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Abstract

The γ-graph γ ·G of a graph G is the graph whose vertices are labelled by the minimum dominating
sets of G, in which two vertices are adjacent when their corresponding minimum dominating sets
differ in exactly one element. We give an explicit construction of a graph having an arbitrary pre-
scribed set of minimum dominating sets. We show as a corollary that “labellable implies realisable
for γ-graphs”: if the vertices of a graph H can be labelled by distinct sets of the same size, in a
manner consistent with the adjacency condition for γ-graphs, then H = γ ·G for some graph G. We
use this corollary to extend the classification of γ-graphs, due to Lakshmanan and Vijayakumar,
to all graphs on at most six vertices. We also use this corollary to relate γ-graphs both to induced
subgraphs of Johnson graphs and to optimal dominating codes in graphs.

Keywords: gamma graphs; graph domination; induced subgraphs of Johnson graphs
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Chapter 1

Introduction

1.1 γ-graphs

We consider only finite, loop-free, unweighted, undirected graphs without multiple edges. We
denote the vertex set of a graph G by V (G).

Definition 1.1. A dominating set of a graph G is a set S ⊆ V (G) such that every vertex of G is
either in S or adjacent to a vertex in S.

Definition 1.2. A γ-set of a graph G, also called a minimum dominating set of G, is a dominating
set of smallest size. The domination number of G, denoted γ(G), is the size of a γ-set of G.

Definition 1.3 ([39]). The γ-graph γ ·G of a graph G is formed as follows:

• the vertices of γ ·G correspond to the γ-sets of G;

• two vertices are adjacent if and only if their corresponding γ-sets intersect in a set of size
γ(G)− 1.

Definition 1.4. A graph H is realisable (as a γ-graph) if there exists a graph G for which H = γ ·G.
In this case, G is a parent graph of H.

Definition 1.5. A graph H is labellable (as a γ-graph) if, for some integer k ≥ 1, the vertices
of H can be labelled by distinct k-subsets of {1, 2, 3, . . . } such that two vertices are adjacent if and
only if their corresponding labels intersect in a set of size k − 1. We say that a graph admits a
(consistent) labelling if it is labellable.

If a graph is realisable then it is immediate from the definitions that it is labellable. Given a
labellable graph H, both the labelling of Definition 1.5 and the associated integer k are not unique:
adding an isolated vertex to the parent graph increases k by one, as illustrated in Figure 1.1.

Definition 1.6. A graph is forbidden (as a γ-graph) if it is not realisable.
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Figure 1.1: Distinct graphs with isomorphic γ-graphs.

Definition 1.7. A graph is minimally forbidden (as a γ-graph) if it is forbidden but every proper
induced subgraph is realisable.

See Figure 1.2 for examples of forbidden and minimally forbidden graphs.
We consider in this thesis the following central questions:

• Which graphs are realisable as γ-graphs?

• Which graphs are minimally forbidden as γ-graphs?

• If a graph is labellable as a γ-graph, is it also realisable as a γ-graph?

• Is there an efficient algorithm to reliably determine when a graph is labellable as a γ-graph?

We also establish a relationship between γ-graphs and induced subgraphs of Johnson graphs; we
define these graphs in Section 1.2.

Definition 1.8 below introduces a different object known as a γ-graph G(γ) of a graph G, which
differs from the γ-graph γ · G of Definition 1.3. This alternative definition imposes an additional
restriction on the adjacency condition in G(γ). This type of γ-graph is not the subject of this
thesis, although a brief overview of results is contained in Chapter 2.

2



G K2,3

Figure 1.2: The graph G is forbidden, and it contains K2,3 as an induced subgraph, which is
minimally forbidden (see Section 6.3).

Definition 1.8 ([18]). The γ-graph G(γ) of a graph G is formed as follows:

• the vertices of G(γ) correspond to the γ-sets of G;

• two vertices are adjacent if and only if their corresponding γ-sets S1 and S2 intersect in a set
of size γ(G)−1 and the single vertex of S1 \S2 is adjacent in G to the single vertex of S2 \S1.

Figure 1.3 gives an example, using G = C4, to show that G(γ) can differ from γ ·G.

1.2 Induced subgraphs of Johnson graphs

Let [n] denote the set {1, . . . , n}. We introduce two more families of graphs.

Definition 1.9 ([19, Chapter 1.6]). For n ≥ k ≥ i, the family of graphs J(n, k, i) is defined as
follows:

• the vertices of J(n, k, i) correspond to all k-subsets of [n];

• two vertices are adjacent if and only if their corresponding k-subsets intersect in a set of size i.

The graphs J(n, k, k − 1) are known as the Johnson graphs and are written as J(n, k).

A graph G is isomorphic to an induced subgraph of a Johnson graph (for short, G is a JIS graph)
if and only if for some integer k ≥ 1 it is possible to assign distinct k-subsets of {1, 2, 3, . . . } to
the vertices of G such that two vertices are adjacent if and only if their corresponding k-subsets
intersect in a set of size k − 1. When this happens, we say that G is realisable (as a JIS graph),
which follows [36].

From Figures 1.3 and 1.4 we see that γ · C4 is isomorphic to J(4, 2) (which is a subgraph of
J(n, 2) for n ≥ 4). More generally, a γ-graph can occur as a proper induced subgraph of a Johnson

3
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Figure 1.5: γ ·G for the given graph G occurs as a proper induced subgraph of J(5, 2) (indicated
by white vertices).
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graph (see Figure 1.5). Indeed, the adjacency condition for JIS graphs (phrased in terms of k-
subsets) is equivalent to the adjacency condition for γ-graphs (phrased in terms of γ-sets of size k).
This means that a graph is labellable as a γ-graph if and only if it is realisable as a JIS graph. We
give a brief overview of Johnson graphs and JIS graphs in Chapter 3. We also ask the following
questions:

• Are there further relationships between γ-graphs and Johnson graphs, and what are their
consequences?

• Are there connections between γ-graphs and other mathematical objects, and what are their
consequences?

1.3 Contributions of this thesis

The main result of this thesis is Theorem 1.10 below, which we prove in Chapter 4. Note that if a
graph H is realisable as a γ-graph, having a parent graph G, then H admits a labelling by the γ-sets
of G and so H is labellable as a γ-graph (equivalently, realisable as a JIS graph). Corollary 1.11
below shows that the converse is also true: if a graph H is labellable, then there exists a graph G
whose γ-sets are the vertex-labels of H and so H is realisable (with H = γ ·G). This result yields
Corollary 1.12 below, which establishes a connection between γ-graphs and JIS graphs.

Theorem 1.10. Let k ≥ 1 be an integer, and let D be a nonempty set of k-subsets of {1, 2, 3, . . . }.
Then there is a graph G whose γ-sets are the elements of D.

Corollary 1.11. A graph is realisable if and only if it is labellable.

Proof. By the definition of a γ-graph, a graphH is labellable as a γ-graph whenever it is realisable as
one. Conversely, ifH admits a consistent labelling using a setD of vertex-sets, then by Theorem 1.10
we can realise H as the γ-graph of some parent graph.

Corollary 1.12. A graph is realisable as a γ-graph if and only if it is realisable as a JIS graph.

Proof. By Corollary 1.11, a graph is realisable as a γ-graph if and only if it is labellable as a γ-graph.
By the equivalent adjacency conditions between γ-graphs and JIS graphs, a graph is labellable as
a γ-graph if and only if it is realisable as a JIS graph.

Using Definition 1.6 along with Corollaries 1.11 and 1.12, we establish that a graph is forbidden
as a γ-graph (equivalently, forbidden as a JIS graph) if and only if it is not labellable. This allows
us to unify many of the previously known results on γ-graphs and JIS graphs in Chapter 5. We
then develop forced-labelling lemmas in Section 6.1, allowing us to explicitly show in Section 6.2
that the wheel graphs W2n (see Definition 3.13) for n ≥ 3 comprise a new family of minimally

6



forbidden graphs. We devote the rest of Chapter 6 to classifying all graphs on up to six vertices as
realisable or forbidden, and then generalise our definition of a γ-graph in Chapter 7 using distance-d
domination. We conclude with some directions for future research in Chapter 8.

1.4 Relationship to previous work

We shall give two constructive proofs of Theorem 1.10. Our first construction turns out to be
similar to, but more economical than, a construction in [25] presented in the context of optimal
dominating codes in graphs; we discovered our first construction before becoming aware of [25].
A connection between optimal dominating codes in graphs and JIS graphs is made in both [25]
and [26]; the consequence for γ-graphs is stated implicitly. We explicitly relate γ-graphs and optimal
dominating codes in graphs through the intermediary JIS graphs. We also provide a second, more
efficient construction for the proof of Theorem 1.10; see Figure 1.6 for a comparison of the three
constructions. Until now, the consequences for γ-graphs of the constructions in [25] and [26] seem
to have been overlooked; we anticipate that connecting these seemingly disparate fields will enhance
future research.
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Figure 1.6: Graph G guaranteed by Theorem 1.10 for k = 3 and D = {{1, 2, 3}, {1, 2, 4}}, con-
structed according to the method of [25] (top left, where each white vertex represents a collection
of four disjoint vertices), Section 4.1 (top right, where each white vertex represents a collection of
two disjoint vertices), and Section 4.2 (bottom).
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Chapter 2

Literature Survey on γ-Graphs

2.1 Overview of domination in graphs

In 1977, Cockayne and Hedetniemi [10] offered the first major survey on domination. By that
time, three primary notions of domination had been established: Ore [37] related domination to
the question of the minimum number of queens needed on a chessboard so that each square is
accessible by a queen; Berge [4] considered domination as the strength of surveillance in a network;
and Liu [31] phrased domination in terms of network communications.

Domination in graphs is detailed extensively in [23] and [22], with applications to fields such as
game theory, coding theory, and matching theory. One of the first examples of a covering problem
in domination is the “Five Queens Problem”: how can we dominate the squares on a standard 8×8
chessboard using just five queens? This equivalently asks if a dominating set of smallest size (which
we call a minimum dominating set) can be formed under certain conditions. Other qualities may be
assigned to dominating sets, such as minimality (the property of containing no smaller dominating
sets). Problems with these alternative formulations include finding a γ-set comprising independent
vertices of a graph (known as independent coverings), and finding the maximum cardinality of an
independent set in a graph. Yaglom and Yaglom [41] first considered these problems in the context
of chess.

Definition 2.1. Let n ≥ 1 be an integer. A clutter of [n] is a nonempty family C containing subsets
of [n] such that no element of C properly contains another. The corresponding blocker of C is the
nonempty collection B of all minimal subsets of [n] that contain at least one element of each subset
in C.

Edmonds and Fulkerson [16] and Billera [6] introduce clutters and blockers and establish a rela-
tionship to domination in graphs. We may consider the set of all maximal complete subgraphs in a
graph as a clutter, and the corresponding blocker contains only dominating sets of the graph. We
use a clutter-blocker relationship in Section 4.2 for the second proof of Theorem 1.10.

9



2.2 The γ-graph γ ·G

The γ-graph γ · G was first defined by Sridharan and Subramanian [39], and has been studied
in [40], [30], [38], and [5]. We outline the main results on the realisability of γ-graphs here. Though
these results were originally obtained using a variety of clever constructions, many of them are now
subsumed in this thesis by Theorem 1.10.

Theorem 2.2 ([38, Theorem 2.1]). If a graph H is realisable, then every induced subgraph of H is
realisable.

Given a graph G and an induced subgraph H ′ of the γ-graph H = γ ·G, [38] establishes Theorem 2.2
by constructing a graph G′ from G in such a way that γ · G′ = H ′. We obtain this result as an
immediate corollary to Theorem 1.10.

Definition 2.3. The Cartesian product of two graphs G and H, denoted G�H, is the graph with
vertex set V (G)× V (H) where, for u, u′ ∈ G and v, v′ ∈ H, we have (u, v) ∼ (u′, v′) if and only if
either u = u′ and v ∼ v′ in H, or v = v′ and u ∼ u′ in G.

Theorem 2.4 ([30, Theorem 3.4]). Let H1 and H2 be realisable. Then the Cartesian product
H1�H2 is realisable.

[30] proves Theorem 2.4 constructively. We provide our own proof in Section 5.2.

Theorem 2.5 ([30]). A disconnected graph H is realisable if and only if each component of H is
realisable.

[30] proves Theorem 2.5 using the fact that if H1 and H2 are disjoint realisable graphs, then their
disjoint union H1∪H2 occurs as an induced subgraph of a γ-graph obtained as a Cartesian product.
Therefore, the proof of Theorem 2.5 in [30] relies on Theorems 2.2 and 2.4 above. We obtain this
result as an immediate corollary to Theorem 1.10.

Theorem 2.6 ([40, Theorem 2.1]). Every tree is realisable.

Theorem 2.7 ([40, Theorem 2.4]). Every cycle Cn with n ≥ 3 is realisable.

Definition 2.8. A unicyclic graph is a connected graph containing exactly one cycle.

Theorem 2.9 ([40, Theorem 2.6]). Every unicyclic graph is realisable.

[40] proves Theorems 2.6, 2.7, and 2.9 using a construction that applies only to parent graphs G
satisfying the Private Neighbourhood Condition (PNC). Let D be a γ-set in G, and consider x ∈ D.
The private neighbourhood of x (with respect to D) is the set pn(D,x) = {y ∈ V (G) : N [y] ∩D =
{x}}. If for every γ-set D in G and for each x ∈ D the condition that pn(D,x) 6= {x} holds, we
say that G satisfies the Private Neighbourhood Condition (PNC); see Figure 2.1 for an example.

10



1 2

3 4 5 6

Figure 2.1: The PNC fails for this graph because pn({4, 6}, 6) = {6}.

[38] amends the construction of [40] to avoid the PNC by first modifying the parent graph in a way
that leaves the γ-graph unchanged.

Using Corollary 1.11, we may completely ignore the PNC. In Chapter 5 we include new proofs
for the realisability of cycles, as well as for trees and unicyclic graphs phrased in terms of 2-cores
(see Definition 3.4).

Theorem 2.10 ([40, Theorem 2.7][30, Theorem 2.3]). A graph on at most five vertices is forbidden
if and only if it is one of the following:

(i) (ii)

(iii) (iv)

Each of the graphs in Theorem 2.10 fails to admit a consistent labelling. We introduce forced-
labelling lemmas in Section 6.1 to help prove Theorem 2.10. We also use these lemmas in Chapter 6
to obtain a new family of forbidden graphs and to explicitly classify all graphs on six vertices as
realisable or forbidden. Theorem 2.10 shows that the converse to Theorem 2.2 does not hold.

2.3 The γ-graph G(γ)

The γ-graph G(γ) was first defined by Fricke et al. [18] and has been studied in [11], [17], and [35].
We briefly mention the main results on G(γ) here, though this type of γ-graph is not the focus of
this thesis.
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Fricke et al. [18] establish many elementary results for γ-graphs G(γ). They take a particular
interest in γ-graphs G(γ) of trees, and conclude with questions about the complexity of different
parameters of such graphs, as well as about the number of minimum dominating sets in a tree.
Connelly et al. [11] show constructively that all graphs are realisable as γ-graphs G(γ), and Ed-
wards [17] improves some of the parameters in γ-graphs G(γ) of trees while determining that some
of the results in [18] also hold for γ-graphs γ ·G. More recently, Mynhardt and Teshima [35] defined
γ-graphs for variations on the domination parameter γ, and developed constructions to show that
for each variation of the γ-graph, all graphs can be realised as that variation.

[18] also introduces the idea of forming the γ-graph sequence

G→ G(γ)→ (G(γ)) (γ)→ · · · .

Many γ-graph sequences stop at K1, but some do not terminate. We can ask for which graphs does
the corresponding γ-graph sequence stop or loop, and for which graphs does the sequence never
terminate. Hedetniemi [24, Chapter 8] includes the γ-graph sequence problem in a top ten list of
graph theory conjectures.

12



Chapter 3

Literature Survey on Induced
Subgraphs of Johnson Graphs

3.1 Overview of Johnson graphs

Johnson graphs are well-studied as distance-regular graphs [9], in quantum probability [27], and in
spectral analysis [28]. We list here some basic properties of Johnson graphs, and refer the interested
reader to [20] for additional information.

It is well known that J(n, k) ' J(n, n − k) for 1 ≤ k ≤ n, so we may restrict the bounds for
k and n to 1 ≤ k ≤ n

2 ; although this is not strictly necessary for our γ-graph results on Johnson
graphs, this relation is used often throughout the literature.

The family J(n, k, i) of Definition 1.9 gives rise to the Johnson scheme [15] in association scheme
theory, which we do not define here. [7] and [8] develop association schemes from an algebraic combi-
natorics perspective, and [3] describes association scheme theory as “group theory without groups.”
Association schemes have applications to orthogonal polynomials and linear programming [15],
coding theory [14], and combinatorial design theory [2].

3.2 Induced subgraphs of Johnson graphs (JIS graphs)

For 1 ≤ k ≤ n, a Johnson graph is formed by specifying an adjacency condition between all k-
subsets of [n]; it is natural to consider the graphs obtained using only some of the k-subsets of [n],
but with the same adjacency specification. A graph obtained this way is an induced subgraph of a
Johnson graph (for short, a JIS graph). The structure of JIS graphs has been studied in [36], [33],
and [32].

Consider the following class of graphs.

Definition 3.1 ([36]). Let F be a family of finite sets and let p be a fixed positive integer. The
p-intersection graph, denoted Ωp(F ), is defined as follows:
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• the vertices of Ωp(F ) correspond to all elements of F ;

• two vertices are adjacent if and only if their corresponding sets share at least p elements.

McKee and McMorris [34] provide a survey of intersection graphs and p-intersection graphs. If we
restrict to families F containing sets of size p+ 1, then the theory of γ-graphs extends naturally to
the theory of intersection graphs: vertices correspond to sets of the same size (namely p+1), and two
vertices are adjacent when those sets differ by exactly one element (equivalently, they intersect in
p elements). Naimi and Shaw [36] develop an algorithmic relationship between intersection graphs
and JIS graphs which, when combined with Theorem 1.10 and Corollary 1.12, strengthens the
relationship between γ-graphs and JIS graphs. A brief summary of results for JIS graphs follows,
and Corollary 1.12 allows us to reinterpret each result in terms of γ-graphs.

Theorem 3.2 ([36]). Every complete graph is realisable as a JIS graph.

Theorem 3.3 ([36]). Every cycle is realisable as a JIS graph.

Definition 3.4. The k-core of a graph G is the graph obtained by repeatedly deleting vertices of
degree at most k − 1 from G.

To find the 2-core of G, we repeatedly delete isolated vertices and pendant vertices from G.

Theorem 3.5 ([36]). A graph is realisable as a JIS graph if and only if its 2-core is empty or
realisable as a JIS graph.

The 2-core of every tree is the empty graph, which gives the following corollary to Theorem 3.5.

Corollary 3.6 ([36]). Every tree is realisable as a JIS graph.

Theorem 3.7 ([36]). A disconnected graph is realisable as a JIS graph if and only if each component
is realisable as a JIS graph.

[36] proves Theorem 3.7 by induction on the number of components in the disconnected graph.

Theorem 3.8 ([36]). The Cartesian product of two JIS graphs is realisable as a JIS graph.

Theorem 3.9 ([36]). For each n ≥ 5 and for some edge e, the graph Kn − e is forbidden as a JIS
graph.

Definition 3.10. For n ≥ 1, the hypercube graph Qn is defined as follows:

• the vertices of Qn correspond to all binary n-tuples;

• two vertices are adjacent if and only if their corresponding binary n-tuples differ in exactly
one position.
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Theorem 3.11 ([33]). For each n ≥ 1, the hypercube graph Qn is realisable as a JIS graph.

[33] proves Theorem 3.11 by induction on n.

Theorem 3.12 ([33]). For m ≤ n and when the conditions m ≥ 2 and n ≥ 3 both hold, the
complete bipartite graph Km,n is forbidden as a JIS graph.

Definition 3.13. For n ≥ 4, the wheel graph Wn is the graph obtained by joining a single vertex
to every vertex of the cycle Cn−1.

Theorem 3.14 ([33]). For each n ≥ 3, the wheel graph W2n is forbidden as a JIS graph.

Theorem 3.15 ([32]). The following graphs on five vertices are minimally forbidden as JIS graphs.

(i) (ii)

(iii) (iv)

[32] proves Theorem 3.15 by completely classifying all JIS graphs on at most five vertices.

Theorem 3.16 ([33]). The following graphs on six vertices are minimally forbidden as JIS graphs.

(i) (ii)

(iii) (iv)

[33] states Theorem 3.16 without proof, and claims that all remaining 6-vertex graphs are either JIS
graphs or contain one of the 5-vertex forbidden graphs in Theorem 3.15 as an induced subgraph.
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Chapter 4

Two Constructive Proofs of the Main
Result

We devote this chapter to our main result, which we restate here for convenience.

Theorem 1.10. Let k ≥ 1 be an integer, and let D be a nonempty set of k-subsets of {1, 2, 3, . . . }.
Then there is a graph G whose γ-sets are the elements of D.

We shall give two constructive proofs of Theorem 1.10. Our first proof, given in Section 4.1, presents
a construction for modifying a complete graph to individually eliminate all sets of size k − 1, and
then all sets of size k that do not appear in D, as possible γ-sets. Our second proof, given in
Section 4.2, uses a more efficient construction that introduces a blocker set and uses its properties
to simultaneously eliminate many possible dominating sets from G.

Examples corresponding to the graphs in Figure 1.6 are included for each proof in order to
highlight the efficiency of our constructions compared to that in [25].

4.1 First proof

Let n =
∣∣∣∣∣ ⋃D∈D

D

∣∣∣∣∣, and relabel if necessary so that each element of D is a subset of [n]. Let U be the

set of all (k− 1)-subsets of [n] along with all k-subsets of [n] not contained in D. The case k = 1 is
trivial: take G = Kn. The case k = n is also trivial: take G = Kn. Note that in either case we may
still use the following construction for G as long as, for the case k = 1, we interpret the 0-subset of
[n] to be the empty set when defining U and then introduce vertices x∅ and y∅ in Step (2).

(1) Initialise G to be Kn and label its vertices 1, 2, . . . , n.

(2) For each U ∈ U , add vertices xU and yU to G and join each of them to the vertices of [n] \ U .
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1 2

34

x34 y34

x12y12

x14

y14x23

y23

x13

y13 x24

y24

x134

y134x234

y234

Figure 4.1: Construction of G in Section 4.1 for Theorem 1.10 with k = 3 and D =
{{1, 2, 3}, {1, 2, 4}}.

The resulting graph G has

n+ 2
(

n

k − 1

)
+ 2

((
n

k

)
− |D|

)
(4.1)

vertices and (
n

2

)
+ 2(n− k + 1)

(
n

k − 1

)
+ 2(n− k)

((
n

k

)
− |D|

)
(4.2)

edges.
For example, take k = 3 and D = {{1, 2, 3}, {1, 2, 4}}, so n = 4. Initialise G to be K4 and label

its vertices 1, 2, 3, 4. Let U = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}}. Examine
each 2-set of U : for the set {1, 2}, add vertices x12, y12 (where the index 12 is shorthand for {1, 2})
and join each of them to the vertices of [4] \ {1, 2} = {3, 4}. This ensures that {1, 2}, along with
each of its proper subsets, is not a dominating set of G. Repeat for each other 2-set of U . Now
examine each 3-set T ∈ U . For the set {1, 3, 4}, add vertices x134, y134 and join each of them to the
vertices of [4] \ {1, 3, 4} = {2}. This ensures that {1, 3, 4}, along with each of its proper subsets, is
not a dominating set. Repeat for each other 3-set of U , namely the set {2, 3, 4}. See Figure 4.1 for
the resulting graph G, which has 20 vertices and 34 edges.

Let G be constructed according to Steps (1) and (2) above. We now prove Theorem 1.10 by
showing that the γ-sets of G are exactly the elements of D.

(a) No added vertex is contained in a γ-set of G.

Let U ∈ U and suppose, for a contradiction, that xU is contained in a γ-set D of G. Then yU

is not contained in D, otherwise we may obtain a smaller dominating set than D by replacing
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the vertices xU and yU in D with a single vertex from the nonempty set [n] \ U : this vertex
dominates xU and yU because N(xU ) = N(yU ) = [n] \ U by construction, and it dominates
all vertices of [n] because G was initialised to Kn.

Since yU is not contained inD, it must be dominated by one of its neighbours, namely a vertex
of [n] \U . This vertex dominates xU because N(xU ) = N(yU ) = [n] \U by construction, and
it dominates all vertices of [n] because G was initialised to Kn. Therefore we may obtain a
smaller dominating set than D by removing xU from D, giving the required contradiction.

(b) No element of U is a dominating set of G.

By Step (2), each element U ∈ U contains no vertices adjacent to the vertices xU and yU , so
U is not a dominating set of G.

(c) Each element of D is a dominating set of G.

Let D ∈ D. For each U ∈ U the set D \ U is nonempty, so the added vertices xU and yU are
dominated by every element of D \U . Furthermore, every vertex of D dominates all vertices
of [n] because G was initialised to Kn. Therefore D dominates G.

By part (a), the γ-sets of G contain vertices only from [n]. By part (b), no (k − 1)-subset of [n]
dominates G, so γ(G) ≥ k. By parts (b) and (c), the k-subsets of [n] which dominate G are exactly
the elements of D. It follows that the γ-sets of G are the elements of D.

This completes the first proof of Theorem 1.10.

4.2 Second proof

Take n =
∣∣∣∣∣ ⋃D∈D

D

∣∣∣∣∣, and relabel if necessary so that each element of D is a subset of [n]. Regarding D

as a clutter with respect to [n] (see Definition 2.1), the blocker B of D is the collection of all minimal
subsets of [n] containing at least one element of each D ∈ D. We use the following construction
for G.

(1) Initialise G to be Kn and label its vertices 1, 2, . . . , n.

(2) For each B ∈ B, add vertices xB and yB to G and join each of them to the vertices of B.

The resulting graph G has
n+ 2|B| (4.3)

vertices and (
n

2

)
+ 2

∑
B∈B
|B| (4.4)

edges.
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1 2

34

x34y34

x2

y2x1

y1

Figure 4.2: Construction of G in Section 4.2 for Theorem 1.10 with k = 3 and D =
{{1, 2, 3}, {1, 2, 4}}.

Consider again the example with k = 3 and D = {{1, 2, 3}, {1, 2, 4}}, so n = 4. Initialise G to
be K4 and label its vertices 1, 2, 3, 4. Form the blocker B = {{1}, {2}, {3, 4}} of D. For the element
{1}, add vertices x1, y1 and join each of them to the vertex 1. This ensures that [n]\{1} = {2, 3, 4},
along with each of its proper subsets, is not a dominating set of G. Repeat for each other element
of B. See Figure 4.2 for the resulting graph G, which has 10 vertices and 14 edges.

Let G be constructed according to Steps (1) and (2) above. We now prove Theorem 1.10 by
showing that the γ-sets of G are exactly the elements of D.

(a) No added vertex is contained in a γ-set of G.

Consider B ∈ B and suppose, for a contradiction, that xB is contained in a γ-set D of G.
Then yB is not contained in D, otherwise we may obtain a smaller dominating set than D

by replacing the vertices xB and yB in D with a single vertex from the nonempty set B: this
vertex dominates xB and yB because N(xB) = N(yB) = B by construction, and it dominates
all vertices of [n] because G was initialised to Kn.

Since yB is not contained in D, it must be dominated by one of its neighbours, namely a
vertex of B. This vertex dominates xB because N(xB) = N(yB) = B by construction, and
it dominates all vertices of [n] because G was initialised to Kn. Therefore we may obtain a
smaller dominating set than D by removing xB from D, giving the required contradiction.

(b) Each element of D is a dominating set of G.

Let D ∈ D. Each vertex of D dominates all vertices of [n] because G was initialised to Kn.
Let B ∈ B; it remains to show that D dominates xB and yB. By the definition of B, we may
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choose a vertex i in the nonempty set B ∩ D. By construction, xB and yB are adjacent to
i ∈ D.

(c) No (k − 1)-subset of [n], and no k-subset of [n] not contained in D, dominates G.

In the case k = 1, the statement holds vacuously. Otherwise, take k ≥ 2 and let S be a subset
of [n] that either has size k − 1, or has size k and is not contained in D. We shall show that
S does not dominate G.

Let D̃ be the set {D \S : D ∈ D}. By the definition of S, each element of D̃ is nonempty. Let
B̃ be an element of the blocker of D̃. Note that this implies B̃ ∩ S = ∅. Since B̃ contains at
least one element of D \ S for each D ∈ D, then B̃ necessarily contains at least one element
of each D ∈ D. By minimality of the elements of the blocker B, we have B̃ ⊇ B for some
B ∈ B. Using B̃ ∩ S = ∅ and B ∈ B, we must then have B̃ = B (otherwise B would be
a proper subset of B̃ containing at least one element of each D \ S in D̃, contradicting the
minimality of B̃ in the blocker of D̃).

We have shown that B̃ ∈ B, so G contains a vertex x
B̃
. Since B̃ ∩ S = ∅, it follows that S

does not dominate x
B̃

and therefore does not dominate G.

By part (a), the γ-sets of G contain vertices only from [n]. By part (b), the k-subsets in D dominate
G, so γ(G) ≤ k. By parts (b) and (c), we know γ(G) ≥ k and the k-subsets of [n] which dominate
G are exactly the elements of D. It follows that the γ-sets of G are exactly the elements of D.

This completes the second proof of Theorem 1.10.

4.3 Remarks

[25] connects optimal dominating codes in graphs to the set of all JIS graphs; by Corollary 1.12, it
follows that we can relate graphs formed using all elements of an optimal dominating code in a graph
to those formed using all γ-sets of a graph (as long as the adjacency conditions are equivalent). Note
that we made this connection only by first relating γ-graphs and JIS graphs. It follows that [25,
Theorem 2] is similar to Theorem 1.10, and the construction used in [25] is similar to our first
construction from Section 4.1. We shall compare the efficiency of these two constructions with our
second construction from Section 4.2.

The graph constructed in the proof of [25, Theorem 2] contains

n+ (k + 1)
(

n

k − 1

)
+ (k + 1)

((
n

k

)
− |D|

)
(4.5)

vertices and (
n

2

)
+ (k + 1)(n− k + 1)

(
n

k − 1

)
+ (k + 1)(n− k)

((
n

k

)
− |D|

)
(4.6)
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6 3 9 4 5 10

P11

1 7 11 2 8

{1, 2, 4, 6} {1, 2, 3, 4} {1, 2, 3, 5}

P5 ' γ · P11

{2, 3, 5, 7} {3, 5, 7, 8}

Figure 4.3: P5 labelled by sets of (4.7) occurs as γ ·P11 for the given labelling of P11, showing that
P11 is a smaller parent graph for P5 than those from the constructions in [25, Theorem 2] and in
Sections 4.1 and 4.2.

edges. See Figure 1.6 for a comparison of the three constructions for the example with k = 3 and
D = {{1, 2, 3}, {1, 2, 4}}: the construction from [25] uses 36 vertices and 62 edges.

Compare the enumeration of vertices and edges in (4.5) and (4.6) to that of (4.1) and (4.2) in our
first construction: we add two vertices, rather than k+1, for each set in U , so the enumerations are
smaller. Our second construction is simpler, and appears to be much more economical in general
according to the enumerations (4.3) and (4.4) and as illustrated in Figure 1.6.

As a larger example, take k = 4 and

D = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 6}, {2, 3, 5, 7}, {3, 5, 7, 8}} , (4.7)

so n = 8. Then U contains the 56 3-subsets of the set [8] along with the 65 4-subsets of the set [8]
that are not contained in D, whereas

B = {{1, 3}, {1, 5}, {1, 7}, {2, 3}, {2, 5}, {2, 7}, {2, 8}, {3, 4}, {3, 6}, {4, 5}}

is the corresponding blocker of D. Each construction uses the following numbers of vertices and
edges:

(i) Construction in Section 4.2: 28 vertices and 68 edges.

(ii) Construction in Section 4.1: 250 vertices and 1108 edges.

(iii) Construction in [25, Theorem 2]: 613 vertices and 2728 edges.

In this example, the construction in Section 4.2 is clearly the most efficient, but further improvement
is still possible. Let Pn denote the path graph on n vertices (having n−1 edges), and consider P11,
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{1, 2} {2, 3} {3, 4} {4, 5} {5, 6}

Figure 4.4: P5 is labellable with sets of size two.

which has γ-sets of size four. Label the vertices of P11 as in Figure 4.3. Then γ ·P11 ' P5, and the
labels on γ · P11 are exactly the sets of (4.7). It follows that P11 is a parent graph of P5 with only
11 vertices and 10 edges, which is simpler than the parent graphs obtained using the constructions
of both Sections 4.1 and 4.2. Note also that P5 has a consistent labelling using sets of size only
two (see Figure 4.4), so k = 2 and n = 6. This reduces the number of vertices and edges in the
constructed parent graphs, but P11 does not realise P5 with γ-sets of size two.

However, the construction in Section 4.2 is not always more efficient than the construction in
Section 4.1: consider the graph comprising n isolated vertices, whose vertices are labellable by the
sets in D = {{1, 2}, {3, 4}, . . . , {2n−1, 2n}}. Using the construction in Section 4.1, the constructed
graph G has 2n(2n+1) vertices and n(8n2−6n+3) edges. Now regard D as a clutter, and form the
associated blocker B. Each element of B is a set of size n, and |B| = 2n. Using the construction in
Section 4.2, the constructed graph G has 2n+ 2n+1 vertices and n(2n− 1 + 2n+1) edges. It follows
that for each n ≥ 8, the graph obtained using the second construction has more vertices and more
edges than the one obtained using the first construction.

These observations prompt the following questions for further study:

• Can we improve the efficiency of the constructions in Sections 4.1 and 4.2 in general?

• What is the best measure of efficiency for a construction proving Theorem 1.10?

• For a labellable graph, can we find a labelling using sets of the smallest possible size? This
corresponds to minimising the number k in Definition 1.5.

• Does a labelling with sets of smaller size allow for a simpler parent graph?

22



Chapter 5

Simplified Approach to Previous
Results on γ-Graphs

5.1 Corollaries of main result

Recall the following corollaries to Theorem 1.10.

Corollary 1.11. A graph is realisable if and only if it is labellable.

Corollary 1.12. A graph is realisable as a γ-graph if and only if it is realisable as a JIS graph.

Corollaries 1.11 and 1.12 allow us to immediately recover many previously known results on γ-
graphs (equivalently, JIS graphs).

Corollary 5.1. A disconnected graph H is realisable if and only if each component of H is realisable.

Proof. If H is realisable then it has a labelling, so the components of H are each labellable and
therefore realisable by Corollary 1.11. Similarly, if each component of H is realisable, then each
component admits a labelling; label the γ-sets of each component using non-intersecting sets of
symbols. It follows that H is labellable, so it is realisable by Corollary 1.11.

Corollary 5.1 was proved as a JIS graph result in [36].

Corollary 5.2. If a graph H is realisable, then every induced subgraph of H is realisable.

Proof. IfH is realisable as a γ-graph then it is realisable as a JIS graph by Corollary 1.12. Therefore,
since every induced subgraph of a JIS graph is also a JIS graph, every induced subgraph of H is
also realisable by Corollary 1.12.

Corollary 5.2 becomes trivial in the context of JIS graphs, while [38, Theorem 2.1] establishes
the result for γ-graphs by taking a graph G and an induced subgraph H ′ of the γ-graph H =
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γ · G, and then constructing G′ from G in such a way that γ · G′ = H ′. By comparison, our
constructions directly realise the desired induced subgraph. Consider the labelled graphs G,H,
and H ′ in Figures 5.1 and 5.2. Each construction uses the following number of vertices and edges:

(i) Construction in Section 4.2: 10 vertices and 31 edges.

(ii) Construction in Section 4.1: 64 vertices and 189 edges.

(iii) Construction in [38]: 393 vertices and at least 427 edges (the edge count must be approx-
imated because it depends on the size of certain nonempty sets in the construction).

5.2 Realisable families

We easily recover some of the previously known families of realisable graphs. By Corollary 1.11, it
is sufficient to exhibit a consistent labelling of the vertices in each graph.

Theorem 5.3. For each n ≥ 1, the complete graph Kn is realisable.

Proof. Let v1, . . . , vn be the vertices of Kn. For 1 ≤ i ≤ n, assign to vi the label {i}.

Theorem 5.3 is trivial for γ-graphs; [36] proved the corresponding result for JIS graphs.

Theorem 5.4. For each n ≥ 3, the cycle graph Cn is realisable.

Proof. Let v1, . . . , vn be the vertices of Cn. For 1 ≤ i ≤ n− 1, assign to vi the label {i, i+ 1}, and
assign to vn the label {1, n}.

[40] develops complicated families of graphs to establish Theorem 5.4; [36] proves the corre-
sponding result for JIS graphs.

Theorem 5.5. Let H1 and H2 be realisable. Then the Cartesian product H1�H2 is realisable.

Proof. Let V (H1) = {u1, . . . , um} and V (H2) = {v1, . . . , vn}. For 1 ≤ i ≤ m, let Si be the label
on ui in H1, and for 1 ≤ j ≤ n, let Tj be the label on vj in H2; we may assume that Si ∩ Tj = ∅.
Assign to vertex (ui, vj) in H1�H2 the label Si ∪ Tj . This gives a consistent labelling for H1�H2

because, by Definition 2.3,

(ui, vj) ∼ (uk, v`) in H1�H2

⇐⇒ either vj ∼ v` in H2 and ui = uk, or ui ∼ uk in H1 and vj = v`

⇐⇒ either |Tj ∩ T`| = γ(H2)− 1 and Si = Sk, or |Si ∩ Sk| = γ(H1)− 1 and Tj = T`

⇐⇒ Si ∪ Tj and Sk ∪ T` differ in exactly one element,

and therefore H1�H2 is realisable by Corollary 1.11.
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1 3 5 2 4

A C E B D

6G 7 8 9

{1, 2, A,B} {1, 2, B, C} {2, 3, B,C} {3, 4, B,C}

{1, 2, C,D}

H = γ ·G

{2, 3, C,D} {3, 4, C,D}

{1, 2, B, C} {2, 3, B,C} {3, 4, B,C}

{1, 2, C,D}

H ′

{2, 3, C,D} {3, 4, C,D}

Figure 5.1: An example using the induced subgraph construction in [38], which requires 393 vertices
and at least 427 edges to obtain a parent graph for the given induced subgraph of γ ·G.

25



{1, 2, 5} {1, 3, 5} {1, 3, 6}

{2, 4, 5}

H ′

{3, 4, 5} {3, 4, 6}

Figure 5.2: A relabelling of the induced subgraph of γ ·G in Figure 5.1, which improves the efficiency
of our constructions.

[30] proves Theorem 5.5 by showing that if H1 = γ ·G1 and H2 = γ ·G2, then γ · (G1 ∪G2) is
isomorphic to H1�H2; [36] proves the corresponding result for JIS graphs.

Theorem 5.6. Every tree T is realisable.

Proof. The proof is by induction on the number n ≥ 1 of vertices of T . The base case n = 1 is a
single vertex, which is labellable with a single symbol. Assume that the cases up to n− 1 ≥ 1 are
true. Let w be a pendant vertex of T , and let the vertices of T −w be v1, . . . , vn−1. We may assume
that w is adjacent to vertex vn−1 in T . By the inductive hypothesis, the graph T − w admits a
consistent labelling as a γ-graph; for 1 ≤ i ≤ n − 1, let Si be the label assigned to vertex vi in

T − w. Let a and b be distinct symbols not contained in
n−1⋃
i=1

Si. For 1 ≤ i ≤ n− 1, assign to vi in

T the label Si ∪ {a}, and assign to w the label Sn−1 ∪ {b} (see Figure 5.3).

Recall that we may find the 2-core of a graph G (see Definition 3.4) by repeatedly deleting
isolated vertices and pendant vertices from G. Thus, the 2-core of a graph is empty if and only if
the graph is a forest, and the 2-core of a unicyclic graph is its underlying single cycle. Theorem 5.6
can be generalised to the following.

Theorem 5.7. A graph H is realisable if and only if the 2-core of H is either empty or realisable.

Proof. Suppose H is realisable. If its 2-core is not empty, then the 2-core is an induced subgraph
of H and so is realisable by Corollary 5.2.

Now suppose the 2-core of H is empty. Then H is a forest, and so H is realisable by Theorem 5.6
and Corollary 5.1.

Finally, suppose the 2-core K of H is not empty. We may assume that H is connected by
Corollary 5.1. The proof is by induction on the number k ≥ 0 of vertices in H −K. The base case
k = 0 is realisable by assumption.
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vi

vn−1

w

T

Si ∪ {a}

Sn−1 ∪ {a}

Sn−1 ∪ {b}

T with vertex-labels

Figure 5.3: Every tree T is realisable.

Assume that the cases up to k − 1 ≥ 0 are true. Since k ≥ 1, the graph H contains a pendant
vertex w. Let v1, v2, . . . , vn+k−1 be the vertices of H −w, where we may assume that w is adjacent
to vn+k−1. By the inductive hypothesis, the graph H−w admits a consistent labelling as a γ-graph;
for 1 ≤ i ≤ n + k − 1, let Si be the label assigned to vertex vi in H − w. Let a and b be distinct

symbols not contained in
n+k−1⋃

i=1
Si. For 1 ≤ i ≤ n+ k− 1, assign to vi in H the label Si ∪{a}, and

assign to w the label Sn+k−1 ∪ {b}.

Corollary 5.8. Every unicyclic graph is realisable.

[40] proves Theorem 5.6 and Corollary 5.8 using a single construction which, while relatively
straightforward, can be used to modify the parent graph G of some γ · G only when G satisfies
the Private Neighbourhood Condition (see Section 2.2). [36] proves Theorem 5.7 for JIS graphs, so
trees and unicyclic graphs are realisable as JIS graphs.

Recall the family of wheel graphs Wn (see Definition 3.13): W4 is isomorphic to K4, which is
realisable by Theorem 5.3. Here we establish the realisability of wheel graphs of the form W2n+1,
and we demonstrate in Section 6.2 that for n ≥ 3, wheel graphs of the form W2n are minimally
forbidden.

Theorem 5.9. For each n ≥ 2, the wheel graph W2n+1 is realisable.

Proof. Let v1, . . . , v2n be the vertices of W2n+1 that induce the cycle C2n, and let v2n+1 be the
vertex of W2n+1 adjacent to all other vertices. Label v2n+1 with the set [n], and let {S1, . . . , Sn}
be the set of all (n− 1)-subsets of [n]. Let a1, . . . , an be a list of distinct symbols disjoint from [n].
For 1 ≤ i ≤ n− 1, assign to v2i−1 and v2i the respective labels Si ∪{ai} and Si ∪{ai+1}, and assign
to v2n−1 and v2n the respective labels Sn ∪ {an} and Sn ∪ {a1} (see Figure 5.4 for an example with
n = 4).
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v1 v2

v3

v4

v5v6

v7

v8
v9

S1 ∪ {a1} S1 ∪ {a2}

S2 ∪ {a2}

S2 ∪ {a3}

S3 ∪ {a3}S3 ∪ {a4}

S4 ∪ {a4}

S4 ∪ {a1}
[4]

Figure 5.4: W9 is realisable.

Theorem 5.9 is new in the context of γ-graphs. [36] hints at the result for JIS graphs by claiming
(without proof) that only wheels of the form W2n for n ≥ 3 are forbidden.

Theorem 5.10. For 1 ≤ k ≤ n, the Johnson graph J(n, k) is realisable.

Proof. By definition, the vertices of J(n, k) are all k-sets from [n], and two k-sets are adjacent
whenever they intersect in a set of size k − 1. This corresponds to the adjacency condition for a
γ-graph, so J(n, k) admits a consistent labelling.

Theorem 5.10 is new for γ-graphs, and [36] proves the corresponding result for JIS graphs.

Theorem 5.11. For each n ≥ 1, the hypercube graph Qn is realisable.

Proof. Let {a1, . . . , an} and {b1, . . . , bn} be disjoint sets of symbols. Label the vertex of Qn corre-
sponding to the binary n-tuple (v1, . . . , vn) by (s1, . . . , sn), where

si =

ai if vi = 0

bi if vi = 1

This is a consistent labelling of Qn because two binary n-tuples are adjacent in Qn only when they
differ in exactly one position i, and the corresponding vertex-labels {s1, . . . , sn} and {t1, . . . , tn}
differ only in the values of si and ti (see Figure 5.5 for an example with n = 3).

We also present a short alternative proof of Theorem 5.11.

Proof. Since Q1 ' K2 is realisable by Theorem 5.3 and Qn ' Qn−1�K2 for n ≥ 2, it follows that
Qn is realisable by Theorem 5.5.

[5] proves Theorem 5.11 by examining γ-graphs of certain families of trees; [33] proves the
corresponding result for JIS graphs by induction on the number of vertices.
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(0, 0, 0)

(0, 1, 0) (0, 1, 1)

(0, 0, 1)

(1, 0, 0)

(1, 1, 0) (1, 1, 1)

(1, 0, 1)

{a1, a2, a3}

{a1, b2, a3} {a1, b2, b3}

{a1, a2, b3}

{b1, a2, a3}

{b1, b2, a3} {b1, b2, b3}

{b1, a2, b3}

Figure 5.5: Q3 is realisable.

5.3 Forbidden families

[38, Corollary 2.8] and [30, Theorem 2.3] give two families of forbidden graphs, which we recover
here. By Corollary 5.2, it is enough to show that each graph in the family contains a forbidden
graph as an induced subgraph.

Theorem 5.12. For m ≤ n and when the conditions m ≥ 2 and n ≥ 3 hold, the complete bipartite
graph Km,n is forbidden.

Proof. The 2-core of K1,n is empty, so K1,n is realisable by Theorem 5.7, and the graph K2,2 is
isomorphic to C4, which is realisable by Theorem 5.4. In all other cases, Km,n contains K2,3 as an
induced subgraph, which we shall see in Theorem 6.10 is forbidden, so Km,n is forbidden.

Theorem 5.13. For each n ≥ 5 and for some edge e, the graph Kn − e is forbidden.

Proof. We shall see in Theorem 6.10 that K5 − e is forbidden. Since K5 − e occurs as an induced
subgraph of Kn − e for each n ≥ 5, it follows that Kn − e is forbidden.
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Chapter 6

Further Results on γ-Graphs

6.1 Forced-labelling lemmas

The following lemmas demonstrate that there must be a specified labelling on certain induced
subgraphs within a γ-graph in order for the labelling to be consistent. These lemmas are useful
as they can help prove the labellability of a graph, implying the realisability of that graph by
Corollary 1.11. Alternatively, we can use these lemmas to determine which graphs are forbidden by
demonstrating that a consistent labelling does not exist, and we can further demonstrate minimality
if we can show that every proper induced subgraph of a forbidden graph has a labelling. In
Section 6.3 we recover the minimally forbidden graphs on five vertices, and in Section 6.5 we
explicitly prove that there are exactly four minimally forbidden graphs on six vertices.

We shall label a vertex of a γ-graph γ · G as 123X, for example, to correspond to a γ-set
{1, 2, 3} ∪ X in the graph G, where X ⊆ V (G) is a (possibly empty) set disjoint from {1, 2, 3}.
Vertices labelled as 123X and 257X, for example, involve the same set X.

We shall derive necessary conditions in the proofs of the following lemmas. It is straightforward
to verify that the given conditions are sufficient.

Lemma 6.1. If P3 occurs as an induced subgraph of a γ-graph, then without loss of generality and
for some set X, its labelling in the γ-graph must be

12X 23X 34X

Proof. Let the vertices of the induced P3 be labelled as

U1 U2 U3

Let the label of U1 be {u1, u2, u3, . . . , uk} for some k ≥ 1. Then without loss of generality
the label of U2 is {u′1, u2, u3, . . . , uk}, where u′1 /∈ {u1, u2, u3, . . . , uk}. Since U3 is adjacent to U2
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but not U1, then (again without loss of generality) its label is {u′1, u′2, u3, . . . , uk}, where u′2 /∈
{u′1, u1, u2, u3, . . . , uk} and k ≥ 2. This corresponds to the claimed labelling with (u1, u2, u

′
1, u
′
2) =

(1, 2, 3, 4) and {u3, . . . , uk} = X.

Lemma 6.2. If

u1u2Y U u′1u
′
2Y

is a labelled induced subgraph of a γ-graph, where u1, u2, u
′
1, and u′2 are all distinct, then the label

of U must be one of the following:
(i) u1u

′
1Y ; (ii) u1u

′
2Y ; (iii) u′1u2Y ; (iv) u′2u2Y .

Proof. Since {u1, u2} ∪ Y and {u′1, u′2} ∪ Y differ in exactly two elements and the label of U must
differ from each of these sets in just one element, then the label of U must contain the set Y . If
the label of U contains u1, then for U to be adjacent to u′1u′2Y , its label must be either u1u

′
1Y

or u1u
′
2Y . Otherwise, the label of U does not contain u1. For U to be adjacent to u1u2Y , its

label must contain u2. Then, for U to be adjacent to u′1u′2Y , its label must be either u′1u2Y or
u′2u2Y .

Lemma 6.1 shows that when the endpoints of an induced P3 are labelled within a γ-graph, the
outermost vertices must have labels which differ in exactly two elements. Lemma 6.2 shows that
when the labels of these outermost vertices are prescribed, the central vertex then has four possible
labels. This does not contradict the generality of Lemma 6.1, as we may switch the labels 1 and 2
(and independently, 3 and 4).

Lemma 6.3. If C4 occurs as an induced subgraph of a γ-graph, then without loss of generality and
for some set X, its labelling in the γ-graph must be

12X 23X

34X14X

Proof. Let the vertices of the induced C4 be labelled as

U1 U2

U3U4
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By Lemma 6.1, the labels of U1, U2, and U3 must be {u1, u2, u3, . . . , uk}, {u′1, u2, u3, . . . , uk}, and
{u′1, u′2, u3, . . . , uk}, respectively, where k ≥ 2 and u′1, u′2, u1, u2, u3, . . . , uk are all distinct. Since U4

is adjacent to both U1 and U3, one of the four cases (i) to (iv) of Lemma 6.2 with Y = {u3, . . . , uk}
must apply. Since U4 is distinct from and not adjacent to U2, only case (ii) is possible and so the
label of U4 is {u1, u

′
2, u3, . . . , uk}. This corresponds to the claimed labelling with (u1, u2, u

′
1, u
′
2) =

(1, 2, 3, 4) and {u3, . . . , uk} = X.

Lemma 6.4. If K3 occurs as an induced subgraph of some γ-graph, then without loss of generality
and for some set X, its labelling in the γ-graph must have exactly one of the following forms:

(i)

12X

13X 23X

α

(ii)

1X

3X 2X

β

Proof. Let the vertices of the induced K3 be labelled as

U1

U3 U2

Let the labels of U1 and U2 be {u1, u2, u3, . . . , uk} and {u′1, u2, u3, . . . , uk} for some k ≥ 1, where
u′1 /∈ {u1, u2, u3, . . . , uk}. Since U3 is adjacent to both U1 and U2, then if its label contains both
u1 and u′1, its label may be taken to be {u1, u

′
1, u3, . . . , uk}, where k ≥ 2. This corresponds to the

first claimed labelling with (u1, u2, u
′
1) = (1, 2, 3) and {u3, . . . , uk} = X.

Otherwise, without loss of generality the label of U3 does not contain u1. Since U3 is adjacent to
U1 and distinct from U2, its label must be {u′′1, u2, u3, . . . , uk}, where u′′1 /∈ {u′1, u1, u2, u3, . . . , uk}.
This corresponds to the second claimed labelling with (u1, u

′
1, u
′′
1) = (1, 2, 3) and {u2, . . . , uk} = X.

The forms (i) and (ii) given above are not consistent with each other (even for different X), so
the induced K3 must take exactly one of these two forms.

In Section 6.2, we shall use the fact that a labelled γ-graph containing an induced subgraph K3

must take exactly one of the two forms α and β depicted in Lemma 6.4 (i) and (ii).

Lemma 6.5. If K4− e occurs as an induced subgraph of a γ-graph, then without loss of generality
and for some set X, its labelling in the γ-graph must be

32



12X

13X 14X

α

β

34X

Figure 6.1: EveryK4−e labelling must have opposing label types on the two induced subgraphsK3.

12X

23X 13X

34X

Proof. Let the vertices of the induced K4 − e be labelled as

U1

U2 U4

U3

By Lemma 6.1, the labels of U1, U2, and U3 must be {u1, u2, u3, . . . , uk}, {u′1, u2, u3, . . . , uk}, and
{u′1, u′2, u3, . . . , uk}, respectively, where k ≥ 2, and u′1, u

′
2, u1, u2, u3 . . . , uk are all distinct. Since

U4 is adjacent to both U1 and U3, we can label it by applying Lemma 6.2 with Y = {u3, . . . , uk};
because U4 is distinct from and adjacent to U2, only cases (i) and (iv) are applicable.

• Case (i): The label of U4 is {u1, u
′
1, u3, . . . , uk}. This corresponds to the claimed labelling

with (u1, u2, u
′
1, u
′
2) = (1, 2, 3, 4) and {u3, . . . , uk} = X.

• Case (iv): The label of U4 is {u′2, u2, u3, . . . , uk}. This corresponds to the claimed labelling
with (u1, u2, u

′
1, u
′
2) = (4, 3, 2, 1) and {u3, . . . , uk} = X (after reflecting the labelled γ-graph

through a horizontal axis).

Remark 6.6. The graph K4 − e contains two induced subgraphs K3 sharing an edge. Lemma 6.5
shows that when K4 − e is an induced subgraph of some γ-graph, then the labelling of one of its
induced subgraphs K3 must have the form α and the labelling of the other must have the form β (as
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specified in Lemma 6.4). We shall use this fact in Section 6.2 to obtain a new family of minimally
forbidden graphs.

Lemma 6.7. If K1,3 occurs as an induced subgraph of some γ-graph, then without loss of generality
and for some set X, its labelling in the γ-graph must be

123X

234X 135X 126X

Proof. Let the vertices of the induced K1,3 be labelled as

U1

U2 U3 U4

By Lemma 6.1, the labels of U2, U1, and U3 must be {u1, u2, u3, . . . , uk}, {u′1, u2, u3, . . . , uk}, and
{u′1, u′2, u3, . . . , uk}, respectively, where k ≥ 2, and u′1, u′2, u1, u2, u3, . . . , uk are all distinct. Since U4

is adjacent to U1 but not U2 and not U3, then without loss of generality its label is {u′1, u2, u
′
3, u4, . . . , uk},

where k ≥ 3 and u′3 /∈ {u′1, u′2, u1, u2, u3, u4 . . . , uk}. This corresponds to the claimed labelling with
(u1, u2, u3, u

′
1, u
′
2, u
′
3) = (4, 2, 3, 1, 5, 6) and {u4, . . . , uk} = X.

Lemma 6.8. For n ≥ 3, if K1,n occurs as an induced subgraph of some γ-graph, then each label of
the γ-graph must contain at least n elements.

Proof. Let the vertices of K1,n be
u

v1 v2 v3

· · ·

vn

and consider a consistent labelling on the vertices. The label of each vi must differ from the label
of u in exactly one element. For distinct i and j, the labels of vi and vj cannot differ from the label
of u in the same element. Therefore the label of u contains at least n elements.

See Figure 6.2 for a labelling of K1,n where each label contains exactly n elements.
The consequences of these lemmas are seen throughout the rest of Chapter 6: we show that

wheel graphs of the form W2n for n ≥ 3 are forbidden in Section 6.2, and we classify all graphs on
up to six vertices as realisable or forbidden in Sections 6.3 to 6.6.
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[n]

S1a1 S2a2 S3a3

· · ·

Snan

Figure 6.2: A labelling of K1,n with Si := [n] \ i for 1 ≤ i ≤ n and a1, a2, . . . , an unique symbols
not contained in [n], so each label has exactly n elements.

6.2 Forbidden wheels

The following result is claimed without proof in [36] in the context of JIS graphs. We now prove
the result in the context of γ-graphs.

Theorem 6.9. For each n ≥ 3, the wheel graph W2n is minimally forbidden.

Proof. Suppose, for a contradiction, that W2n is not forbidden and so can be consistently labelled.
Let v1, . . . , v2n−1 be the vertices of W2n that induce the cycle C2n−1, and let v2n be the vertex of
W2n adjacent to all other vertices. Consider the sets of vertices

{v2n, v1, v2}, {v2n, v2, v3}, . . . , {v2n, v2n−2, v2n−1}, {v2n, v2n−1, v1}.

Each of these sets induces the subgraph K3 in W2n. Since n ≥ 3, the vertices of adjacent induced
K3s in this (cyclic) sequence each induce a copy of K4 − e, and so by Remark 6.6 the labelling of
each induced K3 must alternate between the forms α and β as the sequence is traversed. Therefore
the number of induced subgraphs K3 that occur must be even, but the number of triangles in W2n

is 2n− 1, giving a contradiction. It follows that W2n is forbidden.
To see that W2n is minimally forbidden, we must show that the graph W2n − vi is realisable

for each 1 ≤ i ≤ 2n. If i = 2n, the graph W2n − vi is isomorphic to C2n−1, which is realisable by
Theorem 5.4. Otherwise, if i 6= 2n, the graph W2n − vi is an induced subgraph of W2n+1, which is
realisable by Theorem 5.9 and Corollary 5.2.

6.3 5-vertex minimally forbidden graphs

[30] determined the four minimally forbidden graphs on five vertices by showing directly that each
graph does not admit a labelling, and so each graph is forbidden. We recover the four minimally
forbidden graphs on five vertices here. These graphs are minimally forbidden because every graph
on at most four vertices is realisable, as we verify in Section 6.4. The realisability of the remaining
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5-vertex graphs was asserted in [30]; in Section 6.4, we use Corollary 1.11 to explicitly prove this
result by means of consistent labellings.

Theorem 6.10. The following graphs on five vertices are minimally forbidden.

(i) U5

U1
U4

U2

U3

(ii) V2

V3 V4

V1

V5

(iii) X2

X3 X4 X5

X1

(iv)

Y2 Y4

Y1

Y3 Y5

Proof. Suppose, for a contradiction, that the vertex-labels shown above are consistent.

(i) By Lemma 6.7 applied to U1, U3, U4, and U5, we must have the labels

126X

123X
135X

U2

234X

for some set X. Apply Lemma 6.2 with U = U2 and Y = X ∪ {3} and (u1, u2) = (2, 4) and
(u′1, u′2) = (1, 5). Since U2 must be distinct from 123X and adjacent to 126X, each of the
cases (i) to (iv) gives a contradiction.

(ii) By Lemma 6.5 applied to V1, V2, V3, and V4, we must have the labels
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23X

12X 34X

13X

V5

for some set X. Since V5 is adjacent to both 13X and 23X, then by Lemma 6.4 there are two
possible labels for V5:

• Case 1: The label of V5 is 12X. This is a repeated label, giving a contradiction.

• Case 2: The label of V5 is 35X. Then V5 is adjacent to 34X, giving a contradiction.

(iii) By Lemma 6.5 applied to X1, X2, X3, and X4, we must have the labels

34X

13X 23X X5

12X

for some set X. Apply Lemma 6.2 with U = X5 and Y = X and (u1, u2) = (1, 2) and
(u′1, u′2) = (3, 4). Since X5 must be distinct from and not adjacent to both 13X and 23X,
each of the cases (i) to (iv) gives a contradiction.

(iv) By Lemma 6.5 applied to Y1, Y2, Y3, and Y5, we must have the labels

23X Y4

13X

12X 34X

for some set X. Apply Lemma 6.2 with U = Y4 and Y = X and (u1, u2) = (1, 2) and
(u′1, u′2) = (3, 4). Since Y4 must be distinct from and adjacent to both 13X and 23X, each of
the cases (i) to (iv) gives a contradiction.
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6.4 5-vertex classification of γ-graphs

In this section, we shall completely classify all γ-graphs on up to five vertices. This classification
is asserted in [30], which states that the only forbidden graphs on up to five vertices are exactly
those presented in Theorem 6.10, but does not explicitly realise all other graphs on five vertices.
As we build our library of realisable graphs, we may use Corollary 5.1 to restrict our classification
to connected graphs.

We reference [13] for all connected graphs on at most five vertices, of which there are 31. Of
these, we showed in Section 6.3 that four of them are minimally forbidden. The remaining 27
are realisable, as demonstrated by the labellings in Subsections 6.4.1 to 6.4.5. All 31 graphs are
presented here, ordered first by number of vertices and then by number of edges. A labelling
involving smaller γ-sets is preferable because the parent graphs in the constructions of Chapter 4
are then simpler, but it is not necessary to find an optimal labelling in order to determine the
realisability of a graph.

6.4.1 Realisable on 1 vertex
1

6.4.2 Realisable on 2 vertices
1 2

6.4.3 Realisable on 3 vertices
12 23 34

1

2 3

6.4.4 Realisable on 4 vertices
12 23 34 45
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123

234 135 126

12 13

3424

12

13 14

25

12 23

3413

1

2 3

4
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6.4.5 Realisable on 5 vertices
1234

2345 1346 1247 1238

123 135126

234247

12 23 34 45 56

125 135

345245

246

13 14

12

35 46

136 146

126256 127

15 23

12

45 34

13 14

12

25

56

12 13

15

24 34

125

235

345

135

236

34

13

12

23

45

14 25

2613

12
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123

135 125 124 234

12

13

14

15

26

12 13

3424

23

12 13

23

15 14

5 2

1

4 3
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6.5 6-vertex minimally forbidden graphs

We prove here that there are exactly four minimally forbidden graphs on six vertices, which [33]
states without proof in the context of JIS graphs.

Theorem 6.11. The following graphs on six vertices are minimally forbidden.

(i) U6

U2
U3 U4

U5

U1

(ii) V4

V2 V3

V1 V5

V6

(iii)

X1

X2 X3

X4

X5 X6 (iv)

Y1

Y2 Y3

Y4

Y5 Y6

Proof. We shall show that each of the graphs (i) to (iv) is forbidden. It follows that all of these
graphs are minimally forbidden because every proper induced subgraph is realisable by the 5-vertex
classification of Section 6.4.

(i) By Lemma 6.7 applied to U1, U2, U3, and U6, we must have the labels

234X

123X
135X U4

U5

126X

for some set X. Apply Lemma 6.2 with U = U5 and Y = X ∪ {2} and (u1, u2) = (1, 6) and
(u′1, u′2) = (3, 4). Since U5 must be distinct from and not adjacent to 123X, the only possible
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label for U5 is 246X. Then U5 differs from 135X in exactly three elements, but is joined by
a path of length two, giving a contradiction.

(ii) By Lemma 6.5 applied to V1, V2, V3, and V4, we must have the labels

34X

13X 23X

12X V5

V6

for some set X. Since 23X, 34X, and V6 together induce P3, then by Lemma 6.1 we must
label V6 by 45X. Apply Lemma 6.2 with U = V5 and Y = X and (u1, u2) = (1, 2) and
(u′1, u′2) = (4, 5). Since V5 is not adjacent to 13X and 23X, each of the cases (i) to (iv) gives
a contradiction.

(iii) By Lemma 6.7 applied to X1, X2, X3, and X4, we must have the labels

123X

234X 135X

126X

X5 X6

for some set X. Apply Lemma 6.2 with U = X5 and Y = X ∪ {2} and (u1, u2) = (3, 4) and
(u′1, u′2) = (1, 6). Since X5 must be distinct from and not adjacent to 123X, the only possible
label for X5 is 246X. Then X5 differs from 135X in exactly three elements but is joined by
a path of length two, giving a contradiction.

(iv) This is W6, which is forbidden by Theorem 6.9.

6.6 6-vertex classification of γ-graphs

We reference [12] for the 112 connected graphs on six vertices. The 69 graphs labelled with specific
sets are realisable; the 39 graphs labelled with Ui, Vi, Xi, or Yi are forbidden because they contain as
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an induced subgraph one of the corresponding minimally forbidden graphs on five vertices given in
Theorem 6.10; and the four unlabelled graphs are the minimally forbidden ones on six vertices given
in Theorem 6.11. The graphs are ordered from least to most number of edges. When necessary,
other symbols (such as capitalised letters) are used for the vertex-labels. Lemmas 6.3 and 6.8
have not been used directly until now, but they were helpful in determining some of the following
labellings.
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(i) (ii)

(iii) 234

123
135 145 456

246

126

Figure 6.3: The family suggested by the graphs in (i), (ii), and (iii) is not forbidden because (iii) is
realisable.

6.7 Discussion of forbidden families

It is worth investigating the minimally forbidden graphs on five and six vertices for patterns that
suggest forbidden families. We recovered two forbidden families in Section 5.3 this way: the com-
plete bipartite graphs Km,n that contain K2,3 as an induced subgraph, and the graphs Kn − e

for n ≥ 5. We proved in Theorem 6.10 parts (i) and (iv) that K2,3 and K5 − e are minimally
forbidden graphs on five vertices, from which the corresponding forbidden families can be deduced;
no forbidden families are immediately suggested by the graphs in parts (ii) and (iii). We also used
Theorem 6.11 part (iv) to make an initial conjecture that Wn is forbidden for each n ≥ 6. We
immediately disproved this by successfully labelling W7, and then established in Section 6.2 that
W2n for n ≥ 3 is in fact minimally forbidden. One must be cautious though: taken together,
Theorem 6.10 part (i) and Theorem 6.11 part (i) suggest another forbidden family of graphs, but
Figure 6.3 demonstrates that this family has realisable members.

[33] claims without proof that the three graphs given in Figure 6.4 are forbidden. We exhibit
labellings there for two of the graphs and explicitly prove that the third is forbidden.

Lemma 6.12. The graph H in Figure 6.4 is minimally forbidden.

Proof. Every proper induced subgraph of H is labellable (hence realisable), so it is sufficient to
show that H is forbidden. Suppose, for a contradiction, that H can be labelled as in Figure 6.4.
By Lemma 6.7 applied to U1, U2, U6, and U7, we must have the labels
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Figure 6.4: [33] claims without proof that the above graphs are forbidden as JIS graphs, but only
H is forbidden.

234X U5

123X U4

126X U3

135X

for some set X. Apply Lemma 6.1 to the path joining 123X to 135X to U4. This gives six
possibilities for U4: 145X, 156X, 157X, 345X, 356X, and 357X. We need consider only the first
three of these, because the mapping that interchanges 1 with 3, and 4 with 6, maps the labelled
graph to (a reflection through a horizontal axis of) itself. Therefore U4 must be labelled 145X or
156X or 157X. We can discard the label 156X because U4 is not adjacent to 126X, and we can
discard the label 157X because U4 is not adjacent to 135X. Therefore U4 must be labelled 145X.

Now apply Lemma 6.2 with U = U3 and Y = X ∪ {1} and (u1, u2) = (2, 6) and (u′1, u′2) =
(4, 5). Since U3 is adjacent to neither 123X nor 135X, it must be labelled 146X. Similarly, apply
Lemma 6.2 with U = U5 and Y = X ∪ {4} and (u1, u2) = (2, 3) and (u′1, u′2) = (1, 5). Since U5

is adjacent to neither 123X nor 135X, it must be labelled 245X. We therefore have the labelling
U3 = 146X and U5 = 245X, which contradicts that U3 and U5 are adjacent.
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Chapter 7

Distance-d γ-Graphs

In this chapter, we extend the definitions of domination and γ-sets in graphs (as, for example,
in [29]) and introduce the corresponding extension of a γ-graph.

Definition 7.1. For d ≥ 1, a distance-d dominating set of a graph G is a set S ⊆ V (G) such that
every vertex of G is either in S or at distance at most d from a vertex in S. A γd-set of G, also
called a minimum distance-d dominating set of G, is a distance-d dominating set of smallest size.
The distance-d domination number of G, denoted γd(G), is the size of a γd-set of G.

The case d = 1 of Definition 7.1 corresponds to the usual definition of domination. When the context
is clear, we shall say, for example, “v1 dominates v2” in place of “v1 distance-d dominates v2.”

We may now extend the definition of γ-graph in accordance with distance-d domination.

Definition 7.2. The γd-graph γd ·G of a graph G is formed as follows:

• the vertices of γd ·G correspond to the γd-sets of G;

• two vertices are adjacent if and only if their corresponding γd-sets intersect in a set of size
γd(G)− 1.

The definitions of realisable, labellable, and forbidden γd-graphs follow similarly. Note that the
case d = 1 yields the γ-graph γ ·G.

We now generalise Theorem 1.10, the proof of which is inspired by the construction in Sec-
tion 4.2.

Theorem 7.3. Let k ≥ 1 be an integer, and let D be a nonempty set of k-subsets of {1, 2, 3, . . . }.
Then there is a graph G whose γd-sets are the elements of D.

Proof. Take n =
∣∣∣∣∣ ⋃D∈D

D

∣∣∣∣∣, and relabel if necessary so that each element of D is a subset of [n].

Regarding D as a clutter with respect to [n] (see Definition 2.1), the blocker B of D is the collection
of all minimal subsets of [n] containing at least one element of each D ∈ D. We use the following
construction for G.
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y34
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x2

P (x2)

y2

P (y2)
x1

P (x1)

y1

P (y1)

Figure 7.1: Construction of G for Theorem 7.3 with d = 3, k = 3, and D = {{1, 2, 3}, {1, 2, 4}}.

(1) Initialise G to be Kn and label its vertices 1, 2, . . . , n.

(2) For each B ∈ B, form paths P (xB), P (yB) of length d − 1 terminating in vertices xB, yB,
respectively, and join xB and yB to the vertices of B.

The resulting graph G has
n+ 2d|B| (7.1)

vertices and (
n

2

)
+ 2

∑
B∈B
|B|+ 2(d− 1)|B| (7.2)

edges.
Let d = 3 and consider again the example with k = 3 and D = {{1, 2, 3}, {1, 2, 4}}, so n = 4.

Initialise G to be K4 and label its vertices 1, 2, 3, 4. Form the blocker B = {{1}, {2}, {3, 4}} of D.
For the element {1}, form paths P (x1) and P (y1), which terminate in vertices x1 and y1 respectively,
and join each of x1 and y1 to the vertex 1. This ensures that [n] \ {1} = {2, 3, 4}, along with each
of its proper subsets, is not a γ3-dominating set of G. Repeat for each other element of B. See
Figure 7.1 for the resulting graph G, which has 22 vertices and 26 edges.
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Let G be constructed according to Steps (1) and (2) above. We now show that the γd-sets of G
are exactly the elements of D.

(a) No added vertex is contained in a γd-set of G.

Consider B ∈ B and suppose, for a contradiction, that a vertex w in P (xB) is contained in
a γd-set D of G. Then no vertex z in P (yB) is contained in D, otherwise we may obtain a
smaller dominating set thanD by replacing the vertices w and z inD with a single vertex from
the nonempty set B: this vertex dominates all vertices of P (xB) and P (yB) by construction,
and it dominates all vertices of [n] because G was initialised to Kn.

Since no vertex z in P (yB) is contained in D, and the pendant vertex p of P (yB) is dominated
by some vertex of D whose distance from p is at most d, the set D must contain some vertex
of B. This vertex dominates all vertices of P (xB) and P (yB) by construction, and it dominates
all vertices of [n] because G was initialised to Kn, so we may obtain a smaller dominating set
than D by removing w from D, giving the required contradiction.

(b) Each element of D is a distance-d dominating set of G.

Let D ∈ D. Each vertex of D dominates all vertices of [n] because G was initialised to Kn.
Let B ∈ B; it remains to show that D dominates all vertices of P (xB) and P (yB). By the
definition of B, we may choose a vertex i in the nonempty set B ∩D. By construction, the
vertices of P (xB) and P (yB) are all dominated by i ∈ D.

(c) No (k − 1)-subset of [n], and no k-subset of [n] not contained in D, distance-d dominates G.

In the case k = 1, the statement holds vacuously. Otherwise, take k ≥ 2 and let S be a subset
of [n] that either has size k − 1, or has size k and is not contained in D. We shall show that
S does not dominate G.

Let D̃ be the set {D \S : D ∈ D}. By the definition of S, each element of D̃ is nonempty. Let
B̃ be an element of the blocker of D̃. Note that this implies B̃ ∩ S = ∅. Since B̃ contains at
least one element of D \ S for each D ∈ D, then B̃ necessarily contains at least one element
of each D ∈ D. By minimality of the elements of the blocker B, we have B̃ ⊇ B for some
B ∈ B. Using B̃ ∩ S = ∅ and B ∈ B, we must then have B̃ = B (otherwise B would be
a proper subset of B̃ containing at least one element of each D \ S in D̃, contradicting the
minimality of B̃ in the blocker of D̃).

We have shown that B̃ ∈ B, so G contains a path P (x
B̃

). Since B̃ ∩ S = ∅, it follows that S
does not dominate the pendant vertex of P (x

B̃
) and therefore does not dominate G.

By part (a), the γd-sets of G contain vertices only from [n]. By part (b), the k-subsets in D
dominate G, so γd(G) ≤ k. By parts (b) and (c), we know γd(G) ≥ k and the k-subsets of [n] which
dominate G are exactly the elements of D. It follows that the γd-sets of G are exactly the elements
of D.
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This leads to the following corollary.

Corollary 7.4. A graph is realisable as a γd-graph if and only if it is labellable as a γd-graph.

Although Honkala et al. [26] give certain generalisations of Theorem 1.10, we believe that Theo-
rem 7.3 has not been previously stated (even implicitly in another formalisation).
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Chapter 8

Conclusions and Future Work

Here we discuss some questions that arise from this thesis, and propose some future directions for
work on γ-graphs (equivalently, JIS graphs).

For each labellable graph H, Theorem 1.10 guarantees the existence of a parent graph G such
that H = γ ·G. This greatly simplifies our ability to determine if a graph is realisable or forbidden,
but it leaves many questions about efficiency. As we noted in Section 4.3 (see Figures 4.3 and 4.4),
our attempts to realise P5 constructively turned out to be less efficient than a realisation in which
the parent graph is P11. In general, can we improve the efficiency of the constructions in Sections 4.1
and 4.2? What is the best measure of efficiency for a construction that proves Theorem 1.10?

Figure 4.4 also depicts a labelling of P5 with sets of size two, which are smaller than those in the
labelling in Figure 4.3. Given a labellable graph, how can we label it efficiently? Can we ensure that
the labels will be sets of smallest possible size? This corresponds to minimising the number k in
Definition 1.5. We believe the forced-labelling lemmas of Section 6.1 would be helpful in answering
this. Note also that P11 does not realise P5 with γ-sets of size two. For a given labellable graph,
does a labelling with sets of smaller size allow a simpler parent graph? It is not clear whether P5

could be realised by a graph as simple as P11 but with γ-sets of size two.
We completely classified all graphs on up to six vertices as either realisable or forbidden. There

are 853 connected graphs on seven vertices and 11117 connected graphs on eight vertices [1], so
further classification would benefit from automation. The following algorithm could be used for
determining which n-vertex graphs are realisable or forbidden.

• By Corollary 5.1, consider only connected graphs.

• By Theorem 5.7, consider only graphs with no vertex of degree one.

• For 5 ≤ k ≤ n− 1, remove each graph that contains a minimally forbidden k-vertex graph as
an induced subgraph. Also remove all graphs contained in forbidden families.
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• Try to label each of the remaining graphs. If a labelling can be found, then the graph is
realisable by Corollary 1.11; otherwise, seek a non-existence proof using the forced-labelling
lemmas for assistance.

One major advantage of further classification would be the likely emergence of new families of either
realisable or forbidden graphs.

Sridharan et al. [38, Problem 2] introduce the following interesting problem: if H is a γ-graph,
does there exist a graph G such that γ ·(γ ·G) = H? We cannot answer this using the constructions
of Chapter 4 because the constructed parent graph ofH often containsK2,3 as an induced subgraph,
in which case the parent graph is forbidden.

We have demonstrated a connection between γ-graphs and JIS graphs. Are there connections
between γ-graphs and other mathematical objects? What are their consequences? Since the γ-graph
G(γ) (see Definition 1.8) is always a subgraph of the γ-graph γ · G, are there any implications of
these connections for the γ-graph G(γ)? What about for the variations of γ-graphs defined in [35]?

Finally, Haas and Seyffarth [21] define the following class of graphs.

Definition 8.1. Let G be a graph and k ≥ γ(G) an integer. The k-dominating graph of G, denoted
Dk(G), is defined as follows:

• the vertices of Dk(G) correspond to all dominating sets of G of size at most k;

• two vertices are adjacent if and only if their corresponding dominating sets differ by the
addition or deletion of a single vertex.

See Figure 8.1 for a comparison of γ ·G and Dk(G) for k = 3 and G = P3. What is the relationship
between the γ-graph γ ·G and the k-dominating graph Dk(G)? Given the added complexity with
dominating sets of multiple sizes and a more expansive adjacency condition, we do not anticipate
a simple connection between the two classes of graphs.
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Figure 8.1: A comparison of γ · P3 and D3(P3).
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