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Abstract

The quadratic assignment problem (QAP) is an extensively studied combinatorial opti-
mization problem. The special case of QAP where the cost matrix is of rank one is called
the multiplicative assignment problem (MAP). MAP is not well studied in literature, par-
ticularly in terms of experimental analysis of algorithms. In this thesis we present some
mixed integer linear programming formulations and compare their selective strength using
experimental analysis. We also present exact and heuristic algorithms to solve MAP. Our
heuristic algorithms include improvements in existing FPTAs, as well as local search and
tabu search enhancements. Results of extensive experimental analyses are also reported.

Keywords: Quadratic assignment; multiplicative assignment; linearization; constrained
assignment; heuristics; local search; tabu search; CPLEX; C++
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Chapter 1

Introduction

1.1 The Quadratic Assignment Problem

The quadratic assignment problem (QAP) is one of the most well-studied combinatorial
optimization problems. The problem was first introduced by Koopmans and Beckmann
in 1957 to model the facility location problem [52]. Since then a large number of real-
world problems that can be mathematically modelled by the QAP have been identified
in literature. In addition to its usefulness in a wide range of realistic contexts, QAPs
are also of theoretical importance in that many significant and interesting combinatorial
optimization problems can be formulated as QAPs, such as travelling salesman problem.
QAPs still stand as a very hard problem from a computational perspective, both in theory
and in practice. Theoretically, QAPs are NP-hard and NP-hard to approximate with a
constant performance ratio. In practice, QAP instances of size greater than 20 are normally
intractable. It is exceptional considering large-scale instances of some other well-known
combinatorial problems are practically solvable. For example, travelling salesman instances
of size in thousands can be solved at a reasonable time in practice. Due to the above
reasons, the QAP have been an active research topic for over the past 60 years, and it still
attracts considerable attention from academia as well as practitioners.
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An integer programming formulation of the problem can be given as follows

Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklxijxkl

Subject to
n∑
j=1

xij = 1, i = 1, ..., n, (1.1)

n∑
i=1

xij = 1, j = 1, ..., n, (1.2)

xij ∈ {0, 1}, i, j = 1, ..., n. (1.3)

The problem can also be viewed as a permutation problem, i.e. let N = {1, 2, ..., n} and
F be the family of all permutations of N . Then the QAP can be written as

Minimize
π∈F

n∑
i=1

n∑
j=1

qijπ(i)π(j)

The four dimensional array Q = (qijkl) completely represents an instance of the QAP.
The array Q can also be viewed as an n2 × n2 matrix and hence we refer to Q as the cost
matrix associated with the QAP.

The QAP defined above is sometimes called Lawler QAP named after Lawler [55], who
originally proposed this general version of the model in 1963.

A special case of the QAP, known as Koopmans−Beckmann QAP [52] introduced in
1957 is perhaps the most well studied version of the problem. In this case two n × n real
matrices A = (aij) and B = (bij) are given and we want to find a permutation π ∈ F such
that ∑n

i=1
∑n
j=1 aijbπ(i)π(j) is minimized.

An integer programming formulation of Koopmans−Beckmann QAP can be obtained
by replacing qijkl = aikbjl in the QAP.

The QAP model generalizes some other known optimization problems. For example, the
well known the Traveling Salesman Problem (TSP) can be represented as a Koopmans −
Beckmann QAP [70]. An instance of the TSP can be described as finding a minimum
weight Hamiltonian cycle in a complete graph on n nodes. The transformation between the
TSP and the QAP can be done by choosing the matrix A as the distance matrix in the
graph on which the TSP is defined and the second matrix as the n × n adjacency matrix
Hn = (hij) of a directed Hamiltonian cycle [21].

To see another application of the QAP, let us consider the facility location problem.
We are given n facilities and n locations. Let aij be the flow of materials moving from
facility i to facility j, bij represents the distance from location i to location j. The cost of
placing facility π(i) at location i and facility π(j) at location j is aπ(i)π(j)bij . The goal is to
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assign facilities to locations so that the overall cost is minimum. This clearly corresponds
to Koopmans − Beckmann QAP . Concrete applications of the QAP in facility location
include campus planning [26] and the design of a hospital layout [29].

Let us consider the hospital layout problem as a specific practical example of QAPs.
Alwalid Elshafei studies a real hospital, the Ahmed Mather Hospital, which is located in
Cairo, Egypt [29]. The problem can be succinctly stated as to locate hospital departments
in order to minimize the total distance travelled by patients in total. The parameters are
the yearly flow fik between each pair of departments (i and k) and the distance djq between
each pair of locations (j and q). Each department needs to occupy a location and each
location can only house a department. Let the binary decision variable yij denote whether
locating department i to location j. An integer programming formulation of the problem
is presented as follows:

Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
q=1

fikdjqyijykq

Subject to
n∑
j=1

yij = 1, i = 1, ..., n, (1.4)

n∑
i=1

yij = 1, j = 1, ..., n, (1.5)

yij ∈ {0, 1}, i, j = 1, ..., n. (1.6)

For more applications of the model we refer to [17].
The QAP is NP-hard since it contains NP-hard problems such as the TSP as a special

case. In fact, it is possible to show that finding a (1 + ε) approximate solution to the QAP
in polynomial time is also a difficult task for any ε > 0, when P = NP . More formally,

Theorem 1. [71] The quadratic assignment problem is NP-hard. Further, for any ε > 0,
the existence of a polynomial time 1 + ε − approximation algorithm for the QAP implies
P = NP .

Various approaches are used in literature to solve the QAP. In view of Theorem 1, such
algorithms are normally of enumerative type. This include:

• Branch and bound algorithms [17,34,35,53,55,61]

• Branch and cut algorithms [17,48,62]

• Cutting plane algorithms [7–9,11,12,17]

• and a Combination of these approaches [17]
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While exact algorithms provide guaranteed optimal solutions, their applicability is lim-
ited since solving large scale problems using such algorithms are difficult, if not impossible.
A more practical approach is to solve the problem by heuristics, which produce near optimal
solutions. Most of the standard heuristic paradigms have been tested in the context of the
QAP. These include:

• Construction methods [15,17,35,60]

• Local search [1,17]

• Tabu search [10,17,22,37–39,73,74]

• Ant systems [17,27,28,33,57]

• Genetic algorithms [6,17,25,31,40,45,75], among others.

When the underlying cost matrix is specially structured, the QAP may be solvable in
polynomial time. This is yet another major research area related to the QAP.

Perhaps the simplest polynomially solvable special case is when Q is a diagonal matrix.
In this case, the QAP reduces to the standard linear assignment problem. Erdogan [30]
identified a much larger class of the QAP that can be solved as a linear assignment problem.
This leads to the concept of linearizable instances of the QAP. Kabadi and Punnen [47]
characterized all such instances. For various special cases of the QAP that can be solved in
polynomial time, we refer to [20].

1.2 The Multiplicative Assignment Problem

The multiplicative assignment problem (MAP) is a special case of the QAP. Let A and B
be the two coefficient matrices as defined before, and C = (cij)n×n be another n×n matrix.
For any n× n binary matrix X = (xij)n×n, define

A(X) =
n∑
i=1

n∑
j=1

aijxij , B(X) =
n∑
i=1

n∑
j=1

bijxij , and C(X) =
n∑
i=1

n∑
j=1

cijxij .

Then the MAP can be formulated as a 0-1 integer program problem

Minimize A(X)B(X) + C(X) (1.7)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n, (1.8)

n∑
i=1

xij = 1, j = 1, ..., n, (1.9)
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xij ∈ {0, 1}, i, j = 1, ..., n. (1.10)

Define

qijkl =

 aijbkl if (i, j) 6= (k, l),

aijbij + cij if (i, j) = (k, l).

then the resulting QAP is the same as the MAP. To the best of our knowledge, the MAP
is not well studied in the literature. Punnen [65] showed that the MAP is NP-hard. Lin-
earizable instances of the MAP have been characterized by Punnen and Kabadi [68].

When C is the zero matrix, the resulting MAP is called homogeneous MAP which is
denoted by MAP(H). If A(x) ≥ 0 and B(x) ≥ 0 for all x ∈ F , the resulting MAP is
called non-negative MAP and is denoted by MAP+. The homogeneous version of MAP+

is called non-negative homogeneous MAP and is denoted by MAP+(H). MAP+(H) can
be solved using a fully polynomial approximation scheme (FPTAS) as established by [41].
These different variations are crucial in the applicability of some of the algorithms.

Since the multiplicative assignment problem (MAP) is a special case of the QAP, all the
algorithms studied for the QAP can be used to solve the MAP.

1.3 Combinatorial Optimization with Product Objective

The MAP is also a special case of the general combinatorial optimization problem with
product objective function, (COPP) [41]. Thus the general results available for COPP are
applicable to the MAP as well.

Let E = {1, 2, ..., n} be a ground set and F be a family of subsets of E . For each e ∈ E ,
a cost ce and a weight de are given. Then the COPP is to

Minimize
(∑
e∈S

ce

)(∑
e∈S

de

)
Subject to

S ∈ F (1.11)

For each solution S ∈ F , we can assign a 0-1 vector x = (x1, ..., xn) such that

xi =

1 if i ∈ S,

0 if i /∈ S.

The x is called the characteristic vector of S.
Also, if we consider a characteristic vector as a solution point, let F (x) be the convex

hull of all characteristic vectors of elements of F . Then the COPP can be written as

5



COPP1 : Minimize (
∑

cTe xe)(
∑

dTe xe)

Subject to

x ∈ F (x) (1.12)

If ce, de ≥ 0, then the resulting COPP1 is denoted by COPP1+.
When E is the edge set of a complete bipartite graph G and F is the collection of all

perfect matchings in G, then the COPP reduces to MAP(H).
Other examples of the COPP include the minimum product spanning tree problem

where F is selected as spanning trees of a graph G [41], minimum product s-t cut problem
where F is selected as all s-t cuts in a graph G [41], shortest path problem where F is
selected as all paths between node s and t, etc.

For more details on the COPP, we refer to the papers [41,59,65,76]. Let us now review
some of the results discussed in [41] regarding the COPP, the one relevant to our study.

Theorem 2 (Goyal, Genc-Kaya and Ravi [41], 2008). COPP1+ can be solved by a poly-
nomial time 1 + ε polynomial approximation algorithm, say A, for any ε > 0, whenever
the polytope P representing F (x) is available. Furthermore, A returns a solution that is an
extreme point of F (x).

Consider the parametric problem Π(B) defined as

Minimize (
∑

cTe xe)

Subject to∑
dTe xe ≤ B (1.13)

x ∈ F (x) (1.14)

where B is a given parameter.

Theorem 3 (Konno and Kuno [51], 1992). The function f1(x) = (∑n
i=1 cixi)(

∑n
i=1 dixi) is

quasi-concave when
∑n
i=1 cixi ≥ 0, ∀x ∈ F (x) and

∑n
i=1 dixi ≥ 0, ∀x ∈ F (x).

Proof. Let x1, x2 ∈ F (x). The theorem is equivalent to showing

[ct(λx1 + (1− λ)x2)][dt(λx1 + (1− λ)x2)] ≥ min{(ctx1)(dtx1), (ctx2)(dtx2)} (1.15)

6



for all λ ∈ [0, 1]. Let us denote ci = ctxi, di = dtxi, i = 1, 2, and assume without loss of
generality that

c1d1 ≤ c2d2. (1.16)

We need to show that

ϕ(λ) ≡ [λc1 + (1− λ)c2][λd1 + (1− λ)d2]− c1d1 ≥ 0

for all λ ∈ [0, 1]. Algebra shows that

ϕ = (1− λ)[(c2d2 − c1d1)− λ(c1d1 + c2d2 − c1d2 − c2d1)].

Because 1− λ ≥ 0, it suffices to prove that

ψ(λ) ≡ (c2d2 − c1d1)− λ(c1d1 + c2d2 − c1d2 − c2d1) ≥ 0,

for all λ ∈ [0, 1], which is equivalent to show that

ψ(0) = c2d2 − c1d1 ≥ 0, (1.17)

ψ(1) = −2c1d1 + c1d2 + c2d1 ≥ 0. (1.18)

because ψ(λ) is a linear function of λ. (1.17) holds by assumption (1.16). Now we prove
(1.18) by contradiction. We assume that ψ(1) < 0. Then the following inequality must
hold:

c1d2 + c2d1 < 2c1d1 ≤ 2c2d2. (1.19)

Because ∑n
i=1 cixi ≥ 0, ∀x ∈ F (x) and ∑n

i=1 dixi ≥ 0, ∀x ∈ F (x), ci, di are all nonneg-
ative. Thus (1.19) implies that c1 > 0, otherwise c1d2 + c2d1 = c2d1 > 0 = 2c1d1. Due to
(1.19), we have

d2 + c2
c1
d1 < 2d1 ≤ 2c2

c1
d2.

Let us denote α = c2
c1
, we have

d2 ≥ (1/α)d1 (1.20)

Because d2 + αd1 < 2d1 and (1.20), we have

(1/α)d1 + αd1 < 2d1,

7



which is equivalent to

(1/α) + α < 2. (1.21)

(1.21) is obviously a contradiction since α + 1/α ≥ 2 for all α ≥ 0. Thus ψ(1) ≥ 0 is
proved.

The above proof was taken from [51].

Theorem 4 (Bertsekas, Nedic and Ozdaglar [14], 2003). The minimum of a quasi-concave
function over a compact convex set is attained at an extreme point of the set.

Thus there always exists an optimal solution for COPP1 which is an extreme point of
F(x).

For fixed B, an optimal solution to COPP1 does not need to be a feasible solution to
Π(B). Let x̃ be an optimal solution Π(B). Then x̃ could be either an extreme point of
F(x) or an interior point of F(x). If x̃ is an interior point of F(x), it is possible to find an
extreme point x̂ of F(x) such that f1(x̂) ≤ f1(x̃). Further,

Lemma 1. Let x̃(B) be a basic optimal solution for some B > 0. There exists an extreme
point x ∈ extr(P ) such that

(cTx) · (dTx) ≤ (cT x̃(B)) ·B

where c = (c1, ..., cn) and d = (d1, ..., dn). The proof of the lemma can be found in [41].
The algorithm of [41] solves a sequence of problem of the type Π(B), for different values

of B, identify an extreme point solution, if the result is a fractional solution, and choose the
overall best solution. The values of B are selected depending on the designed accuracy of
the solution to be produced.

The readers who are interested in more details about the algorithm are directed to [41].
Mittal and Schulz [59] proposed FPTAS for another class of problem, that includes

COPP1+. We omit the details and an interested reader is referred to [59]. But the condition
imposed is not known to be applicable for MAP. COPP1+ can also be solved using the
approach of [76].

1.4 Contributions of the Thesis

In this thesis we study the MAP. To the best of our knowledge, the MAP is not studied sys-
tematically from an experimental point of view. We develop exact and heuristic algorithms
for solving the MAP. Extensive experimental results are provided. The thesis is arranged
as follows:
In Chapter 2, we adapt directly some of the known linearization formulations of the QAP,
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and apply them to the MAP [2, 32, 49, 55] and study experimentally the relative merits of
these formulation in the context of the MAP. We then give two new formulations, exploit-
ing the special structure of the MAP. Experimental results with these linearization are also
given.
In Chapter 3, we focus on an exact algorithm and study the theoretical foundation under-
lying the algorithm. Experimental results are also given.
In Chapter 4, we study heuristic algorithms applied on the MAP. To start with, we provide
the basic swap-based local search algorithms. On the basis of it, tabu search is studied and
applied. Extensive experiments with all algorithms discussed are run and related results
are provided.
Concluding remarks are presented in Chapter 5. Experimental outcomes are tabulated and
presented in an appendix.
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Chapter 2

Linearizations

2.1 Introduction

Recall that the MAP is formulated as an integer program as follows.

Minimize
( n∑
i=1

n∑
j=1

aijxij

)( n∑
k=1

n∑
l=1

bklxkl

)
+

n∑
i=1

n∑
j=1

cijxij

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

Simplifying the objective function and using the fact that x2
ij = xij , we get the quadratic

assignment problem

MAP1 Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklxijxkl +
n∑
i=1

n∑
j=1

cijxij

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

10



where qijkl = aijbkl.
This formulation is exactly the Lawler QAP [55], with the special structure that qijkl =

aijbkl. Thus the matrix Q = (qijkl)n2×n2 is of rank one [19].
In this chapter we first study reformulating the above binary quadratic program into

integer linear programs using various methods and perform experimental analysis to assess
the efficacy of these formulations.

Considering the close similarity between Lawler QAP and the above formulation, we
first adopt well-known linearizations of Lawler QAP to our special case. We then introduce
two new formulations that exploit the problem structure of the MAP.

Experimental analysis will be conducted to assess the efficiency of these formulations
with the following objectives:

• Investigate the strength of the LP relaxations

• Effect of solving the problem using CPLEX as an exact algorithm

• Effect of using CPLEX as a heuristic algorithm with specified time limit

Although comparative studies of various linearization of Lawler QAP as well as of the
Koopman-Beckman QAP instances are known [16, 17], these linearizations are not studied
in the context of rank one special case, which is precisely MAP. Also comparisons with
CPLEX in the form of time restricted heuristics are also not known. In addition, we also
have two linearizations which exploit the structure of the MAP that were not studied in
the past.

2.2 Traditional Linearizations

We first consider a linearization introduced by Lawler [55] for the general QAP, stated it
in the context of MAP by simply replacing qijkl by aijbkl in the objective function. The
formulation is given below:

MILP1 Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklyijkl +
n∑
i=1

n∑
j=1

cijxij (2.1)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n, (2.2)

n∑
i=1

xij = 1, j = 1, ..., n, (2.3)

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

yijkl = n2, i, j, k, l = 1, ..., n, (2.4)
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xij + xkl − 2yijkl ≥ 0, i, j, k, l = 1, 2, ..., n, (2.5)

yijkl ∈ {0, 1}, i, j, k, l = 1, 2, ..., n, (2.6)

xij ∈ {0, 1}, i, j = 1, 2, ..., n. (2.7)

Note that it contains n4 + 2n2 variables and n4 + 2n2 + 1 constraints.
Now we demonstrate the validity the Lawler linearization. Firstly, we show that yijkl = 1

if and only if xij = 1 and xkl = 1. If yijkl = 1, then according to the constraint (2.5) we
have

xij + xkl ≥ 2. (2.8)

And due to the binary constraint (2.7), we know that

xij ≤ 1. (2.9)

Combining (2.8) and (2.9), we conclude that xij = 1 and xkl = 1.
Now we will prove the other direction of the statement. According to the binary con-

straint (2.6), we have

yijkl ≤ 1. (2.10)

From the constraint (2.5) and (2.7), we know that yijkl = 1 only if xij = 1 and xkl = 1.
According to the constraint (2.4), there need to have n2 out of n4 yijkl being one. From

(2.2) (or (2.3)) it follows that there are n pairs i, j for which xij = 1. Therefore there are n2

quadruples i, j, k, l such that xij = 1 and xkl = 1. Since xij = 1 and xkl = 1 are necessary
for yijkl = 1, and there are exactly n2 when xij = 1 and xkl = 1, we can conclude that
xij = 1 and xkl = 1 sufficiently lead to yijkl = 1.

Now we show that xij = 0 or xkl = 0 leads to yijkl = 0.
According to constraint (2.5), if xij = 0, we have

xkl ≥ 2yijkl

And due to constraint (2.7), we know that

2yijkl ≤ 1

Because of (2.6), yijkl must be 0.
In a similar way, we can prove that xkl = 0 leads to yijkl = 0.
Therefore, we have demonstrated that xij = 0 or xkl = 0 leads to yijkl = 0.
Kaufmann and Broeckx [49] also introduced a linearization for the general QAP. We

adapt this model to MAP, by substituting qijkl = aijbkl.
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Let

wij = aijxij

n∑
k=1

n∑
l=1

bklxkl

Note that
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

qijklxijxkl =
n∑
i=1

n∑
j=1

aijxij

n∑
k=1

n∑
l=1

bklxkl

=
n∑
i=1

n∑
j=1

wij

Then they introduce n2 constants dij = ∑n
k=1

∑n
l=1 cijkl,∀i, j. Taken together, they

present the linearized equivalent of MAP1

MILP2 Minimize
n∑
i=1

n∑
j=1

wij +
n∑
i=1

n∑
j=1

cijxij

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

dijxij +
n∑
k=1

n∑
l=1

aijbklxkl − wij ≤ dij , i, j = 1, 2, ..., n,

wij ≥ 0, i, j = 1, 2, ..., n,

xij ∈ {0, 1}, i, j = 1, 2, ..., n.

The validity of this linearization follows from [49]. Note that it contains n2 real variables,
n2 binary variables and n2 + 2n constraints.

Frieze and Yadegar introduced another linearization [32] by replacing the products xijxkl
of the binary variables by continuous variables yijkl. We can adapt their strategy by setting
yijkl = xijxkl and deriving the following mixed integer linear programming formulation for
MAP1.

MILP3 Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklyijkl +
n∑
i=1

n∑
j=1

cijxij

Subject to

13



n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

n∑
i=1

yijkl = xkl, j, k, l = 1, ..., n,

n∑
j=1

yijkl = xkl, i, k, l = 1, ..., n,

n∑
k=1

yijkl = xij , i, j, l = 1, ..., n,

n∑
l=1

yijkl = xij , i, j, k = 1, ..., n,

yijij = xij , i, j = 1, ..., n,

0 ≤ yijkl ≤ 1, i, j, k, l = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, 2, ..., n.

This mixed integer program includes n4 real variables, 2n2 binary variables and n4 +
4n3 + n2 + 2n constraints. The correctness of this program is given in [32].

Adams and Johnson [2] introduced another similar linearization:

MILP4 Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklyijkl +
n∑
i=1

n∑
j=1

cijxij

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

n∑
i=1

yijkl = xkl, j, k, l = 1, ..., n,

n∑
j=1

yijkl = xkl, i, k, l = 1, ..., n,

yijkl = yklij , i, j, k, l = 1, ..., n,

yijkl ≥ 0, i, j, k, l = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, 2, ..., n.
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The correctness of this linearization is shown in [2] and formulation contains n2 bi-
nary variables, n4 continuous variables and n4 + 2n3 + 2n constraints without counting
nonnegativity constraints.

Also the well known reformulation-linearization technique (RLT) [72] could be readily
modified to obtain a formulation for MAP as.

MILP5 : Minimize
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

aijbklyijkl +
n∑
i=1

n∑
j=1

cijxij

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

yijkl ≤ xij , i, j, k, l = 1, ..., n,

yijkl ≤ xkl, i, j, k, l = 1, ..., n,

yijkl ≤ xij + xkl − 1, i, j, k, l = 1, ..., n,

0 ≤ yijkl ≤ 1, i, j, k, l = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

For correctness of the formulation we refer to [72] and this linearized program has n4

real variables and n2 binary variables and 3n4 + 2n constraints.

2.3 New Linearizations1

In this section we present two new linearizations designed to exploit the structure of MAP.
Our first linearization discussed below is inspired by [36, 48]. As defined in Chapter 1,

A = (aij)n×n and B = (bij)n×n and C = (cij)n×n are three n× n matrices. For any n× n
binary matrix X = (xij)n×n, define

A(X) =
n∑
i=1

n∑
j=1

aijxij , B(X) =
n∑
i=1

n∑
j=1

bijxij , and C(X) =
n∑
i=1

n∑
j=1

cijxij .

Let u be the optimal objective function value of the assignment problem

1The models presented in this section, as well as the theoretical results and algorithms in Chapter 3 are
provided by my supervisor Dr. Abraham Punnen. My contribution regarding these algorithms are primarily
experimental analysis.
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Maximize B(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

and l be that of

Minimize B(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

Then l ≤ B(X) ≤ u for any feasible solution of MAP. Similarly let u0 and l0 respectively
be the optimal objective function value of the following assignment problems

Maximize A(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

and

Minimize A(X)

Subject to
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n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

xij ∈ {0, 1}, i, j = 1, ..., n.

Then l0 ≤ A(X) ≤ u0 for any feasible solution of MAP.
Let y = B(X). Then MAP can be written as:

Maximize
n∑
i=1

n∑
j=1

aijxijy + C(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

B(X) = y,

xij ∈ {0, 1}, i, j = 1, ..., n.

where y is a continuous variable such that l ≤ y ≤ u, for appropriate values of l and u.
Then the quadratic term xijy can be replaced by a new variable zij along with constants:

zij − uxij ≤ 0, i, j = 1, ..., n,

zij − lxij ≥ 0, i, j = 1, ..., n,

y − zij + uxij ≤ u, i, j = 1, ..., n,

y − zij + lxij ≥ l, i, j = 1, ..., n.

These constraints ensure that zij = y if and only if xij = 1. Thus MAP can be written
as the mixed integer linear program:

MILP6 : Minimize
n∑
i=1

n∑
j=1

aijzij + C(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,
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n∑
i=1

xij = 1, j = 1, ..., n,

n∑
i=1

n∑
j=1

bijxij − y = 0, i, j = 1, ..., n, (2.11)

zij − uxij ≤ 0, i, j = 1, ..., n, (2.12)

zij − lxij ≥ 0, i, j = 1, ..., n, (2.13)

y − zij + uxij ≤ u, i, j = 1, ..., n, (2.14)

y − zij + lxij ≥ l, i, j = 1, ..., n, (2.15)

xij ∈ {0, 1}, i, j = 1, ..., n.

Our next linearization uses binary expansion the value of B(X) using the well-known
transformation [63]. This idea has been used by many authors in integer programming and
integer quadratic programming. For example, [43].

We assume that A(X), B(X) ≥ 0 and integer.
Now let us prove the validity by showing that zij = y if and only if xij = 1.
If zij = y, constraints (2.12), (2.13), (2.14) and (2.15) now become

y − uxij ≤ 0, i, j = 1, ..., n, (2.16)

y − lxij ≥ 0, i, j = 1, ..., n, (2.17)

xij ≤ 1, i, j = 1, ..., n, (2.18)

xij ≥ 1, i, j = 1, ..., n. (2.19)

According to (2.18) and (2.19), we conclude that xij = 1.
On the other hand, if xij = 1, constraints (2.12), (2.13), (2.14) and (2.15) now become

zij ≤ u, i, j = 1, ..., n, (2.20)

zij ≥ l, i, j = 1, ..., n, (2.21)

y ≤ zij , i, j = 1, ..., n, (2.22)

y ≥ zij , i, j = 1, ..., n. (2.23)

According to (2.22) and (2.23), we conclude that zij = y.
The mixed integer program MILP6 contains 2n2 variables 5n2 + 2n constraints without

counting the binary constraints.
Let y = B(X) and z = A(X). Then MAP can be written as:
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Minimize yz + C(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

B(X) = y,

A(X) = z,

xij ∈ {0, 1}, i, j = 1, ..., n.

Note that 0 ≤ l ≤ y ≤ u. Let α = blog2(u − l)c + 1. Then y can be written as
y = l+∑α

k=1 2k−1vk where vk ∈ 0, 1. Eliminating y from the constraint in the above MAP,
we get

Minimize lz +
α∑
k=1

2k−1vkz + C(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

B(X) =
α∑
k=1

2k−1vk,

A(X) = z,

xij ∈ {0, 1}, i, j = 1, ..., n.

Let l0, u0 be lower and upper bounds on A(X). As discussed earlier, the product zvk
can be linearized using the following constraints

wk − u0vk ≤ 0, k = 1, ..., α, (2.24)

wk − l0vk ≥ 0, k = 1, ..., α, (2.25)

z − wk + u0vk ≤ u0, k = 1, ..., α, (2.26)

z − wk + l0vk ≥ l0, k = 1, ..., α. (2.27)

Thus we have the MILP formulation as follows.
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MILP7 : Minimize lz +
n∑
k=1

2k−1wk + C(X)

Subject to
n∑
j=1

xij = 1, i = 1, ..., n,

n∑
i=1

xij = 1, j = 1, ..., n,

B(X) = l +
α∑
k=1

2k−1vk,

A(X) = z,

wk − u0vk ≤ 0, k = 1, ..., α,

wk − l0vk ≥ 0, k = 1, ..., α,

z − wk + u0vk ≤ u0, k = 1, ..., α,

z − wk + l0vk ≥ l0, k = 1, ..., α,

xij ∈ {0, 1}, i, j = 1, ..., n,

vk ∈ {0, 1}, k = 1, ..., α.

Note that MILP7 includes 2n+ log2 (u− l) + 1 variables and 4α+ 2n+ 2 constraints.

2.4 Experimental Analysis

This section is dedicated to experimental evaluation of the previously proposed mixed inte-
ger linear program (MILP) formulations. The experiments are conducted on a number of
instances categorized into the following groups.

1. The first group of instances we test is pseudo-random problems, in which all parame-
ters are pseudo-random numbers. The pseudo-random numbers used in instances are
generated using the built-in C++ functions rand(). The instance size n varies from
10 to 55.

(a) Randomly generated problems: The entries in parameter matrix A range
from 0 to 100, B from 100 to 200, and C from 200 to 1000.

(b) Positively correlated random problems: The entries in parameter matrix
A range from 0 to 100, B from 100 to 200, and C from 200 to 1000. As the name
suggests, the matrices A and B positively correlated. That is to say, each row in
matrices A and B is sorted in ascending order.
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(c) Negatively correlated random problems: The entries in parameter matrix
A range from 0 to 100, B from 100 to 200, and C from 200 to 1000. As the name
suggests, the matrices A and B negatively correlated. That is to say, each row
in matrix A is sorted in ascending order and each row in matrix B is sorted in
descending order.

2. The second group of instances we test is pseudo-random homogeneous problems. The
only difference between this group of problems and the first group is that all the
problems in this group do not have matrix C. Precisely, objective function 1.7 be-
comes A(X)B(X) in the homogeneous cases. We also test three different subgroups
of pseudo-random homogeneous problems as for pseudo-random problems. We test
the problems of size n ranging from 10 to 55.

3. The third group of instances we test is pseudo-random small problems. The only
difference between this group of problems and the first group is that all the problems
in this group do have smaller matrix C. More specifically, all the entries in matrix C
in this group of problems range from 0 to 200, as opposed to 200 to 1000 in group 1.
We test the problems of size n ranging from 10 to 55.

4. The fourth group of instances is the instances from the Quadratic Assignment Problem
Library (QAPLIB) [18]. We do not test all the instances from QAPLIB. We focus on
testing the most difficult ones of them. As in the experimental protocol of their paper
[13], Una Benlic and Jin-Kao Hao states, "Among the 135 instances, 101 instances
(including all the real-life instance) can be considered as easy since BLS (and many
other state-of-art QAP methods) can solve them to optimality in every singe trial
within a very short computation time (often less than a second)." Considering that
they tested on the QAP and we test on the MAP, and the MAP are computationally
easier than the QAP, we test on the following four groups of QAPLIB problems [44]:
J. Skorin-Kapov, E.D. Taillard, U.W. Thonemann and A. Bolte, and M.R. Wilhelm
and T.L. Ward.

All MILP models are solved using the commercial MILP solver CPLEX [23] on a work-
station with the configuration: Intel i7-4790 CPU, 32GB RAM, and 64-bit Windows 7
Enterprise operating system. The models are implemented using C++ and Concert Tech-
nology [46] and complied using the IDE visual studio 2010. Test results are presented in
Table A.1 - A.21.

The tables can be classified as follows.

1. Table A.1 - A.3 show the experimental results of relaxed versions of the six classic
linearization formulations on the first group of instances indicated above. Relaxed
linearization formulations are linearization formulations without integer constraints.
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2. Table A.4 - A.6 show the experimental results of integer versions of the six classic
linearization formulations on the first group of instances indicated above.

3. Table A.7 - A.9 show the experimental results of the two new linearization formulations
on the first group of instances indicated above.

4. Table A.10 - A.12 show the experimental results of the six classic linearization for-
mulations on the second group of instances indicated above, namely, homogeneous
pseudo random problems.

5. Table A.13 - A.15 show the experimental results of the two new linearization formula-
tions on the second group of instances indicated above, namely, homogeneous pseudo
random problems.

6. Table A.16 - A.18 show the experimental results of the six classic linearization for-
mulations on the third group of instances indicated above, namely, small C pseudo
random problems.

7. Table A.19 - A.21 show the experimental results of the two classic linearization for-
mulations on the third group of instances indicated above, namely, small C pseudo
random problems.

The results for the linearizations are as follows.
From the experimental results, we notice the following.

1. In tackling the MAP, the computational efficiency, which is of the seven linearizations
in test are in the following ascending order. Please note that computational efficiency
is measured as the reciprocal of computational time. The less time a method requires,
the more efficient it is.

Lawler < RLT < Kaufmann and Broeckx (KB)

< Frieze and Yadegar (FY) < Adams and Johnson (AJ) < MILP6 < MILP7

2. The two new linearizations are considerably more efficient than the five traditional
ones in solving the MAP. These results are expected due to the fact that the two new
linearizations are specially designed to solve the MAP.

3. Relaxed versions of the linearizations are easier to solve than the ones for Lawler,
Kaufmann and Broeckx (KB), RLT and the two new linearizations. In contrast,
Frieze and Yadegar (FY) and Adams and Johnson (AJ) seem to cope with integer
MAPs more efficiently.
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4. The quality of solutions to relaxed linearizations varies from linearization to lineariza-
tion. Frieze and Yadegar (FY) and Adams and Johnson (AJ) relaxed linearizations
produce exact integer optimal solutions. The two new linearizations produce solutions
close to integer optimal solutions. Between them, MILP7 produces better quality so-
lutions than MILP6 does. And the other three linearizations Lawler, KB and RLT
give very low quality solutions.

5. The MAP with positively and negatively correlated matrices are harder to solve than
the MAP with regular randomly generated matrices in terms of execution time for all
seven linearizations in test.

6. The linearizations are slightly more effective in solving the homogeneous random MAP
(matrix C is zero) than in solving regular random MAP. There is little difference
between the homogeneous negatively and positively correlated MAP and the regular
negatively and positively correlated MAP in terms of execution time.

7. When the problem size grows beyond a certain threshold, MILP6 cannot solve the
MAP instances with small cij . Particularly, one noticeable fact seen from the experi-
mental results is that MILP6 cannot solve the MAP with size greater than 35 within
one hour time limit. On the contrary, MILP7 solves the MAP with small C value
more efficiently than the regular MAP in terms of execution time.
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Chapter 3

The MAP as Constrained
Assignment Problem

3.1 Exact Algorithms for the Homogeneous Multiplicative
Assignment Problem

Recall that the MAP is formulated as an integer program as follows.

Minimize
( n∑
i=1

n∑
j=1

aijxij

)( n∑
k=1

n∑
l=1

bklxkl

)
+
( n∑
i=1

n∑
j=1

cijxij

)
Subject to

n∑
j=1

xij = 1, i = 1, ..., n, (3.1)

n∑
i=1

xij = 1, j = 1, ..., n, (3.2)

xij ∈ {0, 1}, i, j = 1, ..., n. (3.3)

The homogeneous multiplicative assignment problem (HMAP) is defined based on MAP.
When cij = 0 for all i, j = 1, 2, ..., n and aij , bij ≥ 0 for all i, j = 1, 2, ..., n, the MAP is
called the HMAP.

We first focus on the HMAP by developing some algorithms to solve it and then expand
our algorithms to solve the general MAP. It is easy to see that an assignment with A(X) = 0
or B(X) = 0 is an optimal solution to the HMAP and it is easy to test if an assignment
can make A(X) = 0 or B(X) = 0. Thus, without loss of generality, we assume A(X) > 0
and B(X) > 0 in the following discussion of the algorithms for the HMAP.

We denote the family of feasible solutions to the MAP by F, namely, F = {X ∈ {0, 1}n×n

where X satisfies (3.1) and (3.2).
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Consider the constrained assignment problem,

CAP (k) : Minimize A(x) (3.4)

Subject to

X ∈ F,
n∑
i=1

n∑
j=1

bijxij ≤ k. (3.5)

where k is a constant. The CAP(k) is known to be NP-hard [56]. Several exact and heuristic
algorithms have been made to solve this problem [3,42,50,66] and its continuous relaxation is
the well-studied linear programming problem, which can be solved in polynomial time [24].
We develop our first algorithm for the HMAP by solving a sequence of CAP(k) problems.

Let X ′ be any feasible solution to CAP(k). Consider the family of assignments F(X ′) =
{X ∈ F : B(X ′) ≤ B(X) ≤ k}.

Theorem 5. If X ′ is an optimal solution to the CAP(k) then A(X ′)B(X ′) ≤ A(X)B(X)
for all X ∈ F(X ′).

Proof. Since X ′ is an optimal solution to the CAP(k), we have A(X ′) ≤ A(X) for all X ∈ F
satisfying B(x) ≤ k, which includes X ∈ F(X ′). By the definition of F(X ′), B(X ′) ≤ B(X).
Since B(X) > 0, we have A(X ′)B(X ′) ≤ A(X)B(X) for all X ∈ F(X ′).

For later use, we hereby define u and l to be the largest and smallest values of B(X)
for X ∈ F. It is easy to obtain u and l by solving respectively assignment problems with
maximization and minimization objective functions as follows.

Maximize B(x)

Subject to

X ∈ F.

and

Minimize B(x)

Subject to

X ∈ F.
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Linear assignment problems can be formulated as weighted bipartite matching problems.
It is known that bipartite matching problems can be reduced to network flows problems,
to which polynomial algorithms are known. Therefore, linear assignment problems are
polynomially solvable.

In light of u and l, repeated applications of Theorem 5 lead to the following algorithm
for the HMAP.

Algorithm 1: Iterated Exact CAP Algorithm

Compute l and u and let X0 and X ′ respectively be the optimal solutions that
produced l and u;
k ← B(X ′)− 1, sol← X ′, obj ← A(X ′)B(X ′);
if l = 0 then

X0 is optimal. STOP.
end
while k ≥ l do

Let X∗ be an optimal solution to CAP(k); temp← A(X∗)B(X∗);
if obj > temp then

obj ← temp, sol← X∗;
end
k ← B(X∗)− 1;

end
Output sol and obj;

Solving large scale CAP(k) problems could be time consuming. One way to improve
the efficiency of the iterated exact CAP algorithm is to identify conditions that allow early
detection of optimal solutions and conditions that allow steeper decrease in the value of
k. Identifying such conditions could lead to reduced number of iterations and thereby
improving the overall performance of the algorithm.

Suppose the total number of iterations of the exact CAP algorithm is p and let Xi be
the solution generated in iteration i, for i = 1, 2, ..., p. Note that

A(X1) ≤ A(X2) ≤ · · · ≤ A(Xp) (3.6)

and

B(X1) > B(X2) > · · · > B(Xp) (3.7)
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The correctness of the above two inequalities can be easily verified by noticing the fact
that in each iteration k decreases. That means the solution X to CAP(k), which is confined
by the constraint B(X) ≤ k, is related to less B(X), thus (3.7) is verified. As to (3.6), A(X)
increases with more iterations because the constraint gets stricter as k decreases, which
means the scope for possible solutions to A(X) shrinks, and thus A(X) gets larger or does
not change.

Let q be an integer between 1 and p and define the set R(q) = 1, 2, ..., q. Choose an
index qr ∈ R(q) such that

A(Xqr )B(Xqr ) = min{A(Xi)B(Xi) : i ∈ R(q)} (3.8)

Let R′(q) = {i : A(Xi)B(Xi) = A(Xqr )B(Xqr )} and γ ≤ min{B(Xi) : i ∈ R′(q)} be a
real number.

Theorem 6. If l > 0 and A(Xqr )B(Xqr )
γ ≤ A(Xq) then Xqr is an optimal solution to the

HMAP.

Proof. Prove by contradiction. Suppose Xqr is not an optimal solution. Then there exists
a k ∈ R(p)−R(q) such that Xk is optimal. Thus, A(Xk)B(Xk) < A(Xqr )B(Xqr ). i.e.

A(Xk) < A(Xqr )B(Xqr )
B(Xk) ≤ A(Xqr )B(Xqr )

γ
≤ A(Xq). (3.9)

According to (3.6), this implies k ∈ R(q), which contradicts the premise that Xqr is not an
optimal solution.

Theorem 6 provides a sufficient condition for optimality. Let us now consider another
property that can be used to decrease the value of k more rapidly in the exact CAP algo-
rithm.

Theorem 7. If l > 0 and Xqr is not an optimal solution to the HMAP, then there exists
a j ∈ R(p)−R(q) such that B(Xj) < A(Xqr )B(Xqr )

A(Xq) .

Proof. Since Xqr is not an optimal solution to the HMAP there exists a j ∈ R(p) − R(q)
such that Xj is optimal. Thus A(Xj)B(Xj) < A(Xqr )B(Xqr ). i.e.

B(Xj) < A(Xqr )B(Xqr )
A(Xj) (3.10)

Since j ∈ R(p)−R(q) we have

A(Xj) ≥ A(Xq) (3.11)
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From (3.10) and (3.11), we can conclude B(Xj) < A(Xqr )B(Xqr )
A(Xq) .

Taking advantage of Theorems 6 and 7, we can now present a modified version of the
exact CAP algorithm named modified exact CAP algorithm.

Algorithm 2: Modified Exact CAP Algorithm

Compute l and u and let X0 and X ′ respectively be the optimal solutions that
produced l and u.
k ← B(X ′), sol← X ′, obj ← A(X ′)B(X ′);
if l = 0 then

X0 is optimal. STOP.
end
while k ≥ l do

Let X∗ be an optimal solution to CAP(k); temp← A(X∗)B(X∗);
if obj > temp then

obj ← temp, sol← X∗;
end
if obj

l ≤ A(X∗) then
Output sol and obj and STOP;

end
k ← min{B(X∗)− 1, obj

A(X∗) − 1};
end
Output sol and obj;

It may be noted conditions similar to those in Theorem 6 and 7 are used by many
authors in various contexts [4, 5, 54,58,64,67,69].

There are only two nuances between the iterated exact CAP algorithm and the modified
exact CAP algorithm, namely, the latter has an additional termination condition and a
refined updating scheme for k. In spite of the simple structures, these two alterations are
powerful in improving the algorithm’s efficiency, as demonstrated by the computational
experiments in Section 3.4.

3.2 Exact Algorithms for the General MAP

We have discussed how to solve the HMAP, or the MAP with additional restrictive condi-
tions that A(X), B(X) ≥ 0 and C is a zero matrix. Now we discuss how we can relax these
assumptions and expand our algorithm to the general MAP.

Firstly, we notice that the iterated exact CAP algorithm works for any A(X) since
Theorem 5 is also valid in this case. Now let us focus on the case when B(X) is allowed to
be negative. In that case, the algorithm runs as before, until the value of k first becomes
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negative. When that happens, we save the best solution obtained up to this point as X+,
as well as its objective function value obj+. Then set k = 0 and begin the second phase
of the algorithm by solving CAP(k) as a maximization problem instead of a minimization
problem, while retaining everything else unchanged. Let the optimal solution in the second
phase be X−. The overall best solution, or the better solution, out of the two solutions
obtained in the two phases will be the optimal solution to the whole problem. Namely,
let the overall optimal solution be X∗ and X∗ = min {obj(X−), obj(X+)}. It is easy
to verify the correctness of this modified algorithm. The correctness of this algorithm is
essentially in the property that when B(X) > 0, the minimum of A(X)B(X) occurs when
A(X) is minimum and when B(X) < 0, the minimum of A(X)B(X) occurs when A(X) is
maximum.

For the case when C is nonzero, Theorem 5 could be invalid and we need to try every
value of k between l and u, which means making inequality constraint (3.5) equality to
construct CAP’(k) and applying algorithm 1 on the following altered CAP ′(k).

CAP ′(k) : Minimize A(x)

Subject to

X ∈ F,
n∑
i=1

n∑
j=1

bijxij = k. (3.12)

However, the CAP ′(k) does not guarantee the validity of the inequality chain (3.6), so
the algorithm 2 does not work for the general MAP.

3.3 The Relaxed CAP Algorithm

Now we consider another algorithm to solve the HMAP. Suppose the entries in A and B are
nonnegative integers. The only difference between the algorithm we are considering and the
iterated exact CAP algorithm (Algorithm 1) is that we solve the LP relaxation of CAP(k) in
each iteration instead of CAP(k). Unlike the iterated exact CAP algorithm, this approach
will not work for negative A and B. The reason is that if A(X) and B(X) are nonnegative,
the objective function of HMAP is quasi-concave and hence there exists an optimal solution
at the extreme point of the polytope P, which is the convex hull of solutions belonging to
F, except that now 0 ≤ xij ≤ 1, i, j = 1, 2, ..., n. Thus solving the continuous relaxation is
effectively equivalent to solving the HMAP. This property in general may not hold if A(X)
or B(x) takes negative values. Denote the continuous relaxation of the HMAP by CHMAP
and the continuous relaxation of CAP(k) by CCAP(k).
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Let x̄ be a feasible solution to the CCAP(k). Consider the family of assignments P(x̄) =
{X ∈ P : B(X̄) ≤ B(X) ≤ k}.

Theorem 8. If X0 is an optimal solution to the CCAP(k) then A(X0)B(X0) ≤ A(X)B(X)
for all X ∈ P(X0).

Proof. The proof of this theorem is similar to that of Theorem 5 and hence skipped.

It may be noted that x0 may be non-integral. However, in this case we can always find
an integer solution (assignment) with the same or better objective function value.

Like the way that Theorem 5 leads to the iterated exact CAP algorithm, Theorem 8
leads to the following algorithm for HMAP.

Algorithm 3: Iterated Relaxed CAP Algorithm

Compute l and u and let X ′ be the optimal solution that produced u;
k ← B(X ′), sol← X ′, obj ← A(X ′)B(X ′);
while k ≥ l do

Let X∗ be an optimal solution to CCAP(k);
If X∗ is not an assignment, find an assignment X0 with the same or better
objective function value and set X∗ ← X0;
if obj > A(X∗)B(X∗) then

obj ← A(X∗)B(X∗), sol← X∗;
end
decrease k;

end
Output sol and obj;

The operation ′decrease k′ can be implemented in many ways and sometimes it depends
on how we solve CCAP(k). If X∗ is a basic feasible solution with characteristic interval
[k, k̄] then k can be decreased to bkc. If we do not want to restrict on the LP solver or want
to make the additional effort in computing the characteristic interval for X∗, we can use a
simple updating scheme for k as follows:

if bB(X∗)c = B(X∗) then k ← B(X∗)− 1 else k ← bB(X∗)c (3.13)

It is not hard to see that this updating scheme is not very efficient. It normally decreases
k by one in each iteration and crawl through the interval [l, u]. However, we can easily
improve the algorithm by deriving properties similar to that in Theorems 6 and 7 and
refining the algorithm accordingly. This approach leads to the following modified relaxed
CAP algorithm.
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Algorithm 4: Modified Relaxed CAP Algorithm

Compute l and u and let X ′ be the optimal solution that produced u;
k ← B(X ′), sol← X ′, obj ← A(X ′)B(X ′);
while k ≥ l do

Let X∗ be the optimal solution to CCAP(k);
If X∗ is not an assignment, find an assignment X0 with the same or better
objective function value and set X∗ ← X0;
if obj > A(X∗)B(X∗) then

obj ← temp and sol← X∗;
end
if obj

l ≤ A(X∗) then
Output sol, obj and STOP;

end
if bB(X∗)c = B(X∗) then

k ← min{B(X∗)− 1, obj
A(X∗) − 1};

else
k ← min{bB(X∗)c, obj

A(X∗) − 1};
end

end
Output sol and obj;

3.4 Experimental Analysis

In this section we present results of experimental analysis that have been carried out us-
ing the algorithms with the constrained assignment problems developed in the previous
sections. All the algorithms are implemented using the commercial optimizer CPLEX [23]
on a workstation with the configuration: Intel i7-4790 CPU, 32GB RAM, and 64-bit Win-
dows 7 Enterprise operating system The models are implemented using C++ and Concert
Technology [46] and complied using the integrated development environment visual studio
2010.

As the experiments on linearizations in Chapter 2, the following three classes of test
problems are generated: pseudo-random problems, negatively correlated problems, and
positively correlated problems.

Parameter setting for each of the classes of problems is also same with that of the
linearization experiments in Chapter 2.

The experimental results for the CAP algorithms can be found in appendix A.
Several noteworthy observations can be drawn from the above experimental results.
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1. According to Table A.22 - A.24, relaxed versions of CAP algorithms are more efficient
than original ones in solving all the three types (random, negatively correlated, and
positively correlated) of MAPs. More specifically, relaxed iterated CAP is consider-
ably more efficient than iterated CAP in solving MAPs. However, relaxed modified
CAP is only insignificantly faster.

2. According to Table A.22 - A.30, different CAP algorithms solve different types of
MAPs with differing efficiency. To be specific, iterated CAP solves MAPs with spe-
cial matrix structures (negatively or positively correlated) faster than original ran-
domly generated MAPs. Relaxed iterated CAP solves all three types of MAPs with
about same efficiency. In contrast, modified CAP solves randomly generated MAPs
faster than the MAP with special structures. Relaxed modified CAP has about same
efficiency in solving all three types of MAPs.

3. According to Table A.22 - A.30, the execution time by all CAPs on regular size MAPs,
homogeneous MAPs and small C MAPs are about same. The difference of matrix C
does not cause difference in execution time among the CAP algorithms.
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Chapter 4

Solving the MAP by Local Search

4.1 Introduction

The methods discussed in the previous chapters are exact algorithms. As the name suggests,
exact algorithms find an optimal solution. However, in many cases, it is not necessary, or
preferable, to find exact optimal solutions by investing significant time and computing
resources.

In these cases, we apply heuristic algorithms in lieu of exact algorithms. Heuristic
algorithms are usually more efficient in terms of computational time than exact algorithms,
which means the needed computational resources of heuristic algorithms are usually less
than that of exact algorithms. However, instead of giving exact solution as exact algorithms
do, heuristic algorithms find approximate solutions.

In this chapter, the types of heuristic methods we use on the MAP is local search
and tabu search. In short, local search algorithms refer to the group of methods used to
solve problems by iteratively moving from one candidate solution to another in the space
of candidate solutions. Local search algorithms terminate when certain pre-set conditions
are satisfied, such as a satisfactory solution has been identified or the pre-determined time
bound has elapsed.

It is convenient to clarify some terms. In this chapter, the process of moving from one
solution to another is referred to as a move. The space of of candidate solutions is used
under the name search space. The conditions that mark the end of the algorithm are called
termination conditions.

The layout of the remainder of the chapter is as follows. In Section 2, we first introduce
the kind of local search algorithm that we use to solve the MAP, including the search space,
moves, and the termination conditions. Then in Section 3, we discuss several variants of the
local search method. Section 4 is devoted to tabu search, which is a way to enhance the local
search heuristic algorithm. Subsequently, Section 5 describes the numerical experiments
that implement the algorithms we introduced in the former sections and shows the results of
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these experiments. Section 6 analyzes the results of local search algorithms in comparison
with the approaches used in previous chapters. Section 7 concludes this chapter with a
discussion of further possible modifications and variants of the heuristic algorithm used in
this chapter.

4.2 Local Search

An assignment X can be represented as a permutation π = (π(1), ..., π(n)) such that
xiπ(i) = 1, i = 1, ..., n and xij = 0 otherwise. In this chapter we will use the permuta-
tion representation of an assignment. We first make some notations.

a(π) =
n∑
i=1

aiπ(i) (4.1)

b(π) =
n∑
i=1

biπ(i) (4.2)

c(π) =
n∑
i=1

ciπ(i) (4.3)

With the newly introduced notations, the MAP can be written as:

Minimize a(π)b(π) + c(π)

Subject to π ∈ Pn (4.4)

where Pn is the set of all permutations of 1,2, ..., n. For permutation based optimization
problems, one of the most well studied solution neighbourhood is the swap neighbourhood,
denoted by N(π). Given a permutation π and two indices i and j, where 1 ≤ i, j ≤ n, i 6= j.

The swap operation denoted by swap(π : i, j) generates the permutation πij ∈ Pn such
that

πij(t) =


π(t), if t 6= i, j,

π(j), if t = i,

π(i), if t = j.

The swap neighbourhood N(π) is the set of permutations in Pn that can be obtained from
π using a swap operation. Given a(π), b(π) and c(π), we can compute a(πij), b(πij), c(πij)
in constant time using the formulae:

a(πij) = a(π)− aiπ(i) − ajπ(j) + aiπ(j) + ajπ(i) (4.5)

b(πij) = b(π)− biπ(i) − bjπ(j) + biπ(j) + bjπ(i) (4.6)

34



c(πij) = c(π)− ciπ(i) − cjπ(j) + ciπ(j) + cjπ(i) (4.7)

Given a permutation, the best solution πrs in N(π) can be identified in O(n2) time by
exhaustively evaluating

a(πrs)b(πrs) + c(πrs) = min{a(πij)b(πij) + c(πij) : i = 1, ..., n, j = 1, ..., n, i 6= j} (4.8)

On the basis of the preceding discussion, we present the Swap Neighborhood Search Algo-
rithm below.

Algorithm 5: Swap Neighbourhood Search
Data: the problem size n and A,B,C as n× n matrices, an assignment π
Result: an assignment best.sol and the corresponding objective function value

best.obj

best.sol← π;
Initialize best.obj ← a(π) · b(π) + c(π);
for i = 1 ,..., n do

for j = 1 ,..., n do
if best.obj > a(πij) · b(πij) + c(πij) then

best.obj ← a(πij) · b(πij) + c(πij);
best.sol← πij ;

end
end

end
Return best.obj and best.sol.

We can modify Algorithm 5 as a subroutine SWAP(π), where π is a permutation. The
subroutine SWAP(π) finds a best permutation starting with π, returning the optimal ob-
jective function value and the corresponding best assignment.

Using the subroutine SWAP(π), we can develop a local search algorithm. The basic idea
is that each iteration finds the best solution in the swap neighborhood of the current solution,
which will be used as the starting solution in the next search iteration. The iterative search
continues until the termination condition is met that no further improvement in the swap
neighborhood is possible.
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The Local Search Algorithm is presented below.

Algorithm 6: Local Search
Data: the problem size n and A,B,C as n× n matrices, an assignment π
Result: an assignment best.sofar.sol and the corresponding objective function value

best.sofar.obj

best.sofar.sol← π;
local.optimum← false;
Initialize best.sofar.obj ← a(π) · b(π) + c(π);
while local.optimum = false do

inter.obj ← SWAP (best.sofar.sol).best.obj;
inter.sol← SWAP (best.sofar.sol).best.sol;
if inter.obj ← best.sofar.obj then

best.sofar.obj ← inter.obj;
best.sofar.sol← inter.sol;

else
Return best.sofar.obj and best.sofar.sol.
local.optimum← true

end
end

4.3 Variants of Local Search

It is easy to see that the effectiveness and efficiency of the swap local search algorithm
partly depend on the initial permutation. Thus we test this swap algorithm on different
initial solutions for comparative purposes.

We start with a very simple and straightforward initial permutation, 1, 2, ..., n, where n
is the size of the MAP. We refer to this algorithm as One Fixed Initial Permutation Swap
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Local Search Algorithm. The detailed algorithm is as follows.

Algorithm 7: One Fixed Initial Assignment Swap Local Search
Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sofar.sol and the corresponding objective function value

best.sofar.obj

Set the initial permutation π as π(i) = i;
best.sofar.sol← π;
local.optimum← false;
Initialize best.sofar.obj ← a(π) · b(π) + c(π);
while local.optimum = false do

inter.obj ← SWAP (best.sofar.sol).best.obj;
inter.sol← SWAP (best.sofar.sol).best.sol;
if inter.obj ← best.sofar.obj then

best.sofar.obj ← inter.obj;
best.sofar.sol← inter.sol;

end
else

Return best.sofar.obj and best.sofar.sol.
local.optimum← true

end
end

Based on Algorithm 7, we develop another algorithm with different initial assignment
setting. In lieu of just one initial assignment, we randomly generate ten initial permutations
on each of which we run Algorithm 6 to produce ten candidate solutions. We pick the
best one to be the final solution. The detailed algorithm is as follows. In the following
algorithm, we use Algorithm 6 as a subroutine under the name of LocalSearch(π), where
π is an assignment.
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Algorithm 8: Ten Starts Swap Local Search
Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sol and the corresponding objective function value

best.obj

best.obj ←∞;
for k = 1 ,..., 10 do

Randomly generate a permutation π;
temp.sol← LocalSearch(π).best.sofar.sol;
temp.obj ← LocalSearch(π).best.sofar.obj;
if temp.obj < best.obj then

best.obj ← temp.obj;
best.sol← temp.sol;

end
end
Return best.obj and best.sol.

Another line of thought is to use the solutions to specially constructed linear assignment
problems as the initial permutations on which to run LocalSearch(π). Some of the specially
designed linear assignment problems we use to generate the initial permutations are the ones
with objective functions A+C, B +C, A+B +C. The detailed algorithms are as follows.

Algorithm 9: Special Initial Solution A+C Swap Local Search Algorithm
Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sol and the corresponding objective function value

best.obj

Solve the linear assignment problem A+ C to get the solution π;
best.sol← π;
best.obj ← A(π) ·B(π) + C(π);
best.sol← LocalSearch(best.sol).best.sofar.sol;
best.obj ← LocalSearch(best.obj).best.sofar.obj;
Return best.obj and best.sol.
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Algorithm 10: Special Initial Solution B+C Swap Local Search Algorithm
Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sol and the corresponding objective function value

best.obj

Solve the linear assignment problem B + C to get the solution π;
best.sol← π;
best.obj ← A(π) ·B(π) + C(π);
best.sol← LocalSearch(best.sol).best.sofar.sol;
best.obj ← LocalSearch(best.obj).best.sofar.obj;
Return best.obj and best.sol.

Algorithm 11: Special Initial Solution A+B+C Swap Local Search Algorithm
Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sol and the corresponding objective function value

best.obj

Solve the linear assignment problem A+B + C to get the solution π;
best.sol← π;
best.obj ← A(π) ·B(π) + C(π);
best.sol← LocalSearch(best.sol).best.sofar.sol;
best.obj ← LocalSearch(best.obj).best.sofar.obj;
Return best.obj and best.sol.

Furthermore, we test a group of matrix-guided local search algorithms. In the context of
solving the MAP, matrix-guided local search algorithms differ from the original local search
algorithms in the initial solutions. In matrix-guided local search algorithms, the initial
solutions are got by calculating some especially constructed linear assignment problems
involving some parameters computed based on the MAP problem. Particularly, we test the
so-called A-guided and B-guided local search algorithms. The detailed algorithms are as
follows.

39



Algorithm 12: Special Initial Solution A-Matrix Guided Swap Local Search Algo-
rithm

Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sol and the corresponding objective function value

best.obj

Solve the A-Matrix Guided linear assignment problem to get the solution π;
best.sol← π;
best.obj ← A(π) ·B(π) + C(π);
best.sol← LocalSearch(best.sol).best.sofar.sol;
best.obj ← LocalSearch(best.obj).best.sofar.obj;
Return best.obj and best.sol.

Algorithm 13: Special Initial Solution B-Matrix Guided Swap Local Search Algo-
rithm

Data: the problem size n and A,B,C as n× n matrices
Result: an assignment best.sol and the corresponding objective function value

best.obj

Solve the B-Matrix Guided linear assignment problem to get the solution π;
best.sol← π;
best.obj ← A(π) ·B(π) + C(π);
best.sol← LocalSearch(best.sol).best.sofar.sol;
best.obj ← LocalSearch(best.obj).best.sofar.obj;
Return best.obj and best.sol.

4.4 Tabu Search

Tabu search is a metaheuristic strategy to solve combinatorial optimization problems that
has a broad range of usefulness. Tabu search is reputed for being able to find good solu-
tions in comparatively short period of time. As Fred Glover wrote in the initial paper on
Tabu Search, "Latest research and computational comparisons ... disclosed the ability of
tabu search to obtain high quality solutions with modest computational effort, generally
dominating alternative methods tested" [37].

Tabu search is powerful in that it can drastically strengthen the effectiveness and effi-
ciency of many existing local search algorithms. The main problem that tabu search aims
at dealing with is that many local search algorithms tend to find and terminate with poor
local optimums, not being able to reach global optimums. The underlying rationale of tabu
search is to forbid certain moves so that the local search can jump out of local optimums.
As such, the chances of landing a global optimum increase.
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Tabu search is a memory-based strategy. To be more specific, the history of local
search is utilized in creating tabu list, which contains all forbidden moves in each step.
The composition of tabu list is dynamic, changing according to the current state and search
history. The utilization of memory is twofold: recency-based and frequency-based. Recency-
based memory method constructs the tabu list on the basis of how recent the moves have
been implemented in search history. The guiding principle of recency-based memory method
is the most recent moves should be tabu. On the other hand, frequency-based memory
approach makes the tabu list on the basis of how frequent the moves have been implemented
in search history. The guiding principle of frequency-based approach is the most frequently
implemented moves should be tabu.

The idea of neighbourhood of a solution is that the set of all possible moves from the
solution. What tabu search does is to pre-screen the neighbourhood of the current solution
and take out the unpromising moves, which are the moves prohibited by tabu list, in the
neighbourhood. Then the best of all un-tabu moves is selected and a transition to a new
solution is performed.

Tabu moves, i.e. moves on the tabu list, are not fixed. They are adaptive in the sense
that tabu list updates as the local search progresses. Furthermore, tabu moves can be
overridden if an aspiration criterion is met. Aspiration criteria exist to allow for flexibility
in tabu search. The gist of aspiration criteria is that if a tabu move has sufficiently attractive
prospect, it should be made an exception. Namely, the tabu status of this move can be
overridden under this circumstance.

One of the primary practical challenges in designing and using tabu search is to create a
balance between intensification and diversification in search procedure. Intensification refers
to strategies that encourage moves visiting historically proven quality solutions. Conversely,
diversification is the idea that attempts to explore dissimilar neighbourhoods historically
seldom visited.

There are three parameters controlling the trade-off between the quality of solutions
and computation time. Maximum restart number indicates the number of restarts the local
search will execute. Maximum iteration number defines the maximum number of moves
each attempt can make. Tabu tenure has control over how the tabu list is created, which,
in turn, has an influence over neighbourhood diversification of tabu search. To be more
specific, tabu search will be less diverse with a large tabu list. Since a large tabu list means
a number of previous moves will be tabu, thus less new moves will be made compared to a
smaller tabu list. Small tabu list, however, lead to cycling. Thus, a proper balance in the
size of tabu list is important.

As noted before, different parameter settings give rise to different trade-offs. Specifi-
cally, the greater the maximum restart number is, the more computation time it will need.
However, with greater number of restarts, the chance of good local optimum also increases.
Likewise, greater maximum iteration number supposedly increases the quality of the solu-
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tion at the cost of longer computation time. The same trade-off comes into play for tabu
tenure size.

In this case, we tried different parameters to comparatively assess the effectiveness and
efficiency. As a series of experiments show, a good but not necessarily the best combination
of these parameters is: maximum restart number being 20, maximum iteration number
being 100000, and tabu tenure (size of tabu list) being 10.

We keep track of moves in Tabu List. Tabu List is a n× n integer matrix. Whenever a
swap is exercised, the entries in corresponding rows and columns increment by one. Tabu
List is used in determining if a move is tabu by the following formula. We calculate the
number t = tabu.List[i][j] + tabu.tenure + k, where k is a random number between 0 and
9, and iter is the current iteration number. We define the following tabu rule.

swap(i, j) is

non− tabu, if t < iter,

tabu, if otherwise.
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Algorithm 14: Identify the Best Swap
Data: problem size n and A,B,C as n× n matrices, the permutation π, bst.cost
Result: next move and its cost
bst.swap.cost←∞, tabu.bst.swap.cost←∞, num← 0;
for i: 1 to n do

for j: 1 to n do
calculate a(πij), b(πij)andc(πij) according to formulas 4.5 to 4.7;
cost.post.swap← a(πij)b(πij) + c(πij);
if swap(i, j) is non-tabu then

num++;
if cost.post.swap < bst.swap.cost then

let cost.post.swap be bst.swap.cost;
record the permutation to be bst.pi;
generate a random number randnum.one;

end
else if cost.post.swap = bst.swap.cost then

generate a random number randnum.two;
if randnum.two > randnum.one then

et cost.post.swap be bst.swap.cost;
record the permutation to be bst.pi;

end
end

end
else

if cost.post.swap < tabu.bst.swap.cost then
let cost.post.swap be tabu.bst.swap.cost;
record the permutation to be tabu.bst.pi;
generate a random number randnum.one;

end
else if cost.post.swap = tabu.bst.swap.cost then

generate a random number randnum.two;
if randnum.two > randnum.one then

let cost.post.swap be tabu.bst.swap.cost;
record the permutation to be tabu.bst.pi;

end
end

end
end

end
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if (num = 0) or ((tabu.bst.swap.cost < bst.swap.cost) and (tabu.bst.swap.cost <
bst.cost)) then

Return tabu.bst.swap.cost and tabu.bst.pi;
end
else

Return bst.swap.cost and bst.pi;
end

Algorithm 15can be used as a subroutine under the name Identify the Best Swap. The
tabu search used in this thesis is specified as follows.

Algorithm 15: Tabu Swap Local Search Algorithm
Data: problem size n and A,B,C as n× n matrices, maximum iteration number

max.iter

Result: bst.cost and bst.sol
iter ← 0;
bst.cost←∞;
bst.sol← {1, 2, 3, ..., n};
for iter: 1 to max.iter do

s← Identify the Best Swap (A, B, C, π, iter, bst.cost);
calculate and record the cost of the swap s, let it be cur.cost;
calculate and record the solution of the swap s, let it be cur.sol;
update Tabu List to record the best swap s;
if cur.cost < bst.cost then

bst.cost← cur.cost;
bst.sol← cur.sol;

end
end
Return bst.cost and bst.sol.

On the basis of the original tabu search algorithm, Algorithm 16, we can develop a
multistart tabu search to approach the MAP in this thesis. As the name suggests, this
version of tabu search attempts to initiate the search procedure with the multiple starting
solutions. The multiple starting solutions are randomly generated.
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Algorithm 16: Multi-start Tabu Swap Local Search Algorithm
Data: problem size n and A,B,C as n× n matrices, maximum restart number

max.restart

Result: bst.cost and bst.sol
restart.num← 0;
bst.cost←∞;
bst.sol← {1, 2, 3, ..., n};
if restart.num < best.obj then

initial.sol← rand();
cr.cost← Tabu.Search(A,B,C, n)
if cr.cost < bst.cost then

bst.cost← cr.cost;
bst.sol← cr.arrow;

end
end
Return bst.cost and bst.sol.

4.5 Experimental Results

This section is devoted to numerical experiments implementing the previously indicated
local search algorithms.

Specifically, we test the following categories of instances.

1. The first group of instances we test is pseudo-random problems, in which all param-
eters are pseudo-random numbers. We test the problems of size n ranging from 10 to
55.

(a) Randomly generated problems. The entries in parameter matrix A range from 0
to 100, B from 100 to 200, and C from 200 to 1000. All entries are pseudo-random
integers generated in the same manner as in section 2.4.

(b) Positively correlated random problems. The entries in parameter matrix A range
from 0 to 100, B from 100 to 200, and C from 200 to 1000. All entries are pseudo-
random integers generated in the same manner as in section 2.4. As the name
suggests, the matrices A and B positively correlated. That is to say, each row in
matrices A and B is sorted in ascending order.

(c) Negatively correlated random problems. The entries in parameter matrix A
range from 0 to 100, B from 100 to 200, and C from 200 to 1000. All entries are
pseudo-random integers generated in the same manner as in section 2.4. As the
name suggests, the matrices A and B negatively correlated. That is to say, each
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row in matrix A is sorted in ascending order and each row in matrix B is sorted
in descending order.

2. The second group of instances we test is pseudo-random homogeneous problems. The
only difference between this group of problems and the first group is that all the
problems in this group do not have matrix C. We also test three different subgroups
of pseudo-random homogeneous problems as for pseudo-random problems. We test
the problems of size n ranging from 10 to 55.

3. The third group of instances we test is pseudo-random small C problems. The only
difference between this group of problems and the first group is that all the problems
in this group do have smaller matrix C. More specifically, all the entries in matrix C
in this group of problems range from 0 to 200, as opposed to 200 to 1000 in group 1.
We test the problems of size n ranging from 10 to 55.

4. The fourth group of instances is the instances from the Quadratic Assignment Problem
Library (QAPLIB) [18]. We do not test all the instances from QAPLIB. We focus on
testing the most difficult ones of them. As in the experimental protocol of their paper
[13], Una Benlic and Jin-Kao Hao states, "Among the 135 instances, 101 instances
(including all the real-life instance) can be considered as easy since BLS (and many
other state-of-art QAP methods) can solve them to optimality in every singe trial
within a very short computation time (often less than a second)." Considering that
they tested on the QAP and we test on the MAP, and the MAP are computationally
easier than the QAP, we test on the following four groups of QAPLIB problems: J.
Skorin-Kapov, E.D. Taillard, U.W. Thonemann and A. Bolte, and M.R. Wilhelm and
T.L. Ward.

5. The fifth group of instances are for the most powerful algorithms we have discussed.
The instances of this group have larger size n ranging from 500 to 1000. We test them
with the MILP7, which is the winner of all linearization methods, in comparison with
tabu search. We are interested in comparing the results of the MILP7 and tabu search
in terms of both solution quality and computation time. We would like to examine
whether the trade-off between solution quality and computation time can be seen.

Following are experimental results. As in previous experiments, the results with com-
putation time greater than 3600s are not shown in the table.
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4.6 Experimental Analysis

To show that the effectivenesses of different approaches differ, we run Wilcoxon signed-rank
test on the previously indicated methods. In short, Wilcoxon signed-rank test compare two
samples and determine if they are significantly different. In this case, the small p-value
of a Wilcoxon signed-rank test between the methods of two methods indicates a striking
difference between the effectiveness of these two methods. The p-values of the methods
are tabulated as follows. An obvious observation based on the p-values is that the best-
performing non-tabu search method out of a variety of local search candidates usually
resembles Tabu search in terms of solution quality.

According to Table 4.1, we can see that different non-tabu local search methods work
best for MAPs with different structures. Specifically, αA+C is the best method for pseudo-
random problems; various methods, but mainly ten random initial starts method work
best for negatively correlated random problems; various methods work best for positively
correlated random problems of different sizes.

Wilcoxon also indicates the similarity between results from different methods. For
pseudo-random problems, the results of αA + C are significantly different from all non-
tabu local search methods except for αA + C itself and tabu search with 1000 maximum
iterations. Notably, αA + C performs similarly with tabu search with 100000 maximum
iterations. For negatively correlated random problems, the best-performing methods are
mainly ten random initial starts method. The best results are close to those of βB+C. For
positively correlated random problems, tabu search with 100000 maximum iterations give
the results close to the best results given by different methods for different problem sizes.
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Table 4.1: Wilcoxon test results (p-value) between the best method and other local search

type best One Fixed Initial Multi-starts(10RI) A+C B+C A+B+C αA+ C βB + C Tabu(1000) Tabu(100000)
R αA+ C 0.001953 0.003906 0.001953 0.001953 0.001953 — 0.0423 0.04232 0.2719
N 10RI 0.001953 — 0.001953 0.009152 0.009152 0.01427 0.08398 0.01427 0.01427
P Various 0.001953 0.001953 0.02249 0.01427 0.01427 0.05906 0.001953 0.3223 0.2754

P-value less than 0.05 usually indicates different effectiveness between methods.
Best values indicate the best (with least objective function value) result among various local search methods apart from Tabu search.
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Several noteworthy observations can be drawn from the above experimental results.

1. First, we conduct analysis for problems in the most normal form. We look at Ta-
ble A.31 - A.36. Following are some of the findings.

(a) Seeing from Table A.31, αA+C is the best-performing method for peusdo random
problems. Out of the 10 instances we tested, αA + C found the best quality
solutions in 9 of them. Furthermore, it takes only one move to find the final
solutions in 7 of the tests. It may suggest the αA + C method takes advantage
of some structural features of the MAP.

(b) In contrast to finding 1, 10RI (multistart) method is the best-performing method
for negatively correlated and positively correlated peusdo random problems. As
Table A.33 - A.36 show, for all the 20 instances falling into these two categories,
10RI method maintains a steady performance of finding the best quality solutions
in all of them. But notably, 10RI method does not use the least number of moves
to reach the final solutions. It suggests the existence of the time-quality trade-off
pervasive in heuristics.

(c) Reading across Table A.31 - A.36, one fixed initial and multi-start methods
(10RI) perform most steadily regardless of the structures of problems. Namely,
one fixed initial and 10RI methods always give the same results in all these 30
tested instances, comprised of pseudo random problems, positively correlated
pseudo random problems, and negatively correlated pseudo random problems.

2. Looking at Table A.37 - A.42, we can notice some differences between regular MAPs
and homogeneous MAPs.

(a) Instead of αA + C, A + C is the best-performing method for pseudo random
homogeneous problems. Considering the structural differences between the MAP
and the homogeneous MAP and the differential performances of the methods, we
are led to conclude that in implementing heuristics, we need to employ methods
according to the structural features of the problem.

(b) Similar to the case of normal MAPs, multi-start methods (10RI) still outper-
form other competing local search algorithms in positively and negatively cor-
related pseudo random problems. This observation consolidates the stability of
the multi-start methods in dealing with problems with differing structural char-
acteristics. This finding is of practical significance that we can safely implement
multi-start methods to approach problems of unknown structures and expect
reasonable results.

3. Looking at Table A.37 - A.48, we can draw some points of interest about MAPs with
small parameter matrix Cs.
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(a) For pseudo random small C MAP problems, the most effective method is αA+C,
same with the that of normal pseudo random MAPs. What’s more, the most
effective approach in dealing with small C MAPs is 10RI method, also same with
the situation of normal pseudo random MAPs. This similarity suggests that
the size of the parameter C is not a decisive factor in terms of computational
difficulty.
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Chapter 5

Conclusion

In this thesis, we systematically studied the Multiplicative Assignment Problem (MAP).
First, we studied the formulation of the MAP and presented the MAP under the light

of combinatorial optimization problem with product objective function (COPP).
We then approached the MAP by three groups of algorithms. The three groups of al-

gorithms are linearization, Constrained Assignment Problem (CAP), and heuristics. The
three groups of algorithms can be classified as exact and approximate algorithms in terms
of the exactness of the final solution. Linearization and the CAP are exact algorithms, and
heuristics is approximate. For the exact algorithms, we presented the theoretical founda-
tions underpinning them. For heuristics, we presented the rationale for adopting them.

Extensive experiments were conduced to test the algorithms presented in this thesis.
On the basis of the experimental results, remarks regarding the effectiveness and efficiency
of the algorithms were given.

The overall conclusion is that one of the linearizations introduced in this thesis, MILP7,
is the best algorithm to solve the MAP of small and medium size (n < 500), in terms
of both effectiveness and efficiency. However, for large scale MAP (n > 500), heuristics,
particularly Tabu Search, still remains very competitive in terms of efficiency.
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Table A.1: Relaxed Linearizations Results of Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
R1 10 16657 0.063 3441.94 0 293616 0.281 293616 0.468 3879.5 0.078
R2 15 17279.5 0.203 3780.02 0 335032 2.545 335032 6.006 4043.5 0.593
R3 20 5486.2 0.843 5340.41 0.031 405621 25.646 405621 64.754 5686.5 2.792
R4 25 6344.28 7.832 6348.22 0.078 548467 223.76 548467 652.162 6519 41.11
R5 30 7561.57 30.404 7363.08 0.172 559585 1128.37 559585 3063.73 7605.5 2826.22
R6 35 8495.43 672.474 8430.4 0.312 – – – – – –
R7 40 – – 9350.86 3.635 – – – – – –
R8 45 – – 10334.4 7.262 – – – – – –
R9 50 – – 11116.9 13.917 – – – – – –
R10 55 – – 12145.9 23.373 – – – – – –
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Table A.2: Relaxed Linearizations Results of Negatively Correlated Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
N1 10 43564 0.046 3444.01 0.002 675707 0.303 675707 0.483 3879.5 0.093
N2 15 45038 0.52 3780.22 0.009 1408180 2.663 1408180 8.838 4043.5 0.811
N3 20 6090 1.015 5339.55 0.024 2379440 28.373 2379440 100.122 5686.5 3.963
N4 25 6633 8.247 6348.1 0.067 3656940 222.672 3656940 661.389 6519 1022.37
N5 30 7723.47 31.679 7363.89 0.165 5224570 1170.85 559585 3063.73 – –
N6 35 – – 8430.05 0.312 – – – – – –
N7 40 – – 9350.96 3.748 – – – – – –
N8 45 – – 10334.3 7.484 – – – – – –
N9 50 – – 11116.8 13.874 – – – – – –
N10 55 – – 12145.6 24.376 – – – – – –
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Table A.3: Relaxed Linearizations Results of Positively Correlated Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
P1 10 43292 0.047 3444.87 0.001 647710 0.263 647710 0.482 3879.5 0.074
P2 15 44980.5 0.405 3780.08 0.013 1419460 2.425 1419460 8.279 4043.5 0.599
P3 20 6090 0.862 5339.68 0.025 2378980 27.236 2378980 103.034 5686.5 2.829
P4 25 6633 8.198 6348.17 0.064 3644840 201.503 3644840 725.087 6519 41.487
P5 30 7723.47 30.489 7363.95 0.159 5278980 1208.69 – – 7605.5 3082.36
P6 35 8537.14 278.692 8430.03 0.312 – – – – – –
P7 40 – – 9350.87 0.712 – – – – – –
P8 45 – – 10334.3 7.516 – – – – – –
P9 50 – – 11116.9 13.774 – – – – – –
P10 55 – – 12145.6 23.92 – – – – – –
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Table A.4: Integer Solutions to Traditional Linearizations Results of Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
R1 10 293616 1572.37 293616 2.745 293616 0.234 293616 0.109 293616 46.74
R2 15 – – 335032 248.686 335032 2.137 335032 0.92 – –
R3 20 – – – – 405621 12.012 405621 6.712 – –
R4 25 – – – – 548467 88.859 548467 28.128 – –
R5 30 – – – – 559585 477.359 559585 109.013 – –
R6 35 – – – – 549248 382.29 549248 240.524 – –
R7 40 – – – – 634078 1000.49 634078 549.307 – –
R8 45 – – – – 742206 3013.58 742206 1145.29 – –
R9 50 – – – – – – 847876 1883.61 – –
R10 55 – – – – – – 803139 2888.85 – –
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Table A.5: Integer Solutions to Traditional Linearizations Results of Negatively Correlated Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
N1 10 – – 675707 59.015 675707 0.375 675707 0.468 – –
N2 15 – – – – 1408180 3.635 1408180 6.723 – –
N3 20 – – – – 2379440 35.616 2379440 72.072 – –
N4 25 – – – – 3656940 238.079 3656940 582.581 – –
N5 30 – – – – 5224570 1227.99 5224570 3369.36 – –
N6 35 – – – – – – – – – –
N7 40 – – – – – – – – – –
N8 45 – – – – – – – – – –
N9 50 – – – – – – – – – –
N10 55 – – – – – – – – – –
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Table A.6: Integer Solutions to Traditional Linearizations of Positively Correlated Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
P1 10 – – 647710 38.912 647710 0.359 647710 0.39 – –
P2 15 – – – – 1419460 3.519 1419460 6.351 – –
P3 20 – – – – 2378980 35.504 2378980 71.385 – –
P4 25 – – – – 3644840 224.194 3644840 547.496 – –
P5 30 – – – – 5278980 1180.48 5278970 3109.81 – –
P6 35 – – – – – – – – – –
P7 40 – – – – – – – – – –
P8 45 – – – – – – – – – –
P9 50 – – – – – – – – – –
P10 55 – – – – – – – – – –
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Table A.7: Experimental Results of New Linearizations on Pseudo Random Problems

MILP6 MILP7 MILP6 Integer MILP7 Integer
Test n Obj. Value Time(s) Obj. Value Time(s) Integer Obj. Value Time(s) Integer Obj. Value Time(s)
R1 10 251589 0 292552 0 293616 0.172 293616 0
R2 15 294711 0 335032 0 335032 0.031 335032 0.016
R3 20 353170 0.016 405621 0 405621 0.093 405621 0.015
R4 25 463894 0.062 543244 0 548467 0.421 548467 0.031
R5 30 435136 0.078 549237 0 559585 0.952 559585 0.266
R6 35 450316 0.078 546595 0 549248 0.717 549248 0.031
R7 40 529871 0.078 631020 0 634078 1.045 634078 0.031
R8 45 590955 0.094 742206 0 742206 8.991 742206 0.031
R9 50 667489 0.125 841481 0 847876 19.299 847876 0.234
R10 55 636610 0.156 797769 0.016 803139 59.246 803139 0.218

65



Table A.8: New Linearizations Experimental Results of Negatively Correlated Pseudo Random Problems

MILP6 MILP7 MILP6 Integer MILP7 Integer
Test n Obj. Value Time(s) Obj. Value Time(s) Integer Obj. Value Time(s) Integer Obj. Value Time(s)
N1 10 633983 0 674861 0 675707 0.281 675707 0.031
N2 15 1364290 0.016 1407750 0.016 1408180 0.109 1408180 0.156
N3 20 2267150 0.015 2378890 0 2379440 7.724 2379440 0.031
N4 25 3483700 0.031 3655180 0 3656940 182.211 3656940 0.016
N5 30 5060900 0.078 5224270 0.016 5224570 472.668 5224570 0.031
N6 35 7123220 0.094 7410560 0.016 – – 7411970 0.047
N7 40 9386540 0.093 9752550 0.015 – – 9755480 0.032
N8 45 12090200 0.109 12507000 0 – – 12509200 0.266
N9 50 15222500 0.125 15849200 0.015 – – 15853700 0.437
N10 55 18507200 0.14 19169000 0.016 – – 19172100 0.094
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Table A.9: New Linearizations Experimental Results of Positively Correlated Pseudo Random Problems

MILP6 MILP7 MILP6 Integer MILP7 Integer
Test n Obj. Value Time(s) Obj. Value Time(s) Integer Obj. Value Time(s) Integer Obj. Value Time(s)
P1 10 629620 0 647440 0 647710 0.203 647710 0.015
P2 15 1366830 0.015 1419130 0 1419460 0.14 1419460 0.15
P3 20 2267110 0.016 2377990 0 2378980 9.376 2378980 0.031
P4 25 3482760 0.032 3643850 0 3644840 50.606 3644840 0.015
P5 30 5066390 0.078 5277870 0.015 – – 5278980 0.031
P6 35 7120120 0.094 7412310 0.016 – – 7414230 0.046
P7 40 9387160 0.109 9754530 0 – – 9758080 0.172
P8 45 12094800 0.094 12540000 0.016 – – 12543000 0.109
P9 50 15212900 0.11 15774100 0 – – 15778100 0.047
P10 55 18495400 0.125 19072200 0.016 – – 19075300 0.312
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Table A.10: Integer Solutions to Traditional Linearizations on Homogeneous Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
HR1 10 287448 947.187 287448 3.417 287448 0.219 287448 0.14 287448 63.22
HR2 15 – – 325431 391.642 325431 1.81 325431 0.966 – –
HR3 20 – – – – 392620 9.548 392620 7.574 – –
HR4 25 – – – – 533181 96.549 533181 28.363 – –
HR5 30 – – – – 541722 519.951 541722 104.676 – –
HR6 35 – – – – 529686 343.998 529686 239.155 – –
HR7 40 – – – – 609336 992.838 609336 501.013 – –
HR8 45 – – – – 714228 2946.34 714228 1135.74 – –
HR9 50 – – – – – – 818944 1899.09 – –
HR10 55 – – – – – – 766176 2921.16 – –
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Table A.11: Integer Solutions to Traditional Linearizations Results of Negatively Correlated Homogeneous Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
HN1 10 – – 668811 59.567 668811 0.359 668811 0.265 – –
HN2 15 – – – – 1401030 3.494 1401030 6.76 – –
HN3 20 – – – – 2366490 33.681 2366490 71.247 – –
HN4 25 – – – – 3642350 235.958 3642350 563.951 – –
HN5 30 – – – – 5204170 1167.91 5204170 3438.03 – –
HN6 35 – – – – – – – – – –
HN7 40 – – – – – – – – – –
HN8 45 – – – – – – – – – –
HN9 50 – – – – – – – – – –
HN10 55 – – – – – – – – – –
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Table A.12: Integer Solutions to Traditional Linearizations Results of Positively Correlated Homogeneous Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
HP1 10 – – 641516 45.731 641516 0.344 641516 0.25 641516 2870.5
HP2 15 – – – – 1411890 3.573 1411890 6.786 – –
HP3 20 – – – – 2365500 37.066 2365500 75.147 – –
HP4 25 – – – – 3630090 237.748 3630090 572.593 – –
HP5 30 – – – – 5260990 1235.89 5260990 3365.41 – –
HP6 35 – – – – – – – – – –
HP7 40 – – – – – – – – – –
HP8 45 – – – – – – – – – –
HP9 50 – – – – – – – – – –
HP10 55 – – – – – – – – – –
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Table A.13: New Linearizations Experimental Results of Homogeneous Pseudo Random
Problems

MILP6 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s)
HR1 10 287448 0.265 287448 0.016
HR2 15 325431 0.078 325431 0.016
HR3 20 392620 0.109 392620 0.015
HR4 25 533181 0.421 533181 0.031
HR5 30 541722 0.951 541722 0.25
HR6 35 529686 0.998 529686 0.047
HR7 40 609336 1.076 609336 0.062
HR8 45 714228 9.766 714228 0.031
HR9 50 818944 23.622 818944 0.188
HR10 55 766176 22.588 766176 0.218

Table A.14: New Linearizations Experimental Results of Negatively Correlated Homoge-
neous Pseudo Random Problems

MILP6 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s)
HN1 10 668811 0.156 668811 0.016
HN2 15 1401030 0.156 1401030 0.016
HN3 20 2366490 9.313 2366490 0.015
HN4 25 3642350 247.695 3642350 0.031
HN5 30 5204170 464.433 5204170 0.25
HN6 35 – – 7393290 0.047
HN7 40 – – 9728830 0.156
HN8 45 – – 12480400 0.078
HN9 50 – – 15823800 0.343
HN10 55 – – 19138300 0.218

Table A.15: New Linearizations Experimental Results of Positively Correlated Homoge-
neous Pseudo Random Problems

MILP6 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s)
HP1 10 641516 0.172 641516 0.016
HP2 15 1411890 0.156 1411890 0
HP3 20 2365500 7.558 2365500 0.015
HP4 25 3630090 56.259 3630090 0.031
HP5 30 – – 5260990 0.031
HP6 35 – – 7394530 0.032
HP7 40 – – 9732460 0.25
HP8 45 – – 12515400 0.047
HP9 50 – – 15749400 0.063
HP10 55 – – 19039500 0.281
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Table A.16: Integer Solutions to Traditional Linearizations Results of Small C Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
SR1 10 288334 954.105 288334 3.417 288334 0.219 288334 0.125 288334 63.446
SR2 15 – – 327067 391.642 327067 1.872 327067 0.921 – –
SR3 20 – – – – 394262 8.705 394262 0.991 – –
SR4 25 – – – – 535865 92.394 535865 6.991 – –
SR5 30 – – – – 544696 511.322 544696 91.402 – –
SR6 35 – – – – 533278 344.339 533278 294.085 – –
SR7 40 – – – – 612629 1009.6 612629 493.359 – –
SR8 45 – – – – 718662 3008.09 718662 1330.62 – –
SR9 50 – – – – – – 824355 1919.01 – –
SR10 55 – – – – – – 772015 3023.33 – –
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Table A.17: Integer Solutions to Traditional Linearizations Results of Negatively Correlated Small C Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
SN1 10 – – 669772 53.572 669772 0.328 669772 0.281 – –
SN2 15 – – 1402490 53.572 1402490 3.525 1402490 6.63 – –
SN3 20 – – – – 2368480 33.741 2368480 71.36 – –
SN4 25 – – – – 3645030 238.552 3645030 565.237 – –
SN5 30 – – – – 5207260 1207.06 5207260 3456.02 – –
SN6 35 – – – – – – – – – –
SN7 40 – – – – – – – – – –
SN8 45 – – – – – – – – – –
SN9 50 – – – – – – – – – –
SN10 55 – – – – – – – – – –
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Table A.18: Integer Solutions to Traditional Linearizations Results of Positively Correlated Small C Pseudo Random Problems

Lawler KB FY AJ RLT
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
SP1 10 – – 642524 46.47 642524 0.359 642524 0.265 642524 2826.21
SP2 15 – – – – 1413360 3.401 1413360 6.505 – –
SP3 20 – – – – 2367440 34.647 2367440 73.648 – –
SP4 25 – – – – 3632610 226.764 3632610 543.925 – –
SP5 30 – – – – 5264010 1162.27 5264010 3240.91 – –
SP6 35 – – – – – – – – – –
SP7 40 – – – – – – – – – –
SP8 45 – – – – – – – – – –
SP9 50 – – – – – – – – – –
SP10 55 – – – – – – – – – –
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Table A.19: New Linearizations Experimental Results of Small C Pseudo Random Problems

MILP6 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s)
SR1 10 288334 0.156 288334 0.016
SR2 15 327067 0.156 327067 0.016
SR3 20 394262 9.313 394262 0.016
SR4 25 535865 247.695 535865 0.016
SR5 30 544696 464.433 544696 0.187
SR6 35 – – 533278 0.047
SR7 40 – – 612629 0.062
SR8 45 – – 718662 0.015
SR9 50 – – 824355 0.297
SR10 55 – – 772015 0.062

Table A.20: New Linearizations Experimental Results of Negatively Correlated Small C
Pseudo Random Problems

MILP6 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s)
SN1 10 669772 0.156 669772 0
SN2 15 1402490 0.156 1402490 0.016
SN3 20 2368480 9.313 2368480 0.031
SN4 25 3645030 247.695 3645030 0.015
SN5 30 5207260 464.433 5207260 0.016
SN6 35 – – 7397090 0.047
SN7 40 – – 9732370 0.031
SN8 45 – – 12484600 0.171
SN9 50 – – 15829700 0.094
SN10 55 – – 19144900 0.249

Table A.21: New Linearizations Experimental Results of Positively Correlated Small C
Pseudo Random Problems

MILP6 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s)
SP1 10 642524 0.156 642524 0.125
SP2 15 1413360 0.156 1413360 0.016
SP3 20 2367440 9.313 2367440 0.031
SP4 25 3632610 247.695 3632610 0.016
SP5 30 5264010 464.433 5264010 0.031
SP6 35 – – 7397590 0.032
SP7 40 – – 9736320 0.187
SP8 45 – – 12519600 0.078
SP9 50 – – 15754200 0.063
SP10 55 – – 19045100 0.265
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Table A.22: CAP Algorithms Experimental Results on Randomly Generated Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
R1 10 293616 0.343 342081 0.016 287448 0.109 287448 0.031
R2 15 335032 1.139 325431 0.032 325431 0.016 325431 0.031
R3 20 405621 2.34 392620 0.031 392620 0.078 392620 0.032
R4 25 548467 3.354 544604 0.046 451328 0.156 533181 0.515
R5 30 559585 10.363 542581 0.047 541722 0.437 541722 0.842
R6 35 549248 13.682 529686 0.047 529686 0.546 529686 0.125
R7 40 634070 14.293 617034 0.047 609336 0.406 609336 1.03
R8 45 742206 29.933 714228 0.063 714228 0.842 714228 0.405
R9 50 848543 31.053 819060 0.062 818944 1.03 818944 0.78
R10 55 803139 59.62 771120 0.07 766176 1.139 766176 1.95
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Table A.23: CAP Algorithms Experimental Results on Randomly Generated Negatively Correlated Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
N1 10 550592 0.078 668811 0.031 668811 0.109 668811 0.156
N2 15 1326586 0.343 1401057 0.031 1401034 0.246 1401030 0.188
N3 20 2162733 0.015 2366701 0.031 2151996 0.031 2366490 0.171
N4 25 3657100 4.883 3642373 0.047 3642354 0.718 3642350 0.249
N5 30 5224568 4.104 5213725 0.046 5204168 0.814 5204170 0.452
N6 35 7411971 8.33 7449126 0.062 7393287 1.357 7393290 0.718
N7 40 9546393 3.398 9780960 0.063 9728828 1.857 9728830 0.904
N8 45 12509195 10.975 12539442 0.078 12480435 4.336 12480400 0.937
N9 50 15853727 14.86 15846617 0.094 15823818 4.508 15823800 1.092
N10 55 19172323 19.968 19174357 0.125 19138328 3.775 19138300 1.436
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Table A.24: CAP Algorithms Experimental Results on Randomly Generated Positively Correlated Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
P1 10 647710 0.141 641516 0.031 641516 0.078 641516 0.203
P2 15 1346674 0.047 1412726 0.031 1411893 0.203 1411890 0.109
P3 20 1910430 0.031 2365706 0.032 1900464 0.047 2365500 0.202
P4 25 3644844 4.379 3632389 0.047 3630088 0.531 3630090 0.249
P5 30 5278975 5.763 5261242 0.047 5261325 0.749 5260990 0.281
P6 35 7414227 7.719 7416915 0.047 7394530 1.139 7394530 0.561
P7 40 9758080 10.296 9777530 0.063 9732460 2.278 9732460 0.952
P8 45 12416182 7.111 12560694 0.078 12515412 2.761 12515400 1.076
P9 50 15778079 15.195 15779904 0.078 15749400 4.322 15749400 1.092
P10 55 19075502 17.456 19075873 0.125 19039514 3.775 19039600 1.529
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Table A.25: CAP Algorithms Experimental Results on Randomly Generated Homogeneous Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
HR1 10 287448 0.468 342081 0.031 287448 0.234 287448 1.045
HR2 15 325431 1.172 325431 0.031 325431 0.093 325431 0.031
HR3 20 392620 2.358 392620 0.032 392620 0.078 392620 0.047
HR4 25 533181 3.202 544605 0.031 451328 0.141 533181 0.515
HR5 30 541722 10.811 542582 0.047 541722 0.437 541722 0.842
HR6 35 529686 13.313 529686 0.031 529686 0.437 529686 0.14
HR7 40 609336 14.235 617035 0.046 609336 0.435 609336 1.03
HR8 45 714228 30.008 714228 0.062 714228 0.714 714228 0.405
HR9 50 818944 30.489 819060 0.063 818944 1.038 818944 0.782
HR10 55 766176 61.283 771120 0.078 766176 1.141 766176 1.922
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Table A.26: CAP Algorithms Experimental Results on Randomly Generated Negatively Correlated Homogeneous Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
HN1 10 545400 0.078 668811 0.031 668811 0.109 668811 0.156
HN2 15 1319200 0.374 1401060 0.031 1401034 0.296 1401030 0.188
HN3 20 2151996 0.015 2366700 0.047 2151996 0.031 2366490 0.171
HN4 25 3642354 4.88 3642370 0.047 3642354 0.749 3642350 0.249
HN5 30 5204168 4.056 5213720 0.047 5204168 0.844 5204170 0.452
HN6 35 7393287 7.85 7449130 0.047 7393287 1.386 7393290 0.702
HN7 40 9519976 3.154 9780960 0.063 9728828 1.934 9728830 0.906
HN8 45 12480435 10.811 12539400 0.062 12480435 4.04 12480400 0.936
HN9 50 15823818 15.14 15846600 0.078 15823818 4.399 15823800 1.076
HN10 55 19138328 21.094 19174400 0.14 19138328 3.807 19138300 1.44
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Table A.27: CAP Algorithms Experimental Results on Randomly Generated Positively Correlated Homogeneous Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
HP1 10 641516 0.146 641516 0.146 668811 0.109 641516 0.219
HP2 15 1339888 0.047 1412730 0.047 1401034 0.047 1411890 0.109
HP3 20 1900464 0.046 2365710 0.046 2151996 0.046 236550 0.202
HP4 25 3630088 3.766 3632390 3.766 3642354 3.766 3630090 0.265
HP5 30 5260990 5.725 5261240 5.725 5204168 5.725 5260990 0.296
HP6 35 7394530 7.067 7416920 7.067 7393287 7.067 7394530 0.562
HP7 40 9732460 9.609 9777530 9.609 9728828 9.609 9732460 0.936
HP8 45 12392820 7.403 12560700 7.403 12480435 7.403 12515400 1.077
HP9 50 15749408 15.4 15779900 15.4 15823818 15.4 15749400 1.092
HP10 55 19039514 17.375 19075900 17.375 19138328 17.375 19039600 1.513
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Table A.28: CAP Algorithms Experimental Results on Randomly Generated Small C Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
SR1 10 288334 0.499 342081 0.031 287448 0.188 287448 1.03
SR2 15 327067 1.234 325431 0.031 325431 0.094 325431 0.032
SR3 20 394262 2.309 392620 0.047 392620 0.078 392620 0.031
SR4 25 535865 3.229 544605 0.047 451328 0.156 533181 0.517
SR5 30 544696 10.36 542582 0.063 541722 0.483 541722 0.827
SR6 35 533278 13.65 529686 0.047 529686 0.468 529686 0.14
SR7 40 612629 13.841 617035 0.047 609336 0.423 609336 1.045
SR8 45 718662 29.614 714228 0.062 714228 0.765 714228 0.408
SR9 50 824515 30.334 819060 0.048 818944 0.951 818944 0.827
SR10 55 772015 59.794 771120 0.08 766176 1.108 766176 1.934
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Table A.29: CAP Algorithms Experimental Results on Randomly Generated Negatively Correlated Small C Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
SN1 10 546163 0.078 668811 0.031 668811 0.109 668811 0.172
SN2 15 1320489 0.249 1401060 0.047 1401034 0.327 1401030 0.187
SN3 20 2153739 0.016 2366700 0.047 2151996 0.031 2366490 0.172
SN4 25 3645031 5.475 3642370 0.047 3642354 0.718 3642350 0.25
SN5 30 5207255 3.987 5213720 0.047 5204168 0.733 5204170 0.452
SN6 35 7397093 8.471 7449130 0.047 7393287 1.357 7393290 0.733
SN7 40 9523197 3.075 9780960 0.062 9728828 1.856 9728830 0.954
SN8 45 12484637 10.619 12539400 0.063 12480435 4.232 12480400 0.983
SN9 50 15829672 15.089 15846600 0.093 15823818 4.618 15823800 0.092
SN10 55 19144859 19.693 19174400 0.125 19138328 3.84 19138300 1.415
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Table A.30: CAP Algorithms Experimental Results on Randomly Generated Positively Correlated Small C Problems

Iterated CAP Iterated Relaxed CAP Modified CAP Modified Relaxed CAP
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
SP1 10 642524 0.141 641516 0.031 641516 0.062 641516 0.219
SP2 15 1341024 0.047 1412730 0.031 1411893 0.234 1411890 0.109
SP3 20 1902067 0.046 2365710 0.032 1900464 0.047 2365500 0.202
SP4 25 3632611 3.838 3632390 0.047 3630088 0.577 3630090 0.249
SP5 30 5264008 5.776 5261240 0.047 5261325 0.733 5260990 0.297
SP6 35 7397588 7.073 7416920 0.047 7394530 1.281 7394530 0.592
SP7 40 9736322 9.556 9777530 0.062 9732460 2.246 9732460 1.045
SP8 45 12397163 7.261 12560700 0.078 12515412 2.778 12515400 1.17
SP9 50 15754168 15.02 15779900 0.093 15749408 4.336 15749400 1.076
SP10 55 19045077 16.674 19075900 0.14 19039514 3.822 19039600 1.529
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Table A.31: Local Search Algorithms Experimental Results on Randomly Generated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
R1 10 312020 0 83 293616 1.461 83 330075 0.141 81 368101 0.219 77
R2 15 407354 0 72 385752 2.13 72 471856 0.171 67 572901 0.109 61
R3 20 592814 0 60 479161 4.552 56 560668 0.203 61 479621 0.202 66
R4 25 766827 0 52 749849 5.811 49 690927 0.234 55 778846 0.249 51
R5 30 916887 0 46 708564 5.357 44 908784 0.282 48 998810 0.297 45
R6 35 930878 0 45 837161 11.949 43 955766 0.328 46 1034600 0.592 43
R7 40 1205927 0 39 1034215 10.022 38 1259525 0.297 40 1353136 1.045 37
R8 45 1314719 0 36 1312691 16.538 31 1473292 0.343 36 1755674 1.17 32
R9 50 1838405 0 31 1580979 17.151 30 1542353 0.421 35 1864322 1.076 30
R10 55 1674918 0 31 1526631 22.502 30 2018849 0.484 31 2208373 1.529 27
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.32: Local Search Algorithms Experimental Results on Randomly Generated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
R1 10 368101 0 77 350712 0.015 79 309039 0 84 309039 βB + C 84
R2 15 432500 0.015 70 335032 0 1 406266 0.016 72 335032 αA + C 1
R3 20 492834 0.016 66 405621 0.015 1 567368 0 61 405621 αA + C 1
R4 25 810242 0.016 51 563556 0 1 777013 0.015 52 563556 αA + C 1
R5 30 816772 0.031 50 559585 0.016 63 995853 0.016 45 559585 αA + C 63
R6 35 1254966 0.016 40 549248 0.015 1 843902 0.016 47 549248 αA + C 1
R7 40 1244558 0 40 641937 0.016 59 1033425 0.016 42 641937 αA + C 59
R8 45 1344473 0.016 37 742206 0.031 1 1810295 0.016 32 742206 αA + C 1
R9 50 1747908 0.031 34 848512 0.016 1 1582943 0.031 33 848512 αA + C 1
R10 55 1859502 0.016 32 810950 0.015 1 2154462 0.032 28 810950 αA + C 1
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.33: Local Search Algorithms Experimental Results on Randomly Generated Negatively Correlated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
N1 10 688892 0 56 675707 0 57 693404 0 56 679239 0.016 57
N2 15 1457297 0 39 1408915 0 39 1416293 0.016 39 1416293 0 39
N3 20 2411525 0 30 2379444 4.552 30 2412849 0.016 30 2412849 0 30
N4 25 3662905 0 25 3657613 5.811 25 3676528 0 25 3684055 0.016 25
N5 30 5267626 0 21 5245147 5.357 21 5264964 0.016 21 5234499 0.016 21
N6 35 7511250 0 17 7446833 11.949 17 7465399 0.016 17 7449528 0.015 17
N7 40 9827427 0 15 9776473 10.022 15 9811808 0.015 15 9805899 0.016 15
N8 45 12573188 0 13 12533434 16.538 14 12615456 0.031 13 12615456 0.015 13
N9 50 15967096 0 12 15894859 17.151 12 15918861 0.031 12 15918861 0.016 12
N10 55 19298339 0 11 19231265 22.502 11 19352583 0.031 11 19363335 0.016 11
L.N. represents the number of the loops (moves) (moves) of the local search component of the algorithm employs.
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Table A.34: Local Search Algorithms Experimental Results on Randomly Generated Negatively Correlated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
N1 10 693404 0 56 679239 0.015 1 693404 0 56 675707 10RI 57
N2 15 1416293 0.015 39 1415961 0 1 1423704 0.016 39 1408915 10RI 39
N3 20 2412849 0.016 30 2387324 0.015 31 2406927 0 30 2379444 10RI 30
N4 25 3676528 0.001 25 3664505 0.031 25 3664103 0.016 25 3657613 10RI 25
N5 30 5234499 0 21 5243901 0.015 21 5254121 0.016 21 5234499 B+C 21
N6 35 7496275 0.016 17 7422273 0.015 18 7451310 0.016 17 7422273 αA+ C 43
N7 40 9805899 0.016 15 9785430 0.015 15 9784682 0.016 15 9776473 10RI 15
N8 45 12615456 0.016 13 12568900 0.016 14 12570019 0.015 14 12533434 10RI 14
N9 50 15968276 0.015 12 15904835 0.032 12 15996018 0.015 14 15894859 10RI 12
N10 55 19352583 0.031 11 19204147 0.031 11 19368275 0.016 11 19204147 αA+ C 11
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.35: Local Search Algorithms Experimental Results on Randomly Generated Positively Correlated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
P1 10 647710 0 83 647710 — 83 647710 0.015 58 647710 0 58
P2 15 1459659 0 72 1419457 — 72 1419457 0 39 1419457 0.016 39
P3 20 2406053 0 60 2397984 — 56 2398475 0.016 30 2398475 0 30
P4 25 3671294 0 52 3647514 — 49 3715959 0.016 24 3692643 0.016 25
P5 30 5378898 0 46 5279519 — 44 5314930 0.016 21 5343883 0.016 20
P6 35 7445968 0 45 7441245 — 43 7472211 0.031 17 7483409 0.016 17
P7 40 9811411 0 39 9784692 — 38 9919094 0.032 15 9847182 0.031 15
P8 45 12668866 0 36 12596492 — 31 12606055 0.016 13 12606055 0.016 13
P9 50 15948291 0 31 15862198 — 30 15947250 0.015 12 15859588 0.016 12
P10 55 19177428 0 31 19145194 — 30 19129555 0.015 11 19238912 0.032 11
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.36: Local Search Algorithms Experimental Results on Randomly Generated Positively Correlated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
P1 10 647710 0.016 58 647710 0 58 686858 0.015 57 647710 10RI 83
P2 15 1419457 0.015 39 1419457 0 39 1459566 0.016 39 1419457 10RI 72
P3 20 2398475 0.016 30 2383359 0.015 31 2434861 0.016 30 2383355 αA + C 56
P4 25 3719633 0.015 24 3649463 0 25 3649463 0.016 25 3647514 10RI 49
P5 30 5304582 0.015 21 5288394 0.016 21 5330998 0.015 21 5279519 10RI 44
P6 35 7483409 0.015 17 7448192 0.016 17 7474100 0.016 17 7441245 10RI 43
P7 40 9838892 0.015 15 9805774 0.016 15 9800800 0.016 15 9784692 10RI 38
P8 45 12610265 0.015 13 12585316 0.031 14 12614244 0.016 14 12585316 αA + C 31
P9 50 15891635 0.031 12 15855861 0.016 12 15902030 0.031 12 15855861 αA + C 30
P10 55 19241201 0.015 11 19139237 0.031 11 19188667 0.032 11 19129555 A + C 30
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.37: Local Search Algorithms Experimental Results on Randomly Generated Homogeneous Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
HR1 10 312020 0 83 293616 — 83 345072 0.015 79 302480 0 84
HR2 15 407354 0 72 385752 — 72 325431 0.016 1 397056 0.016 72
HR3 20 592814 0 60 479161 — 56 392620 0 1 466440 0.016 67
HR4 25 766827 0 52 749849 — 49 548100 0 1 763552 0.016 52
HR5 30 916887 0 46 708564 — 44 541722 0.016 63 820170 0.016 49
HR6 35 930878 0 45 837161 — 43 529686 0.016 1 824428 0.015 47
HR7 40 1205927 0 39 1034215 — 38 617176 0.015 59 1009980 0.016 42
HR8 45 1314719 0 36 1312691 — 31 714228 0.046 1 1785420 0.016 32
HR9 50 1838405 0 31 1580979 — 30 819060 0.016 1 1721169 0.031 32
HR10 55 1674918 0 31 1526631 — 30 774810 0.031 1 2119424 0.032 28
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.38: Local Search Algorithms Experimental Results on Randomly Generated Homogeneous Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
HR1 10 324722 0 82 345072 0 79 302480 0 84 293616 10RI 83
HR2 15 424440 0 72 325431 0.015 1 397056 0 72 325431 A+C 1
HR3 20 515318 0.016 65 392620 0 1 466440 0.016 67 392620 A+C 1
HR4 25 700685 0.016 55 548100 0.015 1 763552 0 52 548100 A+C 1
HR5 30 909650 0 49 541722 0.015 63 820170 0.016 49 541722 A+C 63
HR6 35 898480 0.016 48 529686 0.015 1 824428 0.016 47 529686 A+C 1
HR7 40 1039104 0.016 45 617176 0.015 59 1009980 0.016 42 617176 A+C 59
HR8 45 1599864 0.016 37 714228 0.016 1 1785420 0.015 32 714228 A+C 1
HR9 50 1565728 0.016 37 819060 0.031 1 1721169 0.015 32 819060 A+C 1
HR10 55 2130432 0.015 32 774810 0.031 1 2119424 0.016 28 774810 A+C 1
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.39: Local Search Algorithms Experimental Results on Randomly Generated Homogeneous Negatively Correlated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
HN1 10 312020 0 83 293616 — 83 673672 0.015 1 673672 0 57
HN2 15 407354 0 72 385752 — 72 1408716 0.016 1 1416160 0 39
HN3 20 592814 0 60 479161 — 56 2375592 0.016 31 2396332 0 30
HN4 25 766827 0 52 749849 — 49 3648576 0.016 25 3649344 0.016 25
HN5 30 916887 0 46 708564 — 44 5223708 0.016 21 5228496 0.016 21
HN6 35 930878 0 45 837161 — 43 7403376 0.015 18 7485678 0.031 17
HN7 40 1205927 0 39 1034215 — 38 9778239 0.016 15 9806850 0.015 15
HN8 45 1314719 0 36 1312691 — 31 12540808 0.016 14 12605562 0.031 13
HN9 50 1838405 0 31 1580979 — 30 15874969 0.031 12 15903348 0.016 12
HN10 55 1674918 0 31 1526631 — 30 19180744 0.032 11 19232504 0.015 11
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.40: Local Search Algorithms Experimental Results on Randomly Generated Homogeneous Negatively Correlated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
HN1 10 672360 0.016 57 673672 0 1 673672 0.015 57 293616 10RI 83
HN2 15 1412704 0.015 1 1408716 0 1 1416160 0.016 39 385752 10RI 72
HN3 20 2384438 0.016 30 2375592 0.015 31 2396332 0.016 30 479161 10RI 56
HN4 25 3650920 0 25 3648576 0.015 25 3649344 0 25 749849 10RI 49
HN5 30 5224600 0.015 21 5223708 0.016 21 5228496 0.015 21 708564 10RI 44
HN6 35 7427520 0.016 17 7403376 0.016 18 7485678 0.015 17 837161 10RI 43
HN7 40 9813755 0.016 15 9778239 0.015 15 9806850 0.032 15 1034215 10RI 38
HN8 45 12529740 0.016 14 12540808 0.015 14 12605562 0.016 13 1312691 10RI 31
HN9 50 15929204 0.031 12 15874969 0.015 12 15903348 0.032 12 1580979 10RI 30
HN10 55 19324614 0.031 11 19180744 0.016 11 19232504 0.015 11 1526631 10RI 30
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.41: Local Search Algorithms Experimental Results on Randomly Generated Homogeneous Positively Correlated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
HP1 10 312020 0 83 293616 — 83 641516 0 58 680930 0.016 57
HP2 15 407354 0 72 385752 — 72 1411893 0.016 39 1437480 0 39
HP3 20 592814 0 60 479161 — 56 2370240 0.016 31 2427126 0 30
HP4 25 766827 0 52 749849 — 49 3633696 0.015 25 3673722 0.016 25
HP5 30 916887 0 46 708564 — 44 5269398 0.016 21 5325818 0.016 20
HP6 35 930878 0 45 837161 — 43 7427560 0.016 18 7438442 0.015 17
HP7 40 1205927 0 39 1034215 — 38 9820802 0.031 15 9850303 0.016 15
HP8 45 1314719 0 36 1312691 — 31 12558186 0.016 14 12639489 0.015 13
HP9 50 1838405 0 31 1580979 — 30 15827110 0.015 12 15827110 0.031 12
HP10 55 1674918 0 31 1526631 — 30 19136874 0.031 11 19271558 0.031 11
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.42: Local Search Algorithms Experimental Results on Randomly Generated Homogeneous Positively Correlated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
HP1 10 641516 0 1 641516 0.015 58 680930 0 57 293616 10RI 83
HP2 15 1431234 0.015 39 1411893 0 39 1437480 0.016 39 385752 10RI 72
HP3 20 2379492 0.016 31 2370240 0.015 31 2427126 0 30 479161 10RI 56
HP4 25 3701308 0.016 25 3633696 0.015 25 3673722 0 25 749849 10RI 49
HP5 30 5302351 0 21 5269398 0.015 21 5325818 0.016 20 708564 10RI 44
HP6 35 7438442 0.015 17 7427560 0.016 18 7438442 0.016 17 837161 10RI 43
HP7 40 9774512 0.015 15 9820802 0.016 15 9850303 0.015 15 1034215 10RI 38
HP8 45 12633621 0.016 14 12558186 0.031 14 12639489 0.016 13 1312691 10RI 31
HP9 50 15921290 0.016 12 15827110 0.031 12 15856536 0.016 12 1580979 10RI 30
HP10 55 19168416 0.016 11 19136874 0.031 11 19271558 0.031 11 1526631 10RI 30
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.43: Local Search Algorithms Experimental Results on Randomly Generated Small C Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
SR1 10 312020 0 83 293616 — 83 288334 0.015 87 308055 0 83
SR2 15 407354 0 72 385752 — 72 520729 0 64 397304 0.016 73
SR3 20 592814 0 60 479161 — 56 466161 0.015 68 545655 0.016 61
SR4 25 766827 0 52 749849 — 49 891022 0.015 49 821300 0 50
SR5 30 916887 0 46 708564 — 44 690832 0.015 55 928254 0.016 46
SR6 35 930878 0 45 837161 — 43 1179982 0.016 42 1045990 0.016 43
SR7 40 1205927 0 39 1034215 — 38 1296990 0.016 40 1009623 0.015 41
SR8 45 1314719 0 36 1312691 — 31 1596079 0.031 36 1515957 0.016 35
SR9 50 1838405 0 31 1580979 — 30 1495245 0.016 37 2053880 0.031 30
SR10 55 1674918 0 31 1526631 — 30 1681672 0.016 35 1848754 0.031 30
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.44: Local Search Algorithms Experimental Results on Randomly Generated Small C Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
SR1 10 288334 0.016 87 303304 0 1 303304 0 84 288334 A+C 87
SR2 15 451263 0 69 327067 0.015 1 398700 0 72 327067 αA+ C 1
SR3 20 550168 0 62 394262 0.016 1 467940 0.015 67 394262 αA+ C 1
SR4 25 748406 0.016 54 550699 0.015 1 766463 0.015 52 550699 αA+ C 1
SR5 30 1120513 0.016 44 544696 0 63 954778 0.015 66 544696 αA+ C 63
SR6 35 1064691 0.015 44 533278 0.016 1 827797 0.015 47 533278 αA+ C 1
SR7 40 1233621 0.016 41 620416 0.016 59 1013851 0.015 42 620416 αA+ C 59
SR8 45 1377850 0.015 38 725759 0.016 1 1624126 0.016 33 725759 αA+ C 1
SR9 50 1870570 0.016 33 824355 0.015 1 1726656 0.032 32 824355 αA+ C 1
SR10 55 2137248 0.031 31 780204 0.016 1 2137318 0.031 28 780204 αA+ C 1
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.45: Local Search Algorithms Experimental Results on Randomly Generated Small C Negatively Correlated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
SN1 10 312020 0 83 293616 — 83 669772 0 57 687630 0.016 56
SN2 15 407354 0 72 385752 — 72 1409858 0 39 1402561 0 39
SN3 20 592814 0 60 479161 — 56 2396949 0.016 30 2408756 0 30
SN4 25 766827 0 52 749849 — 49 3647838 0.015 25 3649362 0.016 25
SN5 30 916887 0 46 708564 — 44 5249526 0.016 21 5256054 0.016 21
SN6 35 930878 0 45 837161 — 43 7492271 0.016 17 7442987 0.015 17
SN7 40 1205927 0 39 1034215 — 38 9872347 0.015 15 9836637 0.015 15
SN8 45 1314719 0 36 1312691 — 31 12537889 0.015 14 12566192 0.031 13
SN9 50 1838405 0 31 1580979 — 30 15949330 0.031 12 15928395 0.016 12
SN10 55 1674918 0 31 1526631 — 30 19316397 0.031 11 19247051 0.031 11
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.46: Local Search Algorithms Experimental Results on Randomly Generated Small C Negatively Correlated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
SN1 10 669772 0 57 674764 0 1 687630 0.015 56 293616 10RI 83
SN2 15 1409858 0.015 39 1410057 0 1 1417707 0.016 39 385752 10RI 72
SN3 20 2416525 0.016 30 2377936 0.015 31 2398625 0 30 479161 10RI 56
SN4 25 3680327 0.016 25 3651238 0.015 25 3675355 0 25 749849 10RI 49
SN5 30 5218029 0.015 21 5226903 0.016 21 5252798 0 21 708564 10RI 44
SN6 35 7429162 0.015 17 7443539 0.016 17 7439767 0.015 17 837161 10RI 43
SN7 40 9770233 0.016 15 9769889 0.015 15 9803866 0.016 15 1034215 10RI 38
SN8 45 12616255 0.015 13 12546874 0.016 14 12592386 0.015 13 1312691 10RI 31
SN9 50 15988829 0.015 12 15898695 0.032 12 15890348 0.015 12 1580979 10RI 30
SN10 55 19377019 0.016 11 19219710 0.031 11 19286848 0.016 11 1526631 10RI 30
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.47: Local Search Algorithms Experimental Results on Randomly Generated Small C Positively Correlated Problems (A)

One Fixed Initial Multi-starts(10RI) A+C B+C
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N.
SP1 10 312020 0 83 293616 — 83 642524 0 58 661327 0.016 57
SP2 15 407354 0 72 385752 — 72 1413358 0 39 1432886 0 39
SP3 20 592814 0 60 479161 — 56 2382917 0.016 30 2417136 0.016 30
SP4 25 766827 0 52 749849 — 49 3677444 0.016 25 3694913 0 25
SP5 30 916887 0 46 708564 — 44 5298076 0.016 21 5315297 0.016 20
SP6 35 930878 0 45 837161 — 43 7453081 0.015 17 7456969 0.016 17
SP7 40 1205927 0 39 1034215 — 38 9795186 0.016 15 9826469 0.016 15
SP8 45 1314719 0 36 1312691 — 31 12629628 0.031 13 12640198 0.016 13
SP9 50 1838405 0 31 1580979 — 30 15888357 0.016 12 15978450 0.031 12
SP10 55 1674918 0 31 1526631 — 30 1924563 0.031 11 19137238 0.016 11
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.48: Local Search Algorithms Experimental Results on Randomly Generated Small C Positively Correlated Problems (B)

A+B+C αA + C βB + C Best
Test n Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Obj. Value Time(s) L.N. Best Obj. Value Method L.N.
SP1 10 642524 0 58 642524 0.015 58 681954 0 57 293616 10RI 83
SP2 15 1413358 0.015 39 1432886 0 39 1438898 0 39 385752 10RI 72
SP3 20 2438612 0 30 2372219 0.015 31 2429040 0.016 30 479161 10RI 56
SP4 25 3677240 0.016 25 3636432 0.015 25 3641196 0.016 25 749849 10RI 49
SP5 30 5344824 0.015 20 5272476 0.016 21 5375662 0.015 20 708564 10RI 44
SP6 35 7455064 0.015 17 7427213 0.016 18 7447051 0.016 17 837161 10RI 43
SP7 40 9848494 0.015 15 9813127 0.016 15 9794466 0.015 15 1034215 10RI 38
SP8 45 12579578 0.016 14 12554867 0.015 14 12614563 0.031 13 1312691 10RI 31
SP9 50 15888617 0.016 12 15817093 0.015 12 15906478 0.031 12 1580979 10RI 30
SP10 55 19226154 0.031 11 19126113 0.031 11 19234084 0.032 11 1526631 10RI 30
L.N. represents the number of the loops (moves) of the local search component of the algorithm employs.
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Table A.49: Tabu Search Algorithms Experimental Results on Pseudo Random Problems

Max Iter = 1000 Max Iter = 100000 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
R1 10 293616 0.11 293616 0.319 293616 0
R2 15 335032 0.212 335032 17.939 335032 0.016
R3 20 405621 0.348 405621 32.056 405621 0.015
R4 25 548467 0.524 548467 48.547 548467 0.031
R5 30 594166 0.746 559975 69.294 559585 0.266
R6 35 573702 1.003 549248 94.549 549248 0.031
R7 40 716125 1.313 653192 123.022 634078 0.031
R8 45 881552 1.661 785003 156.194 742206 0.031
R9 50 959428 2.062 884524 192.999 847876 0.234
R10 55 963328 2.505 830221 233.017 803139 0.218
For the two Tabu methods, the parameters tabu tenure is 10 and max restart number is 20.

Table A.50: Tabu Search Algorithms Experimental Results on Pseudo Random Problems
of Large Sizes

Max Iter = 1000 Max Iter = 100000 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
R11 100 2425164 7.942 2397652 79.609 1596151 3.0
R12 150 4596949 17.578 5070999 175.548 1883356 13.657
R13 200 8373862 31.918 8749658 316.441 1809620 37.177
R14 250 10474657 50.789 12833586 504.091 1712084 92.059
R15 300 16881247 72.855 17031035 725.958 1351850 188.328
R16 350 19145096 100.111 21581021 995.443 1380260 338
R17 400 25211743 131.86 26090778 1306.37 833746 581.14
R18 450 30882749 169.976 29783305 1668.66 982355 1014.727
R19 500 34222850 215.815 35182078 2102.1 735075 1466.883
For the two Tabu methods, the parameters tabu tenure is 10 and max restart number is 20.

Table A.51: Tabu Search Algorithms Experimental Results on Negatively Correlated Pseudo
Random Problems

Max Iter = 1000 Max Iter = 100000 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
N1 10 675707 0.109 675707 8.483 675707 0.031
N2 15 1408184 0.212 1408184 17.964 1408180 0.156
N3 20 2379444 0.348 2379444 31.371 2379440 0.031
N4 25 3656936 0.538 3656936 48.849 3656940 0.016
N5 30 5224568 0.759 5224568 70.053 5224570 0.031
N6 35 7411971 1.028 7411971 95.182 7411970 0.047
N7 40 9756934 1.361 9755479 125.724 9755480 0.032
N8 45 12511115 1.698 12509195 158.498 12509200 0.266
N9 50 15855336 2.087 15853703 195.665 15853700 0.437
N10 55 19172100 2.535 19172100 238.977 19172100 0.094
For the two Tabu methods, the parameters tabu tenure is 10 and max restart number is 20.
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Table A.52: Tabu Search Algorithms Experimental Results on Negatively Correlated Pseudo
Random Problems of Large Sizes

Max Iter = 1000 Max Iter = 100000 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
N11 100 66604106 7.849 66587755 787.758 66576269 2.655
N12 150 152792829 17.637 152713346 1738.95 152550032 12.223
N13 200 274259561 31.955 274168354 3146.99 273832805 36.447
N14 250 432400040 50.961 — — 431521336 86.947
N15 300 625862315 73.184 — — 624477627 185.207
N16 350 856579992 100.897 — — 854802643 348.002
N17 400 1121922081 132.88 — — 1119664093 596.956
N18 450 1423272632 170.991 — — 1420305572 935.773
N19 500 1764085456 219.103 — — 1759958286 1459.871
For the two Tabu methods, the parameters tabu tenure is 10 and max restart number is 20.

Table A.53: Tabu Search Algorithms Experimental Results on Positively Correlated Pseudo
Random Problems

Max Iter = 1000 Max Iter = 100000 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
P1 10 675707 0.109 675707 8.58 647710 0.015
P2 15 1408184 0.212 1408184 18.058 1419460 0.15
P3 20 2379444 0.351 2379444 31.403 2378980 0.031
P4 25 3656936 0,531 3656936 49.598 3644840 0.015
P5 30 5224568 0.76 5224568 70.166 5278980 0.031
P6 35 7411971 1.024 7411971 95.178 7414230 0.046
P7 40 9756934 1.361 9755479 125.467 9758080 0.172
P8 45 12511115 1.699 12509195 157.994 12543000 0.109
P9 50 15855336 2.09 15853703 196.101 15778100 0.047
P10 55 19172100 2.502 19172100 239.891 19075300 0.312
For the two Tabu methods, the parameters tabu tenure is 10 and max restart number is 20.

Table A.54: Tabu Search Algorithms Experimental Results on Positively Correlated Pseudo
Random Problems of Large Sizes

Max Iter = 1000 Max Iter = 100000 MILP7
Test n Obj. Value Time(s) Obj. Value Time(s) Obj. Value Time(s)
P11 100 66675005 7.848 66587755 799.423 66606608 3.136
P12 150 152782541 17.442 152713346 1769.1 152580659 11.578
P13 200 274729435 31.603 274168354 3185.17 274309328 34.896
P14 250 432224187 50.647 — — 431279238 86.834
P15 300 625308476 72.546 — — 624119360 189.002
P16 350 856814745 99.605 — — 854956724 348.559
P17 400 1121504322 130.969 — — 1118996972 579.252
P18 450 1424067697 168.088 — — 1420818322 974.577
P19 500 1763921389 218.186 — — 1759916528 1455.806
For the two Tabu methods, the parameters tabu tenure is 10 and max restart number is 20.
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