
An Algorithmic Study of Kernel
Contraction in EL

by

Amr Dawood

B.Sc. (Hons.), German University in Cairo, 2011

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

c© Amr Dawood 2017
SIMON FRASER UNIVERSITY

Fall 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Amr Dawood

Degree: Master of Science (Computing Science)

Title: An Algorithmic Study of Kernel Contraction in EL

Examining Committee: Chair: Fred Popowich
Professor

James P. Delgrande
Senior Supervisor
Professor

David G. Mitchell
Supervisor
Associate Professor

Kewen Wang
External Examiner
Professor
School of Information and Communication Technology
Griffith University

Date Defended: September 13, 2017

ii

Abstract

Kernel contraction is an interesting problem that can be considered a step towards belief
revision. Kernels were introduced as a tool to determine why a given belief is accepted by
the knowledge base. The aim of using kernels is to invalidate the reasons why that given
belief is accepted, and hence rejecting that belief. We use Description Logic EL for two
reasons: it is used in some large knowledge base applications, and it has a polynomial-
time reasoning algorithm. In this study we introduce an algorithm that performs kernel
contraction by reduction to the network-flow problem. We evaluate the rationality of the
algorithm by applying postulates that govern kernel contraction. We also explain two
heuristics: localization and specificity, that can be used to arrive at more reasonable and
common-sense solutions. We will also be focusing on the complexity of the algorithms as
an indicator of their feasibility.

Keywords: Kernel Contraction; EL; Description Logic; Specificity; Localization

iii

Table of Contents

Approval ii

Abstract iii

Table of Contents iv

List of Figures vi

1 Introduction 1
1.1 Kernel contraction by example . 2
1.2 The language . 2
1.3 Scope of this study . 2

2 Background 5
2.1 Belief change . 5

2.1.1 Epistemic states . 6
2.1.2 Epistemic attitudes . 6
2.1.3 Basic types of change . 7

2.2 Description logic . 10
2.2.1 ABox . 11
2.2.2 TBox . 11
2.2.3 EL language . 13

2.3 Related work . 15

3 Kernel contraction 17
3.1 What are kernels? . 18
3.2 Computing kernels . 19
3.3 Previous work . 20

3.3.1 Greedy Contraction . 22
3.4 Minimal change . 22

3.4.1 Hitting set approach . 25
3.4.2 Graph approach . 26
3.4.3 How to generate kernels? . 35

iv

3.4.4 What incision function to use? . 36

4 Heuristics for contraction 37
4.1 Localization . 37
4.2 Specificity . 41

5 Conclusion 46

Bibliography 48

v

List of Figures

Figure 2.1 Graph transformation of the TBox 14
Figure 2.2 Completed graph of the TBox . 15

Figure 3.1 Four different paths between C and D, that share one edge. 30
Figure 3.2 Graph representing TBox T = {A v B,B v C,A v C} 32
Figure 3.3 Graph representing TBox T = {A v B,A v C,A v BuC,BuC v D} 34

Figure 4.1 Simple Animal kernel . 41

vi

Chapter 1

Introduction

Changing one’s mind is a process that happens very frequently as part of one’s daily routine.
Pushing the power button on a very old television that is covered in dust and seeing it getting
turned on, one would change their mind and believe that the television is working. They
used to think it is broken because it hasn’t been used for decades, in which case we say that
they believed that “the television is broken”. That belief was part of their state of mind.
But seeing it work means that there is a contradicting belief “the television works” that
needs to be adopted by the mind which implies removing the old belief that “the television
is broken”. Belief revision refers to the process of modifying the state of mind to adopt a
new belief that contradicts existing beliefs.

Mind changing can be thought of as the manipulation of beliefs according to perception.
When humans perceive any change in their world, they change their knowledge accordingly.
So changing the knowledge (or beliefs1) of an agent2 can be seen as what we informally call
changing the mind of the agent. One example of belief change is Revision, which involves
changing the knowledge base in order to add a conflicting belief. This can actually be
broken down into two processes: changing the knowledge base to account for the conflict,
and adding the new belief.

The first process involves removing the beliefs that are causing that conflict. This
process is called Belief Contraction. The second process involves adding the new belief
and expanding the knowledge base accordingly. This process is called Belief Expansion.
Contraction is the type of change we are mainly concerned with in this study. Kernel
contraction is one approach to contraction that works by computing all kernels and removing
some statements from each of them.

1Throughout this study we will be using the terms “knowledge” and “beliefs” interchangeably, although
they are not exactly the same. Knowledge is usually assumed to be a special kind of beliefs. However, for
convenience, when we use the word “knowledge” we will be referring to “belief.”

2The word “agent” here means humans, computers, or any thing that has knowledge and perception.

1

1.1 Kernel contraction by example

The following chapters will explain kernel contraction in more detail, but it is helpful to get
a brief idea on what it is before moving on. A kernel is a minimal set of beliefs that imply
a certain belief. If our knowledge contains the following beliefs:

• We are in Canada

• The temperature is 30 Celsius

• If temperature is 30 Celsius in Canada, then it is summer,

we can infer that it is indeed summer time. In this case, the three beliefs together form
a kernel that implies “it is summer.” That kernel can be used for contraction. If we want
to give up the belief “it is summer,” we can remove a belief from the kernel so that the
remaining two are not enough to imply that it is summer. In some other cases we can have
more than one kernel, and the same rules can still apply: remove a belief from each kernel in
order to perform kernel contraction. The beliefs used in this example are quite subjective,
but the aim is to give a brief and simple example. The following chapters will talk more
formally about kernel contraction.

1.2 The language

The knowledge of an agent can be represented as a set of beliefs. An agent is assumed to
believe in A if A is a member of its belief set3. In this study, the language used to represent
belief sets is Description Logic. Description Logic is a family of formalisms that are used
to represent knowledge. They use concepts to represent classes of individuals and roles to
represent relationships between them. They have different expressive powers and different
reasoning mechanisms with different complexities. They vary according to the set of logical
operators they use. Here we use EL [5], which is a member of the Description Logic family.

1.3 Scope of this study

We aim at studying implementations of kernel contraction for knowledge bases represented
in the description logic EL. We will look at some basic implementations as well as some
advanced ones. Our focus is on investigating the algorithmic aspects of those different
approaches. The time complexity will be taken into consideration, and more importantly
the optimality of the solutions found. Optimality can be measured in different ways, among
them is one that makes more sense as a solution to humans and that is closer to solutions
humans generally prefer.

3Belief sets will be explained in the next chapter.

2

The starting point of optimality seeking in this study will be from a syntactic point of
view based on the hitting set problem. The hitting set problem is simply the problem of
finding the smallest set of elements that intersect with each set of a given set of sets of
elements (this will be explained in more details later). We adopt the hitting set approach
because what we have is a set of kernels (sets of elements) that we need to remove one
element from each. By doing this we hope to achieve syntactical optimality that is only
measured by the size of the solution: the smaller the better.

One of the significant contributions of this study is the investigation of algorithms that
perform kernel contraction achieving semantic optimality based on EL semantics. These
approaches exploit the structure of EL knowledge bases to find most reasonable solutions.
Both approaches that seek semantic and syntactic optimality can be combined together to
achieve better solutions. In contracting big knowledge bases, we can end up with kernels
that include beliefs that are not all directly related to each other. In that case, we say that
it makes more sense to select beliefs that are related to be removed rather than selecting
the beliefs that are not. This idea motivates the heuristic that we call localization. Another
heuristic we introduce is specificity, which is based on the idea that removing beliefs about
specific matters is more reasonable than removing beliefs about general ones. We will study
these two heuristics, which can be used to make decisions on which beliefs to remove based
on the meaning of the logical operators and the structure of the language. These heuristics
can be useful in cases where other approaches (such as the minimum hitting set algorithm)
result in more than one solution with the same size, to select the solution that is more
reasonable based on the meaning of the beliefs. Approaches that only consider the size of
the solution do not always make a meaningful choice on which beliefs to remove. So we can
then use the heuristics as a tie-breaker step when we get more than one solution.

We start the study by discussing the basic types of belief change, but before that, we
build a ground for them by defining the framework that was introduced by Gardenfors.
We define epistemic states and attitudes that will help in understanding the mechanics of
belief change. We then explain some postulates introduced in the AGM framework; those
postulates are considered rationality rules for belief change operations. Then we explain
what description logic is and what logical operators are used. In that discussion, we focus
on the most relevant variation to this study, which is EL.

After that, we will go over some belief contraction techniques and show how syntac-
tic optimality can be achieved, and what the cost can be (in terms of time complexity.)
We will talk more formally about contraction using kernels. Our new approach to kernel
contraction is by reducing the problem of contraction to a graph problem. We will give a
brief introduction to this new technique and will describe it in detail using a few different
examples. We will use the algorithm for network flow problems to produce a solution to
kernel contraction that will be guaranteed to be smallest. This algorithm cannot be used
for every EL knowledge base; it only works on knowledge bases in some certain settings.

3

This will be discussed in more detail later, and the examples will show the cases in which
the graph technique is useful and the cases in which it is not. Then, we will turn to the ap-
proaches that consider the semantics of the language in finding best solutions to the kernel
contraction problem. These heuristics are called Localization and Specificity. Later, we will
see what they are and how useful they can be.

4

Chapter 2

Background

Learning is one of the most interesting functions of the human mind. If we think of the
human memory as a storage of beliefs, we may think of learning as the changing of these
beliefs. In that sense, learning something new would correspond to the addition of new be-
liefs. But learning is not only about new things. We sometimes learn things that contradict
other things we learned before. In that sense, learning could be thought of as the update
or revision of beliefs.

In this chapter, we aim at explaining the context of the ideas developed in this study,
and giving some background of the main building blocks of our work. We will discuss
three different ways of changing beliefs and we will use the AGM framework[15] to define
and explain these changes. After explaining the AGM rules that govern our approaches to
rational belief change, we will explain a Description Logic called EL, which will be used in
this study as the knowledge representation language.

2.1 Belief change

The AGM framework [15] is named after Alchourron, Gardenfors, and Makinson, the three
scientists who invented it in the 1980s. Since that time, AGM has been the most adopted
framework for belief change. In [9], Gardenfors provided some very useful notations to
describe the change of beliefs, epistemic states and attitudes. We can think of the epistemic
states as the states of mind (from the beliefs perspective), where epistemic states of an
agent are defined by the epistemic attitudes agents have towards the concepts they know
about. In this case, changing one attitude towards one concept implies a new epistemic
state. Therefore, belief change is simply transitions between different epistemic states.
Before moving on to explaining the AGM paradigm, it is useful to shed some light on the
notions of epistemic states and attitudes.

5

2.1.1 Epistemic states

As the word “change” suggests, our concern is about transitions between epistemic states.
One can think of an epistemic state as the state of beliefs of an agent (or a human), and
of the change as the move from a given state to a new state. The beliefs of an agent can
be modelled -as the epistemological theory suggested in [9]- as a set of propositions, with
some assumptions on the attitudes towards each of the propositions (these will be discussed
in more detail in 2.1.2). Those beliefs are not meant to be psychological propositions
expressing beliefs in a human mind; they are epistemological idealizations of psychological
propositions that a human mind can believe or reject. It is reasonable to consider that
every agent should always seek an equilibrium state, where the epistemic state is consistent;
and if some propositions are contradicting, the agent ought to revise its beliefs to reach a
consistent state.

In this study, we use the words “belief sets” and “epistemic state”, and they are not
exactly the same, although they are related; A Belief Set is the set of all things that an
agent believes in, while an Epistemic State is the complete state of the agent’s epistemic
attitudes towards all propositions, including the ones that the agent does not believe in.
Depending on the epistemological model we follow, we might consider propositions that are
not in the belief set to be rejected, or we might assume that the agent neither believes in
them nor rejects them.

Another important notion is the belief base, which we use to refer to the (possibly
incomplete) set of explicit beliefs of an agent. It is different from a belief set because we
typically assume that belief sets are closed under logical consequence, while belief bases are
not. In that sense, we say that the belief set includes some implicit beliefs that follow from
some explicit ones.

The AGM paradigm will use the notion of belief sets. Later, in 2.2, we will discuss
Description Logics (DLs) as formalisms to express knowledge, and start using DL concepts
to represent belief bases. All following discussions about contraction algorithms will use
such representation.

2.1.2 Epistemic attitudes

A belief of an agent can be interpreted according to the concepts in an epistemic state.
Suppose the concept C is defined as:

C = It’s Monday

If C exists in the belief set of an agent, we say that the agent believes in C (believes
that today is Monday), or accepts C [9], which also means that accepting C is part of the
epistemic state of the agent. However, accepting a belief is not the only attitude an agent
can have towards a proposition. An agent can also reject a concept C if the negation of
that concept is in the belief set (i.e. It is not Monday.) In that epistemic state, we say

6

that the agent rejects C. It is also possible that an agent stays undetermined (or ignorant)
about a concept if neither the concept nor its negation is in the belief set (e.g. an agent
has no idea whether today is Monday or not.) There can be more attitudes if we consider
other models of beliefs such as the probabilistic model, where an agent might have different
levels of beliefs. But for the scope of this study we are only interested in the three attitudes:
accept, reject and undetermined.

2.1.3 Basic types of change

The AGM framework defines three types of belief change: revision, expansion, and contrac-
tion. If one sees a flying penguin, it introduces a new belief (penguins might fly), which
contradicts another belief people these days have: penguins can’t fly. In this case, just
accepting the new belief will make the belief system of the agent (in this case, a human)
inconsistent, since the two beliefs are contradicting. So revising the old beliefs, and possibly
removing the belief that penguins can’t fly, is the rational action humans tend to take. This
is referred to as belief revision.

When we add a new belief without removing old beliefs, we call this process belief
expansion. When a belief is removed, or given up, without accepting a new belief, we call
this process belief contraction. A good example of belief contraction is to give up a belief
for the sake of argument, to reach a common ground with an opponent, and argue based
on this ground.

Before going further into details of those types of change of belief, some important
notions need to be explained.

belief set We represent the beliefs of an agent by a set of sentences. The belief set is closed
under deductive inference; if K is a belief set, then K |= α if and only if α ∈ K.

Given a belief set K and a sentence A, we say K |= A if and only if A is a consequence
of the belief set K. We refer to the set of all consequences of K by Cn(K). Since K is
a belief set, then it is closed under deduction. Hence, K = Cn(K), where Cn(K) is the
deductive closure of K. For any belief set K and a sentence A, we can represent the three
aforementioned epistemic attitudes as follows [9]:

• If A ∈ K, A is accepted and ¬A is rejected.

• If ¬A ∈ K, A is rejected, and ¬A is accepted.

• A /∈ K and ¬A /∈ K means that A is undetermined.

We can think of belief change about A as a change of the attitude towards A. Because
we have three attitudes, we have six possible changes. However, because of the symmetry
of some pairs of change we only consider three types of change:

7

1. Change from being undetermined to either accepting or rejecting A.

2. Change from accepting to rejecting or vice versa (revision).

3. Change from accepting or rejecting A to being undetermined (contraction)[9].

Belief Expansion

As part of the learning process and gaining knowledge an agent expands its belief set by
accepting new beliefs. If K is a belief set and A is a statement, then we denote by K+

A the
new belief set resulting from accepting A. So the expansion function + is a function that
takes a belief set K and a statement A and returns another belief set K+

A .

Belief Contraction

Contraction is different from expansion. Expansion by A is the change from the state of not
accepting nor rejecting it to the state of accepting it, while contraction is the change from
accepting or rejecting A to being undetermined of it. We denote the belief set resulting from
contracting the belief set K with respect to sentence A by K−A . Since contraction is the
most relevant change to the scope of this study, we need to discuss some of the rationality
criteria (or postulates) of such change. We consider the contraction function − as a function
from a set of beliefs K and a sentence A to a new set of beliefs K−A as in [9] and [15].

In the AGM framework, the following eight postulates ((K−1) to (K−8)) are introduced
as basis for ensuring the rationality of contraction functions (more details can be found in
[15] and [9]):

(K−1) For any sentence A and any belief set K, K−A is a belief set.

K−A is obtained by removing some beliefs. So

(K−2) K−A ⊆ K.

If A is not already in the belief set, the contraction should not change the belief set.

(K−3) If A /∈ K, then K−A = K.

Unless A is logically valid, A should not be in the belief set after contraction.

(K−4) If not ` A, then A /∈ K−A .

The main idea of contraction is to give up some belief. If we need to give B up we can
remove it from the belief set, and make sure it is not derivable from the remaining beliefs.
To do that we need to look for statements that together entail B and remove at least one
of them. This will be elaborated on more in chapter 3 when we discuss kernels. So we do
not just remove A from K, but remove the minimum number of sentences that would entail

8

A. We remove the “minimum” number of sentences because it is better to give up as little
as possible (minimum change will be explained in more detail in chapter 3). Also, while
performing expansion with A we compute all possible consequences that can be reached
after accepting A. Therefore, all beliefs are recoverable by expansion after contraction:

(K−5) If A ∈ K, then K ⊆ (K−A)+
A.

If A and B are equivalent sentences, then contracting K for the belief A should result in
the same belief set as contracting it for B.

(K−6) If ` A↔ B, then K−A = K−B .

If we contract K by A&B, we should contract K by either A or B, but nothing else.

(K−7) K−A ∩K
−
B ⊆ K

−
A&B.

Motivated by the concept of minimal change, the last postulate states that if A was removed
while contracting K by A&B, then at least A was given up – possibly along with B.

(K−8) If A /∈ K−A&B, then K
−
A&B ⊆ K

−
A .

These eight postulates (K−1) – (K−8) are defined for contracting belief sets. However,
in this study we are investigating the contraction of belief bases.

In [10], Hansson declared that an operator for A is a kernel contraction (kernels will be
explained later) if and only if it satisfies the postulates of success, inclusion, core-retainment,
and uniformity. We are discussing these postulates because they are more applicable in our
investigation of kernel contraction than the previous eight postulates. They are explained
in [10] as follows (the symbol ÷ denotes contraction, e.g. K−A is equivalent to K ÷A):

Success If α /∈ Cn(∅), then α /∈ Cn(A÷ α).

This is similar to (K − 4).

Inclusion A÷ α ⊆ A.

This is similar to (K − 2).

Core-retainment If β ∈ A and β /∈ A ÷ α, then there is a set A′ such that A′ ⊆ A and
that α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).

This implies that only sentences that contribute to making A imply α can be removed
during contraction, and nothing else.

Uniformity If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈ Cn(A′),
then A÷ α = A÷ β.

This is similar to (K − 6).

9

Belief Revision

Revision is considered to be non-monotonic. During revision, new beliefs are added with -
possibly- some of the old beliefs removed. Revision takes place when the attitude is changed
from accepting to rejecting or from rejecting to accepting. We can think of revision as a
combination of both contraction and expansion. The revision function ∗ is a function from
a belief set K and a sentence A to a belief set K∗A. If −A ∈ K, then K∗A = (K−−A)+

A.
In the next section we look at a class of languages called Description Logic that is being

used in some applications to represent knowledge. We use it as a model and implement
contraction in a DL-based knowledge bases.

2.2 Description logic

One of the earliest approaches to representing knowledge is using logic. Logic has been
suitable for general-purpose applications. Another approach is what is so-called semantic
networks, which is a graph (or a network)-based approach. Semantic networks use graphs to
represent knowledge [4], where nodes represent concepts and edges represent relationships
between them.

Description Logic (DL) comes as an evolution of semantic networks to a logic-based
approach with some new flavours. DL is a class of logics based on -as the name suggests-
describing sets of individuals using concepts and describing the relationships between them
using roles. Usually, two types of knowledge need to be represented: intensional and
extensional knowledge. Intensional knowledge is general knowledge about a problem or a
domain, while extensional knowledge is knowledge about a specific problem instance. For
this purpose, a knowledge base1 is composed of two main components: Terminological Box,
which we will refer to by TBox, and Assertions Box, which we refer to by ABox.

To get an idea about what a Description Logic looks like, we look at two categories of
symbols: logical and non-logical symbols. Non-logical symbols include the following:

Concepts are similar to category nouns (e.g. Human, Mother, Animal, College, etc.).
They are used to represent classes (or sets) of individuals. So we can use the concept
Animal to refer to the set of animals, and the concept Man to represent the class of
men.

Roles are like relational nouns (e.g. MotherOf, HeightOf, etc.). They can be used to
specify attributes of concepts.

Constants are used to represent individuals, and they are similar to proper nouns, e.g.
Adam, Sally, etc.

1By the word Knowledge base we refer to a belief base – a set of sentences that represent the belief of an
agent.

10

Concepts and roles can be used with the help of some logical symbols to construct
complex expressions. Logical symbols include the following:

• u,t,¬ used as propositional constructors (conjunction, disjunction, and negation re-
spectively).

• ∀, ∃ used for restriction and quantification.

• >,⊥ (> represents the set of all individuals, while ⊥ represents the empty set of
individuals).

Logical and non-logical symbols can be used together to construct complex expressions.
To get a sense of how to build complex expressions, suppose C and D are concepts, and R
is a role:

• C uD, C tD, and ¬C are concepts (also called concept expressions).

• ∀R.C, and ∃R.>C are concepts (or concept expressions).

2.2.1 ABox

As we said at the beginning of this section, to represent knowledge we usually look at
intensional and extensional knowledge. DL knowledge bases usually consist of two main
components: TBox and ABox. ABoxes are built from assertions (extensional knowledge)
about a specific problem or domain, e.g.

Girl(Sally) may represent the fact that Sally is a Girl and,
FatherOf(Adam, Sally) may represent the fact that Adam is the father of Sally.

where Sally and Adam are constants, Girl is a concept name, and FatherOf is a role name.
Using such representation, ABoxes can be built to represent assertions about a problem or
a domain.

2.2.2 TBox

Suppose that Human is a concept that refers to all humans, and Male is the concept that
refer to all male beings. We can use conjunction (u) in

Human uMale

to represent all individuals that are both humans and male beings. We can also define a
new concept Man to represent those individuals by introducing the definition

Man
.= Human uMale

So every man has to satisfy that definition. The TBox is composed of concept definitions
and General Concept Inclusion rules (GCIs). GCIs are weaker than definitions; the rule

11

Man v Human

states that Man is subsumed by Human, which means that every man is a human2. Every
definition can be safely broken down into two GCIs. For example, the definition

Man
.= Human uMale

can be broken down into the two GCIs:

Man v Human uMale

Human uMale vMan

Tboxes are used to represent general knowledge (intensional knowledge) about a class
of problems or domains, using axioms (or terminologies). A typical TBox is composed of
definitions and GCIs – sometimes for convenience all definitions are broken down into GCIs.
The following is an example of a -somewhat incomplete- DL TBox:

1. Man
.= Human uMale.

2. Woman v Human u ¬Man.

3. Father .= Man u ∃ParentOf.>

4. Mother
.= Woman u ∃ParentOf.>

5. FatherWithoutSon
.= Father u ∀ParentOf.¬Man.

6. Parent .= Father tMother

7. GrandFather v Father u ∃ParentOf.Parent

They can be interpreted such that #1 defines Man to be a human male, #2 states that
every Woman is a human and not a man, #3 defines Father to be a man that is a par-
ent of something (since > includes everything), #4 defines Mother similarly, #5 defines a
FatherWithoutSon to be a father which every individual that is in a “ParentOf” rela-
tionship with is not a man, #6 defines a Parent to be a father or a mother, and #7 states
that every GrandFather is a father and in a “ParentOf” relation ship with a parent.

Along with some other symbols and constructors, these symbols are the building blocks
of Description Logics. There are many members of the DL family, that vary in their
expressive power and the complexity of their reasoning algorithms. Each member of the
family includes a subset of the DL symbols, and is uniquely identified by the containment of
those symbols. In the following section we discuss a very famous member of the DL family,
EL, which we use as a knowledge representation language for the rest of the study.

2or more precisely, every member of the set represented by Man is also a member of the set represented
by Human.

12

2.2.3 EL language

One of the DLs that has recently attracted much attention is EL. EL is a light-weight
(contains a small set of logical operators) Description Logic, though it is used in some
well-known ontologies such as SNOMED CT [3], which is a medical ontology that contains
around 380000 concepts. EL only contains a subset of the concept constructors that we
discussed in the previous section, and they are:

• The conjunction symbol u

• Existential restriction ∃

• The top concept >

One of the advantages of EL, besides being simple and easy to use, is its polynomial-time
subsumption problem. The subsumption problem, which is the most important problem
in EL, is actually a classification problem. The subsumption algorithm classifies the TBox
depending on the subsumption relation expressed by v. The problem is checking whether
a specific subsumption relation holds or not (e.g. whether C v D holds or not) in a given
knowledge base. Checking whether a subsumption relation holds or not is also checking
whether the concept (or concept expression) on the left-hand side of the subsumption rela-
tion is subsumed by the concept on the right-hand side.

It is helpful to sketch the subsumption algorithm before moving on to the core of this
study, as it will be used later on. But we will use an example to see how the algorithm
can be applied. Let’s assume we have a knowledge base TBox T that consists of only two
subsumption relations:

T = { Haddock v Fish, Fish v Animal. }

The first one states that every Haddock is a Fish, and the second one states that every Fish
is an Animal. Now, given that T , we need to check that every Haddock is an Animal:

Haddock v Animal.

This is not explicitly stated in T , but we can infer it using the subsumption algorithm. The
algorithm proceeds in four steps:

1. Normalize the TBox.

2. Translate the normalized TBox into a graph.

3. Complete the graph using completion rules.

4. Read off the subsumption relationships from the normalized graph.

We can follow the four steps and apply them one by one to our example and get the solution
that we need.

13

Figure 2.1: Graph transformation of the TBox

Normalize the TBox

We call a TBox normalized if all the GCIs it contains are of one of the following forms:

• A1 uA2 v B

• A v ∃r.B

• ∃r.A v B

where A, A1, A2, and B are concept names, and r is a role name. A TBox can be normalized
in polynomial time with respect to its size. A u > is equivalent to A. So, the normalized
version of the T look like:

{ Haddock u > v Fish, Fish u > v Animal }.

Translate the normalized TBox into graph

The second step is to translate the TBox into a graph. This is done by creating a node that
corresponds to each concept in the TBox (including >), and having an edge between every
pair of nodes. We use S to denote the set of nodes’ labels, and R to denote the set of roles’
labels. S will contain the subsumers of a node, e.g. S(A) contains B if the TBox contains A
v B. Likewise, R(A,B) contains r if A v ∃r.B is in the TBox. Initially, the set S starts by
containing the nodes and >, i.e. S(Haddock) = {Haddock,>}, S(Fish) = {Fish,>}, and
S(Animal) = {Animal,>}. The set R will initially be empty. The graph can be visualised
in Figure 2.1. Translating the TBox into a graph can be done in polynomial time.

Complete the graph using completion rules

The following three rules are then used to extend the sets S and R:

• If (A1 uA2 v B) ∈ T and A1, A2 ∈ S(A) then add B to S(A)

14

Figure 2.2: Completed graph of the TBox

• If (A1 v ∃r.B) ∈ T and A1 ∈ S(A) then add r to R(A,B)

• If (∃r.B1 v A1) ∈ T and B1 ∈ S(B), r ∈ S(A,B) then add A1 to S(A)

If we apply the completion rules to T , S will become as follows:

• S(Animal) = {Animal,>}

• S(Fish) = {Fish,>, Animal}

• S(Haddock) = {Haddock,>, F ish,Animal}

The new graph (after the completion rules are applied) is shown in Figure 2.2.

Read off the subsumption relationships

Now that the graph is complete, we can look at the sets S and R and determine whether the
subsumption relationship in question holds or not. Since that subsumption relationship was
Haddock v Animal, we can look at S(Haddock) and see if it contains Animal or not, since
the set S(Haddock) contains all subsumers of Haddock. So, indeed, Haddock v Animal

holds. This brief example hopefully shows a simple application of the subsumption algorithm
of EL. We didn’t discuss the complexity of the algorithm in details, but it is enough to say
it is polynomial in the size of the TBox. More details on the algorithm can be found in [6]
and [3].

2.3 Related work

In [17], an algorithm that contracts EL TBoxes was introduced. The algorithm does not
explicitly use kernels to perform belief contraction, instead, it determines which GCIs to
be removed from the ones that contribute to making the contracted GCI hold (which is
similar to the idea of kernels) using a selection function. The algorithm can possibly be
modified to generate all kernels at once, then use some heuristics to select GCIs to remove.

15

Another approach to contracting EL belief bases is introduced in [8]. However, the authors
use the concept of remainder sets (which will be briefly explained in Chapter 3) to perform
contraction. Our goal in this study is to use kernels, which are different from remainder
sets. Using kernels is interesting because it allows us to reduce the problem of contraction
to the network flow problem, and use the concept of minimum cut to remove GCIs (details
will be explained in Chapter 3). Also, given that kernels are normally much smaller in size
than remainder sets, applying contraction heuristics to kernels is much faster, in terms of
running time, than applying them to remainder sets. Our work builds on the work done in
[14] that uses kernels to perform contraction. We explain and revise some of the algorithms
introduced there.

Now that we have had a quick introduction to the basic types of belief change, the
framework of AGM, and the EL language and reasoning algorithm, we can start talking
about the core of this study, which is kernel contraction. Throughout this study, we only
consider DL knowledge bases represented in EL. In the next chapter we look at an imple-
mentation of belief contraction using kernels as introduced in [14]. We will discuss some
basic and general approaches as well as some more sophisticated ones. Then we will consider
a language-specific approach to exploit the structure of EL and discuss heuristics that will
provide more meaningful solutions.

16

Chapter 3

Kernel contraction

Belief contraction is the process of removing beliefs from belief bases. In Chapter 2, we
discussed the difference between belief bases and belief sets. In this study, we perform
kernel contraction on belief bases. It can be done in either of two ways. The first way is
computing subsets of the belief base that do not logically imply the belief to be removed.
This is called the remainder set approach. It works by finding the maximal subsets of the
belief base that do not imply the removed belief. For example, the knowledge base:

{a, a→ b, b, c}

has two maximal subsets that do not logically imply b:

{a, c}, {a→ b, c}

So we can choose one of them (or, in the general case, the intersection of more than one1)
to be the new (contracted) belief base.

The other approach is done by incising all the minimal subsets that logically imply
the removed belief; by “incising” we mean removing a member from the set. This second
approach is the one we are going to focus on in this study. If a set K of beliefs implies a
belief α, and K is the minimal such set (no proper subset of K implies α), removing one
element of K produces a set that does not imply α. Contraction is done here by finding all
such minimum subsets and removing an element from each of them. We call such minimal
sets kernels. Kernels will be discussed in more detail in section 3.1. We will look at an
example first.

Given the same set:

{a, a→ b, b, c}

To contract the set by b, it is not enough to remove b from the set. If we do so, we get:

{a, a→ b, c}

1This is called partial meet contraction.

17

which still implies b. We need to prevent the resulting set of beliefs from implying b. The
minimal subset that implies b is

{a, a→ b}

We call it a b-kernel. Since the kernel is a minimal subset that implies b, removing only
one element of that kernel is enough to make it not imply b. The only other b-kernel of the
original set is {b}; we can only break this kernel by removing b. Breaking the other kernel
can be done either by removing a, or by removing a → b. So the two possible resulting
belief bases after contraction are:

{a, c} and {a→ b, c}

This is how kernel contraction works. Every b-kernel is one way to infer b. To contract
b, we pick an element from each kernel and remove the picked elements from the original
belief set.

Kernel contraction can be composed of two main steps: computing kernels, and cutting
them. In this chapter, we will discuss kernels and see how they can be defined formally. We
will discuss briefly how to compute kernels using an algorithm called pinpointing. Assuming
we have a set of kernels that we computed, we will discuss previous work done on cutting
kernels that will give us a good basis for introducing the new approaches afterwards. Then
we will discuss the hitting-set approach to contraction in the context of the minimal change
requirement. The last topic to be discussed in this chapter will be our new graph approach
to kernel contraction. The algorithm will combine the two steps of kernel contraction
(computing and cutting). The algorithm description will be followed by some analysis and
comparisons between different examples using it.

3.1 What are kernels?

Kernel contraction was introduced by Hansson [11] as a variant of an older approach called
“safe contraction”[2]. In both approaches, contracting a knowledge base K by α is done
by discarding beliefs that contribute to making K imply α. Beliefs that contribute to
making K imply α are members of some α-kernel of K, and all members of every α-kernel
contribute to making K imply α. In the previous example, there were two b-kernels: {b}
and {a, a → b}. We need to remove at least one element from each kernel to contract the
original set by b. We denote the set of α-kernels of K by K ⊥ α.

Definition 3.1. (Kernel Set [10]) For a belief base K and a belief α, K ⊥ α is the set such
that X ∈ K ⊥ α if and only if:

1. X ⊆ K,

2. X ` α, and

18

3. if Y ⊂ X then Y 0 α.

Because of the minimality of kernels, every belief in a kernel is significant to implying
the belief that we want to give up (α). And that’s why removing one belief from a kernel
is sufficient to make that kernel not imply α. So, we use a function that cuts every kernel
in the kernel set. We call such function an incision function; it takes a set of kernels and
selects an element from each kernel to be removed.

Definition 3.2. (Incision function [11]) An incision function σ for A is a function such that
for all beliefs α:

1. σ(A ⊥ α) ⊆
⋃

(A ⊥ α)

2. If φ 6= X ∈ A ⊥ α, then X ∩ σ(A ⊥ α) 6= φ

Contraction is done by removing the beliefs that are selected by the incision function
from the original knowledge base. Contraction ≈σ using the incision function σ can be
defined as:

Definition 3.3. [10] (Contraction)

A ≈σ α = Ar σ(A ⊥ α)

3.2 Computing kernels

Kernel contraction is about contracting knowledge bases using kernels. Kernels are the
minimal subsets of the knowledge base that imply a certain consequence. Contraction can
be performed by using an incision function to cut through all kernels of a specific belief. So,
the first step in kernel contraction is computing all kernels that imply the belief that needs
to be removed. For that purpose, we use the pinpointing algorithm introduced in [7].

To show how the algorithm works, we use the example introduced in [7]. Given the
following EL TBox T :

T = {ax1 : A v ∃r.A, ax2 : A v Y , ax3 : ∃r.Y v B, ax4 : Y v B},

we can see that A v B holds according to T , i.e. A vT B. Let:

α = A v B.

According to the definition of kernel sets:

T ⊥ α = {{ax2, ax4}, {ax1, ax2, ax3}}

The algorithm introduced in [7] computes all kernels using a modified version of the EL
subsumption algorithm. It works by finding a monotone boolean formula called the “pin-
pointing formula”. The propositions of the pinpointing formula are GCIs of the TBox, and

19

a propositional valuation represents a kernel. In that sense, a valuation is a set of proposi-
tional variables that satisfy the formula, and these variables are the GCIs that constitute a
kernel. So, by finding all valuations of the pinpointing formula we can get all kernels.

In the worst case, this approach takes exponential time (w.r.t the size of the TBox)
to find all kernels. This is the case when there are exponentially many kernels. However,
[7] also gives a polynomial-time algorithm that computes only one kernel. Because it is
not part of the scope of this study, we are not going to discuss and analyze details of the
pinpointing algorithm. All that matters is the worst-case time complexity, as it will affect
the complexity of the kernel contraction algorithm that uses it.

3.3 Previous work

We now know we can use the pinpointing algorithm to get the set of all kernels. We then
need to remove one element from each kernel to perform contraction. This is the role of the
incision function; it picks an element from each kernel so that it cuts through all kernels.
In this section, we look at some of the incision function implementations discussed in [14].
The goal of this study is to continue the work started in [14], and to revise some of what
has already been done.

Given an EL TBox T and a belief α, (T ⊥ α) is the set of α-kernels. The main
contraction algorithm is shown in Algorithm 1.

Algorithm 1 Contraction algorithm
1: procedure contract(T , A)
2: kernelset = pinpoint(T , A)
3: giveUpSet = cut(kernelset)
4: T = T / giveUpSet
5: end procedure

Here, “kernelset” refers to (T ⊥ α), and giveUpSet is the set of beliefs selected by the
incision function (CUT) to be removed. We use the function called CUT as a placeholder for
any implementation of the incision function. The algorithm is straightforward. It works by
generating the set of kernels using the pinpoint formula as discussed in the previous section.
Then it calls the incision function, which picks up beliefs from every kernel, ensuring that it
hits all kernels. The beliefs are then removed from the knowledge base, i.e. from the TBox.

This general approach can be used with different incision functions. The call to the CUT
function can be replaced with a call to another implementation of the incision function. The
first implementation is the most straightforward one, where it removes a random belief from
each kernel. This is given in Algorithm 2.

The time complexity of RandomRemove function is polynomial: O(m), where m is the
number of kernels (size of the kernelset), assuming that the random selection takes constant
time. However, this is clearly not a good algorithm. In this example:

20

Algorithm 2 Random removal
1: function RandomRemove(kernelset)
2: giveUpSet = {}
3: for kernel ∈ kernelset do
4: choose a random belief α from kernel
5: giveUpSet = giveUpSet ∪ {α}
6: end for
7: return giveUpSet
8: end function

kernelset = {{a, c}, {b, c}},

one of the possible outcomes of the RandomRemove algorithm is:

giveUpSet = {c, b}

which unnecessarily removes b. This could happen when the algorithm selects c from the
first kernel and b from the second kernel. This solution:

giveUpSet = {c}

seems more concise and removes fewer beliefs. The second solution could be obtained with
an algorithm smart enough to check if the next kernel has already been incised.

The next algorithm (Algorithm 3) does this. Every time it selects a belief, it marks all
kernels that contain that belief so that in the following iterations they are not incised.

Algorithm 3 Random removal with exclusion
1: function RandomRemoveAndExclude(kernelset)
2: giveUpSet = {}
3: for i=0 to size(kernelset)-1 do
4: kernelset[i].valid = true
5: end for
6:
7: for i=0 to size(kernelset)-1 do
8: if kernelset[i].valid then
9: choose a random belief α from kernelset[i]

10: giveUpSet = giveUpSet ∪ {α}
11: for j=i to size(kernelset)-1 do
12: if kernelset[j].contains(α) then
13: kernelset[j].valid = false
14: end if
15: end for
16: end if
17: end for
18: return giveUpSet
19: end function

21

Algorithm 3 has a worst-case time complexity of O(n2), where n is the size of the
kernel set, assuming that kernels are stored as hash tables so “kernelset[j].contains(α)”
takes constant time. If the kernels are stored as ordered lists, the time complexity would
increase to become O(n2 · lnm), where m is the size of the largest kernel. If kernels are
unordered lists, the time complexity is O(n2 ·m). The second main loop has another nested
loop inside it, and neither of them takes more than n steps to finish.

3.3.1 Greedy Contraction

The greedy approach works by selecting for removal the beliefs that appear in more kernels
to be before those that appear in fewer kernels. At each step, the algorithm finds which
belief appears the most in kernels and removes it, and then it forgets about those kernels
(it does not consider those kernels that contain the removed belief for the following steps).
This means that if a belief is selected for removal, all the kernels that contain it are already
incised and no more beliefs need to be removed from these kernels.

Algorithm 4 explains how the greedy approach for contraction works. Given a set of
kernels and the set of all beliefs (the knowledge base), it proceeds as follows: it computes
the number of occurrences of each belief in the kernels given, then it removes them one
by one starting from the beliefs with maximum number of occurrences, until all kernels
are incised. It does not actually remove the beliefs, but it collects them in the giveUpSet
that will be returned in line 3 of Algorithm 1, which in turn will remove them from the
knowledge base. So the greedy approach can be embedded in the main algorithm as a way
to choosing the beliefs that need to be removed.

The worst-case time complexity of the greedy algorithm is lower-bounded by the com-
plexity of the “while” loop in the selectMaxBeliefs() function. If the size of beliefs is m,
the size of kernelset is n, and the size of the biggest kernel is k, then the worst-case time
complexity is O(n2 · k ·m). This could be significantly improved by using more clever data
structures to make the invalidation of the kernels (the step where we decrement the number
of valid kernels and update the occurrences) faster.

3.4 Minimal change

According to the information economy principal (minimality), in every change of the epis-
temic state, loss of information should be minimum [16]. This means that a system should
choose an epistemic change outcome that minimizes loss of information. To satisfy the
requirement of the minimum change we need an algorithm that removes the least number
of GCIs while hitting all the kernels; but the kernels are nothing but sets of beliefs (GCIs).
Luckily, this is exactly the minimal hitting set problem, which already has some relatively
efficient algorithms that we can use here.

22

Algorithm 4 Greedy Selection
1: function GreedyContract(kernelset, beliefs)
2: initializeValidKernels(kernelset)
3: initializeBeliefOccurrences(beliefs)
4: computeOccurrences(kernelset, beliefs)
5: return selectMaxBeliefs(kernelset, beliefs)
6: end function
1: // Mark all kernels as not cut to keep track of the remaining kernels to be cut
2: function initializeValidKernels(kernelset)
3: validKernels = size(kernelset) //global variable
4: for i = 1 to size(kernelset) do
5: validKernel[i] = 1 //global array
6: end for
7: end function
1: // Create an array to count the number of kernels that include each belief
2: function initializeBeliefOccurrences(beliefs)
3: for i = 1 to size(beliefs) do
4: occurs[i] = 0 //global array
5: end for
6: end function
1: // For each belief, compute the number of kernels that include it
2: function computeOccurrences(kernelset, beliefs)
3: for i = 1 to size(beliefs) do
4: for j = 1 to size(kernelset) do
5: if kernelset[j].contains(beliefs[i]) then
6: occurs[i] = occurs[i] + 1
7: end if
8: end for
9: end for

10: end function

23

1: // Select the belief that appears in biggest number of kernels, and add to giveUpSet
2: function selectMaxBeliefs(kernelset, beliefs)
3: giveUpSet = {}
4: while validKernels > 0 do
5: max = 0
6: maxIndex = 0
7: // search for the belief with max number of occurrences
8: for i = 1 to size(beliefs) do
9: if occurs[i] >max then
10: max = occurs[i]
11: maxIndex = i
12: end if
13: end for
14: // add the selected belief from the containing kernels to giveUpSet and update

count
15: for i = 1 to size(kernelset) do
16: if kernelset[i].contains(beliefs[maxIndex]) then
17: validKernel[i] = 0
18: validKernels = validKernels −1
19: updateOccurrences(kernelset[i], beliefs)
20: end if
21: end for
22: occurs[maxIndex] = 0
23: giveUpSet = giveUpSet ∪ {beliefs[maxIndex]}
24: end while
25: return giveUpSet
26: end function

1: // disregard the given kernel from the kernels that include each belief
2: function updateOccurrences(kernel, beliefs)
3: for i = 1 to size(kernel) do
4: removeOccurances(beliefs, kernel[i])
5: end for
6: end function
1: // decrement the number of kernels that include the given belief
2: function removeOccurrences(beliefs, belief)
3: for i = 1 to size(beliefs) do
4: if beliefs[i] == belief then
5: occurs[i] = occurs[i]− 1
6: end if
7: end for
8: end function

24

3.4.1 Hitting set approach

Another (more efficient) approach to cutting kernels to perform contraction is the hitting
set algorithm2. The minimal hitting set problem is defined as follows:

Definition 3.4. [1] Given a set S = {s1, s2, ..., sn} of n non-empty sets, a minimal hitting
set d is a set such that:

∀si∈S [si ∩ d 6= ∅] ∧ @d′⊂d[∀si∈S(si ∩ d′ 6= ∅)]

Thus, d is a minimal hitting set if and only if it contains at least an element from every
set, and no proper subset of it is a hitting set. In the context of kernel contraction in EL,
we can define minimal hitting set contraction as:

Definition 3.5. (Minimal hitting set contraction) Given a kernelset K = {k1, k2, ..., kn} of
n kernels, a minimal hitting set giveUpSet ⊂ K is a set such that:

∀ki∈K [ki ∩ giveUpSet 6= ∅] ∧ @giveUpSet′⊂giveUpSet[∀ki∈K(ki ∩ giveUpSet′ 6= ∅)]

Since kernels are subsets of the TBox, and our goal to find a giveUpSet that hits all
kernels, we can use approaches to the minimal hitting set problem to solve it. Although the
minimal hitting set is an NP-hard problem, there are some practically efficient algorithms,
such as the one introduced in [1], for the minimal hitting set problem, that are feasible in
terms of running time.

Minimal hitting sets are different from minimum hitting sets. The word minimal means
there are no proper subsets that are hitting sets, while the word minimum means minimal
and smallest in size. In other words, we call a hitting set minimum if there is no smaller-
sized set that is a hitting set. However, the interpretation we use here is minimality. So
there might exist different minimal hitting sets with different cardinalities, but none of them
has a proper subset that is a hitting set [1]. But our goal was to satisfy the information
economy principal by removing hitting sets with minimum cardinality.

For that reason, after getting all minimum hitting sets, we need to consider only the
ones that are smallest in size. For the kernel set:

kernelset = {{a, b}, {a, c}},

there are two minimal hitting sets:

{a} and {b, c}

and they are of different sizes. The following step then is to find the smallest of them, which
is the one to be used for contraction, which is {a}.

2We call an algorithm that solves the hitting set problem a hitting set algorithm.

25

We can now use one of the minimal hitting set algorithms combined with the cardinality
selection step to implement contraction for a TBox, by implementing the minimal incision
function that adopts them, to achieve minimum change (which we can call then, a minimum
incision function). We are not going to implement such a function in this study, but for
now, we will assume that there is a function

min-hit-CUT(kernelSet)

that takes a set of kernels, and returns a minimum hitting set of sentences to give up. Given
that the minimum hitting set problem is NP-hard, the min-hit-cut function’s complexity is
exponential. We can use this function, as if it is implemented, and may implement it in
some future work.

3.4.2 Graph approach

Now, we introduce another technique for kernel contraction in EL that is based on graphs.
The reason following graph approach is useful in solving the contraction problem is that
we are performing contraction of TBoxes, and they have an implicit graph-like hierarchy
defined by the subsumption relationship.

An EL TBox consists of GCIs (we can transform all definition formulas to GCIs), that
can be seen as nodes and edges. A GCI can be thought of as a directed edge between two
nodes representing concepts on the two sides of the subsumption symbol (v). So reasoning
with TBoxes is similar to reasoning with directed graphs. That motivated the idea of
reducing the problem of kernel contraction of a TBox to a graph problem and using a graph
algorithm to solve it. The subsumption relationship that forms a TBox seem to have an
intuitive interpretation as a directed graph; and that’s why we use the word “hierarchy” to
denote the relationship between concepts in the TBox.

The EL subsumption algorithm described in [6] uses a graph approach, perhaps because
it is intuitive to think of TBoxes as graphs. A lot of work has been done in the area of
Graph Theory, which makes it easy to use the already existing algorithms to solve some
graph problems. Also, graphs are easy to imagine and work with.

Our goal is to reduce the kernel contraction problem to a graph problem, and use some
efficient graph algorithms to perform kernel contraction. The algorithm we build here starts
by transforming the TBox into a graph. Then, it generates all kernels by finding all paths
that imply the formula we are contracting. After that, it removes one formula from each
kernel by removing an edge from each path, since paths here represent kernels (this will all
be explained shortly). Finally it transforms the graph back into a TBox.

We will start by describing the algorithm in detail, and then explain each of its main
steps.

26

Main algorithm

Given an EL TBox T , and a GCI A (where A is in the form of C v D, such that C and D
are arbitrary concept expressions), we contract T by A using Algorithm 5:

Algorithm 5 Contraction using graph approach
1: function graphContract(T , A)
2: complete(T)
3: G = transform(T)
4: C = argleft(A) // gets the concept expression on the left side of the GCI
5: D = argright(A) // gets the right-side concept expression
6: paths = getPaths(G, C, D)
7: cutPaths(G, paths)
8: T = de-transform(G)
9: end function

The complete() function in step 2 uses the EL subsumption algorithm to compute all
subsumptions of T . The subsumption algorithm implicitly3 computes all subsumptions in
the process of checking whether a subsumption holds or not. So, we use that algorithm to
compute all subsumptions, and then add an extra step of explicitly adding all subsumptions
to T . The subsumption algorithm proceeds in four steps:[3]

1. Normalize the TBox.

2. Translate the normalized TBox into a graph.

3. Complete the graph using completion rules.

4. Read off the subsumption relationship from the normalized graph.

The fourth step is originally meant to examine the graph to determine whether a given
subsumption holds or not. We use this step now to add each subsumption on the graph to
the TBox T . Here is an example of how this step works. Given the TBox:

T = {Human vMammal,Mammal v Animal},

the new T after adding all subsumptions would be:

{Human v Human, Human vMammal, Human v Animal, Mammal vMammal,
Mammal v Animal, Animal v Animal}.

The new TBox contains a lot of unneeded GCIs. This can be avoided by adding a small
step to the subsumption algorithm in [6], such that after completing the subsumption graph

3We call it implicit computation of the subsumptions because it doesn’t add them to the TBox.

27

using the completion rules, we can remove all subsumptions of the form X v X (e.g.
Human v Human).

The subsumption algorithm is explained in full details in [3]. We now need to explain
the transformation of the TBox T into a graph.

Transforming the TBox into a graph

Assuming the TBox T contains GCIs of the form C v D (where D is an arbitrary concept,
and C is a concept expression of the form c1 u ... u cn such that n ≥ 1) , we construct a
graph graph = (V,E), where V is a set of nodes and E is a set of directed edges. Starting
with an empty V and E, for every GCI C v D, add C and D to V , and add (C,D) to E.
This way every v ∈ V represents a concept expression, and every pair (C,D) ∈ E represents
the subsumption relation C v D.

Algorithm 6 Transforming a TBox to a graph
1: function transform(T)
2: result = new Graph(V, E)
3: for every C v D in T do
4: V = V ∪ {C,D}
5: E = E ∪ {(C,D)}
6: end for
7: return result
8: end function

Now we have a graph graph that represents the TBox T . The next step is to compute
the paths (using getPaths() function) from C to D (where C and D are graph nodes)
using depth-first search. Obviously, computing the paths using depth-first search can take
polynomial time. For simplicity, we assume the TBox is acyclic. This means we don’t allow
the following situation:

{C v D,D v E,E v C}.

Thus, the graph must be acyclic too. The algorithm can be generalized to account for
cycles. Computing all paths can be done as in Algorithm 7.

This can also be done if the graph contains cycles. It would require using a more
complicated algorithm that keeps track of the number of edges and the nodes visited during
execution. Finding paths in cyclic graphs is explained in detail in [13].

Graph kernel contraction

The function cutPath() is the incision function. Every path from C to D is actually a
subsumption path that entails C v D. Removing an edge from such path would break the
subsumption between C and D through this path. So, in order to contract C v D it is

28

Algorithm 7 Computing all paths between two nodes
1: function getPaths(graph, C, D)
2: result = {}
3: Stack path = new empty Stack
4: computeAllPaths(graph, C, D, path, result)
5: return result
6: end function
1: function computeAllPaths(graph, C, D, path, paths)
2: graph = (V, E)
3: for every (C,X) ∈ E do
4: if X = D then
5: Stack temp = new empty Stack
6: temp.pushAll(path) // adds all edges without changing path
7: temp.push((C,X))
8: paths = paths ∪ {temp} // adding the path to the list of paths
9: else

10: path.push((C,X))
11: computeAllPaths(graph, C, X, path, paths)
12: path.pop()
13: end if
14: end for
15: end function

enough to remove one edge from each of the paths from C to D; as each path represents a
kernel of C v D and breaking them is sufficient to give up the subsumption.

So, a simple and very easy implementation (though inefficient) for the contraction func-
tion is to go over the set of paths, and remove a random edge from every path. Suppose that
the graph in Figure 3.1 is interpreted as C is the most specific concept that is subsumed
by A (C v A), and as we climb the graph up, the concepts get more general. Here there
are four C-D paths: (C, X, Z, A, E, D), (C, X, Z, A, F, D), (C, Y, Z, A, E, D), and (C,
Y, Z, A, F, D). A function that removes random edges from each path might remove (C,
X), (Y, Z), (E, D), and (F, D), which will actually remove the subsumption between C and
D. However, it would be better (in terms of minimal change) to remove only (Z, A), which
will also guarantee that subsumption between C and D is removed.

Sometimes we prefer to remove GCIs that involve most specific concepts during con-
traction (this will be discussed in Chapter 4). To contract such GCIs, we can just remove,
from each C − D path, the edges going into C. In Figure 3.1, it would mean removing
two edges: (C, X) and (C, Y). But removing such edges does not guarantee the minimum
change. So we might end up having to choose which strategy is more preferred: minimal
change or change with most specific concepts. The minimal hitting set approach that was
mentioned earlier might not always satisfy specificity. So the user might have to choose
which one to apply first, and which one to use as a tie breaker.

29

Figure 3.1: Four different paths between C and D, that share one edge.

Removing the edges that involve nodes representing most specific concepts is straight-
forward; remove the edges that go into the most specific concept’s node (C in our example).
But it is not clear if one chooses to remove the least number of edges, instead, how this
can be done. For this, we introduce an approach that uses the Minimum Cut algorithm to
determine the minimum number of edges that need to be removed and identify them.

Reduction to network flow problem

As explained in [13], the network flow problem is the problem of computing the maximum
flow possible in a network (represented as a graph) by finding the minimum cut of the
network. The input to the Ford-Fulkerson algorithm, that solves this problem, would be:

• A graph G = (V,E).

• A source s ∈ V .

• A sink t ∈ V .

• Capacity function C : E → N representing the maximum capacity of each edge.

To contract C v D given the TBox graph G, we choose C to be the source, D to be the
sink, and we assume that the capacities of all edges are the same, equal to 1. The algorithm
will find the maximum flow from C to D, which is equal to the capacity of the minimum
cut (the sum of capacities of the cut edges); we can then extract the edges that form that
minimum cut and remove them.

30

The approach of removing the minimum cut edges of the graph is equivalent to the
approach of removing the minimum hitting set formulas of the kernels. The minimum
hitting set is the smallest set containing the minimum number of elements that hit all sets,
while the minimum cut of the graph is the minimum number of edges (since they all have
the same capacity) that cover all paths from C to D (where edges represent GCIs of the
TBox and paths represent kernels.) So using the minimum cut approach should guarantee
the minimum change for kernel contraction, as the minimum hitting set approach does.

Assuming we have a function “Ford-Fulkerson(graph, s, t)” that computes the maximum
flow in the network (or graph) from source node “s” to a sink “t” with edge-capacities “1”,
and returns the set of edges of the minimum cut, we can modify the contraction algorithm
to adopt the minimum cut approach as in Algorithm 8.

Algorithm 8 Another version of contraction algorithm
1: function graphContractUsingMinCut(T , A)
2: complete(T)
3: graph = transform(T)
4: C = argleft(A) //argleft gets the concept expression on the left side of the GCI
5: D = argright(A) //argright gets the right-side concept expression
6: min-cut = Ford-Fulkerson(graph, C, D)
7: remove min-cut edges from graph
8: T = de-transform(graph)
9: end function

For special cases such as contracting C v D1 u D2, it is sufficient to contract C v
D1 first, and then contract C v D2. But since the graph is already normalized (using
complete() function), rules of the form C v D1 u D2 are already broken down into two:
C v D1, and C v D2. Therefore, the conjunction u would only appear on the left hand
side of a GCI in a normalized TBox (e.g. A1 u A2 v B). In that case, for contracting
A1 u A2 v B, there will be a node A1 u A2, which we will use as a source node; the sink
would be the node representing B.

As in [13], the minimum cut algorithm runs in polynomial time. So using it in the con-
traction algorithm will not have a significant effect on the complexity of the main algorithm
(will not elevate the complexity from being polynomial to being exponential).

In some applications, the decision about which strategy to follow for choosing the edges
to remove might vary depending on the situation. So the user can be asked in such case
about which strategy to follow – specificity or minimality.

The last step of the algorithm is to transform the graph back to EL. This can be done
as follows: starting with an empty TBox T ′, for every edge (X,Y), add X v Y to T ′. The
resulting TBox would be the result of contracting T by A. This is shown in Algorithm 9.

Since the running time of every step of the contraction algorithm starting from “transform(T)”
until the last step is polynomial in the size of the TBox, the complexity of the algorithm

31

Algorithm 9 Transforming a graph back to a TBox
1: function de-transform(graph)
2: result = {}
3: graph = (V, E)
4: for every (X,Y) ∈ E do
5: result = result ∪ {X v Y }
6: end for
7: return result
8: end function

Figure 3.2: Graph representing TBox T = {A v B,B v C,A v C}

will depend on the complexity of the first step (the complete() function). If building the
subsumption hierarchy by generating all subsumptions of an EL TBox can be done in
polynomial time, then the contraction algorithm will in turn take polynomial time. But if
generating all subsumptions takes exponential time, then the algorithm will take exponential
running time as well.

A Sample Run

Suppose we have a TBox T :

T = {A v B,B v C}

which implies A v C. Trying to contract T by A v C using the network flow approach
would work as follows:

1. complete(T). The TBox is already normalized. Translating it into a graph and
applying the completion rules will introduce A v C and will be added explicitly to
the TBox.

2. transform(T). After transforming the TBox into a graph, it will look like the graph
in Figure 3.2 (Assuming we remove the redundant subsumptions, such as A v A).

3. getPaths(graph, A, C) will get all paths between A and C. There are only two paths:
A-B-C and A-C.

4. Cutting the two paths A-B-C and A-C will be done by removing the edge between A
and C, as well as one of the two edges A-B and B-C. So the resulting graph will only
have one edge: A-B or B-C.

32

5. After transforming the graph again into a TBox, the result will be:

T = {A v B}

or

T = {B v C}.

The limitations of the algorithm

The previous example shows how the algorithm succeeds in finding the set of kernels by
finding the paths from the source to the sink (where source and sink represent the two
sides of the GCI that we need to remove). The example we will discuss now shows how
the conjunction symbol (u) might introduce further complexity that the algorithm will not
overcome. Given the TBox T :

T = {A v B,A v C,B u C v D}

we can see that it entails

A v D.

If we want to contract the TBox by A v D, we would look for its kernels and remove a
statement from each. In this example we have only one kernel:

{A v B,A v C,B u C v D}.

So removing one of the three GCIs is enough to give up A v D. Contracting it using our
graph approach works as follows:

1. complete(T). The TBox is already normalized. Translating it into a graph and
applying the completion rules will introduce A v B u C and will be added explicitly
to the TBox.

2. transform(T). After transforming the TBox into a graph, it will look like the graph
in Figure 3.3.

3. getPaths(graph, A, D) will get all paths between A and D. There is only one such
path, which is A−BuC−D. So removing one of these two edges is the only possible
outcome of the algorithm.

This last step is where the algorithm fails. It finds only one of the kernels because it
does not recognize that the two parallel edges from A to B and C actually form another
kernel. This is because a kernel in our graph approach can only be represented as a path.
The conjunction symbol u has a different meaning, and is not analogous to the path notion.

33

Figure 3.3: Graph representing TBox T = {A v B,A v C,A v B u C,B u C v D}

However, the algorithm worked with the previous example because the GCI we tried to
remove was the result of applying the transitivity property of the subsumption symbol (v)
to two other GCIs and they together were represented by a path in the graph representation.

Similarly, we can argue that the algorithm also fails when the existential quantification
symbol (∃) is used. For example, the following TBox:

T = {A v ∃r.B,B v C}

implies the following expression:

A v ∃r.C

The graph approach will not get the kernels of that expression using the getPaths() function.
So, it will also fail. But this is only because of the subsumption of B by C, where B is
included in the role expression ∃r.B. If the existential quantification symbol is used without
changing the symbols involved in the roles (such as B), the algorithm will work fine, as it
will only be depending on the subsumption relations between concept expressions.

So it seems that the limitations of this algorithm are only due to the difference between
the inference using paths and the inference using conjunction or existential quantification.
However, the algorithm does not always fail when u or ∃ is involved. In Figure 3.2, if we
replace B by (X u Y), or by (∃r.B), the algorithm will succeed. That is because the nodes
do not change after the inference; all that is added by the subsumption algorithm are new
edges.

Analysis of the graph algorithm

The analysis we refer to here is with respect to rationality. It is important to be able to
measure the correctness of the solution we get from running the algorithm. Correctness
could be measured by the rationality postulates that are expected to govern kernel contrac-
tion. We will examine each of the four postulates that Hansson mentioned in [10] and see
if the algorithm actually satisfies all of them.

34

Success If α /∈ Cn(∅), then α /∈ Cn(A÷ α).

Since according to the definitions of kernels, each kernel is one way to imply α, and since
we are incising all kernels (all paths), then the new set cannot imply α (except in the cases
that the algorithm cannot solve). So this postulate is satisfied.

Inclusion A÷ α ⊆ A.

Since we are not adding any extra beliefs, and assuming A is the normalized version of the
TBox, then this postulate is also satisfied. It is safe to assume that A is the normalized
TBox because normalization does not change the belief set (or the epistemic state) of the
agent, but it only changes the belief base by putting the beliefs in a form easier to contract.

Core-retainment If β ∈ A and β /∈ A ÷ α, then there is a set A′ such that A′ ⊆ A and
that α /∈ Cn(A′) but α ∈ Cn(A′ ∪ {β}).

This postulate is also satisfied because we are only removing beliefs that contribute to the
contracted belief, as the minimum cut actually represents the smallest set of sentences that
can be removed to contract the knowledge by α (minimum change). So, if a belief β doesn’t
contribute to making A imply α, then β will not be part of any kernel (path), and hence
will not be possible to remove.

Uniformity If it holds for all subsets A′ of A that α ∈ Cn(A′) if and only if β ∈ Cn(A′),
then A÷ α = A÷ β.

Given the semantics of EL, two GCIs can be equivalent if and only if they are exactly the
same. So this requirement is trivially achieved.

3.4.3 How to generate kernels?

So far, we have discussed two ways for generating all kernels:

1. Using the pinpointing algorithm.

2. Using the graph approach.

Computing kernels using the graph approach finds all kernels by performing depth-first
search on the graph representation of the TBox. It finds all kernels in O(E), where E is the
number of edges in the graph (or the number of GCIs in the TBox). However, it only works
with subsumptions that do not include the conjunction symbol (u). So, in cases where the
conjunction is not used in the TBox, the graph approach will be at least as efficient as the
pinpointing approach, if not better (the axiom pinpointing algorithm introduced in [7] finds
one kernel in polynomial time).

35

3.4.4 What incision function to use?

If we care about selecting the minimum number of beliefs to remove, then there are two
incision approaches we discussed so far:

1. The minimum hitting set algorithm.

2. The minimum cut algorithm for the network flow problem.

The minimum hitting set problem is NP-hard. However, the algorithm we discussed in
this study is a relatively efficient algorithm. However, in cases where the minimum cut
approach can be used, the minimum cut algorithm is probably the best and most efficient.
The algorithm works by finding the max flow possible through the network build from the
TBox, and then uses it to find the minimum cut.

The Ford-Fulkerson maximum flow algorithm takes O(E ·F) steps to find the maximum
flow, where E is the number of edges and and F is the value of the maximum flow. The value
of F is upper bounded by the the sum of all capacities, i.e. the maximum flow can never be
greater than the sum of capacities of all edges. Since all edges in our approach has capacity
1, F cannot exceed E. So the complexity of the algorithm can be reformulated as O(E2).
After finding the maximum flow, we can find the minimum cut in O(E). So the overall
complexity of the algorithm is O(E2). The Ford-Fulkerson algorithm is not polynomial-
time, in general, because it depends on the value of the maximum flow, which is dependent
on the capacities. There are other algorithms that are proved to be polynomial-time in
general, such as the one introduced in [12]. However, the application of Ford-Fulkerson
algorithm here is always polynomial-time, because the capacities are all 1 which makes the
maximum flow a polynomial function of the number of edges.

In other cases where the graph approach is not applicable, the minimum hitting set
algorithm is a good candidate. In the next chapter, we will also give some techniques for
implementing the incision function. Some of them might be even more suitable than the
minimum hitting set approach, depending on the domain and the preferences of the user.

36

Chapter 4

Heuristics for contraction

In this study we care about approaching optimal contraction. In the context of contraction,
we can define optimality to be removing the smallest number of beliefs, or removing beliefs
that make more sense to be removed together. In the last chapter, we discussed contraction
algorithms that attempt to achieve optimality by trying to remove the smallest number
of beliefs in an attempt to adopt the concept of minimum change. However, we haven’t
considered the significance of the DL language or the subsumption hierarchy of EL in
choosing the beliefs to be removed from a TBox. In this chapter, we look at heuristics that
are motivated by the subsumption relationship between formulas. We will discuss ways of
determining a preferred set of beliefs to be removed, based on the subsumption relationship
of EL represented by the symbol v.

According to localization and specificity heuristics1, the preference of removing a certain
set of beliefs is not based on their count. We can say that it is “semantically” better
to remove beliefs that are related than to remove unrelated beliefs; by “semantically” we
mean according to the meaning of the language’s logical connectives. The semantics of
DL language’s logical connectives imply certain meanings to the knowledge expressed using
it. Keeping such meaning in mind while contracting helps make a reasonable decision on
what beliefs to remove. For example, it is arguably better to remove beliefs about specific
concepts than general ones. Localization and specificity can be used as tie-breakers when
we have multiple giveUpSets of the same size and we need to select only one. They can also
be used on their own regardless of the size of the giveUpSets.

4.1 Localization

Giving up beliefs about a certain concept means being in doubt of this concept. The more
beliefs we remove, the more concepts we become in doubt of. This can lead us to considering
removing beliefs about a certain concept rather than beliefs about many different concepts.

1These heuristics will be explained shortly.

37

As discussed in [14], it is more efficient to remove beliefs that share concepts or roles in a
TBox as it means being in doubt of fewer concepts.

This seems a reasonable approach as humans tend to deal with related beliefs more than
unrelated ones. If we try to revise our knowledge, we will probably find ourselves leaning
towards focusing on beliefs that share common concepts.

The following EL example:

(1) AspergillusFumigatus v Multicellular
(2) Multicellular v NotBacteria

(3) AspergillusFumigatus v Eukaryotes
(4) Eukaryotes v NotBacteria

implies:

(5) AspergillusFumigatus v NotBacteria,

and we can see that there are two (5)-kernels:

{1, 2} and {3, 4}

So, to contract the knowledge base by (5), we need to remove a belief from each kernel.
However, removing (1) and (4) seems unreasonable because it means that we are in doubt
of our knowledge of four concepts: AspergillusFumigatus, Multicellular beings, Eukaryotes,
and beings that are NotBacteria, while removing (1) and (3), on the other hand, makes us
in doubt only of our knowledge of only three concepts: AspergillusFumigatus, Multicellular
beings, and Eukaryotes. Not only that, but removing (1) and (3) actually means that
our knowledge of AspergillusFumigatus is wrong; Our knowledge of Multicellular beings
and Eukaryotes is not necessarily false. Same with removing (2) and (4), we suspect the
soundness of our beliefs about beings that are NotBacteria.

Localization is implemented in [14] using a graph-like approach. The algorithm operates
by defining an edge-like relationship between formulas and using graph connectivity and
graph clustering rules to determine localized sets.

For every two GCIs X and Y, we say that there is an undirected edge between them if
they share a concept or role. After applying that, we will end up with a graph-like structure,
where some GCIs of the knowledge base are connected by edges. The most basic path in a
graph is an edge, but a path can be composed of more than one edge. Generally, a path is
a sequence of edges.

Definition 4.1. (Conncected GCIs) Two GCIs A and B are connected if and only if there
is an undirected path from one of them to the other, i.e. if there is a sequence of edges and
GCIs Ae1G1e2...Gn−1enB, where Gi is a GCI, ei is an edge, every triple Giei+1Gi+1 means
Gi and Gi+1 are connected by an edge, and n ≥ 0.

38

In the last EL example, we can remove one of the following sets to contract (5):

• {1, 3} (a)

• {1, 4}. (b)

There are more possible giveUpSets, but (a) and (b) are sufficient to show how the
definition of connected GCIs can be applied.

For the set (a), there is an edge (hence, a path) between (1) and (3) because they share
the same concept AspergillusFumigatus. So, according to the definition, (1) and (3) are
connected.

For the set (b), there is no path between (1) and (4) because they don’t share any
concept or role. So according to the definition, (1) and (4) are not connected.

Definition 4.2. (Clusters) A GCI X belongs to a cluster C if and only if X is connected to
every GCI in C.

Thus, according to the definitions, the set (a) has only one cluster, as (1) and (3) are
connected and belong to the same cluster. However, the set (b) has two clusters, because
(1) and (4) are not connected in (b), so they belong to two different clusters.

The algorithm uses the notion of clusters to identify the best giveUpSet. A GCI belong
to a cluster if it shares concepts or roles with other GCIs in the giveUpSet. If a giveUpSet
contains a lower number of clusters than another set, then it is better to remove it during
contraction. This is because the more clusters there is in a set the more sparse the graph
is, hence the less localized the contraction is.

The algorithm works on each possible giveUpSet separately. It builds the graph-like
relation between formulas in the set according to the definitions we gave. It is important
that the algorithm computes the connectivity in each set separately, because two formulas
might have a path between them in one set but not the other; so they would be considered
connected in a set and disconnected in the other. The algorithm then counts the number
of clusters. It does that for all the sets, then chooses the set with least number of clusters
to be removed.

Algorithm 10 selects the giveUpSet with least number of clusters by first computing the
number of clusters in each giveUpSet and then choosing the one with the smallest number.
The time complexity of the algorithm is O(n3 · m), where m is the number of kernels, n
is the size of the biggest kernel. The loop in the main function goes over the whole list of
kernels, which is of size m, and the second function has a 3-level nested loop that goes over
the kernel whose size is at most n in two levels. The third level checks the connectivity of
two nodes, which can take at most n if it has to go over all the elements in the kernel.

39

Algorithm 10 Computing localized hit
1: // Compute the number of clusters in each set and choose the least
2: function getLocalizedHit(giveUpSets)
3: setWithLeastClusters = null
4: smallestNumber =∞
5: for giveUpSet ∈ giveUpSets do
6: numOfClusters = getNumberOfClusters(giveUpSet)
7: if numOfClusters < smallestNumber then
8: setWithLeastClusters = giveUpSet
9: smallestNumber = numOfClusters

10: end if
11: end for
12: return setWithLeastClusters
13: end function
1: // Compute the number of clusters
2: function getNumberOfClusters(giveUpSet)
3: for i = 1 to size(giveUpSet) do
4: label[i] = i
5: end for
6: for i = 1 to size(giveUpSet) do
7: cluster[i] = 0
8: end for
9: // Label connected nodes (beliefs) similarly

10: for i = 1 to size(giveUpSet) do
11: for j = i+ 1 to size(giveUpSet) do
12: if giveUpSet[i] and giveUpSet[j] are connected then
13: label[j] =label[i]
14: end if
15: end for
16: end for
17: // Mark clusters based on used labels. Each label now represents a cluster
18: for i = 1 to size(giveUpSet) do
19: cluster[label[i]] = 1
20: end for
21: // Calculate the number of clusters by counting the used labels
22: for i = 1 to size(giveUpSet) do
23: numberOfClusters = numberOfClusters + cluster[i]
24: end for
25: return numberOfClusters
26: end function

40

4.2 Specificity

The subsumption hierarchy enforced by the subsumption relation in EL categorizes concepts
into different levels of generality and specificity. Consider the kernel:

Lion v Mammal
Mammal v Vertebrate
Vertebrate v Animal

Figure 4.1: Simple Animal kernel

which implicitly entails

Lion v Animal

And suppose we would like to contract the TBox by Lion v Animal. We have three options:
we can remove Lion vMammal, Mammal v Vertebrate, or Vertebrate v Animal. Removing
any of the three GCIs would guarantee minimum change. We can say that Lion is more
specific than Mammal and Mammal is more specific than Vertebrate. Removing Lion v
Mammal, in this case, is more reasonable than removing Vertebrate v Animal, because Lion
v Mammal involves concepts that are more specific than the ones involved in Vertebrate
v Animal. Removing Vertebrate v Animal might affect more concepts in the subsumption
hierarchy (in worst case) than those affected by removing Lion v Mammal. This means
that removing Vertebrate v Animal means that all individuals that are Vertebrates are no
longer believed to be Animals, while removing Lion v Mammal only affects a subset of
Vertebrates which is Lions.

So, it is preferable to remove GCIs that involve specific concepts rather than removing
GCIs that involve more general ones. To account for specificity, we assign a label to each of
the concepts representing its level in the subsumption hierarchy, where levels increase with
generality. And during contraction, we consider contracting GCIs that involve concepts at
lower level (more specific) before considering GCIs that involve concepts at higher level.

Before explaining how the algorithm works, we need to explain the notion of children
that we use in the context of subsumption hierarchy. We use this notion to define the
relationship between concepts that reflects a tree-like relationship between concepts. This
will help us determine and compute specificity for each GCI.

Similar to the hierarchy of the subsumption graph of an EL TBox, we give a definition
to parent and child concepts as follows:

Definition 4.3. For the GCI A v B:

• A is a child concept relative to B, and

41

• B is a parent concept relative to A.

So by looking again at Figure 4.1, we can now say that:

• Mammal is a parent of Lion, and Lion is a child of Mammal

• Vertebrate is a parent of Mammal, and Mammal is a child of Vertebrate

• Animal is a parent of Vertebrate, and Vertebrate is a child of Animal

• Animal is the most general concept, i.e. Animal subsumes all other concepts

• Lion is the most specific concept (least general), i.e. it is subsumed by all other
concepts

The approach we follow in this study for adopting the preference of removing sentences
that contain more specific concepts is achieved by assigning weights to every GCI that
reflects its generality. Then we select the kernels with minimal overall weight. Every GCI
gets a numeric weight depending on the level of generality of the concepts involved in it
(depending on their position in the subsumption graph). A GCI A v B gets weight ‘0’ if A
has no children, i.e. if there is no rule of the form X v A, where X is an arbitrary concept;
and the GCI involving its parent (A GCI of the form B v C) will have weight ‘1’ in that
case. So the weight somehow represents the level in the subsumption graph, starting from
level ‘0’ at the trees’ leaves (which is A in this example.) For simplicity, we assume that
the TBox is acyclic – so we avoid the problems that will be caused by loops.

Now we can compute the weights for the last TBox:

• Lion v Mammal has weight = 0

• Mammal v Vertebrate has weight = 1

• Vertebrate v Animal has weight = 2

The algorithm we introduce now removes kernels that contain GCIs involving most
specific concepts by first computing the weights of every kernel based on the weights of the
GCIs inside it. Following Definition 4.3, we start the algorithm by building the children
labels for all the concepts in the TBox that we will use to assign weights to the GCIs. Given
a TBox T , the algorithm proceeds as in Algorithm 11.

Now we have a graph composed of nodes and their child relationship; the nodes represent
concepts and the edges (or the child relationship) are the subsumption relationship between
them. So GCIs are represented by edges in the graph. The roots are now nodes that are not
children of any node, and the leaves are nodes with no children. The edges involving leaves
are assigned weight ‘0’ and it increases by ‘1’ every step towards the roots. So, the roots

42

Algorithm 11 Building the children graph
1: function graphBuild(T)
2: children(X) = ∅, for every concept X inT
3: for every A v B ∈ T do
4: children(B) = children(B) ∪ {A}
5: end for
6: end function

are most general concepts, and the leaves are most specific ones. If a GCI contains concepts
α v β, where α has no children and β has no parents, then it gets weight ‘0’ according to
Algorithm 12. The weights are assigned to edges, not nodes. Given an edge e that connects
node a to its child b, if b has more than one child, the weight of e is determined by the
longest sequence of edges to a leaf starting at any of the children of b. So the GetMaxWeight
function traverses a tree to all of its leaves computing the weight of each edge and choosing
the weight according to the longest path to a leaf.

Algorithm 12 Assigning Weights
1: function assignWeights(T)
2: for every A v B ∈ T do
3: weight(A v B) = getWeight(A v B)
4: end for
5: end function
1: function getWeight(X v Y)
2: if weight(X v Y) 6= NULL then
3: return weight(X v Y)
4: end if
5: if children(X) = ∅ then
6: return 0
7: else
8: return 1+ getMaxWeight(X)
9: end if

10: end function
1: function getMaxWeight(X)
2: max = – 1
3: for every Z in children(X) do
4: w = getWeight(Z v X)
5: if w > max then
6: max = w
7: end if
8: end for
9: return max

10: end function

43

Now we have every GCI in T assigned a weight relative to its level of generality. So,
in every kernel we have a preference level of what to give up. Based on the weights, we
will choose the sentences with less weight over the ones with more weight to remove. This
preference can be used as a tie-breaker after we apply the minimal hitting set algorithm
and end up with more than one minimal set. If we arrive at two minimal hitting sets for the
kernels, we can compute the overall weight of each of the hitting sets and remove the GCIs
in the set with less overall weight. This is shown in Algorithm 13. It uses the min-hit-CUT
algorithm that gets the minimum hitting sets given a kernel set. There could be more than
one minimum hitting set.

Algorithm 13 Removing specific hitting set
1: function getMostSpecificHit(kernelset)
2: min-hit-sets = min-hit-CUT(kernelSet)
3: min =∞
4: hit = NULL
5: w(s) = 0, for every s ∈ min-hit-sets
6: for every s in min-hit-sets do
7: for every A v B in s do
8: w(s) = w(s) + weight(A v B)
9: end for

10: if w(s) < min then
11: min = w(s)
12: hit = s
13: end if
14: end for
15: return hit
16: end function

Now the CUT method in Algorithm 1 can be re-implemented using the algorithms
introduced here to account for specificity heuristics. Given a TBox T and a GCI A, the
contraction algorithm is given in Algorithm 14.

Algorithm 14 Contraction algorithm – modified
1: procedure contract(T , A)
2: kernelset = pinpoint(T , A)
3: graphBuild(T)
4: assignWeights(T)
5: giveUpSet = getMostSpecificHit(kernelset)
6: T =T / giveUpSet
7: end procedure

The contraction algorithms in this version guarantees the minimality, then specificity,
of the removed beliefs. It guarantees the minimality by reducing the selection of beliefs
from the kernelset to the minimal hitting set problem. The better the performance and the

44

optimality of the hitting set algorithms, the efficient and minimal the contraction algorithm
is. If the minimal set algorithm produces more than one solution of the same size, the
specificity heuristic is used as a tie-breaker. It selects the solution with more specific beliefs
to be removed.

The time complexity of Algorithm 12 is polynomial. The worst-case time complexity is
O(n · l), where n is the size of the TBox T and l is the depth of the subsumption graph.
Since the largest value for l is n, we can consider the worst-case time complexity to be
O(n2). The algorithm works as depth-first search because of the recursive call in getWeight
function. The graphBuild function takes O(n) steps to build the parent-child relationship
graph, where n is the size of the TBox T . Finally, the getMostSpecificHit function takes
O(n ·m) steps in the worst case, where n is the size of the TBox T , and m is the number
of kernel sets. So the contraction algorithm takes polynomial time if the minimum hitting
set algorithm runs in polynomial time. But, if the minimum hitting set algorithm is not
polynomial-time, then the contraction algorithm will not be. Thus, it is safe to say that
the time complexity of the contraction algorithm is lower-bounded by the time complexity
of the minimum hitting set algorithm’s time complexity.

45

Chapter 5

Conclusion

We have discussed that the AGM framework introduces a reasonable set of rules that can
be followed to reach rationality in building belief systems. However, we used a different
formalism to express knowledge and perform contraction throughout this study than the
one the AGM framework uses. This formalism, which is EL, belongs to a family called
Description Logic (DL). EL is one of the simple members of the DL family, and, as the
rest of the DLs, uses concepts and roles as the building blocks of the knowledge base. We
only showed how to perform contraction on TBoxes, and not ABoxes. We then discussed
some basic approaches to contraction and introduced a general algorithm (Contraction
Algorithm) that can accommodate the use of different heuristics to seek optimality.

We introduced a restricted contraction algorithm that uses graphs and solves contraction
as a network flow problem. The graph approach is restricted in the sense that it can be
used only in certain cases where inference in the TBox involves only the transitive property
of the subsumption relation. We showed how the approach is sound and complete (only
in the restricted cases) by showing that it follows the four rationality postulates. We also
discussed three heuristics, two of which are based on the semantics of the subsumption
hierarchy of EL, which are Localization and Specificity. We showed also how the greedy
approach for contraction can be used.

The bottleneck for the contraction algorithms we discussed is actually generating all the
kernels of a specific belief. The pinpointing algorithm we use for this purpose can sometimes
take exponential number of steps with respect to the size of the TBox. Other than that, all
the algorithms we discussed take polynomial time to run.

TBox kernel contraction can be implemented to find the smallest set of beliefs to be re-
moved in polynomial time using the graph approach. The graph approach works only when
the inference involves only the subsumption relationship, not the existential quantification.
The complexity of the algorithm is the same as the network flow algorithm complexity as
it uses the concept of minimum cut to compute the kernels.

Specificity is also one of the main contributions of this study. The EL description logic
sets up a hierarchical relationship between concepts that reflects a specificity relationship.

46

A concept can be said to be more (or less) specific compared to another concept based
on the subsumption relationship in the TBox. This inspires the solution we adopted in
removing knowledge about more specific concepts before considering more general ones.

Two things are worth mentioning and could be addressed in some future work. First,
contracting a TBox by A v B u A v C, which is equivalent to contracting by A v B u C,
can be done by contracting the TBox by only one of the two GCIs. However, the result of
contracting by A v B will probably be different from the result of contracting by A v C.
So how can we choose which GCI of the two to contract by? It could be based on the side
effects that each of them will cause to the TBox.

Second, our graph approach works by finding the minimum cut after computing the
maximum flow. What if there is more than one cut? It would be useful if we use some
algorithms that find all minimum cuts and apply heuristics to select the most appropriate
cut to be removed. The current version of the algorithm we introduced is agnostic about
the semantics of the minimum cut produced. But if we can combine it with some heuristics
(e.g. specificity), we might get a more reasonable and more rational solution.

One addition that could be done in the future is to give an algorithm that contracts ex-
plicit knowledge in the ABox, not just the TBox. Also, the use of EL was very important to
finding polynomial time contraction algorithms, based on the polynomial time subsumption
algorithm. One other suggestion is to attempt to use other, more expressive, versions of DL
and investigate if this results in higher order contraction than polynomial, e.g. extend the
contraction algorithm introduced here to work with knowledge bases represented in EL++,
which is a more popular and more expressive DL. Another intriguing question is: what
advantage would using a more expressive DL give, and will it be worth it if contraction
algorithms get harder and more complicated?

47

Bibliography

[1] Rui Abreu and Arjan J. C. van Gemund. A low-cost approximate minimal hitting
set algorithm and its application to model-based diagnosis. In Vadim Bulitko and
J. Christopher Beck, editors, SARA. AAAI, 2009.

[2] Carlos E. Alchourrón and David Makinson. On the logic of theory change: Safe con-
traction. Studia Logica, 44(4):405–422, 1985.

[3] Franz Baader. What’s new in description logics. Informatik-Spektrum, 34(5):434–442,
Oct 2011.

[4] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, New York, NY, USA, 2003.

[5] Franz Baader, Ralf Küsters, and Ralf Molitor. Computing least common subsumers
in description logics with existential restrictions. In IJCAI, volume 99, pages 96–101,
1999.

[6] Franz Baader, Carsten Lutz, and Anni-Yasmin Turhan. Small is again beautiful in
description logics. KI - Künstliche Intelligenz, 24(1):25–33, Apr 2010.

[7] Franz Baader, Rafael Peñaloza, and Boontawee Suntisrivaraporn. Pinpointing in the
description logic EL. In Proceedings of the 2007 International Workshop on Description
Logics (DL2007), volume 250 of CEUR-WS, pages 171–178, Brixen/Bressanone, Italy,
June 2007. Bozen-Bolzano University Press.

[8] R. Booth, T. Meyer, and I.J. Varzinczak. First steps in EL contraction. In IJCAI-09
Workshop on Automated Reasoning about Context and Ontology Evolution (ARCOE-
09), pages 16–18, Pasadena, CA, July 2009.

[9] P. Gärdenfors. Knowledge in Flux. Modelling the Dymanics of Epistemic States. Mit
Press, 1988.

[10] S.O. Hansson. A Textbook of Belief Dynamics: Theory Change and Database Updating.
Number v. 2 in Applied logic series. Kluwer Academic Publishers, 1999.

[11] Sven Ove Hansson. Kernel contraction. J. Symb. Log., 59(3):845–859, 1994.

[12] A.V. Karzanov. Determining the maximal flow in a network by the method of preflows.
volume 15, pages 434–437, 1974.

48

[13] Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2005.

[14] Zhiwei Liao. Kernel contraction in EL. Master’s thesis, Simon Fraser University, 2014.

[15] Pavlos Peppas. Handbook of Knowledge Representation, chapter 8, pages 317–359.
Foundations of Artificial Intelligence. Elsevier B.V., first edition, 2008.

[16] Rafael R. Testa. The cost of consistency: information economy in paraconsistent belief
revision. South American Journal of Logic, 1(2):461–480, December 2015.

[17] Z. Zhuang and Maurice Pagnucco. Belief contraction in the description logic EL.
In Proceedings of the 22nd International Workshop on Description Logics (DL2009),
volume 477 of CEUR-WS, Oxford, UK, 2009.

49

	Approval
	Abstract
	Table of Contents
	List of Figures
	Introduction
	Kernel contraction by example
	The language
	Scope of this study

	Background
	Belief change
	Epistemic states
	Epistemic attitudes
	Basic types of change

	Description logic
	ABox
	TBox
	EL language

	Related work

	Kernel contraction
	What are kernels?
	Computing kernels
	Previous work
	Greedy Contraction

	Minimal change
	Hitting set approach
	Graph approach
	How to generate kernels?
	What incision function to use?

	Heuristics for contraction
	Localization
	Specificity

	Conclusion
	Bibliography

