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Abstract

Tumour cells arise through aberrant expression of genes and the proteins they encode.
This may result from a direct change to DNA sequence or perturbations in the machinery
responsible for production or activity of proteins, such as gene splicing. With the advent
of massively parallel RNA-sequencing (RNA-seq), large-scale exploration of changes at
the stage of transcription and posttranscriptional splicing has the potential to unravel the
landscape of gene expression changes across human cancers. Aberrantly expressed
genes in cancer can serve as molecular biomarkers for discrimination of tumour and
normal cells if localized to the cell surface and therefore can be used as targets for
targeted antibody-based cancer therapy. In the current study, | devised an analysis
pipeline to identify and rank such events from human cancer RNA-seq datasets. Using
my pipeline, | conducted a pan-cancer analysis in the RNA-sequencing data of more
than 7,000 patients from 24 different cancer types generated by the cancer genome
atlas (TCGA). | identified abnormally expressed and alternatively spliced genes, which
seemed to be cancer-associated in comparison to a large compendium of
transcriptomes from non-diseased tissues gathered from Genotype-Tissue Expression
(GTEx) and TCGA. My analysis revealed 1,503 putative tumor-associated abnormally
expressed genes and 1,142 novel cancer-associated splice variants occurring in 694
genes. In order to rank identified candidate genes, | performed an extensive literature
search and studied known therapeutic antibody targets to collect the characteristics of
an ideal antibody target in cancer. | developed an R package, Prize, based on the
Analytic Hierarchy Process (AHP) algorithm. AHP is a multiple-criteria decision making
solution that allows a user to prioritize a list of elements based of a set of user-define
criteria and numerical score that express the importance of each criterion to achieving
the goal. | built an AHP model to depict cancer biomarker target properties for ranking
and prioritizing the genes. Using this model, Prize was able to successfully recognize
and rank known tumour biomarker targets among the top 25 ranked list along with other

novel candidates.

Keywords: RNA-sequencing; Alternative splicing; Gene expression; Biomarker
target; Prioritization; Analytic Hierarchy Process



Preface

Portions of section 3.1 and 3.3 is in preparation for submission as Daryanaz
Dargahi, Christopher Bond, Ryan Dercho, Richard Swayze, Leanna Yee, Peter
Bergqvist, Alireza Heravi-Moussavi, Bradley Hedberg, Jianghong An, Edie Dullaghan,
Ismael Samudio, John Babcook, and Steven Jones. (2016). Pan-cancer Identification
and Prioritization of Cancer-Associated Abnormally Expressed Genes: A Biomarker
Discovery Application. | am the lead researcher and author of this publication. |
performed data analysis, generated figures, performed literature search, designed and
implemented the R package, and am writing the manuscript. Myself, SJ and JB
conceived and designed the study. Myself, SJ, JB, CB, IS, RS, LY, PB, BH, ED, RD, JA,
AHM designed the problem hierarchy, chose decision criteria and rating categories for
prioritization, and generated consensus pairwise comparison matrices via multiple
discussions and literature search. JB, CB, and IS are leading experts in antibody-drug

conjugate development.

The Prize R package described in section 3.3.1 is currently available to public on
Bioconductor at https://www.bioconductor.org/packages/release/bioc/html/Prize.html.
The package has been downloaded more than 1,300 time since the date of publication
(October 2015).

Portions of section 3.2 has been published as Daryanaz Dargahi, Richard
Swayze, Leanna Yee, Peter Bergqvist, Bradley Hedberg, Alireza Heravi-Moussavi, Edie
Dullaghan, Ryan Dercho, Jianghong An, John Babcook, and Steven Jones. (2014). A
Pan-Cancer Analysis of Alternative Splicing Events Reveals Novel Tumor-Associated
Splice Variants of Matriptase. Cancer Informatics. 2014 Dec; 13: 167-177. doi:
10.4137/CIN.S19435. | was the lead researcher and author of this publication. |
performed data analysis, generated figures, performed literature search, wrote the
manuscript, and was involved in designing validation experiments. Myself, SJ and JB
conceived and designed the study. RS, LY, PB, BH, ED, and RD designed and ran
validation experiments. JA and AHM provided technical assistance. All the authors made

critical revisions and approved the final version of the manuscript.



In addition, novel matriptase splice variants described in section 3.2.3 have been
filed as a PCT international patent application No. PCT/CA2014/000875 entitled:
MATRIPTASE VARIANTS ASSOCIATED WITH TUMORS, filed December 9, 2014.
Inventors: Dargahi, D., Babcook, JS. and Jones SJM. Applicant: British Columbia
Cancer Agency Branch and The Centre for Drug Research and Development.



Dedication

To my parents whose unconditional love and support

has made this possible for me to be here today...

Vi



Acknowledgements

| would like to greatly thank my senior supervisor, Dr. Steven J.M. Jones for
giving me the opportunity to pursue my PhD and for providing me with exceptional

mentorship, consistent support, and endless scientific expertise over the past 5 years.

| would also like to thank my committee members, Dr. David L. Baillie, Dr. Robert
Holt, Dr. Angela Brooks-Wilson, and Dr. Martin Hirst for their support over the past 5
years as well as their advice and guidance not only scientifically, but also in relation to
my professional and personal development. In addition, | would like to acknowledge Dr.
Fiona Brinkman and Dr. Denise Clark for being my internal and external examiners,

respectively.

This work would not have been made possible without the financial support of
several funding agencies. | am deeply grateful for a PhD fellowship from the Mitacs
Accelerate program, and grants from Genome British Columbia strategic opportunities
fund, and the Terry Fox Research Institue (TFRI) new frontiers program. | would like to
also thank Dr. John Babcook, The Centre for Drug Research and Development (CDRD),
and CDRD ventures Inc. for the three years internship opportunity through Mitacs
Accelerate program. In addition, | would like to thank Simon Fraser University and the

Molecular Biology and Biochemistry Department.

The results published in this thesis are in whole or part based upon data
generated by Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas
(TCGA) pilot projects established by national cancer institute (NCI) and national human
genome research institute (NHGRI). | would like to thank GTEx and TCGA groups for
making these data publically available. Information about TCGA can be found at
http://cancergenome.nih.gov. Additional information about GTEx project is also available

at http://www.gtexportal.org/.

Finally, I am extremely grateful for the support of my friends and family.
Specifically my mother Nahid Mojaverian, and my father Mohammad Ali Dargahi, who

have always encouraged me to embrace and develop my individuality and have

Vii



unconditionally supported the pursuit of my passions. Their endless love, support, and

respect have made me the person | am today.

viii



Table of Contents

F Y o] o {0 1= | ii
Y o 1] 1 = o ST iii
[ 1= = TSRS iv
[0 =Yo [ o7 i o] o IS Vi
ACKNOWIEAGEMENES ...ttt ettt e et e et et e et e e e e e e e e eeeeees vii
Table Of CONtENTS ...ccooeeiieee s iX
LIS A 1= o1 PP Xii
LISt Of FIQUIES ..ottt e e e e e e e e e e Xiv
LISt OF ACTONYMIS ...ttt e e e e et e e e e e e et e e e e e e e e e aaanes XX
Chapter 1.  INtroducCtion .........ccoo oo 1
1.1. Gene expression and spliCiNg .......oovviviiiiiiii 1
1.1.1.  The regulation of gene expression ..........ccccuueeiiiiiiiiiiiiiieeee e 4
1.1.2.  The regulation of SPliCING.........cccuuiiiiiiiiiii e 7
1.2. Next-generation SEQUENCING.........ccouiiiiiiiiiiiii 11
1.2.1. RNA Sequencing experiment Work-flow ............cccccccviviiiiiiiiiiiiieniieniienneen, 13
(] = o VA o] (=Y o 1= = 11T o 13
Sequencing RNA .. e 15
Quality assessment of RNA-seq data.........cccoooiiiiiiiiiiiiieec e 16
Read mapping Strat€gies .........coeiiiiiiiiiii e 18

1.2.2. Detecting and measuring expression differences in the
ErANSCHIPIOMIE ... e 20
GENE EXPrESSION IBVEIS ... . e e e e 21
Transcript eXpression 1eVEIS ... 23
De novo transcript identification ... 23
Read count NOrmalization ... 24
Differential expression analysis ..o 26
1.3. Disruption of RNA processing in human cancer..............cccccoeeeeiiiiie e, 26
1.4. Cancer therapeuULICS .......oovviiiiiiii 28
1.4.1. Differentially expressed genes as therapeutic targets.......cccccccevvvevninnn. 33
1.4.2. Alternatively spliced genes as therapeutic target ..........ccccccccvvinnn. 33
1.4.3. Identifying optimal therapeutic targets...........ccccciiiiiiii 34
1.5. Experimental design and AIMS ... 36
Chapter 2. Methods and Materials ..........cccccceriiiiiiiriiirr e 37
2 B I - = 1= =Y £ TSP 37
2.2. RNA-seq quality control and trimming .........ccooooo e 38
2.3. RNA-Seq alignment ..o 39
2.3.1. Gene and isoform quantification guided by a transcriptome..................... 40
2.4. Differential expression @nalysSis ........cccuuiiiiiiiiiiii e 41
DA T B | s 1= o PP 41
p N =L o (o =Y PP 44
A T N[ 1 1S 7= o [P 44
2.5. De novo transcriptome assembly ... 46
2.5.1. Trans-ABySS de novo assembly package ..........ccccovuiiiiiiiiiiiiiiiiiiieeneeen, 48



2.6. DOWNSIream analysSis .......ooooiiiiiiiii e 50

2.6.1. Pathway and enrichment @analysSis .............cciiiiiiiiiiiiiiiiiiiie 50
2.7. Statistical @NalYSiS .......ccooiiiiiiiiiiii e 51
Chapter 3. ReSUILS ....ccccc i e 52
3.1. Pan-cancer identification of cancer-associated differentially expressed
Lo ]=T a1 PP PPPPPPPPPT 52
3.1.1.  Gene expression analysis pipeling .........cccccie 53
L@ TUE= 111§V 07 o] o (o) USSR 55
Read alignment and coverage analySis ... 55
Batch effect and hierarchical clustering ..o 55
Differential expression analysis ..o 58
DOoWNSLream @nalySiS .........uuiiiiiiiiieiiie e 60
3.1.2. Identification of differentially expressed genes within and across
MUIIPIE CANCEI tYPES. .. e 61
Pathway enrichment analysis of differentially expressed genes...........ccccccceeeee... 65
Identification of transcription factors and their target genes common to
MUIIPIE CANCEI tYPES ..o 71
Survival Analysis of differentially expressed genes ..........cccccceeiiiiiiiiiiiiee e 76
Identification of genes differentially expressed across multiple cancer types....... 80
3.1.3. Identifying optimal tumour biomarker targets..................c.cccoce . 90
Identification of cell surface ProteiNs.........ccoeeiv i 94
Identification of cancer-associated differentially expressed genes....................... 95
Identification of optimal targets for antibody targeting ..........c.cocoooiiiiiinnnnen. 95
Identification of potential targets for bi-specific anbodies ..............cccccceennenn. 102
3.2. Pan-cancer identification of cancer-associated alternatively spliced genes......... 106
3.2.1.  AS detection PIpeline ........covvvviiiiiiiiii 108
De novo transcriptome construction ... 110
Transcript quality assessment ... ... 110
Quantifying predicted transCripts ..o 111
Identification of tumor-associated transcripts...........ccccciiiiiiii e 113
Prediction of protein sequence and domain.............occcciviiiiiiieiee e 113
3.2.2. Identification of alternatively spliced genes within and across
MUIIPIE CaNCEI tYPES. .. e 113
Identification of optimal AS variants for antibody-based cancer therapy ............ 121
3.2.3. Epithelial-derived tumours express novel splicing variants of
g F=Y 4] o] €= 1T TSR 122
Identification of two novel splice variants of matriptase ...........cccooeeiciiieeennnn.n. 124
Matriptase splice variants are novel and tumor-associated .................cccoeunnenn..l. 133
gRT-PCR analysis confirms differential expression of novel matriptase
transcripts in epithelial-derived tumours ..., 133
Matriptase splice variants can be translocated to the surface of transfected
(03 [0 2 o= | U URUEPRR 136
3.2.4. Supporting methods. ... 141
The qRT-PCR validation of matriptase splice variants .............cccccccccieeeeinne. 141
Transfection CONSIIUCES .......ooiiiiie e e e 142
Cell culture conditions, and transfection ...............ceeiiiiiiiiiiii e 143
FIOW CYtOMEIIY ... 144
Immunoprecipitation and Western Blot Analysis............cooooiiiicn, 144
3.3. Identification and prioritization of optimal therapeutic targets..............ccccccecnnnnne. 146
An example of a simple decision: determining a thesis topiC............cccccccceeeee.n. 146
3.3.1.  Implementation ... 153



Decomposing the problem into a hierarchy ...,

Building PCMs from individual and/or group judgements ..............ccccceeenneee

Prioritization estimation ............ ..

3.3.2. Prioritizing putative cancer-associated targets ......................cceee.
Chapter 4. DiSCUSSION.....ccccciiiiircrrrcrrrrr s s

22 Y (=] (=) 0 1o =

Appendix A.  Cell surface cancer-associcated abnormally expressed genes

ACTOSS TG A CANCEIS ..ot et e e e e e eaaeann

Appendix B.  Putative biomarker target pairs for therapeutic bispecific

ANEIDOAIES ..o s

Appendix C.  Cell surface cancer-specific spliced variants across TCGA

L0 10

Appendix D.  Final prioritization of putative biomarker genes by Prize R

[OF=Te3 1€ Vo = XSSP

Xi



List of Tables

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Table 3-6.

Table 3-7.

Table 3-8.

Table 3-9.

Table 3-10.

Table 3-11.

Table 3-12.

Table 3-13.

GTEX HISSUE TYPES ettt

Cancer RNAseq datasets used for pan-cancer identification of

differentially expressed genes ..........ccueeeeiiiiiiiiiiiiiiiie e

Top 50 commonly enriched pathways across TCGA cancer types
with matched-normal tissue. The analysis is performed on
differentially expressed genes in each cancer type separately

using the IPA software. ...

Top 15 putatively activated transcription factors in TCGA cancer

types with available matched-normal samples ..........cccccoceeiiiii,

Top 25 commonly differentially overexpressed genes across TCGA
cancer types. This observation suggests a common underlying

disease mechanism shared by different cancer types.......................

GO enrichment analysis reveals significant association between the

identified commonly overexpressed genes and cancer......................

Top 25 commonly down regulated genes across TCGA cancers..........

Currently approved antibody-based diagnostic and therapeutic

= (o 1] 01 £ TP

Tumour and corresponding adjacent non-cancerous tissue sample
from TCGA investigated to identify novel cancer-associates splice

V21K E=1 01 £ T PP

Relationship between matriptase splice variants and
clinicopathological data in ovarian serous cystadenocarcinoma.
Clinicopathological data was downloaded from the TCGA data

portal (http://cancergenome.nin.gov). ........coooiuiiiiiiiiiiiiiieeeee e
Prize FUNCHONS......cooi e
Saaty’s fundamental scale for pairwise comparison .........ccccccccevveeeeen.

Decision elements and their weights...............cccc,

Xii

..... 66

..... 82

...140



Table 3-14. (A) Category PCM for cancer expression criterion. (B) Computed
AHP weights and idealised priorities for each category is shown.
Idealised priories are computed by dividing AHP weights by the
largest weight. Alternatives were then assigned a score (i.e. the
value of idealised priority) with respect to the category that they
fall into. If an alternative fulfilled more than one category within a
criterion, the category with the highest value was selected. .................. 163

Xiii



List of Figures

Figure 1-1. Alternative splicing (AS) event types. Constitutive exonic regions
are solid black. Regions that may be differentially included are
blue. Thin black lines represent introns. ..........ccccoeeiiiiiiiiiii s 3

Figure 1-2. Gene expression can be controlled at several different steps.
Examples of regulation at each of the steps are known, although
for most genes the main site of control is step 1: transcription of a
DNA sequence into RNA. ... e 6

Figure 1-3. The regulation of splicing. The cis-acting sequences involved in the
regulation of intron removal are shown. In addition to the core
splicing signals (i.e. 5’ splice site, branch-point and 3’ splice site),
several regulatory sequences influence the splicing decision by
recruiting trans-acting SFs. Common SFs include SR proteins and
hnRNPs, which typically promote and inhibit splicing, respectively.
ESE: Exonic Splicing Enhancers. ISE: Intronic Splicing
Enhancers. ESS: Exonic Splicing Silencers. ISS: Intronic Splicing
SHIENCETS. .o 9

Figure 1-4. Overview of paired-end library preparation and sequencing steps in
an lllumina platform. A workflow consists of ligating different
adaptors at each end of the initial cDNA molecule, which enables
sequencing each cDNA fragment from both ends, in two separate
reactions. Paired-end sequencing has advantages for the
downstream bioinformatic analyses compared to single-end
1T [§]=T o Tod ] o Lo [ PP P TP PP PP PP P PP PP 14

Figure 1-5. Counting reads. (a) An illustration of the read counting concept. (b)
Examples of challenges of counting reads. When a read overlap
with multiple locations, it is not always clear where it should be
aligned. Different methods take different approaches. A simple
process is shown above...........cco 22

Figure 1-6. Targeted antibody-based therapeutics. (a) Targeting mAbs to the
tumour can result in destruction of tumour cells by antibody-
dependent cellular cytotoxicity or complement-dependent
cytotoxicity. (b) A direct approach to kill tumour cells is the
conjugation of cytotoxic drugs (D), toxins (T) or radionucleotides
(R) to mAbs. (c) Bispecific antibodies can modulate immune
response against tumour cells. They are capable of targeting two
proteins on the surface of tumour cells simultaneously. In addition,
they can bring immune cells to the tumour site by binding to a
target on the surface of a tumour cell and the other target on the
surface an iMMuUNE Cell. ..o, 31

Figure 3-1. Gene Expression Analysis (GEA) pipeline...........cccceiiiiiiiiiieii 54

Xiv



Figure 3-2.

Figure 3-3.

Figure 3-4.

Figure 3-5.

Figure 3-6.

Figure 3-7.

Figure 3-8.

Hierarchial clustering of Lung squamous cell carcinoma (LUSC)
RNA-seq data using mBatch version 1.2

(http://bioinformatics.mdanderson.org/tcgambatch/)...........ccccccceeis

Kaplan-Meier survival analysis revealed significantly lower overall
survival in Colon Adenocarcinoma (COAD) patients with
overexpression of (A) WNT2 and (B) IL8. Up-regulated samples
demonstrate a greater than or equal to 2 log fold difference
compared to the normal colon tissue. No significant expression
difference was observed between the tumour and normal tissues

for samples marked as N0 change............ccccceiiiiiiiiiieen e

Kaplan-Meier survival analysis revealed significantly lower overall
survival in Lung squamous cell carcinoma (LUSC) patients with
overexpression of (A) PIF1 and (B) SCARNA12. Up-regulated
samples demonstrate a greater than or equal to 2 log fold
difference compared to the normal lung tissue. No significant
expression difference was observed between the tumour and

normal tissues for samples marked as no change.............ccccccceeies

Putative tumour biomarker target FLT3 demonstrates high
expression in AML samples while has no to little expression
across normal tissues tested. The expanded form of each tumour

type abbreviation is available in Table 3-2...........cccccoiiiiiii e,

Putative tumour biomarker target HAVCR1 demonstrates high
expression in kidney and lung cancer samples while has low
expression in matched normal tissue. The expanded form of each

tumour type abbreviation is available in Table 3-2...............ccciininee.

Putative tumour biomarker target CD96 demonstrates high
expression in AML samples while has lower expression in critical
normal tissue including small intestine, blood, lung, lymph node
and adrenal gland. The expanded form of each tumour type

abbreviation is available in Table 3-2.......cooii e

The expression profile of putative tumour biomarker target CA9.
Even though CA9 demonstrates high expression in normal
stomach tissue, it has been shown as an effective tumour target in
tumour cell killing with no severe side effects (McDonald et al.,
2012; Zatovicova et al., 2010). The expanded form of each tumour

type abbreviation is available in Table 3-2...........cccccoiiiiii e,

XV



Figure 3-9. A 0-1 matrix was generated from the expression of every gene
present in the human genome in any of the 21 critical tissue types
available from GTEx. Genes were multiplied one by one to the 0-1
matrix. The outcome is zero if the pair are mutually exclusive
across critical normal tissues. Here gene 1 is mutually exclusive
with gene 6. This means that there is no critical tissue that
expresses both genes at the same time. While gene 1 is
expressed in 1, 4, 3, 7, and 3 tissues as genes 1 to 5 also do. ............. 103

Figure 3-10. TMPRSS3 and SULF1 demonstrate mutually exclusive expression
pattern in normal critical tissues, while both are differentially
overexpressed in colon and ovarian cancers. The expanded form
of each tumour type abbreviation is available in Table 3-2................... 105

Figure 3-11. Alternative Splicing (AS) detection pipeline .........ccccccooiiiiiiiiiiiiininiie. 109

Figure 3-12. Estimation of total number of reads supporting a novel splice
variant. Assuming each unique read spanning a novel junction is
generated from a transcript uniformly (shown in red here), each
exon in a novel splice variant was assigned an equal number of
reads as the number of spanning reads. This value was then used
towards estimation of values...............uueveiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 112

Figure 3-13. Skipped exons are the most common type of splicing variants in
human cancers. AS3: Alternative 3’ splice site (also known as
acceptor). AS5: Alternative 5’ splice site (also known as donor).
The expanded form of each tumour type abbreviation is available
N TADIE 3-9. ..o 120

Figure 3-14. Schematic representation of novel matriptase AS transcripts. Four
LDL receptor class A domains are found in matriptase, including:
LDLRA1: residues 452—486, LDLRAZ2: residues 487-523,
LDLRAS3: residues 524-561, and LDLRAA4: residues 566—604. A1
and A3 are produced by skipping exon 12 (encoding LDLRA1)
and exon 14 (encoding LDLRAS), resulting in in-frame deletion of
105 and 114 bp, respectively. CAT: serine protease catalytic
Lo o] ¢ =11 o VAPPSR 125

Figure 3-15. Estimated level of expression for matriptase variant A1. The x-axis
represent samples that express matriptase variant A1 (Skipping
exon 12). The expression in tumour samples is shown in blue.
There is no evidence for matriptase novel transcript A1 in adjacent
non-cancerous tissue from TCGA (shown in green with FPKM
equal to zero) nor in the transcriptome data available from the
GTEx and BodyMap 2.0 project (shown in red with FPKM equal to
zero). The expanded form of each tumour type abbreviation is
available in Table 3-9..........ooii e 127

XVi



Figure 3-16.

Figure 3-17.

Figure 3-18.

Figure 3-19.

Figure 3-20.

Estimated level of expression for matriptase variant A3. The x-axis
represent samples that express matriptase variant A3 (Skipping
exon 14). The expression in tumour samples is shown in blue.
There is no evidence for matriptase novel transcript A3 in adjacent
non-cancerous tissue from TCGA (shown in green with FPKM
equal to zero) nor in the transcriptome data available from the
GTEx and BodyMap 2.0 project (shown in red with FPKM equal to
zero). The expanded form of each tumour type abbreviation is

available IN Table 3=9. ...

Frequency of novel matriptase novel AS transcripts. Samples
expressing matriptase novel transcripts were divided into three
groups: (1) expressing transcript A1, (2) expressing transcript A3,
and (3) expressing both A1 and A3 transcripts. Transcript A3 was
not detected in prostate cancer samples. The expanded form of

each tumour type abbreviation is available in Table 3-9......................

Pairwise sequence alignment of wild-type and A3 matriptase

ErANS CIIPES e

Pairwise sequence alignment of wild-type and A3 matriptase

ErANS CIIPES e

gRT-PCR validation. qRT-PCR was carried out on orthogonal
panels of cell lines and human primary and metastatic tumor
tissues from ovarian, breast, lung, and bladder cancer and a panel
of normal tissues. Mann—Whitney t-test was used to determine
significant differences in gene expression between groups. The
resulting P-values are summarized below the x-axis. The x-axis
labels from left to right are (1) wild type in normal ovary, (2) wild
type in ovarian cancer, (3) A1 in normal ovary, (4) A1 in ovarian
cancer, (5) A3 in normal ovary, (6) A3 in ovarian cancer, (7) wild
type in normal tissue panel, (8) A1 in normal tissue panel, (9) A3
in normal tissue panel, (10) wild type in normal breast, (11) wild
type in breast cancer, (12) A1 in normal breast, (13) A1 in breast
cancer, (14) wild type in normal bladder, (15) wild type in bladder
cancer, (16) A1 in normal bladder, (17) A1 in bladder cancer, (18)
wild type in normal lung, (19) wild type in lung cancer, (20) A1 in

normal lung, and (21) A1 in lung cancer. The y-axis is log scaled.......

XVii



Figure 3-21.

Figure 3-22.

Figure 3-23.

Flow cytometric analysis reveals surface expression of matriptase
splice variants. Cells were transfected with 10 ug of empty vector
alone (pTT5) or 5ug of each matriptase variant plus 5ug of HAI-1
(A-G). The next day, duplicate wells containing 100,000 cells/well
were stained with either human anti-matriptase or mouse anti-
SPINT1 (HAI-1) antibodies (data not shown) followed by species
specific secondary Alexa Fluor® 647 Goat anti-IlgG-Fc antibodies
plus the live/dead cell discriminator 7-AAD followed by flow
cytometric analysis. The gating tree is as follows: (A) SSC vs. FSC
depicts the distribution of cells as opposed to the debris that was
excluded; to (B) living cells not stained with 7-AAD. (C) wildtype
matriptase, (D) matriptase variant A1, and (E) matriptase variant
A3 (F) graph depicting the mean fluorescent intensity plus/minus
the standard error of mean of matriptase expressed on the surface
of CHO cells. This data is representative of 3 independent
experiments analyzed with a student’s t-test (p-value < 0.05). Flow
cytometry data was acquired on an Intellicyte® HTFC, which uses
an Accuri® C6 Flow Cytometer® (BD Biosciences) with the sip
time set at 3 seconds. Laser lines for this instrument are 488nm
and 640nm. FL3 emission detection for 7-AAD is >670nm, and
FL4 emission detection for Alexa Fluor® 647 is 675/25nm. (G)
Recombinant wildtype, A1 and A3 variants were
immunoprecipitated with 1.5ug of human anti-matriptase antibody,
followed by Western blot analysis on the clarified start lysates
(20ug each) and elutions (15ul each). The arrow shows the bands

corresponding to the expected size of each matriptase variant...........

A step-by-step example of AHP relative model. (A) Determining
the problem goal, objectives and alternatives. (B) Building the
problem hierarchy. (C) Constructing PCM for decision criteria with
respect to the goal. (D-F) Constructing alternative PCMs with
respect to their associated criteria. Table C illustrates the PCM of
criteria and their local priorities. Tables D - F demonstrate the
PCMs of alternatives with respect to (D) research cost, (E) level of
attractiveness, and (F) fast to finish, respectively. In addition
computed local and global priorities are shown in the last two
columns. An alternative global priority is computed by multiplying
the alternatives’ local priority to the priority of its associated
criterion. (G) Total priority values showing Topic A with a score of
0.473 is the alternative that contributes most to the goal than
Topics B and C. The consistency ratio of PCMs C-F is as

following; (C) 0.036, (D) 0.067, (E) 0.00, (F) 0.0041, respectively.......

The problem hierarchy. Since the number of alternatives (i.e.
genes) is large, AHP rating model is selected to perform the
ranking. Therefore, each criterion is broken down into smaller
categories that better represent the characteristics of alternatives
with respect to the associated criterion. The weigh of each
criterion with respect to the goal is shown on the edges of the

hierarchy structure. ...,

XViii

..165



Figure 3-24.

Figure 3-25.

Figure 3-26.

Figure 3-27.

Figure 3-28.

Figure 3-29.

Figure 3-30.

The pie chart represents the weight of each criterion with respect

to the goal. The weights are obtained through twenty-one pairwise
comparisons organized into a PCM. Prize computes the weight of

each criterion using this PCM. The higher the weight, the more

important the criterion is to achieve the final goal of prioritization. ........ 166

Prioritized candidates shown in a color-coded format (rainbow

plot). In addition to the prioritization order, this plot illustrates how

the final score for each gene is built as a combination of the user-

defined criteria. The x-axis shows the final prioritization score,

while alternatives are placed on the y-axis. ............eevveeiiiiiiiiiiiiiieeeeeeene. 168

The top 25 prioritized candidates shown in a rainbow plot .................... 169
The expression profile of CLDNG. It is found to be overexpressed

in lung, ovarian, and uterus tumours while it's expression is absent
from matched normal TCGA and available normal tissues from

The expression profile of DLL3. It is found to be overexpressed in
several TCGA tumors while it's expression is absent from
matched-normal TCGA and available normal tissues from GTEx. ........ 172

The expression profile of UPK1B across tumour and normal
2= 0] o] [ SRR 174

The expression profile of LPAR3 across tumour and normal
2= 0] o] [ SRR 175

Xix



List of Acronyms

ADC Antibody Drug Conjugate

AHP Analytic Hierarchy Process

AlJ Aggregated Individual Judgement

AIP Aggregated Individual Priority

AS Alternative Splicing

ASTD Alternative Splicing and Transcript Discovery Database
BAM Binary Alignment/Map

CA9 Carbohydrase 9

CADE Cancer Associated Differentially Expressed
CAM Category Assignment Matrix

cDNA Complementary DNA

CDRD Center for Drug Research and Development
CHO Chinese Hamster Ovary

Cl Consistency Index

COX-2 Cyclooxygenase-2

CR Consistency Ratio
cuB Complement C1r/C1s, Uegf, Bmp1
DAC Data Access Committee

dbGAP Database of Genotypes and Phenotypes

DCC Data Coordinating Center
DM Decision Making

DNA Deoxyribonucleic Acid
ECM Extracellular Matrix

EGFR Epidermal Growth Factor Receptor
EGFRVvIll Epidermal Growth Factor Receptor variant Il

EM Expectation-Maximization

EMT Epithelial-to-Mesenchymal Transition
ERK Extracellular-signal Regulated Kinase
ESE Exonic Splicing Enhancers

ESS Exonic Splicing Silencers

FDA Food and Drug Administration

XX



FDA
FDR
FPKM
GABA
GC
GEA
GO
GSC
GTEx
HAI-1
HGF
hnRNP
ICR
IGV
ISE
ISS
LDLRA
mAb
MAPK
MDS
MITF
ML
mRNA
NCI
NHGRI
NIH
NPM
ORF
PCM
PCR
PKA
PSA
RI
RNA

Food and Drug Administration

False Discovery Rate

Fragments Per Kilobase Million

y-amino butyric acid

Guanine-Cytosine

Gene Expression Analysis

Gene Ontology

Genome Sciences Centre

Genotype-Tissue Expression

Hepatocyte growth factor Activator Inhibitor-1
Hepatocyte Growth Factor

Heterogeneous Nuclear Ribonucleoproteins
Individual Consistency Ratio

Integrated Genome Viewer

Intronic Splicing Enhancers

Intronic Splicing Silencers
Low-Density-Lipoprotein Receptor class A
Monoclonal Antibody

Mitogen Activated Protein Kinase
Multidimensional Scaling
Microphtalmia-associated Transcription Factor
Maximum Likelihood

Messenger Ribonucleic Acid

National Cancer Institute

National Human Genome Research Institute
National Institute of Heath

Nucleotides Per Million

Open reading frame

Pairwise Comparison Matrix

Polymerase Chain Reaction

Protein Kinase A

Prostate Specific Antigen

Random Index

Ribonucleic Acid

XXi



RNA-seq
RPKM
rRNA
RSEM
SAGE
SAM
SEA

SF
snoRNA
snRNP
SPINT1
SR

SRE
TCGA
TMM
TNF-a
TPM
uPA
UQUA

RNA Sequencing

Reads Per Kilobase Million

Ribosomal RNA

RNA-Seq by Expectation Maximization

Serial Analysis of Gene Expression

Sequence Alignment/Map

Sea urchin stem region, Enteropeptidase, and Argin
Splicing Factor

Small Nucleolar RNA

Small Nuclear Ribonucleoprotein

Serine Peptidase Inhibitor encoded by Kunitz type 1
Serine-Rich

Splicing Regulatory Element

The Cancer Genome Atlas

Trimmed Mean of M-values

Tumour Necrosis Factor-a

Transcripts Per Million

Urokinase Plasminogen Activator

Upper Quartile

XXii



Chapter 1. Introduction

1.1. Gene expression and splicing

Gene expression is a fundamental process in the cell during which the
deoxyribonucleic acid (DNA) is transcribed to the corresponding ribonucleic acid (RNA)
and the RNA is translated to the corresponding protein. Gene expression can change
from one cell to another, between tissues and at different points in time (Alberts et al.,
2007). Measuring gene expression by the quantification of the transcript levels is an
invaluable tool in biomedical sciences to study a disease diagnosis, prognosis and
search for drug targets (Schulze & Downward, 2001). For instance, the study of gene
expression in cancer, alzheimer's disease, schizophrenia and HIV infection have
revealed much about the biology and potential treatment of these diseases (Minagar et
al., 2004). Therefore, measuring gene expression is of high scientific interest, and many

methods have been developed for measuring gene expression.

The splicing of messenger RNA (mMRNA) transcripts is a highly regulated process
during gene expression that can results in a single gene coding for multiple distinct
protein sequences (Roy, Haupt et al., 2013). The human genome contains
approximately 22,000 protein-coding gene loci (Pruitt, Tatusova et al., 2012). However,
the number of unique protein isoforms is greater than can be explained by the number of
genes alone. In order to understand this disparity, we must study the pathway that leads
to the formation of proteins. In this process a region of DNA that encodes at least one
gene is transcribed into an RNA molecule. If the transcribed gene encodes a protein, the
resultant mMRNA will serve as a template for the protein's synthesis through translation. In
order for an RNA molecule to become mRNA and translate into a protein peptide, it must

undergo a series of modifications (Roy et al., 2013). In eukaryotes, splicing is a pre-



MRNA processing mechanism that commonly occurs and this process serves to remove
non-protein coding introns, joining the resultant exons to form a complete in-fame coding

transcript.

Alternative splicing (AS) is the process by which a single primary transcript yields
different mature RNAs leading to the production of protein isoforms with possibly diverse
and even antagonistic functions. Studies of human genome have estimated that 94% of
genes produce alternatively spliced transcripts (Wang, Sandberg et al., 2008). There are
several different types of AS (Figure 1-1). In rare cases, a whole intron can be retained
during the splicing process. Alternative 5' splice sites or 3’ splice sites can result in
exons of different sizes. Exclusion or skipping of one or more exons is a common form of
AS. Similar to other cellular processes that are modified during cellular growth,
differentiation and tissue development, AS is also affected. Recently, several mRNA
isoforms specific to stages of cellular development and disease, including cancer, have
been described (Oltean & Bates, 2014). With the recognition of the importance of
splicing defects in human disease has come a realization that constitutive splicing
events are potential therapeutic targets. Many different approaches such as
conventional small-molecule drugs and antibody-based therapeutics have been

proposed to target alternative splice variants.
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Figure 1-1.  Alternative splicing (AS) event types. Constitutive exonic regions are
solid black. Regions that may be differentially included are blue. Thin
black lines represent introns.



1.1.1. The regulation of gene expression

Gene expression is believed to be one of the most tightly controlled processes in
the body (Alberts et al., 2013). This process needs to be strictly regulated to ensure that
the required amounts of RNA/proteins are being generated within the right cells at the
right time. Disruption of gene expression regulation may lead to disease, including

cancer (Hanahan & Weinberg, 2011)

Gene expression is regulated according to the needs of the cells. Regulation of
gene expression encompasses a wide range of mechanisms that are used by cells to
increase or decrease the production of a specific gene product including RNA and
protein (Alberts et al., 2013). Also, cells can produce or block specific gene products in
response to external signals or cellular damage (Alberts et al., 2013). Although the
different cell types within a multicellular organism contain the same genome, different
cell types can respond differently to the same signal. This can be explained in great part
by the difference in the gene expression profile, which helps establish cell types. Cells
have the ability to change which genes they express and how much without altering the
nucleotide sequence of their DNA (Alberts et al., 2013). Therefore, gene expression
regulation determines the cell’'s overall structure and function. It also governs cell

differentiation, cell morphology and adaptability to the environment.

Gene expression regulation can occur at many stages in the pathway from DNA

to RNA to protein. A cell can control the amount of produced proteins by (Figure 1-2);

1) Regulating the amount of transcription,

2) Regulating the processing of RNA molecules, including AS to produce more

than one protein product from a single gene,

3) Selecting which mRNAs are exported from the nucleus to the cytosol,



4) Selectively degrading certain mRNA molecules,

5) Regulating the rate of translation.

Although every step mentioned above can participates in regulating gene
expression, the control of transcription is paramount for most genes (Alberts et al.,
2013). The reason is that only transcriptional control can ensure no unnecessary
intermediates are synthesized. Transcriptional regulation is capable of turning the
process of transcription on or off for individual genes in cells. Many different
transcriptional regulators such as ftranscription factors, epigenomic features and
promoters typically control the expression of eukaryotic genes (Alberts et al., 2013). For
example, in order for transcription to take place, the enzyme that synthesizes RNA,
known as RNA polymerase, must attach to the DNA near a gene. Promoters contain
specific DNA sequences that provide a secure initial binding site for RNA polymerase
and for transcription factors that recruit RNA polymerase. These transcription factors
have specific activator or repressor sequences of corresponding nucleotides that attach
to specific promoters and regulate gene expression (Alberts et al., 2013). Although we
have good tools to quantitate changes in transcript expression, we lack the molecular
biology tools to easily determine the precise reason for a change in gene expression. A
major reason is simply the vast complexity of the regulatory network inside and outside
of the cell (Alberts et al., 2013).
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Gene expression can be controlled at several different steps.

Examples of regulation at each of the steps are known, although for most
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into RNA.



1.1.2. The regulation of splicing

Splicing is an editing of the nascent pre-mRNA transcript through which intronic
sequence is systematically excised and flanking exons are ligated. It is one of several
transcriptional processing steps. For splicing to take place, the involvement of many
distinct proteins and ribonucleoprotein particles is required (Chen & Manley, 2009).
During the splicing process, a subset of splicing factors (SFs) assemble onto the mRNA
precursor around exon junctions to form a spliceosome complex. The spliceosome then
cleaves the RNA molecule, removes the non-coding intron segment, and ligates the
remaining exons together. Recognition and precise definition of exon boundaries
involves several cis- and trans-acting elements that can either promote or inhibit splicing

at a candidate exon junction (Chen & Manley, 2009).

The spliceosome is a dynamic, macromolecular complex that is systematically
assembled at splice sites to catalyse the splicing reaction. It is composed of five small
nuclear ribonucleoprotein particles (snRNPs: U1, U2, U3, U4, U5, and U6), in
conjunction with many auxiliary proteins (Will & Luhrmann, 2011). The snRNPs form the
core of the spliceosome. They are directly involved in the recognition of splice sites and
branch-point sequences, as well as the catalysis of the splicing reaction. Assembly and
activity of the spliceosome complex occurs during transcription of the pre-mRNA. The
assembly of spliceosome complex occurs in a step-wise fashion, forming several
intermediate complexes before forming the final complex (Matlin, Clark et al., 2005). The
first pre-spliceosomal complex is called the E complex. It forms when the U1 snRNP
binds to the 5’ splice site of an intron, followed by binding the splicing factor 1 (SF1) to
the intron branch point, and the U2 auxiliary factors, U2AF1 and U2AF1, to the 3’ splice
site and the polypyrimidine tract, respectively. The E complex can be converted to the A
complex (pre-spliceosome complex) if the U2 snRNP displaces SF1 and binds to the
intron branch point sequence. Recruitment of the U5/U4/U6 tri-snRNP to the A complex
generates the B complex (pre-catalytic spliceosome complex) with the binding of U5
snRNP to exons at the ' site and U6 to U2. Extensive rearrangements are required to
produce the C complex (catalytic spliceosome complex). The C complex catalyzes the

next step in the splicing process before disassociating.



The splice site choice is regulated through cis-acting splicing regulatory elements
(SREs, enhancers and silencers) and trans-acting SFs (repressors or activators) (Matlin
et al., 2005). On the basis of their locations and activities, SREs are categorized into four
groups; exonic splicing enhancers (ESEs), intronic splicing enhancers (ISEs), exonic
splicing silencers (ESSs) and intronic splicing silencers (ISSs). These SREs specifically
recruit SFs to assist in the placement of the spliceosome on the appropriate splice sites,
and to consequently promote or reduce the usage of a particular splice site. Common
splicing factors include Serine-Rich (SR) proteins, which recognize ESEs to promote
splicing, as well as various heterogeneous nuclear ribonucleoproteins (hnRNPs), which
typically recognize ESSs to inhibit splicing. Both SR proteins and hnRNPs often affect

the function of U2 and U1 snRNPs during spliceosomal assembly (Figure 1-3).
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Silencers. ISS: Intronic Splicing Silencers.



It has been shown that the relative concentrations and activities of SFs can affect
the ability of the spliceosome to determine the precise location of a splice site and
therefore assemble on exon junctions (Chen & Manley, 2009). Hence, altering SFs’
expression, localization, or functional efficacy can modulate splicing. For example,
disrupting the phosphorylation of SR proteins could negatively impact splicing regulatory
programmes. The secondary structure of the pre-mRNA transcript, chromatin structure
and nucleosome positioning also play a role in regulating splicing by influencing the
accessibility of splice sites or cis-acting SREs (Brown, Stoilov, & Xing, 2012). Moreover,
splicing is also affected by factors that control transcription initiation and elongation. This
is because the splicing of most introns happens before transcription termination, a
phenomenon known as co-transcriptional splicing. For example, the rate of transcription
elongation can affect splicing events; slow elongation rates generally promote the

inclusion of weak exons.

Changes in the set of selected splice sites will impact the structural composition
of the final RNA molecule. Given the potential differences in biological function between
the resulting alternative transcripts, AS can result in the generation of proteins with
different biological functions, structure, localization and interaction capabilities.
Therefore, AS may occur in a tissue- or disease-specific manner (Oltean & Bates, 2014;
Wang, Sandberg et al., 2008). In addition, it likely plays a role in dynamic processes
such as development and cellular differentiation (Kalsotra & Cooper, 2011; Trapnell et
al., 2010). It has also been suggested that a considerable amount of the detected AS
products result simply from noisy splicing, reflecting an inherent error rate, and will have
no specific function at all (Melamud & Moult, 2009). AS of pre-mRNAs can also
contribute to the regulation of resultant protein product levels, through the formation of
transcripts that will be targeted by the nonsense-mediated decay pathway, as well as
producing transcripts incapable of producing functional proteins, for example through

intron retention events or exon loss (McGlincy & Smith, 2008; Yap, Lim et al., 2012)
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1.2. Next-generation sequencing

A transcriptome is the complete set of transcripts and their relative abundance
within a cell, for a specific developmental stage or physiological condition.
Understanding the transcriptome is an essential step towards interpreting the functional
elements of the genome, revealing the molecular constituents of cells and tissues, and
understanding development and disease. Therefore the key goals of transcriptome
studies are: to discover and catalogue all species of transcripts; to determine the
transcriptional repertoire of genes, in terms of their start sites, 5’ and 3’ ends, splicing
patterns and other post-transcriptional modifications; and to quantify the changing

expression levels of each transcript during development and under different conditions.

DNA microarray was the first technology developed for the high throughput
comparison of expression levels across different cell types and environmental conditions
(Malone & Oliver, 2011). Nonetheless, it had several limitations. For example,
background hybridization limits the accuracy of expression measurements, particularly
for transcripts present in low abundance. Furthermore, probes differ considerably in their
hybridization properties, and arrays are limited to interrogating only those genes for
which probes are designed. Therefore, in the past few years, RNA sequencing (RNA-
seq) - the direct sequencing of transcripts by high-throughput sequencing technologies -
has become the method of choice for the study of transcriptome composition (Wang,
Gerstein, & Snyder, 2009). RNA-seq offers a much bigger dynamic range to study gene
expression patterns compared to array technologies, and enables a much broader set of
analyses. For example, besides standard differential gene expression analysis, RNA-seq
allows for the identification of novel transcribed regions, including rearranged and fused
genes, the study of allele specific expression, and the possibility to estimate transcript
expression levels and to study differential splicing across conditions. However, RNA-seq
poses novel algorithmic and logistical challenges for data analysis and storage. Many
computational methods have been developed for alignment of reads, quantification of
gene and/or transcripts, and identification of differentially expressed genes from RNA-

seq data (Conesa et al., 2016).
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The first next generation sequencing machine was released by 454 Life Sciences
in 2005, followed by Solexa Genome Analyzer and SOLID (Supported Oligo Ligation
Detection) by Agencourt in 2006 (Mardis, 2013). In 2006 Agencourt was purchased by
Applied Biosystems, and in 2007, 454 was purchased by Roche, while Illumina
purchased Solexa. These are the best known next generation sequencing systems due
to their competitive cost, accuracy, and performance. However, currently lllumina’s
platforms are the most commonly used for sequencing RNA. The reason behind such
wide adoption of lllumina’s systems is likely due to the large volume of information
obtained from a typical sequencing run (i.e. sequencing depth) and good sequence

accuracy compared to other competitors (Mardis, 2013).

The lllumina sequencing platform generates short-read (up to 150 bases) RNA-
seq data. The major limitation of short-read RNA-seq is the difficulty in accurately
reconstructing expressed full-length transcripts from the assembly of reads. This is
particularly complicated in complex transcriptomes, where different but highly similar
isoforms of the same gene are expressed. Therefore, the size of the final sequencing
fragments is crucial for proper subsequent analysis. With improvement in RNA
sequencing protocols, Pacific Biosciences recently introduced long-read (up to several
kilobases) PacBio RNA-seq technology, which is capable of sequencing a single
transcript to its full length in a single read. Nevertheless, long-read sequencing has its
own set of limitations, such as a high error rate and low accuracy. If PacBio technology
reaches a throughput that is comparable to the next-generation technologies, then the

need for transcriptome assembly will probably be eliminated (Conesa et al., 2016).

In the current thesis, | focus on RNA-seq data generated by the Illumina

technology.
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1.21. RNA Sequencing experiment work-flow

Library preparation

Library preparation is the first step in sequencing RNA (van Dijk, Jaszczyszyn, &
Thermes, 2014). It consists of obtaining the starting material, and converting it into a
cDNA library that can be loaded into the sequencing machine. Once RNA is extracted
from a sample, it is typically subjected to ribosomal RNA (rRNAs) reduction, i.e. the most
abundant RNA species in the cell. This can be done through either polyA selection or
ribodepletion. PolyA selection approach uses oligo-dT beads, which enable the specific
extraction of polyAdenylated RNAs, hence ensuring a good representation of mRNAs.
Ribodepletion approach relies on the use of ribonucleases to specifically digest rRNAs.
Therefore, it has the advantage of not restricting the analyses to a specific type of RNA.
Datasets produced with the polyA selection protocol are known as polyA-selected, and
those obtained with ribodepletion are referred to as total RNA. Due to the simpler
protocol and its lower price, polyA selection emerges as the most popular choice
amongst the currently available RNA-seq datasets. However, studies that aim at
characterising non-coding RNA species, which typically lack a polyA tail would be an

exception (Figure 1-4, step 1).

The RNA is then fragmented via hydrolysis with divalent cations and retro-
transcribed into double stranded cDNA by using random hexamer primers. The reason
to use random primers is due to the unknown sequence of the obtained fragments
(Figure 1-4 - step 2). Next, adapter sequences are ligated at both ends of each cDNA
fragment. These adaptors enable the hybridisation of RNA fragments into the flow cell,
where the sequencing takes place (Figure 1-4 - step 3). In addition, they serve as primer
binding sites for the sequencing reaction. Using gel electrophoresis resulting cDNA
fragments are size-selected to fit within the range required by the sequencing machine
(typically 300-500 bp), and fragments outside this range will be missed. Finally, the
resulting cDNA library is amplified by Polymerase Chain Reaction (PCR).
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Figure 1-4. Overview of paired-end library preparation and sequencing steps in
an lllumina platform. A workflow consists of ligating different adaptors at
each end of the initial cDNA molecule, which enables sequencing each
cDNA fragment from both ends, in two separate reactions. Paired-end
sequencing has advantages for the downstream bioinformatic analyses
compared to single-end sequencing.
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Sequencing RNA

Once the RNA-seq libraries are produced, they can be loaded onto a flow cell for
sequencing. A sequencing flow cell is saturated with complementary adapters to the
ones ligated at both ends of the cDNA fragments, therefore they promote the
hybridisation of the denatured double strand molecules (Mardis, 2013). In order to
increase the signal from the sequencing reaction, the starting material is amplified once
again through bridge amplification (Figure 1-4 - step 4). This amplification process allows
clonal amplification of a large number of DNA fragments simultaneously and includes the
synthesis of fragments that are complementary to the hybridised cDNA molecules. The
cDNA fragments then bend over and hybridise with adjacent adapters thus enabling
subsequent rounds of synthesis. At the end of each round the double stranded DNA is
denatured so that each strand can separately attach to an oligonucleotide sequence
anchored to the flow cell. At the end of bridge amplification, all of the reverse strands are
washed off the flow cell, leaving only forward strands. As a result, a large number of
clusters with identical sequences will be formed. The sample is now ready to undergo

sequencing.

The lllumina platform relies on sequencing by synthesis to read the base pair
composition of each cDNA cluster (Bentley et al., 2008). It uses modified versions of the
four nucleotides (bases), which incorporate a reversible terminator, as well as a
fluorescent dye (Figure 1-4 - step 5). Hence, only one base can be added during each
sequencing cycle. The reason is that the reversible terminator on every nucleotide
blocks elongation after a successful base incorporation. The identity of the incorporated
base then can be recorded by measuring its fluorescent signal. Repetition of this
process will lead to a set of images, which will be converted into a set of sequences or
reads using a base calling software. The recorded reads represent the set of molecules
expressed in the initial sample. The length of reads corresponds to the number of cycles
performed during the sequencing reaction. The sequencing machine stores the obtained
sequence information, together with the probability of a wrong base call at each given
position of the read (i.e. Phred score) in a plain text file in FASTQ format (Cock, Fields et
al., 2010).
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Despite of its many advantages, effective RNA-seq utilization still faces some
challenges. For example, the PCR amplification step can lead to differential amplification
of fragments with higher or lower GC content (Benjamini & Speed, 2012). In addition, the
failure to block the elongation reaction or to remove the fluorescent dye during the
sequencing step can lead to incorrect base calls (Metzker, 2010). Alternative protocols
or analysis methods have been introduced to overcome such biases. For example,
alternative library preparation methods using random barcodes (i.e. molecular identifiers)
to quantify the absolute number of molecules have been proposed to account for PCR
bias (Shiroguchi, Jia et al, 2012). Alternative library preparation strategies also can add
further information to the sequencing experiment. This is the case of strand-specific
protocols, which are able to provide information on the DNA strand from which the
specific transcript originates (Levin et al., 2010). The paired-end sequencing protocol (as
opposed to the single-end) is a common strategy to overcome limitations on the read
length. It allows sequencing of each cDNA fragment from both ends by ligating different
adaptors at each end of the initial cDNA molecule, and sequencing each cDNA fragment
from both ends, in two separate reactions (Mardis, 2013). Paired-end RNA-Seq
facilitates discovery applications such as detecting gene fusions in cancer and

characterizing novel splice isoforms.

Quality assessment of RNA-seq data

RNA-seq is a complicated, multistep process involving reverse transcription,
amplification, fragmentation, purification, adaptor ligation, and sequencing. A disruption
at any of these steps could lead to biased or even unusable data. Hence,
comprehensive quality assessment is a critical step for all downstream analyses and
results interpretation. RNA-seq quality control metrics include but is not limited to: base
quality, sequence quality, nucleotide composition bias, guanine-cytosine (GC) bias,
reads duplication rates (clonal reads), overrepresented sequences and sequencing

adaptor contamination (Li, Nair et al., 2015).

A base quality analysis can be done using the Phred score provided in the
FASTQ files by the sequencing machine for each sequenced nucleotide (Ewing, Hillier et
al., 1998). The Phred score is defined as Q=-10x%logo(P), where P is the probability of

erroneous base calling. For example, a Phred quality score of 30 means the chance that
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this base is called incorrectly is 1 in 1,000. Although there is no guideline to determine if
the quality of a particular base is good or bad, in general, scores over 30 indicate very
good quality, 20-30 indicate reasonable good and less than 20 indicate poor quality.
Phred quality scores can be visualized in parallel boxplots illustrating per base quality
score for all reads at each position (Andrews, 2016). In addition, one can also calculate
the average quality score per read (per sequence quality score) and check the quality
score distribution of all sequences. This analysis allows identification of subset of
sequences that may have universally low quality values (Andrews, 2016). It is often the
case that a subset of sequences will have universally poor quality, often because they
are poorly imaged (e.g. on the edge of the field of view), however these should represent

only a small percentage of the total sequences.

Assuming that RNA-seq reads were randomly sampled from expressed
transcripts, one would expect to see little to no differences between the nucleotide
composition (percentage of A, C, G, and T) at each position. Where, random fluctuations
are cancelled out because of the large sample size. GC content is the percentage of
bases in a sequence that are either guanine or cytosine. Measuring the GC content is a
simple way to evaluate the nucleotide composition of DNA or RNA. Per sequence GC
content can be roughly used to measure the randomness of sequencing library as GC
content of reads from random sequence library follows normal distribution with the mean
equals to the overall GC content of the transcriptome. While, a poorly prepared or
contaminated library will exhibit a skewed distribution. The dependence between read
coverage and the GC content of reference genome in high-throughput sequence data
has been shown previously (Benjamini & Speed, 2012). A serious bias suggests the
existence of overrepresented sequences in a sample, and such bias will influence
coverage uniformity as well as transcripts abundance estimation. Therefore, evaluating
GC content bias in RNA-seq data is of great importance to both transcript detection and
abundance quantification. The reason to use GC rather than AT (or AU in RNA) is that
GC content carries more direct biologic meaning. GC pairs are more stable than AT (3
vs. 2 hydrogen bonds). Therefore, it has implications in PCR experiments, since the GC
content of primers predicts their annealing temperature. Furthermore, exons have on

average a higher GC content than introns and intergenic regions.
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Read duplication rate can be affected by read length, sequencing depth,
transcript abundance and PCR amplification. A read is duplicated if there is an exact
sequence match over the whole length of the read. Therefore, supposing the sequencing
library is purely random the chance to get a duplicated read is very slim even if the
sequencing depth reaches hundreds of millions. A low level of duplication may indicate a
very high level of coverage of the target sequence, however a high level of duplication is
more likely to indicate an enrichment bias. The majority of duplicated reads are
artifactually generated from PCR amplification (Andrews, 2016). And because of this,
duplication rate analysis mostly only includes checking for PCR amplification bias. In
general, if there are more than 50% of duplicated sequences in total in an RNA-seq
sample, the sample will be considered as seriously biased and not randomly sampling

the target sequence.

A high-throughput library with good quality contains a diverse set of sequences,
with no individual sequence making up a tiny fraction of the whole. Finding that a single
sequence is overrepresented in the set either means that it is highly biologically
significant, or indicates that the library is contaminated. It can also be an indication that
the sequenced sample is not as diverse as expected. Overrepresented sequences may
also be detected due to high duplication rate. One of the common sources of
overrepresented sequences is the read-through adapter sequences that are built up on

the end of sequences (Andrews, 2016).

The trimming process, which removes N nucleotides from the beginning or the
end of a sequencing read, can improve the quality of a sequenced sample by removing
low quality bases as well as adaptor sequences (Babraham Bioinformatics, 2015). One
may also improve the sample quality by removing overrepresented and duplicated
reads. Many tools have been developed that preform RNA-seq quality assessment and
trimming (Andrews, 2016; Babraham Bioinformatics, 2015; Li et al., 2015).

Read mapping strategies

The next step in an RNA-seq analysis pipeline is to identify the genomic region

that each read has originated from. This task for an RNA-seq sample is equivalent to

18



discovering the loci that are expressed in a given sample. There are two strategies to
perform this task: in the first approach, reads are directly aligned to the reference
genome or transcriptome (Li & Homer, 2010). Therefore, using this approach depends
on the availability of a reference, which may not always be the case. In the second
approach, reads can be directly assembled into contigs (i.e. contiguously expressed
regions) with the aim of reconstructing the set of expressed transcripts (Martin & Wang,
2011). In general, the first strategy constitutes a much simpler approach, and it is

typically the method of choice when working with model organisms.

Read mapping is usually the bottleneck of an RNA-seq analysis workflow.
Therefore, available mapping tools make use of heuristic parameters such as the
maximum number of allowed mismatches per read to speed up this task. While, this
process can lead to information loss due to the lower sequence quality at the 3’ end of
the read. The quality difference commonly occurs when working with Illlumina platforms,
since interpreting the fluorescent signal as sequencing cycles accumulate becomes
more difficult (Minoche, Dohm et al., 2011). Therefore, the sequence quality assessment
and trimming, as explained in the previous section, helps with identifying and removing
such sequences in order to speed up the subsequent mapping process. The trimming
process either shortens the read by cutting off the low quality sequence, or removes the

entire low quality read.

When a reference genome is available, the commonly used approach is to align
the reads directly to the genome sequence. Similarly, reads can be aligned to a
transcriptome reference if a good annotation exists. The advantage of the second
strategy is that due to the lack of intronic sequences in a transcriptome reference the
alignment process will be simplified. However, this approach limits the downstream
analysis that can be performed (Martin & Wang, 2011). For instance, alignment to the
transcriptome is neither compatible with the identification of novel expressed regions nor
the study of intronic expression levels. Some RNA-seq read mapping tools use a hybrid
approach (e.g. TopHat) (Trapnell, Pachter, & Salzberg, 2009). Such tools have the
advantage of using a reference genome along with the available exon-exon junction
annotation. In addition, there are some short read mapping tools (such as Bowtie) that

are able to detect exon-exon junctions without the need for any priori knowledge on the
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annotation (Langmead, Trapnell et al., 2009). Such aligners usually report a splice
junction whenever a read appears to span multiple exons. The identified splice sites and
their flanking sequences are then concatenated into a novel transcriptome, which is then
used to re-align the set of unmapped reads. If the RNA-seq data is paired-end, each
read is usually processed separately. Once the potential alignments are obtained, they
are evaluated by taking into account additional information such as fragment length and
orientation of the reads. All the information gathered during the mapping process is
reported in SAM/BAM format. SAM stands for Sequence Alignment/Map. Similarly, BAM
stands for Binary Alignment/Map.

When the species of interest lack a reference genome, de novo assembly
emerges as an advantageous strategy. It also can be used in situations where the
genome composition of a given sample is expected to differ largely from that of the
reference assembly (e.g. cancer samples). De novo assembly relies largely on the
overlap among the reads to assemble them into contigs. (Martin & Wang, 2011).
Although the short read length makes the task of de novo assembly difficult, the use of
paired-end data can slightly simplify this process. The assembly of lowly expressed
genes will still be a challenging task to do. There are several de novo assembly tools
including Trans-ABySS (Robertson et al., 2010) and Trinity (Grabherr et al., 2011) that
are commonly being used by the bioinformatics community. The de novo transcriptome

assembly allows identification of novel splice junctions and AS events.

1.2.2. Detecting and measuring expression differences in the
transcriptome

Once the reads are mapped to the reference genome or transcriptome, the next
step of an RNA-seq analysis pipeline is to estimate the level of expression for genes and
transcripts. Similar to the read mapping strategies, the quantification of expression levels
can be achieved by relying on existing information (i.e. gene and isoform annotation), or
it can be done through de novo identification of transcribed regions and independent of

any annotation information.
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Gene expression levels

The abundance of gene transcription products is an important measure to infer
the endogenous state or response of a cell under various conditions, and identifying
differentially expressed genes is a powerful approach to help determine their functions.
When a complete gene annotation exists, the abundance estimation can be easily
achieved by counting the number of reads that overlap with each gene locus. Once the
raw read counts are estimated for the entire genes, many downstream analysis can be
performed including differential gene expression analysis (Love, Huber et al., 2014;
Robinson, McCarthy, & Smyth, 2010; Tarazona, Garcia-Alcalde et al., 2011). Despite the
simplicity of the coverage analysis, there are some challenges that need to be
considered while performing this analysis. First, reads that map to multiple locations in
the genome, and those that arise from repetitive or duplicated loci need to handled
carefully to avoid over-estimating the expression levels. In this case, coverage analysis
tools often discard such reads. However, they can also be handled by uniformly
distributing them to all the mapped positions or probabilistically assigning them
depending on the coverage at each mapping locus in order to avoid information loss
(Trapnell et al., 2010). The second challenge arises from the overlapping features. In

most cases, such reads remain ambiguously assigned (Figure 1-5).

Alternatively, gene expression levels can be calculated after estimation of
transcript expression levels by aggregating the corresponding individual transcript

abundances.
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Figure 1-5. Counting reads. (a) An illustration of the read counting concept. (b)
Examples of challenges of counting reads. When a read overlap with
multiple locations, it is not always clear where it should be aligned.
Different methods take different approaches. A simple process is shown
above.
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Transcript expression levels

The estimation of expression level becomes more complicated when the focus is
on individual transcripts. The reason is that many reads overlap with exons that are
shared by multiple isoforms of the same gene. Currently available algorithms rely on
those reads that map uniquely to one of the annotated transcripts within the loci. In
addition, split reads (i.e. those that span two different exons) and the paired-end
information becomes especially informative (Li & Dewey, 2011). Similarly, the fragment
length distribution can be used to deconvolute ambiguous assignments by attributing a

lower likelihood to those that would require extreme distances between the paired reads.

De novo transcript identification

One of the main advantages of RNA-seq over other gene expression analysis
techniques such as microarray is the possibility to gather information on novel expressed
loci in @ more high throughput manner. The de novo assembly of RNA-seq data allows
for the identification of novel genes and alternate splice isoforms independent of the
knowledge of the reference genome. Detection of AS events usually involves assessing
part of a gene associated with the transcript isoform of interest. For example, in the case
of a gene with a cassette exon (i.e. the inclusion or skipping of a single exon) and two
transcript isoforms, the presence or absence of one or more transcript isoforms will be
indicated by the relative expression of this exon. This can be assessed by a test
between experimental groups for the normalised expression of that exon (Martin &
Wang, 2011; Robertson et al., 2010)

The de novo transcriptome assembly strategy does not use a reference genome;
instead it leverages the redundancy of short-read sequencing to find overlaps between
the reads and assembles them into transcripts. The de novo assemblers usually
assemble the data set multiple times using a De Bruijn graph-based approach to
reconstruct transcripts from a broad range of expression levels and then post-process
the assembly to merge contigs and remove redundancy (Martin & Wang, 2011). Most of
the currently available de novo assemblers are developed and optimized using short-

read data sets, while longer second-generation reads, such as 454 reads, can also be
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integrated into de novo transcriptome assemblies, which may even improve the ability to

resolve alternative isoforms.

The de novo transcriptome assembly has several advantages over the reference-
based strategy (Martin & Wang, 2011). First, it does not depend on a reference genome.
It can recover transcripts that are transcribed from segments of the genome that are
missing from the genome assembly, or detect transcripts from an unknown exogenous
source. Second, the de novo assembly does not depend on the correct alignment of
reads to known splice sites. Similarly, it is independent of the accuracy of prediction of
novel splicing sites, as required by reference-based methods. Finally, trans- and
alternatively spliced transcripts and similar transcripts originating from chromosomal

rearrangements can be assembled using the de novo approach.

Read count normalization

The result of an RNA-seq quantification approach is an estimate on the number
of reads that can be attributed to a certain feature, which is referred to as counts.
Although the counts are proportional to the levels of expression for the certain feature of
interest, they depend on the total number of sequenced reads (sequencing depth) as
well as the length of the feature. The counts may also be impacted by further
experimental biases (Hansen, Irizarry, & Wu, 2012; Lee et al.,, 2011; Oshlack &
Wakefield, 2009; Roberts, Trapnell et al., 2011). Therefore a normalization method is
needed in order to enable the comparison of read counts across different samples and
features. One of the commonly used measures to report the level of expression derived
from an RNA-seq experiment is the Reads per Kilobase per Million mapped reads
(RPKMs) in the case of single-end data. While the Fragments per Kilobase per Million
mapped reads (FPKMs) has been recommended for paired-end RNA-seq data
(Mortazavi, Williams et al., 2008)

Kij 9

Where:
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U;; = Normalized expression of gene i in sample j

K;; = Observed counts (reads/fragments) for gene i in sample j
N;j = Total number of reads in sample j (sequencing depth)

L;j = Length of gene /

The RPKMs and FPKMs are currently being used as established intuitive
measure of expression levels in RNA-seq. However, they work based on the assumption
that the overall RNA levels are similar across samples, which may not always be the
case. Therefore, they may fail to properly estimate the normalisation factors in cases
where the compared libraries differ in their composition (Robinson & Oshlack, 2010).
This caveat can be illustrated by comparing the expression of genes in two RNA-seq
samples; one expressing an extra small set of highly expressed genes (sample A), while
the other one does not (sample B). The sample A is more likely to detect reads from
genes with high expression levels. This is due to the sampling nature of the RNA-seq.
Therefore, even if the two samples are sequenced at similar depth, the signal from
commonly expressed genes will be lower in the sample A. In such cases, if one uses the
above mentioned normalisation method, it leads to the identification of most genes
undergo expression differences between the two samples. Whilst the observed
differences could be better explained by the isolated differential expression of the few
non-overlapping genes. This example illustrates the need for more robust normalisation
methods than the RPKM/FPKM for RNA-seq, especially when the goal is to compare
across libraries. An example of those methods is developed within the DESeq2
Bioconductor package, where it calculates a geometric mean for each gene in order to
capture the variability of the observed measurements across all the libraries (Love et al.,
2014). This approach is similar to obtaining a reference sample for the expression
analysis. These values are then used to normalize the read counts. Lastly, the library-

specific normalisation factors are obtained from the median of the calculated ratios;

. K;j
S; = Median /KiR

i KiR #0
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Where:

S; = size factor for sample j
K;; = observed counts for gene i in sample j

KJ} = geometric mean for gene i across the m sample, where

geometric mean is ([T7%; Ki,)Y/™.

Differential expression analysis

The assessment of differences in expression levels is one of the most common
uses of RNA-seq data. Once the coverage analysis is performed and the corresponding
counts are obtained, differential expression analysis can be performed at both gene and
transcript levels. Many tools including DESeq2 Bioconductor package have been
developed for such analysis (Love et al., 2014). In order to address the significance of
the detected expression changes, the majority of these methods rely on the use of
Generalised Linear Models (GLMs) of the Negative Binomial (NB) family. A differential
expression analysis workflow would consist of normalising the observed counts in order
to enable their comparison across libraries. Next, using the replicate samples, for each
gene, an estimate on the amount of variability is calculated. Replicates may either be

biological or technical replicates. Finally, the differential expression test is performed.

1.3. Disruption of RNA processing in human cancer

Cancer cells have two intrinsic properties that make them pathological for living
organisms: They reproduce in defiance of the natural limitations on cell growth and
division, and invade and colonize areas normally occupied by other cells (Alberts et al.,
2007). A cell that grows and proliferate abnormally and uncontrollably into a mass will
result in a neoplasm i.e. a tumour. A neoplasm is considered benign when its cells do
not invade nearby tissue or spread to other parts of the body. Such tumours are usually

easy to treat by surgically removing the tumour mass. However, if tumour acquires an
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ability to invade into the surrounding tissues, it is considered malignant or cancerous.
Cancer cells may invade to the surrounding tissues and spread to form secondary
tumours called metastases. It is usually the metastases that result in the death of the
cancer patient (Alberts et al., 2007; Hanahan & Weinberg, 2000).

Cancer is typically caused by genetic changes effecting protein coding genes
and impacting the role of their protein products. These changes can be mutations,
deletions, and insertions that change the amino acid sequence of the translated peptide.
In addition, synonymous changes, copy number variations (CNVs), as well as changes
occurring in intronic regions can lead to gene dysfunction and cancer (Stratton,
Campbell, & Futreal, 2009).

In general, studies of human genetic diseases have shown that up to 50% of
mutations contributing to disease affect RNA splicing, where 10% directly disrupt splice
sites (Krawczak et al., 2007; Lopez-Bigas, Audit et al., 2005). Mutations affecting RNA
splicing have also been implicated in cancer formation and progression. For example,
the splicing factor SF3B1 is mutated in approximately 20% of patients with
myelodysplastic syndromes (Malcovati et al., 2015). Similarly, a mutation creates an
ESE in the KLF6 gene in prostate cancer, where it promotes expression of an isoform
that accelerates tumour progression (Narla et al., 2008). Also the up regulation of SR
proteins in ovarian and colon cancer regulates splicing of a number of oncogenes (Ward
& Cooper, 2010).

Currently there are ten known hallmarks of cancer, including self-sufficiency in
growth signals, insensitivity to anti-growth signals, evading programmed cell death
(apoptosis), limitless replicative potential, developing blood vessels (angiogenesis),
tissue invasion and metastasis, deregulated metabolism, evading the immune system,
unstable DNA, and Inflammation (Hanahan & Weinberg, 2000; Hanahan & Weinberg,
2011). Each of these widely accepted hallmarks could be affected by aberrant splicing
(Oltean & Bates, 2014). In particular, apoptosis and metastasis are affected by AS in a
number of genes. For example, the overexpression of the anti-apoptotic transcript
variants of BCL2L1 (BCLXL) confers resistance to apoptosis in cancer (Oltean & Bates,

2014). In addition, abnormal expression of TP53 splicing isoforms is involved both in
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apoptosis and cell proliferation (Oltean & Bates, 2014). A splicing switch between pro-
and anti-angiogenic isoforms of VEGFA is also observed between cancer and healthy

samples in several tissue types (Oltean & Bates, 2014).

AS is known as a process contributing to structural transcript variation and
proteome diversity. It also regulates gene expression by generation of premature
termination codons, and subsequent targeting by nonsense-mediated mRNA decay.
Although numerous normal and disease related AS events have been identified and
characterized in recent years, the function of the majority of observed splicing events is
unknown. In addition, in some cases, AS appears to results in non-functional end-
products. It has to be noted that the splicing pathway can also be considered error-prone
which introduces noise and stochastic variation in the transcriptome, resulting in
generation of mis-spliced and non-canonical transcripts at low abundance in most
genes. Regardless, aberrant splicing commonly denotes splicing events that are

associated with disease, and differs from the splicing patterns found in healthy tissues.

1.4. Cancer therapeutics

Treatment of cancer is currently a double-edged sword. It needs to be aggressive
enough to destroy tumour cells completely. However, it is this aggressiveness that
causes severe side effects through deleterious effects on normal cells. One way in which
the efficacy of systemic therapeutics can be improved would be to locally enhance their
concentration at the tumour site. One approach to accumulate therapeutic agents at the
tumour site, while minimizing their presence at other sites in the body, is to
conjugate/fuse them with tumour-specific monoclonal antibodies (Zhang, Chen et al.,
2007).

Antibodies represent a natural response by the immune system to the presence
of foreign proteins within the body. An antibody is a protein that identifies and binds to a
specific protein called an antigen (Figure 1-6). They circulate throughout the body until
they find and attach to their antigen. Once attached, they can recruit other parts of the

immune system to destroy the cells presenting the antigen. Monoclonal antibodies
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(mAbs) are identical antibodies that are generated from a cell population derived from a
single isolated immune cell to specifically target a certain antigen (Scott, Wolchok, &
Old, 2012). Therefore, in order to make mAbs, it is critical to identify the right antigen to
attack. There are three types of mAbs: naked, conjugated, and bispecific mAbs. Naked
mAbs are the most common type of mAbs used in cancer treatment. They can block and
kill tumour cells in different ways (Scott et al., 2012); naked mAbs can boost a person’s
immune response against cancer cells by attaching to them and acting as a marker for
the body’s immune system to destroy them, or they can boost the immune response by
targeting immune system checkpoints. Other naked mAbs work mainly by attaching to
and blocking antigens on the surface of cancer cells that help cancer cells grow or
spread. For example, trastuzumab (Herceptin®) is an antibody against the HER2 protein
(Albanell & Baselga, 1999). Most patients with ovarian and breast tumours express high
levels of this gene. When HER2 is activated, it helps tumour cells to grow and
proliferate. The binding of trastuzumab to these proteins sterically hinders the oncogenic
function of HER2 (Albanell & Baselga, 1999).

Although mAbs targeting certain surface receptors may possess sufficient anti-
tumour activity to be viable therapeutics themselves, e.g. by hindering the function of the
bound protein as is the case with anti-HER2 trastuzumab, the concept of coupling highly
potent cytotoxic molecules to antibodies via linkers expands significantly the potential for
antibody based approaches (Figure 1-6). Conjugated mAbs are mAbs joined to a
chemotherapy drug or to a radioactive particle (Polakis, 2016). In this case, the antibody
is being used as a homing device to deliver the conjugated drug directly to the cancer
cells. These antibodies circulate throughout the body until they can find and bind onto
their specific target protein. Then, they can deliver their toxic payload to the cancer cells.
This approach minimizes the damage to normal cells in other parts of the body. The key
to achieve this goal is to identify a target protein that is specific to the tumour cells and it
is expressed at a low level or is absent in healthy normal tissues. Chemolabeled
antibodies, also known as antibody-drug conjugates (ADCs), usually carry a drug that is
often too powerful to be used systematically on its own. An example of these antibodies
is TDM-1 (Kadcyla®), an antibody that targets the HER2 protein, attached to a
chemotherapeutic drug called DM1 (Verma et al., 2012). This drug is suitable for the

treatment of breast cancer patients whose cancer cells express HER2 at a high level
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(Verma et al., 2012). Interestingly, in case of conjugated mAbs, the target protein need
not even necessarily be driving proteins of oncogenesis as long as they have tumour
specific or enriched profiles compared to normal tissues — although one might presume
that proteins involved in oncogenesis would be preferred targets for therapeutic

development.
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Targeted antibody-based therapeutics. (a) Targeting mAbs to the
tumour can result in destruction of tumour cells by antibody-dependent
cellular cytotoxicity or complement-dependent cytotoxicity. (b) A direct
approach to kill tumour cells is the conjugation of cytotoxic drugs (D),
toxins (T) or radionucleotides (R) to mAbs. (c) Bispecific antibodies can
modulate immune response against tumour cells. They are capable of
targeting two proteins on the surface of tumour cells simultaneously. In
addition, they can bring immune cells to the tumour site by binding to a
target on the surface of a tumour cell and the other target on the surface
an immune cell.
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The bispecific mAbs are made up of parts of two different mAbs (Figure 1-6).
This means that they can attach to two different proteins at the same time(Chames &
Baty, 2009)An example is blinatumomab (Blincyto), which is used to treat some types of
acute lymphocytic leukemia (Sanford, 2015). One part of blinatumomab attaches to the
CD19 protein, which is found on some leukemia and lymphoma cells. Another part
attaches to CD3, a protein found on immune cells called T cells. Therefore,
blinatumomab brings the cancer cells and immune cells together by binding to both of
these proteins. This process is thought to cause the immune system to attack the cancer

cells.

Complex diseases such as cancer are often multifactorial in nature and involve
redundant or synergistic action of disease mediators or up regulation of different
receptors. Therefore, blockade of multiple different pathological factors and pathways
simultaneously may improve the therapeutic efficacy. This goal can be achieved by
using the dual targeting strategies applying bispecific antibodies. Bispecific antibodies
offer more binding specificity and improved efficacy than mAbs, since they can bind to
two target proteins on the surface of tumour cells simultaneously. An example of such
antibodies is the bispecific antibody that targets EGFR and IGFR proteins on the surface

of tumour cells that express both of them (Kontermann, 2012).

Over the past couple of decades, the US Food and Drug Administration (FDA)
has approved more than a dozen antibodies including all three types to treat certain
cancers (www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm).
Although mAbs represent a powerful way to target cancer cells, a critical and key step in
the process is the identification of appropriate proteins to target. While, cell surface
proteins highly expressed in cancers have been shown as attractive and successful
targets in the clinic, protein changes that occurs in the extracellular region of surface
proteins and accessible by antibodies, e.g. splice variants, may also serve as attractive

targets for mAbs.
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1.4.1. Differentially expressed genes as therapeutic targets

The safety and efficacy of therapeutic mAbs in oncology vary depending on the
nature of the target (Papkoff, 2007). An ideal antibody target should be abundant and
accessible and should be expressed homogeneously, consistently and exclusively on
the surface of cancer cells. Aside from tumour overexpression, a second key aspect is
normal tissue expression. ldeally, there should be no or very little expression in any
normal human tissues. Normal expression of the target in tissues such as lung, heart or
kidney that cannot sustain damage from a targeted therapeutic represents a major
concern and consequently can disqualify a promising target (Papkoff, 2007). Conversely,
some normal tissues such as uterus, thyroid or prostate can be subjected to toxic
therapies without life-threatening consequences. Therefore, some level of normal
expression may be tolerable. In such cases the potential toxicities that could ensue
depend on the relative ratio between tumour and normal expression levels. Examples of
overexpressed proteins that have been identified as suitable targets for antibody therapy
include EGF receptor and HER2/neu. Even though they are expressed on a variety of
normal tissues the therapeutic antibodies apparently have minimal toxicities due to this
normal expression within their therapeutic windows (Deckert, 2009). Other examples
include antibodies targeting CD20 and VEGF, which have all shown significant benefit

for the treatment of patients in both liquid and solid tumours (Deckert, 2009).

1.4.2. Alternatively spliced genes as therapeutic target

Within human cancer alternatively spliced forms of proteins on the cell surface
are obvious targets for antibody-based therapies - particularly if the splice variant is
tumour specific. Even in the cases where the splice variant is rare but not tumour
specific a comprehensive understanding of the normal tissues where it is expressed and
its expression levels can allow the potential toxicity to essential organs and side effects
to be predicted. Certainly, targeting a therapeutic antibody to the tumour is
fundamentally more appealing than systemic untargeted application of
chemotherapeutics. An example of successful mAbs targeting a splice variant is

AMG595, which specifically bound to a constitutively-activated, oncogenic form of
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epidermal growth factor receptor variant IlI (EGFRvIIl) (Carlsson, Brothers, &
Wahlestedt, 2014). EGFRuvIII has restricted tumour-specific expression, including glioma,
breast, non-small cell lung, ovarian, head and neck, and prostate cancers (Carlsson et
al., 2014). This splice variant of EGFR has a deletion of exons 2-7 creating a novel
epitope unique to the tumour. Genomic deletion of exons 2-7 has also been detected in
some but not all of the EGFRVIII expressing tumours (Wheeler et al., 2015). AMG595 is
an immunoconjugate, which consists of a human mAb directed against the deletion-
mutant of EGFR. This mAb is conjugated via a non-cleavable linker to the cytotoxic
agent maytansinoid DM1, with potential antineoplastic activity (Carlsson, Brothers, &
Wahlestedt, 2014).

Hence, somatically generated cancer-specific protein isoforms may represent
attractive candidates for mAb development in oncology, particularly if such protein
isoforms are highly recurrent either within or across tumour types. Even though many of
these variants may have lower expression than the canonical isoforms the ability to
conjugate highly potent cytotoxic compounds to the binding mAbs can mitigate this

problem.

1.4.3. Identifying optimal therapeutic targets

The availability of large datasets of cancer transcriptome data now provide an
unprecedented opportunity to comprehensively identify cancer associated differentially
overexpressed genes as well as alternative spliced forms or other transcriptomic re-
arrangements that are involved in oncogenesis or arise in tumours as a consequence of
therapy (Dargahi et al., 2014; Sebestyen et al., 2016; Tsai, Dominguez et al., 2015).
Bioinformatic analyses of these datasets has the potential to identify novel biomarkers
that can discriminate between tumour and normal tissues, interrogating the tumours at
both the DNA and RNA levels. The advent of next-generation sequencing approaches
allows identification of large classes of genetic defects and differentially expressed
transcripts within and across cancer types. The candidate therapeutic targets identified
by these technologies can be further narrowed down through three key characteristics
representative of an ideal therapeutic antibody target, including target localization,

expression pattern, and function (Papkoff, 2007):
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(1) A desirable tumour biomarker should be located on the cell surface.
Currently, more than 4,000 human cell-surface proteins have been annotated. Proteins

localized to the surface of human cells are potential diagnostic and therapeutic targets.

(2) An ideal tumour biomarker should be highly expressed or uniquely expressed
on the majority of tumour cells with no or limited normal tissue expression. Therefore,
the expression profile of an ideal candidate should be abundant on the surface of tumour
cells at all stages of cancer development to provide a broader window of opportunities
for treating patients, while its expression is restricted or absent from vital normal tissues
to minimize the risk of toxicities. An exception to overexpression would be proteins
expressed by both normal and cancerous cells at a similar level, while a unique form is
expressed within the cancer, including novel splice variants and fusion proteins. Tumour-
associated aberrant proteins are highly-attractive targets, since mAbs can be directed
towards a protein domain uniquely expressed on the tumour cell surface but absent from
normal tissue. For example, AS may add or delete functional domains from protein
coding sequences, causing a completely different physiological activity and structural
conformation of splice variant compared to the wild-type protein. Also, treatment
resistance-associated splice variants, which may arise as response to traditional
chemotherapy through survival adaption mechanisms can be specifically targeted by
mAbs. As they are specific responses to a compound’s action, these changes may be
more likely to be recurrent and specific to cancer cells and thus, make attractive targets

for mAb therapy.

(3) It is favourable that a tumour biomarker plays a defined role in malignant
transformation, however it is not required. Tumour biomarkers with a role in malignant
transformation may be essential for cancer cell survival. Therefore resistance to a
therapeutic mAb through gene loss or mutation might be less likely to arise. Since the
conjugated mAbs are very effective and strong agents, even if the function of target is
unknown or is not driving oncogenesis, it still can be used as a tumour cell surface
marker for these antibodies to specifically deliver toxins to the tumour site. In this case, it
is required that the target expresses at low levels or be completely absent from critical

normal tissues.
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1.5. Experimental design and Aims

The work presented in this thesis focuses on the use of RNA sequencing for the
high throughput study of differentially expressed genes and alternative transcript
products in human cancer samples. Overall, the goal is to identify such cases ideal for
antibody-based therapeutics in cancer. Hence, the following chapters will discuss
methods and algorithms of studying gene expression and splicing using RNA-seq data
(chapter 2), a pan-cancer analysis of The Cancer Genome Atlas (TCGA) and the
Genotype-Tissue Expression (GTEx) transcriptome data in order to identify cancer-
associated differentially expressed genes and the affected pathways (chapter 3.1), a
pan-cancer analysis of TCGA and GTEXx transcriptome data in order to identify cancer-
associated splicing variants (chapter 3.2), introducing an R package based on analytic
hierarchy process approach (AHP) to prioritize and rank identified candidate genes
according to their tumour target biomarker potential (chapter 3.3), and finally the

conclusion and discussions (chapter 4).
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Chapter 2. Methods and Materials

2.1. Datasets

The Cancer Genome Atlas project (TCGA) began in 2005 under the supervision
of the National Cancer Institute's Center for Cancer Genomics (NCI) and the National
Human Genome Research Institute (NHGRI) with the goal of cataloguing cancer causing
events including genomic mutations using the latest sequencing technologies and
bioinformatics approaches. TCGA is currently characterizing 33 cancer types including
10 rare cancer (http://cancergenome.nih.gov/). In order to achieve these goals, TCGA
primarily performs genome, transcriptome, and exome sequencing. All of the TCGA data
are available to researchers at the Data Coordinating Center (DCC) established to
provide data access (https://tcga-data.nci.nih.gov/). Most of the TCGA data is completely
open access, except for data that could potentially identify specific patients (e.g. rare
germline variants). This Clinically Controlled-Access data can be accessed through

application to the Data Access Committee (DAC).

The availability of large datasets of genetic information such as TCGA introduces
an unprecedented opportunity to exploit these data and generate novel hypothesis and
approaches for the treatment of cancer. In order to achieve the goals within this thesis, |
used TCGA as my primary discovery dataset. Raw RNA-seq and clinicopathological
data were downloaded from the TCGA data portal (http://cancergenome.nih.gov).
Permission to access TCGA data was obtained from the DAC of the National Center for
Biotechnology Information’s Genotypes and Phenotypes Database (dbGAP) at the
National Institute of Heath (NIH). Sample collection, library preparation, and sequencing

RNA methodologies have been described by TCGA previously (Cancer Genome Atlas
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Research Network, 2011). Predominantly, TCGA data is generated from primary

tumours that have not received any systemic treatment.

Similar to TCGA, The Genotype-Tissue Expression (GTEXx) is a large project that
was begun in 2010 under the supervision of NIH with the goal of studying the
relationship between genetic variation and gene expression in human tissues
(http://www.gtexportal.org/). GTEx characterises more than 30 tissue types collected
from deceased donors and organ/tissue transplant patients. These tissues are collected
from individuals free of major disease processes. Hence, combining the two TCGA and
GTEXx datasets offers a unique opportunity to identify cancer-associated events in each
available TCGA cancer type by comparing each cancer against the entire available
repertoire of GTEx normal tissues. Permission to access GTEx data was obtained from
the dbGAP at the NIH. Sample collection, library preparation, and sequencing RNA were
described by GTEXx previously (GTEx Consortium, 2013).

lllumina BodyMap 2.0 project is also consists of 19 normal transcriptomes from
16 different tissue types, making it an invaluable source for studying tissue-specific
transcript models (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/). The

raw RNS-seq data is publically available to download through the above-mentioned link.

2.2. RNA-seq quality control and trimming

As mentioned in chapter 1, RNA-seq quality control metrics include but are not
limited to: base quality, sequence quality, nucleotide composition bias, guanine-cytosine
(GC) bias, reads duplication rates (clonal reads), over-represented sequences and
sequencing adaptor contamination. There are number of tools developed to perform
quality control and trimming (if necessary) on RNA-seq data including Trim Galore

(Babraham Bioinformatics, 2015).

Trim Galore is a wrapper script around Cutadapt (Martin, 2014) and FastQC
(Andrews, 2016) tools to consistently apply quality control checks as well as quality and

adapter trimming to FASTQ files. The Cutadapt tool finds and removes adapter
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sequences, primers, poly-A tails and other types of unwanted sequence (e.g. low quality)
from the reads of an RNA-seq libaray. It performs these trimming tasks by finding the
adapter or primer sequences in an error-tolerant way. Trim Galore leverages Cutadapt to
perform adaptor sequence detection and trimming by using the first 13 bp of lllumina
standard adapters ('AGATCGGAAGAGC'). If a sequencing read becomes too short
(shorter than 25 bases) after trimming, Trim Galore can either remove the read from the
dataset, or write it to a separate file so the information is not entirely lost and can be
used with caution (e.g. using strict parameters for alignment of such short reads). In
addition, using the Phred quality of base calls, Trim Galore can identify bases with lower
quality than 20 and trim the reads. Trimming the adaptor sequences as well as low
quality bases will improve the alignment quality of an RNA-seq data. Then, Trim Galore
uses FasyQC to perform quality control by measuring the metrics listed in section 1.3.1

(quality assessment of RNA-seq data).

2.3. RNA-seq alignment

RSEM (RNA-Seq by Expectation Maximization) is a software package for both
gene and isoform quantification (Li & Dewey, 2011). It is designed to work with reads
aligned to transcript sequences, instead of a reference genome. Hence, it consists of
two major steps: First, it requires generation of a set of reference transcript sequences.
Then, it aligns a set of RNA-Seq reads to the reference transcripts and uses these

alignments to estimate abundances.

RSEM uses the Bowtie alignment program to align the RNA-seq short reads
(Langmead et al., 2009). It uses parameters specifically chosen for RNA-Seq
quantification, which later will help with better quantification of the data. For example,
RSEM runs Bowtie to find all alignments of a read with at most two mismatches in its
first 25 bases. This will allow RSEM to determine which alignments are most likely to be
correct, rather than assigning the aligner this responsibility. This approach leads into a
more accurate estimation, due to the more detailed model used by RSEM for the RNA-
seq read generation process compared to the read aligner programs. The alignment

step can also be performed using any alignment program other than Bowtie.
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2.3.1. Gene and isoform quantification guided by a transcriptome

RSEM aligns short RNA-seq reads to a set of transcript sequences. There are
several advantages to this approach: The alignment of RNA-seq reads directly to a
reference genome is complicated due to the splicing and polyadenylation events. For
example, reads that span splice junctions or extend into poly(A) tails are challenging to
align at the genome level. Therefore, this approach allows for a faster alignment at the
transcript-level, since the total length of all possible transcripts is often much smaller
than the length of the reference genome. Lastly, using transcript-level alignments allows
for analyses of samples from species without reference genome, since a decently
characterized ftranscriptome can be achieved by methods such as RNA-Seq

transcriptome assembly (Martin & Wang, 2011).

By itself, RNA-seq data allows the estimation of the relative expression level of
isoforms within a sample. There are two natural measures of relative expression: the
fraction of transcripts and the fraction of nucleotides of the transcriptome made up by a
given gene or isoform (Li & Dewey, 2011). These quantities can be referred to as 7; and
9; for the transcript i, respectively. Therefore, at the isoform level these quantities are

related by the following equations:

9 Til;
i= =
2 7l
.= 9i/l;
R

Where, l;is the length of isoform i in nucleotides. At the gene level, expression is
simply the sum of the expression of possible isoforms. The expression levels estimated
from these quantities are called nucleotides per million (NPM) and transcripts per million

(TPM), which are obtained by multiplying ¥ and = by 10°, respectively.

RSEM is capable of estimating the level of expression at both the gene and

transcript levels. For isoform expression-level estimation, it infers the values of the
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model parameters 6 = [0y, 63,..., By ], where M is the number of isoforms. Under the

assumption that reads are uniformly sampled from the transcriptome, these parameters

. . . 0;
correspond to relative expression levels. Therefore, 9; can be estimated by ﬁ, where 6;
—Yo

represents the probability that a fragment is derived from transcript i, and 6, represents
the noise-transcript from which reads that have no alignments may be derived. RSEM
then computes maximum likelihood (ML) abundance estimates using the Expectation-
Maximization (EM) algorithm. This can be achieved by computing the ML values of the

parameter 6. When the values of 6 is estimated, they can be converted into ;:

= 0/
¢ Zj:o 91’/[;’

Where, [; is the length of isoform i in nucleotides. The effective length can be
thought of as the mean number of positions from which a fragment may start within the

sequence of transcript .

The TCGA bioinformatics group use RSEM in their pipeline for gene and
transcript expression level estimation, therefore in order to minimize the variability and
avoid software biases in expression analysis, | also used this tool for the expression

analysis.

2.4. Differential expression analysis

Several methods have been developed for the differential expression analysis,
including DESeq2 (Love et al.,, 2014), edgeR (Robinson et al., 2010), and NOISeq

(Tarazona et al., 2011). Each of these methods is described below.

2.41. DESeq2

DESeq2 is a parametric statistical method based on a negative binomial model.

The implemented DESeq2 analysis workflow consists of several steps: it begins with
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normalization of the observed read counts in order to enable their comparison across
samples (this step is explained in section 1.3.2). Then for each gene, DESeq2 estimates
the amount of variability that can be expected on the measurements from biological
replicates. As with any counting process, one would not expect the detected counts for a
given gene to be exactly the same across all observations from a single condition.
Therefore, the key question in differential expression analysis is whether the observed
counts across the two evaluated conditions are similar enough to be derived from the
same distribution (null hypothesis), or whether they are better explained by two separate
ones (alternative hypothesis). Hence, based on the nature of RNA-seq data, the Poisson
distribution was first proposed to model noise intrinsic to the counting process. However,
later it was shown that although this method works well for technical replicates, it
underestimates the variability across biological replicates. As a result, the negative

binomial distribution was introduced:

Kij = NB(Mij,5i2j

Uij = Sjqij
Where:
K;; = observed counts for gene i in sample j
uij = distribution mean for gene i in sample j
&7 = dispersion for gene i in sample j
sj = size factor for sample j

q;j = quantity proportional to the concentration of cDNA fragments

for gene i in sample j

In order to evaluate the significance of detected changes in the data, it is

important to correctly identify the amount of variation across biological replicates.
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However, due to the low number of replicates that are typically available for RNA-seq
experiments, such variation cannot be directly calculated. Instead, it needs to be
estimated from the data. DESeq2 uses the assumption that genes with similar level of
expression have similar sample-to-sample variance, and therefore obtains gene-specific
variance estimates by taking into account not only the observed dispersion for each
given gene, but also that of all other genes. This goal is achieved by fitting a regression
curve to the data, which is average normalised counts vs. observed dispersion. Then,
the outcome is used to modify the observed dispersion values. DESeq2 further
decomposes the mean into a function of independent variables (covariates), and

therefore take all known sources of variation into account:

log, (ki) = Z Xjr Bir

r

where:

uij = mean for gene / in sample j

xjr = independent variable r in sample j
Bir = coefficient for gene j and variable r
Therefore, in summary, the DESeq2 algorithmic approach fits the model
mentioned in the above equations for both the null and alternative hypotheses, and

evaluates the significance of coefficient of interest.

DESeq2 can be used for the study of differential expression at both gene and

transcript level. DESeq2 is available as a bioconductor R package (Love et al., 2014).
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2.4.2. EdgeR

Similar to DESeq2, edgeR is a parametric statistics method that works based on
a negative binomial model. edgeR is the first statistical method developed for the
differential expression analysis. It was originally developed for the analysis of Serial
Analysis of Gene Expression (SAGE) data. The model formulation is very similar to that
of DESeq2. When estimating variances, DESeq2 and edgeR both borrow information
between genes but in different ways. edgeR uses conditional maximum likelihood
conditioning on the total count for a gene to estimate the gene-wise variance or
dispersion. Then using an empirical Bayes procedure, it shrinks the dispersions towards
a consensus value. edgeR assesses differential expression using an exact test similar to
that of DESeqg2 with modification for over-dispersed data for each gene. It requires each
condition to have at least one replicate for input data. One of the main differences
between DESeq2 and edgeR is the way they estimate variance. edgeR estimates a
single common dispersion parameter for all genes, whereas DESeq2 estimates the
variance using a more flexible, mean-dependent local regression. edgeR is available as

a bioconductor R package (Robinson et al., 2010).

2.4.3. NOISeq

In contrast to DESeq2 and edgeR, NOISeq is a non-parametric statistical
method. NOISeq offers several normalization methods for the raw read counts,
including: RPKM, FPKM, Trimmed Mean of M-values (TMM), and upper quartile
(UQUA). TMM calculates a normalization factor based on a weighted average
expression ratio of all genes after removing extremely high and low counts data. UQUA
calculates scaling factors based on per-lane upper-quartile (75th percentile) of all the
gene counts excluding those that have zero counts for all lanes. Once the data is
normalized, NOISeq calculates the log-ratio (M) and the absolute value (D) of difference.
If xé is the mean or median of gene j expression for all available replicates in
experimental condition g (where g can be one of two experimental conditions), the M

and D values for gene i are:
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X
M; = log, 1/xi
2

D; = |xi — x}

The value M collects fold-change information, while the value D collects the
absolute difference that compensates for the unstable behaviour of M at low expression
values. NOISeq then calculates the probability of a gene being differentially expressed
which is the probability that |[M| and D are greater that the noise |M"*¢| and D"™"°

P(|Mnoise| < |Mi|’Dnoise < Di)

NOISeq empirically computes the probability distributions of M™*¢ and D™*® by
comparing gene expression counts between each pair of replicates within the same
condition. Therefore, the odds of gene |/ being differentially expressed to non-

differentially expressed is calculated as:

P(|Mnoise| < |Mi|’Dnoise < Di)
Pnoiseq: 1— p(anoisel < |Mi|'Dnoise < Di)

In the case that no replicates are available, NOISeq simulates replicates based

on a multinomial distribution for read counts with the following parameters:
N = the number of replicates to be simulated

Pnr = the number of the total reads for each replicate to be simulated expressed

in a percentage of the total reads of the available sample
V = the variability in the total read numbers of the simulated samples

NOISeq is available as a bioconductor R package (Tarazona et al., 2011).
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2.5. De novo transcriptome assembly

A comprehensive study of the transcriptome includes identifying novel transcripts
from unannotated genes, splicing isoforms and gene-fusion transcripts. Recent
advances in the sequencing of the whole transcriptomes using next-generation
sequencing technologies enable the study of the complex and dynamic landscape of the
human transcriptome at an unprecedented level of sensitivity and accuracy. RNA-seq
technology is capable of capturing RNA at base-pair-level resolution and a much higher
dynamic range of expression levels than previous hybridisation methods. It is also
capable of de novo annotation. De novo transcriptome assembly is a method of creating
a transcriptome without the aid of a reference genome. Therefore, reconstructing the full-
length transcripts from billions of short RNA-seq reads (35-500 bp) by transcriptome
assembly poses a significant informatics challenge (Martin & Wang, 2011). One of the
challenges of transcriptome assembly is the presence of multiple transcript variants from
the same gene, which can share exons and are difficult to resolve unambiguously with
short reads. Second, unlike genomic sequencing, in which both strands are sequenced,
RNA-seq can be strand-specific. Therefore, assemblers should be designed to use
strand information to resolve overlapping sense and antisense transcripts. Lastly, the
sequencing depth of RNA-seq can vary by several orders of magnitude. This is opposite
to the DNA sequencing, where the sampling depth is expected to be similar across the
genome. Although high sequence coverage for a genome may indicate the presence of
repetitive sequences and thus be masked, in RNA-seq experiments it typically
represents abundant genes. Several transcriptome assemblers (e.g. Trans-ABySS) have
been developed in the past few years (Robertson et al., 2010). Depending on whether a
reference genome assembly is available, current transcriptome assembly strategies fall
into one of the following categories: a reference-based strategy, a de novo strategy or a
combined strategy that merges the two de novo and reference based strategies (Martin
& Wang, 2011).

When a reference genome is available, the transcriptome assembly can be built
upon it by following three steps: (1) short RNA-seq reads are aligned to a reference
genome using a splice-aware aligner, (2) overlapping reads from each locus are

clustered to build a graph representing all possible isoforms, and (3) in order to resolve
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individual isoforms, the assembler traverses the graph built on step 2. Therefore, this
strategy is known as reference-based or ab-initio assembly (Martin & Wang, 2011). This
approach has several advantages. It allows parallel processing of the data since it
breaks a large assembly problem into many smaller assembly problems i.e. independent
assemblies across each locus. In addition, contamination or sequencing artefacts are
not confounding since they are not expected to align to the reference genome and
therefore will be filtered out from further analysis. The most important advantage of this
approach is the ability to assemble transcripts of low abundance. Because the
underlying genome sequence is known, small gaps within the transcript that have been
caused by a lack of read coverage can be filled in using the reference sequence.
Therefore, the reference-based approach allows for discovery of novel transcripts as in
general such transcripts have lower expression levels. However, this approach does not
allow identification of trans-spliced and fusion genes, and relies on correct identification

and alignment of the reads to splice junctions by the aligner.

The de novo transcriptome assembly strategy does not use a reference genome.
Instead, it leverages the redundancy of short-read sequencing to find overlaps between
the reads and assembles them into transcripts (Martin & Wang, 2011). The de novo
assemblers generally assemble the data set multiple times using a De Bruijn graph-
based approach. Then, they post-process the assembly to merge contigs and remove
redundancy. De novo assemblers then traverse the De Bruijn graph by applying paired-
end read information to assemble isoforms at each locus. Compared to the reference-
based strategy, de novo transcriptome assembly has several advantages. First, it does
not depend on a reference genome. Second, it does not depend on the correct
alignment of reads to known splice sites or the prediction of novel splicing sites, as
required by reference-based assemblers. Finally, a de novo approach is able to
assemble and identify trans-spliced transcripts and similar transcripts originating from
chromosomal rearrangements. Disadvantages of this approach include the sensitivity of
de novo assemblers to sequencing errors and to the presence of chimeric molecules.
Even though, algorithms have been developed to correct error containing reads from
abundant transcripts, this distinction is more difficult to make for reads that are
sequenced from low-abundance transcripts. Furthermore, de novo assemblers are likely

to assemble highly similar transcripts (e.g. different alleles or paralogues) into a single
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transcript. Therefore, the outcome will require additional post-assembly steps to resolve
this.

The two approaches mentioned above can be combined to create a more
comprehensive method for transcriptome analysis. The combined transcriptome
assembly approach therefore brings together the advantages of the two previous
approaches allowing for detection of novel and trans-spliced transcripts by de novo
assembly while leveraging the high sensitivity of reference-based assemblers. The
combined method can be carried out by either first aligning the reads to the reference
genome or by de novo assembling the reads. Trans-ABySS, which is being used in this
thesis, is an example of combined transcriptome assembly method (Robertson et al.,
2010). It assembles the RNA-seq data set using the reference genome, and then
performs de novo assembly on the reads that failed to align to the genome. In addition,
transcripts that result from the reference-based assembly could also serve as input to
the de novo assembly. The combined approach therefore requires less computational
time and resources in comparison to the de novo approach as with a reference, most of
the reads will be assembled, leaving only a small fraction of the reads to be de novo
assembled. The main advantage of this approach is the ability to merge incomplete
transcripts by aligning both the assembled transcripts and the unassembled reads to the

reference genome.

25.1. Trans-ABySS de novo assembly package

The Trans-ABySS package includes ABySS (Simpson et al., 2009), a genome
assembler tool, and Trans-ABySS itself for the post-processing of assembly outcomes.
ABySS algorithm works based on de Bruijn di-graph representation of sequence
neighbourhoods. In this graph, a sequence read is decomposed into tiled sub-reads of
length k (also called k-mers) and sequences sharing k-1 bases are connected by
directed edges. Therefore, it captures the adjacency information between sequences
that overlap the last and the first k-1 characters. Once ABySS establishes adjacency
information by cataloging k-mers in a given set of reads, the resulting graph is inspected
to identify potential sequencing errors and small-scale sequence variation. If a sequence

has a read error, it alters the k-mers that span it. Therefore, it results in the formation of
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branches in the graph. However, since such errors are stochastic in nature, their rate of
observation is substantially lower than that of correct sequences. Therefore, using the
coverage information, such errors can be discerned in order to improve the quality and
contiguity of an assembly. However, this fact is especially true for genomic sequences.
In the case of RNA-seq, where sequence coverage depth is a function of the transcript
expression level, the removal of low coverage branches needs to be performed with
care. ABySS trims such low coverage branches in RNA-seq data, when the absolute

coverage levels falls below a threshold of 2-fold.

After removing false branches, the unambiguously linear paths along the de
Bruijn graph are connected to form contigs. Contigs are contiguous sequences that are
used to indicate a contiguous piece of DNA/RNA assembled from shorter overlapping
sequence reads. Therefore, contigs formed in this stage consist of uniquely occurring k-
mers. Next a streamlined read-to-assembly alignment routine is performed by Trans-
ABySS. In this step, the aligned read pairs are used to infer read distance distributions
between pairs in the RNA-seq sample, and identify contigs that are in a certain
neighbourhood defined by these distributions. The adjacency and the neighbourhood

information are used to further merge contigs unambiguously connected by read pairs.

In practice, ABySS assembles the short read RNA-seq data set multiple times
using a De Bruijn graph-based approach for different values of K-mer. This approach
reconstructs transcripts from a broad range of expression levels. Trans-ABySS post-

processes the assembly to merge contigs and remove redundancy.

The quality of a de novo assembly can be evaluated by the length of the shortest
as well as the longest contigs and the N50 value - which is the size at which half of all

assembled bases reside in contigs of this size or longer. A larger N50 is more desirable.
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2.6. Downstream analysis

2.6.1. Pathway and enrichment analysis

The analysis of high-throughput sequencing data typically yields a long list of
differentially expressed genes or proteins. Such lists are useful in identifying genes that
may play a role in a given phenomenon or phenotype. However, extracting the meaning
of a long list of differentially expressed genes and proteins and understanding the
underlying biology of the condition presents a challenge in bioinformatics. One approach
to overcome this challenge is to group long lists of individual genes into smaller sets of
related genes or proteins, which can significantly reduce the complexity of analysis.
Knowledge base approaches can help with this task. They can describe biological
processes and components in which individual genes and proteins are known to be
involved in, as well as how and where gene products interact with each other. One
example of this idea is to identify groups of genes that function in the same pathways.
Pathway analysis allows researchers to determine up and down regulated
genes/proteins, expression changes in a network overall, infer upstream regulators,
downstream molecules, and associated diseases. Ingenuity Pathway Analysis (IPA) is a

commercial software package that performs such analysis(Kramer, Green et al., 2014)

Data analysis and interpretation with IPA is built on the comprehensive, manually
curated content of the Ingenuity Knowledge Base database. Given a gene-expression
dataset, IPA elucidates the upstream biological causes and probable downstream
effects on cellular and organismal biology. In addition, it performs functional enrichment
and pathways/networks analysis (Kramer et al., 2014). IPA follows a network-based
approach based on the knowledge derived from the Ingenuity Knowledge Base, where
the nodes are genes, chemicals, protein families, complexes, microRNA species and
biological processes, and edges are observed cause-effect relationships. Each edge is
associated with a set of underlying findings obtained from the literature, and marked with
the regulation direction of the effect. IPA constructs many possible networks from the
data serving as hypotheses for the biological mechanism underlying the data. It

constructs networks that optimize for both interconnectivity and number of focus genes
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(uploaded genes that pass initial filters such as fold change, expression level, or
significance level) under the constraint of a maximal network size. IPA then scores these
networks by their statistical significance. It uses two scores that address two
independent aspects of the inference problem. An enrichment score, which is Fisher’s
exact test P-value, that measures overlap of observed and predicted regulated gene
sets. In addition, it uses Z-score to assess the match of observed and predicted up/down
regulation patterns. The Z-score is suited for this kind of problem since it serves as both
a significance measure and a predictor for the activation state of the regulator.
Therefore, IPA calculates significance scores based on the number of genes/molecules
that map to a biological function, pathway, or network. Once the IPA network is created,
it can determine information such as over represented canonical pathways, as well as
up-stream and down-stream regulators. IPA is available at

http://www.ingenuity.com/products/ipa.

2.7. Statistical analysis

Survival analysis was performed using the Kaplan-Meier survival curve
approach, and differences in overall survival rates were determined by the log-ranked
test (Goel, Khanna, & Kishore, 2010). Overall survival time was defined as the period
between initial pathologic diagnosis and the time of death. Survival time of patients who

were still alive was noted with the data of the most recent follow-up appointment.

The Fisher's exact test was used to compare two categorical variables. The
Mann-Whitney t-test was used to determine significant differences in gene expression
between groups. A statistically significant P-value was defined as P-value < 0.05. | have

used R for statistical and survival analysis.

51



Chapter 3. Results

3.1. Pan-cancer identification of cancer-associated
differentially expressed genes

Cancer is fundamentally a disease of disordered gene expression (Pelengaris &
Khan, 2013). There are number of mechanisms that can alter gene expression patterns
in cancer cells (Holliday & Jeggo, 1985). These mechanisms may occur via a direct
change to DNA sequence, such as mutations within genes or closely linked DNA that
regulates activity of those genes, deletions that remove various genes and gene
regulatory sequences, amplification of genomic regions containing various genes, and
fusions of two genes by recombination between DNA sequences. Furthermore, gene
expression can be affected by perturbations in the machinery responsible for production
or activity of proteins, such as gene splicing. Splicing is a regulatory mechanism by
which variations in the incorporation of exons, or coding regions, into mRNA leads to the

production of alternate proteins, or isoforms.

Overall, aberrant gene expression ultimately results in an imbalance of cell
replication and cell death in a cell population that leads to formation and expansion of
tumour tissue. Differentially expressed genes are particularly relevant in oncology since
they may contribute to the etiology of cancer, may provide selective drug targets and can
serve as a marker set for cancer diagnosis (Goodison, Sun, & Urquidi, 2010). Therefore,
measuring gene expression is of great interest to scientists and many gene expression
measurement methods have been developed for biomedical studies. EGFR is one of the
differentially expressed genes that is currently in clinic as a drug target. Cetuximab is a
monoclonal antibody that targets EGFR and is indicated for the treatment of patients

with colorectal- and head and neck- EGFR expressing cancers (Wong, 2005).
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Diagnostic markers such as PSA (prostate-specific antigen) and CA125 (also known as
MUC16) are also being clinically used for the detection of prostate and ovarian cancers,
respectively (Felder et al., 2014; Schroder, 2009). However, the effectiveness of

detection is compromised with a high false positive rate.

The availability of large datasets such as TCGA provides an unprecedented
opportunity to comprehensively mine such datasets for genes that are being differentially
expressed within one cancer or amongst several different cancer types. In this chapter, |
describe the identification of tumour marker genes, along with their associated pathways
that are either common to multiple types of cancer or specific to individual cancer types.
| studied RNA-seq data from 24 cancer types available from the TCGA as well as RNA-
seq from a number of non-cancerous normal tissues generated by the GTEx project. |
further examined these genes to identify those that may serve as suitable tumour

biomarkers for targeting with antibody therapeutics in cancer.

3.1.1. Gene expression analysis pipeline

| developed a count-based gene expression analysis (GEA) pipeline for the
analysis of TCGA RNA-seq data. This pipeline, shown in Figure 3-1, is built from a set of
tools that are available to public and demonstrated better performance compared to their
counterparts (Conesa et al., 2016; Seyednasrollah, Laiho, & Elo, 2015; Yang & Smith,
2013). The GEA pipeline consists of four major steps including: a sequence quality
check, alignment of short RNA-seq reads to reference and coverage analysis, differential

expression analysis, pathway analysis and subsequent post-processing.
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Figure 3-1.
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Quality Control

The GEA pipeline accepts raw RNA-seq reads in FASTQ format, a reference
genome, and the corresponding transcriptome annotation as input. In the first step, Trim
Galore is used to perform RNA-seq quality assessment and improvement by trimming
the adaptor and over-represented sequences as well as low quality bases (Babraham
Bioinformatics, 2015). This step improves the mappability of the RNA-seq reads to the
reference and therefore allows for more accurate coverage analysis. Using FastQC
(Andrews, 2016), Trim Galore estimates the sample’s duplication rate. Samples with

over 50% duplication rate are discarded from the rest of analysis.

Read alignment and coverage analysis

Raw RNA-seq reads are then mapped to the reference transcriptome using
RSEM (version 1.2.20). RSEM uses the genomic aligner Bowtie to perform read
mapping to the reference transcriptome (Langmead et al., 2009). The default parameters
suggested by RSEM is used for this step. Then, the quality of the alignments is
assessed by examining the percentage of the reads that are successfully mapped to the
reference. This is done using samtools flagstst (H. Li et al., 2009). A threshold of greater
than or equal to 70% is used to select samples that were successfully mapped to the
reference transcriptome. Those with less than 70% mapped reads were discarded from
the rest of the analysis. Once the read mapping is complete, RSEM reports the gene
coverage in form of raw read counts as well as FPKM and TPM measures. The raw read

counts can further be used for the differential gene expression analysis.

Batch effect and hierarchical clustering

A large project such as TCGA collects and sequences tumour samples in
batches at different times. Since the samples are processed in batches, rather than all at
once, the data can be vulnerable to systematic noise such as batch effects (unwanted
variation between batches) and trend effects (unwanted variation over time), which can
lead to misleading analysis results. Therefore, Hierarchical clustering was performed
through the mBatch online tool (http://bioinformatics.mdanderson.org/tcgambatch/),

which helps to assess, diagnose and correct for any batch effects in TCGA data. For
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example, Figure 3-2 shows the hierarchical clustering of 479 lung squamous cell

carcinoma samples. No major batch effect was observed in this dataset.
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Differential expression analysis

The GEA pipeline incorporates three differential expression analysis methods,
including DESeq2 (Love et al.,, 2014), edgeR (Robinson et al., 2010), and NOISeq
(Tarazona et al.,, 2011). These methods use different normalization and statistical
approaches, which leads to the identification of different sets of genes as being
differentially expressed. Although the majority of differentially expressed genes are
found by all three approaches, there are small subsets of genes that are only found by
an individual method. In order to prevent information loss, the union of differentially
expressed genes found by the three approaches are being reported by GEA pipeline.
Although genes found by more than one method are being marked as more confident. A
gene is considered to be differentially expressed if the P-value and false discovery rate
(FDR) reported by DESeq2 and/or edgeR are less than or equal to 0.05. Similarly, a
gene is found as differentially expressed by NOISeq if the differential expression
probability is less than or equal to 0.8. In addition, a fold change of greater than 1.5 for
overexpressed genes and smaller than -1.5 for under-expressed ones must be
observed. The reported list of differentially expressed genes is further trimmed using the
level of gene expression in tumour and matched-normal samples. A gene is considered
to be overexpressed in tumour compared to the matched normal libraries, if it is
expressed higher that 0.1 FPKM in at least 25% of tumour samples. Similarly, if a gene
is under-expressed in tumour samples, it must be expressed in at least 25% of the

available matched-normal libraries with a FPKM value of equal or greater than 0.1.

The described approach above works well when tumours have paired control
samples from the same group of patients. However, there are several TCGA tumour
types that have no matched-normal. In these cases, non-cancerous normal tissues were
obtained from GTEx dataset (Table 3-1). Therefore, for datasets with unpaired cancer
and control samples, Mann-Whitney test was applied on the normalized expression
values (FPKM) to identify genes that are differentially expressed in cancer versus control

samples.
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Table 3-1.

GTEX tissue types

Tissue type

Number of samples

Adipose Tissue

10

Adrenal Gland 10
Bladder 11
Blood 1
Blood Vessel 10
Bone Marrow 10
Brain 25
Breast 25
Cervix Uteri 20
Colon 25
Esophagus 10
Fallopian Tube 10
Heart 1
Kidney 12
Liver 12
Lung 25
Muscle 10
Nerve 10
Ovary 1
Pancreas 11
Pituitary 10
Prostate 16
Salivary Gland 10
Skin 10
Small Intestine 15
Stomach 10
Testis 10
Thyroid 20
Uterus 10
Vagina 10
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Downstream analysis

The downstream analysis assesses the list of differentially expressed genes for
each cancer type individually and as a whole to identify frequently occurring events. This
analysis includes identifying commonly enriched pathways across different
malignancies, potential transcription factors regulating the gene expression and their
target genes, commonly over- and under expressed genes across multiple cancer types
and potential tumour markers. Such analyses are performed using Ingenuity software
(Kramer et al., 2014).

60



3.1.2. Identification of differentially expressed genes within and
across multiple cancer types

The majority of cancers undergo a common set of alterations during
oncogenesis, such as self-sufficiency in growth signals, insensitivity to antigrowth
signals, evasion of apoptosis, and tissue invasion and metastasis (Hanahan &
Weinberg, 2011). Since the same group of proteins may execute some of these
biological processes during the formation and progression of different cancers, |
hypothesize that it is possible to find common genes with disrupted expression patterns
across different cancer types. In addition, the availability of large datasets such as TCGA
allow for identification of genes with commonly altered expression patterns across
different cancer types. Therefore, in this section, | use the GEA pipeline introduced in
section 3.1.1 to analyze large batches of RNA-seq data from TCGA and GTEx to find
genes differentially expressed in cancers. Next, | present an exploratory analysis on
these genes to identify commonly enriched pathways across multiple malignancies as
well as transcription factors that may play a role in regulating the observed gene
expression patterns. Such analysis brings the gene differential expression information
together to explain the underlying mechanisms of the disease, and hence would help to
highlight the key players of those mechanisms. Such genes could be attractive
therapeutic targets. Then, | bring the differentially expressed genes in each tumour type
together to find those that are commonly found in cancers. Such genes, if expressed on
the cell surface could potentially be used as global tumour cell markers for targeted
therapeutic avenues such as antibodies (mAbs, ADCs, and bi-specific). Finally, | use the
GTEXx dataset to find cancer-associated events. Differentially expressed genes with high
tumour expression and zero to low level of expression in non-cancerous tissues are the
most attractive candidate genes for antibody-based therapeutics. GTEx includes RNA-
seq samples from 30 tissue types of human body, which are obtained from individuals
free of major diseases including cancer. Hence, GTEx is an important resource for

studying gene expression patterns in normal human tissues.

As of December 2014, there are RNA-seq from 24 types of malignancies
available at TCGA data repository (Table 3-2), of which only 17 cancer types have

available matched-normal samples. Raw RNA-seq data from 24 cancer types and 30
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normal non-cancerous tissue types were downloaded from TCGA and GTEx data
repository, respectively. At least 10 samples were downloaded for each GTEx tissue
type (Table 3-1). The raw RNA-seq reads were run trough the GEA pipeline for data

quality assessment and gene coverage analysis with RSEM.
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Table 3-2. Cancer RNAseq datasets used for pan-cancer identification of
differentially expressed genes

ID Type Tumour sample Matched normal

ACC Adrenocortical 79 N/A
carcinoma

AML Acute Myeloid 158 N/A
Leukemia

BLCA Bladder Urothelial 220 19
Carcinoma

BRCA Invasive Breast 1010 96
carcinoma

CESC Cervical squamous | 167 3
cell carcinoma and
endocervical
adenocarcinoma

COAD Colon 451 41
adenocarcinoma

GBM Glioblastoma 145 N/A
multiforme

HNSC Head and Neck 422 42
squamous cell
carcinoma

KICH Kidney 66 25
Chromophobe

KIRC Kidney renal clear 506 72
cell carcinoma

KIRP Kidney renal 171 30
papillary cell
carcinoma

LGG Brain Lower Grade | 452 N/A
Glioma

LIHC Liver hepatocellular | 189 50
carcinoma

LUAD Lung 485 58
adenocarcinoma

LUSC Lung squamous cell | 479 50
carcinoma

ov Ovarian serous 253 N/A
cystadenocarcinoma

PAAD Pancreatic 75 4
adenocarcinoma

PRAD Prostate 272 49
adenocarcinoma
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ID Type Tumour sample Matched normal

READ Rectum 160 9
adenocarcinoma

SARC Sarcoma 102 2

SKCM Skin Cutaneous 82 N/A
Melanoma

THCA Thyroid carcinoma | 493 57

UCEC Uterine Corpus 512 35
Endometrial
Carcinoma

UCS Uterine 57 N/A
Carcinosarcoma
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Pathway enrichment analysis of differentially expressed genes

Pathway enrichment analysis has been applied to cancer data sets to find driver
genes and pathways, to identify cancer mechanisms and biomarkers, and to identify key
regulators of the disease (Mutation Consequences and Pathway Analysis working group
of the International Cancer Genome Consortium, 2015). Since some cancer genes
cannot be targeted directly or it is different components of a pathway that alter during the
disease progression, studying the pathways would reveal other potential key players as

well as mechanism that can be targeted for cancer therapy.

Following the GEA pipeline, differential gene expression analysis was performed
on TCGA tumours versus either the available TCGA paired matched-normal tissue
samples or unpaired normal samples from GTEx. Genes with at least 1.5-fold changes
and FDR of equal or smaller than 0.05 were identified as differentially expressed.
Pathway enrichment analysis on genes that are differentially expressed in any of the 17
TCGA cancer types with matched normal samples revealed a number of signalling
pathways that are consistently and highly enriched across all TCGA tumour types (P-
value and FDR <= 0.05). These pathways are shown in Table 3-3. Estrogen-mediated S-
phase entry, coagulation system, MIF-mediated glucocorticoid regulation, acute phase
response signalling, GABA receptor signalling, Wnt/B-catenin signalling, p38 MAPK
signalling, cAMP mediated signalling, and chemokine signalling (in addition to the
general cellular processes such as cell cycle, DNA replication and repair, and apoptosis)
are among the most commonly enriched signalling pathways within different cancer
types. Some of these enriched pathways may also arise from the presence of non-
cancerous cells within the sampled tumour microenvironment. This analysis was

performed using IPA (Kramer et al., 2014).
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Table 3-3. Top 50 commonly enriched pathways across TCGA cancer types
with matched-normal tissue. The analysis is performed on differentially
expressed genes in each cancer type separately using the IPA software.

Pathway #Tumor | Tumor*
Eicosanoid Signaling 17 CESC,BLCA,PAAD,SARC,BRCA,COAD,HNSC,KICH,KI
RC,KIRP,LICH,LUAD,LUSC,PRAD,READ,THCA,UCEC
Bladder Cancer Signaling 17 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC
H,LUAD,LUSC,PAAD,PRAD,READ,SARC,THCA,UCEC
Coagulation System 17 PAAD,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRCKI
RP,LICH,LUAD,LUSC,PRAD,READ,SARC,THCA,UCEC
FXR/RXR Activation 17 BLCA,BRCA,CESC,COAD,HNSC KICH,KIRC,KIRP,LIC
H,LUAD,LUSC,PAAD,PRAD,READ,SARC,THCA,UCEC
Agranulocyte Adhesion and 17 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC
Diapedesis H,LUAD,LUSC,PAAD,PRAD,READ,SARC,THCA,UCEC
Granulocyte Adhesion and 17 BLCA,BRCA,CESC,COAD,HNSC KICH,KIRC KIRP,LIC
Diapedesis H,LUAD,LUSC,PAAD,PRAD,READ,SARC,THCA,UCEC
LXR/RXR Activation 17 BLCA,BRCA,COAD,HNSC,KIRC,KIRP,LICH,LUAD,PAA
D,PRAD,READ,THCA,UCEC,CESC,KICH,LUSC,SARC
Glutamate Receptor Signaling | 16 KIRC,PAAD,SARC,BLCA,BRCA,CESC,COAD,HNSC KI
CH,KIRP,LICH,LUAD,LUSC,READ,THCA,UCEC
nNOS Signaling 16 LICH,PAAD,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIR
C,KIRP,LUAD,LUSC,PRAD,READ,THCA,UCEC
cAMP-mediated signaling 16 KIRC,PAAD,BRCA,LICH,LUSC,BLCA,CESC,COAD,HN
SC,KICH,KIRP,LUAD,PRAD,READ,UCEC,THCA
VDR/RXR Activation 16 BRCA,CESC,UCEC,KICH,SARC,PAAD,PRAD,BLCA,C
OAD,HNSC KIRC,KIRP,LUAD,LUSC,READ,THCA
Atherosclerosis Signaling 16 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC
H,LUAD,LUSC,PAAD,PRAD,READ,THCA,UCEC
Axonal Guidance Signaling 16 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC
H,LUAD,LUSC,PAAD,PRAD,READ,THCA,UCEC
Transcriptional Regulatory 16 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC
Network in Embryonic Stem H,LUAD,LUSC,PAAD,PRAD,READ,THCA,UCEC
Cells
MIF-mediated Glucocorticoid | 15 LICH,PAAD,SARC,BRCA,CESC,COAD KICH,KIRC,KIR
Regulation P,LUAD,LUSC,PRAD,READ,THCA,UCEC
Basal Cell Carcinoma 15 LUSC,KICH,BLCA,BRCA,CESC,COAD,HNSC,KIRC KIR
Signaling P,LICH,LUAD,PRAD,READ,THCA,UCEC
Acute Phase Response 15 COAD,KIRC,KIRP,BLCA,BRCA,HNSC KICH,LICH,LUA
Signaling D,LUSC,PRAD,READ,SARC,THCA,UCEC
Leukocyte Extravasation 15 KIRC,KIRP,THCA,BLCA,PAAD,BRCA,CESC,COAD,HN
Signaling SC,KICH,LUAD,LUSC,READ,SARC,UCEC
Amyotrophic Lateral 15 BLCA,BRCA,COAD,HNSC KICH,KIRC,KIRP,LICH,LUA
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Pathway

#Tumor

Tumor*

Sclerosis Signaling

D,LUSC,PAAD,PRAD,READ,THCA,UCEC

Differential Regulation of 15 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC

Cytokine Production in H,LUAD,LUSC,PAAD,READ,THCA,UCEC

Intestinal Epithelial Cells by

IL-17A and IL-17F

Hepatic Fibrosis / Hepatic 15 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC

Stellate Cell Activation H,LUAD,LUSC,PRAD,READ,THCA,UCEC

Role of Cytokines in 15 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC

Mediating Communication H,LUAD,LUSC,PRAD,READ,THCA,UCEC

between Immune Cells

Dopamine-DARPP32 15 COAD,LUAD,READ,UCEC,PAAD,BLCA,BRCA,HNSC K

Feedback in cAMP Signaling ICH,KIRC,KIRP,LICH,LUSC,PRAD,THCA

Estrogen-mediated S-phase 14 BLCA,BRCA KIRC,KIRP,LICH,LUAD,LUSC,UCEC,THC

Entry A,CESC,COAD,KICH,READ,SARC

Differential Regulation of 14 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC

Cytokine Production in H,LUAD,PAAD,READ,THCA,UCEC

Macrophages and T Helper

Cells by IL-17A and IL-17F

Human Embryonic Stem Cell | 14 BLCA,BRCA,CESC,COAD,KICH,KIRC,KIRP,LICH,LUA

Pluripotency D,LUSC,PRAD,READ,THCA,UCEC

MIF Regulation of Innate 14 PAAD,SARC,BRCA,CESC,KICH,KIRC,KIRP,LICH,LUA

Immunity D,LUSC,PRAD,READ,THCA,UCEC

Role of IL-17A in Psoriasis 14 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LIC
H,LUAD,LUSC,READ,THCA,UCEC

TR/RXR Activation 14 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,LUA
D,LUSC,PRAD,READ,THCA,UCEC

eNOS Signaling 14 BLCA,COAD,READ,PAAD,SARC,CESC,HNSC,KICH KI
RC KIRP,LUAD,LUSC,PRAD,UCEC

Corticotropin Releasing 13 LICH,BLCA,LUAD,READ,UCEC,BRCA,CESC,COADKI

Hormone Signaling CH,KIRP,LUSC,PRAD,THCA

p38 MAPK Signaling 13 THCA,UCEC,PAAD,BLCA,BRCA,CESC,COAD,HNSC,LI
CH,LUAD,LUSC,PRAD,READ

GABA Receptor Signaling 13 LUAD,LUSC,THCA,UCEC,BLCA,BRCA,CESC,COAD,H
NSC,KICH,KIRC KIRP,LICH

Wht/catenin Signaling 13 BLCA,BRCA,CESC,COAD,KICH KIRP,LICH,LUAD,LUS
C,PRAD,READ,THCA,UCEC

Protein Kinase A Signaling 13 BLCA,COAD,READ,UCEC,BRCA,CESC,HNSC,KIRC KI
RP,LUAD,LUSC,PAAD,PRAD

Endothelin-1 Signaling 13 BLCA,CESC,COAD,KICH,KIRC,KIRP,LICH,LUSC,PAA
D,PRAD,READ,THCA,UCEC

PCP pathway 12 LUSC,BLCA,BRCA,CESC,COAD,KIRP,LICH,LUAD,PR

AD,READ,THCA,UCEC
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Pathway

#Tumor

Tumor*

Complement System

12

KIRC,LUAD,THCA,UCEC,PAAD,BLCA,BRCA KICH,KIR
P,LICH,LUSC,READ

Antioxidant Action of Vitamin | 12 COAD,CESC,SARC KICH,KIRC,KIRP,LUSC,PAAD,PRA

C D,READ,THCA,UCEC

Altered T Cell and B Cell 12 BLCA,BRCA,CESC,COAD,HNSC KIRC,LUAD,LUSC,PR

Signaling AD,READ,THCA,UCEC

Embryonic Stem Cell 12 BLCA,BRCA,COAD,KICH,KIRC,KIRP,LICH,LUAD,LUSC

Differentiation into Cardiac ,PRAD,THCA,UCEC

Lineages

Hematopoiesis from 12 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,KIRP,LIC

Multipotent Stem Cells H,LUSC,READ,THCA

MSP-RON Signaling Pathway | 12 BLCA,BRCA,CESC,HNSC KICH,KIRC KIRP,LICH,LUS
C,PAAD,PRAD,SARC

Cell Cycle: G2/M DNA 12 BLCA,UCEC,PRAD,BRCA,CESC,COAD KICH,KIRP,LIC

Damage Checkpoint H,LUAD,LUSC,SARC

Regulation

Colorectal Cancer Metastasis | 11 LICH,PAAD,BLCA,BRCA,CESC,COAD,LUAD,LUSC,RE

Signaling AD,THCA,UCEC

Cell Cycle Control of 10 BLCA,BRCA,CESC,HNSC KIRP,LICH,LUAD,LUSC,SAR

Chromosomal Replication C,UCEC

Chemokine Signaling 9 PRAD,PAAD,BLCA,BRCA,COAD,HNSC,KICH KIRP,TH
CA

CREB Signaling 8 COAD,READ,PAAD,BLCA,CESC KICH,KIRP,UCEC

ERK/MAPK Signaling 7 BLCA,BRCA KIRP,PAAD,PRAD,READ,UCEC

FGF Signaling 7 BLCA,COAD,KIRP,PRAD,READ,THCA,UCEC

* The expanded form of each tumour type abbreviation is available in Table 3-2.
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The pathway analysis revealed common mechanisms shared by different types
of cancer. For example, the GABA receptor signalling is enriched in 13 cancer types
including BLCA, BRCA, CESC, COAD, HNSC, KICH, KIRC, KIRP, LICH, LUAD, LUSC,
THCA, and UCEC. The y-amino butyric acid (GABA) has been shown to control
secretion in peripheral organs and acts as a developmental signal in both embryonic and
adult developing or regenerating tissues (Young & Bordey, 2009). Through GABAa
receptors, GABA affects every stage of cell development including proliferation,
migration, and differentiation. In particular, it has been shown to control the proliferation
of many different cell types including stem cells (Young & Bordey, 2009). Since the
levels of GABAa receptors are frequently up-regulated in cancer cells, there is a
possibility that manipulating GABAa receptor activity reduces tumour growth. With
growing evidence implicating the existence and role of cancer stem cells in tumour
generation and progression, genes involved in such pathways provide attractive
therapeutic targets for manipulating the proliferation of cancer cells and perhaps cancer

stem cells.

Acute phase response signaling is another highly enriched pathway among 15
cancer types (BLCA, BRCA, HNSC, KICH, LICH, LUAD, LUSC, PRAD, READ, SARC,
THCA, UCEC, COAD, KIRC, and KIRP). The acute phase response is a rapid
inflammatory response that provides protection against microorganisms using non-
specific defense mechanisms (Davalieva et al., 2015). This pathway is associated with
cancer, since inflammation is often observed in tumours and appears to play a role in the
pathogenesis of various cancer types. Interestingly, majority of tumour types with
enriched acute phase response pathway, also present enrichment in P38 Mitogen
activated protein kinase (P38 MAPK), and extracellular-signal-regulated kinase
(ERK)/MAPK pathways. P38 MAPK and ERK1/MAPK are members of the mitogen
activated protein kinase super family and are involved in the production of inflammatory
mediators, including tumour necrosis factor-a (TNF-a) and cyclooxygenase-2 (COX-2)
(Dhillon, Hagan et al., 2007; Gui, Sun et al., 2012). Abnormal regulation of the MAPK

pathways has also been reported in cancers (Dhillon et al., 2007).

The gene expression profile of TCGA cancers also revealed the enrichment of

cAMP-mediated signalling pathway in 16 cancer types. The cAMP-mediated pathway,
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also known as the adenylyl cyclase pathway, is a G protein-coupled receptor-triggered
signalling cascade, which is used in cell communication. There are conflicting reports in
literature that cAMP signalling can either activate or inhibit tumour growth. In thyroid
papillary carcinoma cell lines, it has been reported that cAMP signalling acts in an
inhibitory manner on the proliferation, even though the cAMP pathway physiologically
promotes the proliferation of normal follicular cells as well as hormonogenesis
(Matsumoto et al., 2008). One of the suggested mechanisms of cAMP growth inhibiting
function is through the inhibition of the mitogen activated protein kinase (MAPK)
pathway, a pathway important for both proliferation and differentiation. The MAPK
pathway is usually initiated by tyrosine kinase receptor stimulation of small G-proteins
(e.g, RAS) followed by the activation of several downstream protein kinases (RAF, MEK
and ERK). Each RAF protein (ARAF, BRAF and CRAF) performs a different function,
both physiologically and in cancer. For example, in normal melanocytes, BRAF but not
CRAF transduces the signal from RAS to MEK because CRAF is inhibited by cAMP-
dependent protein kinase A (PKA). This inhibitory cAMP pathway is often hijacked in
melanoma. In RAS-mutated melanoma, CRAF rather than BRAF is utilized to activate
MEK/ERK and this switch in RAF utilization is due to a disruption of cAMP signaling,
most likely from the activation of PDE4. In other words, a loss of cCAMP promotes
melanoma growth in RAS-mutated melanoma. In contrast, multiple investigators have
demonstrated that some melanomas favour elevated cAMP signalling. cAMP may play a
role in promoting melanoma drug resistance. Activation of the AC-cAMP-PKA axis may
confer resistance to MAPK inhibitors in melanoma; where the expression of transcription
factors downstream of the MAPK and cAMP pathways (e.g. microphtalmia-associated
transcription factor (MITF)) resulted in resistance. Treatment with a combination of
MAPK-pathway and histone deacetylase inhibitors suppressed cAMP-mediated
resistance and MITF expression. The reduction of MITF activity sensitized melanoma
cells to chemotherapeutic agents. Therefore, the importance of cAMP signalling in
promoting tumour growth suggests this pathway may be a therapeutic target for cancer
(Nardin, Fitzpatrick, & Zippin, 2014).

The presence of common pathways among different cancer types supports the
assumption that different types of cancer share similar process. Such processes can be

summarized into the hallmarks of cancers, which are six biological capabilities acquired
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during the multistep development of human tumours (Hanahan & Weinberg, 2011). They
include sustaining proliferative signaling, evading growth suppressors, resisting cell
death, enabling replicative immortality, inducing angiogenesis, and activating invasion
and metastasis. The fact that these pathways are being enriched in multiple cancer
types suggests that there is a selection for these processes as they benefit the formation
and progression of the disease. Therefore, such common pathways may present

attractive targets for development of therapeutic intervention.

Of the list of identified abnormally expressed genes, this step identified those that
may play a role in the development and progression of cancer by identifying genes that
are a member of well-studied cancer-promoting pathways. Here, | refer to them as
potential cancer-related genes. This information was subsequently used to prioritize

potential targets for therapeutic utility.

Identification of transcription factors and their target genes common to
multiple cancer types

Analysis of upstream gene expression regulators (i.e. transcription factors) based
on the list of differentially expressed genes for each TCGA cancer type revealed
commonly occurring transcription factors across multiple human malignancies. Studying
transcription factors involved in cancer help to illuminate the biological activities
occurring during the tumour formation and progression. With the limited list of
transcription factors activated in most human cancers and their effect on many target
genes and processes, transcription factors are logical targets for the development of
anticancer drugs. For example in glioblastoma, the transcriptional regulator 1d-1 plays a
critical role in modulating the invasiveness of glioblastoma cell lines and primary
glioblastoma cells by regulating multiple tumor-promoting pathways (Soroceanu et al.,
2013). The down-regualtion of Id-1 gene expression showed significant association with
decrease in glioma cell invasiveness and self-renewal. Therefore, it is currently being
pursued as a novel and promising target for improving the therapy and outcome of

patients with glioblastoma.

Transcription factors potentially involved in TCGA tumours were predicted using

the Ingenuity® platform (Kramer et al., 2014). The discovery analysis works based on
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the available prior knowledge of expected effects between transcriptional regulators and
their target genes in the literature. In other words, it compares the number of known
targets of each transcription factor present in the list of differentially expressed genes for
a cancer type, as well as their direction of change to what is expected from the literature
in order to predict likely relevant transcriptional regulators. In addition, if the direction of
change in the samples is consistent with a particular transcriptional regulator’s activation
state (activation or inhibition), then a prediction is made about the activation state. The
P-value calls likely upstream regulators based on significant overlap between genes in
the study (differentially expressed genes) and known targets regulated by a
transcriptional regulator. The activation Z-score infers likely activation states of upstream

regulators based on comparison with a model that assigns random regulation directions.

This analysis identified many transcription factors with known involvement in
cancer such as FOXO1, MITF, STAT3 and 5, NOTCH, TP53, and FOXM1. The top 15

putatively activated transcription factors in TCGA cancers are shown in Table 3-4.

Among the identified transcription factors, MITF and FOXM1 are the most
significantly activated occurring in 15 and 12 cancer types, respectively. MITF
(Microphthalmia-Associated Transcription Factor) is a transcription factor that regulates
the expression of genes with essential roles in cell differentiation, proliferation, and
survival by binding to symmetrical DNA sequences (E-boxes) (5-CACGTG-3) found in
the promoters of target genes, such as BCL2 and tyrosinase (TYR). As mentioned in the
last section, MITF is highly associated with melanoma progression, invasiveness and
metastasis (Vachtenheim & Ondrusova, 2015). Current studies are examining potential
avenues to target this transcription factor mechanism for cancer prevention, as MITF
itself is not a druggable target. Therefore, MITF-targeting approaches are based on the
modulation of its upstream regulatory pathways (Hartman & Czyz, 2015). Similarly,
FOXM1 (Forkhead Box M1) is a transcription factor required for a wide spectrum of
essential biological functions, including DNA damage repair, cell proliferation, cell cycle
progression, cell renewal, cell differentiation and tissue homeostasis. It is also known as
a master regulator for a broad array of genes required for Cancer stem cells (Bao et al.,
2011; Bergamaschi et al., 2014). The expression of FOXM1 is frequently up-regulated in

many malignancies, where it is an early event during cancer development. Accordingly,
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genome-wide profiling studies of gene expression in cancers have identified FOXM1 as
one of the most frequently up-regulated genes in human malignancies (Zona, Bella et
al., 2014)These findings suggest that FOXM1 has a key role in cancer initiation and
promotes cancer progression by facilitating cancer angiogenesis, invasion and
metastasis. Suppression of FOXM1 has been shown to sensitize human cancer cells to
apoptosis induced by DNA-damaging agents or oxidative stress (Gartel, 2014). In
addition, in-vivo studies showed FOXM1 inhibition leads to inhibition of human xenograft

tumor growth in nude mice (Halasi et al., 2013).
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Table 3-4. Top 15 putatively activated transcription factors in TCGA cancer
types with available matched-normal samples

Transcription #Tumours Tumours*

Factor

MITF 15 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,KIRP,LICH,LUAD,L
USC,PRAD,READ,SARC,UCEC

FOXM1 12 BLCA,BRCA,CESC,HNSC,KIRC,KIRP,LICH,LUAD,LUSC,PRAD,S
ARC,UCEC

E2F3 10 BLCA,BRCA,CESC,HNSC,LICH,LUAD,LUSC,READ,SARC,UCEC

ETS1 9 BLCA,BRCA,CESC,COAD,HNSC,KIRP,LUSC,READ,THCA

ESR1 8 BRCA,CESC,COAD,LICH,LUAD,LUSC,SARC,UCEC

RARA 8 BLCA,BRCA,CESC,LICH,LUAD,LUSC,SARC,UCEC

FOXO1 7 BRCA,CESC,HNSC,LUAD,LUSC,PRAD,SARC

CCND1 6 BRCA,CESC,LICH,LUAD,LUSC,UCEC

FOSL1 5 BRCA,CESC,HNSC,LUAD,THCA

JUN 5 BRCA,CESC,COAD,HNSC KIRC

ATF6 4 CESC,LUAD,PRAD,SARC

DNMT3B 4 CESC,COAD,READ,UCEC

EZH2 4 CESC,COAD,READ,THCA

PAX8 4 CESC,LICH,LUSC,UCEC

HIF1A 3 KIRC,LUSC,UCEC

* The expanded form of each tumour type abbreviation is available in Table 3-2.
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Conversely, TP53 (Tumor Protein P53) is the most inhibited transcription factor
identified in 11 TCGA cancer types including BLCA, BRCA, CESC, HNSC, KICH, LICH,
LUAD, LUSC, PRAD, SARC, and UCEC. This tumour suppressor and transcription
factor is a key modulator of cellular stress responses to regulate expression of target
genes, thereby inducing cell cycle arrest, apoptosis, senescence, DNA repair, or
changes in metabolism (Riley, Sontag et al., 2008). Activation of p53 leads to inhibition
of cell cycle progression, induction of senescence, differentiation or apoptosis, therefore
it is favourable for the tumour cells to inhibit P53 and its downstream associated
processes via different approaches such as mutations and deletions. Re-expression of
p53 in lymphomas and sarcomas cells lacking functional p53 caused significant,
sometimes complete, regression of the tumour by inducing apoptotic cell death in the
lymphomas, and cell-cycle arrest with signs of cellular senescence in sarcomas (Kastan,
2007).

Deregulation of transcription factors is a pervasive theme across many, if not all,
forms of human cancer (Bhagwat & Vakoc, 2015). Some cancers may alter the function
of transcription factors to implement favourable expression changes in the downstream
transcription factor target genes to drive oncogenic cell transformation (Bhagwat &
Vakoc, 2015). Hence, transcription factor target genes may also offer interesting
therapeutic targets in cancer. For example, transmembrane glycoprotein NMB (GPNMB)
is one of the known MITF target genes (Gutknecht et al., 2015), where its
overexpression is associated with the ability of cancer cells to invade and metastasize
(Roth et al., 2016; Zhou et al., 2012). Antibody drug conjugates targeting GPNMB have
shown promising results in cancer treatment (Roth et al., 2016). Therefore, transcription
factor target genes that are highly expressed in TCGA tumours were also identified and
marked as potential cancer-related genes. Such target genes that are commonly
perturbed within or across multiple cancer types may play a favourable role in the
development and progression of the disease, and therefore present interesting
therapeutic targets in cancer. This information was subsequently used for ranking and

prioritization of potential targets for therapeutic utility.
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Survival Analysis of differentially expressed genes

Survival analysis of differentially over- and under-expressed genes revealed a
number of significant associations with survival after correction for multiple testing in
each cancer type studied. Kaplan-Meier method was used to assess survival outcomes.
This analysis identified both known and novel associations. As shown in Figure 3-3, the
overexpression of WNT2 and IL8 in colorectal adenocarcinoma is found to associate
with shorter survival time in patients. These associations have also been previously
shown by other groups (Jiang et al., 2014; Ning et al., 2011). WNT2 encodes a secreted
signalling protein involved in the Wnt signalling pathway and is frequently overexpressed
in malignant tissues including colorectal cancer (Park et al., 2009). The overexpression
of WNT2 has also been associated with poor clinical outcome of pancreatic patients
(Jiang et al., 2014). IL8, a pro-inflammatory chemokine, is known to possess tumorigenic
and proangiogenic properties. The overexpression of IL8 has been detected in many
tumours and, including colorectal cancer, and is associated with poor prognosis (Ning et
al., 2011).
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Figure 3-3.
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Kaplan-Meier survival analysis revealed significantly lower overall
survival in Colon Adenocarcinoma (COAD) patients with
overexpression of (A) WNT2 and (B) IL8. Up-regulated samples
demonstrate a greater than or equal to 2 log fold difference compared to
the normal colon tissue. No significant expression difference was
observed between the tumour and normal tissues for samples marked as
no change.
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Survival analysis of differentially expressed genes also revealed novel
associations with patient outcome. In lung squamous cell carcinoma, the overexpression
of PIF1 is found to be significantly associated with poor patient outcome (Figure 3-4).
PIF1 encodes a highly conserved DNA helicase, which is implicated in the maintenance
of telomeres and genome stability. It has been suggested that PIF1 plays a role in S-
phase entry and progression that are essential to protect human tumour cells from
apoptosis (Gagou et al., 2011). Therefore, depletion of PIF1 resulted in reduction of the
survival of tumour cells by triggering cell death, while non-malignant cells are unaffected
by PIF1 depletion (Gagou et al., 2011).

Similarly, the overexpression of SCARNA12 (Small Cajal Body-Specific RNA 12)
significantly correlates with poor outcome in patients with lung squamous cell carcinoma.
SCARNA12 gene produces a small nucleolar RNA (snoRNA), which acts as a guide to
direct posttranscriptional modification of RNAs (omim.org/entry/625642). In recent years,
a number of studies have emerged that indicated a role for snoRNAs in cancer (Su et
al., 2014; Williams & Farzaneh, 2012)For example, overexpression of SNORA42, a
snoRNA, is frequently found in non-small-cell lung cancer (NSCLC). The down-
regulation of SNORA42 in lung cancer cell lines is shown to induce apoptosis and
reduce colony-forming ability in vitro, and also inhibited tumour formation in a mouse
model (Williams & Farzaneh, 2012). On the other hand, ectopic expression of this gene
resulted in enhanced proliferation of NSCLC cells (Williams & Farzaneh, 2012). High
SNORA42 expression in clinical lung cancer samples showed a significant correlation

with poor survival (Williams & Farzaneh, 2012).

Hence, Highly expressed genes in TCGA tumours with significant associations
with survival were identified and marked as potential cancer-related genes. This

information was used later for prioritization of the potential candidate target genes.
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Figure 3-4.
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Kaplan-Meier survival analysis revealed significantly lower overall
survival in Lung squamous cell carcinoma (LUSC) patients with
overexpression of (A) PIF1 and (B) SCARNA12. Up-regulated samples
demonstrate a greater than or equal to 2 log fold difference compared to
the normal lung tissue. No significant expression difference was observed
between the tumour and normal tissues for samples marked as no
change.
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Although many of the identified differentially expressed genes in TCGA tumours
do not directly associate with the disease outcome and/or play a defined role in
malignant transformation, those that present high tumour expression on the surface of
cancer cells compared to the normal tissue may present interesting biomarker targets for
antibody-based targeting of tumour cells. Especially those that are found in a number of

different cancer types, suggesting their potential favourable role in cancer.

Identification of genes differentially expressed across multiple cancer
types

Identified differentially over- and under-expressed genes in TCGA cancers were
merged to find those that commonly undergo expression changes. Tables 3-5 and 3-7
show the top 25 most commonly over- and under-expressed genes, respectively. The
top most overexpressed genes across TCGA cancers are UBE2C, MYBL2, IQGAP3,
and CDKN2A. They are found in 21 out of 24 examined cancer types, and have been

previously shown in literature to be involved in cancer development and progression.

The protein encoded by UBE2C (Ubiquitin-Conjugating Enzyme E2C) gene is
required for cell cycle progression and checkpoint control by targeted degradation of
short-lived proteins. It also plays an important role in mitotic spindle checkpoint control
(Hao, Zhang, & Cowell, 2012)Cells that overexpress UBE2C ignore the mitotic spindle
checkpoint signals and lose genomic stability, which is a hallmark of cancer. Upon
malignant transformation, the expression of UBE2C increases, and this overexpression
correlates with the aggressiveness of the tumour. The high UBE2C expression is
predictive of poor survival and likely a high risk for relapse (Hao et al., 2012). Also the
inhibition of UBE2C reduces proliferation and sensitizes breast cancer cells to radiation,

doxorubicin, tamoxifen and letrozole.

MYBL2 (V-Myb Avian Myeloblastosis Viral Oncogene Homolog-Like 2) is a
member of the v-myb family of transcription factors and is involved in the regulation of
cell survival, proliferation, and differentiation (Papetti & Augenlicht, 2011)More
interestingly, there are several lines of evidence that link this gene to a stem cell-like
phenotype, which potentially allows for self-renewal, a hallmark of cancer. First, MYBL2

is one of 39 critical transcription factors that are commonly expressed in several different
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types of pluripotent stem cells (Muller et al., 2008). Second, it maintains embryonic stem
cells in an undifferentiated state. It may also be involved in early steps of differentiation
by transcriptionally activating pluripotency-associated genes (Tarasov, Tarasova et al.,
2008; Tarasov, Testa et al., 2008). Lastly the absence of functional MYBL2 is embryonic
lethal in mice. It is likely because of the inability in these embryos to form an inner cell
mass, the source of embryonic stem cells (Tanaka, Patestos et al., 1999). Therefore,
developing and maintaining a stem cell phenotype that may play an important role in

proliferation and differentiation of several cancer types.

IQGAP3 (IQ Motif Containing GTPase Activating Protein 3) is a member of
IQGAP family, which display complicated and often contradictory activities in
tumorigenesis. Other members of this family, IQGAP1 and IQGAP2 have oncogenic
potential and putative tumour-suppressive function, respectively (White et al., 2010).
Similar to IQGAP1, the overexpression of IQGAP3 promote tumour cell growth,
migration and invasion. While, its knockdown exhibits opposite effects (Yang et al.,
2014). Suppression of this gene in a lung cancer cell line caused a reduction in the

tumorigenicity of the cancer cells in lung tissue (Yang et al., 2014).

CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A), also known as P16, plays an
important role in cell cycle regulation by decelerating cells progression from G1 phase to
S phase. CDKN2A is mainly known to act as a tumour suppressor (Romagosa et al.,
2011). However, the overexpression of this gene has also been reported in multiple
different cancer types (Dong et al., 1997; Milde-Langosch et al., 2001; Romagosa et al.,
2011). In breast cancer, it is associated with a more malignant phenotype (Milde-
Langosch et al., 2001). Similarly, in prostate cancer, the overexpression of P16 is

associated with tumour recurrence (Lee et al., 1999).
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Table 3-5. Top 25 commonly differentially overexpressed genes across TCGA
cancer types. This observation suggests a common underlying disease
mechanism shared by different cancer types.

Gene Entrez ID #Tumour Tumours*

UBE2C 11065 21 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LGG,LICH,LUAD,LUSC,0V,PRAD,READ,SARC
,SKCM,UCEC,UCS

MYBL2 4605 21 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LGG,LICH,LUAD,LUSC,0V,PRAD,READ,SARC
,SKCM,UCEC,UCS

IQGAP3 128239 21 ACC,BLCA,BRCA,CESC,COAD,GBM,KICH,KIRC,KIRP,
LICH,LUAD,LUSC,OV,PAAD,PRAD,READ,SARC,SKCM
,THCA,UCEC,UCS

CDKN2A 1029 21 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LGG,LICH,LUAD,LUSC,0V,READ,SARC,SKCM
,THCA,UCEC,UCS

UHRF1 29128 20 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LGG,LICH,LUAD,LUSC,0V,READ,SARC,SKCM
,UCEC,UCS

TROAP 10024 20 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,OV,PRAD,READ,SARC,SKC
M,UCEC,UCS

TPX2 22974 20 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LGG,LICH,LUAD,LUSC,0V,READ,SARC,SKCM
,UCEC,UCS

KIF18B 146909 20 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,OV,PRAD,READ,SARC,SKC
M,UCEC,UCS

HJURP 55355 20 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,OV,PRAD,READ,SARC,SKC
M,UCEC,UCS

CDC45 8318 20 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,OV,PRAD,READ,SARC,SKC
M,UCEC,UCS

SKA3 221150 19 ACC,BLCA,BRCA,CESC,COAD,GBM,KICH,KIRC,KIRP,
LICH,LUAD,LUSC,0OV,PRAD,READ,SARC,SKCM,UCE
C,ucs

PLK1 5347 19 ACC,BLCA,BRCA,CESC,GBM,HNSC,KICH,KIRC,KIRP,
LICH,LUAD,LUSC,OV,PRAD,READ,SARC,SKCM,UCE
C,ucs

PKMYT1 9088 19 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,OV,READ,SARC,SKCM,UCE
C,ucs

KIF4A 24137 19 ACC,BLCA,BRCA,CESC,GBM,HNSC,KICH,KIRC,KIRP,
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Gene Entrez ID #Tumour Tumours*

LGG,LICH,LUAD,LUSC,0V,PRAD,SARC,SKCM,UCEC,
ucs

KIF14 9928 19 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,0OV,READ,SARC,SKCM,UCE
C,ucs

IBSP 3381 19 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,0OV,READ,SKCM,THCA,UCE
C,ucs

FOXM1 2305 19 ACC,BLCA,BRCA,CESC,GBM,HNSC,KICH,KIRC,KIRP,
LGG,LICH,LUAD,LUSC,0V,PRAD,SARC,SKCM,UCEC,
UCS

E2F7 144455 19 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUAD,LUSC,OV,READ,SARC,SKCM,UCE
C,ucs

E2F1 1869 19 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KICH,KIR
C,KIRP,LICH,LUSC,0V,READ,SARC,SKCM,THCA,UCE
C,ucs

CENPF 1063 19 ACC,AML,BLCA,BRCA,CESC,GBM KICH,KIRC,KIRP,L
GG,LICH,LUAD,LUSC,0V,PRAD,SARC,SKCM,UCEC,U
CS

TUBB3 10381 18 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRP,LICH
,LUAD,LUSC,0V,PRAD,READ,SKCM,THCA,UCEC,UC
S

TRIP13 9319 18 ACC,BLCA,BRCA,CESC,COAD,GBM,HNSC,KIRC,KIRP
,LICH,LUAD,LUSC,0V,READ,SARC,SKCM,UCEC,UCS

TOP2A 7153 18 ACC,AML,BLCA,BRCA,CESC,GBM KICH,KIRC,KIRP,L
GG,LICH,LUAD,LUSC,0V,SARC,SKCM,UCEC,UCS

TERT 7015 18 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIR
P,LICH,LUAD,LUSC,OV,PRAD,READ,SKCM,UCEC,UC
S

SOX11 6664 18 ACC,BLCA,BRCA,CESC,GBM,HNSC,KICH,KIRC KIRP,
LGG,LICH,LUAD,LUSC,0V,PRAD,THCA,UCEC,UCS

Identified differentially overexpressed genes in each cancer types are significant with P-value less than or
equal to 0.05 and are overexpressed with fold change greater than or equal to 1.5. * The expanded form of
each tumour type abbreviation is available in Table 3-2.
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Genes differentially overexpressed in cancers are commonly considered for
therapeutic and diagnostic purposes especially if they are involved in critical
mechanisms in favour of the disease. The gene ontology (GO) enrichment analysis
using IPA, shown in Table 3-6, reveals significant association between the identified
commonly overexpressed genes and cancer. This observation supports the assumption
that cancers benefit from some core processes, which are shared by different cancer
types during the oncogenesis. Such genes may serve as therapeutic and/or diagnostic
biomarker targets since they represent essential activities and are frequently

overexpressed in cancer.
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Table 3-6. GO enrichment analysis reveals significant association between the
identified commonly overexpressed genes and cancer
Category Pvalue Number of
Molecules
Diseases and Disorders
Cancer 7.59E-21-3.13E-04 3800
Endocrine System Disorders 7.59E-21-2.93E-04 1481
Organismal Injury and Abnormalities 7.59E-21-3.13E-04 3946
Reproductive System Disease 7.59E-21-2.93E-04 1372
Infectious Diseases 5.05E-16-3.14E-04 255
Immunological Disease 3.09E-15-3.13E-04 870
Inflammatory Disease 3.09E-15-2.95E-04 799
Connective Tissue Disorders 2.14E-14-2.93E-04 537
Skeletal and Muscular Disorders 2.14E-14-1.3E-04 1144
Inflammatory Response 2.13E-13-2.97E-04 632
Developmental Disorder 6.9E-11-2.93E-04 218
Neurological Disease 1.48E-10-2.95E-04 677
Gastrointestinal Disease 1.87E-10-1.62E-04 630
Respiratory Disease 3.35E-10-2.93E-04 653
Hereditary Disorder 2.83E-08-2.93E-04 569
Renal and Urological Disease 3.42E-08-2.95E-04 760
Metabolic Disease 2.56E-07-1.66E-04 520
Hematological Disease 3.62E-07-3.13E-04 450
Tumor Morphology 6.9E-07-3.13E-04 125
Molecular and Cellular Functions
Cellular Movement 1.41E-17-3.13E-04 706
Cellular Development 2.23E-15-2.61E-04 971
Cellular Growth and Proliferation 2.23E-15-3.15E-04 1206
Cell-To-Cell Signaling and Interaction 3.36E-12-3.15E-04 734
Cell Signaling 1.24E-11-2.4E-04 278
Molecular Transport 1.24E-11-1.62E-04 576
Vitamin and Mineral Metabolism 1.24E-11-2.58E-04 299
Cell Death and Survival 6.62E-11-3.13E-04 971
Cellular Function and Maintenance 1.31E-07-2.28E-04 377
Cell Morphology 8.41E-07-9.23E-05 221
Nucleic Acid Metabolism 8.43E-07-3.2E-05 127
Small Molecule Biochemistry 8.43E-07-2.58E-04 343
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Cellular Compromise 1.82E-06-1.43E-04 43
Cellular Assembly and Organization 2.63E-06-1.81E-04 54
DNA Replication, Recombination, and Repair 2.63E-06-1.81E-04 231
Cell Cycle 7.43E-06-2.09E-04 117
Lipid Metabolism 1.22E-05-2.58E-04 204
Free Radical Scavenging 1.45E-05-1.55E-04 120
Post-Translational Modification 1.78E-05-1.59E-04 111
Protein Synthesis 1.78E-05-1.59E-04 102
Carbohydrate Metabolism 2.84E-05-2.05E-04 25
Protein Degradation 4.23E-05-1.59E-04 83
Amino Acid Metabolism 1.07E-04-1.07E-04 30
Physiological System Development and Function

Embryonic Development 5.4E-20-3.15E-04 241
Hair and Skin Development and Function 5.4E-20-7E-05 103
Organ Development 5.4E-20-3.15E-04 150
Organismal Development 5.4E-20-3.15E-04 390
Tissue Development 5.4E-20-3.15E-04 512
Immune Cell Trafficking 7.13E-17-2.97E-04 292
Hematological System Development and Function 9.91E-17-3.15E-04 461
Cell-mediated Immune Response 4.07E-07-1.83E-05 54
Tissue Morphology 4.38E-07-4.38E-07 138
Digestive System Development and Function 4.01E-06-1.17E-04 48
Connective Tissue Development and Function 2.84E-05-5.71E-05 31
Skeletal and Muscular System Development and Function 2.84E-05-3.15E-04 71
Organismal Survival 5.68E-05-5.68E-05 78
Cardiovascular System Development and Function 1.04E-04-3.15E-04 228
Hematopoiesis 1.45E-04-2.52E-04 132
Renal and Urological System Development and Function 1.68E-04-1.68E-04 52
Reproductive System Development and Function 2.02E-04-2.02E-04 17
Lymphoid Tissue Structure and Development 2.52E-04-2.52E-04 95
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Similar to commonly up-regulated genes among TCGA cancer, there are genes
that are commonly down-regulated in cancers compared to their matched-normal tissue.
The most common genes include TCEAL2 and SCARAS5, which are found to under-
express in 17 out of 24 cancer types. TCEAL2 (Transcription Elongation Factor A (SlI)-
Like 2), nuclear phosphoprotein, is a member of TCEAL family that modulates
transcription in a promoter context-dependent manner. It has been recognized as an
important nuclear target for intracellular signal transduction. Although the role of
TCEAL2 is not clear in cancer, the down regulation of other members of this family
including TCEAL7 and TCEAL4 has been reported in different cancer types (Akaishi et
al., 2006; Chien et al., 2008). TCEALY is a tumour suppressor gene, while the down-
regulation of TCEAL4 has been associated with development of anaplastic thyroid
cancer from differentiated thyroid cancer. SCARA5 (Scavenger Receptor Class A,
Member 5) is a member of class A scavenger receptors that has been proposed recently
as a novel candidate tumour suppressor gene in human hepatocellular carcinoma
(Huang et al, 2010). SCARA5 down-regulation is essential for epithelial-to-
mesenchymal transition (EMT)-induced migration (Liu et al., 2013). Therefore, EMT-
regulator Snail1 suppresses the expression of SCARAS to promote cancer progression.
In addition, SCARA5 down-regulation has been reported in several types of human
malignancy, and interestingly its up-regulation inhibits tumour growth and metastasis via
inactivating signal transducer and activator of transcription 3, as well as downstream
signaling including cyclinB1, cyclinD1, AKT, survivin, matrix metalloproteinase-9 and

vascular endothelial growth factor-A (Yan et al., 2012).

The exploratory analysis identified over-represented pathways and putative
transcription factors regulating the observed gene expressions, as well as commonly up-
regulated genes across multiple types of malignancies. All together such knowledge
builds a platform that allows for identification of optimal therapeutic targets such as

tumour-associated taregts.
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Table 3-7. Top 25 commonly down regulated genes across TCGA cancers

Gene Entrez ID #Tumours Tumour*

TCEAL2 140597 18 ACC,AML,BLCA,CESC,COAD,GBM,HNSC KICH,KIRC,K
IRP,LUAD,LUSC,0V,READ,SKCM,THCA,UCEC,UCS

ADH1B 125 18 BLCA,BRCA,CESC,COAD,HNSC KICH,KIRC,KIRP,LICH
,LUAD,LUSC,0V,PRAD,READ,SKCM,THCA,UCEC,UCS

SCARA5 286133 17 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,
LICH,LUAD,LUSC,PRAD,READ,SKCM,THCA,UCEC

MAMDC2 256691 17 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,LUAD
,LUSC,0V,PRAD,READ,SKCM,THCA,UCEC,UCS

FXYD1 5348 17 AML,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRP,LICH,
LUAD,LUSC,0V,READ,SKCM,THCA,UCEC,UCS

TMEM132C 92293 16 ACC,BLCA,BRCA,CESC,HNSC,KIRC,KIRP,LICH,LUAD,
LUSC,0V,PRAD,SKCM,THCA,UCEC,UCS

PI16 221476 16 ACC,AML,BLCA,BRCA,CESC,COAD,HNSC,KICH KIRC,
KIRP,LUAD,LUSC,PRAD,READ,THCA,UCEC

LMOD1 25802 16 BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRP,LUAD,LUS
C,0V,PRAD,READ,SKCM,THCA,UCEC,UCS

GSTM5 2949 16 ACC,BLCA,BRCA,CESC,COAD,HNSC,KIRP,LICH,LUAD
,LUSC,0V,READ,SKCM,THCA,UCEC,UCS

DPT 1805 16 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC KIRP,
LICH,LUSC,READ,SKCM,THCA,UCEC,UCS

CHRDL1 91851 16 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,LUAD
,LUSC,PRAD,READ,SKCM,THCA,UCEC,UCS

CDO1 1036 16 AML,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,LUAD
,LUSC,0V,PRAD,READ,SKCM,UCEC,UCS

C7 730 16 BLCA,BRCA,CESC,COAD,HNSC KICH,KIRC,KIRP,LICH
,LUAD,LUSC,0OV,READ,SKCM,UCEC,UCS

C1QTNF7 114905 16 BLCA,BRCA,CESC,COAD,HNSC KICH,KIRC,KIRP,LUA
D,LUSC,0V,READ,SKCM,THCA,UCEC,UCS

BAI3 577 16 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,LICH,
LUAD,LUSC,0V,READ,SKCM,UCEC,UCS

AOX1 316 16 AML,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRP,LUSC
,OV,PRAD,READ,SKCM,THCA,UCEC,UCS

ANGPTLA1 9068 16 BLCA,BRCA,CESC,COAD,HNSC KIRC,KIRP,LUAD,LUS
C,0V,PRAD,READ,SKCM,THCA,UCEC,UCS

ADRA1A 148 16 ACC,AML,BLCA,BRCA,COAD,HNSC,KICH,LICH,LUAD,L
USC,0V,PRAD,READ,SKCM,UCEC,UCS

TGFBR3 7049 15 BLCA,BRCA,CESC,HNSC,KICH,KIRC KIRP,LUAD,LUSC
,OV,PRAD,READ,SKCM,UCEC,UCS

TCF21 6943 15 AML,BLCA,BRCA,CESC,COAD,KICH,KIRC KIRP,LICH,L

UAD,LUSC,0V,READ,UCEC,UCS
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Gene Entrez ID #Tumours Tumour*

SVEP1 79987 15 ACC,AML,BLCA,BRCA,CESC,COAD,KIRC,KIRP,LUAD,L
USC,READ,SKCM,THCA,UCEC,UCS

SCN7A 6332 15 ACC,BLCA,BRCA,CESC,COAD,HNSC,KIRC,KIRP,LUAD
,LUSC,0V,READ,SKCM,UCEC,UCS

SCN2B 6327 15 AML,BLCA,BRCA,CESC,COAD,HNSC KICH,KIRC,LUAD
,LUSC,PRAD,READ,SKCM,UCEC,UCS

RSPO1 284654 15 ACC,BLCA,BRCA,CESC,COAD,HNSC,KICH,KIRC,KIRP,
LUAD,LUSC,READ,SKCM,UCEC,UCS

PGM5P2 595135 15 ACC,BLCA,BRCA,CESC,COAD,HNSC,KIRC,KIRP,LUSC
,OV,PRAD,READ,SKCM,UCEC,UCS

Identified differentially overexpressed genes in each cancer types are significant with P-value less than or
equal to 0.05 and are overexpressed with fold change greater than or equal to 1.5. * The expanded form of
each tumour type abbreviation is available in Table 3-2.
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3.1.3. Identifying optimal tumour biomarker targets

Antibodies (mAbs, ADCs, bi-specific) are a rapidly growing class of drugs used
for treatment of human cancers and other diseases. Currently there are several antibody
drugs approved by FDA for various indications including cancer treatment and diagnosis.
Some of them are shown in Table 3-8 (http://www.fda.gov/). In addition, many more
antibodies are in preclinical and clinical development (Scott et al., 2012). Antibodies can
be used effectively to target tumour-associated molecules and thereby modulate key
signaling pathways that play a role in tumour growth, survival and metastasis. Using the
Fc region, these proteins can recruit the host immune system to fight against cancer by
mediating antibody-dependent cellular cytotoxicity and complement-dependent
cytotoxicity, which can result from an antibody binding to a target on tumour cells (Scott
et al., 2012). In addition, ADCs can also be used to deliver a payload such as a cytokine,
chemotherapeutic small molecule or radionuclide by binding to tumour cells (Polakis,
2016). Thus, the high specificity, long half-life and relative safety of antibodies compared
with other cancer therapeutics together with their ability to bind to and modulate key
players in pathways that drive malignant transformation and enhance antitumor immune
functions make them highly desirable therapeutic agents. In addition to mAbs and ADCs
that bind to one target, the bi-specific antibodies can attach to two different proteins at
the same time (Chames & Baty, 2009)In this case, both targets are either expressed on
the surface of a tumour cell simultaneously, or one is expressed on the surface of a
cancerous cell and the other one is present on the surface of an immune cell. Therefore,
in the latter, the antibody brings the cancer cells and immune cells together to facilitate a
tumour cell killing process by the immune system. In the case of the former scenario, bi-
specific antibodies offer more specificity and improved efficacy than mAbs and ADCs in
identifying and binding target cancer cells. They also can be paired with toxins to

specifically deliver them to the tumour site.
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Table 3-8. Currently approved antibody-based diagnostic and therapeutic
agents
Trade name | Other names | Company Target Therapeutic indication(s)
Verluma® Nofetumomab | Boehringer Carcinoma- | Diagnostic imaging of small-
(Diagnostic) Ingelheim, associated celllung cancer (non-therapeutic)
NeoRx antigen
ProstaScint® | Capromab Cytogen PSMA Detection of prostate
(Diagnostic) adenocarcinoma (non-
therapeutic)
CEA-scan® | Arcitumomab | Immunomedics | CEA Detection of colorectal cancer
(Diagnostic) (non-therapeutic)
Rituxan® Rituximab Biogen Idec, CD20 Non-Hodgkin’s lymphoma
MabThera® Genentech Chronic lymphocytic leukemia
(Roche) Rheumatoid arthritis
Herceptin® | Trastuzumab | Genentech(Roc | HER-2 Breast cancer Metastatic gastric
he) or gastroesophageal junction
adenocarcinoma
Mylotarg® Gemtuzumab | Wyeth CD33 Acute myeloic leucemia (AML)
0zogamicin (ADC)
Campath® Alemtuzumab | Millennium CD52 B-cell chronic lymphocytic
Pharmaceuticals leukemia
and Genzyme
Zevalin® Ibritumomab | Biogen Idec CD20 Non-Hodgkin’s lymphoma
tiuxetan
Bexxar® Tositumomab | Corixa and GSK | CD20 Non-Hodgkin’s lymphoma
and iodine
131
tositumomab
Avastin® Bevacizumab | Genentech VEGF Metastatic colorectal cance, rNon-
(Roche) small cell lung cancer, Metastatic
breast cancer, Glioblastoma
multiforme, Metastatic renal cell
carcinoma
Erbitux® Cetuximab ImClone (Eli EGFR Head and neck cancerColorectal
Lilly), Merck cancer
Serono and
BMS
Vectibix® Panitumumab | Amgen EGFR Metastatic colorectal carcinoma
Arzerra® Ofatumumab | Genmab and CD20 Chronic lymphocytic leukemia
GSK
Adcetris® Brentuximab | Seattle Genetics | CD30 Hodgkin lymphoma (HL),systemic
(ADC) anaplastic large cell lymphoma

(ALCL)
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Trade name | Other names | Company Target Therapeutic indication(s)

Xgeva® Denosumab | Amgen RANKL Prevention of SREs in patients
with bone metastases from solid
tumours

Vervoy® Ipilimumab BMS CTLA-4 Melanoma

Perjeta® Pertuzumab | Roche HER2 Breast cancer

Kadcyla® Trastuzumab | Roche HER2 Breast cancer

emtansine
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Although the unique properties of antibodies themselves are key components of
a successful antibody-based therapeutic approach, the target proteins recognized by
these antibodies play an equally important role. Cancer is caused by genetic and
epigenetic changes that regulate cell proliferation, apoptosis, migration, angiogenesis
and other biologic properties that underlie cell growth, survival and interaction with the
extracellular environment. These genetic and epigenetic changes may lead to cancer-
specific expression of genes. These changes in gene expression can be identified in
tumour cells or the host environment such as tumour stroma or components of the

adaptive and innate immune system.

With the availability of datasets such as TCGA and GTEx, a bioinformatic
approach can be used to identify novel targets that can discriminate between tumour
and normal tissues. Here, | postulate that the list of differentially expressed genes within
and across multiple cancer types can be further narrowed down through three key
characteristics representative of an ideal tumour target for targeting with a therapeutic

antibody, including target localization, expression pattern, and function:

(1) A desirable tumour target is located on the surface of tumour cells. In
addition, in case of ADCs it is favourable that the target is capable of internalizing into
the cells. Proteins localized to the surface of human cells are potential diagnostic and
therapeutic targets. Cell surface proteins of interest with respect to antibody-based drug
targets include: integral membrane, phospho-lipid-linked, or surface associated proteins
by other means such as those expressed by tumour epithelium, angiogenic endothelium,

stroma, or immune cells (Papkoff, 2007).

(2) An ideal tumour target should be overexpressed or uniquely expressed
on the majority of tumour cells with no or limited normal tissue expression. The
expression of an ideal tumour target is to be abundant on the surface of tumour cells at
all stages of cancer development to provide a broader window of opportunities for
treating patients, and is restricted or absent from vital normal tissue to minimize the risk
of antibody-dependent toxicities (Carter et al., 2004). An exception to overexpression

would be proteins expressed by both normal and cancerous cells at a similar level, while
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a unique form is expressed within the cancer, including novel splice variants and fusion

proteins.

(3) Conceptually, an ideal target is preferred to play a defined role in
malignant transformation, however this is not necessary for a target to become
successful. Tumour targets with a role in malignant transformation may therefore be
essential for cancer cell survival and thus resistance to a therapeutic antibody through
gene loss might be less likely to arise (Papkoff, 2007). GO and pathway analysis are

some of the approaches to elucidate the target’s role in the biology of the disease.

Identification of cell surface proteins

A catalog of human cell-surface associated proteins was compiled through an
extensive search of literature (Da Cunha et al.,, 2009; Diaz-Ramos, Engel, & Bastos,
2011; Fagerberg, Jonasson et al., 2010) and databases such as human protein atlas
(proteinatlas.org), UniProt (uniprot.org), cancer vaccine center (bio.dfci.harvard.edu),
and available gene ontology (geneontology.org). Cell-surface proteins could be integral
membrane, GPI-linked, expressed by tumor epithelium, angiogenic endothelium, stroma
or immune cells. It has to be noted that since some of the localizations are predicted
based on sequence information and bioinformatic tools, they may not in fact be localized
as expected or may localize to membranes that are inside the cell such as mitochondria,
endoplasmic reticulum, golgi or nucleus and, therefore, would not be available to a
therapeutic antibody. In addition, localization of proteins may differ between tumor and
normal cells. In total, more than 4,000 cell-surface proteins have been collected in this
analysis. Where available, the extracellular region of the proteins was also annotated

using Uniprot protein annotation.

The differential expression analysis, described in 3.1.2, revealed 14,217 genes
differentially overexpressed in at least one of the 24 different types of malignancies
available from TCGA; of which 10,923 were found in more than one type of cancer.
Comparison of the differentially expressed genes with the compiled list of surface
proteins revealed 2,824 genes that could code for cell surface proteins, hence their

protein product my localize to the surface of tumour cells.
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Identification of cancer-associated differentially expressed genes

The GTEx project characterises more than 30 non-cancerous tissue types
collected from deceased donors and organ/tissue transplant patients with the goal of
studying the relationship between genetic variation and gene expression in human
tissues. Therefore, it offers a unique opportunity to study the expression of identified
differentially expressed genes in TCGA cancers across normal tissues to identify cancer-
correlated expression. Therefore, 400 RNA-seq samples were downloaded from the
GTEXx data repository, where at least 10 samples were downloaded for each tissue type.
The raw RNA-seq reads were run through the first steps of the GEA pipeline for data
quality assessment and gene coverage analysis with RSEM. A compendium matrix of
FPKM values was created from the expression of genes of interest across all 30 GTEx
tissue types. Similarly the expression of target genes in each cancer type that was found
to be differentially expressed were collected. A Mann-Whitney test was applied on the
normalized expression values (FPKM) to identify genes that show significant difference
in tumour samples in comparison to the compendium of normal tissues. Gene showing
significant difference (p-value and FDR <= 0.05) in their expression pattern between
tumour and normal conditions will be referred to as cancer-associated differentially
expressed (CADE) genes. This analysis revealed 1,503 genes (out of 2,824) with higher
level of expression in cancer in comparison to the GTEx database. This list is available

as appendix A.

Identification of optimal targets for antibody targeting

Studying a list of targets that are FDA approved or are currently in clinical trial for
antibody-based therapeutics (shown Table 3-8) revealed that an optimal tumour target

follows one of the following three expression patterns in normal tissues:

(1) The most desirable tumour taregts are those that are only expressed on the
surface of tumour cells at a high level, while their expression in normal tissues are either
very low or it is completely absent. The normal tissue can be further broken down into
regenerative tissues where damage to them is not life threatening, and critical tissues

that may cause severe side effects if damaged. Non-critical tissues may include the
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reproductive system, breast, and thyroid tissues. Examples of critical tissues are heart,

lung, kidney, small intestine, and skin.

(2) Tumour targets that are expressed in multiple normal tissues while the tumour

expression is much higher than normal tissue expression.

(3) Tumour targets that are expressed at similar level in both tumour and normal
tissues, but play a major role in tumour survival and progression while their normal
function is not critical. In addition, protein variants (that are products of alternative
splicing, mutation, and etc.) that are specifically expressed on the tumour cell surface fall

into this group of targets.

Tumour-specific biomarker targets are the most favourable targets. However, the
number of such targets with no expression in normal tissues is very limited. The majority
of 1,503 cell surface localized cancer-associated genes identified in previous section
that show higher expression in tumour cells than normal follow the second class of
targets described above. Of those putative candidate genes, 28 present no to low
expression (<=20 FPKM) across all normal tissues, while 54 genes have low to no
expression in critical normal tissues. Such targets are a favourable target for naked
antibodies if they play a significant role in the disease, a target for ADCs to deliver a load
of toxins to the tumour site if they internalize, or a desirable target for bi-specific
antibodies that use a combination of a marker on the surface of tumour cells with a
marker expressed on the surface of immune cells to bring them together in order to
initiate natural tumour cell killing by the immune system. The mRNA expression profile of
some candidates is shown in Figures 3-5 to 3-7. This analysis successfully identified
known cancer targets suggesting that this method may identify putative novel targets as

well.
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Figure 3-5. Putative tumour biomarker target FLT3 demonstrates high

expression in AML samples while has no to little expression across
normal tissues tested. The expanded form of each tumour type
abbreviation is available in Table 3-2.
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Figure 3-6. Putative tumour biomarker target HAVCR1 demonstrates high
expression in kidney and lung cancer samples while has low
expression in matched normal tissue. The expanded form of each
tumour type abbreviation is available in Table 3-2.
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Figure 3-7.  Putative tumour biomarker target CD96 demonstrates high
expression in AML samples while has lower expression in critical
normal tissue including small intestine, blood, lung, lymph node and

adrenal gland. The expanded form of each tumour type abbreviation is
available in Table 3-2.
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In addition to the targets with low or no expression in every normal tissue, there
are cases that are expressed only in a limited number of normal tissues and still can play
a role as an attractive target. For example, carbohydrase 9 (also known as CA9) is
highly expressed in normal stomach tissue (Figure 3-8). However, antibodies targeting
CAS9 are currently in clinical trial and are showing promising results (McDonald, Winum
et al., 2012; Zatovicova et al., 2010). Therefore, identified candidates must each be
evaluated based on their level of expression and the type of the normal tissue that they
are expressed in. Because, the large number of identified candidates makes it
challenging to evaluate each target individually, a method is required to rank and
prioritize these candidates. In addition to the normal expression profile, the expression
profile in tumour tissues is another key criterion in the success of a tumour target. The
higher the target is expressed, the chance that antibodies find and bind to it. In addition,
higher tumour expression compared to lower expression in normal tissues decreases the
chance of antibodies binding to the target expressed on the surface of healthy normal
cells. Considering all the above, and other characteristics of a tumour target, | developed
an R package, Prize, based on the analytic hierarchy process algorithm to perform
ranking and prioritization of identified putative tumour markers based on a set of user-
defined criteria. In addition, | developed an AHP model to depict the characteristics of

tumour targets to perform this ranking. This method is described in section 3.3.

100



CA9I768 : CA9

2000 -

FPKM

1000 -

iy

Julut-o-u-s-v----a-a-o--c-c--c-e-q-a--o...Jhas == oo

ﬂ:l—-oomo .

LI B | 1

00008t = — o o Q

NS2ED 35 39 5 2% g 2208 2e
230000 FEX2 58888558 s8s205022858 383823388
MozE3s5c88380 5808683862535 88582%5E835872
OO0OIXIegegeEE88cO0BBowls20 0= "CgcdgeElc 2359

EEE5=ca0Q 8 ¢ > » O £ 88 sz =] =

22222838 58 S o3 > 5 &

© had 7]
cond

Figure 3-8. The expression profile of putative tumour biomarker target CA9.
Even though CA9 demonstrates high expression in normal stomach
tissue, it has been shown as an effective tumour target in tumour cell
killing with no severe side effects (McDonald et al., 2012; Zatovicova et

al., 2010). The expanded form of each tumour type abbreviation is
available in Table 3-2.
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Identification of potential targets for bi-specific anbodies

Bi-specific antibodies are capable of targeting two targets on the surface of
tumour cells simultaneously. The fact that these antibodies bind to two targets
significantly improves their specificity compared to mAbs. In addition, binding to different
cell surface proteins, bi-specific antibodies allow for blocking more than one pathway
component, or simultaneously hitting complementing pathways, which may limit potential
escape mechanisms of cancer cells. Similar to mAbs, they may also be used as vehicles
to deliver immune effector cells and/or cytokines to tumours. Therefore, an optimal pair
of targets for bi-specific antibodies is a pair of genes that are both expressed on the
surface of tumour cells (preferably at high levels) while their normal tissue expression is
limited and mutually exclusive. The mutual exclusive expression defines as; there are no
normal tissues that express the two targets simultaneously except the matched normal

tissue of the tumour of interest.

In order to identify such pair of genes with mutually exclusive expression pattern
across normal tissues, | studied the RNA-seq data available from GTEx. Since damage
to critical normal tissue (including tissues from adipose, adrenal gland, blood and blood
vessel, bone marrow, brain, colon, esophagus, heart, kidney, liver, lung, lymph node,
muscle, nerve, pancreas, pituitary, salivary gland, skin, small intestine, and stomach) is
mainly the cause of severe side effects in patients, only critical tissues were included in
this analysis. To identify pairs with mutually exclusive expression in critical tissues, first a
0-1 matrix was generated from the expression of every gene present in the human
genome (total of 26,761 genes) according to the expression profile across the 21 critical
tissues. An entry is equal to 0 when a gene is not expressed (FPKM < 10), while it is
equal to 1 when it is expressed in the tissue of interest with FPKM greater than or equal
to 10. Then, the generated profile for each gene was multiplied into the 0-1 matrix
(Figure 3-9). The outcome is equal to zero if a pair of genes has mutually exclusive
expression pattern in the critical normal tissues, while it is greater than or equal to 1 if
they are not. If the outcome is greater than 0, the value represents the number of normal

tissues that the pair of genes is expressed in simultaneously.
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The 0-1 matrix

A 0-1 matrix was generated from the expression of every gene
present in the human genome in any of the 21 critical tissue types
available from GTEx. Genes were multiplied one by one to the 0-1
matrix. The outcome is zero if the pair are mutually exclusive across
critical normal tissues. Here gene 1 is mutually exclusive with gene 6.
This means that there is no critical tissue that expresses both genes at
the same time. While gene 1 is expressed in 1, 4, 3, 7, and 3 tissues as

genes 1 to 5 also do.
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An ideal pair of targets for bi-specific antibodies can be considered the one
where both genes are highly expressed on the surface of tumour cells, while their normal
expression is limited and mutually exclusive across critical normal tissues. Therefore, for
each TCGA cancer type, the list of cell-surface associated differentially expressed genes
where compared with the list of identified mutually exclusive pairs to identify such
candidate pairs. In total 1,280 pairs were identified. This list is available as Appendix B.

An example of genes with mutual exclusive expression pattern is shown in Figure 3-10.
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Figure 3-10. TMPRSS3 and SULF1 demonstrate mutually exclusive expression
pattern in normal critical tissues, while both are differentially
overexpressed in colon and ovarian cancers. The expanded form of
each tumour type abbreviation is available in Table 3-2.
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3.2. Pan-cancer identification of cancer-associated
alternatively spliced genes

One of the mechanisms by which oncogenic events can occur is through the
modification of the transcriptome. The AS of pre-mRNA transcripts is common in
eukaryotic cells and provides a mechanism for a normal cell to generate a number of
diverse protein products from a single gene locus. AS is thus thought to increase the
functional diversity of the encoded genome. Some transcript variants may only be
generated during certain times of development and only in certain tissues. In cancer,
cells are able to recapitulate variants that are involved in developmental and proliferative
stages, while those variants are normally absent in differentiated tissues. Tumour-
associated alternatively spliced variants represent attractive biomarker targets especially
if the presence of these variants is otherwise low or absent in normal patient tissues.
Since alternatively spliced transcripts possess new exon-exon boundaries and can
involve the loss or gain of a number of exons they can lead to relatively large changes in
the primary and three-dimensional structure of a protein. This in turn can provide a
relatively large and specific target for mAb generation. These splice variant specific

mADbs have the potential to be used both prognostically and therapeutically.

A number of cancer associated alternate splicing events have been identified that
confirm this process contributes to multiple facets of oncogenesis and tumour
establishment. Some aberrant splice variant transcripts are involved in aspects of
embryonic development while others appear to be aberrant novel forms only arising
within cancer cells (He, Zhou et al., 2009). For example, VEGF is typically secreted by
hypoxic cancer cells where it ultimately binds to the VEGF2 receptor present on the
surrounding endothelial cells, there it stimulates the growth of endothelial tissue and the
formation of new capillaries (Potente, Gerhardt, & Carmeliet, 2011). The VEGF ligand is
also known to undergo extensive alternative splicing, producing both pro-angiogenic and
anti-angiogenic isoforms. In cancer, the AS of the VEGF ligand is skewed toward the
pro-angiogenic form compared to the ratio observed in normal tissue (Qiu, Hoareau-
Aveilla et al., 2009). Similarly, hypoxia induces AS of the CD44 gene. In CD44 where the
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overall function of the protein product is poorly understood, numerous cancer associated
spliced variants have been identified (Orian-Rousseau, 2010; Ponta, Sherman, &
Herrlich, 2003)In particular, the presence of the spliced variants CD44v6 and CD44v8
are associated with poorer outcome and more rapid progression in a number of tumour
types (Kopp, Fichter et al., 2009; Saito et al., 2013).

AS has also been found to play a key role in the process of epithelial-to-
mesenchymal transition (EMT) whereby cells undergo de-differentiation and lose their
tight cell-cell junctions, ultimately allowing the cells to disperse to other sites in the body
giving rise to metastasis. The Ron proto-oncogene (MST1R) was the first gene involved
in EMT determined to be regulated through alternative splicing. In this case a
constitutively active isoform produced through the loss of exon 11 confers pro-motility
properties to the cancer cell (Ghigna et al., 2005; Zhou, He, Chen et al., 2003).
Subsequently, numerous other genes involved in EMT have been found to undergo
tumour associated alternative splicing, including Rac1 (Jordan, Brazao et al., 1999),
KLF6 (Narla et al., 2008), FAM3B (Li et al., 2013), Cortactin (Van Rossum et al., 2003),
MENA (Di Modugno et al., 2007) and L1CAM (Hauser et al., 2011). Apoptosis is also
influenced through the tumour-associated AS of CASP8 (Mohr et al., 2005), CASP9
(Shultz & Chalfant, 2011), and BCL-X (Boise et al., 1993). Other oncogenic processes
are also influenced by AS such as increased telomerase activity and altered centrosome
function through the AS of TERT (Wong et al., 2013) and TACC1 (Line, Slucka et al.,
2002) respectively.

Within human cancer alternatively spliced forms of proteins on the cell surface
are obvious targets for antibody based-therapies - particularly if the spliced variant is
tumour-specific. Even in the cases where the splice variant is not tumour-specific a
comprehensive understanding of the normal tissues where it is expressed and its
expression levels can allow the potential toxicity to essential organs and side-effects to
be predicted. Certainly, targeting a therapeutic antibody to the tumour is fundamentally

more appealing than systemic untargeted application of chemotherapeutics.

The availability of large datasets such as TCGA and GTEx provides the

opportunity of studying the landscape of AS in human malignancies as well as normal
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healthy tissues. Therefore, in this section, | introduce an AS variant detection pipeline
from RNA-seq data. Using this pipeline, | examine the TCGA and GTEx data in order to
identify cancer-associated events. Identified variants were then further examined to

identify putative tumor markers for antibody therapeutics.

3.21. AS detection pipeline

Cancer cells can usurp the cells splicing mechanism to produce functional
transcripts that favour the malignant state. Novel splice variants have been identified in a
variety of cancers, suggesting that widespread aberrant and AS may be a common
consequence or even a cause of cancer (Venables, 2004). Even though the biological
activity of the majority of AS isoforms, and in particular, their contribution to cancer
biology, has yet to be elucidated. A number of studies have demonstrated that cancer-
associated splice variants can serve as diagnostic or prognostic markers, or predict
sensitivity to certain drugs (Griffith et al., 2012; Pajares et al., 2007; Venables et al.,
2008). RNA-seq allows the exploration of cancer-related changes at the level of
transcription and splicing. Here, | devised an AS-detection pipeline based on a de novo

assembly approach.
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Raw RNA-Seq Reads . .
Genome/Transcriptome Annotation (hg19)

(faitq)
ABySS Assembling short reads into contigs
Trans-ABySS Reconstructing transcripts and prediction of AS events
Quality Assessment Contig size, read support, and multi-mapping

v

Quantifying Transcript Variants

v

Estimating FPKM valuse based on number
of unique reads supporting a novel junction

Identifying Tumor-Associated Using TCGA matched-normal, BodyMap,
Transcript Variants and GTEx samples as control
Prediction of Protein Sequence/Domain ORF and domain prediction

Figure 3-11. Alternative Splicing (AS) detection pipeline
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The AS-detection pipeline starts with raw RNA-seq data (FASTQ files). The
pipeline core step includes de novo transcriptome assembly using ABySS and Trans-
ABySS software package. ABySS is a de novo, parallel, and paired-end sequence
assembler designed for short reads. It assembles a data set multiple times using a De
Bruijn graph-based approach. Trans-ABySS post-processes ABySS assemblies to
merge contigs and remove redundancy. This approach reconstructs transcripts from a
broad range of expression levels, including those expressed at low levels. The pipeline
also consists of the following steps: assessing the quality of assembled transcripts,
identifying tumour-associated events, quantifying predicted transcripts, and prediction of

protein sequence and domains (Figure 3-11). These steps are described below:

De novo transcriptome construction

The de novo transcriptome assembly leverages the redundancy of short-read
sequencing to find overlaps between the reads and assembles them into transcripts. We
assembled short RNA-seq reads into contigs using ABySS version 1.3.4 for multiple K-
mer values. A K-mer is all the possible subsequences (of length K) from a read obtained
through sequencing of RNA. TCGA RNA-seq libraries are paired-end and the read
length is 48 bp. We assembled each library for 13 different values of K-mer from 24 to
48 in increments of two. This approach captures transcripts from a broad range of
expression levels, thus allowing lowly expressed transcripts to be constructed. Trans-
ABySS (version 1.4.4) was then used to merge ABySS assemblies, removing
redundancy and reconstructing transcripts. The de novo transcriptome construction
therefore captures major splice rearrangements and novel variations that occur in the
transcriptome, including exon-skipping, novel exons, retained introns and AS at 3’-
acceptor and 5’-donor sites. Since this approach does not rely on a reference genome, it
can assemble novel AS as well as trans-spliced transcripts. Constructed transcripts were

then annotated by mapping them to the human reference genome (hg19).

Transcript quality assessment

Predicted AS transcripts were evaluated by their contig size, number of reads
supporting predicted novel junction, and their alignment quality. Transcripts with contigs

smaller than 200 bp and less than 4 reads supporting a predicted novel junction were
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removed from further analysis. The mis-assembly of transcriptome reads may occur as a
result of mutation, low quality and low complexity of the reads, as well as presence of
repeats. This could lead to the prediction of false splice junctions. In order to identify
such cases, we aligned predicted AS transcripts back to the human genome (hg19)
using BLAT from UCSC (http://hgdownload.cse.ucsc.edu/admin/exe/) and evaluated the
alignment quality of sequences that span predicted novel junctions. BLAT was run using
default parameters. If sequences that span a novel junction were also aligned to a
different part of genome with similarity greater than 70%, we labelled such transcripts as
unreliable and removed them from further analysis. Transcripts that passed initial quality
assessment were visualized by UCSC genome browser (https://genome.ucsc.edu/) or

Integrative Genome Viewer (IGV, http://www.broadinstitute.org/igv/).

Quantifying predicted transcripts

Only the reads that align to a novel junction are isoform informative. Trans-
ABySS estimates the number of these reads, which allows the quantification of the novel
AS isoform abundance. Assuming each unique read spanning a novel junction is
generated from a transcript uniformly, each exon in a AS isoform was assigned an equal
number of reads as the number of spanning reads, and estimated FPKM values. For
example, gene A with 4 exons is shown in Figure 3-12. There are five reads (shown in
red) that suggest the skipping of exon two in this gene. The five reads that align to the
novel junction suggest that there are at least five transcripts that support the novel splice
variant. Therefore, five reads is assigned to each remaining exon to estimate the total
number of reads supporting this novel AS isoform. This value then is used toward
estimation of FPKM.
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Figure 3-12. Estimation of total number of reads supporting a novel splice
variant. Assuming each unique read spanning a novel junction is
generated from a transcript uniformly (shown in red here), each exon in a
novel splice variant was assigned an equal number of reads as the
number of spanning reads. This value was then used towards estimation

of values.
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Identification of tumor-associated transcripts

In order to identify and remove tissue-specific splicing variants, we compared
predicted transcripts from tumour libraries with the ones present in available
corresponding normal data from TCGA as well as GTEx and lllumina BodyMap 2.0
project. BodyMap consists of 19 normal transcriptomes from 16 different tissue types,
making it an invaluable source for studying tissue-specific transcript models
(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-513/). Similarly GTEx offers a
large RNA-seq dataset including samples from 30 non-cancerous tissue types. Tissue-
specific AS events were also predicted using ABySS/Trans-ABySS software package as
described above. Transcript variants not detected by the de novo transcriptome

assembly approach are considered as not being expressed.

Prediction of protein sequence and domain

Open reading frame (ORF) prediction is performed using NCBI ORF Finder
(http://www.ncbi.nlm.nih.gov/projects/gorf/) to identify the longest open reading frame in
each ftranscript. Protein domains are predicted by RPS-BLAST at NCBI
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi).

3.2.2. Identification of alternatively spliced genes within and
across multiple cancer types

The raw RNA-seq reads for 20 TCGA cancer types (Table 3-9) were obtained
from the TCGA data repository. The de novo reconstruction of transcripts was performed
for both tumour and matching normal samples from TCGA using the AS-detection
pipeline. The pipeline identifies 5 types of events including skipped exon, retained intron,
AS at 3’ acceptor site, AS at 5’ donor site, and novel exon. Each predicted AS event is
required to be supported by at least 4 reads mapped to the novel junction. In addition, in
case of novel exon and retained intron a minimum of 10 read is required to support the

novel insertion.
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The AS events for the adjacent non-cancerous normal tissue from TCGA, if
available, were also predicted using the AS-pipeline. If an AS event predicted in the
TCGA cancer samples is also found in the matched normal tissues, then it is marked as

a non-somatic event and is removed from the further analysis.
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Table 3-9. Tumour and corresponding adjacent non-cancerous tissue sample
from TCGA investigated to identify novel cancer-associates splice

variants

ID Type Tumour sample Matched normal Platform

ACC Adrenocortical 79 N/A RNA-seq
carcinoma

AML Acute Myeloid 161 N/A RNA-seq
Leukemia

BLCA Bladder Urothelial 116 14 RNA-seq
Carcinoma

CESC Cervical squamous | 104 3 RNA-seq
cell carcinoma and
endocervical
adenocarcinoma

ESCA Esophageal 186 23 RNA-seq
carcinoma

GBM Glioblastoma 73 N/A RNA-seq
multiforme

HNSC Head and Neck 177 25 RNA-seq
squamous cell
carcinoma

KICH Kidney 66 33 RNA-seq
Chromophobe

KIRC Kidney renal clear 398 63 RNA-seq
cell carcinoma

KIRP Kidney renal 141 30 RNA-seq
papillary cell
carcinoma

LIHC Liver hepatocellular | 161 50 RNA-seq
carcinoma

LUAD Lung 183 57 RNA-seq
adenocarcinoma

LUSC Lung squamous cell | 303 41 RNA-seq
carcinoma

ov Ovarian serous 429 N/A RNA-seq
cystadenocarcinoma

PAAD Pancreatic 55 4 RNA-seq
adenocarcinoma

PRAD Prostate 166 38 RNA-seq
adenocarcinoma

SKCM Skin Cutaneous 256 N/A RNA-seq
Melanoma

STAD Stomach 430 33 RNA-seq
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ID Type Tumour sample Matched normal Platform
adenocarcinoma

TNBC Triple negative 109 10 RNA-seq
breast cancer

ucs Uterine 57 N/A RNA-seq
Carcinosarcoma
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The AS-detection pipeline was successfully able to predict both known and novel
splice variants in human cancers. One example is the prediction of the epidermal growth
factor receptor variant Ill, also known as EGFRvIIl (Sampson et al., 2008). This variant
has a deletion of exons 2-7 which creates a novel epitope unique to the tumour-
associated form of the receptor. As reported previously, EGFRvIII has restricted tumour
specific expression, including glioblastoma (GBM) tumours (Sampson et al., 2008). The
AS-detection pipeline was able to identify this variant in 8% of the GBM tumours
available from TCGA.

The prediction of the human cancers AS landscape also revealed skipped exon
as the most common type of AS in cancer (Figure 3-13). During an exon-skipping event,
exons are included or excluded from the final gene transcript leading to extended or
shortened mMRNA variants. As exons represent the coding regions of a gene and are
responsible for producing proteins that are utilized in various cell types for a number of
functions. Skipped exon events may therefore result in formation of protein isoforms that
display functional diversity. Therefore, tumours could use this mechanism to form protein
isoforms that favour their malignant state. Similar observation has also been made by
(Tsai et al., 2015).

Interestingly, a lower number of splicing variants was observed in prostate
adenocarcinoma (PRAD) in comparison to the other cancer types in this study. PRAD is
also the only cancer type that skipping exon is not the dominant from of AS events. This
observation may be consistent with the lower mutation rate in prostate cancer (Taylor et
al., 2010). It also should be noted that the modest number of samples tested here limits

this analysis.

Tumour-associated AS variants represent attractive taregts for mAb development
in oncology, especially if the presence of these variants is otherwise low or absent in
normal patient tissues. For instance, the EGFRUvIIl is currently being investigated by
several research groups to be used as a target for antibody-based cancer therapeutics
in oncology (Padfield, Ellis, & Kurian, 2015) and mAbs targeting EGFRvIII coupled to

cytotoxic molecules to form an ADC have demonstrated very potent anti-tumour activity.
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Since alternatively spliced transcripts possess new exon-exon boundaries and
can involve the loss or gain of a number of exons, they can lead to relatively large
changes in the primary and three-dimensional structure of a protein. This in turn can
provide a relatively large and specific target for mAb-based agents. However, a
challenge of targeting AS events might be the lower expression of these variants
compared to the canonical isoforms, as was the case for many of the identified AS
variants in my analysis. Although advances in antibody engineering technologies allow
effective targeting of these splice variants even with low expression for both potential

prognostic and therapeutic purposes.
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Figure 3-13. Skipped exons are the most common type of splicing variants in
human cancers. AS3: Alternative 3’ splice site (also known as acceptor).
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of each tumour type abbreviation is available in Table 3-9.
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Identification of optimal AS variants for antibody-based cancer therapy

While highly expressed surface proteins in cancers represent excellent targets
for antibody-based therapeutics (section 3.1.3), there also exist many splice variant
isoforms that appear to be unique to cancer cells and these represent a significant
potential for clinical development. In order to identify such events, raw RNA-seq reads
from 30 non-cancerous tissue types were downloaded from the GTEx and Body Map
data repositories and the AS landscape was predicted using the AS-detection pipeline
(over 400 samples). TCGA tumour samples were then compared against this dataset to
identify the cancer-associated events. Those AS variants that occur in normal non-
cancerous tissue were identified and removed from future analysis. In total 1,142
cancer-associated splice variants occurring in 694 genes were identified. This list is
available as appendix C. Next, the cell surface-associated genes were identified using
the compiled dataset in section 3.1.3. In total 180 cancer-associated cell surface AS

variants were identified across the TCGA cancer types.

| observed many of these AS variants demonstrating lower expression than their
respective canonical isoforms. The ability to conjugate highly potent cytotoxic
compounds to the binding antibodies could potentially mitigate this problem. Therefore,
somatically cancer-specific protein isoforms represent attractive candidates for mAb
development in oncology, particularly if such protein isoforms are recurrent either within
or across tumour types at clinically relevant frequencies. From my analysis, one of the
most commonly occurring AS variant among TCGA cancer types, are two skipping exon
events of a known cancer-associated gene named matriptase (also known as ST14).
The following sections will describe the bioinformatic analysis and further validation of
these variants across independent tumour tissues and cell lines. This work is published
in the journal of cancer informatics (Dargahi et al., 2014). It has been done as
collaboration between Genome Sciences Centre (GSC) and the Centre for Drug
Research and Development (CDRD) in Vancouver. CDRD is a non-profit company
focused on identification of genetic alterations in human cancer for diagnostic and
therapeutic purposes. The splice variants were identified through bioinformatic analysis
at GSC by myself and were validated by CDRD in orthogonal samples by performing
gRT-PCR and flow cytometry analysis.
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3.2.3. Epithelial-derived tumours express novel splicing variants of
matriptase

Matriptase (MT-SP1/TADG-15/ST14) is a type |l transmembrane serine protease
(TTSP) encoded by a gene located at human chromosome 11g24-25, and is localized to
the cell surface (Lin et al., 1997). It has a multi-domain structure common for the TTSP
family. The intracellular domain at its amino terminal contains a consensus
phosphorylation site for protein kinase C, followed by a signal anchor transmembrane
domain. At the extracellular region, matriptase contains a single SEA domain (sea urchin
stem region, enteropeptidase, and argin), two CUB repeats (complement C1r/C1s, Uedf,
Bmp1), and four tandem repeats of a LDLRA domain (ligand binding repeats of the low-
density-lipoprotein receptor class A) (Tanimoto et al., 2001). It is synthesized as an
inactive, single chain zymogen and catalyzes its own auto-activation (Lee et al., 2007).
Once activated, matriptase cleaves and activates the hepatocyte growth factor/scattering
factor (HGF/SF), and urokinase plasminogen activator (pro-uPA) (Lee, Dickson, & Lin,
2000; Takeuchi et al., 2000; Unterholzner et al., 2010) suggesting that this protease
functions as an epithelial membrane activator for other proteases and latent growth
factors. Matriptase substrate proteins are known to play important roles in tumour
development. Activated HGF/SF binds to its receptor, Met proto-oncogene (Met), and
stimulates multiple downstream pathways including Rat sarcoma viral oncogene-
Mitogen Activated Protein Kinase (Ras-MAPK), Phosphoinositide-3-Kinase (PI3K),
Schmidt-ruppin A-2 oncogene (Src), and Signal transducer and activator of transcription
3 (Stat3). In turn, this leads to the activation of gene products required for invasive
growth (Kang et al.,, 2003; K. Matsumoto & Nakamura, 1996; Trusolino & Comoglio,
2002) uPA regulates cell/extracellular matrix (ECM) interactions as an adhesion receptor
for vitronectin, and cell migration as a signal transduction molecule and by its intrinsic
chemotactic activity, thereby promoting tumour invasion and metastasis (Sidenius &
Blasi, 2003). By controlling the activity of uPA and HGF/SF, matriptase is a prime

constituent in the activation cascade for invasive growth and metastasis.

Matriptase activity is tightly regulated via antagonism from hepatocyte growth
factor activator inhibitor-1 (HAI-1). HAI-1 is a serine peptidase inhibitor encoded by

Kunitz type 1 gene (SPINT1) (Shimomura et al., 1997). HAI-1 has not only an inhibitory
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function, but is also required for matriptase activation, and regulates the proper
expression and intracellular trafficking of matriptase (Oberst, Williams et al., 2003;
Oberst et al.,, 2005). It has been shown that in the absence of HAI-1, matriptase
biosynthesis is significantly lower due to auto-proteolytic activation in the Golgi-
endoplasmic reticulum apparatus. This event has a detrimental effect upon the trafficking
of the matriptase protease, and the cessation of further matriptase translation (Oberst et
al., 2005). The role of HAI-1 as both inhibitor and activator of matriptase provides a
means to prevent unwanted proteolysis and the subsequent harmful effects of

matriptase on cells.

Matriptase is widely expressed by the epithelia of almost all organs examined so
far (Oberst et al., 2003). Studies of matriptase-deficient mice have shown that matriptase
is essential for postnatal survival, epidermal barrier function, hair follicle development,
and thymic homeostatsis (List et al., 2002). Matriptase has also been shown to
overexpress in a variety of human cancers. In many cases, high matriptase expression
levels are correlated with poor clinical outcome (List et al., 2005; Oberst et al., 2002). In
addition to matriptase overexpression, an imbalance in the ratio of matriptase to HAI-1
has been reported in late stage tumours leading to the proposal that uninhibited
matriptase activity may contribute to the development of advanced disease (Oberst et
al., 2002).

Although many studies present matriptase as a promising potential therapeutic
target in oncology (Oberst et al., 2002; Wu et al., 2010), its therapeutic use is limited by
its widespread expression and essential function in normal epithelial tissues. However, a
unique form of matriptase within tumour cells could potentially overcome this limitation.
Using the AS-detection pipeline, | identified two novel tumour-associated spliced
isoforms of matriptase in the transcriptome of primary ovarian, breast, prostate, head
and neck, lung, stomach, and bladder carcinoma that were not in normal transcriptomes
from the adjacent non-tumour tissue. This finding is confirmed by quantitative analysis of
MmRNA expression of matriptase splice variants using qRT-PCR on cDNA panels
obtained from an orthogonal set of tumour tissues and cell lines. Then using flow
cytometry, the presence of matriptase splice variants on the surface of transfected CHO

cells with cDNA encoding these variants were demonstrated. Tumour association and
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the high frequency of matriptase splice variants within and across epithelial tumours
suggest that these mutant matriptase transcripts may be of potential therapeutic value.
This is the first study reporting tumour-associated transcripts of matriptase in human

cancers.

Identification of two novel splice variants of matriptase

De novo assembly of matriptase transcripts revealed two novel splice variants in
epithelial-derived tumours. As depicted in Figure 3-14, these variants contain an in-
frame exon skipping of the LDLRA1 or LDLRA3 domain, respectively. The novel
transcripts were therefore denoted A1 (skipping LDLRA1), and A3 (skipping LDLRA3).
Similar analysis for transcriptomes derived from melanoma, leukemia, and glioblastoma
tumors did not identify A1 and A3 variants. This is consistent with the observation that
matriptase is predominantly expressed by the epithelial tissue (p=0.006 and 0.0242,

respectively).
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Figure 3-14.
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NH,- Trans- COOH-
terminal membrane terminal

Schematic representation of novel matriptase AS transcripts. Four
LDL receptor class A domains are found in matriptase, including:
LDLRA1: residues 452-486, LDLRAZ2: residues 487-523, LDLRAS:
residues 524-561, and LDLRAA4: residues 566-604. A1 and A3 are
produced by skipping exon 12 (encoding LDLRA1) and exon 14
(encoding LDLRAZ3), resulting in in-frame deletion of 105 and 114 bp,
respectively. CAT: serine protease catalytic domain.
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An estimation of A1 and A3 transcript abundances using the number of reads
supporting the novel exon-exon junction from Trans-ABySS indicated higher expression
for A1 compared to the A3 transcript in all tumours studied (Figures 3-15 and 3-16). We
observed a wide range in the frequency of epithelial tumours displaying these matriptase
splice variants, from 3% in prostate adenocarcinoma (PRAD) to 69% in lung squamous
cell carcinoma (LUSC) (Figure 3-17). Matriptase variant A1 was found more frequent
than A3 across all tumours studied (p=0.01). In addition, A3 variant was not detected in
the transcriptomes from the prostate adenocarcinoma (PRAD). Among samples with
matriptase splice variant-positive cancer, we observed cases that either express one or

both splice variants of matriptase (Figure 3-17).
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Figure 3-15. Estimated level of expression for matriptase variant A1. The x-axis
represent samples that express matriptase variant A1 (Skipping exon 12).
The expression in tumour samples is shown in blue. There is no evidence
for matriptase novel transcript A1 in adjacent non-cancerous tissue from
TCGA (shown in green with FPKM equal to zero) nor in the transcriptome
data available from the GTEx and BodyMap 2.0 project (shown in red with
FPKM equal to zero). The expanded form of each tumour type
abbreviation is available in Table 3-9.
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Figure 3-16. Estimated level of expression for matriptase variant A3. The x-axis
represent samples that express matriptase variant A3 (Skipping exon 14).
The expression in tumour samples is shown in blue. There is no evidence
for matriptase novel transcript A3 in adjacent non-cancerous tissue from
TCGA (shown in green with FPKM equal to zero) nor in the transcriptome
data available from the GTEx and BodyMap 2.0 project (shown in red with
FPKM equal to zero). The expanded form of each tumour type
abbreviation is available in Table 3-9.
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Figure 3-17. Frequency of novel matriptase novel AS transcripts. Samples
expressing matriptase novel transcripts were divided into three groups:
(1) expressing transcript A1, (2) expressing transcript A3, and (3)
expressing both A1 and A3 transcripts. Transcript A3 was not detected in
prostate cancer samples. The expanded form of each tumour type
abbreviation is available in Table 3-9.
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The human matriptase gene is located on chromosome 11 (g24-25), spanning a
genomic region of 50 kilobases. It is comprised of 19 exons (NCBI reference sequence
GeneBank: NM_021978), and codes for a protein containing 855 amino acids. The
nucleotide sequence analysis revealed that A1 was produced as a result of skipping
exon 12. Similarly the A3 deletion occurred by skipping exon 14. Analysis of predicted
protein sequences revealed both matriptase variants contain fully functional open
reading frames, suggesting the possibility of expressing two novel proteins (Figures 3-18
and 3-19). Protein domain prediction further demonstrated that matriptase variants A1
and A3 lack LDLRA1 and LDLRA3 domains, respectively. Pairwise protein sequence
alignment versus wild-type matriptase showed that the predicted protein for A1 transcript
skips amino acids 452 to 487 followed by occurrence of an amino acid arginine (R)
through the resultant of a novel exon-exon junction (Figure 3-18). The protein product of
A1 transcript contains 820 amino acids. The A3 transcript encodes a protein of 817
amino acids, which is the result of skipping amino acids 524 to 562 followed by
substitution of a methionine (M) due to the formation of a novel exon-exon junction
(Figure 3-19).
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>Blastp Wildtype ST14_vs_Al
Range 1: 1 to 855

Alignment statistics for match #1

Score Expect Method Identities Positives Gaps

1657 Compositional 5 . 5

bits (4290) 0.0 matrix adjust. 819/855(96%) 819/855(95%) 35/855(4%)

Query 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA

Sbjct 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60

Query 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVEFNGYMRITNENFVDAYENSNSTEFVSLASKV 120
VLIGLLLVLLGIGFLVWHLQYRDVRVQKVEFNGYMRITNENFVDAYENSNSTEFVSLASKV
Sbjct 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVFNGYMRITNENFVDAYENSNSTEFVSLASKV 120

Query 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM
Sbjct 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180

Query 181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
LPPRARSLKSFVVTSVVAFPTDSKTVQRTQODNSCSFGLHARGVELMRFTTPGFPDSPYPA
Sbjct 181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240

Query 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS
Sbjct 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300

Query 301 YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360
YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY
Sbjct 301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360

Query 361 PPNIDCTWNIEVPNNQHVKVRFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420
PPNIDCTWNIEVPNNQHVKVRFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS
Sbjct 361 PPNIDCTWNIEVPNNQHVKVRFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420

Query 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSD—-—-——=——————————————————————— 451
NSNKITVRFHSDQSYTDTGFLAEYLSYDSSD
Sbjct 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480

Query 452 ------ RCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 505
CDAGHQFTCKNKFCKPLEFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK
Sbjct 481 SDELNCSCDAGHQFTCKNKFCKPLEFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540

Query 506 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 565
SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK
Sbjct 541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600

Query 566 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 625
DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID
Sbjct 601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660

Query 626 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFENDFTFDYDIALLELEKP 685
DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP
Sbjct 661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFEFNDFTFDYDIALLELEKP 720

Query 686 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 745
AEYSSMVRPICLPDASHVEFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL
Sbjct 721 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 780

Query 746 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 805
POQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT
Sbjct 781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840

Query 806 RLPLFRDWIKENTGV 820

RLPLFRDWIKENTGV
Sbjct 841 RLPLFRDWIKENTGV 855

Figure 3-18. Pairwise sequence alignment of wild-type and A3 matriptase
transcripts
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>Blastp Wildtype ST14_vs_A3
Range 1: 1 to 855
Alignment statistics for match #1

Score Expect Method Identities Positives Gaps
1654 Compositional
. . ) . 1 % 17 % 4%
bits (4284) 0.0 matrix adjust. 816/855(95%)  817/855(95%)  38/855(4%)
Query 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60
MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA
Sbjct 1 MGSDRARKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKVEKHGPGRWVVLAA 60

Query 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVENGYMRITNENEFVDAYENSNSTEFVSLASKV 120
VLIGLLLVLLGIGFLVWHLQYRDVRVQKVEFNGYMRITNENEFVDAYENSNSTEFVSLASKV
Sbjct 61 VLIGLLLVLLGIGFLVWHLQYRDVRVQKVEFNGYMRITNENFVDAYENSNSTEFVSLASKV 120

Query 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180
KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM
Sbjct 121 KDALKLLYSGVPFLGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEERVVM 180

Query 181 LPPRARSLKSFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGFPDSPYPA 240
LPPRARSLKSFEVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMRFTTPGEFPDSPYPA
Sbjct 181 LPPRARSLKSEFVVTSVVAFPTDSKTVQRTQDNSCSFGLHARGVELMREFTTPGFPDSPYPA 240

Query 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300
HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS
Sbjct 241 HARCQWALRGDADSVLSLTFRSFDLASCDERGSDLVTVYNTLSPMEPHALVQLCGTYPPS 300

Query 301 YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360
YNLTFHSSQNVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTEFNSPYYPGHY
Sbjct 301 YNLTFHSSONVLLITLITNTERRHPGFEATFFQLPRMSSCGGRLRKAQGTFNSPYYPGHY 360

Query 361 PPNIDCTWNIEVPNNQHVKVRFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420
PPNIDCTWNIEVPNNQHVKVRFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS
Sbjct 361 PPNIDCTWNIEVPNNQHVKVRFKFFYLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTS 420

Query 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480
NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH
Sbjct 421 NSNKITVRFHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRCDGWADCTDH 480

Query 481 SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGC--——————-—-————-——— 523
SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGC
Sbjct 481 SDELNCSCDAGHQFTCKNKFCKPLFWVCDSVNDCGDNSDEQGCSCPAQTFRCSNGKCLSK 540

Query 524 ---------—-—-—--————— MNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 562
+NVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK
Sbjct 541 SQQCNGKDDCGDGSDEASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDEK 600

Query 563 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 622
DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID
Sbjct 601 DCDCGLRSFTRQARVVGGTDADEGEWPWQVSLHALGQGHICGASLISPNWLVSAAHCYID 660

Query 623 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP 682
DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFFNDFTFDYDIALLELEKP
Sbjct 661 DRGFRYSDPTQWTAFLGLHDQSQRSAPGVQERRLKRIISHPFENDEFTEFDYDIALLELEKP 720

Query 683 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 742
AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL
Sbjct 721 AEYSSMVRPICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVINQTTCENLL 780

Query 743 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 802
POOITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT
Sbjct 781 PQQITPRMMCVGFLSGGVDSCQGDSGGPLSSVEADGRIFQAGVVSWGDGCAQRNKPGVYT 840

Query 803 RLPLFRDWIKENTGV 817

RLPLFRDWIKENTGV
Sbjct 841 RLPLFRDWIKENTGV 855

Figure 3-19. Pairwise sequence alignment of wild-type and A3 matriptase
transcripts
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Matriptase splice variants are novel and tumor-associated

To search for AS information for matriptase, | performed literature searches using
PubMed, OMIM, and other databases of AS including the AS and Transcript Discovery
database (ASTD) (Koscielny et al., 2009). In addition, | searched publicly available EST
and mRNA databases including GeneBank, Ensembl, dbEST, and Unigene. My search
did not find these novel matriptase variants. | only found three AS transcripts of
matriptase, which are formed as result of an intron retention event (Ensembl ID:
ENST00000530532, ENST00000524718, and ENST00000530376). Furthermore, | did
not detect the novel transcripts of matriptase in adjacent non-cancerous tissue from
TCGA nor in the transcriptome data available from GTEx and BodyMap 2.0 project, thus

suggesting these variants are tumour-associated.

qRT-PCR analysis confirms differential expression of novel matriptase
transcripts in epithelial-derived tumours

To validate the expression of matriptase splice variants in epithelial tumours, a
matriptase wild-type or splice variant-specific probes was designed to perform qRT-PCR
(supporting methods, section 3.2.4). gqRT-PCR was carried out on orthogonal panels of
cell lines and human primary and metastatic tumour tissue from ovarian, breast, lung
and bladder cancer and a panel of normal tissue. The normal panel includes 48 healthy
tissues (Supporting methods, section 3.2.4) and normal ovary, lung, bladder and breast.
We measured changes in the gene expression by comparing the threshold cycle (Ct) of
PCR product detection normalized against a reference gene transcript. The expression
levels detected by qRT-PCR for wild-type matriptase and its splice variants showed that
wild-type matriptase was the predominant transcript in both tumour and normal tissues
(p-value < 0.0001). A1 transcript was overexpressed in tumour samples compared to
normal tissues for ovarian (p-value < 0.0001) and lung panels (p-value = 0.0082).
However, this did not apply to the bladder (p-value = 0.6414) and breast (p-value =
0.6466) panels. We also investigated the expression level of A3 splice variant in a panel
of ovarian tissues and cell lines. A3 was overexpressed in ovarian tumours compared to
normal samples (p-value = 0.0004). However, we observed lower expression of A3

transcript compared to A1 in ovarian tumours (p-value = 0.0004).
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We further tested the expression of matriptase splice variants in a panel of
normal tissue samples including 48 normal tissues from across the human body. Both
matriptase splice variants A1 and A3 showed higher expression in tumour samples
compared to the normal tissue panel (p-value < 0.0001). In fact, the majority of tissues in
the normal tissue panel did not express matriptase A1 and A3 transcript variants at all,
while a small number showed a much lower expression compared to tumour samples
(Figure 3-20). That is, the A1 and A3 transcripts were detected only in 16 and 17 out of

the 48 normal tissues in the normal tissue panel, respectively.
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Figure 3-20. qRT-PCR validation. qRT-PCR was carried out on orthogonal panels of

cell lines and human primary and metastatic tumor tissues from ovarian,
breast, lung, and bladder cancer and a panel of normal tissues. Mann—
Whitney t-test was used to determine significant differences in gene
expression between groups. The resulting P-values are summarized
below the x-axis. The x-axis labels from left to right are (1) wild type in
normal ovary, (2) wild type in ovarian cancer, (3) A1 in normal ovary, (4)
A1 in ovarian cancer, (5) A3 in normal ovary, (6) A3 in ovarian cancer, (7)
wild type in normal tissue panel, (8) A1 in normal tissue panel, (9) A3 in
normal tissue panel, (10) wild type in normal breast, (11) wild type in
breast cancer, (12) A1 in normal breast, (13) A1 in breast cancer, (14)
wild type in normal bladder, (15) wild type in bladder cancer, (16) A1 in
normal bladder, (17) A1 in bladder cancer, (18) wild type in normal lung,
(19) wild type in lung cancer, (20) A1 in normal lung, and (21) A1 in lung
cancer. The y-axis is log scaled.
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Matriptase splice variants can be translocated to the surface of transfected
CHO cells

To address the question of whether matriptase A1 and A3 transcripts yield
protein variants that are capable of being translocated to the cell surface, transiently
transfected CHO cells with cDNA encoding these genes were developed, followed by
flow cytometric analysis of surface matriptase proteins (wild-type, variant A1 and variant
A3) (Supporting methods, section 3.2.4). For this experiment, a human anti-matriptase
antibody was used that binds to the catalytic domain of all three matriptase variants and
is not variant specific. Co-expression of the matriptase variants with HAI-1 resulted in a
significant increase in the mean fluorescent intensity for wild-type, variant A1 and variant
A3 (p-value < 0.05; Figure 3-21 sections C-F), whereas expression of matriptase
variants alone showed modest increases in surface expression (data not shown). So to
verify that the recombinant proteins detected by flow cytometry were the expected
molecular weight for each variant, matriptase variants were immunoprecipitated from
transfected CHO cells using the same human anti-matriptase antibody and analysed by
Western blot (Figure 3-21 section G) (Supporting methods, section 3.2.4). As observed
in the flow cytometry experiment, endogenous matriptase was not detected in the elution
from CHO cells transfected with the empty vector alone. In contrast, bands
corresponding to the expected molecular weight for each variant were detected in the
respective elutions. These results support the assertion that proteins corresponding to
the expected molecular weight of matriptase variant A1 and A3 are trafficked to the cell

surface of transiently transfected cells despite the deletion of the LDLRA domains.
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Figure 3-21.

Flow cytometric analysis reveals surface expression of matriptase
splice variants. Cells were transfected with 10 pg of empty vector alone
(pTT5) or 5ug of each matriptase variant plus 5ug of HAI-1 (A-G). The
next day, duplicate wells containing 100,000 cells/well were stained with
either human anti-matriptase or mouse anti-SPINT1 (HAI-1) antibodies
(data not shown) followed by species specific secondary Alexa Fluor®
647 Goat anti-lgG-Fc antibodies plus the live/dead cell discriminator 7-
AAD followed by flow cytometric analysis. The gating tree is as follows:
(A) SSC vs. FSC depicts the distribution of cells as opposed to the debris
that was excluded; to (B) living cells not stained with 7-AAD. (C) wildtype
matriptase, (D) matriptase variant A1, and (E) matriptase variant A3 (F)
graph depicting the mean fluorescent intensity plus/minus the standard
error of mean of matriptase expressed on the surface of CHO cells. This
data is representative of 3 independent experiments analyzed with a
student’s t-test (p-value < 0.05). Flow cytometry data was acquired on an
Intellicyte® HTFC, which uses an Accuri® C6 Flow Cytometer® (BD
Biosciences) with the sip time set at 3 seconds. Laser lines for this
instrument are 488nm and 640nm. FL3 emission detection for 7-AAD is
>670nm, and FL4 emission detection for Alexa Fluor® 647 is 675/25nm.
(G) Recombinant wildtype, A1 and A3 variants were immunoprecipitated
with 1.5ug of human anti-matriptase antibody, followed by Western blot
analysis on the clarified start lysates (20ug each) and elutions (15l
each). The arrow shows the bands corresponding to the expected size of
each matriptase variant.
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In this study, | introduced an AS-detection pipeline, and used it toward
identification of novel AS variants in TCGA tumours. This analysis revealed two novel
tumour-associated splice variants of matriptase, which were confirmed in an orthogonal
set of tumour tissues and cell lines. Matriptase variants are highly frequent (up to 69% in
lung cancer) among patients with epithelial-derived tumours with low or no occurrence in
normal tissue. In addition to gene expression data, the flow cytometric analysis
confirmed protein expression of both matriptase variants on the surface of CHO cells,
suggesting matriptase variants as potential biomarkers of tumour cells. Clinical validation

would prove valuable in confirming the utility of matriptase variants for therapeutic use.

No splice-sites mutation associated with skipping exons 12 and 14 of matriptase
was identified in TCGA mutation analysis data derived from matching whole-exome
sequencing dataset. This analysis was done online through cBioPortal website
(http://www.cbioportal.org/), which allows visualization and analysis of available TCGA
datasets. Furthermore, no correlation (p>0.05) between expression of matriptase
variants and patient’s survival time, age, tumour size, tumour clinical stage and

histological grade were identified. Table 3-10 shows this analysis in ovarian cancer.
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Table 3-10. Relationship between matriptase splice variants and
clinicopathological data in ovarian serous cystadenocarcinoma.
Clinicopathological data was downloaded from the TCGA data portal
(http://cancergenome.nih.gov).

Number of Number of p-value Number of Number of P-value
A1 positive A1 negative A3 positive A3 negative
(percentage) | (percentage) (percentage) | (percentage)

Age

> 50 164 (75) 178 (77) 75 (74) 267 (77)

<=50 55 (25) 54 (23) 0.6613 27 (26) 82 (23) 0.599

Clinical Stage

\Y 31 (14) 41 (18) 15 (15) 57 (16)

lIA-IIC 15 (7) 7(3) 9(9) 13 (4)

NA-1IIC 171 (79) 183 (79) 0.1224 78 (76) 276 (80) 0.1278

Histological

Grade

G1-G2 28 (13) 26 (11) 11 (11) 43 (12)

G3-G4 186 (86) 202 (87) 89 (87) 299 (86)

GB, GX 3(1) 4(2) 0.8152 2(2) 5(2) 0.7847

Tumour Size

1-10 mm 103 (64) 109 (67) 55 (76) 157 (63)

11-20 mm 13 (8) 17 (11) 6 (9) 24 (10)

>20 mm 44 (28) 36 (22) 0.4747 11 (15) 69 (27) 0.0783
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3.2.4. Supporting methods

The qRT-PCR validation of matriptase splice variants

Reverse transcription reaction was performed using commercially available sets
of human normal tissue or ovarian, breast, lung and bladder cancer cDNA (OriGene
Technologies), as well as cDNA synthesized from RNA isolated from ovarian cell lines
including OvCARS3, CaOV3, UACC-1598, Ov-90 and triple negative breast cell lines
including MDA-MB-231, MDA-MB-468 and HCC 1937. All cells lines were cultured under

ATCC recommended culture conditions.

Primer and probes in designed splice variant assays were all tested at varying
concentrations and with the use of positive controls to ensure efficiency of 90-110%, and
to determine assay range of detection. Positive amplification controls were also run
against their counterpart reaction to ensure that amplification was specific to the
designed splice variant or wild-type assay. All designed assays were run as duplex
reactions using GusB as a reference gene. PCR amplification was performed for 40
cycles. Matriptase-Exon12 (A1) RT-PCR experiments utilized 300nM final concentration
of Forward (GAC ACC GGC TTC TTA GCT GAA T) and Reverse (GAA GAG GGG CTT
GCA GAA CTT G) primers, 100nM of either Exon 12 wildtype (/56-FAM/TCC AGT GAC
[ZEN/CCA TGC CCG GG/3IABKFQ) or Exon 12 splice variant mutant /56-FAM/CAG
TGA CCG /ZEN/TTG CGA CGC CG/3IABKFQ probes, and human commercial available
assay Hs00939627_m1 (Applied Biosystems, USA) for GusB reference gene in 1X
master mix reaction. Matriptase-Exon14 (A3) RT-PCR were performed identically, but
utilizing different sequences for Forward (GAA CGA CTG CGG AGA CAA CA) and
Reverse (TGC TCA AGC AGA GCC CAT T) primers and wild-type (/56-FAM/TCC GGC
CCA /ZEN/GAC CTT CAG GTG TT/3IABkFQ/) or Exon 14 variant (/56-FAM/AGT GAC
GAC /ZEN/GTT CAT GCA CCC CTG /3IABkFQ/) probes. The GusB reference gene was
used to normalize data for RT-PCR analysis and to estimate the relative fold change for
each sample, similar to the approach taken by Beillard et al (Beillard et al., 2003). Since
the reference gene is exposed to the same preparation steps as the gene of interest, this
approach adjusts expression of target gene for differences in experimental condition,

which are not a result of experimental design and allows for an exact comparison of
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mRNA transcription level between different samples. To assemble each reaction, 3ng
cDNA or control RNA in 5uL volume was used as input template sample. 15uL reaction
master mix was added to each well for a final 20uL reaction mixture in each well of the
RT-PCR plates, and read on real-time PCR platform 7900HT FAST RT-PCR with SDS
2.3 software (Applied Biosystems, USA). Each master mix reaction was made to final 1X
target gene (FAM) reaction, 1X GusB (VIC) in 1X master mix reaction. RT-PCR cycle
conditions were set to AACt plate setting in 96-well FAST format, using standard RT-
PCR cycle settings: 2mins at 50°C, 20secs at 95°C and a minimum of 40 cycles of 1sec
at 95°Cand 20secs at 60°C. AACt plate setting data files were loaded into ABI RQ
Manager software, and Ct values that were automatically generated were used to
calculate ACt values for each reaction. Samples that did not have amplification as
detected by ABI RT-PCR platform software were indicated as having levels of transcript
below the limit of detection. Samples were grouped by cell lines, cancer subtypes, or
normal tissue, and graphed using GraphPad Prism software version 5.0 (GraphPad

Software Inc).

Transfection constructs

Total RNA was isolated with the RNeasy Mini Kit (Qiagen) from MDA-MB-468
and HCC 1937 cells to generate cDNA encoding HAI-1 and wild-type matriptase,
respectively. cDNA was generated as per manufacturer’s instructions using SuperScript®
Il Reverse Transcriptase (Life Technologies) and Oligo(dT)s primer (Thermo Fisher
Scientific). HAI-1 and wild-type matriptase were amplified from the above cDNA using
Q5°® Hot Start High-fidelity DNA Polymerase (New England Biolabs). SPINT1
(Accession# GeneBank: NM_181642.2) encoding HAI-1 was cloned into the pTT5 vector
(National Research Council of Canada, Biotechnology Research Institute) using Gibson
Assembly® (New England Biolabs) as per manufacturer’s instructions. The HAI-1 forward
primer was 5’-aaacggatctctagcgaattcgccaccATGGCCCCTGCGAGGACG-3' and the
reverse primer was 5’-aggtcgaggtcgggggatccTCAGAGGGGCCGCGTGGT-3'. Lower
case letters correspond to the pTT5 vector, upper case to HAI-1, and the start/stop
codons are underlined. Wild-type matriptase (aka ST74; Accession# GeneBank:
NM_021978) was cloned into the pTT5 vector using 5 EcoRI and 3’ BamHI restriction
sites (in bold) incorporated into the ST14 forward (5-
GATCGAATTCGCCACCATGGGGAGCGATCGGGCCCGCAA-3) and ST14 reverse
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primer (5-GATCGGATCCCTATACCCCAGTGTTCTCTTTGATCCAGTCCC-3’). The
exon 12 deletion (variant A1) was introduced by amplifying the regions 5" and 3’ to the
exon deletion from the wild-type matriptase cDNA using the ST74 forward and reverse
primers. The ST14 forward primer was paired with the variant A1 reverse primer (5'-
CCGGCGTCGCAACGGTCACTGGAGTCGTAGGAGAG-3’) to amplify the region 5’ to
the exon deletion, and the ST74 reverse primer was paired with the variant A1 forward
primer (5-ACTCCAGTGACCGTTGCGACGCCGGCCACCAGTT-3) to amplify the

region 3’ to the exon deletion. The variant A1 primers introduced an overhang depicted

by the underlined sequence. Equimolar amounts of the above 5’ and 3’ PCR products
were added to a PCR reaction as the template, along with the ST74 forward and reverse
primers to produce a full-length construct with the region corresponding to exon 12
deleted. The exon 14 deletion (variant A3) was constructed the same way using the
variant A3 forward primer (5-AGCAGGGGTGCATGAACGTCGTCACTTGTACCAA-3)
and the variant A3 reverse primer (5-
TGACGACGTTCATGCACCCCTGCTCGTCGCTGTT-3’). All constructs were verified by
DNA sequencing.

Cell culture conditions, and transfection

CHO-K1 cells (ATCC) were maintained in Ham’s F-12 media (Life Technologies)
supplemented with 10% Fetal Bovine Serum (FBS; Life Technologies) at 37°C and 5%
CO,. The day before transfection 2.5x10° cells per a plate were seeded in the above
media on four 10cm plates for each transfection. The four transfections consisted of
empty pTTS vector alone, wild-type plus HAI-1, variant A1 plus HAI-1 and variant A3
plus HAI-1. Twenty-four hours later, each transfection was performed by mixing a total of
10ug of cDNA into 500ul of Opti-MEM® (Life Technologies), and 30ug of
Polyethylenimine (PEI) Max (Polysciences, Inc.) into another tube with 500ul of Opti-
MEM®. The two tubes were incubated at room temp for 5 minutes, and then the PEI Max
solution was added to the cDNA solution followed by a 25 minute incubation. PEI/cDNA
complexes were added drop-wise to the 10cm plate while swirling/rocking to mix, and
the cells were returned to the incubator.
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Flow Cytometry

Twenty-four hours after transfection, the plates were washed once with PBS (Life
Technologies), and the cells were dissociated from the plate with non-enzymatic cell
dissociation solution (Sigma-Aldrich). After 15 minutes at 37°C, the cells were collected
by pipetting up and down in PBS plus 1% FBS (PBS/FBS), counted on a ViCell™, and
resuspended in PBS/FBS. Cells were added to a 96 well plate, spun at 400xg for 5
minutes, and resuspended in 5 pg/ml of human anti-matriptase or 10ug/ml of mouse
anti-SPINT1 (OriGene Technologies). Isotype controls were also prepared for each
transfection with 5ug/ml of human IgG1 Kappa (Sigma-Aldrich) or 10ug/ml of mouse
IgG1 Kappa (eBioscience). After a 1 hour incubation on ice, cells were washed 2 times
in ice-cold PBS/FBS and resuspended in PBS/FBS containing 2.5ug/ml of 7-
Aminoactinomycin D (7-AAD; Sigma-Aldrich) plus 2ug/ml of either Alexa Fluor® 647
Goat anti-human IgG-Fc (Jackson ImmunoResearch Labs, Inc.) or Alexa Fluor® 647
Goat anti-mouse IgG-Fc (Jackson ImmunoResearch Labs, Inc.). Cells were incubated
for 30 minutes on ice in the dark, then washed 2 times in PBS/FBS and resuspended in
PBS/FBS. Data was acquired with an Intellicyte® High Throughput Flow Cytometer
(HTFC) that consisted of an Accuri® C6 Flow Cytometer® (BD Biosciences), CFlow®
Software (version 1.0.227.4), HyperCyt® CFlow Automator (version 3.4.0.0) and
HyperView iDM® Client Edition 4.0 (R2 version 4.0.4395). Analysis was carried out using
the CFlow® Software (version 1.0.227.4) and FCS Express 4 Professional Standalone
Research Edition with histogram smoothing set to 1 (De Novo Software™, version
4.07.0014).

Immunoprecipitation and Western Blot Analysis

The immunoprecipitation was performed as described by Swayze et al. with the
following modifications (Swayze & Braun, 2001). Unless otherwise stated, all reagents
were purchased from Sigma. As outlined above for the flow cytometry experiment, HAI-1
plus either wildtype, A1 or A3 transfected CHO-K1 cells were dissociated from 10 cm
plates with non-enzymatic dissociation solution, and collected by pipetting up and down
in PBS alone. Cells were spun for 5 minutes at 400xg and the supernatant was
aspirated. Pellets were resuspended in 0.5-1ml of ice cold lysis buffer [50mM Tris-HCI,
pH 7.4, 150mM NaCl, 1% Triton X-100, 0.1% sodium dodecyl sulfate (SDS), 1mM
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CaCly, 1mM MgCl, and one Complete mini EDTA-free protease inhibitor cocktail tablet
(Roche) per 10ml of buffer]. While on ice, the cells were broken open with 10 strokes of
the pestle using a pestle and microtube set (VWR), and then the lysate was passed
through a 26 gauge syringe 10 times to shear the DNA. DNase was added to 10pg/ml
and the lysates were gently rotated at 4°C for 30 minutes. Lysates were clarified by
centrifugation at 20,000xg for 10 minutes at 4°C and supernatant was subjected to a
BCA protein concentration assay (Pierce). Clarified lysates were adjusted to 1mg/ml in
1ml (Figure 3-21 5G “start”). 40pl of a 50% slurry of Protein G Sepharose Fast Flow
beads (GE Healthcare) pre-equilibrated in lysis buffer was added followed by rotation at
4°C for 1-2 hours to pre-clear the lysate. The beads were removed by centrifugation at
2500xg for 2.5 minutes at 4°C, and the pre-cleared lysate was transferred to a new
1.7ml tube. 1.5ug of human anti-matriptase antibody was added followed by rotation for
14-16 hours at 4°C. Matriptase-antibody complexes were then rotated with 40pl of the
above Sepharose bead preparation for another 2 hours at 4°C. The beads were washed
three times in 1ml of ice cold lysis buffer by centrifuging at 2500xg for 2.5 minutes at 4°C
followed by supernatant aspiration. The beads were resuspended in non-reducing
Laemmli sample buffer (Laemmli, 1970), and heated at 95°C for 5 minutes to dissociate
the matriptase-antibody-bead complex. The beads were removed by centrifugation using
a custom-made spin column, and the proteins (Figure 3-21 section G “elution”) were
separated by SDS-polyacrylamide gel electrophoresis in 1X Tris/Glycine/SDS buffer
(Bio-Rad). The resolved proteins were electrotransferred to 0.45um nitrocellulose
membrane (Bio-Rad) at 100 volts for 90 minutes in 1X Tris/Glycine buffer with 20%
Methanol (Towbin, Staehelin, & Gordon, 1979) (Bio-Rad). The nitrocellulose was air
dried to fix the proteins, and then subjected to Western blot analysis as described
(Swayze & Braun, 2001)The primary rabbit anti-matriptase antibody was used at 1:2000
(Millipore) and the secondary anti-rabbit conjugated horseradish peroxidase was used at
1:50000 (GE Healthcare). Proteins were detected with SuperSignal West Dura
Chemiluminescent substrate (Pierce) and exposed to Amersham Hyperfim (GE

Healthcare).
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3.3. Identification and prioritization of optimal therapeutic
targets

With high-throughput studies often producing long lists of genes and proteins of
interest, an approach is needed to narrow down such lists by ranking and prioritizing the
candidates. Analytic hierarchy process (AHP), developed by T. Saaty, is one of the best
known multiple criteria decision-making (DM) techniques (Saaty, 1977) and has been
widely used around the world in a variety of decision situations (Liberatore & Nydick,
2008; Subramanian & Ramanathan, 2012; Vaidya & Kumar, 2006). It offers an objective
way to reproducibly narrow down a long list of candidates thorough prioritization using a

series of user-specified preferences.

The AHP algorithm (Saaty, 1977) provides a rational framework to decompose a
problem into a hierarchy of sub-problems, which can be more easily comprehended and
evaluated. This hierarchical structure may include the goal, objectives (criteria and sub-
criteria), and alternatives (candidates to be ranked) (Saaty, 1980). Once the hierarchy is
built, decision elements can be evaluated to obtain their relative importance to achieve
the final goal. Then, these evaluations are converted into numerical values and
processed to rank each candidate on a numerical scale. The AHP approach is described

below using a simple step-by-step example:

An example of a simple decision: determining a thesis topic

Assume a scenario that a graduate student is looking for a topic for her thesis
project. She is planning to use AHP to make her decision. The methodology of the AHP

can be explained in following steps:

Step 1. Defining the problem and determining the kind of knowledge
sought. Here, user defines the problem as selecting a topic for her thesis project

amongst three topics A, B, and C (alternatives). She considers (1) research cost, (2)
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level of attractiveness, and (3) how fast it is possible to finish the project as the criteria to

make her decision. This information is summarized in Figure 3-22 A.

Step 2. Decomposing the problem into a hierarchy of goal, objectives, and
alternatives. Structuring the decision problem as a hierarchy is fundamental to the
process of the AHP. Hierarchy indicates the relationship between decision elements in
one level of hierarchy with those of the level immediately below. Figure 3-22 B illustrates
a decision hierarchy, where the first level includes the goal, second level illustrates
decision objectives (i.e. criteria), and the last level (leaf nodes) are the alternatives to be

ranked (i.e. three thesis topics).

Step 3. Pairwise evaluation of decision elements. AHP uses pairwise
comparisons to determine the relative importance of decision elements. Each element in
an upper level is used to compare the elements in the level immediately below with
respect to it. For example, criteria are evaluated in terms of their importance to achieve
the goal. While, alternatives are evaluated with respect to their immediate upper criterion
in the problem hierarchy. Therefore, in the current example, thesis topics are required to
be pairwise evaluated once per each criterion including research cost (Figure 3-22 D),
attractiveness (Figure 3-22 E), and time to finish (Figure 3-22 F). Similarly, the criteria
are required to be evaluated based on their importance to achieve the goal, which is
choosing a thesis topic (Figure 3-22 C). To make pairwise comparisons, AHP method
offers a numeric scale that indicates how many times more important or dominant one
element is over another element. Table 3-12 exhibits this scale. For example, here the
user has determined that the research cost is three times more important than the
required time to finish the project (Figure 3-22 C), while the topic’s attractiveness is three

times more important than the research cost (Figure 3-22 C).

Step 4. Constructing pairwise comparison matrices. The pairwise
comparisons obtained in previous step are organized into a square matrix named
pairwise comparison matrix (PCM). In this matrix, the diagonal elements are equal to 1.
If the decision element in the row i is better than decision element in the column j, the
value of (i, j) entry in the matrix is more than 1; otherwise the decision element in the

column j is better than the one in the row /. In addition, the (j, i) entry of PCM is the
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reciprocal of the (i, j) entry. PCMs of choosing a thesis topic are shown in Figures 3-22 C
to F.

Step 5. Estimating local priorities. The principal eigenvalue and the
corresponding normalised right eigenvector of a PCM give the relative importance of the
decision elements being compared (Saaty, 1977). The elements of the normalised
eigenvector are known as weights. For the current example, the weights - which are also

known as local priority - are shown in Figure 3-22 C to F.

Step 6. Estimating the consistency of pairwise comparisons. The

consistency of PCMs can be examined through the estimation of consistency index (ClI).
Cl = (Amax - n)/n -1

Where;
Amax 1S the maximum eigenvalue of the comparison matrix.

This value is then used to compute Consistency Ratio (CR), which indicates the

amount of allowed inconsistency in a decision matrix.
=CI
Where;

Random Index (RI) is the average CIl value of randomly-generated

comparison matrices (PCMs) using Saaty’s preference scale.

Saaty suggests the value of CR should be less than 0.1 (Saaty, 1977). Although
AHP tolerates some inconsistency due the amount of redundancy in the approach,

pairwise comparison may be re-examined if the CR fails (greater than 0.1).
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The CR of the PCMs shown in Figures 3-22 is as following: (C) 0.036, (D) 0.067,
(E) 0.00, and (F) 0.0041.

Step 7. Prioritization. In order to compute final ranking, the local priority of each
alternative is multiplied by the weight of the immediate upper level criterion to get global
priorities. Once the global priorities in each level of hierarchy are determined, for each
alternative the weighted values can be add up to obtain the overall priority. The
calculated overall priority demonstrates how an alternative contributes to the goal. The

final ranking of thesis topics is shown in Figure 3-22 G.
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Goal Criteria

Alternatives

Determine thesis 1.
topic 2.

Research cost
Level of attractiveness
3. Fastto finish

List of thesis topics

Goal

Determine thesis topic

— 1~

Criteria

Alternatives

C Criteria PCM

Research
cost

Topic A || Topic B

Level of
attractiveness

Fast to
finish

Research Level of .. Local
. Fast to Finish ..
cost attractiveness priority
Research cost 1 1/3 3 0.258
Level of
attractiveness 3 ! > 0.637
Fast to Finish 1/3 1/5 1 0.105
Research cost PCM

Topic A Topic B Topic C Local priority Global priority
Topic A 1 3 7 0.65 0.168
Topic B 1/3 1 5 0.28 0.072
Topic C 1/7 1/5 1 0.07 0.018

E Level of attractiveness PCM

Topic A Topic B Topic C Local priority Global priority
TopicA 1 1 3 0.4285 0.273
Topic B 1 1 3 0.4285 0.273
Topic C 1/3 1/3 1 0.143 0.091
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F Fast to finish PCM

Topic A Topic B Topic C Local priority Global priority
TopicA 1 1/2 3 0.31 0.032
TopicB 2 1 5 0.58 0.061
Topic C 1/3 1/5 1 0.11 0.012
G Final AHP prioritization
Research cost Levc.el of Fast to finish Total priority
attractiveness

Topic A 0.168 0.273 0.032 0.473

Topic B 0.072 0.273 0.061 0.406

Topic C 0.018 0.091 0.011 0.12

Totals 0.258 0.637 0.105 1

Figure 3-22. A step-by-step example of AHP relative model. (A) Determining the

problem goal, objectives and alternatives. (B) Building the problem
hierarchy. (C) Constructing PCM for decision criteria with respect to the
goal. (D-F) Constructing alternative PCMs with respect to their associated
criteria. Table C illustrates the PCM of criteria and their local priorities.
Tables D - F demonstrate the PCMs of alternatives with respect to (D)
research cost, (E) level of attractiveness, and (F) fast to finish,
respectively. In addition computed local and global priorities are shown in
the last two columns. An alternative global priority is computed by
multiplying the alternatives’ local priority to the priority of its associated
criterion. (G) Total priority values showing Topic A with a score of 0.473 is
the alternative that contributes most to the goal than Topics B and C. The
consistency ratio of PCMs C-F is as following; (C) 0.036, (D) 0.067, (E)
0.00, (F) 0.0041, respectively.
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In the given example above, topic A with a final priority of 0.473 is the alternative
that contributes the most to the goal of choosing a thesis topic with respect to the three
criteria including cost, attractiveness, and time to finish. Topic B is a close second with a
priority of 0.406.

In a decision problem with n alternatives, n(n-1)/2 comparisons are required to
build a PCM. Hence, when the number of alternatives is large or if the possibility of
adding or deleting alternatives exists, using pairwise comparisons (AHP relative) is not
practical. In this case an AHP rating approach is often used (Saaty, 2008). This
approach requires a series of categories/intensities to be established for each criterion.
For instance, in the above example, the attractiveness criterion can be broken down into
the following categories: very interesting, interesting, and not interesting. Next, these
categories are pairwise compared and their priorities with respect to their associated
criterion (e.g. attractiveness) are obtained (instead of pairwise comparing the
alternatives). Then, for each criterion, alternatives are evaluated and weighted by

selecting the appropriate category that they fall into.

As shown in an example above, AHP offers a simple yet powerful technique in
which to rank alternatives and express preference. Using this approach, a user is
required to only provide two sets of information: (1) The problem hierarchy - i.e. breaking
a problem into smaller sub-problems, each of which may be easier to solve, and (2)
PCMs — i.e. expressing her preference of decision elements in a pairwise manner. Then,

AHP computes a ranking score for each alternative using this information.

Prioritization with the AHP method depends on the available knowledge about
the decision alternatives. Similarly, the design of the problem hierarchy - the choice of
the alternatives, criteria, and sub-criteria, as well as their weights — can affect the final
ranking (Saaty, 2008). On the other hand, AHP allows decision makers to select and
define criteria/sub-criteria as it fits best to their research question. In addition, it is flexible
enough to allow adding and/or removing decision elements. Other benefits of the AHP
includes; 1) incorporating data and judgments of experts, 2) it is a valuable tool for
solving problems with both quantitative and qualitative factors (Vaidya & Kumar, 2006).

AHP has been successfully used in different fields and disciplines such as business,
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industry, healthcare, and education (Liberatore & Nydick, 2008; Subramanian &
Ramanathan, 2012; Vaidya & Kumar, 2006).

Most interestingly, the National Cancer Institute (NCI) highlighted the application
of AHP in translational research by using it for prioritization of cancer antigens in order to
provide a basis for deciding which antigens are most likely to generate successful

cancer vaccine candidates for testing in later-stage clinical trials (Cheever et al., 2009).

As of 2014 that this analysis was in progress, there was no comprehensive AHP
R package available. Therefore, in order to leverage AHP for bioinformatics applications,
I have implemented the AHP technique as an R package along with multiple
visualization tools for further analysis of the prioritization. Prize supports both AHP
relative and rating models. Since November 2016 a second R implementation of the
AHP method is available on CRAN at https://cran.r-
project.org/web/packages/ahp/index.html. However, unlike Prize package this
implementation does not offer group decision aggregation and does not support AHP

rating model.

Prioritization using AHP approach offers unique advantages compared to other
weight-based methods. This may include: (1) AHP uses a hierarchical structure which
enables decision makers to define high level strategic objectives and specific metrics for
a better assessment of alternatives, (1) It measures the level of inconsistency in pairwise
comparisons and weightings, (3) It integrates quantitative and qualitative considerations
and transforms them into numerical value, (4) AHP enables decision makers to measure
the relative importance of alternatives, and (5) allows for group decision making where

communication among team members is impeded by their different specializations.

3.3.1. Implementation

The purpose of Prize is to allow users to simplify complex problems into
elementary hierarchy system and calculate alternatives’ prior probabilities. Prize is an R

implementation of the AHP algorithm, which allows users to evaluate the information
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quantitatively and qualitatively using both subjective and objective ranking scales. Using
Prize, the user is only required to decompose the decision problem into a hierarchy and
evaluate its various elements by comparing them to each other in a pairwise manner,
with respect to their impact on an element above them in the hierarchy (building PCMs).
Prize uses this information to compute the final priorities and allows visualization of the
ranking. Prize can be run on any platform with an existing R and Bioconductor
installation. The package includes 10 functions (Table 3-11), which allow for simple
prioritization and visualization of final rankings. Prioritization with Prize consists of three

main steps:

Decomposing the problem into a hierarchy

A problem may define as a related set of sub-problems, which indicates the
relationship among decision elements. Once the user breaks down the problem into a
hierarchy of goal, objectives, and alternatives, the hierarchy can be visualized using
ahplot(). This function takes a matrix that consists of two columns. The first column
consists of the level of elements in the hierarchy and the second column consists of the

name of the decision elements. Figure 3-23 shows a hierarchic structure.
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Table 3-11. Prize Functions

Function

Description

Analysis tools

gaggregate() Aggregating individual judgements

rating() Estimating alternative’s rating value in AHP rating model
pipeling() AHP analysis pipeline

ahp() Computing AHP weights and CR

ahmatrix() Converting a triangular matrix into a square PCM

Visualization tools

crplot() Plotting CR of individual judgements
dplot() lllustrating the distance among individual judgements and aggregated
P group judgement
ahplot() Plotting the problem hierarchy, showing the relationship among goal,
P objectives, and alternatives
wplot() Plotting AHP weights in a bar/pie chart
rainbowplot() Plotting prioritized alternatives in a color coded stacked bar plot
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Building PCMs from individual and/or group judgements

In AHP methodology, each element in an upper level of problem hierarchy is
used to compare the elements in the level immediately below with respect to it. Once the
user performs the pairwise comparison of decision elements using the AHP scale (Table
3-12), these values can be organized into a square PCM. For an immediate evaluation,
Prize offers an ahp() function that takes a PCM and reports the weight of decision
elements and CR. In addition, prize offers a pipeline() function that takes in all the PCMs

and performs the overall prioritization. This function is introduced in the next step.

AHP is an individual and group DM technique. In case of group DM, group
members can either engage in discussion to achieve a consensus PCM or express their
own preferences in form of individual PCMs. In case of latter, individual judgments can
be aggregated in different ways to achieve a group PCM. Two of the methods that have
been found to be most useful are the aggregation of individual judgments (AlJ) and the
aggregation of individual priorities (AIP) (Forman & Peniwati, 1998). These methods
perform the aggregation using geometric and arithmetic mean, respectively. In addition,
the decision-makers’ expertise and background can be reflected on the group judgment
by weighting the individuals. The gaggregate() function computes group PCM/priority,
CR of individual judgments (ICR), CR of aggregated group judgment, and Cl measuring
the consensus degree between individual judgments and the aggregated group
judgment. Although AHP tolerates some degree of inconsistency, a severe inconsistency
might cause the decision-making results to become invalid. Therefore, it is
recommended to evaluate the CR of PCMs before it can be used to make decisions.
Prize offers crplot(), which allows visualization of CR of individual judgments. The
distance between individuals and group judgements can also be computed and
visualized using dplot() function. dplot() uses the classical multidimensional scaling

(MDS) approach to compute the distance (Gower, 1966).

If n is the number of elements in a level of hierarchy, n(n-1)/2 comparisons are
required to build a PCM. Hence, with increasing the number of alternatives, the amount
of pairwise comparisons becomes large. In this case, user can establish a rating

category (e.g. excellent, good, fair, and poor) with respect to the corresponding criterion
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for the evaluation of alternatives (AHP rating model). Prize offers a rating() function that
computes the weight of alternatives according to the category that they fall into. This
function takes two matrices as input, including a PCM of rating categories and a
category assignment matrix (CAM), which states what category an alternative belongs
to. rating() returns alternatives idealised priorities, weight of rating categories, and CR of
category PCM. To obtain idealised priorities, weights of categories are divided by the
largest weight. In case of AHP rating model, idealised priorities are used as the weight of

alternatives in further steps of prioritization process.

Prioritization estimation

Prize offers an ahp() function, which can be called by a PCM matrix to compute
weights and CR. In an actual analysis, ahp() must be called for each decision element to
compute their weights. As a problem gets more complicated and the number of elements
increases, it becomes complicated to perform this analysis manually. Therefore, in order
to facilitate AHP analysis, | developed a pipeline() function, which can simply be called
by a matrix including the problem hierarchy and PCMs built for each element. The
pipeline() function returns the overall prioritization as well as CR of all input PCMs in a
convenient format that facilitates further processing and visualization. Prize offers
rainbowplot() and wplot() functions to visualize the final prioritization results and the

weights of decision criteria, respectively. An example is shown in Figures 3-24 and 3-25.
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Table 3-12. Saaty’s fundamental scale for pairwise comparison

Intensity of importance

Definition

Explanation

1

Equal importance

Two elements contribute equally
to the objective

Moderate importance

Experience and judgement
slightly favor one element over an
other

Strong importance

Experience and judgement
strongly favor one element over
an other

Very strong importance

One element is favored very
strongly over an other, its
dominance is demonstrated in
practice

Extreme importance

The evidence favoring one
element over another is of the
highest possible order of
affirmation

* Intensities of 2,4,6, and 8 can be used to express intermediate values. Intensitise 1.1, 1.2, 1.3, etc. can be

used for elements that are very close in importance
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3.3.2.  Prioritizing putative cancer-associated targets

Prize can efficiently rank and prioritize a list of alternatives according to a series
of user-defined criteria. In order to demonstrate Prize application in translational
bioinformatics research, here | rank and prioritize the putative tumour targets identified in
section 3.1. The goal of this analysis is to identify and prioritize candidate genes that are

most likely to generate successful cancer targets for antibody treatment.

The key step in decision-making is to gather and organize the critical information
and data required to make a decision. Therefore, through an extensive literature search
and systematic review, a list of criteria that are the most indicative of a tumour target
were identified. The criteria include cancer expression profile, tumour-specificity,
expression fold change in tumour compared to a compendium of normal tissues, target
heterogeneity, role in cancer, therapeutic need, and annotation of extracellular region.
They are also summarized in Table 3-13. The identified putative tumour targets,
described in section 3.1, were chosen as alternatives to prioritize. Using collected

information, a problem hierarchy were build as shown in Figure 3-23.
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Table 3-13.

Decision elements and their weights

Criteria, subcriteria, and
rating scale categories

Definition

Weight*

Specificity

15.7% (0.157)

Low or no expression in
normal tissues

No or little expression in normal tissues (< 20
FPKM)

100% (1.0)

Low expression in critical
normal tissues**

Little expression in critical normal tissues (< 20
FPKM)

38.1% (0.381)

Medium expression in
critical normal tissues**

Medium expression in critical normal tissues
(>=20 FPKM and < 50 FPKM)

14.5% (0.145)

Other

0.0% (0.0)

Expression level in cancer
tissue

37.6% (0.376)

High Differentially expressed in cancer with high 100% (1.0)
level of expression (>= 100 FPKM)

Medium Differentially expressed in cancer with medium | 38.1% (0.381)
level of expression ( >= 50 TPM and < 100
FPKM)

Low Differentially expressed in cancer with low level | 14.5% (0.145)

of expression ( < 50 FPKM)

Fold Difference 25.5% (0.255)
FD High Fold difference >= 4 100% (1.0)

FD Medium Fold difference >= 2 and < 4 53.1% (0.531)
FD Low Fold difference < 2 18.8 % (0.188)
Other 0.0% (0.0)
Target heterogeneity 6.8% (0.068)

Many patients, with high
level of expression

High level of expression in many patients (>=
20%)

100% (1.0)

Few patients, with high level
of expression

High level of expression in a small subset of
patients (< 20 %)

31.4% (0.314)

Many patients, with lower
level of expression

Lower level of expression in many patients (>=
20%)

19.8% (0.198)

Other

0.0% (0.0)
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Criteria, subcriteria, and
rating scale categories

Definition

Weight*

Accessibility

2.6% (0.026)

Annotated extracellular
region

100% (1.0)

Predicted

0.0% (0.0)

Cancer gene/Function

4.0% (0.040)

Candidate is a known

Putative cancer-genes identified through

100% (1.0)

cancer gene discovery analysis and literature search ***
Not Available 0.0% (0.0)
Therapeutic need 7.7% (0.077)

High interest

Cancers with high interest to develop novel
therapy include; PAAD, LUSC, LUAD, LICH,
LGG, GBM, AML

100% (1.0)

Medium interest Cancers with medium interest to develop novel | 55.0% (0.550)
therapy include; OV, HNSC, COAD, KIRP,
KIRC, KICH, BLCA, CESC

Low interest Cancers with low interest to develop novel 30.2% (0.302)
therapy include; BRCA, UCS, UCEC, PRAD,
THCA, SKCM

Other 0.0% (0.0)

*Pairwise comparisons were performed via multiple discussions with a panel of antibody drug conjugate
(ADC) development experts from CDRD and bioinformatic experts including myself from GSC to achieve a
consensus PCM for each criterion and their rating categories. Final criteria and category PCMs were tested
for inconsistency through measuring the CR value. All PCMs satisfied a CR smaller than 0.1. ** Critical
normal tissue include tissues from adipose, adrenal gland, blood and blood vessel, bone marrow, brain,
colon, esophagus, heart, kidney, liver, lung, lymph node, muscle, nerve, pancreas, pituitary, salivary gland,
skin, small intestine, and stomach. *** In addition to the information obtained through pathway analysis,
analysis of transcription factor target genes, and survival analysis (section 3.1.2), a list of cancer-associated
genes was compiled using literature search and publically available databases including COSMIC (Bamford
et al., 2004), allOnco (www.bushmanlab.org). The expanded form of each tumour type abbreviation is

available in Table 3-2.
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Since the number of alternatives (i.e. genes) is large (n = 1,503), | chose to use
AHP rating model to perform prioritization. Therefore, each criterion was broken down
into smaller categories that better represent the alternatives’ characteristics. These
categories are shown in Figure 3-23 as well as Table 3-13. Categories were then
pairwise compared using AHP scale (Table 3-12) with respect to their associated
criterion and their weights were obtained. Literature search and multiple discussions with
a panel of experts at the Centre for Drug Research and Development (CDRD) including
myself were used as the source to obtain the relative importance of categories to each
other. These weights are listed in the last column of Table 3-13. For example, the level
of expression in cancer tissue was broken down into three categories: low, medium, and
high. The PCM and computed weights are shown in Table 3-14 A and B, respectively.

Prize’s rating() function was used to obtain alternatives’ idealised priorities.

Similarly using a panel discussion and literature search, twenty-one pairwise
comparisons were performed to assess the relative priority of the seven criteria. The

obtained weight for each criterion is shown in Table 3-13 and Figure 3-24.
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Table 3-14. (A) Category PCM for cancer expression criterion. (B) Computed
AHP weights and idealised priorities for each category is shown.
Idealised priories are computed by dividing AHP weights by the largest
weight. Alternatives were then assigned a score (i.e. the value of
idealised priority) with respect to the category that they fall into. If an
alternative fulfilled more than one category within a criterion, the category
with the highest value was selected.

(A)
Cancer Expression High Medium Low
High 1 3 6
Medium 113 1 3
Low 1/6 1/3 1
(B)
Cancer Expression Weight |dealised priority
High 0.654 1

Medium 0.249 0.381

Low 0.0952 0.145
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The Prize’s pipeline() function was then used to perform final prioritization of
candidate genes. This function takes in the problem hierarchy in form of a matrix and the
associated PCMs and reports a final score for each alternative. The higher this score is,
the better the performance of the alternative is with respect to the goal. The final
prioritization is visualized in Figure 3-25 using the rainbowplot() function and is available
as appendix D. The rainbow plot illustrates how the final scores are built from the user-
defined criteria. In this plot, alternatives are placed on the y-axis, while the x-axis shows
the final score. For instance, the color red represents the expression specificity of
candidate genes to tumour tissues by evaluating the level of gene expression across a
compendium of normal tissues. The larger block of red means that a gene is assigned a
higher score due to its favourable expression pattern (i.e. low to no expression) across
the compendium of normal tissue samples. Similarly, the color purple illustrates if a
candidate gene is known to play a role in cancer. If this color is missing for a gene, it
means that the gene is not classified as a cancer-associated based on the pathway

analysis performed in section 3.1.2 and literature search.
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Figure 3-23. The problem hierarchy. Since the number of alternatives (i.e. genes) is
large, AHP rating model is selected to perform the ranking. Therefore,
each criterion is broken down into smaller categories that better represent
the characteristics of alternatives with respect to the associated criterion.
The weigh of each criterion with respect to the goal is shown on the
edges of the hierarchy structure.
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Figure 3-24.

Criteria
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The pie chart represents the weight of each criterion with respect to
the goal. The weights are obtained through twenty-one pairwise
comparisons organized into a PCM. Prize computes the weight of each
criterion using this PCM. The higher the weight, the more important the
criterion is to achieve the final goal of prioritization.
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Prize generates priority rankings of 1,503 putative cancer targets based on
criteria pre-identified and weighted according to literature and expertise of a panel of
antibody experts at genome sciences centre (GSC) and CDRD. This ranking is dynamic,
given that the initial priorities could change as knowledge accrues from new studies. In
total, such ranking provides a basis for rapidly deciding which target should advance to

further validation and study.

Prize offers a simple approach to perform ranking and prioritization according to
a user-specified list of criteria. The user is only responsible to provide problem hierarchy
and PCMs of decision elements. The package then applies AHP method to obtain final
ranking. Prize is simple to use and does not require an extensive knowledge of
programming language R to work with. A detailed and simple manual is available on the
Prize webpage at:

https://www.bioconductor.org/packages/devel/bioc/vignettes/Prize/inst/doc/Prize.pdf
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Figure 3-25. Prioritized candidates shown in a color-coded format (rainbow plot).
In addition to the prioritization order, this plot illustrates how the final
score for each gene is built as a combination of the user-defined criteria.
The x-axis shows the final prioritization score, while alternatives are

placed on the y-axis.

168



LPAR3I23566 - 0.878

LRRC37A19884 - . _ 0.697
PCDHGB7I56099 — . _ 0.697
SLC6A316531 — . _ 0.702
CLDN16110686 - . _ 0.709
LHFPL3I375612 - . _ 0.73
Specificit
CancerExp
k= .FoIdChange
2 . Heterogenity
< conmrooe- i -
. Accessibility
SLC45A2I51151 - - _ 0.859 .
. TherapeuticNeed

Total priority score

Figure 3-26. The top 25 prioritized candidates shown in a rainbow plot
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Prize demonstrated successful prioritization and ranking of known tumour targets
within the top 25 prioritised candidates. As shown in Figure 3-26, well-characterized
biomarker targets in human malignancies including CLDN6 (Micke et al., 2014), FLT3
(Konig & Levis, 2015), HAVCR1/TDM-1 (Rees & Kain, 2008), CDH6 (Sancisi et al.,
2013), CD96 (Hosen et al., 2007), CA9 (Tafreshi et al., 2014), DLL3 (Saunders et al.,
2015), VCAM-1 (Chen & Massague, 2012), PVRL2 (Oshima et al., 2013), and CD84
(Binsky-Ehrenreich et al., 2014) are ranked among the top 25 candidates. These
candidates are currently being investigated in pre-clinical studies and clinical trials. For
example, CLDNG6 (Figure 3-27), a cell surface protein and a member of claudin family, is
often found to be abnormally expressed in cancer. In addition, strong CLDNG6 expression
has been associated with higher mortality rate in some cancer types. On the other hand,
CLDNG6 is absent from majority of healthy adult tissue. MAB027, developed by Ganymed
(http://www.ganymed-pharmaceuticals.com/pipeline/imab027.html), is a monoclonal
antibody that selectively binds to CLDNG6, and is being tested in phase l/ll clinical trial.
The tumour cell specificity of CLDN6 makes IMAB027 a cancer cell selective drug
allowing it to efficiently kill tumor cells without harming healthy non-cancerous cells.
Similarly, DLL3 (Figure 3-28), a member of delta protein ligand family, functions as a
Notch ligand that is characterized by a DSL domain, EGF repeats, and a
transmembrane domain. It inhibits primary neurogenesis, and may be required to divert
neurons along a specific differentiation pathway. DLL3 has been shown to express at
high levels in multiple cancer types. Rova-T, developed by Stemcentrx
(http://www.stemcentrx.com/ct-small-cell-lung-cancer.html), is an ADC that is made to
target DLL3, enter the tumour cells, and release a potent drug to kill these cells. The
antibody has been shown to successfully eradicate DLL3-expressing tumour cells in

Vivo.
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Figure 3-27. The expression profile of CLDNSG. It is found to be overexpressed in

lung, ovarian, and uterus tumours while it's expression is absent from

matched normal TCGA and available normal tissues from GTEXx.
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Figure 3-28. The expression profile of DLL3. It is found to be overexpressed in

several TCGA tumors while it's expression is absent from matched-

normal TCGA and available normal tissues from GTEx.
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Among the identified well-characterized tumour targets are also novel candidates
that may present potential therapeutic targets. For example, UPK1B, a member of the
transmembrane 4 superfamily and a cell surface protein, demonstrates an ideal
expression profile across the tumour and compendium of non-cancerous healthy tissues
(Figure 3-29) (Olsburgh et al., 2003). The protein mediates signal transduction events
that play a role in the regulation of cell development, activation, growth and motility.
Even though it demonstrates a tissue specific expression in normal bladder and may
play a role in normal bladder epithelial physiology, the much higher expression in tumour
compared to the normal bladder makes it an attractive candidate to investigate further
(Figure 3-29).

LPARS, also known as LPA3, is a G protein-coupled receptor and functions as a
cellular receptor for lysophosphatidic acid and mediates lysophosphatidic acid-evoked
calcium mobilization. The aberrant expression of LPAR3 in ovarian cancer cells has
been reported previously, and it is hypothesized that LPA3 overexpression during
ovarian carcinogenesis contributes to ovarian cancer aggressiveness (Yu et al.,
2008)The expression profile of LPAR3 makes it an interesting candidate for further

validation and analysis as a potential target for cancer therapeutics (Figure 3-30).

The prioritization of the putative tumour targets illustrates Prize ability to
efficiently rank a list of candidates according to a set of user-defined decision criteria.
The use of Prize is not limited to the medical and biological decision making, it has a
great potential to be used in variety of studies involving multiple-criteria DM toward
ranking and prioritization of decision alternatives. Prize is currently available to public
through Bioconductor (the R package repository) at:

https://www.bioconductor.org/packages/release/bioc/html/Prize.html.
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Figure 3-29. The expression profile of UPK1B across tumour and normal

samples
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Figure 3-30. The expression profile of LPAR3 across tumour and normal samples
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Chapter 4. Discussion

The traditional cancer therapy that is given to the patients with malignant tumors
mainly includes chemotherapy, radiation therapy and removal of the tumor mass with
surgery. However these methods either result in a non-optimal treatment or cause
severe side effects and regardless may not be curative (De Angelis, 2008). For instance,
standard chemotherapy often results in collateral damage to healthy tissue, causing
unwanted side effects that impair the circulatory system, the immune system, the
digestive system, and others (De Angelis, 2008). The reason is that chemotherapeutics
usually affect processes that occur in all rapidly dividing cells, hence many normal cells
throughout the body that are undergoing active growth and cell division can also be
damaged. Although radiation therapy is more focused compared to chemotherapeutics,
the high doses of radiation used to kill cancer cells can also damage healthy cells in the
treatment area (De Angelis, 2008). In some cases a secondary malignancies and heart
disease have been reported (De Angelis, 2008; Vega-Stromberg, 2003). Curative or
primary surgery on the other hand is usually done when cancer is found in only one part
of the body and presents less critical side effect compare to the two previous methods
(Urruticoechea et al., 2010). However, after surgery radiation or chemotherapy may be

given to the patients to eliminate any remaining cancer cells.

An ideal cancer therapy is one that specifically targets cancer cells while sparing
normal tissues (Scott et al., 2012; Zhang et al., 2007). Targeted cancer therapies were
introduced in 1990s and since then many have been approved by the Food and Drug
Administration (FDA) to treat specific types of cancer (Baudino, 2015). Among the
earliest targeted therapies are trastuzumab (Herceptin), gefitinib (Iressa), imatinib
(Gleevec), and cetuximab (Erbitux) (Bou-Assaly & Mukherji, 2010; Harries & Smith,
2002; Hernandez-Boluda & Cervantes, 2002; Li et al., 2004). Targeted cancer therapies

are drugs or other substances that block the growth and spread of cancer by interfering
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with specific molecules (targets) that are involved in the growth, progression, and spread
of cancer (Baudino, 2015). Most targeted therapies are either antibodies or small-
molecule drugs (Baudino, 2015). Antibodies can be raised against a specific target
protein (monoclonal antibodies). If this target is specific to cancer, then the antibody is
able to distinguish between the cancerous and healthy cells and specifically bind to the
cells that express the target protein (Scott et al.,, 2012; Zhang et al., 2007). Some
monoclonal antibodies can be conjugated with toxins, chemotherapy drugs or
radioactive isotopes to specifically deliver them to the cancer cells that express a
specific target on their surface (Carter & Senter, 2008). Whilst, cells that do not express
the target protein (e.g. normal tissue) will not be targeted. Therefore, targeted antibody-
based therapeutics have the potential to significantly decrease the treatment side effects
in patients as well as effectively targeting and destroying cancer cells by accumulating at

the tumour site and increasing the effective dose to the tumour.

Although the unique properties of antibodies themselves are key components of
a successful antibody-based therapeutic approach, the target proteins recognized by
these antibodies play an equally important role. An ideal antibody target in cancer is a
protein that is expressed on the surface of the tumour cells and is absent from healthy
tissues (Papkoff, 2007). In addition, it is highly favourable if the target is necessary for
cancer cells to grow and survive (Papkoff, 2007). But it is not a necessary factor for a
target to become successful. The next best group of antibody targets are the ones that
are highly expressed on the surface of tumour cells with much lower expression
detected in healthy tissues (Papkoff, 2007). In this case, the fold change difference
between tumour and normal expression and the type of the normal tissues that express
the target are important to consider. Lastly, a tumour cell marker may be expressed on
the surface of both tumour and normal tissues, while a unique protein form is expressed
in tumour cells (Papkoff, 2007).

The work presented in this thesis focuses on the use of RNA sequencing for the
high throughput study of differentially overexpressed and alternatively spliced genes in
human cancers. Overall, the goal is to identify such cases ideal for targeting with
antibody-based therapeutics. | collected a list of characteristics that are desirable for an

ideal tumour biomarker target (to be targeted with therapeutic antibodies) by conducting
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an extensive literature review (Baudino, 2015; Carter et al., 2004; Carter & Senter, 2008;
Cheever et al., 2009; Papkoff, 2007; Scott et al., 2012) and studying those targets that
are currently either used in the clinic or clinical trials (Table 3-8). | used this information
to explore and mine TCGA transcriptome data to identify abnormally expressed genes
and alternatively spliced variants that may serve as tumour cell markers. | devised a
gene expression analysis pipeline (GEA) that resulted in identification of 1,503
differentially overexpressed genes across 24 different cancer types that may code for
cell surface proteins. In addition, my analysis revealed a number of transcription factors
that appear to commonly play a role in regulating the gene expression patterns across
different cancer types. The pathway analysis also revealed similar mechanisms
interrupted as a result of cancer. This observation suggests that majority of cancers
undergo a common set of alterations during oncogenesis and it may be the same group
of proteins that execute some of these biological processes across different cancers.

Such proteins may offer interesting targets for therapeutic antibodies.

With my study as well as many other high-throughput studies often producing
long lists of genes and proteins of interest, an approach is needed to narrow down such
lists by ranking and prioritizing the candidates. | developed an R package, Prize, based
on the analytic hierarchy process (AHP) approach to perform ranking and prioritization of
the putative cancer biomarker targets. Prize allows prioritization based on a set of user-
define criteria and numerical score to express the importance of each criterion to

achieving the goal.

In addition, | developed an AHP model that depicts the characteristics of an ideal
tumour cell target to perform this ranking. In summary, the key properties of an ideal
biomarker target include: 1) abundant tumour cell surface localization; 2) significant
overexpression in human cancer with little or no normal tissue expression, and 3) a
function in promoting tumour growth and spread is favourable. Even though these
characteristics appear to be simple, an ideal target is difficult to find and the selection of
suitable targets can be complex. In chapter 3.3, the list of 1,503 putative tumour
biomarker tagets were ranked and prioritized using Prize package according to their

target potentials.
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Prize successfully ranked known tumour markers within the top 25 prioritized
genes (Figure 3-22), including CLDNG6 (Micke et al., 2014), FLT3 (Konig & Levis, 2015),
HAVCR1/TDM-1 (Rees & Kain, 2008), CDH6 (Sancisi et al., 2013), CD96 (Hosen et al.,
2007), CA9 (Tafreshi et al., 2014), DLL3 (Saunders et al., 2015), VCAM-1(Q. Chen &
Massague, 2012), PVRL2 (Oshima et al., 2013), and CD84 (Binsky-Ehrenreich et al.,
2014) that are well-characterized targets in several human malignancies. Drugs
targeting above genes are currently in pre-clinical and clinical studies. For example,
MABOQ27, developed by Ganymed, is a monoclonal antibody that selectively binds to
CLDN6, and is being tested in phase I/ll clinical trial (http://www.ganymed-
pharmaceuticals.com/pipeline/imab027.html).  Similarly, Rova-T, developed by
Stemcentrx, is an ADC that is made to target DLL3, enter the tumour cells, and release a
potent drug to kill these cells (http://www.stemcentrx.com/ct-small-cell-lung-cancer.html).
The antibody has been shown to successfully eradicate DLL3-expressing tumour cells
in-vivo. IMC-EB10 is a novel antibody directed against FLT3 developed by ImClone
Systems Coorporation (Youssoufian, Rowinsky et al., 2010). The binding of IMC-EB10
to FLT3 results in anti-proliferative effects in-vitro and in mouse models engrafted with
human leukemia cells that harbour wild-type or constitutively activated FLT3. Yeda
Research and Development Co. also is targeting CD84 with a monoclonal antibody for
the treatment of Chronic lymphocytic leukemia as well as other B cell-related cancers
including gastric cancer and renal cell carcinoma. They showed that inhibition of CD84
activity with a blocking antibody down-regulates the expression of another protein, which
controls B-CLL survival, thus inducing cell death

(http://www.yedarnd.com/technologies/cd84-novel-regulator-b-cll-survival).

In addition to the well-characterized tumour targets, GEA pipeline and Prize
identified and prioritized genes that may present novel putative therapeutic targets. For
example, UPK1B and LPAR3 both demonstrate an ideal expression profile across the
tumour and compendium of non-cancerous healthy tissues. UPK1B codes for a protein
that mediates signal transduction events that play a role in the regulation of cell
development, activation, growth and motility (Olsburgh et al., 2003). While, the high
expression of LPAR3 is believed to contribute to ovarian cancer aggressiveness (Yu et
al., 2008)
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Pan-Cancer identification and prioritization of both known and novel tumour
targets demonstrate the ability of GEA pipeline and Prize to efficiently identify and rank
putative tumour cell markers. The use of Prize is not limited to the medical and
biological decision-making. Given a list of alternatives and a series of user-defined
criteria and numerical score, Prize is able to perform ranking and prioritization.
Therefore, Prize R package has a great potential to be used in variety of studies

involving multiple-criteria decision-making.

Bispecific antibodies are a group of targeted antibody-based therapeutics that
are capable of recognizing two different epitopes simultaneously. This dual specificity
opens up a wide range of applications, including redirecting immune cells to tumour
cells, blocking two different signalling pathways simultaneously, dual targeting of
different disease mediators, and delivering payloads to targeted sites (Fan, Wang et al.,
2015). Since bispecific antibodies are able to bind to two targets on the surface of
tumour cells simultaneously, they may have higher specificity compared to monoclonal
antibodies. Therefore, identified differentially overexpressed genes in each cancer type
(section 3.1.2) were further examined to find pairs of surface-localized genes with
mutually exclusive expression profile in critical normal tissues. This analysis revealed
1,200 candidate pairs across 24 different cancer types with some pairs being shared

across multiple types of cancer.

In addition to differentially overexpressed genes, alternative splice variants are
another class of tumour targets that can be targeted with antibodies. They may express
in both tumour and normal healthy tissues, however a unique form may present on the
surface of cancerous cells. Alternative splicing (AS) is a widespread mechanism for the
generation of diverse protein products and regulation of protein expression. Tumour cells
exploit this mechanism to favour the malignant state (Ghigna, Valacca, & Biamonti,
2008; Venables, 2004)In the past decade, cancer-associated splice variants of genes
that control mechanisms such as DNA damage and proliferation (EGFR, Fibroblast
Growth Factor Receptor 3 (FGFR3), Breast Cancer 1 (BRCA1)), adhesion and invasion
(CD44, Macrophage Stimulating 1 Receptor (MST1R)), angiogenesis (Vascular
Endothelial Growth Factor (VEGF)) and apoptosis (B-Cell Lymphoma/Leukemia 10
(BCL10), Caspase 2 (CASP2)) have been reported (Brinkman, 2004). Among these,
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alternatively spliced transcripts with altered protein structure localized to the cell surface
are of particular interest since they represent potential targets for discrimination between
healthy and cancerous cells. That is, monoclonal antibodies can be produced to
selectively target cancerous cells expressing such protein isoforms. An antibody against
a tumour-associated surface-localized variant of EGFR (EGFRVIII) with exons 2-7
deleted, has shown effective anti-tumour activity in pre-clinical studies (Sampson et al.,
2008) and is now is in phase | clinical trials. With the advent of massively parallel RNA
sequencing, the large-scale exploration of cancer-related changes at the stage of
transcription and post-transcriptional splicing has the potential to determine many more

tumour-associated or enriched alternatively spliced targets.

In order to identify splicing variants that may play a role as tumour cell markers, |
devised an AS-detection pipeline from high throughput RNA-seq data. The AS-detection
pipeline allowed me to mine large sets of tumour transcriptomes to identify novel tumour-
associated alternatively spliced variants. Most notably, | identified two novel tumour-
associated splicing variants of matriptase. The variant designated as A1 has an in-frame
skipping of exon 12, and variant A3 is generated as result of skipping exon 14. This
analysis revealed a high frequency of these variants across epithelial-derived tumours,
which were absent or expressed at extremely low levels in transcriptomes derived from
normal tissues. Novel matriptase isoforms appear to form 2 to 8% of the overall
matriptase gene expression in studied TCGA tumour samples, with wild-type being the
dominantly expressed form. The qRT-PCR experiment confirmed the mRNA expression
of matriptase variants in an independent set of tissues and cell lines, and revealed
differential higher expression of variant A1 in ovarian and lung tumour tissues and cell
lines compared to low or no expression in normal samples. Similarly, the A3 transcript
was overexpressed in ovarian tumour tissues and cells. The variants A1 and A3
expression also were investigated in cDNA panels derived from 48 healthy tissue types
from across the human body, such as brain, heart, kidney, and lung. Two third of normal
samples demonstrated no mRNA expression of matriptase variants and a low level of

expression in the remainder was observed.

Sequence analysis of novel matriptase variants indicated that the transcript

variants could produce two fully functional open reading frames. The
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immunoprecipitation results showed that these two novel proteins are being produced in
CHO cells transiently transfected with cDNA encoding matriptase splice variants. With
matriptase localized to the cell surface, we hypothesized there is a possibility that these
novel isoforms of matriptase are also present on the cell surface. This hypothesis was
tested by performing flow cytometry on CHO cells expressing these recombinant
proteins. This analysis demonstrated the presence of these novel proteins on the
surface of CHO cells, where wild-type matriptase surface expression predominated
followed by variant A1 and then variant A3. Thus, protein expression of matriptase splice
variants on the surface of CHO cells supports the notion that A1 and A3 protein products

can localize on the surface of tumour cells as well.

The LDL receptor class A domain is an ~40-amino acid-long structure. The
prototype structure of the LDLRA domain is found in the LDL receptor itself, which
contains seven such domains. The crystal structure of the fifth LDLRA domain in the
LDL receptor revealed that this domain contains six amino acids that bind calcium in an
octahedral arrangement (calcium cage) (Fass, Blacklow et al., 1997). It has been shown
that point mutations at critical residues in this calcium cage potently inhibit the LDLRA
ligand binding (Esser, Limbird et al., 1988). Oberst et al. showed that mutations in the
Ca2+-binding motifs of any or all of the four LDLRA domains of matriptase prevent its
activation (Oberst et al., 2003). Interestingly, however, the complete deletion of all four
LDLRA domains allowed constitutive activation of this enzyme. Additional experiments
are required to demonstrate the impact of deleting LDLRA1 and LDLRA3 domains as
observed in the A1 and A3 variants. Although these two deletions may have variable
effects on matriptase activity, the results demonstrated here show that they do not affect
the ability of the protein products to form a complex with HAI-1 and traffic to the cell
surface. Hence, they may serve as potential tumour biomarker targets for targeting with

therapeutic antibodies.

Cancer is characterized by uncontrolled cell proliferation and an absence of cell
death that result in formation of an abnormal cell mass or tumour. The primary tumour
can grow, acquire metastatic potential, and spreads to other body sites. Currently, local
and non-metastatic cancers are treated by surgery and radiotherapy, while anti-cancer

drugs (e.g. chemotherapy) are being used in metastatic cancers. Chemotherapeutic
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drugs target rapidly growing cells, which is a characteristic of the cancerous cells, but it
also affects normal cells with fast proliferation rates, such as the hair follicles, bone
marrow and gastrointestinal tract cells, generating severe side effects in patients. The
indiscriminate destruction of normal cells as well as the toxicity of chemotherapeutic
drugs support the need to find new effective targeted treatments based on the changes
in the molecular biology of the tumour cells. Targeted therapies either block biologic
transduction pathways and/or specific cancer proteins to induce the death of cancer cells
or specifically deliver chemotherapeutic agents to cancer cells, minimizing the
undesirable side effects. One approach to specifically deliver therapeutic agents to the
tumour cells, while minimizing their presence at other sites in the body, is to conjugate
them with tumour-specific monoclonal antibodies. Although the unique properties of
antibodies themselves are key components of a successful antibody-based therapeutic
approach, the target proteins recognized by these antibodies play an equally important
role. The current thesis provides a comprehensive list of putative cancer-associated
biomarker targets that may serve as targets for therapeutic antibody development in
cancer. Further clinical validation would prove valuable in the utility of identified putative

biomarker targets for therapeutic use.
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Appendix A.

Cell surface cancer-associcated abnormally expressed
genes across TCGA cancers

This table is attached as an excel file.
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Appendix B.

Putative biomarker target pairs for therapeutic bispecific
antibodies

This table is attached as an excel file.
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Appendix C.

Cell surface cancer-specific spliced variants across
TCGA cancers

This table is attached as an excel file.
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Appendix D.

Final prioritization of putative biomarker genes by Prize
R package

This table is attached as an excel file.
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