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Abstract

We propose a novel method to iteratively improve the performance of constrained clustering
and feature learning based on Convolutional Neural Networks (CNNs). There is no effective
strategy for neither the constraint selection nor the distance metric learning in traditional
constrained clustering methods. In our work, we design an effective constraint selection
strategy and combine a CNN-based feature learning approach with the constrained cluster-
ing algorithm. The proposed model consists of two iterative steps: First, we replace the
random constraint selection strategy with a carefully designed one; based on the clustering
result and constraints obtained, we fine tune the CNN and extract new features for distance
re-calculation. Our model is evaluated on a realistic video dataset, and the experimental
results demonstrate that our method can improve the constrained clustering performance
and feature divisibility simultaneously even with fewer constraints.

Keywords: Constrained Clustering; Feature learning with Convolutional Neural Networks;
User Feedback; Active Learning
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Chapter 1

Introduction

1.1 Background

We are overwhelmed by various digital data (e.g., text, image and video etc.) because
of the development of high-capacity storage devices and data compression techniques and
other technological advances. There are over 300 hours of videos uploaded to YouTube
every minute, and it is inefficient to manipulate these videos manually like doing the data
search, data retrieval or other operations. For example, when there is a stream of videos
in front of you and you are asked to group them into several clusters according to some
relationship that is not provided. There are two popular data partition methods, clustering
[17] and classification [35], and they are both capable of partitioning data into meaningful
sub-groups. But to make use of classification, you need to specify the class labels before
seeing the unknown videos. Therefore, in the case above, we can only apply clustering
methods, which require no training data.

Because clustering methods work by exploring the potential patterns and relationships
among data instances without the supervision from labels, it is easy to return an unexpected
clustering. For instance, when the algorithm returns a clustering according to different col-
ors, some people might think the clustering is not perfect enough because they would like
to get a clustering based on animal species. To consider the domain knowledge during the
clustering procedure, researchers import user feedback in the format of instance-level con-
straints [42]. The instance-level constraints reflect the relationships among data instances.
By forcing the clustering to satisfy all the constraints, we can get a more expected result.

This is exactly the task of constrained clustering [3], which can incorporate limited
domain knowledge to fasten and ease the clustering process. However, operating on raw
pixels directly can still be time-consuming and misleading, driving the evolution of feature
learning techniques.
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1.2 Motivation

Among different data formats, videos have much more information than an individual image
or a single sentence, and the large amount of information demands compact and meaningful
representations. Meanwhile, it is quite appropriate to build clustering methods on videos
because of the spatial and temporal regularity contained in videos.

Video clustering can be a technique of great use for easing the subsequent data manip-
ulations, such as video retrieval and video summary. [40] addressed video clustering task
using key frames by assuming video clips have been segmented into shots that are repre-
sented by a sequence of key frames. This method is considered as a relax solution when the
information of the whole video is hard to represent.

Recent achievements in deep representations make it easy to extract high-level and
abstract video features, and the temporal relation between video frames can be captured
by applying recurrent layers or a temporal pooling.

Given the ability of constrained clustering to incorporate limited domain knowledge, we
would like to combine the constrained clustering and deep representations to improve the
video clustering performance as much as it can with as few constraints as possible.

We consider the method as a distance-flexible constrained clustering [5], where the
distance learning is achieved by fine tuning a CNN to increase the feature divisibility. With
the strong ability of deep neural networks to fit high-dimension feature space, we expect that
deep neural networks can be better distance functions than previous methods. With a higher
feature divisibility, the clustering process can be simplified and accelerated. Conversely, we
hope the clustering and constraints can provide helpful guidance for feature learning.

1.3 Outline

Figure 1.1: Overview of the proposed method
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Our method iterates between clustering video features based on the constraint set and
refining the feature space based on the clustering result. This is called one iteration, and
when the number of iterations reaches a pre-defined value, the method stops and outputs the
final clustering result with the clustering measurement. During the constrained clustering
procedure, new constraints are obtained by asking whether two data instances belong to
the same category. The overview of our method is as Figure 1.1.

The structure of this thesis is organized as follows:

• Chapter 2 introduces several traditional clustering algorithms and corresponding distance-
fixed constrained clustering algorithms.

• Chapter 3 explains our method towards designing the constraint selection strategy
as well as jointly improving constrained clustering and feature learning performance
based on deep neural networks.

• Chapter 4 presents the experimental results under various conditions including dif-
ferent constraint selection strategies, diverse values of hyperparameters and whether
feature learning is performed.

• Chapter 5 summarizes our method and proposes future directions for further improve-
ment.

3



Chapter 2

Previous Work

Clustering is a quite common data partition technique, which explores a partition where
the distance between data points inside the same cluster is small while the distance between
data points from different clusters is large given a feature space. There are many clustering
algorithms that can handle different clustering problems, and almost each of them has
the corresponding constrained format. In this chapter, we are going to introduce several
popular traditional clustering algorithms including k-means [28], spectral clustering [41],
density-based clustering [10], hierarchical clustering [19] and their constrained formats.

During the constrained clustering procedure, new constraints are obtained by asking the
source of expertise the relationship between two data instances, which is an active learning
[48] way and we are going to take a compact overview about the typical heuristic of active
learning.

Instead of operating directly on the pixels, we would like to do some feature extraction
at first. In traditional video representations, trajectory-based approaches [45, 46], especially
the Dense Trajectory (DT), are the basis of current state-of-the-art hand-crafted algorithms.
There are many extended methods [25] about obtaining better DT features.

However, with the arising of deep neural network methods, deep representations ex-
tracted by CNNs outperform the traditional ones by a large margin on various datasets.
One advantage of CNNs is their strong ability to fit the high-dimension feature space, so it
can act as a complicated but powerful distance function.

We expect that the combination of constrained clustering and the deep feature learning
method can benefit each other, which is achieved by an iterative process like the Expectation
– maximization (EM) algorithm [51]. In each iteration, the algorithm either obtains the
constrained clustering result with the feature space fixed or refines the feature space based
on the clustering result. When the number of iterations reaches a pre-defined value, the
loop will be terminated and the algorithm will output the final clustering as well as the
clustering measurement.
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2.1 Traditional Clustering Algorithm

2.1.1 K-means

K-means [28] is a popular clustering algorithm that is easy to implement and straightforward
to understand. K-means discovers the final partition in an iterative way, which either assigns
data points to the closest cluster center or calculates new centers according to the current
assignments. The distortion function is defined as follow:

J (c, µ) =
m∑

i=1

∥∥∥x(i) − µc(i)

∥∥∥2
(2.1)

where m is the number of data points; c is the cluster index vector; µ is the center vector.∥∥∥x(i) − µc(i)

∥∥∥2
is the distance between the ith data point and its corresponding cluster center.

Algorithm 1 shows the details of traditional k-means.

Algorithm 1: K-means
Input : Data set X, the number of clusters K
Output: Cluster assignments L

1 Randomly choose a set of K initial centers from all data points
2 For each x(i) ∈ X, Li = arg minck

∥∥∥x(i) − µck

∥∥∥2

3 Compare L with assignments from previous iteration, if same, terminate, else go to
step 4

4 For each cluster, re-compute the center µck
= 1
|ck|

∑
x(i)∈Ck

x(i) and turn to step 2

Step 2 and step 4 in Algorithm 1 are iterated until getting two identical assignment
vectors in succession. If too many iterations have been performed and the algorithm still
fails to converge, the process will be terminated in case of an endless loop.

The main limitation of k-means is its high sensitivity to the initial centers, because
different initialization sets can cause a large performance shift. Usually, researchers will run
k-means multiple times with different initialization sets and choose the best one, namely
the one with the smallest distortion function value. There are some improved k-means
algorithms that can avoid the bad initialization like k-means++ [1] introduced by Arthur
et al. in 2007. The intuition behind k-means++ is that spreading initial centers is good for
approaching the optimal assignments.

2.1.2 Spectral Clustering

Spectral clustering [41] is an extension of k-means, and the main idea of spectral clustering
is to perform dimension reduction using the spectrum of the affinity matrix before standard
k-means. According to different similarity graphs and graph Laplacians, spectral clustering
is capable of handling kinds of problems efficiently by standard linear algebra methods.
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Figure 2.1: Clustering result of k-means on a non-linearly separable dataset

Both unnormalized and normalized spectral clustering need to first construct a similarity
matrix based on one of three similarity graphs:

• ε-neighborhood graph: Connect all points whose pairwise distances are smaller than
ε. Because all distances between connected points are of the roughly same scale, this
graph can be nearly treated as an unweighted graph.

• k-nearest neighborhood graph:

– k-nearest neighborhood graph: Connect all points using undirected edges as soon
as one vertex is among the other vertex’s k nearest neighbors.

– mutual k-nearest neighborhood graph: Connect two points only when they are
among each other’s k nearest neighbors at the same time.

– In both ways, the distance between connected points can be used to calculate a
weight for the edge.

• fully connected graph: Simply connect all data points. Only being considered when
the similarity function can encode information of local neighbors.

6



Figure 2.2: Clustering result of DBSCAN on a non-linearly separable dataset

2.1.3 DBSCAN

Previous two clustering algorithms are based on distance, which results in some disadvan-
tages like the disability to handle non-convex data. Figure 2.1 shows the poor performance
when applying standard 2-way k-means on non-convex data. Besides, it is required to have
the number of clusters as a priori when using k-means, limiting the application of k-means
as well.

On account of limitations of distance-based clustering algorithms, density-based clus-
tering methods are proposed to handle arbitrary shape clustering problems and clustering
problems where the number of clusters is not known. DBSCAN is a popular density-based
clustering algorithm, it is able to find non-linearly separable clusters and is more robust to
outliers than distance-based clustering algorithms.

There are two parameters in DBSCAN:

• ε : the radius of the neighborhood searched for directly reached points

• minpts : the minimum number of points required to form a dense region

Algorithm 2 explains how DBSCAN works, where regionQuery() returns all points
within the n-dimensional sphere and expandCluster() expands the cluster from each point
in the sphere. Figure 2.2 shows the result of applying DBSCAN on non-convex data.
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Algorithm 2: DBSCAN
Input : Data set X, ε, minpts

Output: Cluster assignments L
1 - DBSCAN(X, ε, minpts):
2 C = 0
3 for each unvisited point p ∈ X do
4 mark p as visited
5 sphere-points = regionQuery(p, ε)
6 if sizeof(sphere-points) < minpts then
7 ignore P
8 else
9 C = next cluster

10 expandCluster(p, sphere-points, C, ε, minpts)

11 - expandCluster(p, sphere-points, C, ε, minpts):
12 add p to cluster C
13 for each point p′ ∈ sphere− points do
14 if p′ is not visited then
15 mark p′ as visited
16 sphere-points’ = regionQuery(p′, ε)
17 if sizeof(sphere-points’) ≥ minpts then
18 sphere-points = sphere-points ∪ sphere-points’
19 if p′ /∈ any cluster then
20 add p′ to cluster C

21 - regionQuery(p, ε):
22 return all points within p’s ε-neighborhood (including p)

8



Figure 2.3: Hierarchical clustering

2.1.4 Hierarchical Clustering

Thinking about the way of humans learn, we usually learn things from a coarse level to a
fine level or conversely. For example, when learning the definition of “bicycle”, it is easier
if we have already known the meaning of “transportation” because “bicycle” is a special
“transportation”, and it must share common properties with other transportation. On the
contrary, if we have known the definition of “bicycle”, “bus”, “skytrain”, we can understand
“transportation” faster by summarizing their common properties. This is basically how and
why hierarchical clustering algorithms work. According to different strategies, hierarchical
clustering falls into two types and Figure 2.3 explains how they work separately:

• Agglomerative clustering: This is a “bottom up” approach, like “bicycle” →
“transportation”. In this method, we first treat each instance as a separate clus-
ter, then merge two clusters with the highest similarity. Repeat merging until the
number of clusters is equal to the required value.

• Divisive clustering: This is a “top down” approach, like “transportation”→ “bicy-
cle”. In this method, we first group all data instances into one cluster then partition
the cluster to several sub-clusters to maximize the sum of distances between clusters.

Either agglomerative or divisive approach depends on how we define the distance between
two clusters. There are three ways to define the distance:

1. Single Link: The distance between two clusters is that between the closest points
belonging to two clusters respectively.

9



2. Average Link: The distance between two clusters is that between two cluster centers.

3. Complete Link: The distance between two clusters is that between the furthest points
belonging to two clusters respectively.

2.2 Constrained Clustering

Traditional clustering algorithms obey a pure unsupervised manner to group objects. Though
it is efficient to automatically partition data according to some similarity metric, the accu-
racy can be pretty low. And the clustering result may be meaningful but unexpected if there
is no supervision provided. For example, given a dataset of animals, the desired clusters are
species of animals but we may get clustering according to different colors. In many real-life
problems, limited domain knowledge or expertise is available and should be considered for
better clustering result. This is the main idea of constrained clustering [3]. By incorporating
incomplete domain knowledge into clustering procedure, constrained clustering algorithms
are able to obtain better clustering results.

There are lots of constraint types, such as a minimum or maximum radius [8] to keep a
small distance within clusters and a large distance between clusters, or existential constraints
[39] limiting the minimum size of each cluster. And in some cases, labels of a sub-dataset are
provided. However, the instanced-based constraint is the most straightforward and simplest
constraint type, eventually, other constraints can be expressed using a set of instance-based
constraints as well. In this thesis, the domain knowledge is represented in the form of
instance-based constraints.

2.2.1 Constraint Definition

There are two kinds of constraints introduced by Wagstaff and Cardie [42]:

• Must-link, ML(x,y), which indicates that x, y must be clustered into the same group.

• Cannot-link, CL(x,y), which indicates that x, y must not be clustered into different
groups.

There are several important properties for must-links and cannot-links:

• Both must-links and cannot-links are symmetric.

• Only must-links are transitive, which means if (x, y) ∈ ML and (y, z) ∈ML, then
(x, z) ∈ ML; and if (x, y) ∈ CL and (y, z) ∈CL, we cannot refer the relationship
between x and z.

• Only must-links are reflexive, which means a data instance must always be placed
into the same cluster with itself.

10



We obtain constraints by simulating the process that we ask an expert or someone who
knows the correct partition some questions, which might be whether two data instances
belong to the same category or which cluster the data point should be assigned to or any
other questions that can reflect the true partition.

In the thesis, the constraints are whether two action videos belong to the same class
based on the dataset labels. Constraints are highly dependent on the domain knowledge of
the source of expertise because different views might give different constraints.

2.2.2 Advantage and Application

It is easy to adapt different domain knowledge using constrained clustering algorithm. For
example, when we need to incorporate background information like time in a traditional
clustering algorithm, it is hard to design a loss function reflecting the reasonable difference
caused by different time. But in constrained clustering algorithms, we can simply encode
time information with must-links and cannot-links. As long as constraints can provide extra
information besides the distance metric, they can be useful.

Since constrained clustering was proposed, it has been applied to lots of applications
including GPS Lane Finding [3], segmentation of images [47], human tracking based on
videos [57], flower measurement [5] and many other tasks. In the following part, we are
going to introduce details of several constrained clustering algorithms.

2.3 Constrained Clustering Algorithm

By whether the distance metric is updated, constrained clustering algorithms can be divided
into two categories: distance-fixed algorithms and distance-flexible algorithms:

• Distance-fixed constrained clustering algorithm: constraints are considered only as the
relations between data points to guide the clustering process or to initialize cluster
centers reasonably. The clustering algorithm will not change the distance metric.

• Distance-flexible constrained clustering algorithm: constraints can be viewed as dis-
tance indicators that data points belong to a must-link are supposed to have a small
distance, and data points belong to a cannot-link set are supposed to have a large
distance. The clustering algorithm will learn an adaptive distance metric based on
current constraints.

Because our method is based on a distance-fixed constrained clustering algorithm, here
we introduce some well-defined ones.

11



2.3.1 Constrained K-means

As stated before, traditional k-means algorithm suffers from sensitivity to initial centers,
because it can be dramatically slow and return a bad result if starting from a low-quality
initialization. Domain knowledge can help get a more meaningful clustering result and fast
convergence. Constrained k-means is introduced by Wagstaff et al. [42] to incorporate
domain knowledge with k-means. Algorithm 3 explains the detail of constrained k-means.

Algorithm 3: Constrained k-means
Input : Data set X, must-link set ML, cannot-link set CL
Output : Cluster assignments L satisfying ML and CL

1 Let C1, ..., Ck be the initial cluster centers.
2 For each point xi in D, assign it to the closest cluster Cj such that

VIOLATE-CONSTRAINTS(xi, Cj ,ML,CL) returns false. If no such cluster
exists, return null.

3 For each cluster Ci, update its center by averaging all of points xi that have been
assigned to it.

4 Iterate step 2 and step 3 until convergence.
5 Return C1, ..., Ck.
Function: VIOLATION-CONSTRAINTS(data point x, cluster C, must-link set

ML, cannot-link set CL)
6 For each (x, x= ∈ML): If x= /∈ C, return true.
7 For each (x, x6= ∈ CL): If x 6= ∈ C, return true.
8 Otherwise, return false.

From step 2 in Algorithm 3 we can see, instead of assigning each data point to the closest
cluster, constrained k-means assigns it to the closest feasible cluster. For a data point x,
starting from the nearest cluster, if the cluster satisfies one of three following requirements,
then the cluster is a feasible one:

1. At least one data instance must-linked with x has been assigned to the cluster;

2. All data instances cannot-linked with x are not assigned to the cluster;

3. None of the data instances in the cluster has any constraint with x.

This algorithm returns a partition of instances in X, satisfying all constraints strictly. It
takes advantage of properties of must-links and cannot-links we stated before. For example,
step 6 can be explained as: if any data point sharing a must-link with xi has been assigned
to another cluster Cj, then xi must be assigned to cluster Cj, and xi cannot be assigned
to cluster Ci (i 6= j).

Though constrained k-means is able to utilize instance-level constraints, it can be af-
fected by the input order, causing the constraint violation problem.

Constraint violation means an instance has got at least one single cannot-link in each
cluster, so it cannot be assigned to any cluster. As the situation in Figure 2.4, (x, y) ∈ CL,

12



Figure 2.4: Constraint violation for data point x

(x, z) ∈ CL, and the input order is y, z, x. When it comes to x, constraint violation happens
because x cannot be grouped into either cluster.

Only cannot-link constraints may induce constraint violation because must-link con-
straints are transitive and are not influenced by the input order. CLK-Kmeans [59] is an
effective method to solve the problem, it makes use of the conclusion that if the maximum
number of cannot-links involving one instance is smaller than K (the number of clusters
required), there will always be a feasible solution regardless of the input order conditioned
on zero noise in constraints. We utilize the principle of CLK-Kmeans in our algorithm to
decrease the constraint violation probability.

2.3.2 Constrained Spectral Clustering

Algorithm 4: Constrained Spectral Clustering for K-way Partition
Input : Affinity matrix A, constraint matrix Q, hyperparameter β, the number of

clusters K
Output: Cluster assignments u∗

1 vol←
∑N

i=1
∑N

j=1Aij , D ← diag(
∑N

j=1Aij)
2 L← I −D−1/2AD−1/2, Q← D−1/2QD−1/2

3 λmax ← the largest eigenvalue of Q
4 if β ≥ λK−1vol then
5 return u∗ = ∅
6 else

7 solve he generalized eigenvalue system in Lv = λ(Q− β

vol
I)v

8 remove eigenvectors associated with non-positive eigenvalues and normalize the
rest by v ← v

||v||
√
vol

9 V ∗ ← argminV ∈R(N×(K−1))trace(V TLV ), where the columns of V are a subset
of feasible eigenvectors generated in the previous step

10 return u∗ ←kmeans(D−1/2V ∗,K)
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Constrained spectral clustering can be divided into two categories according to how
they make use of constraints. The former [44] manipulates the graph Laplacian matrix or
the affinity matrix directly according to the given constraints. The latter [27] restricts the
feasible solution space based on constraints. For constrained spectral clustering, Wang et
al. [47] came up with an effective and principled framework described in Algorithm 4.

Here A is the similarity graph, and β is related to eigenvalues of Q. For each element
qij ∈ Q, qij = 1 means the ith and the jth points are must-linked, qij = −1 means the ith
and the jth points are cannot-linked, qij = 0 means there is no constraint between the ith
and the jth points.
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2.3.3 Constrained Density-based Clustering

Ruiz et al. [32] introduced Density-based Clustering with Constraints (C-DBSCAN), which
incorporates instance-level constraints after partitioning the data space into sub-spaces.
Algorithm 5 explains how C-DBSCAN works.
Algorithm 5: C-DBSCAN
Input : Data set D, must-kink set ML, cannot-link set CL
Output: Cluster assignments L satisfying ML and CL

1 kdtree := BuildKDTree(D)
2 repeat
3 for all unlabeled points in a leaf X do
4 select an arbitrary point pi from X

5 Xpi ← all points in X that are within Eps radius of pi

6 if Xpi contains less than MinPts points then
7 Label pi as NOISE. Break.

8 if exists a Cannot-Link constraint in CL among points in Xpi then
9 create a local cluster for each point in X. Break.

10 else
11 Label pi as CORE. Label Xpi as LOCAL CLUSTER.

12 until all leaves of the kdtree have been processded;
13 for each constraint m ∈ML do
14 Add clusters involved in constraint m into cluster Y
15 Label Y as CORE LOCAL CLUSTER

16 for each core(local) cluster Y do
17 while number of local clusters NLC decreases do
18 closestCluster ← closest local cluster to Y
19 if ∃ Cannot-Link constraint in CL between points of Y and closestCluster

then
20 Y ← Y ∪ closestCluster. Label Y as CORE CLUSTER.
21 NLC -= 1

2.4 Active Learning

In practical applications, it is usual that constraints are provided by referring a source
of expertise. Active Learning [48] is a form of learning that queries an expert for domain
knowledge to improve the learning performance. It is different from semi-supervised learning
because active learning needs an exterior source of expertise while semi-supervised learning
does not need artificial intervention.
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Result from different expected values of sample information contained in each data point,
active learning can reduce annotation cost and time expense by selecting the valuable part.

Pseudo codes in Algorithm 6 explain the typical heuristic of active learning.
Algorithm 6: Active Learning
1 Given a pool of unlabeled data and a source of expertise
2 Choose some points randomly and query their labels or relations
3 repeat
4 Learn a classifier based on the labels known so far
5 Choose other points according to some rule (like data points that are most likely

to increase the overall performance) and query their labels
6 until some end condition is satisfied;

2.5 Deep Representation Learning

Deep features extracted by CNNs attract attention from various traditional areas like com-
puter vision and natural language processing. They achieve significant improvement on
multiple tasks including speech recognition [15, 11, 7, 2], image classification [23, 37, 14],
and object recognition [38, 31, 30] compared to hand-crafted features.

Researchers propose that the larger capacity the network has, the higher illustrative
ability the learned representation owns. Inspired by the strong ability of AlexNet [23] to
capture potential input distribution, [37] proposed a convolutional neural network with an
incredible depth and achieved the state-of-the-art performance on multiple computer vision
tasks at that time. Furthermore, recurrent connections [33] and residual building blocks
[14] are proposed to improve the network’s capacity and decrease the model complexity
simultaneously. Based on [14], [56] improves classification accuracy by increasing the width
of the residual building block instead, but it still follows the principle of enlarging the
model’s capacity.

When neural networks grow larger, the need towards more complicated annotated
datasets increases sharply. At least one large dataset is collected for each task, e.g. Ima-
geNet [23] for image classification, UCF-101 [36] for action-related tasks, Caltech-256 [12]
for object detection. However annotating such a large dataset is too expensive and there is
more unlabeled data that supervised learning cannot make use of. Therefore, researchers
try to find unsupervised ways to obtain representations using deep neural networks.

There are some works [4, 22] focusing on learning features in an unsupervised way from
unlabeled images by minimizing the loss function of reconstruction tasks. [55] conducted
image clustering and code-book learning iteratively on SIFT features. [16] made use of the
Deep Belief Network (DBN) to learn features and applied a maximum margin clustering on
the outputs of the DBN, then the author fine-tuned the DBN’s last layer according to clus-
tering results. Due to the excellent performance of deep representations learned by neural
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networks on supervised tasks, more recent works turn to jointly learn deep representations
and run clustering, which is similar to the target of traditional distance-flexible constrained
clustering algorithms. [58] combines feature learning and agglomerative clustering into a
recurrent framework. By using agglomerative clustering, they can make sure in the early
stage clusters are highly pure and can provide correct supervision for fine-tuning networks.
While this method is proved to be effective when applying to small datasets like MNIST
[26], it is hard to scale to real-life scenarios especially videos because the agglomerative
clustering needs to form initial clusters based on raw pixels.
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Chapter 3

Joint Feature Learning and
Constrained Clustering based on
Deep Neural Network

With a target to combine the advantages of constrained clustering and deep representations,
we iteratively optimize feature learning and constrained clustering. A specially designed
constraint selection strategy is applied in an active learning way, and the model is evaluated
to be effective on a real-life unconstrained video dataset, UCF-101 [36]. The key innovation
of the thesis is the combination of constrained clustering with deep feature learning. Also
while the task of the thesis is video clustering, our method is applicable broadly for many
other tasks as long as a correct loss function for feature learning is defined.

3.1 Outline of Model

Algorithm 7: Outline of Model
Input : Video set X, pre-trained network N , clustering algorithm A

Output: Cluster assignments L
1 repeat
2 Extract video feature xi using N
3 Cluster xi using A to get the clustering c based on the current constraint set S
4 Ask the source of expertise to correct some cluster labels in c and store the new

clustering as c∗

5 Update the constraint set S according to domain knowledge from the inquiry
6 Replace N with N∗, which is fine-tuned with c∗ and S
7 until the performance of c exceeds a threshold OR the number of iterations reaches a

required value;
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We assume a network pre-trained on the ImageNet dataset [23] is available. The network
is considered as a feature extractor as well as a distance function, because it is going to not
only extract features from the input, but also be fine-tuned with the current constraint set.
Algorithm 7 gives the outline of our method.

(a) Initial clustering (b) Add constraints

(c) Updated clustering (d) Feature learning

Figure 3.1: Illustrations for step 3 – 5 in Algorithm 7.

To explain the model clearly, we provide an example in Figure 3.1:

• Figure 3.1a is the result of step 3 in Algorithm 7. It is the initial clustering of given
videos based on the feature extracted by a CNN and the current constraint set.

• Figure 3.1b represents the process in step 4. It displays that the method adds must-
links and cannot-links among data instances according to the answers from the source
of expertise. The green double-sided arrows are must-links and red double-sided
arrows are cannot-links.

• Figure 3.1c is the updated clustering which satisfies all constraints in Figure 3.1b.

• Figure 3.1d shows the effect of feature learning in step 5. It shows that by applying
feature learning methods on the updated clustering and the current constraint set,
the feature distribution can be more divisible.
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3.2 Format of Constraints

Different from previous works like [21], where the constraints are between data points from
different clusters, our constraints are between data points belonging to the same cluster
because our constraints are relationships between the data point and the center. Therefore,
we do not care about the specific cluster label and instead, we only care about whether the
data point and its current center belong to the same category. This is the first strategy in
our method to avoid the cluster label reassignment problem, which will be discussed later.
Therefore, the constraints preserved in our algorithm are like:

Qi,j =


0, (i, j) /∈M, (i, j) /∈ C

1, (i, j) ∈M

−1, (i, j) ∈ C

(3.1)

Where Q is an N ×N matrix, and N is the number of data points. M is the set of Must-
Link constraints, and C is the set of Cannot-Link constraints. Qi,j indicates the constraint
between the ith data point and the jth data point. When Qi,j = 1, the ith and the jth
data point must be assigned to one cluster; when Qi,j = −1, the ith and the jth data point
must be assigned to different clusters; when Qi,j = 0, there is no constraint between the ith
and the jth data point.

3.3 Loss Function

The loss function is a critical part in designing an algorithm, it represents how you hope the
data are used. There are a lot of loss functions utilized in different deep neural networks
for various aims, such as Mean Square Error (MSE) Loss [53], Cross Entropy Loss [50] and
Hinge Loss [52]. As we mentioned before, there is a problem in the iterative clustering
process and we call it cluster label reassignment. Take k-means as an example, when we
apply k-means on exactly the same dataset multiple times, we will get lots of different
results. Because k-means initializes cluster centers at random, and the clustering depends
a lot on the initialization.

We notice the reassignment problem when using the softmax loss to compute the multi-
nomial logistic loss between network predictions and clustering labels. The clustering label
for the same data point can be completely different each time, which confuses the network
during the subsequent fine-tuning. We try to use a Confusion Matrix [49] to find the co-
relation between labels from two continuous assignments and to alleviate the problem. The
results are not optimal because it is hard to decide which data instances should be used to
maintain the cluster label. Inspired by [34], we notice that the triplet loss is a loss function
that ignores exact label values and can help solve the cluster reassignment problem. As
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figure 3.2 shows, the triplet loss minimizes the distance between an anchor and a positive,
which belong to the same cluster; and maximizes the distance between an anchor and a
negative, which belong to different clusters.

Figure 3.2: The triplet loss minimizes the distance between an anchor and a positive that
have the same identity; it maximizes the distance between the anchor and a negative that
have different identities [34].

The triplet loss function to be minimized looks like:

L =
N∑
i

[||f(xa
i )− f(sp

i )||22 − ||f(xa
i )− f(xn

i )||22] + α (3.2)

And it is usually changed into a hinged format:

L = max(
N∑
i

[||f(xa
i )− f(sp

i )||22 − ||f(xa
i )− f(xn

i )||22] + α, 0) (3.3)

Here α is the enforced margin between positive and negative pairs. ||f(xa
i )− f(sp

i )||22 repre-
sents the distance between an anchor and a positive, and ||f(xa

i )− f(xn
i )||22 represents the

distance between an anchor and a negative. We can also understand the network in the
view of distance metric learning. It means the network is trying to learn an embedding or
a metric function to map the raw input space to a linearly separable one.

By applying the triplet loss, we can exclude the influence of the label reassignment
problem and take advantage of relationships among anchors, positives and negatives. The
relationship between an anchor and a positive can presented as a must-link, and that of
an anchor and a negative can be presented as a cannot-link. Conversely, any data point
involved in a must-link is a potential anchor or positive, and any data point involved in a
cannot-link with a anchor or a positive is a negative candidate.

3.4 Hard Triplets

Negative examples are beneficial for feature learning, but the amount of useful information
contained in different negative examples is not equal. In order to maximize the effect of
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different examples, we select hard negative and hard positive examples other than random
ones. For example, actions with different backgrounds are hard examples compared to ac-
tions with a similar background. They can provide extra supervision and lead to a more
robust model when used for training a network, here “more robust” means a higher “back-
ground independence”. Generally speaking, hard examples contribute mainly to deciding
the accurate boundary between groups in a partition problem.

In our method, the constrained clustering algorithm will choose data points according
to their distances from the corresponding center. If the data point is not involved in any
existing constraint, the algorithm will query its relationship with the center and add a new
constraint to the current constraint set. The process will continue until it finds a certain
number of new constraints. According to different constraints between the data point and
the center, the data point can be a positive or a negative candidate and our algorithm will
automatically add a must-link or cannot-link between them. In this way, we can maintain
a negative data set and a positive data set for building hard triplets.

3.5 Proposed Method

Figure 3.3: Illustration of the overall method
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Our method iterates between the constrained k-medoids algorithm and the CNN fine-
tuning.

The constrained clustering used in the thesis is called the constrained k-medoids algo-
rithm. In k-means, a cluster center is the average of all data points that belong to the same
cluster, so the center is not necessarily a real data point. We make a minor modification by
always selecting data points as cluster centers, which is similar to the k-medoids algorithm
[20]. Therefore, we call our constrained clustering algorithm “constrained k-medoids” that
works with the l2 distance and instance-level constraints.

Our constraints are obtained by actively querying the source of expertise according to
Chapter 3.4, and different sources of expertise can lead to different constraints. To reduce
the probability of constraint violation happening, we utilize the principle of CLK-Kmeans
by limiting the number of cannot-links that contain the same data point.

Once the constrained partition process completes, our algorithm searches for “hard”
positive and “hard” negative data points according to the distance to the center as Figure
4.5b. Here negative data points are instances that belong to a different category with the
center and positive data points are instances that belong to the same category with the
center.

For each cluster, starting from the nearest data point to the center, the algorithm will
ask whether it belongs to the same category with the center if the data point is not contained
in any existing constraint yet. If “yes”, the algorithm will add a must-link between the data
point and the center; or it will add a cannot-link between them and update the data point’s
label to be the opposite value. When the number of new constraints reaches a pre-defined
value, the algorithm will stop searching the nearest data points and turn to the furthest
points. Follow the similar procedure, our algorithm will add the same number of constraints
to the current constraint set.

The clustering result along with the current constraint set will be used to form triplets
for fine-tuning the network. When building triplets, only data points that are involved in
at least one constraint will be considered as training data. Our algorithm treats all data
points with the positive label as candidates of anchors or positives, and data points with
the negative label are candidates of negatives.

While the convergence property of the traditional k-means has been proved in [6], the
convergence of the combination of constrained k-medoids algorithm and feature learning
method is not certain because of constraints and changeable feature distribution.

After finishing the fine-tuning, we can extract new representations using the fine-tuned
network and perform the constrained k-medoids algorithm on the new features again. The
process will iterate until one end requirement is met. In our experiments, the end require-
ment is when the number of iterations reaches a pre-defined value.
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Our method is described in Algorithm 8 in detail:
Algorithm 8: Proposed Method
Input : Video set X, pre-trained network N , CLK-Kmedoids algorithm A, the

number of new constraints n in each cycle
Output: Cluster assignments L

1 repeat
2 Extract feature xi of each video Xi using N
3 Cluster video features using A to get clustering c1 and create a constraint set
4 Record indexes of data points affected by any user feedback in U
5 for each data point p ∈ P do
6 if p is the nearest or furthest point that (p, cp) /∈M and (p, cp) /∈ C then
7 Ask the expert whether p and its center cp belong to a same action

category
8 if YES then
9 add (p, cp) to M

10 else
11 add (p, cp) to C, lp = −la

12 Add p and cp to U , until n constraints from nearest and furthest data
points are discovered respectively

13 Build a triplet set T in each mini batch during training according to:
14 for each i in U do
15 if li > 0 then
16 build a triplet with the i-th data point as the anchor,
17 the j-th (j ∈ U and j 6= i and lj > 0) data point as the positive,
18 the k-th (k ∈ U and k 6= i and lk == −li) data point as the negative,
19 add (xi, xj , xk) to T

20 Fine tune network N using T
21 until the number of iterations reaches a pre-defined value;
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Chapter 4

Experiments

4.1 Dataset

In this thesis, we apply our method on a subset of UCF-101 [36], which is a challenging
dataset of action videos. UCF-101 is collected based on YouTube videos, containing up to
101 different action categories. The large number of clips and the unconstrained nature of
videos increase the difficulty of obtaining a good performance on it. In Figure 4.1, some
sample frames from the first 36 categories of UCF-101 are displayed. The order is provided
by the dataset. In the thesis, we select 1374 videos from the 10 first categories according
to the same order as our dataset.

Figure 4.1: Sample frames for the first 36 action categories from UCF-101 [36]

4.2 Experimental Results

At first, we would like to figure out whether our constraint selection strategy can improve
the performance of constrained k-medoids algorithm under different conditions.

There are lots of measurements to evaluate the performance of a clustering, such as
purity [13], normalized mutual information [13], random index [54] and f measure [13].
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Figure 4.2: Experiment process

Among them, purity is a simple and transparent external evaluation measurement, so we
utilize purity to evaluate the clustering result. Purity represents the percent of the total
number of data points that are classified correctly, ranging continuously from 0 to 1. It is
defined as:

purity(Ω, C) = 1
N

K∑
i=1

max
j
|ωi ∩ cj | (4.1)

where Ω = {ω1, ω2, ..., ωK} is the set of clusters and C = {c1, c2, ..., cJ} is the set of
classes.

4.2.1 Effectiveness of User Feedback Only

To investigate the effectiveness of user feedback only, we run constrained k-medoids algo-
rithm starting from 10 random initialization sets, and keep adding user feedback through
different strategies. Every time we add a fixed number of new constraints to the current
constraint set randomly or according to Algorithm 8. The total number of constraints
in the dataset is 1374 × 1373 = 1886502. Given Figure 4.3 and Figure 4.4, after adding
20× 20 = 400 constraints, the average purity reaches 0.88 and after adding 40× 20 = 800
constraints the average purity reaches 0.96. It takes several minutes for the constrained k-
medoids algorithm to converge when the initialization is correctly selected. Here a correct
initialization means that any two of the 10 initial centers are not involved in a must-link.

From Figure 4.3 and Figure 4.4 we can see the purity difference between random con-
straints and chosen ones. The difference maintains when we tried 10 different initialization
sets. Compared to that there is no apparent improvement in the clustering performance
from random constraints, constraints selected by our algorithm can make sure the increase
trend, proving the strategy’s effectiveness.

The first reason behind the bad performance of random constraints is that the random
selection strategy could easily inquiry the relationship between the cluster center and “easy”
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Figure 4.3: Clustering performance with 20 random or chosen constraints added in each
cycle starting from 10 random initialization sets, where orange points represent results of
random constraints, blue points represent results of chosen constraints. Dark red and dark
blue points represent the average from two algorithms with the corresponding trend line
respectively.

data points. “Easy” means the algorithm can correctly cluster these data points on itself.
Therefore, these constraints can hardly help strengthen the clustering algorithm. Neverthe-
less, our algorithm can provide more useful information to avoid assigning negatives with
a small distance from the center to the same cluster with the center or assigning positives
with a large distance from the center to a different cluster.

The second reason that random constraints are much worse than chosen constraints
is shown in Figure 4.5. In Figure 4.5a, the constraints are selected randomly and it is
hard to apply the transitive property because they are related to totally different data
instances. However, when the constraints are selected according to our strategy like in
Figure 4.5b, according to Chapter 2.2.1, must-links are transitive. The constraints selected
by our strategy are all related to the same point, the cluster center, therefore, they can refer
much more constraints than random ones like Figure 4.5c.
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Figure 4.4: Clustering performance with 40 random or chosen constraints added in each
cycle starting from 10 random initialization sets, where orange points represent results of
random constraints, blue points represent results of chosen constraints. Dark red and dark
blue points represent the average from two algorithms with the corresponding trend line
respectively.

Based on the experimental results and the analysis above, our constraint selection al-
gorithm is effective and correct to select more valuable constraints for improving the clus-
tering performance. It is noted that the experiments are based on the condition that the
constraints from the source of expertise are totally correct. And the advantage of random
constraints is they might be more robust when there is any wrong user feedback provided.

In addition, from the result we find that extra constraints are not always beneficial to
the clustering performance, especially when they are randomly selected. This leads to our
next discussion about measuring the constraints.
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(a) Random constraints (b) Chosen constraints (c) Transitive constraints

Figure 4.5: Difference between random constraints and chosen constraints. The dark blue
point represents the cluster center. The red double-sided arrows represent cannot-links
and the green double-sided arrows represent must-links. Figure 4.5a displays the random
constraints among data points, then Figure 4.5b is the result of chosen constraints and
Figure 4.5c is the transitive result of constraints in 4.5b. In Figure 4.5b and Figure 4.5c,
red dashed circles represent different distances from the cluster center. Grey points are data
instances belonging to the different category with the center, and orange points are those
belonging to the same category with the center.

4.2.2 Measurement of User Feedback

Researchers have found there can be a large variation when utilizing constraints to improve
the clustering performance. [43] and [9] proposed two constraint measures that are strongly
correlated with the constrained clustering algorithm performance:

• Informativeness: The amount of information in the constraint set that the algorithm
cannot determine on its own.

• Coherence: The amount of internal agreement between constraints in the constraint
set, given a distance metric.

Figure 4.6: Illustrative examples of constraints with (a)high informativeness and (b)low
coherence, given a Euclidean distance metric [9]. Green lines represent must-links, and red
lines with “X” represent cannot-links.

Figure 4.6 illustrates the examples of two situations. In Figure 4.6, must-links are
depicted as solid lines; red cannot-links have an ‘X’ through them. Figure 4.6(a) shows

29



constraints with high informativeness because the distance of the must-link is larger than
that of cannot-links, which is against the distance metric and the clustering algorithm
cannot get the conclusions by itself. Figure 4.6(b) shows two different constraints that are
very close and parallel, so the constraints are incoherent.

According to [9] that constraint sets with high informativeness and high coherence are
most likely to provide performance gains. On one hand, our algorithm to obtain the user
feedback can greatly improve the proportion of constraints with higher informativeness from
two aspects:

• (Hard negative) Finding a data point not belonging to the same category with the
center while close to the center.

• (Hard positive) Finding a data point belonging to the same category with the center
but far from the center.

These constraints are of high informativeness because the clustering algorithm cannot
determine them on its own. At the same time, due to the transitiveness of must-links, one
hard negative point can lead to multiple constraint pairs with high informativeness. This
explains why constraints selected by our algorithm can be much more powerful than random
ones, which is coherent with our experimental results.

On the other hand, the proportion of constraints with low coherence can be affected
as well. When a negative data point a and a positive data point b are found around the
boundary of this cluster, two constraints formed by a and b with the center respectively are
nearly parallel while having the opposite meaning. These constraints with low coherence
can decrease the clustering performance.

4.2.3 Effectiveness of Feature Learning

After analyzing the reason that extra constraints cannot always lead to performance im-
provement, which is mainly caused by incoherent constraints. We find this drawback can be
overcome by refining the distance metric, for example, when the distance difference between
must-links and cannot-links is large enough, the constraints will be of high coherence.

In this part, we explore how feature learning based on CNNs can improve the clustering
performance by refining the distance metric, and whether the constrained clustering result
can guide feature learning in return. Our experiments are based on 1374 videos from
UCF-101 [36] dataset, feature learning is based on a hybrid network between Caffe net [18]
and Zeiler & Fergus [60]. The network is pre-trained on ImageNet [24], and we use the
constrained k-medoids algorithm mentioned before.

Because of the different number of constraints in each fine-tuning, it is hard to decide
a unified set of hyperparameters for all experiments if we want to achieve the best state
in each fine-tuning. Therefore, we run a 10-fold cross-validation experiment to select an
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Figure 4.7: Clustering performance with 20 constraints added in each cycle performing
feature learning or not based on 10 random initialization sets, where blue points represent
results of constraints only, orange points represent results of the combination of constraints
and feature learning. Dark blue and dark red points represent the average from two algo-
rithms with the corresponding trend line.

effective but small learning rate, a margin α in the triplet loss as well as the number of
training epochs, which can push the feature learning slightly in case of over-fitting. In
the end, the network is fine-tuned on a single GeForce GTX 970 GPU machine using the
stochastic gradient descent with a learning rate of 10−9 and a margin of 1000 in the triplet
loss for only 1 epoch each time. In addition, as the number of constraints keeps increasing,
the time of fine-tuning increases as well. The first fine-tuning costs around half of an hour
to complete while the last one costs a couple of hours.

Follow the diagram in Figure 4.2, we alternatively update the clustering and the network.
We call the process that clusters the feature and updates the network for one time a “cycle”.
In each cycle, the network is only fine-tuned for 1 epoch, meaning that each training frame
will be seen only once by the network. In order to be comparable with the experiments
without feature learning, we run 20 cycles under all conditions, whose performances are
displayed in Figure 4.7, Figure 4.8 and Figure 4.10. Here the value of 20 can be any
number, we simply select one intuitively.

We compare the clustering performance between the constrained clustering with or with-
out feature learning in Figure 4.7 and 4.8, adding 20 and 40 constraints each cycle respec-

31



Figure 4.8: Clustering performance with 40 constraints added in each cycle performing
feature learning or not based on 10 random initialization sets, where blue points represent
results of constraints only, orange points represent results of the combination of constraints
and feature learning. Dark blue and dark red points represent the average from two algo-
rithms with the corresponding trend line.

tively. The results demonstrate that feature learning is capable of accelerating the clustering
performance improvement and obtaining higher performance with fewer constraints. And
when more constraints are added, the average clustering performance is higher.

The superiority of feature learning appears at a very young stage, and it is enlarged
gradually when the number of constraints increases. To explain this phenomenon, we visu-
alize the feature without feature learning and after the final fine-tuning in Figure 4.9 using
t-SNE [29].

In Figure 4.9a the initial feature distribution is highly disordered has no pattern to
follow. If we do not apply feature learning to refine the feature distribution, every time the
algorithm will try to find 10 clusters based the chaotic distribution, and it will be hard even
with lots of constraints. In this case, the probability that the constraints selected by our
algorithm are not coherent enough is much higher than Figure 4.9b. After feature learning,
the distance between data points belonging to the same category tends to decrease and
that of data points belonging to different categories will increase. The feature distribution
becomes cleaner and easier to find potential patterns. This change leads to the increase in
the coherence of selected constraints, contributing to the larger improvement.
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(b) Final feature

Figure 4.9: Feature visualizations

Figure 4.10: Average performances under different conditions from 10 random initialization
sets

33



From Figure 4.10 the constrained clustering method with 40 constraints added in each
cycle and feature learning gains the best average performance. According to our experi-
mental results and analysis, we conclude that:

• Our constraint selection algorithm can find more valuable constraints and utilize tran-
sitiveness of constraints better than random selection strategy.

• Feature learning can overcome the low coherence of constraints resulted from the
disordered feature distribution.

• With all other conditions same, more constraints can lead to a better performance.
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Chapter 5

Summary

5.1 Conclusion

In this thesis, we came up with a solution to improve the performance of constrained k-
medoids algorithm and feature learning based on the CNN fine-tuning.

Starting from regular clustering algorithms, we choose constrained clustering because of
its ability to combine the limited domain knowledge. We design an algorithm to effectively
select more valuable constraints than random ones in an active learning way.

The experimental results demonstrate that the constraints selected by our strategy can
accelerate the clustering performance improvement, and this conclusion is on condition that
all constraints provided by the source of expertise are correct.

Because the constraint quality is affected by the feature divisibility, we utilize the clus-
tering and constraints to refine the feature by fine-tuning a CNN. A special loss function,
triplet loss, is chosen to avoid the cluster reassignment problem during the fine-tuning.
While the constrained clustering process takes only several minutes, it can take up to a
couple of hours for fine tuning a CNN.

In the end, we evaluate the integrated method on a challenging action video dataset,
and the experimental results prove our method is able to improve the constrained clustering
performance and increase the feature divisibility efficiently.

5.2 Future Work

There are several possible directions that could be explored in the future work to improve
the algorithm further.

At first, our method works based on the hypothesis that the user feedback is completely
correct, and the effectiveness of constraints selected by our strategy highly depends on the
fact as well. In the next step, we can add some noise to the experiment by importing wrong
constraints to explore the robustness of random constraint select strategy and our strategy.

35



Then the time expense of our method is high because the CNN fine-tuning is slow. In
future experiments, we can try smaller networks or apply network prune to decrease the
network complexity. However, there should be a trade-off between the improvement over
speed and the decrease in performance.

Besides, the necessity of iterations needs to be explored as well by providing all the
constraints at once and watching the difference in the clustering performance.

Also, we can select constraints with high informativeness and high coherence only. And
if we change the method of obtaining new user feedback from cluster verification to cluster
relabel method, we can get more information, but still, there needs to be a trade-off between
the performance improvement and the complexity increase.

Finally, we can obtain more accurate video features by concentrating on areas where
the action happens, which can be achieved by placing an action detector before the feature
extractor.

Therefore, we believe the performance can be advanced again when heading towards
these directions.
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