LOCATIONS OF SELECTED MITIGATION SITES IN JAPAN

YAKEGAHARA, near Kobe, Hyogo, Japan

Mitigation measures		Consolidation dam and concrete-lined channel					
Process type (and basis)		Debris flows; consolidation of landslide sediment					
General notes		Built after a landslide, but there has been little (no?) sediment transport since					
Consolidation dam	Concrete barrier with granite facing for decoration and aesthetics. 14 m high because of the 15 m seismic requirements. 4 m crest width. Two steel grids to block inlets to basin. Basin is concrete-lined.		N †	Consolidation dam			
Basin	Concrete-lined. About 30 m deep and 100 m wide						
Maintenance	Culver by exca access Inspec	ts under the barrier are cleaned avator. Will require a crane for ; has not been done yet. tions completed every year.	Concrete channel				
Armoured channel	Concre	ete-lined, with steps					
Construction	Built in yen (in	1998. Cost of about 300 million 1998?) - \$3.4 million		From Google Earth Pro, dated 2016			
Concrete channel		Downstream face with granite decoration	Dam crest and left inle	et de la constant de			

TSUBAKIDANI, near Kobe, Hyogo, Japan

Debris flows.

Mitigation measures Open check dam with concrete sidewalls and a grid outlet structure

Process type

General notes

Used to be a closed dam (built in 1968); recently renovated to incorporate the grid (2013). Dam is 12.5 m tall. Cost of \$770,000 CAD for the renovation. No maintenance since renovation.

SHINOBU, near Takayama, Gifu, Japan

Mitigation measures Process type (and basis) General notes Closed check dam and fish bypass weir

s) Sediment transport,; possibly debris floods

Constructed in the 1980s. Includes a park and a tunnel under the dam, to attract tourists. Dam is vegetated and appears very natural; no concrete or grout visible.

Site photographs by author, September 2016

DOKANMATSU, near Takayama, Gifu, Japan

Mitigation measures

Closed check dam; swale bridge with culverts; fish weir; monitoring

"GREAT WALL" dam, near Takayama, Gifu, Japan

Mitigation measures Process type (and basis) General notes

Open check dam with large arch openings and decorative stone facing.
asis) Debris flows from an eruption of Mount Yake
Japanese name not recorded. Intended for debris flow attenuation after volcanic eruptions.

TOCHIO, near Takayama, Gifu, Japan

Mitigation measures		Flexible debris net and articulated concrete mats				
Process type (and basis)		Debris floods—major event in June 2013				
General notes		Short-term mitigation system, to be replace	ed with a larger barrier			
Previous event	In 1980 damage sedime includin for a lar 1983.	, there was a large debris flow that broke ed the highway bridge in town. Significant nt deposition and 3 people were killed g tourists. This created a lot of impetus ge, effective solution. Constructed in	N Upper check dam			
Lower concrete channel	Massive approxi middle grouted	e concrete structure. Check dams mately 20 m apart. Concrete in the channel. The edges of the channel have riprap panels.	Concrete channel			
Upper check dam	Two cul 3 m wid above c dams o	vert outlets, one flowing. Crest about le. Dam has about 5 m of freeboard current sediment. Additional closed check bserved upstream, but not visited.				
Geomorphology	D50: 0. observe	03 m. D90: natural up to 1.5 m. As ed in the upper check dam basin.				

Site photographs by author, September 2016

SHIRAMIZUDANI, HIRUDANI and ASHIARAIDANI, Nakao, Gifu, Japan

Mitigation measures		Grid dams, open check dams and sediment observation system				
Process type (and basis)		Debris flows off Mount Yake				
General notes		Location of DPRI Hodaka Sedimen	t Observatory			
Shiramizudani grid dam	Comple Steel C 94 m ³ /s concrete opening on sides 1980s. construe	ted in 1980, constructed by Kobe ompany. Design discharge: . Height: 14.75 m. 4395 m ³ of e and 242 tonnes of steel. 4 x 4 m gs in the middle, 3 x 4 m openings s. Used to use 2x D90 in the Maintained 2 or 3 times since ction. 21,000 m ³ capacity.	Schematic of the observation syst Firudani station			
Hirudani	Comple opening Approxi TDR se	ted in 1975. Empty basin by 9 slots approximately every year. mately 50 m ³ per year. Using nsors to monitor sedimentation.	Sediment sampler Ultrasonic water gauge Redar velocity meter			
Ashiaraidani channel	Installat and Jap	ion of Swiss plate geophones, panese microphone plates.	TV can			
Check dams	Large c open da	heck dams in upper watershed; am under construction in village.	Monitored from			

14.75 m

Site photographs by author, October 2016

KAMIKOCHI GRID DAM, near Takayam, Gifu, Japan

Mitigation measures	Open check dam and erosion protection
Process type	Debris flows
General notes	Active construction site on the access road to Kamikochi National Park

KAMIKOCHI CHECK DAMS, near Takayama, Gifu, Japan

Mitigation measures Process type (and basis) General notes Closed check dams

) Unknown (debris flows?)

Check dams created from steel posts, filled with cobbles and boulders from the stream

KAMIKAMIHORI DEBRIS BREAKER, near Takayama, Gifu, Japan

N 4141								
Mitigation measures		Closed check dams (one previously with debris net); debris breaker; another low closed dam						
Process type (and basis)		Debris flows; DPRI professors shared videos from the 1990s						
General notes		Debris breaker test case. Now partia	lly dismantled.					
Background	This is a at risk. l there ha	an experimental site, with no elements Jsed to have 3 events per year, now asn't been an event in 3 years.	Load cell					
Debris breaker	About 3 geometric the grid that the prevent	m high from base to top of grill. Other ry information not available because has been removed. It was stressed sidewalls are very important to overtopping and avulsion.						
Monitoring	The curr water le and sed wires up least 2 t	rent system includes a load cell and vel sensor to estimate water content iment load (fines). There are 11 trip ostream; the sensors turn on after at rip wires are triggered.						

Site photographs by author, October 2016

TATEYAMA CALDERA, near Toyama, Toyama, Japan

- Several hundred structures, mostly closed check dams with some open check dams Mitigation measures
- Process type Debris flows (in tributaries); debris floods; landslide dam outbreak floods

General notes

Refer to Hayashi et al (2014) and thesis (Shiraiwa, Hongu, shutter dam) for additional information

- System Sabo works initiated after the 1858 landslide dam earthquakes. Environmental restrictions are now more strict for sabo, but Tateyama works are still permitted. Approximately 60% of the structures that are planned have been constructed.
- 14.5 m high, 120.5 m long crest, about Shutter 15,000 m³ of concrete and 227,000 m³ dam of storage. Shutter is intended to attenuate the dosing process (test case) - to be opened after peak and closed when the water level is back to normal. Optimized with physical models.
- 17.5 m high. Regulations require that Sabo dams larger than 15 m are founded on dam 12 bedrock. Not possible here, so foundation is grouted. Spacing determined by the extent of sediment deposition upstream of the lower dam, assuming 1/2 the natural bed slope.

Unconsolidated landslide dam sediments

