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Abstract 

The inclusion of heterogeneous angler preferences could improve recreational fisheries 

management, yet to date exploration of the influence preference heterogeneity has on 

spatial patterns of angler effort has received little attention. To address this gap in the 

literature I developed an agent-based model (ABM) with agent behaviour grounded in a 

discrete choice experiment (DCE). I applied the agent-based model to the recreational 

Rainbow Trout fishery in the Omineca Wildlife Management Region, BC, and compared 

spatial patterns of angler effort and related fishing mortality for four models with varying 

specifications of preference heterogeneity. My results suggested that accounting for 

greater preference heterogeneity leads to a concentration of modelled angler effort on a 

preferred subset of lakes closer to major population centres, both for the population and 

for sub-groups of anglers. Further, my results indicated that changes in fishing mortality 

were not correlated with greater preference heterogeneity. Rather than varying as a 

result of shifting patterns of angler effort, fishing mortality varied due to the changing 

composition of anglers at each lake site. The modelling approach developed could be 

used to inform management efforts in the Omineca region, providing insight into the 

composition and spatial distribution of anglers, in turn furthering efforts to develop group 

specific fishing experiences. 

  

Keywords:  Recreational Fishing; Preference Heterogeneity; Agent-based Models; 

Rainbow Trout; British Columbia. 
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Glossary of Terms 

Recreational 
Specialization 

A theory used to describe and account for variation in 
recreationalist behaviour, and place it along a continuum 
from novice to specialist in terms of the user’s level of 
participation, and preferences for equipment, 
skill/difficulty, technique, catch, and regulations (Bryan, 
1977). Occasional or novice anglers are thought to be 
less concerned with technique or equipment, and more 
concerned with catching more fish, while specialist 
anglers are less concerned with regulations or catching 
numerous fish, and more so with catching large fish 
through techniques and gear that require advanced skill 
and experience (Bryan, 1977). 

Catch-Orientation An angler’s tendency to respond positively or negatively 
toward “catching something, retaining fish (as opposed to 
releasing), catching large fish (size), and catching large 
amounts of fish (numbers)” (Anderson, Ditton, & Hunt, 
2007, pg 182). It is assumed that the angling population 
is comprised of multiple subgroups that can be 
differentiated according to their catch-orientation 
(Anderson et al., 2007). 

Catch The number of fish caught by an angler. 

Catchability The proportion of the fish stock removed per unit of effort 
(Post et al., 2002). 

Effort A measure of angler participation in the fishery defined as 
the amount of fishing gear (e.g. boats, fishing rods) 
applied to a fishery over a given time period (FAO, 2017). 
In my research, gear is equal for all anglers, and angler 
effort is measured as days fished per year per lake. 
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Glossary of Mathematical Notation 

Angler Sub-Model 
𝑔𝑔 An Individual (i.e. Angler) 
𝐺𝐺 Total number of anglers 
𝑈𝑈 Total Utility 
𝑉𝑉 Observed Utility 
𝜀𝜀 Unobserved Utility (Error Term) 
𝑖𝑖 An alternative (i.e. lake) 
𝑗𝑗 Set of alternatives (i.e. lakes within a region) 
𝐽𝐽 Total number of alternatives in set 𝑗𝑗 
𝛽𝛽 Coefficient for an attribute 
𝑋𝑋 Attribute of an alternative 
𝐾𝐾 Total number of attributes describing an alternative 
𝑃𝑃 Probability of choosing an alternative 
𝑌𝑌 Membership likelihood function 
𝛾𝛾 Vector of class-specific coefficients in latent membership likelihood function 
𝑍𝑍 Vector of latent perceptions, latent attitudes, and sociodemographic variables 

in the latent membership likelihood function 
𝜁𝜁 Error term in latent membership likelihood function 
𝑠𝑠 Angler class 
𝑆𝑆 Total number of angler classes 
𝑊𝑊 Probability of class membership 

 

Rainbow Trout Sub-Model 
𝑁𝑁 Total population of a fish stock 
𝑛𝑛 Population of fish in an age class 
𝑡𝑡 Current time period 
𝑇𝑇 Total time periods 
𝑐𝑐 Age class 
𝐴𝐴 Mortality 
𝑅𝑅 Recruitment 
𝑆𝑆𝑆𝑆 Number of fish stocked in a lake 
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Methods 
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Chapter 1.  
 
Introduction 

1.1. Angler Preferences and Recreational Fisheries 

Angler behaviour is an integral part of recreational fisheries and has important 

implications for fisheries management. Recreational fisheries are characterized by 

complex interactions among anglers and between anglers and fish stocks (Ward et al., 

2016). Changes in the abundance or structure of fish stocks influence angler behaviour, 

which in turn influences fish stocks (Ward et al., 2016). Thus, anglers are not separate 

but a part of recreational fisheries, and should be explicitly integrated into fisheries 

management (Schlüter et al., 2017). Failure to understand and incorporate the social 

components of recreational fisheries into management plans may lead to 

overexploitation and even collapse of fish stocks (Post, 2013). 

Recreational fisheries are spatially structured systems composed of multiple 

fishing sites (e.g. oceans, lakes, rivers, streams) embedded in a landscape that are 

linked by the site choices of anglers (Hunt, Arlinghaus, Lester, & Kushneriuk, 2011; Post, 

Persson, Parkinson, & van Kooten, 2008). When determining where to fish, anglers 

evaluate multiple sites, making comparisons and trade-offs between the characteristics 

of the sites (e.g. fish abundance, available facilities, etc.). Changes to the characteristics 

of one site influence the abundance and structure of fish stocks at others, as anglers 

alter their behaviour (e.g. site choice, or gear) in response (Post et al., 2008). Thus, 

though spatially isolated, fishing sites embedded in a landscape are connected by the 

site choices of highly mobile anglers (Carpenter & Brock, 2004). 

An angler’s choice of fishing site is driven by their knowledge, expectations, and 

preferences (Gao & Hailu, 2010). Preference is commonly understood as a choice of 

one option over another. However, through the application of a utility-theoretic 

framework, where an individual’s decisions are understood to be premised on the 

maximization of the utility (i.e. satisfaction, well-being) they derive from an option 

(Fishburn, 1968), preferences can be conceived of as the relative importance an 

individual places on the perceived characteristics of an option such as a lake (Hensher, 
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Rose, & Greene, 2005). This approach allows researchers to capture trade-offs between 

characteristics and among lakes, and identify those characteristics of a fishing site that 

are important to anglers. 

Choice models follow a utility-theoretic approach and are commonly used to 

understand angler preferences. By examining anglers’ choice of an alternative (e.g. a 

lake) from a set of possible alternatives (e.g. lakes within a region) that are described by 

a bundle of characteristics, or attributes (e.g. travel distance, fishing quality), researchers 

attempt to predict and explain angler preferences (Dabrowska, Hunt, & Haider, 2017). 

Researchers use responses about hypothetical or intended behaviours (i.e. a stated 

preference) to estimate models of angler preferences and choice behaviour. Stated 

preference choice models are effective in exploring hypothetical or future scenario, or 

where data is unavailable or hard to collect, and understanding how anglers may 

respond to environmental or regulatory changes at a lake site (Hunt, 2005). 

1.2. Angler Preference Heterogeneity 

There are ongoing efforts to improve the representation of angler behaviour and 

preferences in recreational fisheries research. Early studies that attempted to simulate 

the behaviour of anglers conceptualized the recreational fishing system as a “predator-

prey” relationship, limiting the attributes of a fishing experience to those that were catch-

related (e.g. fish abundance, catch rate, catch size) (e.g. Beard, Cox, & Carpenter, 2003; 

Post, Mushens, Paul, & Sullivan, 2003). However, researchers of “human dimensions” in 

recreational fishing argue that the predator-prey model overly simplifies human 

behaviour and may lead to unrealistic representations of recreational fisheries systems 

(Paulrud & Laitila, 2004). Human dimensions research highlights the importance of a 

broader perspective on angler behaviour; one that recognizes catch and non-catch 

related attributes of the fishing experience (Hunt, 2005). From a review of published 

research, Hunt (2005) proposed six attributes that influenced angler site choice: the cost 

of an experience, fishing quality, environmental quality, facility development, crowding, 

and regulations.  

Human dimensions research also established that preferences vary among 

anglers, and that the so-called “average angler” does not exist (Aas & Ditton, 1998; 

Shafer, 1969). Instead, angler preferences are diverse, or heterogeneous, and anglers 
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differ in their preferences for catch-based (Arlinghaus, Beardmore, Riepe, Meyerhoff, & 

Pagel, 2014; Connelly, Knuth, & Brown, 2001), and non-catch based attributes of a 

fishing experience (Aas & Ditton, 1998; Knoche & Lupi, 2016; Wilde & Ditton, 1991). 

Failure to account for the heterogeneity of angler preferences may exacerbate the initial 

issue(s) management efforts were trying to address (Johnston, Arlinghaus, & 

Dieckmann, 2010, 2013; Shafer, 1969). As such, accounting for preference 

heterogeneity has become a critical avenue of research in fisheries management 

(Fenichel, Abbott, & Huang, 2013; Post, 2013; Ward et al., 2016). 

Heterogeneity of angler preferences can arise from inter-angler, intra-angler, or 

unobserved variation among anglers (Dabrowska et al., 2017).  Inter-angler 

heterogeneity captures the variation of preferences among anglers that do not differ 

between fishing trips. Variation can result from sociodemographic differences, the 

angler’s origin (home), catch-orientation (preferences for the number and size of the fish 

caught or harvested (Anderson et al., 2007)), and specialization (preferences for 

equipment, skill/difficulty, technique, catch, and regulations (Bryan, 1977)), among 

others.1 Intra-angler heterogeneity captures the differences in contextual factors that 

vary between fishing trips, such as trip duration or the fish species targeted. Finally, 

while both inter- and intra-angler heterogeneity can be observed by the researcher, 

unobserved heterogeneity results from unobserved perceptions and attitudes of the 

angler (Swait, 1994). As such, unobserved preference heterogeneity cannot be identified 

prior to observing angler choice behaviour but must be accounted for through statistical 

measures based on the properties of the estimated choice model (Dabrowska et al., 

2017).  

Accounting for inter-, intra-, and unobserved sources of heterogeneity has 

uncovered notable variation in angler preferences. Studies that included inter-angler 

heterogeneity have found that angler preferences for catch, the size of fish caught, fish 

species, and regulations varied by their origin, catch-orientation, and angler 

specialization. Where preferences of resident and non-resident anglers were considered 

(i.e. angler origin), non-residents were less sensitive to changes in expected catch 

(Criddle, Herrmann, Lee, & Hamel, 2003), but placed higher monetary value on the 

expected catch and the size of the fish caught (Lew & Larson, 2014). Studies examining 

                                                 
1 See the Glossary for a full definition of key terms. 
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angler catch-orientation captured preference variation for fish species, fish size, and the 

number of fish harvested as opposed to caught and released (Carlin, Schroeder, & 

Fulton, 2012; Hutt, Hunt, Schlechte, & Buckmeier, 2013). Research accounting for 

angler specialization has led to contrasting results, with some studies finding that 

increased specialization correlated with angler acceptance of increased regulation 

(Ditton & Oh, 2006; Dorow, Beardmore, Haider, & Arlinghaus, 2009; Hyman, DiCenzo, & 

Murphy, 2017), while others found that more specialized anglers were most resistant to 

increased regulation and least responsive to the status of the fish stock (Beardmore, 

Haider, Hunt, & Arlinghaus, 2013; Dorow, Beardmore, Haider, & Arlinghaus, 2010). 

Researchers who account for intra-angler heterogeneity have found that an anglers’ 

willingness-to-pay and the satisfaction from catch and fish size vary across fish species 

(Beardmore et al., 2015; Haab, Hicks, Schnier, & Whitehead, 2012). Further, studies that 

allowed for heterogeneity in trip duration found that anglers expressed different 

preferences for single and multiple day trips (Hunt, Boots, & Boxall, 2007; Lupi, Hoehn, 

& Christie, 2003). Finally, accounting for unobserved heterogeneity has uncovered 

variation in preferences for the timing and frequency of trips throughout a season, the 

monetary value placed on a fishing trip, and the monetary value placed on the quality of 

a fishing season (Provencher, Baerenklau, & Bishop, 2002; Provencher & Bishop, 2004). 

It is clear from past studies that accounting for inter-, intra-, and unobserved 

heterogeneity uncovers distinct preferences among anglers and reemphasizes the 

importance of accounting for this heterogeneity in models that mean to inform 

management decisions. 

How to represent heterogeneity and which sources to include in a model may 

have considerable influence on model outcomes (Campbell, Vedel, Thorsen, & 

Jacobsen, 2014). For example, when contrasted with choice models that did not account 

for sources of heterogeneity, accounting for sociodemographic influences led to 

increased angler preferences for the size of fish caught (Carlin et al., 2012). When 

sociodemographic influences were coupled with catch-orientation, anglers derived more 

utility from participation and placed a higher value on the number of fish caught (Carlin et 

al., 2012). Similarly, when unobserved heterogeneity was accounted for, groups of 

anglers were found to attach different values to a fishing trip and to the number of trips 

taken in a season, and varied their responsiveness to changes in the quality of the 

fishing experience relative to a homogenous angling population (Provencher et al., 2002; 



5 

Provencher & Bishop, 2004). Accounting for heterogeneity uncovers variation in 

preferences between anglers, and results in preferences that are notably different from 

choice models that ignore heterogeneity. 

Thus, including additional sources of heterogeneity in models of angler behaviour 

may better reflect the preference heterogeneity in the underlying angling population. I 

refer to this as increasing the preference heterogeneity specified in the model. However, 

increasing preference heterogeneity is not synonymous with increasing model accuracy. 

Every variable included in a model contains a degree of uncertainty (Oreskes, 2003). 

Uncertainty arises from questions of how to conceptualize the system being modelled, to 

know which variables and relationships are important, and how to parameterize those 

variables and relationships (Oreskes, 2003). While including additional sources of 

heterogeneity may better reflect preference heterogeneity and enhance behavioural 

realism (Hunt, Haider, & Bottan, 2005), it also increases the overall uncertainty present 

in the model (Oreskes, 2003). Thus, in a model with many variables, even if it appears to 

replicate system processes and outcomes, the additional complexity may limit 

understanding of the system and obscure the relative influence of each variable 

(Oreskes, 2003). However, rather than judging the value of a model with regard to its 

accuracy, models should be evaluated in terms of their ability to provide useful insights 

into the research problem being investigated (Box, 1979). 

1.3. Preference Heterogeneity and Spatial Patterns of Effort 

Recreational fisheries are characterized by dynamic interactions and feedbacks 

between anglers and fish stocks (Ward et al., 2016). In fisheries management, there is a 

need to understand how angler preference heterogeneity influences angler-fish 

interactions (Arlinghaus, Cooke, & Potts, 2013). In non-spatial simulations (single fishing 

site), the composition of the angling population, defined by varying preferences for catch 

and non-catch related attributes of the fishing experience, led to different socially optimal 

fisheries regulations (Johnston et al., 2010). When three homogeneous representations 

of the angler population were compared to one containing a mix of all three angler types, 

the fisheries regulations (maximum number of fishing licenses and size restrictions) that 

delivered the greatest overall welfare differed (Johnston et al., 2010). Different 

assumptions regarding the heterogeneity of anglers, and their preferences, may lead to 
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different recommendations for fisheries regulations, and failure to account for 

heterogeneity may lead to stock overexploitation or collapse (Johnston et al., 2010).  

While insightful, simulations limited to a single fishing site ignore the spatial 

dimension inherent in angler decision-making. Travel distance has been found to have a 

considerable influence on patterns of angler behaviour and related impacts to the fishery 

(Post & Parkinson, 2012; Post et al., 2008). Previous research has shown that angling 

effort is concentrated on lakes closer to population centres, and declines as travel 

distance (or travel cost) increases (Abbott & Fenichel, 2013; Hunt et al., 2011; Post et 

al., 2008). This pattern of angler effort impacts the effectiveness of fisheries regulations, 

such as catch-and-release and bag limits, which have been found to be inversely related 

to travel distance (Post & Parkinson, 2012). Failure to include the influence of travel 

distance may lead to inaccurate portrayals of angler behaviour and undermine 

management efforts. 

Despite growing interest in preference heterogeneity, investigation of the spatial 

patterns of behaviour that result from the specification of preference heterogeneity is 

underdeveloped in the recreational fisheries literature. To my knowledge there are only 

two examples where preference heterogeneity was explored through spatially explicit 

fisheries models. First, Hunt et al. (2011) as part of an examination into the sensitivity of 

a spatially structured Walleye (Sander vitreus) fishery to varied angler behaviour and 

overall effort, systematically varied the modelled importance of catch rate (a measure of 

catch-orientation) and harvesting efficiency (a measure of angler skill). Increasing the 

importance anglers placed on catch led anglers to shift their effort more quickly as 

stocks declined and resulted in fewer overexploited or collapsed fish stocks. When 

harvesting efficiency increased, the dispersal of angler effort across the landscape was 

not sufficient to offset increased catch rates, and the number of stocks that were 

overexploited or collapsed increased. Second, March et al. (2014), developed an angler 

typology based on angler specialization and catch-orientation and compared variations 

in the anglers’ perception of fishing quality within a marine recreational fishery. Anglers 

with different specifications of specialization and catch-orientation were found to value 

different areas of the fishery, with trophy anglers attracted to locations in deep water, 

while generalists preferred areas closer to shore. While the study took place across a 

single waterbody, heterogeneity of angler preferences resulted in the spatial 

segmentation of angler effort. In both studies, the influence of preference heterogeneity, 
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as measured by catch-orientation and specialization, led to distinct patterns of angler 

effort that could not have been realized in a non-spatial application. 

Understanding of the role of preference heterogeneity in patterns of angler effort 

can also be gained from other fields of research. Studies from land use modelling have 

illustrated that varying the specification of preference heterogeneity of prospective 

homeowners results in distinct spatial patterns of housing development (Brown & 

Robinson, 2006). Relative to a model with homogeneous preferences, a model that 

incorporated homeowner heterogeneity resulted in smaller, condensed patches of 

housing development that were more dispersed across a hypothetical landscape. If the 

shift in development patterns associated with greater preference heterogeneity were 

translated to a recreational fisheries context it would have important implications for 

recreational fisheries management. Increased angler effort on a few lakes may equate to 

increased fishing pressure on those lakes, and greater likelihood of stock 

overexploitation or collapse. 

1.4. Research Objectives and the Structure of the Paper 

Currently there is a lack of knowledge regarding how the specification of 

preference heterogeneity influences modeling of dynamic resource systems. Answering 

the question of how to specify preference heterogeneity within models and 

understanding of its impacts on model outcomes remains underexplored (Evans, 2012; 

Huang, Parker, Filatova, & Sun, 2014). The decisions regarding which characteristics of 

the individual or recreational experience to include and how to specify the heterogeneity 

of those characteristics is still largely an “art”, based on the researcher’s subjective 

perception of the system under study (An, 2012). 

The importance of angler behaviour in recreational fisheries warrants exploration 

of the influence that preference heterogeneity has on spatial patterns of angler effort. 

Greater understanding in this area will help to quantify uncertainty surrounding angler 

behaviour (Fulton, Smith, Smith, & Van Putten, 2011), build on existing research on the 

spatial patterns of fishing pressure (Carpenter & Brock, 2004; Hunt et al., 2011; Post et 

al., 2008) and advance the evaluation of fisheries management policies and regulations 

(Gao & Hailu, 2010; Post & Parkinson, 2012). 
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The objective of my research is to examine how different specifications of angler 

preference heterogeneity affect modelled patterns of angler effort and fishing mortality 

within a dynamic recreational fisheries system. Through my research, I will determine if 

modelled patterns of angler effort become more concentrated on a subset of lakes as 

the heterogeneity of angler preference increases, and assess whether the range of 

fishing mortality rates (the fraction of a fish stock that dies in a year as a result of angling 

activities) increases as the heterogeneity of angler preferences increases. From 

research in land use modelling (noted in Section 1.3), I expect that increasing 

heterogeneity of angler preferences will lead anglers to concentrate their fishing trips on 

fewer lakes. Further, I expect that as the spatial patterns of angler lake choice become 

more concentrated on a subset of lakes, fishing mortality will increase on those lakes 

while declining on others. 

In the following section, I outline a modelling approach that investigates the 

influence of varying specifications of preference heterogeneity on spatial patterns of 

angler effort and fishing mortality. Importantly, this approach tracks angler effort at the 

group level, revealing how different specifications of preference heterogeneity manifest 

in group level patterns of effort. I then detail the application of this model in the 

recreational Rainbow Trout (Oncorhynchus mykiss) fishery of the Omineca Wildlife 

Region, BC, Canada. This is followed by my results from an exploration of four different 

models of angler preference heterogeneity, and a discussion of the implications and 

limitations of my research. Reconciling the preferences of anglers with management 

objectives has long been a major challenge for fisheries researchers (Wilde & Ditton, 

1991). My research contributes to this continuing integration and the improvement of 

recreational fisheries management and research. 
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Chapter 2.  
 
Methods 

2.1. Study Area and Fishery 

The Omineca Wildlife Management Region (Zone 7A) is located in northeast 

British Columbia, Canada (Fig. 1). The region covers more than 13 million hectares, and 

includes more than 500 lakes containing Rainbow Trout (MOE, 2017b). Of these, 50 are 

regularly stocked by the Freshwater Fisheries Society of British Columbia (FFSBC), a 

non-profit agency charged with the conservation and management of BC’s freshwater 

fisheries (FFSBC, 2017a). The Omineca Region is also home to an avid angling 

population, with up to 20,000 fishing licenses purchased annually (Stüssi & Maher, 

2006). These local anglers make up most of the anglers in the region (95%), with many 

of these (70%) coming from the City of Prince George, the largest city in the region 

(Stüssi & Maher, 2006). Rainbow Trout is the dominant recreational fishery in the 

Omineca region, though Brook Trout and Kokanee are also popular (FFSBC, 2017). 

Rainbow Trout are targeted by 98% of Omineca anglers (Stüssi & Maher, 2006) and 

have been found to comprise 70% of the recreational harvest (Levey & Williams, 2003). 

Those angling for Rainbow Trout in the Omineca region are subject to a daily quota of 5 

fish, and are restricted to single barbless hooks on all waterbodies (FLRNO, 2017). 

There are also lake specific regulations covering seasonal openings and closures, 

restrictions on engine type and power, the number of fishing lines per person, and the 

area(s) open to fishing (FLRNO, 2017). 

I chose the Omineca region for this research as it has a single major population 

centre (Prince George) which is home to most of the anglers in the region (Stüssi & 

Maher, 2006). This made it reasonable for me to assume all anglers from the Omineca 

region were located in Prince George, and subsequently ensured that travel distance to 

each lake for those anglers was reasonably accurate in the model. Further, the 

recreational Rainbow Trout fishery in the Omineca region has been extensively studied, 

providing a wealth data on anglers and fish populations in the region (MOE, 2017a; Post, 

2011; Stüssi & Maher, 2006). I limited my study to 77 stocked and wild Rainbow Trout 

lakes that were identified using FFSBC stocking reports (FFSBC, 2017c), spatial data 
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from the Fisheries Information Summary System (MOE, 2017b), and through discussion 

with FFSBC staff (Fig. 2). 

 
Figure 1.  The Omineca Region and Lower Mainland within the province of 

British Columbia, Canada 
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Figure 2. Rainbow Trout Lakes included in the Agent-based Model 
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2.2. Model Overview 

To understand the influence of preference heterogeneity on spatial patterns of 

angler effort and fishing pressure, I developed an agent-based model that integrated 

heterogeneous angler preferences and dynamic Rainbow Trout populations within a 

spatially structured recreational fishery. The agent-based model (ABM) was built on 

preferences estimated from a discrete choice experiment that incorporated intra-angler, 

inter-angler, and unobserved heterogeneity. The ABM was coupled to an age-structured 

Rainbow Trout population model parameterized with observed data. This choice of 

modelling approach was guided by my understanding of the recreational Rainbow Trout 

fishery. First, individual preferences are the foundation of angler decision-making, and 

preferences are heterogeneous (Aas & Ditton, 1998; Arlinghaus et al., 2014). Second, 

the fishery is a spatially structured system, encompassing multiple fishing sites 

embedded across a landscape but interconnected by the decisions of anglers 

(Carpenter & Brock, 2004; Hunt et al., 2011; Post et al., 2008). Third, the interactions 

between anglers and fish stocks form complex relationships and feedbacks (Ward et al., 

2016). In the following paragraphs, I outline how this understanding informed my chosen 

modelling approach. 

Where decision-making is grounded in the heterogeneous preferences of 

individuals, and individual decisions manifest as landscape scale patterns, systems 

should be modelled at the scale of the individual (Fenichel et al., 2013; Gilbert, 2008). 

Accordingly, I adopted an ABM approach, which can represent individuals as 

autonomous agents and account for preference heterogeneity (Macal & North, 2010). 

Simple behavioural rules and interactions can replicate relationships and feedbacks, 

giving rise to complex patterns of behaviour at landscape scales (Macal & North, 2010).  

However, agent behaviour is dependent on the behavioural rules developed by 

the researcher, which, if not grounded in sound behavioural theory, may introduce 

unrealistic representations of angler decision-making (Jager & Janssen, 2003; Macal & 

North, 2010). I chose to ground agent behaviour in a discrete choice experiment 

developed by Dabrowska et al. (2017). Discrete choice experiments offer a flexible and 

theoretically robust foundation on which to base individual behaviour (Bruch & Atwell, 

2013; Hunt, Kushneriuk, & Lester, 2007). Further, several methods have been 



13 

developed to account for preference heterogeneity in DCE and the behavioural models 

estimated from them (Swait, 2007; Train, 2009). 

I coupled the agent-based model of angler behaviour to an age-structured 

population model of Rainbow Trout, where the fish population is segmented and tracked 

by age class. My motivation for using an age-structured population model was twofold. 

First, employing a structured model of fish populations is important where angler 

preferences are heterogeneous and anglers may prefer diverse fishing experiences (e.g. 

varying catch rates, fish size) (Fenichel et al., 2013). Second, incorporating the structure 

of Rainbow Trout stocks, where variables such as mortality rates and fecundity vary with 

age, allows for more realistic fluctuations in abundance and structure (Briggs et al., 

2010; Tuljapurkar, Caswell, Nisbet, & de Roos, 1997). This in turn allows for more 

realistic relationships and feedbacks between anglers and fish populations. 

The model I developed can be conceived of as three parts: (1) four behavioural 

models estimated from a discrete choice experiment, (2) an agent-based model, and (3) 

a Rainbow Trout population model (Fig. 3). I will expand on each in turn in the following 

sections. First, I will detail discrete choice experiments and the development of 

probabilistic behavioural models that can account for heterogeneous angler preferences. 

I will then discuss agent-based modelling, its advantages and challenges, before 

describing structured population models. Finally, I will detail how I operationalized the 

model for application in the Omineca region, and the methods I used to verify, validate, 

and analyse model results. 
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Figure 3. Conceptual Model of the Agent-based Model 

2.3. Discrete Choice Experiments 

Discrete choice experiments (DCE) follow a stated preference choice modelling 

approach to estimate angler preferences (Aas, Haider, & Hunt, 2000). The DCE 

approach involves survey respondents selecting a preferred alternative from a set of 

mutually exclusive observed or hypothetical alternatives (choice set). The alternatives, 

such as lake sites, are described by a bundle of characteristics (attributes) that are 

hypothesized to be relevant to each individual’s decision-making process (e.g. travel 

distance, presence of a boat launch). Each attribute is understood to provide the 

individual with a level of well-being, or utility. The individual derives utility from the 

consumption of the characteristics (attributes) of the alternative, rather than the 

alternative itself (Lancaster, 1966). For example, the utility an individual derives from an 

apple results (in part) from the attributes of colour, taste, and nutritional value. From this 
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perspective, when making a choice, an individual is comparing the attributes of 

alternatives rather than the alternatives themselves (Lancaster, 1966). 

The individual’s choice of alternative is based on their preferences for, and 

subsequently perceived utility of, the attributes of the alternative. It is assumed that 

individuals cognitively integrate the utility from each attribute to determine the total utility 

for each alternative (Aas et al., 2000). Relying on the assumptions that individuals are 

rational actors with perfect information of all alternatives (i.e. are aware of all sources of 

utility), individuals will choose the alternative that provides them with the greatest total 

utility (utility maximization). However, not all sources of utility known to the individual can 

be observed by the researcher (Manski, 1977). For the researcher, incomplete 

information of the attributes, the decision-maker, or both are unobserved influences on 

the individual’s decision-making process, and prevent the researcher from making 

definitive statements regarding the individual’s future behaviour (Manski, 1977). 

However, applying Random Utility Theory (RUT), researchers treat unobserved 

influences as random variables with a defined distribution (further detail provided below). 

This results in probabilistic behavioural models (Random Utility Models), which allows 

the researcher offer predictions of individual behaviour (Manski, 1977).  

A notable advantage of stated preference methods is that when describing 

alternatives researchers are not limited to attributes for which there is observed data 

(Louviere, Hensher, & Swait, 2000). Instead researchers can describe alternatives with 

attributes that may be hard to measure but still relevant to decision-makers (Louviere et 

al., 2000). The freedom from observed data has the additional benefit of allowing 

researchers to evaluate individual behavioural responses to hypothetical alternatives 

such as new regulations, or environmental changes (Louviere et al., 2000). 

This hypothetical nature of stated preference Discrete Choice Experiments can 

be criticized for introducing hypothetical bias (Arlinghaus & Mehner, 2005). Hypothetical 

bias arises when there are inconsistencies between an individual’s stated intention and 

their behaviour (Hensher, 2010), and reviews of past stated preference studies have 

found substantial and systemic hypothetical bias (List & Gallet, 2001; Murphy, Allen, 

Stevens, & Weatherhead, 2005). Hypothetical bias is introduced into stated preference 

applications when there is a perceived lack of consequence for respondents, constraints 

on respondent behaviour are overlooked or omitted, the attributes are not seen as 
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realistic or relevant by respondents, respondents act strategically to manipulate 

outcomes, or where respondents are unsure of their choice but respond regardless 

(Loomis, 2011; Hensher, 2010; Haab, Interis, Petroli, & Whitehead, 2013). Numerous ex 

ante and ex post methods have been developed to correct for hypothetical bias and 

addressing it remains a prominent field of inquiry (Loomis, 2014). However, it is 

recognized that hypothetical bias is heavily influenced by the context in which the study 

is being applied and the methods being used (Hensher, 2010; Loomis, 2014). As such, 

hypothetical bias remains a challenge in stated preference applications.  

It has also been argued that stated preference DCE represent close-ended 

questions that limit choice options, shaping a respondent’s understanding and decision-

making through the choice options that are presented (Arlinghaus & Mehner, 2005; 

Hensher, 2010). The alternatives included in a DCE and the attributes used to describe 

them are pre-determined and chosen with a focus on the behavioural, regulatory, or 

environmental issues of interest to researchers. This omits alternatives that individuals 

may have considered, includes alternatives that individuals may not have considered, 

and limits the attributes that influence decision-making (Arlinghaus & Mehner, 2005). 

Past studies of fisheries regulations that have employed open-ended questions have 

discovered that anglers consider a wider variety of potential regulations than traditionally 

included in a DCE (Arlinghaus & Mehner, 2003). To overcome the limitations imposed by 

closed-ended questions, researchers can include open-ended questions to uncover 

important influences that may not have been adequately addressed in the DCE (e.g. 

Arlinghaus & Mehner, 2003). 

Undoubtedly, stated preference methods still have challenges to overcome. 

However, stated preference is one of the few methods available to develop knowledge of 

future, unknown behaviour in response to planned or unplanned changes for which 

observed behaviour is insufficient (Loomis, 2014). Results should be viewed with a 

critical eye but should not be dismissed as they may yet offer important insights for 

policy development and evaluation (Loomis, 2014). 

2.3.1. Random Utility Models 

Random Utility Models (RUM) are behavioural models based on utility 

maximization and RUT that aim to replicate observed behaviour or predict future 
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behaviour. Within RUM, the utility of an alternative 𝑖𝑖 is given by 𝑈𝑈𝑖𝑖, and the observed and 

unobserved sources of utility are expressed as 𝑉𝑉𝑖𝑖 and 𝜀𝜀𝑖𝑖, respectively, such that2: 

𝑈𝑈𝑖𝑖  =  𝑉𝑉𝑖𝑖  +  𝜀𝜀𝑖𝑖 

Using a linear form, the observed utility can be expanded to identify utility the 

individual believes they will derive from each attribute of the alternative: 

𝑉𝑉𝑖𝑖  =  𝛽𝛽0𝑖𝑖 +  𝛽𝛽1𝑖𝑖𝑓𝑓(𝑋𝑋1𝑖𝑖) +  𝛽𝛽2𝑖𝑖𝑓𝑓(𝑋𝑋2𝑖𝑖)⋯+  𝛽𝛽𝐾𝐾𝐾𝐾𝑓𝑓(𝑋𝑋𝐾𝐾𝐾𝐾) 

where 𝛽𝛽1 is the coefficient associated with the attribute 𝑋𝑋1, and 𝐾𝐾 is the total number of 

attributes describing alternative 𝑖𝑖. The term 𝛽𝛽0𝑖𝑖 is the alternative-specific constant which 

corrects the model predictions of alternatives to equal the observed frequency of choice 

from the data. Attributes enter the utility expression through 𝑓𝑓(… ) to account for non-

linear relationships (i.e. logarithmic, quadratic) that may better describe the relationship 

between the attribute and derived utility (Hensher et al., 2005). For example, the 

marginal utility of catching a fish that is one centimetre larger may decrease as the size 

of the fish caught increases. In this instance, a logarithmic function would better describe 

the relationship between the attribute and derived utility. 

The above utility expression represents a Main Effects model that estimates 

coefficients for each attribute in isolation. For example, within recreational fisheries a 

Main Effects model would estimate the preference for the attributes of trip duration 

(single day or multiple days) and travel distance separately. However, an individual’s 

preference for the distance they are willing to travel may depend on whether their trip 

lasts a day or a week. Accounting for the interaction between attributes, or between 

attributes and characteristics of the individual, will account for that variability in 

preferences. Subsequently, to include Interaction Effects, the above expression can be 

rewritten as:  

𝑉𝑉𝑖𝑖  =  𝛽𝛽0𝑖𝑖 +  𝛽𝛽1𝑖𝑖𝑓𝑓(𝑋𝑋1𝑖𝑖) +  𝛽𝛽2𝑖𝑖𝑓𝑓(𝑋𝑋2𝑖𝑖) +  𝛽𝛽3𝑖𝑖𝑓𝑓(𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖)⋯+  𝛽𝛽𝐾𝐾𝐾𝐾𝑓𝑓(𝑋𝑋𝐾𝐾𝐾𝐾) 

where 𝛽𝛽3𝑖𝑖𝑓𝑓(𝑋𝑋1𝑖𝑖𝑋𝑋2𝑖𝑖) is the interaction effect between attributes 𝑋𝑋1𝑖𝑖 and 𝑋𝑋2𝑖𝑖.  

                                                 
2 Notation follows Hensher, Rose, & Greene (2005). 
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With an understanding of the sources of utility, the probability that an individual 

may choose an alternative can be calculated. That an individual chooses one alternative 

(𝑖𝑖) over all others (𝑗𝑗 = 1, … , 𝐽𝐽) assumes that an individual chooses the alternative with 

the maximum utility, such that:  

𝑈𝑈𝑖𝑖  >  𝑈𝑈𝑗𝑗 

 (𝑉𝑉𝑖𝑖  +  𝜀𝜀𝑖𝑖)  >  (𝑉𝑉𝑗𝑗  +  𝜀𝜀𝑗𝑗) 

Rearranging to place observable and unobservable utility together: 

(𝑉𝑉𝑖𝑖  – 𝑉𝑉𝑗𝑗)  >  (𝜀𝜀𝑗𝑗  – 𝜀𝜀𝑖𝑖) 

Since 𝜀𝜀 cannot be observed, a definitive statement regarding this equation 

cannot be made. Instead, 𝜀𝜀 is treated as a random variable in line with RUT, and the 

probability of an individual choosing an option can be calculated as: 

𝑃𝑃𝑖𝑖  =  𝑃𝑃��𝜀𝜀𝑗𝑗  – 𝜀𝜀𝑖𝑖� <  �𝑉𝑉𝑖𝑖  – 𝑉𝑉𝑗𝑗� ∀ 𝑗𝑗 ∈ 𝑗𝑗 = 1, … , 𝐽𝐽;  𝑖𝑖 ≠  𝑗𝑗�   

where 𝑃𝑃𝑖𝑖 is the probability of the individual choosing alternative 𝑖𝑖, from the set of 

alternatives 𝑗𝑗.  

The probability of an individual choosing an alternative can be estimated using 

the multinomial logit model (MNL) (McFadden, 1974). The MNL is simple, easy to 

implement in predictive applications, and widely used (Louviere et al., 2000). To apply 

the MNL, the error terms (unobserved utility) are assumed to be independent and 

identically distributed (IID) and follow an extreme value type 1 distribution (EV1) (e.g. 

Aas et al., 2000; Oh, Ditton, Gentner, & Riechers, 2005). The probability of an individual 

choosing an alternative can then be expressed as: 

𝑃𝑃𝑖𝑖  =  
𝑒𝑒𝜇𝜇𝑉𝑉𝑖𝑖
∑ 𝑒𝑒𝜇𝜇𝜇𝜇𝑗𝑗

, ∀ 𝑗𝑗 ∈ 𝑗𝑗 = 1, … , 𝐽𝐽;  𝑖𝑖 ≠  𝑗𝑗 

where 𝑉𝑉𝑖𝑖 is observed utility for alternative 𝑖𝑖, and µ is the scale parameter (µ > 0) which is 

inversely proportional to the standard deviation of the unobserved utility (Swait, 2007). 

Where the utility function is linear-in-parameters, values of µ cannot be separated from 𝛽𝛽 
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(Swait, 2007). To identify the values of 𝛽𝛽, researchers often assume that the scale 

parameter is fixed at unity across all individuals (Swait, 2007). 

2.3.2. Preference Heterogeneity in Random Utility Models 

The Main Effects MNL does not account for preference heterogeneity as it 

assigns the same preferences to all individuals in the population. However, as has been 

previously highlighted (Section 1.2), individuals likely have heterogeneous preferences 

which result in complex behavioural patterns, and a more realistic representation of 

preference heterogeneity is important for recreational fisheries management (e.g., 

Johnston et al. 2010). 

To overcome the limitations imposed by homogenous preferences, preference 

heterogeneity can be represented within RUMs as either continuous, discrete, or both 

(Swait, 2007; Train, 2009). A popular RUM approach is the Mixed Logit model, which is 

a flexible modelling approach that can represent preference heterogeneity as either 

continuous or discrete distributions (Train, 2009). Where preference heterogeneity is 

treated as a continuous distribution, individual preferences for each attribute vary 

randomly along a defined distribution (e.g. normal, log normal, triangular, or uniform) 

with an estimated mean and standard deviation (Train, 2009). Often referred to as 

Random Parameters Logit (RPL), in this method, individual specific preferences (𝛽𝛽𝑔𝑔) are 

unknown to the researcher (Train, 2009). Instead, the probability than an individual will 

choose an alternative is a weighted average of the standard MNL model estimated for 

different values of 𝛽𝛽 (Train, 2009). As such, the probability that individual 𝑔𝑔 choose 

alternative 𝑖𝑖 is: 

𝑃𝑃𝑔𝑔𝑔𝑔 =  ��
𝑒𝑒𝜇𝜇𝜇𝜇𝑔𝑔𝑔𝑔

∑ 𝑒𝑒𝜇𝜇𝜇𝜇𝑔𝑔𝑔𝑔
� 𝑓𝑓(𝛽𝛽)𝑑𝑑(𝛽𝛽) 

where 𝑓𝑓(𝛽𝛽) is the distribution of preferences (𝛽𝛽) with values 𝜃𝜃(𝛽𝛽�,𝜎𝜎𝛽𝛽), also known as the 

mixing distribution (Train, 2009). 

In providing the mean and standard deviation of utility for each attribute, an RPL 

model offers a description of the extent of preference heterogeneity (Hensher & Greene, 

2003; Hunt, 2005). However, in its standard form the RPL approach does not explicitly 

identify the sources of heterogeneity (Boxall & Adamowicz, 2002; Hunt, 2005). 
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Nevertheless, advanced applications of RPL have identified sources of heterogeneity by 

incorporating observed characteristics into estimations of individual preferences (Greene 

& Hensher, 2003; Greene, Hensher, & Rose, 2006), while others have shown that 

analyzing estimated preferences with respect to observed characteristics (e.g. age, 

origin) can offer insights into the sources of preference heterogeneity (Hunt et al., 2005). 

Random utility models can also incorporate preference heterogeneity discretely 

through the segmentation of the population into groups with identical preferences (Bhat 

& Koppelman, 2003; Train, 2009). Representing heterogeneity discretely assumes that a 

population can be divided into a finite number of mutually-exclusive groups (Bhat & 

Koppelman, 2003). Segmentation of the population can be carried out exogenously 

(deterministic) or endogenously (probabilistic) (Bhat, 1997). Exogenous segmentation is 

established a priori using a limited number of sociodemographic variables understood by 

the researcher to capture variation in preference (Bhat, 1997). While the researcher is 

free to use as many variables as they like, practically speaking they are limited as the 

number of segments grows rapidly with each additional segmenting variable (Bhat & 

Koppelman, 2003). The advantage of exogenous segmentation with sociodemographic 

variables is that it is relatively easy to apply (Bhat & Koppelman, 2003). However, 

exogenous segmentation may suffer from arbitrariness, incompleteness, and 

discreteness (Bhat, 2002). Segmenting a population a priori requires the researcher to 

create discrete segments for continuous variables, often defining threshold values, 

delineating segments and the number of segments arbitrarily (Bhat, 2002). Exogeneous 

approaches may also be incomplete as it is unlikely that preference heterogeneity will 

align with sociodemographic variables, thus preventing exogeneous methods from 

capturing all relevant heterogeneity (Bhat, 2002). Finally, the assumption that the 

individuals in a population can be assigned to discrete classes each with identical 

preferences limits the researcher’s ability to identify the sources of utility (Bhat, 2002). 

An alternative, endogenous segmentation approach is the latent class model 

(LCM), sometimes referred to as a finite mixture model3. A LCM identifies and 

incorporates unobserved sources of preference heterogeneity into estimates of 

individual preferences by grouping the population using their choice behaviour (Swait, 

                                                 
3 A Latent Class Model is a variation of a Mixed Logit model where the mixing distribution, 𝑓𝑓(𝛽𝛽), 
takes on discrete rather than continuous values (Train, 2009). 
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1994). The LCM approach assumes that choice behaviour is informed by unobservable, 

or latent, perceptions and attitudes as well as observable sociodemographic variables, 

and that these aspects are associated with latent classes or groups (Swait, 1994). A 

maximum likelihood function is used to assign an individual a membership probability for 

each class in a population, and it is often assumed that the individual belongs to the 

class for which they have the greatest probability. Just as with exogeneous 

segmentation, through a LCM, preferences in each class are identical. However, the 

LCM approach ensures differences in preferences between classes are maximized. This 

approach has the advantage of basing grouping on the choice behaviour of interest that 

may be more relevant to managers and researchers (Boxall & Adamowicz, 2002; Swait, 

1994). 

Following the approach developed by Swait (1994), class membership is 

determined through a membership likelihood function that incorporates latent 

perceptions, latent attitudes, and sociodemographic variables: 

𝑌𝑌𝑠𝑠𝑠𝑠 =  𝛾𝛾𝑠𝑠𝑍𝑍𝑔𝑔 +  𝜁𝜁𝑠𝑠𝑠𝑠, 𝑠𝑠 = 1, … , 𝑆𝑆 

where 𝛾𝛾𝑠𝑠 is a vector of parameter weights for class 𝑠𝑠, 𝑍𝑍𝑔𝑔 is a vector of latent perceptions, 

latent attitudes, and observed sociodemographic variables for individual 𝑔𝑔, and 𝜁𝜁𝑠𝑠𝑠𝑠 is the 

error term. Like a MNL, the error term is treated as a random variable and is almost 

always assumed to be IID with an EV1 distribution. Thus, the probability that an 

individual belongs to a given class can be calculated as: 

𝑊𝑊𝑠𝑠𝑠𝑠 =  
𝑒𝑒𝛾𝛾𝑠𝑠𝑍𝑍𝑔𝑔

∑ 𝑒𝑒𝛾𝛾𝑜𝑜𝑍𝑍𝑔𝑔𝑆𝑆
𝑜𝑜=1

 

With this class membership equation established, the joint model of latent class 

membership and choice behaviour is: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  �𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑊𝑊𝑠𝑠𝑠𝑠

𝑆𝑆

𝑠𝑠=1

 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 =  ��
𝑒𝑒𝛽𝛽𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖

∑ 𝑒𝑒𝛽𝛽𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖
� �

𝑒𝑒𝛾𝛾𝑠𝑠𝑍𝑍𝑔𝑔

∑ 𝑒𝑒𝛾𝛾𝑜𝑜𝑍𝑍𝑔𝑔𝑆𝑆
𝑜𝑜=1

�
𝑆𝑆

𝑠𝑠=1
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where 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 is the probability that individual 𝑔𝑔 chooses alternative 𝑖𝑖 given that they belong 

to class 𝑠𝑠, and 𝛽𝛽𝑖𝑖𝑖𝑖 are the class-specific parameter weights for class 𝑠𝑠.  

A LCM does not define the number of classes within a population. Instead, it is 

up to the researcher to determine the appropriate number of classes to represent a 

population. To select the appropriate model, and number of classes, LCM are frequently 

assessed using information-theoretic criteria. Guided by the principle of parsimony, that 

is, the effort to balance model bias and model variance (overfitting and underfitting), 

information-theoretic criteria are used to ensure that the inferences made from the 

chosen model can be considered valid (Burnham & Anderson, 2002). The objective is to 

minimize the information lost when statistical models are developed from data on real-

world systems (Burnham & Anderson, 2002). Measures such as the corrected Akakie 

Information Criteria (AICc) and Bayesian Information Criteria (BIC) quantify the amount 

of information added or lost for each candidate model relative to other model 

specifications, with researchers often choosing the model with the least information lost 

(Burnham & Anderson, 2002). However, these statistical measures are suggestive rather 

than prescriptive, and the decision regarding which model to choose ultimately falls to 

the researcher (Wedel & Kamakura, 2000).  

How to represent preference heterogeneity in RUMs rests with researcher and 

no one approach has been found to be unequivocally better suited to the task (Greene & 

Hensher, 2003; Swait, 2007). Further, the representation of heterogeneity should not be 

regarded as an either-or proposition. The combination of continuous and discrete 

representations of preference heterogeneity in RUMs is a developing area of research 

(e.g. Bujosa, Riera, & Hicks, 2010; Greene & Hensher, 2013). Regardless of the method 

chosen, all of the approaches detailed above can offer important insights into the 

diversity of individual preferences (Swait, 2007).  

2.4. Agent-based Modelling 

Recreational fishing is an individual activity that results in landscape scale 

patterns of angler behaviour. It has been argued that where the relationship between 

individual decisions and regional patterns of behaviour is the focus of research, and the 

decisions of individuals are rooted in their preferences, the system under study should 

be simulated at the scale of the individual or “agent” (Fenichel et al., 2013; Gilbert, 
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2008). This allows the researcher to account for individual heterogeneity (Fenichel et al., 

2013), observe the emergence of landscape scale patterns at multiple spatial and 

temporal scales, and understand the causal links between individual decisions and 

landscape scale patterns (Gilbert, 2008). 

Agent-based modelling (ABM), also known as individual-based modelling in 

ecology, is an effective means to capture the relationship between individual behaviour 

and landscape scale patterns. It simulates the dynamics of a system from a bottom-up 

approach, rooted in the behaviours of individuals. Individuals are represented by agents 

whose actions are governed by behavioural rules specified by the researcher. 

Behavioural rules can be formed from theory alone or be empirically grounded, and 

remain static or evolve through agent learning (Bruch & Atwell, 2013). Agents can be 

programmed to interact with each other and with their environment, and their future 

actions can be influenced by previous interactions. These dynamics can explicitly 

capture the feedbacks between individuals and the environment that define recreational 

fisheries. Further, the feedbacks often give rise to complex spatial and temporal patterns 

of behaviour that were not explicitly included in behaviour rules (Macal & North, 2010). 

Thus, ABM counters assumptions that patterns seen at a regional scale result from the 

simple aggregation of the characteristics of component parts (Bruch & Atwell, 2013). The 

ABM approach can capture and explore the interdependencies between individuals 

within a system, across temporal and spatial contexts, and as a result is a powerful tool 

to explore the consequences of individual behaviour (Bruch & Atwell, 2013). 

Though ABM has been applied across diverse fields, there are core 

characteristics shared by all applications. Agent-based models always include agents, 

an environment, and a set of relationships that define the ways in which an agent can 

interact with their environment and other agents (Macal & North, 2010). Agents can be 

defined as individuals, small groups (e.g. households), or large institutions (e.g. 

government agencies) (Macal & North, 2010). The system being examined and the 

nature of the research being undertaken will shape the scale agents are modelled at. 

The agents themselves are autonomous decision-makers, who are self-contained 

(unique, identifiable from other agents) and maintain a “memory” that describes their 

current state (Macal & North, 2010). Finally, ABM requires a theory of agent behaviour to 

guide each agent’s decision-making processes. This may be normative, driven by 

behavioural theory, or based on observed behaviour (Macal & North, 2010). 
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Agent-based models can also offer the researcher additional flexibility in 

modelling recreational fisheries. Agents can be heterogeneous in their behavioural rules, 

and goal-oriented and adaptive such that they are not only reactive to change but seek 

their goals through evolving means (Macal & North, 2010). Further, ABM can be 

structured to impose bounded rationality on agents, addressing critiques surrounding 

models of hyper-rational actors (perfect information, unlimited cognitive abilities) which 

are seen as unrepresentative of realistic decision-making (Fagiolo, Moneta, & Windrum, 

2007; Gilbert, 2008).   

Despite the advantages and flexibility offered by ABM, challenges remain in 

model characterization and evaluation. The modeller is required to make subjective 

decisions regarding the simplification of complex behaviours (Bonabeau, 2002) and the 

definition of behavioural rules (Janssen & Ostrom, 2006) that allow results to be 

understood and related to existing literature. The process of abstraction and 

simplification also creates challenges for model evaluation. While models can be 

internally valid (perform as programmed), it may be difficult to compare results from an 

abstract model to observational data, limiting the ability to assess model accuracy and 

ultimately, the model’s relevance to management actions (Fagiolo et al., 2007). 

Additionally, there is a threat that complexity contained within an ABM confers an 

unwarranted degree of legitimacy or objectivity to the model (Glicksman, 2008). The 

complexity and the extent of interactions in ABM make it difficult to ascertain if the model 

is faithfully representing the system in question (Oreskes, 2003). That the results “look 

right” may hide errors or disguise the level of uncertainty surrounding model variables 

and relationships (Smajgl & Barreteau, 2014). Modellers in ABM continuously balance 

efforts towards a greater alignment with real-world systems and the interpretability and 

relevance of their results (Janssen & Ostrom, 2006). 

Efforts towards a more realistic depiction of real-world dynamics in ABM has 

placed increased emphasis on agent behavioural rules based on empirical data. It is 

argued that creating accurate representations of real-world individuals is crucial to ABM 

modelling efforts as it enhances the structural (internal) validity of the model (Holm, 

Lemm, Thees, & Hilty, 2016), and may provide stronger explanations of the causal 

mechanisms within the ABM (Boero & Squazzoni, 2005). However, researchers continue 

to struggle to achieve more realistic depictions of real-world individuals, and translate 
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model results to generalized conclusions about real-world processes (Bruch & Atwell, 

2013). 

Random Utility Models, such as those derived from Discrete Choice 

Experiments, have been noted as offering researchers a flexible and theoretically robust 

method to empirically ground the rules governing agent behaviours (Bruch & Atwell, 

2013; Hunt, Kushneriuk, et al., 2007). Thus, agent behavioural rules are based on the 

choices of real-world actors. Further, RUMs, such as MNL or LCM, are easy to 

implement in a computational environment.  

Initial efforts in recreational fisheries have confirmed the value of an approach 

that integrates ABM and RUM. It has been found to be an effective tool to investigate 

angler learning and behaviour at the scale of individual lakes, and communicate results 

to managers and the public (Hunt, Kushneriuk, et al., 2007). The ABM-RUM approach 

also allows researchers to explore “what if?” scenarios, model uncertainties, and assess 

results in terms meaningful changes in the distribution of angler utility, or well-being 

(Gao & Hailu, 2010; Loomis, Bond, & Harpman, 2008). While efforts to date in 

recreational fisheries are limited, the advantages noted above will likely spur further 

applications.  

2.5. Age-structured Population Models 

Complementing the representation of social dynamics, a robust fisheries 

population model is required to simulate realistic dynamics of population size and 

composition. The size and abundance of the target species are an important input into 

angler decision-making and the preservation of the fish stock is a necessary 

management goal.  

It has been argued that the behaviour and physiology of the individuals of the 

species being studied should form the foundation for population dynamics modelling as 

opposed to observed population abundance or patterns (Metz & Diekmann, 1986; 

Tuljapurkar et al., 1997; Turchin, 2003). This approach rests on the belief that population 

level patterns are rooted in individual behaviour that varies over age or life-stage, and 

can only be understood through individual based mechanisms and theories (Turchin, 

2003). Further, by linking population dynamics to individual behaviours, researchers can 
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go beyond predictions of population abundance to offer insight into the mechanisms and 

patterns the drive abundance (Newman et al., 2014). As such, they offer explanations for 

observed patterns which are of more interest to wildlife managers (Newman et al., 

2014). 

Structured population models have been used extensively to link individual life 

characteristics and population level dynamics (Briggs et al., 2010; Caswell, 2001; 

Newman et al., 2014). The life characteristics of the individual’s life cycle, or vital rates, 

such as birth, growth, maturation, mortality, and reproduction are reduced to simple 

numerical representations, each with a clear, operational definition (Caswell, 2001; 

Turchin, 2003). These vital rates can be measured directly, grounding structured 

population models in observed population dynamics (Tuljapurkar et al., 1997). 

Structured population models replicate the composition of a population and the 

dynamics that arise from it. Individuals are partitioned into discrete classes according to 

life stage or age class, each with their associated vital rates (Briggs et al., 2010). This 

recognizes that individuals within the population will respond differently to stresses, such 

as predation or competition, depending on their age, sex, or developmental stage 

(Tuljapurkar et al., 1997), but strikes a balance between representing the individual and 

generalizing vital rates for the population (Cushing, 2009). By dividing the population into 

classes, structured population modelling can replicate oscillations in population numbers 

over time, as well as delayed impacts to abundance and structure that result from class-

specific responses to changes in the environment (Briggs et al., 2010).  

The development of a structured population model creates challenges for the 

modeller. The generalization of a species’ vital rates may ignore variation between 

individuals, and between locations, detracting from the accuracy of the model (Turchin, 

2003). It has been noted that there is often more variation within a population then 

between populations (Cushing, 2009). Further, discretizing a population into classes 

whose growth or development is not easily demarcated relies on the judgement of the 

modeller, influencing results (Briggs et al., 2010; Tuljapurkar et al., 1997). It should be 

recognized that the focus of the research will shape the structure of the population 

model and model outcomes. 
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The application of structured population modelling can be illustrated through a 

simple example in recreational fisheries. If a fish population for a given lake (𝑖𝑖) at a 

certain time (𝑡𝑡) is represented by 𝑁𝑁𝑖𝑖,𝑡𝑡, and subsequently the discrete classes (𝑐𝑐) in that 

population are represented as 𝑛𝑛𝑖𝑖,𝑐𝑐,𝑡𝑡, then the relationship between classes and the 

population can be expressed as: 

𝑁𝑁𝑖𝑖,𝑡𝑡 = �𝑛𝑛𝑖𝑖,1,𝑡𝑡 +  𝑛𝑛𝑖𝑖,2,𝑡𝑡 +  …𝑛𝑛𝑖𝑖,𝑐𝑐,𝑡𝑡� 

and subsequently, the population at a future time can be expressed as:  

𝑁𝑁𝑖𝑖,𝑡𝑡+1 =  𝑓𝑓𝑐𝑐�𝑛𝑛𝑖𝑖,1,𝑡𝑡 ,  𝑛𝑛𝑖𝑖,2,𝑡𝑡 , … ,  𝑛𝑛𝑖𝑖,𝑐𝑐,𝑡𝑡� 

where 𝑓𝑓𝑐𝑐(… ) is a function relating past populations to future ones, and the difference 

between time periods (the time-step) is determined by the modeller depending on the 

species’ life cycle and research being pursued (Turchin, 2003).  

The relationship between past and future populations is influenced by mortality, 

recruitment, and growth. When all these are considered, the relationship between age 

classes and population from the present (𝑡𝑡) and a future time period (𝑡𝑡 + 1) can be 

expressed as: 

𝑁𝑁𝑖𝑖,𝑡𝑡+1 =  𝑛𝑛𝑖𝑖,1,𝑡𝑡(𝐴𝐴1)�𝑅𝑅𝑖𝑖,1,𝑡𝑡� +  𝑛𝑛𝑖𝑖,2,𝑡𝑡(𝐴𝐴2)�𝑅𝑅𝑖𝑖,2,𝑡𝑡� + ⋯𝑛𝑛𝑖𝑖,𝑐𝑐,𝑡𝑡(𝐴𝐴𝑐𝑐)�𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡� + (𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡) 

where 𝐴𝐴𝑐𝑐 is class-specific mortality, 𝑅𝑅𝑖𝑖,𝑐𝑐 is class-specific fecundity, or the per capital 

number of offspring from class 𝑐𝑐 reaching class 1 at time 𝑡𝑡 + 1, and 𝑆𝑆𝑆𝑆𝑖𝑖,𝑡𝑡 is the number of 

fish stocked. Growth applies to this relationship indirectly, by altering reproductive 

productivity (i.e. 𝑅𝑅𝑖𝑖,𝑐𝑐,𝑡𝑡) or vulnerability to fishing pressure (fishing mortality). Of note, the 

above equation represents a closed system which omits the influence of immigration or 

emigration from population dynamics.  

2.6. Model Specification 

In this section, I detail the specification of the Angler and Rainbow Trout sub-

models (Parts 2 and 3 in Fig. 3). I first review the Angler sub-model, providing detail of 

the estimation of angler preferences and the angler’s (agent’s) decision-making process. 
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I then describe the age-structured population model, including the methods used to 

incorporate growth, fecundity, mortality, and stocking.  

2.6.1. Anglers 

In my ABM, an agent’s decision-making process comprised two linked decisions; 

whether to participate and which lake to visit (conditional on participation). The decision 

to participate was determined by the probability an angler will go on a single day trip, a 

multi-day trip (3 days)4, or not participate (the Participation Function in Fig. 1). I derived 

these probabilities from anglers’ stated number of days spent on single day trips and 

multiple day trips collected as part of the DCE (Dabrowska et al., 2017).  

If the angler selected a single or multi-day trip, the angler’s preferences for the 

attributes of a lake site determined their lake choice (the Trip Location Model in Fig. 1). 

Angler preferences were estimated from a DCE that collected 1,854 survey responses 

from anglers active between 2011 – 2012 (Dabrowska et al., 2017).5 Dabrowska et al. 

(2017) estimated several discrete choice models, including variations of LCM which 

represent heterogeneity in agent preferences by segmenting the population into distinct 

angler classes or groups.6 From this, I developed four different specifications of angler 

preference heterogeneity based on MNL and LCM estimations. The 4 Class Main Effects 

model only included unobserved sources of heterogeneity, while the Interaction Effects 

models included unobserved utility and interactions between the attributes of alternatives 

and inter-angler (Specialization, Origin) and intra-angler (Trip Duration) heterogeneity. I 

ranked the models from most homogeneous to most heterogeneous according to the 

number of coefficients used to define angler preferences (Table 1). In this application, 

additional coefficients resulted from the inclusion of additional of sources of 

heterogeneity. As such, a greater number of coefficients represents greater preference  

                                                 
4 I assumed that anglers from the Lower Mainland only took multi-day trips as the travel distance 
to the Omineca region would prevent them from spending the observed average fishing effort 
(5.4hrs) on a single day trip. 
5 I have included a list of the attributes used to describe potential fishing locations (i.e. lakes) in 
Appendix A. 
6 I have included the angler preferences estimated by Dabrowska et al. (2017) in Appendix C. 



29 

Table 1. Preference Heterogeneity Represented by Each Choice Model 

 

heterogeneity. Importantly, the ranking of models is ordinal and the differences in the 

number of coefficients are not meaningful.  

To account for the influence of travel distance on angler decision-making, I used 

creel survey data from the Omineca region to divide anglers into three starting locations: 

Omineca region, Lower Mainland (a Metropolitan Area), and Other Management 

Regions (Stüssi & Maher, 2006; Post, 2011).7 For the attribute of travel distance, as well 

as catch and size, I coded the attribute levels from the DCE logarithmically to reflect the 

diminishing return of utility (see Arlinghaus, Beardmore, Riepe, Meyerhoff, & Pagel, 

2014), while all other attributes were coded linearly. 

With a lake selected, the Harvest Model calculated total number of fish caught for 

each angler at each lake based on the density of Rainbow Trout, time spent at that lake 

in a day (static for all anglers), and a catchability coefficient which incorporates the 

angler’s level of skill (Eq. 1 & Eq. 2). I condensed the equations I used into Table 2 and 

included them at the end of this chapter. A selectability function determined the size of 

the Rainbow Trout caught, which addresses the varying vulnerability of fish by age (Eq. 

3). For computational simplicity, the modelled angler only remembered the average size 

of all fish harvested at a given lake for a given day. If an angler travelled to a lake and 

did not catch a fish, they retained the memory of fish size from their last visit. While the 

catch equation determined the number of Rainbow Trout an angler can catch, I capped 

the number of fish an angler could harvest from a given lake at the bag limit for the lake. 

I regarded any fish above the bag limit as catch and release. However, the angler 

remembered the total number of fish caught, not just those harvested. 

                                                 
7 Tables detailing how I allocated anglers by region and class are in Appendix A. 

Model Name Number of 
Coefficients 

Rank  
1 (Most Homogeneous)  
4 (Most Heterogeneous) 

Multinomial Logit Model MNL 16 1 
4 Class Main Effects Model 4C-ME 64 2 

3 Class Interaction Effects Model 3C-INT 210 3 
4 Class Interaction Effects Model 4C-INT 280 4 
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For modelling purposes, I reframed the attribute of crowding as encounters, 

where an encounter occurred when an angler could not exploit the area they would 

exploit in a day (exploitable area) without also exploiting the area of another angler. In 

practice, the area exploitable by an angler varies by location, gear, and the angler 

themselves, and as such no universal threshold dictating when an encounter occurs 

exists. In this application, I calculated encounters as the product of angler density and 

the lesser of either a given lake’s area or the angler’s exploitable area (Eq. 4). 

Following a visit to a lake, the angler updated their memory of the attributes for 

size of fish, catch, and the number of encounters (crowding) for that lake based on their 

experience. The modelled anglers did not share information, and as such each angler 

acted in isolation, only interacting with each other indirectly through changes in the 

fishery.  

2.6.2. Rainbow Trout 

In the following section, I detail the age-structured population model that I 

developed to represent Rainbow Trout population dynamics. The model is linear and 

deterministic, and simulates population abundance, as well as the weight and length of 

Rainbow Trout in each age class (i.e weight-at-age and length-at-age). For simplicity, I 

modelled each lake as a closed system and Rainbow Trout were not able to immigrate 

or emigrate.  

I used a von Bertalanffy Growth Model to calculate the growth (in) of Rainbow 

Trout (Eq. 5) (von Bertalanffy, 1938). For a subset of lakes, I obtained the values for 𝐿𝐿∞𝑖𝑖, 

and 𝜑𝜑𝑖𝑖 from ongoing research (D. Varkey, personal communication, November 17, 

2016), or derived them from length-at-age data retrieved from EcoCat (MOE, 2017). For 

the remaining lakes, values of 𝐿𝐿∞𝑖𝑖were randomly selected from a normal distribution with 

the mean and standard deviation taken from observed 𝐿𝐿∞𝑖𝑖. For 𝜑𝜑𝑖𝑖 values, I used the 

mean from observed 𝜑𝜑𝑖𝑖. From a review of fish stock assessments in the region, I 

assumed that Rainbow Trout die at 9 years old (MOE, 2016). As such, the model tracks 

ages 0+ to 8+, with ages 0+ and 1+ in streams and ages 2+ to 8+ in lakes8. 

                                                 
8 Age 1+ indicates that a fish is between 1 and 2 years of age. 
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Recruitment in Rainbow Trout lakes differed depending on whether the lake was 

a wild population or stocked. Only those lakes with wild populations were naturally 

reproducing, and I assumed that stocked lakes were composed solely of triploid (sterile) 

Rainbow Trout. At stocked lakes, I defined recruitment (𝑅𝑅(𝑠𝑠)𝑡𝑡 , 𝑡𝑡 = 0,1,2, … ,𝑇𝑇) as the 

number of fish entering the model in age class 1+. I used stocking reports from the 

Freshwater Fisheries Society of British Columbia (FFSBC) for the Omineca region from 

2001 to 2011 to calculate a 10-year average of stocking events. I converted fry and 

fingerling to yearling through a monthly instantaneous mortality rate (𝑒𝑒(−0.6∗1/12)), while 

Spring and Fall catchables were unaltered. The model added yearlings to each stocked 

lake on December 31 of each year, while Spring and Fall catchables were added on 

June 1 and October 1 respectively. In contrast, initial recruitment for wild lakes (𝑅𝑅(𝑤𝑤)0) 

was based on the length of inlet streams for each lake. I established a 5% gradient as 

the maximum slope suitable for Rainbow Trout habitat (Hartman & Miles, 2001), and a 

maximum distance of 10km as the farthest distance that could contribute to recruitment. 

I assumed that each 1,000m of stream length produced 500 yearlings in unfished 

systems (no fishing mortality). I determined subsequent recruitment in wild lakes 

(𝑅𝑅(𝑤𝑤)𝑡𝑡 , 𝑡𝑡 = 1,2, … ,𝑇𝑇) with a Ricker recruitment function (Eq. 7) (Ricker, 1975). To 

establish fecundity, I assumed that 100% of Rainbow Trout aged 4+ to 8+ were sexually 

mature and that the sex ratio was 1:1 (Bustard, 1989). I set per capita egg production 

through a weight-to-egg function (Nicholls, 1958) (Eq. 8) where weight-at-age was based 

on length-at-age (Eq. 6). 

I simulated annual spawning as a single day event set to May 1 to correspond 

with the average observed start of spawning (MOE, 2008). I applied a spawning 

mortality of 50% to all sexually mature Rainbow Trout following spawning, and a natural 

mortality rate of 1 − (𝑒𝑒−0.6) to all Rainbow Trout at the end of every year (B. van 

Poorten, personal communication, December 16, 2016). 

To establish the initial length-at-age, weight-at-age, and population structure for 

each lake in the study area, I used observed length-at-age data and 𝑅𝑅0, as defined 

above. I determined the population structure of the Rainbow Trout populations using 

lake specific recruitment (𝑅𝑅0) and the rate of natural mortality (Eq. 9 & Eq. 10). 
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2.7. Model Implementation 

I set the ABM to operate on a daily time-step, for 365 days a year, and ran it from 

an unfished state until it had reached had reached equilibrium, where angler patterns of 

effort were relatively similar year-to-year. I determined that the model had reached 

equilibrium when increasing the length of the model run did not result in significant 

variation of the standard deviation of angler effort at each lake over the final 30 years. A 

model run of 70 years was found to satisfy this condition, as the standard deviation of 

angler effort at any given lake averaged 14 days of fishing (effort) over the last 30 years. 

To reduce bias that I may have introduced through initial parameterization, I set 

the initial coded values for lake based attributes (Crowding, Size of Fish, Catch) for all 

lakes to the highest attribute level included in the DCE. This presented each lake as 

pristine, with far greater utility than would be realized based on the conditions at each 

lake. This ensured that every angler would visit each lake, discover the fishing conditions 

for themselves, and base future decisions on their experiences rather than parameters 

set arbitrarily. 

I coded the ABM in R version 3.4.0 (R Core Team, 2017) and ran it on the 

WestGrid network operated by Compute Canada. 

2.8. Verification and Validation 

I used a two-part process to verify and validate model results: first, I verified 

model code through systematic assessment of the model and its sub-models to ensure 

they performed as intended. Second, I assessed the correspondence of model 

processes to observed behavioural patterns and processes using a one-factor-at-a-time 

(OFAT) sensitivity analysis, visually comparing model results (Appendix B). The OFAT 

approach is effective in revealing linear or non-linear relationships between single 

parameters and model outcomes, and testing whether results are based on strong 

assumptions concerning single parameters (ten Broeke, van Voorn, & Ligtenberg, 2016). 

Class-specific catchability coefficients, Rainbow Trout abundance, and the area 

exploitable by an angler were selected for sensitivity analysis. I concluded that a model 

was valid if it responded as expected given the changes to initial parameterization.  
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2.9. Analysis 

To understand the influence of preference heterogeneity on spatial patterns of 

effort, I analyzed angler effort (days fished) using the Simpsons Index (λ), and fishing 

mortality using the instantaneous fishing mortality rate (𝐹𝐹). The Simpsons Index is a 

measure of the degree of concentration of entities into a given number of types 

(Simpson, 1949). For my purposes, entities are days fished (effort) and types are the 

lakes included in my study. The Index (𝜆𝜆) equals the probability that two trips drawn from 

a distribution of angler effort across all lakes (with replacement) are from the same lake 

(Simpson, 1949). If all trips taken in a year were on the same lake, the probability would 

equal 1 (i.e. 100%). Thus, an increase in the Simpsons Index denotes an increase in the 

concentration of angler effort. 

To understand the impact of angler effort on fish stocks, and assess whether 

increasing preference heterogeneity resulted in different spatial patterns of fishing 

mortality, I used instantaneous fishing mortality rates (𝐹𝐹) to measure fishing mortality. 

While empirical observations have shown that fishing mortality declines exponentially in 

proportion to abundance, the instantaneous fishing mortality rate is effective at 

representing mortality over a year by converting this exponential relationship into a linear 

one through logarithmic transformation (Miranda & Bettoli, 2007). This allows the 

researcher to accurately interpolate fishing morality for any time within a year, assuming 

constant fishing pressure (Miranda & Bettoli, 2007). The instantaneous fishing mortality 

rate compares the total number of fish caught at a lake in a year (𝐶𝐶) to the average 

number of fish in that lake in that year (𝑁𝑁�) (Eq. 12) (Ricker, 1975).  

In my research, while 𝐹𝐹 denotes increased fishing pressure and therefore 

increased risk of stock collapse, this risk is conditional on whether the lake is wild or 

stocked. Regardless of the values of 𝐹𝐹, stocked lakes were immune to collapse due to 

annual stocking events. Further, increased risk is different from high risk. A minor 

increase in fishing mortality at a lake with a large fish population would not be said to 

place it at high risk of collapse. I used instantaneous fishing mortality rate only to 

compare fishing mortality among lakes and across models, and assess whether 

increasing preference heterogeneity results in different spatial patterns of fishing 

mortality.  
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Table 2.  Model Equations 
Name Eq. Formula Notes 

Catch equation 

1 𝐶𝐶 = �
𝑁𝑁

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
� ∗ 𝐸𝐸 ∗ 𝑞𝑞 

𝐶𝐶 is catch (# of RT) 

𝑁𝑁/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is fish density (fish/ha) 

𝐸𝐸 is effort (5.4 hrs – constant for all 
anglers) 

𝑞𝑞 is the catchability coefficient 

Catchability 
Coefficient 

2 𝑞𝑞 =
0.1

�1 + 𝑒𝑒−
𝐷𝐷𝑠𝑠−50
20 �

 

𝑞𝑞 is the catchability coefficient 

𝐷𝐷𝑠𝑠 is angler class-specific average 
annual days fished (Included in 
Appendix A) 

Selectability 

3 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 =
1

(1 + 𝑒𝑒(−0.05∗(𝐿𝐿𝑖𝑖𝑖𝑖 − (𝐿𝐿∞𝑖𝑖∗0.6)))) 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is the probability of catching a 
fish of age class 𝑐𝑐 in lake 𝑖𝑖 

𝐿𝐿𝑖𝑖𝑖𝑖 is the size of fish of age class 𝑐𝑐 
and in lake 𝑖𝑖 

𝐿𝐿∞𝑖𝑖 is the theoretical maximum length 
(in) for RT in lake 𝑖𝑖 

Encounters 

4 𝐸𝐸𝐸𝐸𝑐𝑐𝑡𝑡𝑡𝑡 =
𝐺𝐺𝑡𝑡𝑡𝑡 − 1
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖

∗  min{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 ,𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸} 

𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 is the number of encounters 
experienced by all anglers on lake 𝑖𝑖 at 
time 𝑡𝑡 

𝐺𝐺𝑡𝑡𝑡𝑡 is the number of anglers 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is the lake area (ha) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 is the area an angler can exploit 
during angling day (ha) 

 

Von Bertalanffy 
Growth Model 
(length-at-age) 

5 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 =  𝐿𝐿∞𝑖𝑖 + �𝐿𝐿𝑡𝑡−1,𝑖𝑖,𝑐𝑐−1 −  𝐿𝐿∞𝑖𝑖� ∗  𝑒𝑒𝜑𝜑𝑖𝑖  

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 is the length (in) of age class 𝑐𝑐 at 
lake 𝑖𝑖 at time 𝑡𝑡 

𝐿𝐿∞𝑖𝑖 is the theoretical maximum length 
(in) for RT in lake 𝑖𝑖 

𝜑𝜑𝑖𝑖 is the growth rate determining how 
quickly RT approach 𝐿𝐿∞𝑖𝑖 

Weight-at-age 

6 𝑊𝑊𝑊𝑊𝑡𝑡𝑡𝑡𝑡𝑡 =  0.00001 ∗  𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡3 

𝑊𝑊𝑊𝑊𝑖𝑖,𝑐𝑐,𝑡𝑡 is the weight (grams) of 
individuals in class 𝑐𝑐 

𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡 is the length (in) of RT at time 𝑡𝑡 in 
lake 𝑖𝑖 in class 𝑐𝑐 
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Ricker 
Recruitment 
Function 
(Ricker, 1975) 

7 

 

𝑅𝑅𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖 ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛽𝛽𝑖𝑖 ∗ 𝐸𝐸𝑖𝑖𝑖𝑖) 

 

𝛼𝛼 =  𝜗𝜗 ∗ 𝜙𝜙𝜖𝜖0  

 

β =  
ln�α ∗ 𝜙𝜙𝜖𝜖0�
(𝑅𝑅0 ∗ 𝜙𝜙𝜖𝜖0)

  

 

𝜙𝜙𝜖𝜖0  is the fecundity incidence function 
in an unfished state (Walters & 
Martell, 2003) 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 is total eggs in lake 𝑖𝑖 at time 𝑡𝑡  

For lakes that did not have length-at-
age data, I applied average α and β. 

Weight-to-egg 
Function 
(Nichols, 1958) 

8 

𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  = (1.6 ∗ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 –  81.83) ∗
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

2
 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 =  �𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 

𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖,𝑐𝑐,𝑡𝑡 is number of eggs from class 
𝑐𝑐 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑡𝑡 is total eggs 

𝑊𝑊𝑊𝑊𝑖𝑖,𝑐𝑐,𝑡𝑡 is the weight (grams) of 
individuals in class 𝑐𝑐 

𝑛𝑛𝑖𝑖,𝑐𝑐,𝑡𝑡 is the number of individuals in 
class 𝑐𝑐 

𝑖𝑖 is lake 

𝑐𝑐 is age class 

𝑡𝑡 is time 

 

Population 
Initialization. Age 
1+ 

9 
𝑛𝑛𝑖𝑖𝑖𝑖 =  𝑅𝑅(𝑠𝑠)0, 𝑐𝑐 = 1 

𝑛𝑛𝑖𝑖𝑖𝑖 =  𝑅𝑅(𝑤𝑤)0,        𝑐𝑐 = 1 

𝑛𝑛𝑖𝑖𝑖𝑖 is the number of individuals in 
class 𝑐𝑐 

𝑅𝑅(𝑠𝑠)0 is the number of recruits in 
stocked lakes 

𝑅𝑅(𝑤𝑤)0 is the number of recruits in wild 
lakes 

Population 
Initialization. Age 
2+ to age 8+ 

10 
𝑛𝑛𝑖𝑖𝑖𝑖+1 =  𝑛𝑛𝑖𝑖𝑖𝑖 ∗ (1 − 𝑒𝑒−0.6), 

  𝑐𝑐 = 1,2, … , 7 

𝑛𝑛𝑖𝑖𝑖𝑖 is the number of individuals in 
class 𝑐𝑐 

Simpsons 
(Diversity) Index 

11 𝜆𝜆 =  �
𝑝𝑝𝑖𝑖
𝑝𝑝𝑗𝑗

𝐽𝐽

𝑖𝑖=1

 

 𝑝𝑝 is number of days fished per year 

𝑖𝑖 is an alternative (i.e. lake) 

𝑗𝑗 is a set of alternatives (i.e. lakes in a 
region) 

𝐽𝐽 is the total number of alternatives in 
set 𝑗𝑗 



36 

Instantaneous 
Fishing Mortality 
Rate 
(Ricker, 1975) 12 

𝑍𝑍 =  1 −  𝑒𝑒−𝐹𝐹 

 

𝐹𝐹𝑖𝑖 =  −log (1 −
∑𝐶𝐶𝑖𝑖
𝑁𝑁�

) 

𝑍𝑍 Instantaneous mortality assuming 
no natural mortality 

𝑁𝑁𝚤𝚤�  Average annual abundance at lake 
𝑖𝑖 

𝐶𝐶𝑖𝑖 Catch at lake 𝑖𝑖 in a year 
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Chapter 3.  
 
Results 

3.1. Distribution of Angler Effort by Model 

My results suggest that accounting for greater sources of preference 

heterogeneity will lead anglers to concentrate their effort on fewer lakes. Models with 

greater preference heterogeneity showed a concentration of effort on fewer lakes, with 

values for the Simpsons Index increasing from 1.652 in the MNL to 3.275 in the 4C-INT. 

In other words, the probability that two trips from the same year were on the same lake 

increased from 1.652% to 3.275%. Given that there were 77 lakes available to anglers 

and approximately 48,000 days of fishing each year, this can be viewed as a substantial 

increase. Notably, the 4C-ME model saw only a very slight increase (1.698) when 

compared to the baseline MNL model. 

Table 3. Simpsons Index (λ) of Angler Effort (×  𝟏𝟏𝟏𝟏−𝟐𝟐) 
MNL 4C-ME 3C-INT 4C-INT 
1.652 1.698 2.935 3.275 

 

Values of the Simpsons Index suggests that angler effort became more 

concentrated as greater sources of heterogeneity were accounted for. However, such 

simple statistical measures are of limited use to fisheries managers and researchers. 

More helpful is an understanding of how anglers allocated their fishing trips spatially 

across the region, both as a population and specific angler groups. 

In comparing the distributions of effort, increasing preference heterogeneity was 

associated with angler effort shifting from a more uniform distribution across all lakes to 

one where effort was concentrated on several lakes (Fig. 3). The number of lakes that 

received greater than 1,000 angler days per year (dashed line) declined as preference 

heterogeneity increased (12 for MNL, 11 for 4C-ME, 10 for 3C-INT, and 7 for 4C-INT). At 

the same time, effort on the most visited lakes increased. For example, angler effort on 

lake 54 in MNL, the baseline model, was approximately 2,000 days per year. As 

preference heterogeneity increased, effort increased to approximately 6,000 days per 

year in 4C-INT. Similar patterns were seen on lakes 63 and 67. Spatially, this 
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concentration of effort was concentrated on lakes closer to the City of Prince George 

(PG) (Fig. 4). Whereas the 4C-ME model saw effort increase at lakes dispersed across 

the landscape, increases in effort were limited to lakes within 200km and 100km for the 

3C-INT and 4C-INT models respectively. However, not all lakes within these distances 

experienced an increase in angler effort, with many seeing small declines. In viewing 

these results, recall that the total number of days fished was fixed for each model and 

was constrained to be equal across all models. Thus, the decline in angler effort on 

several lakes coupled with the increase of angler effort on select others represented a 

concentration of angler effort as preference heterogeneity increased. 
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Figure 4. Distribution of Angler Effort (Days) by Model. Dashed grey line indicates 

1,000 days of fishing per year. 
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Figure 5. Map of the Change in Annual Angler Effort Relative to the MNL 
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3.2. Distribution of Angler Effort by Class 

Population level patterns of behaviour indicate that increased preference 

heterogeneity led to concentrated angler effort on a subset of lakes. However, anglers 

had distinct preferences that influenced their choice of a lake, and high angler effort at a 

lake may be attributable to a smaller subset of the angler population.  Managers must 

identify and understand these different angler groups (or classes) to develop targeted 

and effective management actions.  

Because LCM groups anglers into classes with distinct preferences, I expected 

distinct spatial patterns of effort for each class. Further, I expected models with the 

greatest heterogeneity (3C-INT and 4C-INT) to predict more diverse spatial patterns of 

class effort. To account for differences in the number of anglers in each class, I 

transformed angler effort to relative effort, which is the percentage of total class effort 

expended at a lake per year. Relative effort by class for 4C-ME, 3C-INT, and 4C-INT 

models is presented in Figures 3 – 5. 

Each model was characterized by a degree of dissimilarity between patterns of 

class effort. However, as preference heterogeneity increased, the differences between 

patterns of effort became more pronounced. Class patterns of effort differed in two ways. 

First, at low preference heterogeneity, the lakes that received the most effort were the 

same across classes. As preference heterogeneity increased, the lakes that received the 

greatest effort differed between classes. For example, in the 4C-ME model, where 

preferences were the least heterogeneous, lakes 24, 54, and 63 received high relative 

effort in all four classes. In contrast, angler effort in Class 3 of 3C-INT was greatest on 

lake 67, while angler effort for Class 1 and Class 2 was greatest on lake 54. A similar 

pattern emerged in 4C-INT, where angler effort in Class 1 and 4 was highest on lake 54, 

while angler effort on Class 2 and 3 was highest on lake 67.  

Second, the models also differed in the degree to which class effort was 

concentrated on a subset of lakes (Table 4). In the 4C-ME model, only Class 3 

concentrated their effort to any degree (λ = 4.534). In the 3C-INT model, both Class 2 (λ 

= 4.840) and 3 (λ = 4.590) had a greater concentration of effort, while in the 4C-INT 

model Class 4 spent a considerable number of days fishing on a subset of preferred 

lakes (λ = 21.730).  
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Table 4 Simpsons Index (λ) of Angler Class Effort (×  𝟏𝟏𝟏𝟏−𝟐𝟐) 
 4C-ME 3C-INT 4C-INT 

CLASS 1 1.646 2.338 2.325 
CLASS 2 1.886 4.840 3.982 
CLASS 3 4.534 4.590 3.851 
CLASS 4 1.433 - 21.730 
 

Patterns of class effort also expressed a degree of similarity regardless of the 

specification of preference heterogeneity. Where class effort was concentrated, it was on 

lakes closer to the major population centre (PG) (Fig. 8 - 10). In both the 3C-INT and 4C-

INT models where effort concentration was greatest (see Table 3), the preferred subset 

of lakes was near PG. That angler effort became increasingly concentrated on lakes 

closer to PG as preference heterogeneity increased (see Fig. 4) resulted from the 

behaviour of all angler classes, rather than one or two. However, some classes were 

less influenced by travel distance. For example, in the 4C-INT model, effort from Class 2 

was concentrated around PG while effort from Class 4 was still substantial at lakes 

approximately 100km to the west of PG.  

Different representations of angler preference heterogeneity led to distinct spatial 

patterns of effort. Including greater preference heterogeneity revealed that angler 

classes likely preferred different lakes, and concentrated their effort on those lakes to 

varying degrees. However, though the influence of travel distance was not equal among 

classes, all classes in all models preferred lakes that were relatively close to the City of 

Prince George. 
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Figure 6. 4C-ME - Distribution of Angler Effort by Class (% of total class effort) 
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Figure 7. 3C-INT - Distribution of Angler Effort by Class (% of total class 

effort) 
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Figure 8. 4C-INT - Distribution of Angler Effort by Class (% of total class 

effort) 
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Figure 9. Map of 4C-ME Relative Angler Class Effort 
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Figure 10. Map of 3C-INT Relative Angler Class Effort 
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Figure 11. Map of 4C-INT Relative Angler Class Effort 
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3.3. Instantaneous Fishing Mortality Rate 

To connect patterns of angler effort to their influence on fish stocks, I investigated 

whether the concentration of angler effort on a subset of lakes resulted in a greater 

range of fishing mortality across the landscape. I expected that as the heterogeneity of 

angler preferences increased and angler effort became more concentrated on a subset 

of lakes, those lakes would see high fishing mortality, while other lakes where effort 

declined would see lower fishing mortality. As such, the range of fishing mortality rates 

across the landscape would increase as angler preference heterogeneity increased. 

Using instantaneous fishing mortality rate (𝐹𝐹), I compared each model to the baseline 

model (MNL) (Fig. 11). I subtracted lake specific values of 𝐹𝐹 produced by the baseline 

model from the corresponding lake in each model. In Figure 5, where 𝐹𝐹 is 0, modelled 

values of 𝐹𝐹 were equal to the baseline model. Values of 𝐹𝐹 greater than 0 indicate that 

fishing mortality increased at the lake, while values of 𝐹𝐹 less than 0 indicate that fishing 

mortality decreased at the lake. 

The range of instantaneous fishing mortality rates was different for each model 

(dashed lines), but contrary to my expectations the range of 𝐹𝐹 did not increase as the 

heterogeneity of angler preferences increased. The 4C-ME model had a range of 0.527 

and included increased fishing mortality rate at several lakes. The 4C-INT model, which 

had the greatest heterogeneity of preferences, had a range of 0.943, with a decline in 

fishing mortality rate at a substantial number of lakes, with small increases in fishing 

mortality at a few lakes. Unexpectedly, the 3C-INT model presented the largest range of 

fishing mortality rates (1.646). Approximately 10 lakes declined in 𝐹𝐹 of 0.5 or greater, 

while several increased in fishing mortality to approximately 0.25. 

The spatial distribution of instantaneous fishing mortality rates resembled angler 

patterns of effort, but differed in several notable aspects (Fig. 12). First, increases in 𝐹𝐹 

were not constrained to lakes close to PG in any of the models, and values of 𝐹𝐹 were not 

as sensitive to travel distance as greater sources of preference heterogeneity were 

accounted for. Further, the magnitude of the increase in values of 𝐹𝐹 at lakes near PG did 

not align with the increase in angler effort (see Fig. 4). There were large declines in F at 

lakes near PG in 3C-INT model, but declines were less on those same lakes in the most 

heterogeneous, 4C-INT model.  
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Figure 12. Instantaneous Fishing Mortality Rate (F) Relative to the Baseline 

(MNL) Model. 
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Figure 13. Map of the Instantaneous Fishing Mortality Rates Relative to the 

Baseline (MNL) Model.  
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I carried out a sensitivity analysis to explore what influence catch efficiency 

(catchability coefficient), Rainbow Trout populations, and the anglers’ exploitable area 

had on my results. The sensitivity analysis revealed that my models were sensitive to 

catch efficiency and fish abundance. An increase in the range of catch efficiency (𝜎𝜎𝐷𝐷 =

0, 5, 9) resulted in shifts in angler effort among those lakes that received high effort, and 

an increase in the range of instantaneous fishing mortality rates (𝐹𝐹). When the 

populations of Rainbow Trout were altered from 50% of initial values to 200% of initial 

values, angler effort moved from more evenly distributed among all lakes to become 

more concentrated on a subset of lakes, with an increase in the range of 𝐹𝐹. Finally, 

altering the anglers’ sensitivity to the presence of other anglers by adjusting the area 

they could exploit in a single day (5ha, 10ha, 20ha) had limited effects on the spatial 

distribution of effort and 𝐹𝐹.  

In review, increasing preference heterogeneity led to distinct spatial patterns of 

angler effort. As preference heterogeneity increased, anglers increasingly concentrated 

their effort on a smaller subset of lakes that were relatively close to the major population 

centre. However, increased preference heterogeneity did not change which lakes 

received the most or least effort. The patterns of angler effort seen at the population 

level resulted from the lake site choices of different angler classes. In each model, some 

classes showed a tendency to distribute effort evenly to all lakes, while others 

concentrated effort on a few lakes. Further, angler classes differed in terms of which 

lakes were most preferred, with different classes of anglers drawn to different lakes, 

though all preferred lakes that were relatively close to the major population centre. 

Finally, the distinct spatial patterns of angler effort generated by each model resulted in 

different rates of fishing mortality, though these did not correlate to changes in 

preference heterogeneity. While fishing mortality rates increased on those lakes that 

received increased effort, increases and declines in 𝐹𝐹 were less influenced by distance 

from the City of Prince George. The following section discusses these results, identifies 

the limitations of this study, and examines opportunities for future research. 



53 

Chapter 4.  
 
Discussion 

Understanding how spatial patterns of angler effort and fishing mortality vary as 

greater preference heterogeneity is captured by a model is lacking in the recreational 

fisheries literature. Accounting for preference heterogeneity has been identified as a 

critical avenue of research in fisheries management (Fenichel et al., 2013). Studies in 

land use modelling indicate that variation in preference heterogeneity can lead to 

different spatial patterns of behaviour (i.e. housing development) (Brown & Robinson, 

2006) suggesting that increasing preference heterogeneity could have significant 

implications for other applications such as recreational fisheries (Johnston et al., 2010; 

Johnston et al., 2013). To address this gap in the literature, I developed an agent-based 

model (ABM) and compared modelled angler effort from four different choice models that 

accounted for increasing degrees of heterogeneity, using the recreational Rainbow Trout 

fishery in the Omineca Wildlife Management Region of British Columbia. I used the 

models to determine if estimated patterns of angler effort become increasingly 

concentrated on a subset of lakes when greater sources of preference heterogeneity are 

accounted for, and to assess whether the range of fishing mortality rates increases with 

the heterogeneity of modelled angler preferences, relative to a baseline model. 

Some but not all specifications of angler preference heterogeneity led to different 

patterns of angler effort relative to a baseline model (MNL). Where a single source of 

heterogeneity was included, spatial patterns of angler effort were relatively uniformly 

distributed across the landscape and did not differ significantly from the baseline model. 

However, when multiple sources of heterogeneity were included, patterns were 

significantly different, and increasing the number of sources of heterogeneity resulted in 

increasingly concentrated spatial patterns of angler effort. Finally, as more sources of 

preference heterogeneity were accounted for the range of fishing mortality rates 

increased, though overall these rates were not correlated with increases in preference 

heterogeneity. 
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4.1. Population Patterns of Effort 

Applications of choice models in recreational fishing have shown that accounting 

for heterogeneity reveals greater variation in preferences among anglers (Carlin, 

Schroeder, & Fulton, 2012; Provencher & Bishop, 2004) and altering the specification of 

preferences can lead to different spatial patterns of effort and impacts to the fishery 

(Hunt et al., 2011; March, Alós, & Palmer, 2014). My results align with and extend this 

understanding of angler preferences, demonstrating that distinct patterns of effort arise 

from diverse angler preferences where anglers are represented as individuals, and 

interact with each other and a dynamic fisheries landscape. Further, the trend towards 

greater concentration of angler effort on a subset of preferred lakes seen in my results is 

analogous to the trend towards the concentration of housing development in clusters 

realized in land use modelling (Brown & Robinson, 2006). That the results from my 

model aligned with previous recreational fisheries literature and reproduce results from 

similar research in other fields lends validity to the emergent patterns of angler effort 

seen in my results and the modelling approach used.  

The distinct patterns of modelled angler effort resulted from the increasing 

concentration of effort on a preferred subset of lakes. As greater sources of preference 

heterogeneity were accounted for, effort increasingly shifted from lake sites farther away 

from the City of Prince George (PG) to a subset of lakes closer to PG. Importantly, this 

subset of preferred lakes was the same across all models. Previous studies in 

recreational fisheries have established an inverse relationship between effort and travel 

distance, such that effort is expected to decline as travel distance increases (Post et al., 

2008). Further, in studies where the sources of heterogeneity were systemically varied, 

spatial patterns of angler effort ranged from more concentrated to more diffuse, but 

regardless of parameterization, angler effort was more heavily concentrated on lakes 

close to a major population centre (Hunt et al., 2011). My results demonstrate a similar 

pattern with effort concentrated on the same subset of lakes near PG in all models. My 

results suggest that accounting for greater preference heterogeneity 1) may not alter 

which lakes receive the most effort, but only the magnitude of effort they receive, and 2) 

may increase angler aversion to travel distance. It is important to note, however, that not 

all lakes near PG received greater angler effort as source of preference heterogeneity 

were added. This highlights the influence of other attributes of the fishing experience in 
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shaping angler lake choice, and the importance of a modelling approach that 

incorporates multiple attributes of potential fishing sites.  

The concentration of effort that arose from increasing preference heterogeneity 

can be attributed to the interaction of several factors: the order in which sources of 

preference heterogeneity were added, the underlying preferences of the population, the 

structure of the computer model, and the nature of the fisheries landscape. First, 

incorporating unobserved utility in all models grouped the population and allowed 

preferences for each group to diverge from population averages, freeing angler groups 

driven by one or two attributes to concentrate their effort. If unobserved utility had only 

been accounted for in the most heterogeneous model I suspect that the concentration of 

effort would have been far less pronounced in the other models.  

Second, the preferences of the sampled population also influenced patterns of 

angler effort. If the sampled population were comprised of specialized anglers or 

possessed a strong orientation to catch large fish, the addition of these sources of 

heterogeneity would result in anglers prioritizing lakes that offered that experience. In 

contrast, if the population were primarily composed of novice or generalist anglers with a 

focus on consumption, their effort would have remained more evenly distributed. 

Third, the structure of the model influenced patterns of effort. The model treated 

anglers as individuals whose decisions were based on individual knowledge and 

experience, such that each angler had a unique understanding of the landscape. The 

model limited angler perception of the landscape and restricted angler knowledge of 

catch, size of catch, and crowding. Anglers did not know which lake would maximize 

their utility. Instead, anglers based their decision on their personal experiences which 

varied between anglers. Previous research has shown that when anglers share 

information on the state of the landscape, thus increasing their fishing success (i.e. 

catchability), angler effort becomes more concentrated (Hunt et al., 2011). Thus, in this 

application, if anglers had a shared understanding of the landscape, either through 

perfect information or sharing of information, angler effort would likely have been more 

concentrated.  

Finally, the nature of the fisheries landscape also influenced patterns of effort. If 

the lakes included in the model had been more similar, and were seen to offer relatively 
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equal utility by each angler class, effort regardless of class would have been more 

evenly distributed. Conversely, if lakes had been significantly different from each other 

and offered widely varying utility, angler effort would have been more concentrated. 

Acknowledging all these factors, I can conclude that accounting for greater preference 

heterogeneity will lead to distinct patterns of effort, both at the population and class 

scale. However, my results are specific to the methods used and study area, and 

prevent strong conclusions regarding preference heterogeneity and related patterns of 

effort. 

4.2. Class Patterns of Effort 

Increasing preference heterogeneity brought sharper contrast to the differences 

between class-specific patterns of effort. As preference heterogeneity increased, 

different angler classes began to allocate effort to different lakes, and while some 

classes continued to evenly distribute their effort, others increasingly concentrated their 

effort on a small subset of lakes close to the City of Prince George. When these patterns 

are interpreted through the theory of recreational specialization, the class-specific 

patterns of effort aligned well with the existing understanding of anglers in recreational 

fisheries literature. For example, examining the model with the greatest preference 

heterogeneity (4C-INT) identifies specialist anglers who are driven by trophy fish and 

form “place attachment” (Class 4) (Bryan, 1977; Oh, Sutton, & Sorice, 2013) as well as 

generalists who are less site attached and focused on consumption (Class 1) (Bryan, 

1977; Fisher, 1997). These types or classes of angler were more difficult to identify in 

models where preference heterogeneity was limited. The clarity brought to class-specific 

patterns of effort by capturing more preference heterogeneity allows researchers and 

managers to better understand the composition of angler effort across a recreational 

fishery.  

The combination of class-specific patterns of effort with knowledge of class 

preferences provided by the DCE and the state of the fishery could provide a better 

understanding of potential risks of overexploitation and angler responsiveness to 

regulatory or environmental changes. For example, looking again to the trophy anglers 

(Class 4, 4C-INT), if analysis were limited to their class-specific pattern of effort, which 

was concentrated on a subset of lakes, it would suggest that fishing mortality was high 

and that those lakes face a greater risk of stock collapse. However, highly specialized 
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trophy anglers have been shown in some studies to be less impactful to fisheries as they 

are more likely to practice catch and release, and are more accepting of restrictive 

regulations (Ditton & Oh, 2006; Hyman et al., 2017; although see Dorow et al., 2010 for 

contrasting results). In this example, high effort levels may not correspond with risk of 

overexploitation, and anglers may be more accepting of more stringent regulations. 

Knowledge of both the spatial pattern of angler effort and the nature of angler 

preferences allows managers to tailor regulations to the needs of specific anglers and 

lakes, ultimately improving their effectiveness. Using models that captured preference 

heterogeneity to a greater extent made this knowledge available by distinguishing class-

specific patterns of angler effort. 

4.3. Fishing Mortality 

Increases in preference heterogeneity and the subsequent spatial concentration 

of effort did not correspond to increases in the range of the instantaneous fishing 

mortality rate (𝐹𝐹). The impact of angler effort on fish stocks was moderated by class-

specific catch efficiency  (Hunt et al., 2011; Ward, Quinn, et al., 2013) and fish 

abundance (Johnson & Carpenter, 1994; Post et al., 2008). The inclusion of class-

specific catchability had the effect of decoupling the relationship between angler effort 

and instantaneous fishing mortality rate. Rather than changes in angler effort, the 

changes in the range of 𝐹𝐹 reflect a self-organized shift in the composition of anglers at 

each lake and the variable impacts different angler classes have on fish stocks 

(Johnston et al., 2010; Ward, Askey, & Post, 2013). Where less specialized anglers 

replaced those that were more specialized, fishing mortality would decline even if angler 

effort remained the same. That the concentration of effort by more specialized anglers 

on a subset of lakes did not lead to higher 𝐹𝐹, and thus greater ranges of 𝐹𝐹, is a product 

of the density dependent catch equation. Below a certain fish density, anglers were no 

longer able to catch fish, though the promise of catching larger fish continued to attract 

effort (Discussion of this issue is provided below). The difference between patterns of 

angler effort and 𝐹𝐹 were pronounced for models that were significantly different from the 

baseline model. This suggests that increasing preference heterogeneity allows the 

model to portray the interplay between angler effort, catch efficiency, and fishing 

mortality, more clearly. However, the accuracy of this relationship cannot be confirmed.  
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4.4. Sensitivity Analysis 

I explored the influence of catch efficiency, fish abundance, and angler sensitivity 

to crowding as I was required to make strong assumptions when including them in the 

ABM.9 Catch efficiency, as determined by angler specialization, is known to vary among 

anglers and influence an angler’s impact on the fishery (Ward, Quinn, et al., 2013). I 

varied the range of catch efficiency across the angling population in Models 2, 3, and 4. 

A wider range of catch efficiency only influenced spatial patterns of effort in models 

where preference heterogeneity was relatively high (3C-INT and 4C-INT) but increased 

the range of instantaneous fishing mortality rates (𝐹𝐹) in all models. Changes in the 

patterns of effort resulted from more specialized angler classes concentrating their effort 

on a subset of lakes as their catch efficiency increased. However, the range of 𝐹𝐹 did not 

increase because of this added concentration, but from declines in 𝐹𝐹 on numerous lakes 

frequented by less specialized anglers with lower catch efficiencies. In other words, 𝐹𝐹 

increased because novice anglers caught less, not because specialized anglers caught 

more. An assessment of Rainbow Trout anglers in BC found a far greater range 

catchability values relative to those tested in the sensitivity analysis (Ward, Quinn, et al., 

2013), suggesting that my ABM underestimated the diversity of catch efficiency in the 

angling population. 

Variation of fish abundance significantly altered the patterns of effort of those 

anglers driven by fishing quality (catch, size of catch). Low abundance had the effect of 

creating equally poor fishing quality across the landscape. This effectively removed 

catch-related attributes from decisions on lake choice as lakes no longer differed in 

fishing quality. As a result, anglers driven by the catch or size of catch more evenly 

distributed their effort across the landscape. Conversely, increased abundance improved 

fishing quality and increased the utility derived from catch and size of catch. This led 

catch-driven anglers to concentrate their effort on a subset of lakes with larger fish.  

Varying the anglers’ sensitivity to crowding had no influence on spatial patterns 

of effort regardless of preference heterogeneity.  I attribute this to the fact that my trip 

probability sub-model did not include consideration of trip timing. The probability that an 

angler would take a single or multiple day trip did not vary by season or by day of the 

                                                 
9 I have included Sensitivity Analysis figures in Appendix B 
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week. This likely omitted fluctuation in participation over the year and underestimated 

crowding, which has been shown to peak during spring and summer months and on 

weekends (Hunt, Boots, et al., 2007; Provencher & Bishop, 2004). The inability of my 

model to replicate realistic crowding levels reduced the influence of the crowding 

attribute to the point where it no longer affected angler site choice.  

4.5. Limitations and Future Research 

The simplification of a complex Rainbow Trout fishery into a workable computer 

model cannot be achieved without introducing unrealistic artefacts and uncertainties. 

The use of a linear-in-parameters utility equation to determine lake choice and the 

structure of angler memory led to overestimates of effort at several lakes. First, at lakes 

that had poor fishing quality (Catch, Size of catch) and received low to moderate levels 

of effort, non-catch related attributes may have provided sufficient utility so that even if 

the fish stock experienced significant decline or collapse anglers continued to travel to 

that lake (Hunt et al., 2011; Post, 2013; Post et al., 2008). While a more realistic 

understanding would conclude that anglers would avoid a lake without fish, a linear utility 

equation places equal weighting on each attribute allowing preferences for non-catch 

attributes (e.g. travel distance, boat launch) to override catch related attributes. Second, 

at lakes that had poor fishing quality but received high effort, overestimates of effort 

resulted from the structure of angler memory. Anglers only remembered the size of the 

last fish they caught at each lake. An angler that caught a large fish early in the model 

run but failed to catch others on return trips would continue to perceive that lake as 

providing high utility from the size of catch attribute. For anglers that were driven by fish 

size, this attribute dominated other attributes and resulted in overestimates of effort. This 

explains why the range of 𝐹𝐹 did not increase as expected given the concentration of 

angler effort – some anglers were concentrated at lakes with few catchable fish. The 

values for catch and size were coded logarithmically within the utility function to address 

this, but the relative influence of non-catch related attributes and the structure of angler 

memory limited success. 

The findings of this study should be considered with respect to several 

restrictions imposed on anglers that abstracted from realistic decision-making 

processes. Anglers did not communicate or share information with each other, but 

operated as isolated individuals on the landscape. Social networks and the diffusion of 
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information among anglers has been shown to play an important role in addressing 

uncertainty and ensuring catch success (Little & McDonald, 2007; Mueller, Taylor, 

Frank, Robertson, & Grinold, 2008). Further, I simplified the role of memory which 

influenced the perceived utility of alternatives. It is unlikely that fishing experiences from 

several years in the past have the same influence on angler decision-making as more 

recent memories. Finally, angler effort was held static throughout the model run, forcing 

anglers to fish even when fishing quality across the landscape was poor. A more realistic 

approach would allow anglers to respond to the quality of the fishery (as measured by 

catch and fish size) such that angler effort would fluctuate year-to-year (Johnson & 

Carpenter, 1994). Addressing one or more of these issues would constitute a significant 

step forward in understanding preference heterogeneity in recreational fisheries 

systems. 



61 

Chapter 5.  
 
Conclusion and Policy Implications 

The integration of heterogeneous angler preferences into recreational fisheries 

management plans is critical for their success. Angler preferences shape spatial patterns 

of angler effort and related impacts to the fishery. It has been suggested that failure to 

account for angler preferences in fisheries management plans may lead to 

overexploitation or collapse of fish stocks (Post, 2013). However, exploration of how the 

specification of preference heterogeneity in recreational fisheries models effects patterns 

of angler effort is limited. To address this, I developed an agent-based model and 

explored the specification of preference heterogeneity using four models of angler 

preferences estimated from a discrete choice experiment. My results show that varying 

the specification of preference heterogeneity revealed distinct patterns of effort, both for 

the population and for subgroups, and varied the impacts to fish stocks.  

The results of my research support the shift away from one-size-fits-all 

management approaches by reinforcing that different anglers target different lakes, and 

can have different impacts on fish stocks. Previous research has called for an end to 

one-size-fits-all approaches to fisheries management noting that the application of 

uniform regulations to all lakes within a region may lead to overexploitation or stock 

collapse (Carpenter & Brock, 2004; Hunt et al., 2011; Post et al., 2008). In its place, 

researchers have advocated for an integrated and holistic management approach that 

combines a variety of policies and regulations that recognize varying angler preferences 

(Fulton, Smith, Smith, & Van Putten, 2011; Ward, Quinn, et al., 2013). 

In British Columbia, this management perspective is being applied through lake 

specific regulations designed to create angler-specific lakes based on an angler typology 

(FFSBC, 2010). This program is motivated by the recognition that there are diverse 

users with diverse preferences and values, but also notes that knowledge of these 

preferences and their influence on recreational fisheries is lacking (MOE, 2007). 

Modelling approaches, such as the one I developed, could help address this lack of 

understanding and inform management efforts. Model results could provide greater 

understanding of the composition of anglers at each lake (angler effort by class) guiding 
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lake specific regulations, identify the attributes that attract anglers, and suggest how 

anglers may reallocate their effort in response to regulatory or environmental change. 

These insights would aid efforts to align the range of fishing opportunities in the 

Omineca region with angler demand (MOE, 2007). 

While there is considerable potential for modelling approaches, such as mine, to 

inform fisheries management efforts, decision-makers should consider model complexity 

and the corresponding uncertainty (Oreskes, 2003). To that end, modelling efforts 

should be integrated into a fisheries management framework that embraces model 

uncertainty. Initial studies have pointed to the value of an adaptive management 

approach informed by agent-based modelling (Loomis et al., 2008). Adaptive 

management accepts uncertainty, recognizing that the variables and relationships within 

natural systems are difficult to define and are constantly changing (Loomis et al., 2008). 

Within the adaptive management framework, models that account for preference 

heterogeneity could be used to narrow in on favourable outcomes, while projects (e.g. 

new regulations, or policies) applied to the fishery could inform modelling efforts, 

reducing model uncertainty by better defining the system, variables, and their 

relationships (Loomis et al., 2008). Through an adaptive management framework, the 

modelling approach presented above could inform lake specific regulations targeted at 

the anglers believed to visit, and then be refined through observation of angler behaviour 

and the status of the fish stock. The integration of models that account for preference 

heterogeneity into a fisheries management framework that embraces model uncertainty 

represents an effective and sound foundation from which to generate new knowledge of 

the fisheries system and make informed, science-based decisions concerning the future 

of a recreational fishery. 
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Appendix A. 
 
Supplemental Material to Methods 

Table A1. DCE Attributes and Attribute Levels 
Attribute Description Levels 
Take The bag limit for the lake Catch and Release (0) 

1 Rainbow Trout  
4 Rainbow Trout 
5 Rainbow Trout 

Gear The type of fishing gear permitted on the 
lake  

No restrictions 
Single barbless hook 
Bait ban 
Fly fishing only  

Lake The size (ha) of the lake Less than 1,000ha 
Greater than 1,000ha 

Motor The restrictions placed on boat motors No restrictions 
10 horsepower 
Electric only 

Boat The presence of boat launch facilities No facilities 
Car top launch 
Trailer launch 

Crowding The number of anglers encountered 1 
2 
3 
5 

Size The size of the fish caught (in) <9” 
10” to 14” 
14” to 20” 
>20” 

Catch The number of fish caught 3 
5 
7 
10 

Travel 
Distance† 

Total distance travelled to reach the lake 
(km) 

 

†Anglers from Other Management Regions (OMR) did not consider travel distance to the lake as their 
starting location was not defined 
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Table A2. Distribution of Anglers Observed in Creel Surveys of the Omineca 
Region (%) 

Region Post (2011) 
(n = 201) 

Stüssi & Maher (2006) 
(n = 223) 

Average 

Omineca 97.02 95.96 96.46 
Lower 
Mainland 

0.5 1.35 0.94 

OMR 2.49 2.69 2.59 
 
 
 
 
 
 
 
 

Table A3.  Distribution of Anglers Visiting the Omineca Region 
Observed 
Effort* 
(Days) 

Total Estimated 
Effort 
(Days) Region 

Angler 
Distribution 
(%) 

Effort Distribution 
(Days) 

31,849 49,764 
Omineca 96.46 48,003 
LM 0.94 469 
OMR 2.59 1,291 

*Observed Effort was obtained from FFSBC for 55 of 77 lakes and scaled up to estimate total effort assuming that the 
unobserved lakes received on average the same effort as the observed lakes. 

 
 
 
 
 
 
 
 
 
 
 



77 

 
 
 

Table A4.  4C-ME - Distribution of Anglers visiting the Omineca Region 

Region Effort 
Distribution 
(Days)  

Class Angler Class 
Distribution (%) 

Class Effort 
Distribution 
(Days) 

Angler 
Distribution 
(Anglers) 

Omineca 48,003 

1 50%  24,001   1,558  
2 24%  11,369   738  
3 9%  4,421   287  
4 17%  8,211   533  

LM 469 

1 41%  192   12  
2 20%  93   6  
3 23%  105   6  
4 17%  77   5  

OMR 1,291 

1 47%  609   39  
2 17%  220   14  
3 20%  259   16  
4 16%  201   13  

 
 
 

Table A5.  3C-INT - Distribution of Anglers visiting the Omineca Region 

Region Effort 
Distribution 
(Days)  

Class Angler Class 
Distribution (%) 

Class Effort 
Distribution 
(Days) 

Angler 
Distribution 
(Anglers) 

Omineca 48,003 
1 61% 29,054 1,886 
2 34% 16,422 1,066 
3 5% 2,526 164 

LM 469 
1 58% 270 17 
2 30% 139 9 
3 13% 59 3 

OMR 1,291 
1 55% 707 45 
2 27% 348 22 
3 18% 235 15 
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Table A6.  4C-INT - Distribution of Anglers visiting the Omineca Region 

Region Effort 
Distribution 
(Days)  

Class Angler Class 
Distribution (%) 

Class Effort 
Distribution 
(Days) 

Angler 
Distribution 
(Anglers) 

Omineca 48,003 

1 45%  21,475   1,394  
2 29%  13,895   902  
3 14%  6,947   451  
4 12%  5,684   369  

LM 469 

1 38%  180   11  
2 26%  120   7  
3 22%  104   6  
4 14%  64   4  

OMR 1,291 

1 49%  631   40  
2 20%  253   16  
3 23%  302   19  
4 8%  103   6  

 
 
 
 
 
 
 
 

Table A7.  Trip Probability by Angler Region 

Region Single Day  Multiple Day No Fishing 
Omineca 3.69% 0.18% 96.13% 
LM 0% 1.41% 98.58% 
OMR 3.9% 0.01% 96.09% 
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Table A8.  Days Fished Annually† per Angler by Model and Class based on 
Specialization Score‡α 

  
4C-ME 

  
3C-INT 

  
4C-INT 

 
 

SD=0 SD=5 SD=9 SD=0 SD=5 SD=9 SD=0 SD=5 SD=9 
Class 1 15.4 13.5 12.2 15.4 10.7 7.1 15.4 15.5 15.9 
Class 2 15.4 8.1 2.5 15.4 12.6 10.5 15.4 15.5 15.8 
Class 3 15.4 17.0 18.4 15.4 22.1 27.7 15.4 7.6 1.7 
Class 4 15.4 21.8 27.2 - - - 15.4 21.7 27.0 
† This only influenced the Catchability Coefficient (Eq. 2) and not the probability of single or multiple day 
trips. 

‡ Calculation required subjective determination of standard deviation (SD). Standard deviation was varied 
through sensitivity analysis to test for influence. A SD greater than 9 led to Days Fished less than 1. 

α Utility derived from participation increases with angler specialization (Arlinghaus & Mehner, 2004; C.-O. Oh, 
Ditton, Anderson, Scott, & Stoll, 2005), which results in increased participation (days fished annually) with 
increased specialization (Ditton, Loomis, & Choi, 1992; Johnston et al., 2010). 

 
 
 
 
 
 
 
 

Table A9.  Class-Specific Catchability Coefficient (q) (x 10-3) 

 4C-ME 3C-INT 4C-INT  
SD = 0 SD = 5 SD = 9 SD = 0 SD = 5 SD = 9 SD = 0 SD = 5 SD = 9 

Class 1 1.506 1.389 1.315 1.506 1.227 1.049 1.506 1.515 1.537 
Class 2 1.506 1.096 0.852 1.506 1.333 1.219 1.506 1.512 1.533 
Class 3 1.506 1.608 1.711 1.506 1.985 2.467 1.506 1.073 0.819 
Class 4 1.506 1.964 2.423 - - - 1.506 1.957 2.408 
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Table A10.  Rainbow Trout Lakes 
Lake ID No. Lake Name Lake Area (ha) 
1 Grizzly West 136.83 
2 Berman 44.28 
3 Clear 11.04 
4 Nelson 9.93 
5 Kwitzil #1 3.54 
6 Eena 54.32 
7 Camp 25.54 
8 Ferguson 16.57 
9 Butterfly 6.20 
10 Takla 2,660.38 
11 Tureen 58.04 
12 Teardrop 39.15 
13 Chubb 67.14 
14 Saddle #2 2.69 
15 Little Lost 6.27 
16 Witney 8.42 
17 Carp 5,629.00 
18 Butternut 33.97 
19 Crystal 39.72 
20 Boot 15.67 
21 Emerald 14.23 
22 Square 13.48 
23 Cluculz 1,988.22 
24 Nulki 1,621.91 
25 Cobb 223.13 
26 Tacheeda #1 376.93 
27 Tacheeda #2 196.61 
28 Wicheeda 53.19 
29 Grizzly East 71.48 
30 Otipemisewak 7.15 
31 Lynx 26.81 
32 Dina #2 29.53 
33 Dina #3 20.90 
34 43 Mile Pothole 19.50 
35 Dina #7 7.53 
36 Vivian 47.08 
37 Hobson 66.27 
38 Chief Gray 31.50 
39 La Salle (West) 13.02 
40 Trembleur 11,617.20 
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Lake ID No. Lake Name Lake Area (ha) 
41 Burden 246.93 
42 Finger 829.85 
43 Lavoie 231.42 
44 Lintz 217.84 
45 Kwitzil #2 6.58 
46 Ness 346.88 
47 Byers 17.29 
48 Tory 18.64 
49 Mckenzie West 17.93 
50 Kathie 43.55 
51 Dina #1 224.82 
52 Tumuch 138.06 
53 Purden 807.54 
54 Nadsilnich 511.12 
55 Hart 54.12 
56 Opatcho 39.69 
57 Tabor 381.45 
58 Tatuk 1,867.11 
59 Mckenzie East 26.20 
60 Sawmill 10.58 
61 Bow 5.85 
62 War 143.27 
63 Tachick 2,129.08 
64 Windy Point 8.54 
65 Stuart 35,932.43 
66 Trapping 42.17 
67 Shane 5.13 
68 Verdant 28.74 
69 Tsitniz 10.48 
70 Tagai 251.83 
71 Sinkut 350.05 
72 Punchaw 247.17 
73 Pitoney 174.08 
74 Naltesby 846.68 
75 Little Bobtail 243.18 
76 Eaglet 835.58 
77 Bednesti 270.41 
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Appendix B. 
 
Sensitivity Analysis 

Table B1. Simpsons Index (𝝀𝝀)of Angler Effort (𝒙𝒙 𝟏𝟏𝟏𝟏−𝟐𝟐) 

 MNL 4C-ME 3C-INT 4C-INT 
Catchability SD = 0 1.672 1.748 3.120 3.304 
Catchability SD = 9 1.654 1.665 4.762 3.625 
RT Pop. 50% 1.567 1.615 2.535 2.921 
RT Pop. 200% 1.690 1.720 3.765 2.855 
Exploitable Area 5ha 1.649 1.687 2.906 3.280 
Exploitable Area 20ha 1.655 1.705 2.944 3.297 
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Angler Effort by Model 

 
Figure B1. Sensitivity Analysis: Angler Effort with Specialization SD = 0 
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Figure B2. Sensitivity Analysis: Angler Effort with Specialization SD = 9 
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Figure B3.  Sensitivity Analysis: Angler Effort with RT Pop. 50% of Initial Value 



86 

 
Figure B4.  Sensitivity Analysis: Angler Effort with RT Pop. 200% of Initial Value 
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Figure B5.  Sensitivity Analysis: Angler Effort with Exploitable Area = 5ha 
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Figure B6.  Sensitivity Analysis: Angler Effort with Exploitable Area = 20ha 
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Angler Effort by Class by Model 

 
Figure B7.  4C-ME - Sensitivity Analysis: Class Effort with Specialization SD = 0 
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Figure B8.  4C-ME - Sensitivity Analysis: Class Effort with Specialization SD = 9 
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Figure B9.  4C-ME - Sensitivity Analysis: Class Effort with RT Pop. 50% of Initial 

Value 
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Figure B10. 4C-ME - Sensitivity Analysis: Class Effort with RT Pop. 200% of 

Initial Value 
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Figure B11.  4C-ME - Sensitivity Analysis: Class Effort with Exploitable Area = 
5ha 
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Figure B12. 4C-ME - Sensitivity Analysis: Class Effort with Exploitable Area = 20 

ha 
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Figure B13. 3C-INT - Sensitivity Analysis: Class Effort with Specialization SD = 0 

*Note rescaled x-axis 
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Figure B14.  3C-INT - Sensitivity Analysis: Class Effort with Specialization SD = 9 
*Note rescaled x-axis 



97 

 
Figure B15. 3C-INT - Sensitivity Analysis: Class Effort with RT Pop. 50% of Initial 

Value 
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Figure B16.  3C-INT - Sensitivity Analysis: Class Effort with RT Pop. 200% of Initial 

Value. *Note rescaled x-axis 
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Figure B17.  3C-INT - Sensitivity Analysis: Class Effort with Exploitable Area = 

5ha 
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Figure B18.  3C-INT - Sensitivity Analysis: Class Effort with Exploitable Area = 

20ha 
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Figure B19. 4C-INT - Sensitivity Analysis: Class Effort with Catch Efficiency SD = 0 
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Figure B20. 4C-INT - Sensitivity Analysis: Class Effort with Catch Efficiency SD = 9 
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Figure B21. 4C-INT - Sensitivity Analysis: Class Effort with RT Pop. 50% of Initial 

Value 
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Figure B22.  4C-INT - Sensitivity Analysis: Class Effort with RT Pop. 200% of Initial 

Value 
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Figure B23.  4C-INT - Sensitivity Analysis: Class Effort with Exploitable Area = 

5ha 
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Figure B24.  4C-INT - Sensitivity Analysis: Class Effort with Exploitable Area = 

20ha 
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Instantaneous Fishing Mortality Rate 

Table B2.  Range of Instantaneous Mortality Rate (F) Relative to Initial Value 

 

 4C-ME 3C-INT 4C-INT 
Initial Value 0.5270 1.6460 0.9430 
Catchability (SD=0) 0.0939 1.2703 0.6546 
Catchability (SD=9) 1.0545 1.8591 0.9805 
Rainbow Trout Pop 50% of Initial Value 0.4458 1.6971 1.8774 
Rainbow Trout Pop. 200% of Initial Value 0.3232 2.0163 0.7470 
Exploitable Area (5ha) 0.5868 1.6637 0.9274 
Exploitable Area (20ha) 0.5689 1.7013 0.9722 
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Figure B25.  Sensitivity Analysis: Range of F with Specialization SD = 0 
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Figure B26.  Sensitivity Analysis: Range of F with Specialization SD = 9 
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Figure B27.  Sensitivity Analysis: Range of F with RT Pop. 50% of Initial Value 
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Figure B28.  Sensitivity Analysis: Range of F with RT Pop. 200% of Initial Value 
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Figure B29.  Sensitivity Analysis: Range of F with Exploitable Area = 5ha 
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Figure B30.  Sensitivity Analysis: Range of F with Exploitable Area = 20ha 
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Appendix C. 
 
Choice Model Parameters 

Table C1. Choice Model Parameter Codes 

Code Name Description 
SP*XXX Species Interaction between attribute (XXX) and species (Rainbow Trout) † 
DUR*XXX Duration Interaction between attribute (XXX) and whether trip was single or 

multiple day 
GEO*XXX Geography Interaction between attribute (XXX) and whether anglers were from 

the Lower Mainland 
SI*XXX Specialization Interaction between attribute (XXX) and angler specialization score 
† The DCE accounted for variation in target species (Rainbow Trout or Kokanee) with Kokanee as the 
baseline. My model is limited to Rainbow Trout anglers so preferences included interactions with Species. 

 

       Table C2. MNL Parameters 

Attributes Class1 s.e. z-value 
Intercept 0.838 0.025 33.745 
Species 0.395 0.024 16.403 
Catch 0.067 0.017 3.965 
Size 0.429 0.023 18.786 
Take 0.400 0.042 9.475 
Gear (lvl 0) 0.054 0.022 2.488 
Gear (lvl 1) -0.048 0.024 -2.013 
Gear (lvl 2) 0.131 0.024 5.415 
Gear (lvl 3) -0.137 0.025 -5.504 
Lake 0.100 0.013 7.670 
Motor (lvl 0) 0.042 0.018 2.326 
Motor (lvl 1) 0.061 0.015 3.931 
Motor (lvl 2 -0.103 0.018 -5.597 
Boat (lvl 0) -0.071 0.021 -3.381 
Boat (lvl 1) 0.026 0.018 1.419 
Boat (lvl 2) 0.045 0.016 2.805 
Crowding -0.067 0.018 -3.830 
Distance -0.803 0.045 -17.991 
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Table C3. 4C-ME Parameters 

Attributes Class1 s.e. z-value Class2 s.e. z-value Class3 s.e. z-value Class4 s.e. z-value 
Intercept 3.485 0.208 16.795 -0.571 0.055 -10.311 1.288 0.190 6.771 0.842 0.053 15.919 
Species 0.124 0.043 2.883 0.472 0.064 7.386 2.137 0.200 10.712 0.327 0.051 6.475 
Catch 0.085 0.032 2.678 0.004 0.042 0.087 0.117 0.079 1.483 0.103 0.037 2.770 
Size 0.397 0.044 9.030 0.562 0.056 10.026 1.190 0.142 8.355 0.155 0.050 3.118 
Take 0.394 0.080 4.947 0.792 0.107 7.404 0.590 0.299 1.973 0.466 0.089 5.241 
Gear (lvl 0) 0.079 0.040 2.001 0.071 0.054 1.326 -0.171 0.105 -1.625 0.117 0.048 2.463 
Gear (lvl 1) 0.033 0.047 0.704 -0.157 0.054 -2.914 -0.172 0.117 -1.470 0.013 0.052 0.255 
Gear (lvl 2) 0.080 0.045 1.775 0.108 0.056 1.918 0.104 0.101 1.026 0.220 0.054 4.073 
Gear (lvl 3) -0.192 0.047 -4.105 -0.022 0.058 -0.386 0.239 0.118 2.023 -0.350 0.056 -6.210 
Lake 0.086 0.025 3.433 0.121 0.033 3.611 0.095 0.064 1.499 0.086 0.028 3.077 
Motor (lvl 0) 0.038 0.032 1.191 0.072 0.044 1.647 0.140 0.100 1.398 0.057 0.038 1.497 
Motor (lvl 1) 0.084 0.028 3.012 -0.038 0.038 -1.010 0.093 0.070 1.324 0.080 0.033 2.400 
Motor (lvl 2 -0.122 0.033 -3.670 -0.034 0.045 -0.764 -0.233 0.111 -2.098 -0.137 0.039 -3.501 
Boat (lvl 0) -0.147 0.039 -3.736 0.043 0.051 0.831 -0.125 0.099 -1.261 0.022 0.045 0.493 
Boat (lvl 1) 0.066 0.033 1.975 -0.047 0.045 -1.053 -0.032 0.082 -0.395 -0.018 0.040 -0.466 
Boat (lvl 2) 0.081 0.030 2.743 0.004 0.041 0.107 0.157 0.075 2.102 -0.004 0.035 -0.105 
Crowding -0.125 0.031 -3.978 0.062 0.042 1.472 -0.136 0.087 -1.554 -0.083 0.037 -2.230 
Distance -0.810 0.086 -9.446 -1.060 0.112 -9.447 -1.253 0.233 -5.368 -1.192 0.098 -12.205 
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Table C4. 3C-INT Parameters 

Attributes Class1 s.e. z-value Class2 s.e. z-value Class3 s.e. z-value 
Intercept 3.114 0.163 19.156 -0.648 0.101 -6.413 2.372 0.242 9.815 
Species 0.427 0.062 6.888 0.560 0.095 5.881 1.314 0.213 6.163 
Catch 0.141 0.038 3.701 0.028 0.059 0.481 0.192 0.128 1.502 
Size 0.455 0.082 5.538 0.769 0.126 6.086 0.497 0.218 2.282 
Take 0.485 0.086 5.665 0.655 0.130 5.028 0.261 0.350 0.746 
Gear (lvl 1) -0.011 0.050 -0.227 -0.055 0.064 -0.848 -0.451 0.137 -3.298 
Gear (lvl 2) 0.121 0.045 2.677 0.078 0.058 1.349 0.004 0.130 0.029 
Gear (lvl 3) -0.175 0.045 -3.922 -0.066 0.060 -1.116 0.179 0.138 1.297 
Lake 0.129 0.027 4.857 0.069 0.041 1.697 0.002 0.088 0.024 
Motor (lvl 1) 0.057 0.030 1.915 0.061 0.048 1.258 0.380 0.107 3.566 
Motor (lvl 2 -0.066 0.034 -1.927 -0.246 0.061 -4.036 -0.212 0.113 -1.872 
Boat (lvl 1) 0.111 0.034 3.290 -0.042 0.055 -0.755 0.056 0.111 0.508 
Boat (lvl 2) 0.103 0.034 3.021 0.034 0.055 0.617 -0.006 0.097 -0.059 
Crowding -0.122 0.040 -3.037 0.016 0.055 0.294 -0.077 0.113 -0.681 
Distance -1.087 0.093 -11.632 -1.475 0.152 -9.723 -2.128 0.392 -5.425 
SP*Catch 0.017 0.039 0.442 0.103 0.058 1.787 -0.310 0.127 -2.443 
SP*Size 0.107 0.090 1.185 -0.205 0.126 -1.632 0.470 0.217 2.168 
SP*Take 0.220 0.101 2.173 0.181 0.138 1.308 1.806 0.301 5.996 
SP*Gear 0.032 0.032 0.995 -0.070 0.051 -1.385 -0.007 0.096 -0.070 
SP*Lake -0.030 0.024 -1.245 0.068 0.039 1.745 0.067 0.068 0.977 
SP*Motor (lvl 1) 0.040 0.029 1.383 -0.110 0.046 -2.402 -0.322 0.087 -3.694 
SP*Motor (lvl 2) -0.113 0.036 -3.098 0.171 0.060 2.862 -0.001 0.091 -0.006 
SP*Motor (lvl 3) -0.038 0.034 -1.119 -0.078 0.055 -1.432 -0.079 0.093 -0.853 
SP*Boat -0.055 0.036 -1.546 0.041 0.055 0.754 -0.125 0.086 -1.452 
SP*Crowding -0.043 0.042 -1.020 -0.034 0.053 -0.636 0.333 0.104 3.206 
SP*Distance -0.061 0.078 -0.783 -0.178 0.129 -1.382 0.322 0.344 0.937 
Duration 0.271 0.095 2.846 0.200 0.048 4.147 0.226 0.097 2.331 
SP*Duration 0.094 0.035 2.704 0.013 0.064 0.197 0.082 0.095 0.865 
DUR*Catch 0.021 0.025 0.843 0.027 0.041 0.653 -0.066 0.069 -0.957 
DUR*Size 0.081 0.035 2.310 0.060 0.053 1.126 0.035 0.089 0.394 
DUR*Take 0.185 0.062 2.982 -0.039 0.107 -0.369 0.158 0.165 0.960 
DUR*Gear (lvl 1) -0.065 0.038 -1.706 -0.096 0.052 -1.834 0.154 0.092 1.675 
DUR*Gear (lvl 2) 0.069 0.037 1.874 0.088 0.054 1.632 0.117 0.090 1.293 
DUR*Gear (lvl 3) 0.002 0.039 0.039 0.019 0.055 0.350 -0.214 0.099 -2.169 
DUR*Lake -0.019 0.019 -1.017 0.022 0.032 0.706 -0.051 0.048 -1.074 
DUR*Motor (lvl 1) 0.031 0.023 1.367 0.027 0.037 0.727 0.007 0.054 0.119 
DUR*Motor (lvl 2) -0.054 0.027 -1.974 -0.048 0.044 -1.101 0.024 0.066 0.355 
DUR*Boat (lvl 1) 0.008 0.027 0.301 0.064 0.044 1.451 -0.004 0.065 -0.059 
DUR*Boat (lvl 2) -0.039 0.024 -1.637 0.006 0.039 0.148 0.012 0.062 0.200 
DUR*Crowding -0.030 0.026 -1.148 -0.006 0.041 -0.133 -0.008 0.066 -0.126 
DUR*Distance 0.797 0.074 10.777 1.228 0.115 10.651 0.710 0.195 3.643 
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Attributes Class1 s.e. z-value Class2 s.e. z-value Class3 s.e. z-value 
Geography 0.377 0.125 3.021 0.276 0.060 4.600 0.955 0.207 4.611 
SP*GEO -0.133 0.041 -3.263 0.148 0.070 2.111 1.083 0.168 6.463 
GEO*Catch 0.012 0.028 0.439 -0.040 0.044 -0.897 0.408 0.094 4.324 
GEO*Size -0.073 0.038 -1.894 -0.082 0.058 -1.407 0.883 0.140 6.299 
GEO*Take 0.096 0.068 1.420 0.311 0.113 2.740 -1.196 0.321 -3.728 
GEO*Gear (lvl 1) 0.032 0.042 0.770 0.083 0.056 1.480 -0.388 0.124 -3.128 
GEO*Gear (lvl 2) -0.011 0.041 -0.269 -0.109 0.057 -1.900 -0.027 0.138 -0.196 
GEO*Gear (lvl 3) -0.090 0.042 -2.126 0.012 0.059 0.206 0.774 0.141 5.485 
GEO*Lake -0.006 0.021 -0.266 -0.034 0.034 -1.009 -0.073 0.073 -1.006 
GEO*Motor (lvl 1) 0.019 0.024 0.758 0.052 0.039 1.343 0.088 0.080 1.097 
GEO*Motor (lvl 2) 0.009 0.029 0.304 0.058 0.046 1.247 -0.155 0.103 -1.511 
GEO*Boat (lvl 1) 0.046 0.030 1.556 0.038 0.046 0.834 0.024 0.093 0.253 
GEO*Boat (lvl 2) -0.074 0.026 -2.890 0.052 0.043 1.199 -0.010 0.083 -0.121 
GEO*Crowding 0.008 0.028 0.271 -0.008 0.044 -0.191 -0.256 0.096 -2.655 
GEO*Distance 0.145 0.087 1.676 0.207 0.135 1.533 0.140 0.317 0.440 
Specialization 0.272 0.127 2.136 0.118 0.057 2.094 -0.044 0.130 -0.339 
SI*SP -0.098 0.039 -2.497 0.019 0.075 0.252 0.636 0.162 3.926 
SI*Catch 0.029 0.028 1.038 0.106 0.049 2.183 0.044 0.081 0.541 
SI*Size 0.139 0.038 3.618 0.600 0.065 9.218 0.009 0.107 0.081 
SI*Take -0.217 0.068 -3.203 0.119 0.124 0.957 0.265 0.222 1.192 
SI*Gear (lvl 1) -0.083 0.041 -2.020 -0.003 0.060 -0.051 -0.007 0.099 -0.075 
SI*Gear (lvl 2) 0.053 0.040 1.307 -0.128 0.063 -2.031 0.029 0.111 0.260 
SI*Gear (lvl 3) 0.098 0.042 2.320 0.275 0.063 4.393 -0.136 0.112 -1.214 
SI*Lake -0.034 0.021 -1.609 -0.006 0.037 -0.153 0.031 0.060 0.519 
SI*Motor (lvl 1) -0.037 0.024 -1.514 -0.007 0.041 -0.163 -0.012 0.064 -0.191 
SI*Motor (lvl 2) -0.028 0.030 -0.943 0.094 0.049 1.906 -0.047 0.076 -0.614 
SI*Boat (lvl 1) -0.037 0.030 -1.254 0.031 0.049 0.636 -0.008 0.078 -0.100 
SI*Boat (lvl 2) 0.069 0.026 2.698 0.002 0.048 0.036 -0.031 0.074 -0.425 
SI*Crowding -0.041 0.028 -1.444 -0.040 0.047 -0.855 0.285 0.078 3.649 
SI*Distance 0.107 0.075 1.443 -0.024 0.104 -0.230 0.292 0.259 1.127 
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Table C5. 4C-INT Parameters 

Attributes Class1 s.e. z-value Class2 s.e. z-value Class3 s.e. z-value Class4 s.e. z-value 
Intercept 4.5528 0.3053 14.9118 0.4394 0.129 3.4073 0.1065 1.6308 0.0653 -1.2864 0.201 0.0653 
Species 0.2191 0.0636 3.448 0.0888 0.1042 0.8513 4.0492 1.6335 2.4789 1.0417 0.1955 2.4789 
Catch 0.1084 0.039 2.7766 0.0963 0.0688 1.4003 0.5583 0.155 3.6025 -0.2504 0.1171 3.6025 
Size 0.3354 0.088 3.8116 0.5458 0.136 4.0144 0.7429 0.2737 2.7144 0.7937 0.3083 2.7144 
Take 0.5336 0.0925 5.7685 0.7862 0.1547 5.083 1.134 0.3589 3.1599 0.7522 0.2426 3.1599 
Gear (lvl 1) 0.0493 0.0555 0.8869 -0.2646 0.0824 -3.2099 -0.3104 0.1967 -1.5777 0.2764 0.1115 -1.5777 
Gear (lvl 2) 0.1022 0.0496 2.0593 0.2097 0.0844 2.4855 -0.0967 0.1143 -0.8462 -0.0095 0.0964 -0.8462 
Gear (lvl 3) -0.2357 0.0502 -4.7004 -0.3954 0.0936 -4.2227 0.4058 0.1295 3.1327 0.1404 0.0952 3.1327 
Lake 0.0582 0.0286 2.0298 0.1188 0.0476 2.498 0.3493 0.091 3.8366 -0.0178 0.0834 3.8366 
Motor (lvl 1) 0.0534 0.0313 1.7031 0.1374 0.0552 2.4908 0.3497 0.1441 2.4271 0.14 0.1068 2.4271 
Motor (lvl 2 -0.051 0.0359 -1.4192 -0.1936 0.0708 -2.7342 -0.5257 0.1705 -3.0837 -0.415 0.1488 -3.0837 
Boat (lvl 1) 0.0718 0.036 1.9964 -0.0049 0.064 -0.0761 0.7878 1.5879 0.4961 0.1048 0.1055 0.4961 
Boat (lvl 2) 0.0791 0.0366 2.1627 0.0313 0.0624 0.5009 1.2745 1.5886 0.8023 -0.037 0.1145 0.8023 
Crowding -0.0775 0.0415 -1.8675 -0.1237 0.0682 -1.812 -0.1572 0.1483 -1.0601 0.2361 0.1151 -1.0601 
Distance -0.9159 0.0996 -9.1924 -2.1775 0.1812 -12.0198 -2.4193 0.372 -6.5031 -0.8431 0.3145 -6.5031 
SP*Catch 0.0388 0.0415 0.9346 -0.0725 0.0656 -1.1057 -0.3378 0.1579 -2.139 0.3694 0.1214 -2.139 
SP*Size 0.1864 0.0992 1.878 -0.5401 0.1377 -3.9221 0.4187 0.2795 1.4981 0.3365 0.2922 1.4981 
SP*Take 0.3128 0.1081 2.8948 0.9254 0.1704 5.4307 -1.0272 0.3789 -2.7107 0.2025 0.2551 -2.7107 
SP*Gear 0.022 0.0344 0.6395 0.1437 0.063 2.2811 0.0639 0.1737 0.3681 -0.3202 0.0961 0.3681 
SP*Lake 0.0268 0.0261 1.0239 0.0361 0.0436 0.8277 -0.3002 0.0819 -3.6673 0.2308 0.081 -3.6673 
SP*Motor (lvl 1) 0.0536 0.0303 1.7706 -0.0638 0.0526 -1.2113 -0.3698 0.1386 -2.6691 -0.2319 0.1079 -2.6691 
SP*Motor (lvl 2) -0.1611 0.0373 -4.3224 -0.0961 0.0606 -1.5857 0.5123 0.1659 3.0882 0.4654 0.1474 3.0882 
SP*Motor (lvl 3) -0.0244 0.0359 -0.6798 -0.0584 0.0602 -0.9709 -0.9536 1.5867 -0.601 -0.0409 0.1021 -0.601 
SP*Boat -0.0226 0.0382 -0.5899 0.0621 0.0598 1.0387 -1.276 1.5894 -0.8028 -0.0413 0.1142 -0.8028 
SP*Crowding -0.0743 0.0424 -1.7509 0.2669 0.0673 3.964 0.0915 0.1422 0.6433 -0.1699 0.1065 0.6433 
SP*Distance -0.1998 0.0878 -2.2766 -0.0254 0.1493 -0.1702 0.6839 0.296 2.3103 -0.9268 0.2759 2.3103 
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Attributes Class1 s.e. z-value Class2 s.e. z-value Class3 s.e. z-value Class4 s.e. z-value 
Duration 0.6563 0.2626 2.4994 0.3483 0.0644 5.4042 0.1198 0.1253 0.9565 0.1188 0.0831 0.9565 
SP*Duration 0.1154 0.0357 3.2352 -0.0019 0.0672 -0.0281 0.2052 0.1531 1.3403 0.0306 0.1091 1.3403 
DUR*Catch 0.048 0.0275 1.7478 -0.0206 0.0485 -0.4255 -0.0152 0.0659 -0.2303 0.0451 0.0655 -0.2303 
DUR*Size 0.0393 0.0375 1.046 0.1172 0.0639 1.8337 0.1833 0.1073 1.7074 0.0762 0.0882 1.7074 
DUR*Take 0.2035 0.0657 3.097 0.0839 0.1192 0.7037 0.1595 0.224 0.712 -0.0753 0.1789 0.712 
DUR*Gear (lvl 1) -0.0753 0.0421 -1.787 -0.0668 0.0664 -1.0057 0.0793 0.1016 0.7806 -0.0832 0.0818 0.7806 
DUR*Gear (lvl 2) 0.0513 0.0406 1.2639 0.1785 0.0694 2.5741 0.1209 0.0859 1.4079 0.0258 0.0841 1.4079 
DUR*Gear (lvl 3) 0.0232 0.0429 0.5406 -0.0538 0.0777 -0.6931 -0.1058 0.0908 -1.1649 0.0864 0.0832 -1.1649 
DUR*Lake -0.0109 0.0211 -0.5167 0.0159 0.0384 0.4145 -0.0666 0.0477 -1.3952 -0.0099 0.0509 -1.3952 
DUR*Motor (lvl 1) 0.0238 0.0244 0.9765 0.0915 0.0445 2.0576 -0.0275 0.0589 -0.4668 -0.0244 0.0586 -0.4668 
DUR*Motor (lvl 2) -0.0267 0.0294 -0.9104 -0.0592 0.0544 -1.0888 -0.0385 0.0794 -0.4854 -0.0405 0.07 -0.4854 
DUR*Boat (lvl 1) 0.019 0.0294 0.6462 0.0331 0.0515 0.6422 -0.0752 0.0711 -1.0577 0.0602 0.069 -1.0577 
DUR*Boat (lvl 2) -0.0501 0.0257 -1.9507 0.0574 0.0475 1.2087 0.0252 0.0635 0.3974 -0.061 0.0623 0.3974 
DUR*Crowding -0.0261 0.0281 -0.9282 0.0337 0.0504 0.6687 -0.0112 0.0683 -0.1646 -0.0651 0.0675 -0.1646 
DUR*Distance 0.8956 0.0819 10.9308 1.4305 0.1459 9.805 0.3678 0.2014 1.8266 0.83 0.163 1.8266 
Geography 0.2498 0.2064 1.21 0.3737 0.0798 4.6838 1.2862 0.2028 6.3434 0.0206 0.1143 6.3434 
SP*GEO 0.0726 0.0408 1.7782 0.0157 0.0807 0.1946 -0.4297 0.1987 -2.1623 0.6093 0.1443 -2.1623 
GEO*Catch 0.0327 0.0303 1.0783 0.1779 0.0557 3.1943 0.0229 0.0852 0.2688 -0.1253 0.0749 0.2688 
GEO*Size -0.0264 0.042 -0.6293 0.1237 0.0727 1.7028 0.1059 0.1439 0.7361 -0.2124 0.1066 0.7361 
GEO*Take 0.0519 0.072 0.7212 0.0985 0.1314 0.7493 -0.7799 0.2783 -2.8023 0.1467 0.202 -2.8023 
GEO*Gear (lvl 1) 0.0181 0.0456 0.3964 0.0563 0.0718 0.7842 -0.0699 0.1227 -0.5698 0.0924 0.087 -0.5698 
GEO*Gear (lvl 2) 0.0606 0.0454 1.3361 -0.0097 0.0775 -0.1256 -0.1961 0.107 -1.8327 -0.2685 0.0962 -1.8327 
GEO*Gear (lvl 3) -0.0542 0.0465 -1.1643 -0.0236 0.0853 -0.2774 0.3999 0.1228 3.2574 0.1772 0.0943 3.2574 
GEO*Lake 0.0284 0.0235 1.2078 0.0147 0.0432 0.3391 -0.0902 0.0598 -1.5098 -0.0427 0.0547 -1.5098 
GEO*Motor (lvl 1) 0.0294 0.0264 1.113 -0.0224 0.0491 -0.4567 0.033 0.0739 0.4457 0.13 0.0639 0.4457 
GEO*Motor (lvl 2) -0.0172 0.0318 -0.5411 0.0812 0.0612 1.3257 -0.0844 0.0949 -0.8896 0.0426 0.0734 -0.8896 
GEO*Boat (lvl 1) 0.0671 0.0318 2.1142 0.0587 0.0561 1.0461 0.0089 0.084 0.1062 0.0354 0.0733 0.1062 
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Attributes Class1 s.e. z-value Class2 s.e. z-value Class3 s.e. z-value Class4 s.e. z-value 
GEO*Boat (lvl 2) -0.0517 0.0285 -1.8153 0.0806 0.0537 1.5002 -0.0627 0.0755 -0.8295 0.0947 0.0698 -0.8295 
GEO*Crowding -0.0088 0.0304 -0.2889 -0.1257 0.0555 -2.2653 0.106 0.0848 1.2496 0.0468 0.0759 1.2496 
GEO*Distance 0.1925 0.0915 2.104 0.2535 0.1629 1.5568 0.4127 0.2831 1.4579 0.5365 0.2217 1.4579 
Specialization 0.3468 0.234 1.4817 0.0524 0.0698 0.7512 0.3697 0.1683 2.1964 0.1507 0.0949 2.1964 
SI*SP -0.0908 0.0395 -2.2963 0.143 0.0777 1.8402 0.3871 0.1951 1.9846 0.1216 0.1339 1.9846 
SI*Catch -0.021 0.0316 -0.664 0.1439 0.0507 2.839 0.0892 0.084 1.0621 0.193 0.0821 1.0621 
SI*Size 0.1858 0.0444 4.184 0.1352 0.0693 1.9521 0.0571 0.1363 0.4193 1.1899 0.1197 0.4193 
SI*Take -0.1308 0.0727 -1.7986 0.0719 0.1303 0.5517 -0.2451 0.2612 -0.9385 0.1826 0.2126 -0.9385 
SI*Gear (lvl 1) -0.0713 0.0486 -1.4678 -0.0273 0.0694 -0.3934 -0.0411 0.1098 -0.3746 -0.1265 0.0972 -0.3746 
SI*Gear (lvl 2) 0.0404 0.0462 0.8729 -0.1312 0.0753 -1.7413 0.2222 0.1114 1.9951 -0.0069 0.1062 1.9951 
SI*Gear (lvl 3) 0.0875 0.0505 1.7328 0.2205 0.0827 2.6673 -0.0712 0.1169 -0.6092 0.1852 0.1024 -0.6092 
SI*Lake -0.0102 0.0242 -0.4206 0.0798 0.0421 1.8974 -0.1829 0.0602 -3.0379 -0.0694 0.0579 -3.0379 
SI*Motor (lvl 1) -0.0098 0.0271 -0.3622 -0.0757 0.0477 -1.5857 0.0025 0.0725 0.0342 0.0546 0.0692 0.0342 
SI*Motor (lvl 2) -0.0537 0.0328 -1.6364 0.0008 0.0602 0.0135 0.1783 0.0935 1.9067 0.1437 0.0821 1.9067 
SI*Boat (lvl 1) -0.0145 0.0333 -0.434 0.0737 0.0526 1.4012 -0.1978 0.0873 -2.2662 0.0219 0.0766 -2.2662 
SI*Boat (lvl 2) 0.0424 0.0299 1.4144 0.0349 0.051 0.6848 0.1932 0.0756 2.5541 -0.027 0.0746 2.5541 
SI*Crowding -0.0294 0.0314 -0.9339 -0.0963 0.0539 -1.7872 0.1693 0.0794 2.1326 -0.0052 0.0812 2.1326 
SI*Distance 0.074 0.089 0.8315 0.0987 0.1244 0.7934 0.4384 0.2577 1.7009 -0.2782 0.1724 1.7009 
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