solve these particular instances of design
problems. The work was mostly theoretical and focused on the result of computational
complexity.

Köhler and Link [18] re-examined the schema design problem in the SQL data model.
The SQL data model is different from the standard relational data model—it allows dupli-
cate tuples and uses a special null value to process incomplete information. They re-defined
the FDs and BCNF under the SQL data model. We only tackle design problems under the
relational model in this thesis and will discuss the extension to the SQL data model with
the future work in Chapter 7.

7

All these works assume that the FDs are available as the prior knowledge—users devote
a lot of time to identify the FDs hidden in an application context to minimize potential
changes in the future. The paradigm is also known as schema-on-write [19] in recent years.

Our work, however, is conducted in a different context. Users use a non-relational data
model, which often does not require a rigid schema definition in prior, to boost the speed of
iterative developments. The paradigm is also known as schema-on-read [19]. The schema is
unknown until we profile the datasets and discover the FDs from data. Since the discovered
FDs may not always be semantically correct, this thesis aims to guide the users to re-design
the schema in the relational data model.

2.2 Data Driven Renormalization

The data driven renormalization framework was proposed under the schema-on-read
paradigm mentioned in the previous section. We have introduced the framework in Chapter
1 and present the related work in this section.

DiScala and Abadi [7] proposed a three-phase algorithm that automatically transforms
nested JSON documents into relational tables. In the first phase, they discovered the possible
FDs—each FD is associated with a score of strength—from the data sets flatten from the
JSON documents. Then, they decomposed the relation schema based on the top-k FDs
selected by a threshold. In the second phase, they identified the relation schemas that may
represent the same entity and merge them into one relation schema. In the third phase,
they fine-tuned the generated schemas with various heuristics. Although this approach is
fully-automatic, it heavily relies on observations from real-world datasets and may not work
well on an arbitrary dataset.

Papenbrock and Naumann [8] presented an end-to-end solution of data-driven schema
renormalization. In particular, they treated the normalization as an iterative process and
proposed several quality measures to help users to choose FDs and decompose a relation
schema into small relation schemas.

A large body of work was devoted to functional discovery algorithms in the data pro-
filing phase [20]. Papenbrock et al. [21] conducted an experimental evaluation of seven FD
discovery algorithms. They showed that none of those state-of-the-art algorithms scale to
datasets with hundreds of columns or millions of rows. Bleifuß et al. [22] presented an al-
gorithm that approximately discovers FDs—the discovered FDs may be not correct—to
process large datasets.

This thesis, as discussed in Chapter 1, tackles a different aspect compared with all the
above work—the query answering aspect of the data-driven renormalization.

8

Chapter 3

Problem Definition

In this chapter, we formalize the problems discussed in Chapter 1. We first review the
relational data model. Then we define two types of queries—the point query and the stable
interval query. Finally, we sketch the major technical ideas in this thesis.

3.1 Preliminary

In this section, we give the definitions of the relation schema, functional dependencies
(FDs) and their inference rules. Based on these definitions, we introduce important terms
in this thesis—closure, BCNF, and primality. We use the Course database in Example 1 to
illustrate them when necessary.
Definition 1 (Relation Schema [17]). A relation schema, denoted by R(U), consists
of a name R and a set U of attributes. A tuple for a relation schema R(U) is a set of
(attribute, value) pairs where each attribute is unique and belongs to the attribute set
U . A set of tuples on a given relation schema is called a relation instance. Given a
tuple t on R(U), the projection of t on attribute set X, denoted by t[X], consists of the
(attribute, value) pairs for the attributes in X. A sub-schema of R(U) is a relation schema
R(X) such that X ⊆ U . We often write R(X) in the form of R[X] to indicate that it is a
sub-schema.

For example, Course(instructor, department, faculty, course, term) in Exam-
ple 1 is a relation schema, where the relation name is Course, and the attribute set
is {instructor, department, faculty, course, term}. The first tuple in the Course

database is 〈(instructor, Alice), (department, Math), (faculty, Science), (course,

Algebra), (term, 2017 Spring)〉. We often assume a total order on the attribute set and
abbreviate such a tuple as 〈Alice, Math, Science, Algebra, 2017 Spring〉. The projec-
tion of this tuple on 〈insctructor, department〉 is 〈Alice, Math〉, which is a tuple for the
sub-schema R[insctructor, department].

Definition 2 (Functional Dependency (FD) [17]). Given a relation schema R(U), a func-
tional dependency (FD) over U is an expression in the form of X → Y where X, Y ⊆ U .

9

Given a relation instance r on R(U), an FD X → Y holds in r, denoted by r ` X → Y ,
iff ∀t1, t2 ∈ r, t1[X] = t2[X] =⇒ t1[Y] = t2[Y]. An FD X → Y is trivial if Y ⊆ X.

For example, the FD instructor→ department holds in the sample Course database
in Figure 1.3. But the FD instructor→ course does not hold since Bob teaches both
Python and Database. One trivial FD is course, instructor→ course.

In practice, functional dependencies are expressed as integrity constraints and are part
of the relational data model. We use the term relational schema (Definition 3) to refer the
schema expressed within the relational model. It is different from the term relation schema.

Definition 3 (Relational Schema [17]). A relational schema, denoted by (R(U), Σ), consists
of a relation schema R(U) and a set Σ of FDs.

Definition 4 (Armstrong’s Axioms and Derived FDs [17]). Armstrong’s Axioms are
three FD inference rules: (1) Reflexivity. If Y ⊆ X, then X → Y ; (2) Augmentation. If
X → Y , then XZ → Y Z; (3) Transitivity. If X → Y and Y → Z, then X → Z. Given a
set Σ of FDs, an FD f can be derived from Σ, denoted by Σ � f , if there exists a finite
sequence of applying Armstrong’s axioms to generate the FD f from Σ.

For example, consider the three FDs in Example 1:

f1 : instructor→ department

f2 : department→ faculty

f3 : course, term→ instructor

An FD course, term → faculty can be derived from Σ = {f1, f2, f3} by applying the
transitivity inference rule twice—applying on f3 and f1 to get course, term→ department

and then applying with f2.

Definition 5 (Closure, Key and Closed Set [17]). Consider a relational schema (R(U), Σ)
and an attribute set X ⊆ U . The closure of the attribute set X ⊆ U under Σ, denoted by
X+, is the set of attributes that are determined by X. Formally,

X+ = {a ∈ U | Σ � X → a}.

An attribute set Y ⊆ X is closed on the attribute set X under the FDs Σ iff Y +∩X = Y ,
and we say that the attribute set Y is a closed set on the attribute set X. The family of
closed sets on the attribute set X is denoted by closed(X). Formally,

closed(X) = {Y ⊆ X | Y + ∩X = Y }.

For a closed set Y ∈ closed (U), we have Y + = Y .

10

For example, the closure of the attribute set instructor is (instructor, department,
faculty). Also, the attribute set (instructor, department, faculty) is closed on the at-
tribute set U in the Course database. Consider an attribute set X = {instructor, department,
course, term}—it excludes the attribute faculty from the attribute set U . The attribute
set {instructor, department, term} is a closed set on X, though it is not closed on the
attribute set U .

The following theorem connects the closure structure with FD inferences.

Theorem 1 ([17]). Given a relational schema (R[U], Σ) and two attribute sets X, Y ⊆ U ,
we have Σ � X → Y ⇐⇒ Y ⊆ X+.

Definition 6 (Key and Prime [17]). Given a relational schema (R(U), Σ), an attribute set
X is a key of the attribute set U if Σ � X → U , and for any attribute a ∈ X, Σ 6� X\a→ U .
An attribute a ∈ U is prime if ∃X ⊆ U such that a ∈ X and X is a key of the attribute set
U .

For example, (course, term) is a key for the Course database. Thus, both attribute
course and attribute term are prime.

Definition 7 (Boyce-Codd Norm Form (BCNF) [17]). A relational schema (R(U), Σ) con-
forms to BCNF if for any non-trivial FD X → a such that Σ � X → a, we have Σ � X → U .

For example, the relational schema of the Course database does not conform to BCNF,
since Σ � instructor→ department but Σ 6� instructor→ U .

3.2 Problem Definition

Given an attribute set U and an ordered list of FDs Σ = 〈f1, f2, . . . , fn〉 on U , where
n = |Σ| is the number of FDs in Σ, let Σk = 〈f1, f2, . . . , fk〉 be the top-k FDs of Σ.

We have seen how the point query and the stable interval query can guide users on
schema design in Example 1 (Chapter 1). The point query helps users to check the property—
BCNF or primality—of a schema design under the relational schema (R(U), Σk) for a spe-
cific k. The stable interval query helps users to inspect the stability of a property—BCNF
or primality—near k. Users can inspect the interval to make design decisions—whether the
FDs at the interval boundaries are semantically correct and whether to decompose a relation
or choose an attribute as part of a primary key.

We first define the point query and the stable interval query independently of the par-
ticular design decision question. Here we treat a design decision question as a black box
that outputs a boolean value (true or false) based on the property of a relational schema.

11

Such a definition enables us to support more design decision questions in the future, as we
will discuss the future work in Chapter 7.
Definition 8 (Point Query). Consider a relational schema (R(U), Σ). Given an integer
k such that 1 ≤ k ≤ n, the point query of a design decision problem D, denoted by
PQuery(k,D), outputs a boolean value—true or false—to the decision problem D under the
relational schema (R(U), Σk).

Definition 9 (Stable Interval Query). Consider a relational schema (R(U), Σ). Given an
integer k such that 1 ≤ k ≤ n, the stable interval query of a design decision problem D,
denoted by SInterval(k,D), outputs a maximum length interval [i, j] such that i ≤ k ≤ j,
and ∀i ≤ u ≤ j, PQuery(u,D) = PQuery(k,D).

Next, we define the two design decision problems—the BCNF test and the primality
test—under the relational schema (R(U), Σ).

Definition 10 (BCNF Test). Given an attribute set X ⊆ U under a relational schema
(R(U), Σk), the BCNF test on the attribute set X asks whether there exists a non-trivial
FD Y → Z where Y, Z ⊆ X such that Σk � Y → Z but Σk 6� Y → X.

Definition 11 (Primality Test). Given an attribute set X ⊆ U and an attribute x ∈ X

under a relational schema (R(U), Σk), the primality test asks whether x belongs to some key
of X.

We have given the examples of those queries in Example 1. Readers can re-examine
Example 1 if desired.

3.3 Technical Ideas

In this section, we sketch the major technical ideas of this thesis and pave the way for
our solution in the next few chapters.

First, many computation steps in the two design decision problems—the BCNF Test and
the Primality Test—boil down to computing the closure of an attribute set. Both the two
design decision problems require checking whether some FD X → Y can be derived from
a set Σ of FDs. By Theorem 1, such a problem (checking whether an FD can be inferred
from a set of FDs) can be reduced to checking whether Y ⊆ X+. Thus, we want to support
querying the closure of an attribute set efficiently.

A straightforward approach is to memorize the answers to all closure queries in advance
and look up the answer to the closure query of an attribute set. However, the space cost is
high.1

1We will analyze the space cost in Chapter 4.

12

abcd

c d

 ;;

bc cd

bcdabc

[a]: abc [b]: bc

[ab]: abc

[c]: c

[ac]: abc [bc]: bc

[abc]: abc

[d]: d

[ad]: abcd [bd]: bcd

[abd]: abcd

[cd]: cd

[acd]: abcd [bcd]: bcd

[abcd]: abcd

[a]: abc [b]: bc

[ab]: abc

[c]: c

[ac]: abc [bc]: bc

[abc]: abc

[d]: d

[ad]: abcd [bd]: bcd

[abd]: abcd

[cd]: cd

[acd]: abcd [bcd]: bcd

[abcd]: abcd

a) powerset of U b) closed(U)

d

cd

bcdabc

c) max(U)

Figure 3.1: The powerset lattice vs. the quotient set lattice vs. the maximal set on U =
{a, b, c, d}, Σ = {a → b, b → c}. Each ellipse shows the attribute set and its closure in the
format of [attribute set] : closure.

Can we find a compact representation of these answers and also provide efficient query
support? Fortunately, formal concept analysis (FCA) [23, 24] offers guidelines on this prob-
lem, which inspires the solutions in this thesis. It is beyond the scope of this thesis to
introduce the whole area. We focus on its application under our context and illustrate it
using an example.
Example 2. Consider a relational schema (R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→
b, b → c〉. We want to compute the closures of all possible attribute sets. That is, we are
interested in the collection of (X, X+) pairs where X ⊆ U . As a special case, let the closure
of an empty set be itself.

Figure 3.1 (a) shows the powerset of the universal attribute set, denoted by 2U , and their
closures. The attribute set forms a partial order based on the inclusive relationship between
attribute sets. Formally, such a structure is known as the powerset lattice.

Figure 3.1 (b) shows a compact representation of the powerset lattice—the quotient set
lattice. The key observation is that attribute sets may share the same closure, which
is color-coded in the figure. Then we can partition the powerset 2U into equivalent classes
based on the closure X+ for each attribute set X ⊆ U . That is, two attribute sets belong to
the same equivalent class iff their closures are the same. And we use a representative—the
attribute set that is closed (see Definition 5)—to summarize each equivalent class. It turns
out that those equivalent classes also form a lattice structure, known as the quotient set
lattice. The family of attribute sets in the quotient set lattice is exactly the family of closed
sets closed(U) (see Definition 5).

Figure 3.1 (c) shows a more compact representation of the quotient set lattice. The key
observation is that an attribute set in closed(U) may be generated by intersecting other
attribute sets in closed(U). For example, the closed set {b, c} can be generated by two
closed sets {a, b, c} and {b, c, d}. Based on the observation, we can achieve a more compact

13

representation known as the family of maximal sets, denoted by max(U). We leave the
technical details to the next chapter.

In summary, we get a compact structure to represent a set of FDs.
How does the structure help us solving the schema design problems? We present two

running examples—one for the BCNF test and the other for the primality test—on the rela-
tional schema (R(U), Σ). We show how to use the family of maximal sets (Figure 3.1 (c))
to answer the schema design problems. More specifically, for each design decision problem,
we show a sufficient and necessary condition2 to answer the decision problem using the
family of maximal sets.

Consider the BCNF test for the schema R(U) with the set Σ of FDs. Does R(U) conform
to BCNF? We only need to check the following condition: for any attribute set W ∈ max(U),
does Σ 6� W \ {x} → {x} for any attribute x ∈ W? If the answer is yes, R(U) conforms
to BCNF. Otherwise, R(U) does not conform to BCNF. Consider the attribute set W =
{a, b, c}. Here if we remove the attribute c from W = {a, b, c}, we have Σ � {a, b} → c.
Thus it does not conform with BCNF.

Consider the primality tests for some attribute x ∈ U under the relational schema
(R(U), Σ). Does the attribute x belong to a key of the relation schema R(U)? We only
need to check the following condition: is there an attribute set W ∈ max(U) such that no
superset of W belongs to max(U), and x 6∈W? If the answer is yes, then the attribute x is
prime. Otherwise, the attribute x is not prime. Here, we have two attribute sets {a, b, c} and
{b, c, d} satisfied the checking condition—they both belong to max(U), but any of their su-
persets does not belong to max(U). It follows that, for all attributes in U , only the attribute
a and the attribute d are prime—a 6∈ {b, c, d} and d 6∈ {a, b, c}.

The example shows how to handle the point queries on the relation schema R(U) using
the family of maximal sets, which is the cornerstone of answering more involved queries—the
point queries regarding sub-schemas and the stable interval queries. The family of maximal
sets is the core structure studied in this thesis. The crux of our problem is how to maintain
max(U) as an index structure (the topic of Chapter 4) and how to support query processing
using the index structure (the topic of Chapter 5).

2We leave the proof to Chapter 5.

14

Chapter 4

Index Structures

In this chapter, we study how to maintain a family of maximal sets using an index
structure. First, we investigate the characteristics of attribute set closures and introduce the
family of maximal sets. Then, we present two index structures—a simple list-based SIndex

structure and a trie-based TIndex structure—for maintaining the family of maximal sets.
Finally, we present the algorithms for constructing the index structures.

4.1 The Characteristics of Attribute Set Closures

This section formalizes the observations in Example 2. We repeat the example in Fig-
ure 4.1. Given a relational schema (R(U), Σ), we study the collection of all attribute sets
X ⊆ U and their closures X+. That is, we are interested in the collection X = {(X, X+) |
X ⊆ U} under the relational schema (R(U), Σ).

Powerset lattice

The powerset lattice (2U ,⊆) is a straightforward approach to represent the collection
X . Here we associate each attribute set X in the lattice with a value—its closure X+. As
we stated in Chapter 3, the space cost is high if we store such a powerset lattice completely
without optimization. Both an attribute set X and its closure X+ require at least |U |-bits
to represent. We have 2|U | possible (X, X+) pairs in the powerset lattice and need at least
2|U | · 2|U | bits space to store them for each relational schema (R(U), Σk). To store the
powerset lattices for all possible k where 1 ≤ k ≤ |Σ|, we need at least |Σ| · 2|U |+1 · |U | bits.
That is, even with |U | = 32 and |Σ| = 10, we need around 320 GB storage space.

Quotient set lattice and the family of closed sets

The powerset lattice (2U ,⊆) can be represented by a quotient set lattice (closed(U),⊆),
where closed(U) is the family of closed sets (Definition 5) on the attribute set U . We
construct such a lattice as follows.

15

abcd

c d

 ;;

bc cd

bcdabc

[a]: abc [b]: bc

[ab]: abc

[c]: c

[ac]: abc [bc]: bc

[abc]: abc

[d]: d

[ad]: abcd [bd]: bcd

[abd]: abcd

[cd]: cd

[acd]: abcd [bcd]: bcd

[abcd]: abcd

[a]: abc [b]: bc

[ab]: abc

[c]: c

[ac]: abc [bc]: bc

[abc]: abc

[d]: d

[ad]: abcd [bd]: bcd

[abd]: abcd

[cd]: cd

[acd]: abcd [bcd]: bcd

[abcd]: abcd

a) powerset of U b) closed(U)

d

cd

bcdabc

c) max(U)

Figure 4.1: The powerset lattice vs. the quotient set lattice vs. the maximal set on U =
{a, b, c, d}, Σ = {a → b, b → c}. Each ellipse shows the attribute set and its closure in the
format of [attribute set] : closure.

First, we partition the powerset 2U into equivalence classes based on the value of closure
X+ for each attribute set X ⊆ U . Two attribute sets X and Y are in the same equivalence
class, denoted by X ∼ Y , iff X+ = Y + under the relational schema (R[U], Σ). Let 2U / ∼
be the collection of equivalence partitions of the powerset 2U on the equivalence relation ∼.
Formally, 2U / ∼ is the collection {C ⊆ 2U | ∀X, Y ∈ C, X+ = Y +}. The collection 2U / ∼
is also known as the quotient set.

Then, for each equivalent class, we choose an attribute set that is closed (i.e., the at-
tribute set whose closure is itself) as the representative of the equivalent class. Thus, the
quotient set 2U / ∼ can be represented by the closed set closed(U).
Lemma 1. Given an equivalence class C = {X1, . . . , Xm} of 2U / ∼, there is an attribute
set Z ∈ C such that Z = Z+.

Proof. Consider an attribute set Xi ∈ C, and let Z be Xi
+. We prove that Z ∈ C. First,

by the definition of the equivalence class, we have X1
+ = · · · = Xm

+ = Z. Second, by
the definition of the attribute set closure (Definition 5), we have (X+

i)+ = X+
i and thus

Z+ = Z. As a result, Z+ = X+
i . It follows that Z ∼ Xi. Therefore, Z ∈ C.

Last, the family of closed sets also forms a lattice, and we call it the quotient set lattice.
The correctness of the above procedures is established by Theorem 2.

Theorem 2. (closed(U),⊆) is a lattice.

Proof. We only need to prove that, for any two attribute sets X, Y ∈ closed(U), there
exist a least upper bound and a greatest lower bound.

First, since ∅ ∈ closed(U) and U ∈ closed(U), there always exist an upper bound
(the universal attribute set U) and a lower bound (the empty attribute set ∅) for the two
attribute sets X and Y .

16

Next, we prove that there exists a least upper bound for the attribute sets X and Y .
Consider the collection C = {W ∈ closed(U) | X, Y ⊆W and @W ′ ∈ closed(U) s.t. W ′ (
W}. Assume there does not exist a least upper bound for X and Y . Then, there must
exist at least two distinct attribute sets Z1, Z2 ∈ C. Apparently, X, Y ⊆ Z1 ∩ Z2. Since
Z1, Z2 ∈ closed(U), we have Z1 ∩ Z2 ∈ closed(U). Since Z1 6= Z2 and Z1 6⊆ Z2, we have
Z1∩Z2 (Z1. That is, there exists an attribute set W ′ = Z1∩Z2 such that W ′ ∈ closed(U)
and W ′ (Z1. It leads a contradiction on the condition Z1 ∈ C.

Similarly, we can prove that there exists a greatest lower bound for the attribute sets
X and Y . Consider the collection C = {W ∈ closed(U) | X, Y ⊇ W and @W ′ ∈
closed(U) s.t. W ′ (W}. Assume there does not exist a greatest lower bound for X

and Y . Then there exists at least two distinct attribute sets Z1, Z2 ∈ C. Obviously,
Z1 ∩ Z2 ∈ closed(U) and Z1 ∩ Z2 (Z1, which contradicts with the condition Z1 ∈ C.

The family of maximal sets

The quotient set lattice (closed(U),⊆) can be represented by a subfamily of closed(U)—
the family of maximal sets max(U). The key observation is that the intersection of closed
sets is also closed. If a subfamily P ⊆ closed(U) can generate closed(U) by taking inter-
actions of the attribute sets in P, we call P a generator of closed(U). In particular, let
the intersection of an empty collection be U .1 Among all possible generators of closed(U),
there exists a generator of minimum size—the family of maximal sets (Definition 12). The
correctness is established by Theorem 3.
Definition 12 (The Family of Maximal Sets). Consider a relational schema (R(U), Σ).
Given an attribute x ∈ U and an attribute set Y ⊆ U such that Σ 6� Y → x, we say
the attribute set Y is maximal on the attribute x iff Σ � Y ∪ {b} → x for any attribute
b ∈ U \ Y . We define the family of maximal sets on the attribute x under the relational
schema (R[U], Σ) as

max(U, x) = {Y ⊆ U | Σ 6� Y → x ∧ ∀b ∈ U \ Y, Σ � Y ∪ {b} → x}

The family of maximal sets, denoted by max(U), is the union of the family of maximal
sets for all attributes. That is, max(U) =

⋃
x∈U max(U, x).

Also, we use maxk(U) to denote the family of maximal sets under the relational schema
(R(U), Σk).

We illustrate the concept using an example.

Example 3. Consider a relational schema (R(U), Σ) where U = {a, b, c, d} and Σ = {a→
b}. What is max(U, b)? Let Y ∈ max(U, b). Apparently, a 6∈ Y and b 6∈ Y , since Σ 6� Y → a.

1The attribute set U is always closed. By this convention, we can represent the attribute set U implicitly.

17

Consider a candidate attribute set Y = {c, d}. Apparently, the attribute set Y cannot derive
the attribute a—it satisfies the condition Σ 6� Y → a. However, adding either the attribute a

or the attribute b to the attribute set Y can derive the attribute a. Thus, {c, d} ∈ max(U, b).
There are no other maximal sets in max(U, b) since all possible candidate attribute sets are
subsets of {c, d}.

Similarly, we can get the family of maximal sets on the other attributes. In summary,
we have the following families of maximal sets:

max(U, a) = {{b, c, d}}

max(U, b) = {{c, d}}

max(U, c) = {{a, b, d}}

max(U, d) = {{a, b, c}}

The family of maximal sets max(U) is the union of the above collection. That is, max(U) =
{{b, c, d}, {c, d}, {a, b, d}, {a, b, c}}.

The collection max(U) is also a generator of the collection closed(U). Here, we have
closed(U) = {abcd, abc, abd, bcd, ab, bc, bd, cd, b, c, d, ∅}.2 Any attribute set in closed(U)
can be generated from max(U). For example, the attribute set {a, b} can be generated by
intersecting two maximal sets {a, b, d} and {a, b, c}.

Theorem 3 (Paraphrased from [15]). The family of maximal sets max(U) is a minimal
generator of closed(U).

In conclusion, we have a concise representation maxk(U) to represent the collection X =
{(X, X+) | X ⊆ U} under the relational schema (R(U), Σk). We move on and focus on how
to efficiently construct and maintain index structures for the sequence 〈max1(U), . . . , maxn(U)〉.

4.2 Index Structures

This section studies how to represent the sequence 〈max1(U), . . . , maxn(U)〉 where
maxk(U) is the family of maximal sets under the relational schema (R(U), Σk). We an-
swer the following two questions first.

How to represent an attribute set? An attribute set X ⊆ U is represented by a bitset
BX of length |U |. Assume that the attributes in the attribute set U are indexed from 1
to |U | by some total order (e.g., lexicographic order). Then, BX [i] = 1 iff U [i] ∈ X. For
example, consider a universal attribute set U = {a, b, c, d}. An attribute set X = {a, b, c}
can be represented by a bitset BX = 〈1110〉. It is easy to transform a bitset back to an

2For brevity, we abbreviate a collection in the form of {a, b, c, d} to a string abcd.

18

attribute set. Thus, we do not distinguish an attribute set X with its bitset representation
BX when it is clear from the context. That is, we often refer the bitset BX as the attribute
X directly for brevity.

How to represent an attribute set shared by multiple maximal sets? Given an attribute
set X ⊆ U , consider the set of integers I = {i | X ∈ maxi(U), 1 ≤ i ≤ n}. Then, the set I

only consists of a sequence of consecutive integers. It is because, if we remove an attribute
set from the family of maximal sets, say maxi(U), we will never add it back to a family
of maximal sets maxj(U) where j > i. The proposition is implied by Theorem 4. We will
revisit it in the next section along with Theorem 4. Now we only need two integers Imin

(the minimum value of I) and Imax (the maximum value of I) to represent the set I. That
is, I = {i | Imin ≤ i ≤ Imax}.

Now we are ready to represent the sequence 〈max1(U), . . . , maxn(U)〉 as an index struc-
ture. Next, we present the SIndex structure using an example.
Example 4. Consider the following families of maximal sets under the relational schema
(R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→ b, b→ c, {c, d} → a〉:

max1(U) = {{a, b, c}, {a, b, d}, {b, c, d}, {c, d}}

max2(U) = {{a, b, c}, {b, c, d}, {c, d}, {d}}

max3(U) = {{a, b, c}, {b, c}, {c}, {d}}

We can represent them as a set of triples (X, l, r) where X ⊆ U is an attribute set,
and l and r are two integers such that X ∈ maxi(U) iff l ≤ i ≤ r. Figure 4.2 shows the
representations for the relational schema (R(U), Σ2) and the relational schema (R(U), Σ3).

2

1011

1

l

d

1110

20111

2

10011 2

abc

1

bitset

1

2

bcd

r

abd

0001

1

cd

(a) 〈max1(U), max2(U)〉

30010 3c

0110 33bc

2

1011

1

l

d

1110

20111

3

10011 2

abc

1

bitset

1

3

bcd

r

abd

0001

1

cd

(b) 〈max1(U), max2(U), max3(U)〉

Figure 4.2: The representation of a set of triples under (R(U), Σ2) and (R(U), Σ3))

The SIndex structure is a variant of such a representation. Figure 4.3 shows the SIndex

structure for the relational schema (R(U), Σ2) and the relational schema (R(U), Σ3). It uses
an additional integer k to represent the current size of FDs along with a list of triples. The
list of triples is similar to the one in Figure 4.2. The difference is that, for each triple
(X, l, r) in the list, we also allow the value of r to be a special value ∞—a value that is
larger than any integer—such that X ∈ maxi(U) iff l ≤ i ≤ min(k, r).

19

2

1011

1

l

d

1110

∞0111

∞

10011 ∞

abc

1

bitset

1

∞

bcd

r

abd

0001

1

cd

k = 2

(a) 〈max1(U), max2(U)〉

∞0010 3c

0110 ∞3bc

2

1011

1

l

d

1110

20111

∞

10011 2

abc

1

bitset

1

∞

bcd

r

abd

0001

1

cd

k = 3

(b) 〈max1(U), max2(U), max3(U)〉

Figure 4.3: The improved representation of a set of triples under (R(U), Σ2) and (R(U), Σ3))

Such a representation reduces the cost of maintaining the index structure incremen-
tally. For example, consider the index structure for the relational schema (R(U), Σ2) and
(R(U), Σ3). Two attribute sets {a, b, c}, {d} are both in max2(U) and max3(U). Compared
Figure 4.2a with Figure 4.2b, we have to update the value of r for both the two attribute
sets. On the contrast, compared Figure 4.3a with Figure 4.3b, we only need to update the
value of k.

We define the above SIndex structure (simple list-based index structure) precisely as
follows.

Definition 13 (SIndex). Given a relational schema (R(U), Σ), a SIndex structure consists
of an integer k that indicates the number of FDs in Σ and a list of triples. Each triple in
the list consists of a bitset representation of an attribute set X ⊆ U , an integer l and a field
r that can be either an integer or ∞ (a value that is larger than any integer) such that for
any integer i ≤ k and l ≤ i ≤ r, we have X ∈ maxi(U).

The core component of the SIndex structure is to represent a collection of bitsets of fixed
length. We present another index structure—the TIndex (trie-based index structure)—to
represent the collection of bitsets. The idea is to use a compressed prefix-tree data structure
(also known as radix tree or crit-bit tree [25]) to represent the collection of bitsets. We
present the TIndex structure using an example.

Example 5. Consider the bitsets for the sequence 〈max1(U), max2(U)〉 where

max1(U) = {0011, 0111, 1011, 1110}

max2(U) = {0001, 0011, 0111, 1110}

The TIndex structure consists of an integer k, which records the current size of FDs,
and a tree structure T , as shown in Figure 4.4b. The equivalent SIndex structure is shown
in Figure 4.4a for comparison. The tree has two types of nodes—internal nodes (A , B , C

and D) and external nodes (marked with a gray box with two fields).

20

2

root

2

1

0011
∞1

0111
∞1

1110
∞1

1011
11

0001
∞2

3

2

1011

1

l

d

1110

∞0111

∞

10011 ∞

abc

1

bitset

1

∞

bcd

r

abd

0001

1

cd

k = 2

A
B C

D

k = 2

a) SIndex b) TIndex

Figure 4.4: The SIndex structure and the TIndex structure under the relational schema
(R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→ b, b→ c〉.

Similar to the SIndex structure, each external node consists of a bitset representation
of an attribute set X, an integer l and a filed r (either an integer or ∞) such that for any
integer i with l ≤ i ≤ min(r, k), we have X ∈ maxi(U). Here we have five unique bitsets in
max1(U) ∪max2(U), and thus we have five external nodes.

Each internal node consists of an integer and two pointers—a left pointer to the left-
subtree and a right pointer to the right-subtree. The integer, denoted by pos, indicates the
first position where the bitsets of the node’s left-subtree and the bitsets of the node’s right-
subtree differs. For any bitset in the left-subtree, the bit at pos is 0. For any bitset in the
right-subtree, the bit at pos is 1. For example, consider the internal node B . Its left subtree
consists of a collection of two bitsets {〈0001〉, 〈0011〉}, and its right subtree consists of a
collection of one bitset {〈0111〉}. The common prefix of these two collections is 〈0〉, and the
first position where two collections differ is the second bit (i.e., pos = 2). In other words,
the subtree rooted at node B represents the collection of bitsets with the prefix 〈0〉. The left-
subtree of node B represents the collection of bitsets with the prefix 〈00〉. The right-subtree
of node B represents the collection of bitsets with the prefix 〈01〉.

We define the above TIndex structure precisely as follows.

Definition 14 (TIndex). Given a relational schema (R(U), Σ), a TIndex structure consists
of an integer k that indicates the number of FDs in Σ and a tree structure T . The root of
the tree is either an external node or an internal node.

Each external node consists of a bitset representation of an attribute set X ⊆ U , an
integer l and a field r that can be either an integer or either an integer or ∞ (a value
that is larger than any integer) such that for any integer i ≤ k and l ≤ i ≤ r, we have
X ∈ maxi(U).

21

Each internal node consists of an integer pos, a pointer to the left subtree and a pointer
to the right subtree. For any external node (B1, l1, r1) in the left subtree and any external
node (B2, l2, r2) in the right subtree, we have B1[pos] = 0, B2[pos] = 1, and the longest
common prefix of B1 and B2 is of length (pos− 1).

The SIndex structure stores the essential information of the family of maximal sets.
Compared with the TIndex structure, the SIndex structure basically consists of the external
nodes in the TIndex structure. The TIndex structure organizes the family of maximal sets
into a tree structure to allow traversing the family of maximal sets in various ways. For in-
stance, in Example 5, we may want to traverse all maximal sets not containing the attribute
a. The TIndex structure (Figure 4.4b) allows us to prune the left subtree completely—the
one rooted at node B .

4.3 Constructing the Index Structures

This section presents how to compute the sequence 〈max1(U), . . . , maxn(U)〉 incremen-
tally and how to construct the SIndex structure and the TIndex structure.

4.3.1 The foundation: update the family of maximal sets incrementally

How to compute maxk(U) incrementally on k? We answer the following three questions.
What attribute sets should we remove when getting maxk+1(U) from maxk(U)?

Theorem 4 is a sufficient and necessary condition of removing an attribute set from
the family of maximal sets.

What attribute sets should we add when getting maxk+1(U) from maxk(U)?
Theorem 5 is a necessary condition of adding an attribute set to the family of maximal
sets. With Theorem 6, we can validate whether we should add an attribute set to the
family of maximal sets.

How to compute the base case max1(U)? Theorem 7 gives the result of a special case
max0(U) where the set of FDs is empty. We can compute the base case max1(U) from
max0(U).

What attributes to remove

The following theorem gives a necessary and sufficient condition on whether to remove
an attribute set from the family of maximal sets after adding a new FD to the relational
schema.
Theorem 4. Given an attribute set X ∈ maxk(U), then X 6∈ maxk+1(U) iff fk+1.lhs ⊆ X

but fk+1.rhs 6⊆ X.

22

We prove Theorem 4 by combining the following two lemmas.

Lemma 2. Given an attribute set X ∈ maxk (U), then X 6∈ maxk+1 (U) iff X is not closed
under the relational schema (R(U), Σk+1).

Proof. ⇐= : Trivial since a maximal set must be closed.
=⇒ : Consider an attribute set X such that X ∈ maxk(U) but X 6∈ maxk+1 (U).

Assume that X is closed under the relational schema (R(U), Σk+1).
Since X ∈ maxk(U), there exists an attribute a ∈ U such that X ∈ maxk(U, a). Then,

we have Σk 6� X → a, and thus a 6∈ X. Since X is closed under (R(U), Σk+1) and a 6∈ X,
we have Σk+1 6� X → a.

Given that Σk+1 6� X → a and X 6∈ maxk+1(U), there must exist an attribute set X ′

such that X (X ′ and X ′ ∈ maxk+1(U, a). Otherwise, by the definition of maximal sets,
we have X ∈ maxk+1(U, a), which contradicts with the condition X 6∈ maxk+1(U). Since
X ′ ∈ maxk+1(U, a), X ′ is closed under the relational schema (R(U), Σk+1). As a result, the
attribute set X ′ is also closed under the relational schema (R(U), Σk). However, given that
X ∈ maxk(X), a superset of X cannot be closed under the relational schema (R(U), Σk),
which leads a contradiction.

Lemma 3. Given an attribute set X ∈ maxk(U), then X is not closed under the relational
schema (R(U), Σk+1) iff fk+1.lhs ⊆ X but fk+1.rhs 6⊆ X.

Proof. ⇐= : Consider an attribute set X ∈ maxk(U) such that fk+1.lhs ⊆ X and
fk+1.rhs 6⊆ X. Since fk+1.lhs ⊆ X, we have fk+1.rhs ⊆ X+ under (R(U), Σk+1). Then, we
have X (X ∪ {fk+1.rhs} ⊆ X+. Thus, X is not closed under (R(U), Σk+1).

=⇒ : Consider an attribute set X ∈ maxk(U) such that X is not closed under
(R(U), Σk+1). Since X ∈ maxk(U), X is closed under (R(U), Σk). Thus, X+ = X un-
der (R(U), Σk). We study how the closure of X will change after adding an FD fk+1 to
the set Σk of FDs. According to the closure computation algorithm [17], if fk+1.lhs 6⊆ X,
then we will not add any attributes to the closure of X; if fk+1.rhs ⊆ X, then adding
fk+1.rhs to the closure of X does not change its value. In both cases, we still have X+ = X

under (R(U), Σk+1). It leads a contradiction of the condition that X is not closed under
(R(U), Σk+1).

Remark. When discussing how to represent an attribute shared by multiple maximal sets
in the last section, we claim that if we remove an attribute set from the family of maximal
sets, say maxi(U), we will never add it back to the family of maximal sets maxj(U) where
j > i. The proposition is implied by Lemma 2. If we remove an attribute set X from
maxi(U), then X is not closed under (R(U), Σi). Adding more FDs to Σi will not make the
attribute set X closed.

23

What attributes to add

The following theorem gives a necessary condition on whether to add a new attribute
set from the family of maximal sets after adding a new FD to the relational schema.
Theorem 5. Consider an attribute set W ⊆ U such that W 6∈ maxk(U). If W ∈ maxk+1(U),
then there exist two attribute sets X and Y in maxk(U) such that W = X ∩ Y , X 6∈
maxk+1(U), Y ∈ maxk+1(U) and fk+1.lhs 6⊆ Y .

Proof. First, we have the following known theorem.

Theorem ([15]). Consider a relational schema (R(U), Σ) and an attribute set W ∈ maxk+1(U, a)
where a ∈ U . Then, either W ∈ maxk(U, a) or there exist two attribute sets X and Y such
that W = X ∩ Y , X ∈ maxk(U, a), Y ∈ maxk(U, b) and b ∈ fk+1.lhs.

Consider an attribute set W ∈ maxk+1(U, a) where a ∈ U . Let X and Y be the two
attribute sets such that W = X ∩ Y , X ∈ maxk(U, a), Y ∈ maxk(U, b) and b ∈ fk+1.lhs, as
stated in the above theorem.

The attribute sets X and Y cannot both belong to maxk+1(U). Otherwise, W ∈ maxk+1(U)
can be expressed as the intersection of the two attribute sets in maxk+1(U), which leads a
contradiction that maxk+1(U) is a generator of minimum size for the family of closed sets
(Theorem 3).

Now we only need to prove that Y ∈ maxk+1(U). Since Y ∈ maxk(U, b), we have
b 6∈ Y . Along with b ∈ fk+1.lhs, we have fk+1.lhs 6⊆ Y . By Theorem 4, we also have
Y ∈ maxk+1(U).

To check whether the attribute set W in Theorem 5 is indeed a maximal set, we use the
following theorem to validate.

Theorem 6. Consider an attribute set W that is closed under the relational schema
(R(U), Σk). Then, W ∈ maxk(U) iff C \W 6= ∅ where C =

⋂
b∈U\W (W ∪ {b})+.

Proof. =⇒ : Since W ∈ maxk(U), there exists an attribute a ∈ U such that W ∈
maxk(U, a). Then, we have Σk 6� W → a and Σk � W ∪{b} → a for any attribute b ∈ U \W .
By the definition of the closure (Definition 5), we have a 6∈W and a ∈ C. Thus, C \W 6= ∅.
⇐= : Consider an attribute a ∈ C \W . Given that a 6∈ W and W is closed, we have

Σk 6� W → a. For any attribute b ∈ U \W , since a ∈ C, we have Σk � W ∪ {b} → a. By
the definition of maximal sets, W ∈ max(U, a) ⊆ max(U).

Base Case

The base case gives the result for the family of maximal sets max0(U) and helps us to
compute max1(U).
Theorem 7. Let max0(U) be the family of maximal sets under the relational schema
(R(U), Σ0) where Σ0 = ∅. Then, max0(U) = {U \ {a} | a ∈ U}

24

Proof. Consider an attribute x ∈ U . First, we prove that U \ {x} ∈ max0(U, x). We have
Σ0 6� U \ {x} → x. Otherwise, the set Σ0 of FDs cannot be empty. Also, the FD U → x is
trivial. By the definition of maximal sets, we have U \ {x} ∈ max0(U, x).

Next, we prove that the attribute set U \{x} is the only element in max0(U, x). Assume
that there is another attribute set Y ∈ max0(U, x) and Y 6= U \ {x}. Then, we have
Y (U \ {x}. Otherwise, we have x ∈ Y , which contradicts with the condition Σ 6� Y → x

for the maximal set Y . Given that U \ {x} ∈ maxk(U) and Y (U \ {x}, the attribute set
Y cannot be maximal.

Finally, max0(U) = ∪x∈U max0(U, x) = {U \ {a} | a ∈ U}.

4.3.2 Index Construction Algorithm

With the foundation built in the previous subsection, we present the index construc-
tion algorithm. The algorithm (Algorithm 1) starts from max0(U) (Theorem 7) and incre-
mentally updates the family of maximal sets—either by removing existing attribute sets
(Theorem 4) or by adding new attribute sets (Theorem 5 and Theorem 6).

The algorithm computes the family of maximal sets maxk(U) iteratively. At each iter-
ation (Line 4), we search for two collections of attribute sets: S (Line 6) and T (Line 7).
Then, we check all pairs (X, Y) where X ∈ S and Y ∈ T . We remove the attribute set X

from S and add the attribute set W = X ∩ Y if W is qualified (Line 12). To check whether
W is qualified (procedure TestMaxSet), we validate the condition in Theorem 6.

Next, we show how the index construction algorithm works on each index structure
using examples.
Example 6 (SIndex). Figure 4.5 shows the index structure of the SIndex structure under
the relational schema (R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→ b, b→ c, {c, d} → a〉.

For the base case of k = 0, we have four attribute sets {a, b, c}, {a, b, d}, {a, c, d} and
{b, c, d}.

To compute max1(U), we first compute the collection S (Line 6 in Algorithm 1) by
scanning the SIndex structure. Given that f1 : a → b, by the condition of Theorem 4—
a ∈ {a, c, d} but b 6∈ {a, c, d}, we have S = {{a, c, d}}. Thus, the attribute set {a, c, d} does
not belong to max1(U) and can be removed.

Now, consider the collection T (Line 7 in Algorithm 1). We have T = {{b, c, d}}. Along
with the collection S = {{a, c, d}}, we get a candidate maximal set W = {a, c, d}∩{b, c, d} =
{c, d}. We have to verify whether the attribute set W = {c, d} is indeed a maximal set. To do
so, we combine W with an attribute x ∈ U \W and compute the closure (W ∪{x})+. Here,
we have two closures (W∪{a})+ = {a, b, c, d} and (W∪{b})+ = {b, c, d}. The intersection of
these two closures is {b, c, d}. This intersection has shared elements {b} besides W = {c, d}.
Thus, the attribute set {c, d} is indeed a maximal set and should be added to max1(U).

25

Algorithm 1 Construct an index structure S on the relational schema (R(U), Σ)
1: procedure ConstructIndex(R(U), Σ)

Input: a relational schema (R(U), Σ) where Σ = 〈f1, . . . , fn〉
Output: an index structure S for the sequence 〈max1(U), . . . , maxn(U)〉

2: max0(U)← {U \ {x} | x ∈ U}
3: k ← 0
4: for i← 1 . . . n do
5: maxi(X)← maxk(X)
6: S ← {X ∈ maxk(U) | fi.lhs ⊆ X ∧ fi.rhs 6⊆ X}
7: T ← {X ∈ maxk(U) | fi.lhs 6⊆ X}
8: for X ∈ S do
9: remove X from maxi(U)

10: for Y ∈ T do
11: W ← X ∩ Y
12: if TestMaxSet(W, i) then
13: add W to maxi(U)
14: add maxi(X) to the index structure S
15: k ← i

16: procedure TestMaxSet(W, i)
Output: Does W ∈ maxi(U)?

17: r ← U \W
18: for b ∈ U \W do
19: C ← (W ∪ {b})+ under (R(U), Σi)
20: r ← r ∩ C
21: if r = ∅ then
22: return false
23: return true

26

∞

∞
∞

∞
rl

1

1

1

1

bitset

0011cd

0111bcd

1011abd

1110abc

2

1011

1

l

d

1110

∞0111

∞

10011 ∞

abc

1

bitset

1

∞

bcd

r

abd

0001

1

cd

∞0010 3c

0110 ∞3bc

2

1011

1

l

d

1110

20111

∞

10011 2

abc

1

bitset

1

∞

bcd

r

abd

0001

1

cd

f2 : b ! c
add

k = 1 k = 2

add
f3 : cd ! a

k = 3

abc

bcd

abd 1011

acd

bitset

0111

1011

1110 add
f1 : a ! b

k = 0

Figure 4.5: Example of index construction on Σ = 〈a→ b, b→ c, cd→ a〉

Figure 4.5 shows how the SIndex structure is updated from k = 1 to k = 3. For example,
consider how to update the SIndex after getting max2(U) from max1(U). According to the
algorithm, we have to remove the attribute set {a, b, d} and add the attribute set {d}. To
remove the attribute set {a, b, d}, we just update the field r associated with the attribute set
{a, b, d} to k−1. To add the attribute set {d}, we add an attribute set with l = k and r =∞.

Next, we show an example of the equivalent TIndex structure.

Example 7 (TIndex). Figure 4.6 shows the index construction process for the TIndex

structure. The computation of the family of maximal sets is similar to the one in the SIndex

structure. We only show how the tree structure is updated.
Figure 4.6 shows how the TIndex structure is updated from k = 1 to k = 3. Consider

how to update the index structure after getting max2(U) from max1(U). We have to remove
〈1011〉 and add 〈0001〉 to the index structure T1.

To remove 〈1011〉 from the tree T1, we traverse3 the tree to find the external node with
the attribute set 〈1011〉 and update the field r to 1. To add 〈0001〉, we traverse the tree to
find the external node that shares the longest common prefix with 〈0001〉—the external node
〈0011〉. The first position where the bitset 〈0001〉 and the bitset 〈0011〉 differs is 3. We create
an internal node with pos = 3 (marked as a red internal node in T2).

Finally, we do a rough comparison of the two index structures on the space cost and the
index construction time.

Consider the space cost of the two index structures. The SIndex structure consists of
all the external nodes in the TIndex structure (see Figure 4.4 as a concrete example). The
difference lies in the internal nodes of the TIndex structure. Let the number of external
nodes in the TIndex structure be m. Since the TIndex structure is a full binary tree (every
internal node has two children), the number of internal nodes in the TIndex structure is

3The traverse algorithm is same with the crit-bit/compressed-prefix tree [25].

27

2

root

2

1

2

0011
∞1

0111
∞1

1110
∞1

1011
∞1

root

2

1

0011
∞1

0111
∞1

1110
∞1

1011
11

0001
∞2

3

2

root

2

1

0011
21

0111
21

1110
∞1

1011
11

0001
∞2

3 4

0010
∞3

4 0110
∞3

f2 : b ! c

add

add

f3 : cd ! a

k = 1 k = 2

k = 3

T1 T2

T3

Figure 4.6: The index construction of TIndex under the relational schema (R(U), Σ) where
U = {a, b, c, d} and Σ = 〈a→ b, b→ c, {c, d} → a〉. The changes are marked with red.

m− 1. Assume that we use 32-bits to represent an integer or a pointer. Each internal node,
which consists of an integer and two pointers, requires 96-bits space. Thus, the TIndex

structure requires 96(m − 1)-bits additional storage overhead compared with the SIndex

structure.
Consider the index construction time for the two index structures. As shown in Algo-

rithm 1, the key differences between the two index structures are on how to iterate maxk(X)
for a given k and how to update maximal sets. Again, assume we have m external nodes in
the TIndex structure—it also implies that we have m entries in the corresponding SIndex

structure. For the SIndex structure, iterating maxk(X) requires O(m) time; updating maxi-
mal sets also requires O(m) time. For the TIndex structure, iterating maxk(X) also requires
O(m) time—traversing the whole tree of 2m−1 nodes. Next, we consider the time of updat-
ing maximal sets. Let the height of the TIndex structure be h. Since there are at least 2h−1
nodes and at most 2h+1−1 nodes in a full binary tree, we have 2h−1 ≤ 2m−1 ≤ 2h+1−1.
Then, log2 m ≤ h ≤ m. As a result, updating maximal sets in the TIndex structure also
requires O(h) = O(m) time. Therefore, these two index structures share similar index con-
struction time.

28

Chapter 5

Query Processing

In this chapter, we present how to leverage the index structures—SIndex and TIndex—
to process the point query and the stable interval query.

5.1 Point Query

Given a relational schema (R(U), Σ), a point query (Definition 8) answers a design de-
cision problem—the BCNF test or the primality test—on the relational schema (R(U), Σk)
where 1 ≤ k ≤ |Σ|. In this section, we first study two core components of the query process-
ing algorithm—computing the closure of an attribute set and computing the projection of
maximal sets. Then, we present the query process algorithm for each type of point query.

5.1.1 Core components of point query algorithms

Closure of an attribute set

Given the family of maximal sets maxk(U), how to compute the closure of an attribute
set X ⊆ U under the relational schema (R(U), Σk)?

Theorem 8 builds the connection between the closure of an attribute set and the family
of maximal sets.
Theorem 8. The closure of an attribute set X ⊆ U under the relational schema (R(U), Σk)
is X+ =

⋂
W ∈L W where L = {Y ∈ maxk(U) | X ⊆ Y }. That is, the closure is equal to the

intersection of all maximal sets that are the supersets of X. Especially, let X+ = U when
L = ∅.

Proof. Let P =
⋂

W ∈L W . We prove that X+ = P under (R(U), Σk).
First, we prove that X+ ⊆ P . Consider an attribute set W ∈ L. Since X ⊆ W and

W ∈ maxk(U), we have X+ ⊆W + = W . Given that P =
⋂

W ∈L W , we have X+ ⊆ P .
Next, we prove that P ⊆ X+. By the definition of the closure (Definition 5), the attribute

set X+ is closed. By Theorem 3, the closed set X+ can be generated by a collection L′ of
maximal sets. That is, X+ =

⋂
W ∈L′ W . Since X ⊆ X+ ⊆W for each attribute set W ∈ L′,

29

we have L′ ⊆ L. Since P =
⋂

W ∈L W = (
⋂

W ∈L′ W)
⋂

(
⋂

W ∈L\L′ W) = X+ ⋂
(
⋂

W ∈L\L′ W),
we have P ⊆ X+.

Algorithm 2 Query the closure X+ of X under (R[U], Σk)
1: procedure Closure(k, X)
2: L ← {W ∈ maxk(U) | X ⊆W}
3: if L = ∅ then
4: return U
5: result← U
6: for W ∈ L do
7: result← result ∩W
8: return result

Algorithm 2 applies Theorem 8 to compute the closure of an attribute set. The algorithm
searches all supersets of X in maxk(U) and then takes the intersection of attribute sets in
L. If we cannot find a superset of X in our index structure (i.e., L = ∅), the algorithm
outputs the attribute set U .

Example 8. Consider a relational schema (R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→
b, b → c, {c, d} → a〉. The SIndex structure and the TIndex structure are shown in Fig-
ure 5.1. We consider how to compute the closures of two attribute sets {a, c, d} and {c}
under the relational schema (R(U), Σ2).

2

root

2

1

0011
21

0111
21

1110
∞1

1011
11

0001
∞2

3 4

0010
∞3

4 0110
∞3

k = 3

T3

∞0010 3c

0110 ∞3bc

2

1011

1

l

d

1110

20111

∞

10011 2

abc

1

bitset

1

∞

bcd

r

abd

0001

1

cd

k = 3

(a) SIndex (b) TIndex

Figure 5.1: The SIndex structure and the TIndex structure under the relational schema
(R(U), Σ) where U = {a, b, c, d} and Σ = 〈a→ b, b→ c, {c, d} → a〉.

1. Consider the attribute set X = {a, c, d}:〈1101〉. For the SIndex structure, we scan the
list to find the supersets of X. For the TIndex structure, starting from the root, we

30

only need to traverse the right-hand subtree since the prefix of X is 1. We find that
there does not exist an attribute set which is a super set of X (Line 3). As a result,
we return the full set X+ = {a, b, c, d}.

2. Consider the attribute set X = {c}:〈0010〉. Similarly, we traverse the index structure
and check whether the associated interval [l, r] satisfies k ∈ [l, r]. There are three
supersets of X such that k ∈ [l, r]—{a, b, c}:〈1110〉 {b, c, d}:〈0111〉 and {c, d}:〈0011〉.
The intersection of these three attribute sets is intersection is 〈1110〉∧〈0111〉∧〈0011〉 =
〈0010〉, which represents the attribute set {c}. We return X+ = {c}.

Projection of maximal sets

Given the family of maximal sets maxk(U), how can we compute maxk(X) where X ⊆
U? The problem is known as the projection of the family of maximal sets [17]. To solve this
problem, we generate candidate maximal sets using Corollary 1 and verify the correctness
using Theorem 9.

To generate the candidate maximal sets of maxk(X), for an attribute set W ∈ maxk(U),
we compute the projection of W on the attribute set X—that is, the intersection W ∩X.
Corollary 1. Consider a relational schema (R(U), Σk). Given an attribute set W ∈ maxk(X),
there exists an attribute set W ′ ∈ maxk(U) such that W = W ′ ∩X.

Proof. First, we have the following lemma.

Lemma 4 ([17]). Let W ∈ max(X, a) for some X ⊆ U . Then W = W ′ ∩ X for some
attribute set W ′ ∈ max(U, a)

The lemma implies the corollary as follows. Since W ∈ maxk(X), there exists an at-
tribute a ∈ X such that W ∈ maxk(X, a). By the above lemma, there exists an attribute
set W ′ ∈ maxk(U, a) ⊆ maxk(U) such that W = W ′ ∩X.

To verify whether a candidate attribute set W ⊆ X is indeed a maximal set in maxk(X).
We extend Theorem 6—the theorem that checks whether an attribute set belongs to maxk(U).

Theorem 9. Given an attribute set W ⊆ X such that W = W ′ ∩X and W ′ ∈ maxk(U),
we have W ∈ maxk(X) iff C \W 6= ∅ where C = ∩b∈X\W (X ∩ (W ∪ {b})+).

Proof. =⇒ : Since W ∈ maxk(X), there exists an attribute a ∈ X such that W ∈
maxk(X, a). Then, we have Σk 6� W → a and Σk � W ∪ {b} → a for any attribute
b ∈ X \W . By the definition of the closure (Definition 5), we have a 6∈W and a ∈ C. Thus,
C \W 6= ∅.
⇐= : First, we prove that W is closed on the relation schema R[X] by contradiction.

Consider an attribute x ∈ W + ∩ X and x 6∈ W . Since W ′ ∈ maxk(X), W ′ is closed and

31

thus W + ⊆ W ′. Then, x ∈ W ′. Now, since W = W ′ ∩ X and x 6∈ W , we have x 6∈ X. It
leads a contradiction with x ∈W + ∩X.

Next, consider an attribute a ∈ C \W . Given that a 6∈ W and W is closed on X, we
have Σk 6� W → a. For any attribute b ∈ X \W , since a ∈ C, we have Σk � W ∪ {b} → a.
By the definition of maximal sets, W ∈ max(X, a) ⊆ max(X).

We will see an example of applying these two theorems in action shortly when processing
the point query for the BCNF test.

5.1.2 BCNF Test

Consider a relational schema (R(U), Σ). The BCNF test asks whether a relation schema
R[X] conforms with BCNF under the relational schema (R(U), Σk) where X ⊆ U and
1 ≤ k ≤ |Σ|.

The naive method to do BCNF test for R[X] is—by Definition 7—to check whether the
closure of any attribute set W ⊆ X is either the attribute set W itself or the attribute
set X. With the index structures for the family of maximal sets, we leverage the following
theorem to process the point query of BCNF test.
Theorem 10 (Rephrased from [17]). A relation schema R[X] conforms with BCNF under
the relational schema (R(U), Σk) iff for any attribute set W ∈ maxk(X), there does not
exist an attribute set W ′ (W such that Σk � W ′ → W—we also say that the attribute set
W is non-redundant.

To verify that the relation schema R[X] conforms with BCNF, we only need to check
whether all attribute sets in maxk(X) are non-redundant. The index structures—SIndex

and TIndex—maintain the family maxk(U) of maximal sets. We have studied how to com-
pute the projection maxk(X) of maxk(U) in the previous section.

How to check whether an attribute set W is non-redundant? We only need to check
whether an attribute a ∈ W can be derived from the other attributes in W . That is, for
any attribute a ∈ W , we must verify that Σk 6� W \ {a} → a. To do so, we resort to the
closure query and check that whether a 6∈ (W \ {a})+ holds for any attribute a ∈W under
the relational schema (R(U), Σk).

Algorithm 3 applies the above idea to process the point query for BCNF test. The
algorithm traverses maxk(U) in the index structures to compute the projection maxk(X).
For each attribute set W ∈ maxk(X), it tests whether W is non-redundant (procedure
TestNonRedundancy). Let us see an example.

Example 9. Consider the relational schema (R(U), Σ) where U = {a, b, c, d} and Σ =
〈a→ b, b→ c, {c, d} → a〉 again. The SIndex structure and the TIndex structure are shown
in Figure 5.1 (same with Example 8).

32

Algorithm 3 BCNF Test
1: procedure BCNFTest(k, X)

Input: An attribute set X ⊆ U and an integer k
Output: Does the sub-schema R[X] conform with BCNF under the relational schema
(R(U), Σk)?

2: visited← ∅
3: for W ∈ maxk(U) do
4: W ←W ∩X
5: if W ∈ visited then continue
6: add W to visited
7: if X = U or TestMaxSetOnSubschema(W, k, X) then
8: if TestNonRedundancy(k, W) = false then
9: return false
10: return true

11: procedure TestNonRedundancy(k, W)
Input: An attribute set W ⊆ U , an integer k
Output: Is the attribute set W non-redundant under the relational schema (R(U), Σk)?

12: for x ∈W do
13: if x ∈ Closure(k, W \ {x}) then
14: return false
15: return true

16: procedure TestMaxSetOnSubschema(W, k, X)
Input: An attribute set X, an attribute set W ⊆ X and an integer k
Output: Does W ∈ maxk(X) hold?

17: result← X \W
18: if result = ∅ then return false
19: for x ∈ X \W do
20: result← result ∩ Closure(k, W ∪ {x}) ∩X
21: if result = ∅ then
22: return false
23: return true

33

We show how to process the point queries with k = 2. That is, given an attribute set
X ⊆ U , we ask whether the relation schema R[X] conforms to BCNF under the relational
schema (R(U), Σ2). Here we consider an attribute set X = {a, c, d}.

First, we will traverse the index structures on max2(U) = {0001, 0011, 0111, 1110}. For
the SIndex structure, we traverse the list (Figure 5.1a). For the TIndex structure, we tra-
verse the tree structure (Figure 5.1b).

For each attribute set W , we project it on the attribute set X = {a, c, d} (Line 4 in
Algorithm 3) to get a new value of W .

1. The projection of 〈0001〉 : {d} on X is W = {d}. Next, we check whether {d} ∈
max2(X) (procedure TestMaxSetOnSubschema). To do so, we compute X ∩ (W ∪
{x})+ for each attribute x ∈ X \W where X \W = {a, c}. We have X ∩ {a, d}+ =
{a, c, d} and X ∩ {c, d}+ = {c, d}. These two attribute sets share a common attribute
c in X \W = {a, c}. Thus, by Theorem 9, it is a maximal set. Last, we check whether
the attribute set is non-redundant (procedure TestNonRedundancy). Since there
are no other attributes we can remove from the maximal sets, it passes the test.

2. The projection of 〈0011〉 : {c, d} on X is W = {c, d}. Next, to check whether {c, d} ∈
max2(X). With X \ W = {a}, we have X ∩ {a, c, d}+ = {a, c, d}. It contains an
attribute a in X \W = {a}. Thus, it is a maximal set. Finally, we test whether {c, d}
is non-redundant. To do so, we check whether x 6∈ (W \ {x})+ for each attribute
x ∈W . Since c 6∈ {d}+ and d 6∈ {c}+, it passes the test.

3. The projection of 〈0111〉 : {b, c, d} on X is W = {c, d}. It has been computed in the
previous iteration, and thus we skip it.

4. The projection of 〈1110〉 : {a, b, c} on X is W = {a, c}. Next, we check whether
{a, c} ∈ max2(X). With X \W = {d}, we have X ∩ {a, c, d}+ = {a, c, d}. It contains
an attribute d in X \W = {d}. Thus, it is a maximal set. Last, we test whether {a, c}
is non-redundant. Since c ∈ {a}+ = {a, b, c}, it is redundant. Therefore, the relation
schema R[{a, c, d}] does not conform with BCNF.

5.1.3 Primality Test

Consider the relational schema (R(U), Σ). The primality test asks whether an attribute
a ∈ X belongs to some key of the relation schema R[X] where X ⊆ U under the relational
schema (R(U), Σk).

The naive method of primality test is to check whether any attribute set W ⊆ X that
contains the attribute a ∈ X is a key of the relation schema R(X).

34

We leverage the following theorem to use our index structures for the family of maximal
sets.
Theorem 11. Let the maximal elements of a collection X w.r.t. the inclusion relationship
be MaxElements(X) = {W ∈ X | @W ′ ∈ X such that W (W ′}. 1 An attribute a ∈ X is
prime in the relation schema R[X] under the relational schema (R(U), Σk) iff there exists
an attribute set W ′ ∈ MaxElements(maxk(X)) such that a 6∈W ′.

Proof. First, we have the following known theorem.

Theorem (Rephrased from [17]). An attribute a ∈ X is prime in the relation schema R[X]
iff ∃W ∈ max(X, a) such that (Wa)+ = X where (Wa)+ is the closure of the attribute set
W ∪ {a} in the relation schema R[X].

Then, we only need to prove that ∃W ∈ maxk(X, a) such that (Wa)+ = X ⇐⇒ ∃W ′ ∈
MaxElements(maxk(X)) such that a 6∈W ′.

=⇒ : Consider an attribute set W ∈ maxk(X, a) such that (Wa)+ = X. If W ∈
MaxElements(maxk(X)), we have already found a qualified attribute set W ′ = W since a 6∈
W . If W 6∈ MaxElements(maxk(X)), consider an attribute set W ′ ∈ MaxElements(maxk(X))
such that W ⊆ W ′. Since W ′ ∈ maxk(X), we have (W ′)+ (X. Given that (Wa)+ = X

and W ⊆ W ′, we have a 6∈ W ′, otherwise W ′ = X. Thus, we have a qualified attribute set
W ′.
⇐= : Consider an attribute set W ′ ∈ MaxElements(maxk(X)) such that a 6∈ W ′. We

prove that W ′ ∈ maxk(X, a) and (W ′a)+ = X.
First, we prove that W ′ ∈ maxk (X, a). Since W ′ ∈ maxk(X), the attribute set W ′

is closed, and thus Σk 6� W ′ → a given that a 6∈ W ′. By the definition of maximal sets
(Definition 12), there exists a superset W ′′ of W ′ and W ′′ ∈ maxk(X, a). Given that W ′ ∈
MaxElements(maxk (X, a)), we have W ′′ = W ′.

Next, we prove that (W ′a)+ = X. Let X ′ = (W ′a)+ and assume that X ′ 6= X. Then,
we have W ′ (X ′ (X. Consider an attribute b ∈ X \ X ′. By the definition of attribute
set closure (Definition 5), we have Σk 6� X ′ → b. By the definition of maximal sets (Def-
inition 12), there exists an attribute set X ′′ ⊇ X ′ such that X ′′ ∈ maxk(X, b). Thus,
we have an attribute set W ′′ ∈ maxk(X) and W (W ′′. It leads a contradiction with
W ∈ MaxElements(maxk(X)).

Algorithm 4 applies Theorem 11 to process the primality test. Similar to the algorithm
for the BCNF test, the algorithm traverses maxk(U) in the index structure to compute the
projection maxk(X) of the family of maximal sets. Then, it computes the maximal elements
U of the collection maxk(X). For each attribute set W ∈ maxk(X), it checks whether the
attribute x ∈ X belong to W . Let us see an example under the same setting of Example 9.

1The term maximal element comes from the order theory. Here, a maximal element of a subset X of the
poset (2U ,⊆) is an element that is not “smaller” than (not contained by) any other element in X .

35

Algorithm 4 Primality Test
1: procedure PrimalityTest(x, k, X)

Input: An attribute set X ⊆ U , an attribute x ∈ X and an integer k

Output: Does attribute x belong to some key of R[X] under the relational schema
(R(U), Σk)?

2: U ← {∅} . A set holding the maximal elements.
3: for W ∈ maxk(U) do
4: W ←W ∩X

5: if X = U or TestMaxSetOnSubschema(W, k, X) then
6: U ← U ∪ {W}

7: U ← MaxElements(U)
8: for W ∈ U do
9: if x 6∈W then return True

10: return False

Example 10. Consider the relational schema (R(U), Σ) where U = {a, b, c, d} and Σ =
〈a→ b, b→ c, {c, d} → a〉 again. The SIndex structure and the TIndex structure are shown
in Figure 5.1. We show how to answer whether the attribute a is prime for the relation
schema R[X] where X = {a, c, d} under the relational schema (R(U), Σ2).

The procedure of computing the projection of maximal sets is the same as Example 9. We
have max2(X) = {{d}, {c, d}, {a, c}}. The maximal elements of max2(X) are the collection
{{c, d}, {a, c}}. Since the attribute a 6∈ {c, d}, we know that the attribute a is prime.

5.2 Stable Interval Query

The stable interval query (Definition 9) is based on the point queries discussed in the
previous section. Consider a relational schema (R(U), Σ). Given an integer k with 1 ≤ k ≤
|Σ|, the stable interval query answers how stable of a property—BCNF or primality—near
k.

The basic idea is to change the value of k step by step—increase by one or decrease by
one—and ask the point query to see whether the answer is different from the original one.
Next, we present the query processing algorithm for each type of the stable interval query.

5.2.1 Stable Interval Query for the BCNF Test

The stable interval query for the BCNF test asks what is the maximum length interval
[i, j] such that i ≤ k ≤ j, and for any integer u with i ≤ u ≤ j, R[X] conforms with BCNF
(in the case that R[X] conforms with BCNF under (R(U), Σk)).

36

Algorithm 5 presents the query processing algorithm for the BCNF test. The algorithm
is straightforward and a variant of the standard linear search algorithm. It asks O(|Σ|)
BCNF tests in the worst case.

Algorithm 5 Stable interval query for the BCNF test under (R(U), Σ)
1: procedure StableIntervalBCNFTest(k, X)

Input: An attribute set X ⊆ U , an attribute x ∈ X and an integer k
Output: The maximum length interval [l, r] such that l ≤ k ≤ r and
BCNFTest(u, X) = BCNFTest(k, X) for any integer u ∈ [l, r]

2: q ← BCNFTest(k, X)
3: l← k − 1
4: while 1 ≤ l ≤ n do
5: if BCNFTest(l, X) = q then l← l − 1
6: else break
7: l← l + 1
8: r ← k + 1
9: while 1 ≤ r ≤ n do

10: if BCNFTest(r, X) = q then r ← r + 1
11: else break
12: r ← r − 1
13: return l, r

5.2.2 Stable Interval Query for the Primality Test

The stable interval query for the primality test asks what is the maximum length interval
[i, j] such that i ≤ k ≤ j, and for any integer u with i ≤ u ≤ j, the attribute a ∈ X is prime
in relation schema R[X] under the relation schema (R(U), Σu).

For the primality test, similar to the BCNF test, we do a linear search on the boundary
values of the stable interval (as shown in Algorithm 6).

The algorithm is also a variant of the standard linear search algorithm. It asks O(|Σ|)
primality queries in the worst case.

37

Algorithm 6 Stable interval query for the primality test under (R(U), Σ)
1: procedure StableIntervalPrimalityTest(x, k, X)

Input: An attribute set X ⊆ U , an attribute x ∈ X and an integer k
Output: The maximum length interval [l, r] such that l ≤ k ≤ r and
PrimalityTest(x, u, X) = PrimalityTest(x, k, X) for any integer u ∈ [l, r]

2: q ← PrimalityTest(x, k, X)
3: l← k − 1
4: while 1 ≤ l ≤ n do
5: if PrimalityTest(x, l, X) = q then l← l − 1
6: else break
7: l← l + 1
8: r ← k + 1
9: while 1 ≤ r ≤ n do

10: if PrimalityTest(x, r, X) = q then r ← r + 1
11: else break
12: r ← r − 1
13: return l, r

38

Chapter 6

Experiments

In this chapter, we conduct experiments on the performance of query processing algo-
rithms of the point queries and the stable interval queries. We run the experiments on a
server with the Intel Xeon CPU E7-4830 v4 2.00GHz processor. We evaluate the perfor-
mance using the JMH benchmark framework1 under the Java SE running environment 1.8.
For each JVM instance, we limit the maximum memory usage to 16GB.

6.1 Dataset and Parameters

We generate two datasets using the following two data sources [7, 22].
1. Flight: The Flight dataset [22] was collected by the US Bureau of Transportation

Statistics and consists of flight route information. It contains 109 attributes.

2. Github: The GitHub dataset [7] was collected by the GHTorrent2 project. Each record
in the dataset is a JSON object. We flatten the JSON records into a universal table.
It contains 291 attributes.

Then, we generate the set of FDs by the algorithms in [7, 22] and rank the FDs using
the following score function [7]. Given a relation instance r on the relation schema R(U)
and an FD X → Y where X, Y ⊆ U , the score of the FD X → Y is

score(X → Y, r) = |ΠX(r)|
|ΠXY (r)|

where ΠX(r) = {t[X] | t ∈ r} is the projection of the relation r on the attribute set X, and
ΠXY (r) = {t[XY] | t ∈ r} is the projection of the relation r on the attribute set XY .

The Flight dataset consists of 4097 FDs, and the Github dataset consists of 83810 FDs.
Assuming that we are interested in the top-k FDs, to evaluate the performance of our

1JMH is “a Java harness for building, running, and analyzing nano/micro/milli/macro benchmarks writ-
ten in Java and other languages targeting the JVM” [26].

2http://ghtorrent.org/

39

http://ghtorrent.org/

algorithms, we choose different scales of k as follows. Let p = log2 n where n is the number
of FDs in the dataset. We evaluate a range of k of values 21, 22, . . . , 2p. For the Flight dataset,
we have p = 12. For the Github dataset, we have p = 16.

6.2 Index Construction

We first evaluate the index sizes and the index construction time on the two datasets.
For the index sizes, we construct the SIndex structure and the TIndex structure on each

dataset and show the sizes in Table 6.1. Their sizes are similar, but the TIndex structure
has slightly larger size due to the cost of maintaining a tree structure besides the family of
maximal sets.

Table 6.1: The size of each index structure on each dataset

Dataset Index Structure Size (MB)

Flight SIndex 1.82
TIndex 1.85

Github SIndex 13.12
TIndex 13.18

For the index construction time, Figure 6.1 reports the index construction time for each
dataset versus k—the number of FDs involved. On both datasets, the index construction
time for both index structures is close. Again, the TIndex structure shows slightly larger
cost compared to the SIndex structure.

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

k

10 3

10 2

10 1

100

101

102

103

104

105

Av
er

ag
e

Ru
nn

in
g

Ti
m

e
(s

)

TIndex
SIndex

(a) Flight

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

80
92

16
38

4
32

76
8
65

53
6

k

10 3

10 2

10 1

100

101

102

103

104

105

Av
er

ag
e

Ru
nn

in
g

Ti
m

e
(s

)

TIndex
SIndex

(b) Github

Figure 6.1: Index construction time versus k

40

6.3 BCNF Test

6.3.1 Point Query: BCNF Test

Workload.We randomly generate six attribute sets labeled from X1 to X6, each of which is
of length 16. For each attribute set Xi, we ask whether the relation schema R[Xi] conforms
with BCNF under (R(U), Σk) where k = 2, 22, . . . , 2p (p = 12 for the Flight dataset, and
p = 16 for the Github dataset).
Baseline. The baseline method is to enumerate all possible subsets of the attribute set Xi

and check whether there exists any BCNF violation.
For each attribute set Xi (i = 1, . . . , 6), we show the query execution time of three

algorithms—baseline, SIndex and TIndex—versus the value of k in a log-log scale. The
query execution time is related to the stable intervals of BCNF tests, and we use red vertical
lines to indicate the boundaries of these stable intervals. We refer the stable intervals as I1,
I2, I3 and so on—in the order of their left boundaries.

Figure 6.2 shows the result on the Flight dataset. Both the SIndex method and the
TIndex method outperform the baseline. The TIndex method outperforms the SIndex

method slightly—the only exception is Figure 6.2a. Also, the query execution time of the
SIndex method and the TIndex method are stable with respect to k. It is because that
the query processing algorithm mainly iterates the family of maximal sets maxk(U), whose
size is stable (Figure 6.2g). One interesting figure is Figure 6.2d. It has two stable intervals
I1 = [1, 382] and I2 = (382, 4096]. The query execution time decreases when k changes from
256 to 512. The reason is that, for k ∈ I2, the answer to the BCNF test is false, and all
three algorithms will terminate as long as they found a violation which leads a decrease in
query execution time.

Figure 6.3 reports the result on the Github dataset. In this dataset, we observe three
intervals (I1, I2 and I3) in most cases—the only exception is Figure 6.3d. For k ∈ I1

and k ∈ I3, the answer to the BCNF test is true, and the SIndex method and TIndex

method outperform the baseline. The query execution time for the SIndex method and the
TIndex method is stable in the interval I1, since |maxk(U)| is also stable in this interval
(Figure 6.3g). For k ∈ I2, the answer to the BCNF test is false, and the query execution
time depends on when a BCNF violation is discovered. In general, the query execution time
for all three algorithms is not monotonic with respect to k and goes upwards and downwards
in this interval.

6.3.2 Stable Interval Query: BCNF Test

For each dataset, we reuse the six attribute sets X1, X2, . . . , X6 for the point queries.
For each attribute set Xi, we ask what is the stable interval (of BCNF test) for the relation
schema R[Xi] under the relational schema (R(U), Σk). We report the query execution time

41

10−2

100

102

T
im

e
(s

)

40
97

(a) X1 TIndex SIndex Baseline

40
97

(b) X2

10−2

100

102

T
im

e
(s

)

40
97

(c) X3

38
2

40
97

(d) X4

10−2

100

102

T
im

e
(s

)

40
97

(e) X5

40
97

(f) X6

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

10−2

100

102

|m
ax

k
(U

)|

(g)

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

Figure 6.2: Query execution time of the BCNF tests on the Flight dataset

42

10−2

101

T
im

e
(s

)

62
2

52
90

5

83
81

0

(a) X1 TIndex SIndex Baseline

15
51

72
16

8

(b) X2

10−2

101

T
im

e
(s

)

10
5

52
90

5

83
81

0

(c) X3

62
2

72
18

2

(d) X4

10−2

101

T
im

e
(s

)

14
54

52
90

5

83
81

0

(e) X5

10
5

52
90

5

83
81

0

(f) X6

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

10−2

101

|m
ax

k
(U

)|

(g)

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

Figure 6.3: Query execution time of the BCNF tests on the Github dataset. The sub-figure
(g) shows two identical plots of |maxk(U)| versus k for easily comparing with the sub-figures
in the same column. We follow this convention for all other figures in this chapter.

43

of the SIndex method and the TIndex method versus the value of k in a log-log scale.3

Similar to the plot for the point queries, we also plot the boundaries of stable intervals
using red vertical lines.

100

101

102

T
im

e
(s

)

40
97(a) X1 TIndex SIndex

40
97(b) X2

100

101

102

T
im

e
(s

)

40
97(c) X3 38

2
40

97(d) X4

100

101

102

T
im

e
(s

)

40
97(e) X5 40

97(f) X6

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

100

101

102

|m
ax

k
(U

)|

(g)

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

Figure 6.4: Query execution time of the stable interval queries for the BCNF tests on the
Flight dataset

Figure 6.4 shows the result on the Flight dataset. The query execution time is stable with
respect to k except Figure 6.4d. In Figure 6.4d, we have two stable intervals I1 = [1, 382]
and I2 = (382, 4097]. The query execution time is stable within each interval. Why? The
execution time of an interval query is roughly equal to the sum of the execution time of all

3We do not show the baseline method since it exceeds the time limit (5 minutes) in our experiments.

44

possible point queries within the corresponding stable interval. For k in the same interval,
the set of executed point queries are the same, and thus the query execution time is similar.
The result is consistent with the point queries (Figure 6.2). For example, for the attribute set
X4 (Figure 6.4d), the TIndex method outperforms the SIndex method, and the execution
time decreases when k shifts from the stable interval I1 to the stable interval I2. These
statements are also true for Figure 6.2d.

101

102

T
im

e
(s

)

62
2

52
90

5

83
81

0(a) X1 TIndex SIndex 15
51

72
16

8
(b) X2

101

102

T
im

e
(s

)

10
5

52
90

5

83
81

0
(c) X3

62
2

72
18

2
(d) X4

101

102

T
im

e
(s

)

14
54

52
90

5

83
81

0
(e) X5

10
5

52
90

5

83
81

0
(f) X6

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

101

102

|m
ax

k
(U

)|

(g)

2222222222 4444444444 8888888888 16161616161616161616 32323232323232323232 64646464646464646464 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

Figure 6.5: Query execution time of the stable interval queries for the BCNF tests on the
Github dataset

Figure 6.5 shows the result on the Github dataset. Similar to what we have seen in the
Flight dataset, the query execution time for k in the same stable interval is stable. The
query execution time is also related to the length of the corresponding stable interval. For

45

example, for the attribute set X3 (Figure 6.5c), we have three stable intervals I1 = [1, 105],
I2 = (105, 52905] and I3 = (52905, 83810]. For the point query (Figure 6.3c), the query
execution time for k ∈ I2 is shorter than the one for k ∈ I1. However, for the interval query
here, the query execution time for k ∈ I2 is longer than the one for k ∈ I1. This is due to
the length of interval I2 is much longer than the length of interval I2.

6.4 Primality Test

6.4.1 Point Query: Primality Test

Workload. For each dataset, we randomly generate six attribute sets, labeled from X1 to
X6, each of which is of length 6. For each attribute set X and each attribute A ∈ X, we ask
whether the attribute A belongs to some primary key of the relation schema R[X] under
the relational schema (R(U), Σk). Here we only present all the six possible queries for the
attribute set X1.4 We also plot the boundaries of stable intervals using a red vertical line.
Baseline. The baseline algorithm iterates all subsets containing the attribute A ∈ X and
terminates until we find an attribute set which is a key of the relation schema R[X].

Figure 6.6 shows the result on the Flight dataset. The query execution time of the SIndex

method and the TIndex method are stable with respect to k. This is due to the size maxk(X)
being stable. The SIndex method and the TIndex method outperform the baseline method
when k is large enough (k ≥ 512 in general). The SIndex method performs slightly better
than the TIndex method.

Figure 6.7 shows the result on the Github dataset. Similar to the Flight dataset, the
SIndex method and the TIndex method outperform the baseline when k is large (k ≥ 2048
in general). Also, both the query execution time of the SIndex method and the TIndex

method decrease dramatically when k changes from 32768 to 65536. This is because the
size of maxk(U) also greatly decreases when k changes.

4There are six possible primality test queries for a given attribute set X. Thus, there are 36 queries in
total for all the six attribute sets X1, . . . , X6. We leave the full results to the appendix for interested readers.

46

10−2

101

T
im

e
(s

)

40
97

(a) A0 TIndex SIndex Baseline

40
97

(b) A1

10−2

101

T
im

e
(s

)

40
97

(c) A2

40
97

(d) A3

10−2

101

T
im

e
(s

)

40
97

(e) A4

40
97

(f) A5

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

10−2

101

|m
ax

k
(U

)|

(g)

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

Figure 6.6: Query execution time of the primality tests w.r.t. the attribute set X1 on the
Flight dataset

47

10−2

101

T
im

e
(s

)

73
28

83
81

0

32
94

8

(a) A0 TIndex SIndex Baseline

52
90

5

83
81

0

20
39

7

(b) A1

10−2

101

T
im

e
(s

)

52
90

5

83
81

0

29
96

5

(c) A2

40
64

2

83
81

0

(d) A3

10−2

101

T
im

e
(s

)

83
81

0

(e) A4

83
81

0

33
23

0

(f) A5

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

10−2

101

|m
ax

k
(U

)|

(g)

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

Figure 6.7: Query execution time of the primality tests w.r.t. the attribute set X1 on the
Github dataset

48

6.4.2 Stable Interval Query: Primality Test

For each dataset, we reuse the same attribute sets X1, X2, . . . , X6 for the point queries.
For each attribute set X and each attribute A ∈ X, we ask what is the stable interval for
the property that the attribute A belongs to some primary key of the relation schema R[X]
for a given k.

For each dataset, we report the query execution time of the SIndex method and the
TIndex method versus k in a log-log scale on the attribute set X1.5 The full results are
shown in the appendix.

Figure 6.8 shows the result on the Flight dataset. The query execution time for both the
SIndex method and the TIndex method is stable with respect to k. The result is consistent
with what we have seen for the point queries (Figure 6.6). The SIndex method performs
better than the TIndex method.

Figure 6.9 shows the result on the Github dataset. Both the SIndex method and the
TIndex method show similar trends with respect to k. Similar to the interval query for
the BCNF test, the query execution time for a given k is related to which interval k falls
into. For example, consider Figure 6.9a. We have three stable intervals I1 = [1, 7328],
I2 = (7328, 32948] and I3 = (32948, 83810]. The query execution time for k ∈ I2 is larger
than the one for k ∈ I1, even though the query execution time of the point query for k ∈ I2

is smaller than the one for k ∈ I1 in most cases (Figure 6.7a). This is because the length of
I2 is much larger than the length of I1, and the algorithms have to do a linear search for
all the k in the corresponding interval.

5The baseline algorithm does not finish in 5 minutes, and thus we ignore it in the interval primality test.

49

101

102

T
im

e
(s

)

40
97

(a) A0 TIndex SIndex

40
97

(b) A1

101

102

T
im

e
(s

)

40
97

(c) A2

40
97

(d) A3

101

102

T
im

e
(s

)

40
97

(e) A4

40
97

(f) A5

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

101

102

|m
ax

k
(U

)|

(g)

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

k

Figure 6.8: Query execution time of the stable interval queries for the primality tests w.r.t.
the attribute set X1 on the Flight dataset

50

101

102

T
im

e
(s

)

73
28

83
81

0

32
94

8

(a) A0 TIndex SIndex

52
90

5

83
81

0

20
39

7

(b) A1

101

102

T
im

e
(s

)

52
90

5

83
81

0

29
96

5

(c) A2

40
64

2

83
81

0
(d) A3

101

102

T
im

e
(s

)

83
81

0(e) A4

83
81

0

33
23

0(f) A5

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

101

102

|m
ax

k
(U

)|

(g)

222222222222222222222222222222222222 444444444444444444444444444444444444 888888888888888888888888888888888888 16 32 64 12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

12
8

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

25
6

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

51
2

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

10
24

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

20
48

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

40
96

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

81
92

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

16
38

4

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

32
76

8

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

65
53

6

k

Figure 6.9: Query execution time of the stable interval queries for the primality tests w.r.t.
the attribute set X1 on the Github dataset

51

6.5 Impact of noisy and sparse data

While this thesis focuses on the performance aspect, we experimentally explore the
impact of noise and sparse data and shed light on the quality aspect. Consider the relation
schema

R(X) = (instructor, department, faculty, course, term)

introduced in Chapter 1. The relationships among these attributes can be described by the
following FDs, which serve as the ground truth.

f1 : instructor→ department

f2 : department→ faculty

f3 : course, department, term→ instructor

We generate a synthetic dataset which exactly satisfies the above FDs. One possible database
schema based on the above FDs is as follows, where the underline indicates that an attribute
is part of a primary key.

(instructor, department)

(department, faculty)

(course, term, instructor)

6.5.1 Impact of sparse data

We consider two type of sparsity, row sparsity—the dataset has very few rows—and
column sparsity—a column has many unknown values.

Row Sparsity

When we have very few rows, the data profiling component can produce false positive
FDs.

One extreme case is a dataset with only one row. In such a case, an attribute can
determine an arbitrary attribute. As a result, any subset of R(X) conforms with BCNF.
A schema generation algorithm based on BCNF will not further decompose the universal
relation schema.

To further study the impact of sparse data, we remove one particular row from the
synthetic dataset. The data profiling generates an additional FD f4 besides the ground
truth FDs (f1, f2 and f3).

f4 : instructor, term→ course

52

The reason is that the removed row reveals the fact that an instructor may teach two courses
in the same term. The schema generation algorithm can still generate a relation schema
conforming with BCNF such as (instructor, term, course). However, the algorithm will
choose (instructor, term) as the primary key, which is wrong in semantics.

Column Sparsity

When a column is sparse, the data profiling component can produce both false positive
FDs and false negative FDs.

In an extreme case, when the values for the attribute department are totally missing,
the data profiling component derives the following FDs:

instructor→ faculty

x→ department where x ∈ X

The schema generation algorithm can generate the same database schema as the one based
on the ground truth. However, for the relation schema (department, faculty), it will choose
the attribute faculty as the key, which is wrong in semantics.

The data-driven renormalization framework heavily relies on the available data. When
we only have very few data, it may produce a very different set of FDs and schema design.
We can resort to additional information such as the JSON structure in such a case. We
leave the discussion of integrating with additional information to Chapter 7.

6.5.2 Impact of noisy data

When the data set is noisy, we can have false negative FDs. To study the impact of noisy
data, for the department attribute, we introduce two values CS and Computing Science

for the attribute department, which are semantically equivalent. The result of discovered
FDs is:

f ′
1 : instructor→ faculty

f2 : department→ faculty

f3 : course, department, term→ instructor

f ′
4 : instructor, term→ department

The schema generation algorithm can produce a relation schema (instructor, term, department),
which conforms with BCNF based on the detected FDs. However, it does not conform with
BCNF under the ground truth (FDs f1, f2 and f3).

To handle noisy dataset, we can leverage various data cleaning tools to repair the dataset
and improve the quality of discovered FDs. We leave the discussion to Chapter 7.

53

6.6 Summary

We have shown our method outperforms the baseline in various tasks—the BCNF test,
the interval BCNF test, the primality test and the interval primality test. The TIndex

method outperforms the SIndex method in some dataset, but the SIndex method performs
slightly better overall. We also empirically study the impact of sparse and noisy data on
the generated database schema.

54

Chapter 7

Conclusion

In this thesis, we explore several schema design problems under the data-driven renor-
malization framework. We formally define two kinds of queries—the point query and the
stable interval query—to help users making design decisions. We propose two index struc-
tures SIndex and TIndex, which can represent a list of FDs concisely—using the family of
maximal sets, but also can process various queries efficiently—by leveraging various prop-
erties of maximal sets. We conduct experiments on two real datasets and show that our
algorithms greatly outperform the baseline method when processing a large set of FDs.

As for future work, we consider the following directions.
• Support more design decision problems. There exist many other design decision prob-
lems (e.g., 3NF, 4NF and so on). We only support two design decision problems in
this thesis—the BCNF test and the primality test. It is possible to support a wider
range of design decision problems under the same framework.

• Extend to the SQL data model. In practice, SQL data model is different from the
idealized relational data model. Recent work [18] extends the theory of the relational
model—by redefining FDs and BCNF—to support the SQL data model. It will be
interesting to investigate how to incorporate our algorithms under the new theoretical
framework.

• Integrate with additional information. This thesis uses a data-driven approach to dis-
cover the relationships among attributes. However, the JSON document itself often
have rich structures, which are valuable especially when the dataset is sparse. We can
integrate the additional information as constraints (e.g., a set of attributes must group
in one relation schema) on the candidate database schemas. Besides, the programming
language communities take a very different approach [27, 28] in the area of program
synthesis. It can be a promising direction to integrate with these methods to achieve
better results.

• Quality issue and interactive schema design. Schema design is usually an iterative and
interactive process. The thesis focuses on only one step under the data-driven schema

55

renormalization framework. The quality issue is an important aspect in a real-world
system. Some works [7, 10] introduce various heuristic techniques to improve the
quality of the discovered FDs and thus improve the generated database schema. Also,
a data cleaning process may further improve the quality of discovered FDs. It will be
more helpful to incorporate our framework into the whole process, identify the user
requirements, and optimize the whole workflow.

56

Bibliography

[1] Couchbase. url: https://www.couchbase.com/ (cit. on p. 1).

[2] MongoDB. url: https://www.mongodb.com/ (cit. on p. 1).

[3] APIs as a product. url: https://www.thoughtworks.com/radar/techniques/

apis-as-a-product (cit. on p. 1).

[4] Programmable Web: API Directory. url: http://bit.ly/PWeb201705 (cit. on p. 1).

[5] Tableau. url: https://www.tableau.com/ (cit. on p. 1).

[6] PowerBI. url: https://powerbi.microsoft.com (cit. on p. 1).

[7] Michael DiScala and Daniel J Abadi. “Automatic generation of normalized relational
schemas from nested key-value data”. In: Proceedings of the 2016 International Con-
ference on Management of Data. ACM. 2016, pp. 295–310 (cit. on pp. 1, 3, 8, 39,
56).

[8] Thorsten Papenbrock and Felix Naumann. “Data-driven Schema Normalization”. In:
Proceedings of the 20th International Conference on Extending Database Technology.
2017 (cit. on pp. 1, 8).

[9] Jyrki Kivinen and Heikki Mannila. “Approximate inference of functional dependencies
from relations”. In: Theoretical Computer Science 149.1 (1995), pp. 129–149 (cit. on
p. 3).

[10] Daisy Zhe Wang et al. “Functional Dependency Generation and Applications in Pay-
As-You-Go Data Integration Systems”. In: WebDB. 2009 (cit. on pp. 3, 56).

[11] Fei Chiang and Renée J Miller. “Discovering data quality rules”. In: Proceedings of
the VLDB Endowment 1.1 (2008), pp. 1166–1177 (cit. on p. 3).

[12] Georg Gottlob, Reinhard Pichler, and Fang Wei. “Tractable database design through
bounded treewidth.” In: PODS (2006), p. 124 (cit. on pp. 3, 7).

[13] C Beeri and Philip A Bernstein. “Computational problems related to the design of
normal form relational schemas”. In: TODS (1979) (cit. on pp. 3, 7).

[14] E. F. Codd. “Derivability, Redundancy and Consistency of Relations Stored in Large
Data Banks”. In: IBM Research Report, San Jose, California RJ599 (1969) (cit. on
p. 7).

57

https://www.couchbase.com/
https://www.mongodb.com/
https://www.thoughtworks.com/radar/techniques/apis-as-a-product
https://www.thoughtworks.com/radar/techniques/apis-as-a-product
http://bit.ly/PWeb201705
https://www.tableau.com/
https://powerbi.microsoft.com

[15] H Mannila and K Raihä. “Design by example: An application of Armstrong relations”.
In: JCSS (1986) (cit. on pp. 7, 18, 24).

[16] David Maier. The Theory of Relational Databases. Computer Science Press, 1983 (cit.
on p. 7).

[17] Heikki Mannila and Kari-Jouko Räihä. Design of Relational Databases. Addison-
Wesley, 1992 (cit. on pp. 7, 9–11, 23, 31, 32, 35).

[18] Henning Köhler and Sebastian Link. “SQL schema design: Foundations, normal forms,
and normalization”. In: Proceedings of the 2016 International Conference on Manage-
ment of Data. ACM. 2016, pp. 267–279 (cit. on pp. 7, 55).

[19] Wo L Chang. “NIST Big Data Interoperability Framework: Volume 1, Definitions”.
In: Special Publication (NIST SP)-1500-1 (2015) (cit. on p. 8).

[20] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. “Profiling relational data: a
survey”. In: The VLDB Journal 24.4 (Aug. 2015), pp. 557–581 (cit. on p. 8).

[21] Thorsten Papenbrock et al. “Functional dependency discovery: An experimental eval-
uation of seven algorithms”. In: Proceedings of the VLDB Endowment 8.10 (2015),
pp. 1082–1093 (cit. on p. 8).

[22] Tobias Bleifuß et al. “Approximate Discovery of Functional Dependencies for Large
Datasets”. In: Proceedings of the 25th ACM International on Conference on Informa-
tion and Knowledge Management. ACM. 2016, pp. 1803–1812 (cit. on pp. 8, 39).

[23] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Founda-
tions. 1st. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1997 (cit. on p. 13).

[24] Claudio Carpineto and Giovanni Romano. Concept Data Analysis: Theory and Appli-
cations. John Wiley & Sons, 2004 (cit. on p. 13).

[25] D. J. Bernstein. Crit-bit trees. 2004. url: https://cr.yp.to/critbit.html (cit. on
pp. 20, 27).

[26] Code Tools: jmh. url: http://openjdk.java.net/projects/code-tools/jmh/

(cit. on p. 39).

[27] Daniel W Barowy et al. “FlashRelate: extracting relational data from semi-structured
spreadsheets using examples”. In: ACM SIGPLAN Notices. Vol. 50. 6. ACM. 2015,
pp. 218–228 (cit. on p. 55).

[28] Vu Le and Sumit Gulwani. “Flashextract: A framework for data extraction by ex-
amples”. In: ACM SIGPLAN Notices. Vol. 49. 6. ACM. 2014, pp. 542–553 (cit. on
p. 55).

58

https://cr.yp.to/critbit.html
http://openjdk.java.net/projects/code-tools/jmh/

Appendix A

Full Results of Primality Tests

59

10
−

4

10
−

3

10
−

2

Time(s)

(a
)
X

1
T

In
d

ex
S

In
d

ex
B

as
el

in
e

10
−

4

10
−

3

10
−

2

Time(s)

(b
)
X

2

10
−

4

10
−

3

10
−

2

Time(s)

(c
)
X

3

10
−

4

10
−

3

10
−

2

Time(s)

(d
)
X

4

10
−

4

10
−

3

10
−

2

Time(s)

(e
)
X

5

16

256 256

4096 4096

k

10
−

4

10
−

3

10
−

2

Time(s)

(f
)
X

6

16

256 256

4096 4096

k

16

256 256

4096 4096

k
16

256 256

4096 4096

k

16

256 256

4096 4096

k

16

256 256

4096 4096

k

Q
ue

ry
ex
ec
ut
io
n
tim

e
of

th
e
pr
im

al
ity

te
st
s
on

th
e

Fl
ig

ht
da

ta
se
t

60

10
−

3

10
−

1

10
1

Time(s)

(a
)
X

1
T

In
d

ex
S

In
d

ex
B

as
el

in
e

10
−

3

10
−

1

10
1

Time(s)

(b
)
X

2

10
−

3

10
−

1

10
1

Time(s)

(c
)
X

3

10
−

3

10
−

1

10
1

Time(s)

(d
)
X

4

10
−

3

10
−

1

10
1

Time(s)

(e
)
X

5

16

256 256

4096 4096

65536 65536

k

10
−

3

10
−

1

10
1

Time(s)

(f
)
X

6

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

Q
ue

ry
ex
ec
ut
io
n
tim

e
of

th
e
pr
im

al
ity

Te
st
s
on

th
e

Gi
th

ub
da

ta
se
t

61

Time(s)

(a
)
X

1
T

In
d

ex
S

In
d

ex

Time(s)

(b
)
X

2

Time(s)

(c
)
X

3

Time(s)

(d
)
X

4

Time(s)

(e
)
X

5

16

256 256

4096 4096

k

Time(s)

(f
)
X

6

16

256 256

4096 4096

k

16

256 256

4096 4096

k
16

256 256

4096 4096

k

16

256 256

4096 4096

k

16

256 256

4096 4096

k

Q
ue

ry
ex
ec
ut
io
n
tim

e
of

th
e
st
ab

le
in
te
rv
al

qu
er
ie
s
fo
r
th
e
pr
im

al
ity

te
st
s
on

th
e

Fl
ig

ht
da

ta
se
t

62

10
1

10
2

Time(s)

(a
)
X

1
T

In
d

ex
S

In
d

ex

10
1

10
2

Time(s)

(b
)
X

2

10
1

10
2

Time(s)

(c
)
X

3

10
1

10
2

Time(s)

(d
)
X

4

10
1

10
2

Time(s)

(e
)
X

5

16

256 256

4096 4096

65536 65536

k

10
1

10
2

Time(s)

(f
)
X

6

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

16

256 256

4096 4096

65536 65536

k

Q
ue

ry
ex
ec
ut
io
n
tim

e
of

th
e
st
ab

le
in
te
rv
al

qu
er
ie
s
fo
r
th
e
pr
im

al
ity

te
st

on
th
e

Gi
th

ub
da

ta
se
t

63

	Approval
	Abstract
	Dedication
	Quotation
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Data-driven Renormalization
	Contributions
	Thesis Organization

	Related Work
	Computational Problems of Schema Design
	Data Driven Renormalization

	Problem Definition
	Preliminary
	Problem Definition
	Technical Ideas

	Index Structures
	The Characteristics of Attribute Set Closures
	Index Structures
	Constructing the Index Structures
	The foundation: update the family of maximal sets incrementally
	Index Construction Algorithm

	Query Processing
	Point Query
	Core components of point query algorithms
	BCNF Test
	Primality Test

	Stable Interval Query
	Stable Interval Query for the BCNF Test
	Stable Interval Query for the Primality Test

	Experiments
	Dataset and Parameters
	Index Construction
	BCNF Test
	Point Query: BCNF Test
	Stable Interval Query: BCNF Test

	Primality Test
	Point Query: Primality Test
	Stable Interval Query: Primality Test

	Impact of noisy and sparse data
	Impact of sparse data
	Impact of noisy data

	Summary

	Conclusion
	Bibliography
	Appendix Full Results of Primality Tests

