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Abstract

Septic shock is a leading cause of death in intensive care units. Septic shock occurs when a
body-wide infection leads to low blood pressure, and ultimately organ failure. Some recent
studies suggest that overweight and obese patients have a better chance of survival follow-
ing septic shock than normal or underweight patients. In this project we apply Mendelian
randomization to assess whether the observed obesity effect on 28-day survival following
septic shock is causal or more likely due to unmeasured confounding variables. Mendelian
randomization is an instrumental variables approach that uses genetic markers as instru-
ments. Under modelling assumptions, unconfounded estimates of the obesity effect can be
obtained by fitting a model for 28-day survival that includes a residual obesity term. Data
for the project comes from the Vasopressin and Septic Shock Trial (VASST). Our analysis
suggests that the observed obesity effect on survival following septic shock is not causal.

Keywords: Obesity; Septic Shock; Causal Inference; Instrumental Variables; Mendelian
Randomization
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Chapter 1

Introduction

Septic shock has been reported as one of the most common causes of death in the Intensive
Care Unit (ICU), with a mortality rate of up to 45% [SCCM]. According to the U.S. National
Library of Medicine, septic shock occurs when a body-wide infection leads to dangerously
low blood pressure and that can lead to heart failure, organ failure and death. People with
septic shock are usually cared for in ICUs. It most commonly affects people with weakened
immune systems. On the other hand, obesity is a growing health problem in the world
and it is reported that nearly 30% of the world’s population are either obese or overweight
[WHO]. Although higher BMI is associated with various diseases and reduces overall life
expectancy, it has been suggested that higher BMI may improve survival following septic
shock [Wacharasint et al., 2013]. This study is of the causal relationship between BMI and
28-day survival following septic shock.

Several studies have been conducted to test the association between BMI and survival
following septic shock. Some suggest that patients with higher BMI have lower risk of death
from septic shock [Wurzinger et al., 2010, Wacharasint et al., 2013], while others suggest
that BMI has no effect on survival [Arabi et al., 2013, Gaulton et al., 2015]. A possible
explanation for the conflicting results is unmeasured confounding variables. A confounder
is a variable that is associated with both the exposure of interest and the outcome. Failing
to account for a confounding variable will lead to biased inference of the exposure effect,
and differences between the distribution of a confounder in different study populations will
lead to differential bias. It is therefore of interest to obtain an unconfounded, or causal
estimate of the effect of BMI on survival.

The starting point for this project is Wacharasint et al. [2013]. These authors conducted
a retrospective analysis of the Vasopressin and Septic Shock Trial (VASST) to determine
whether being overweight or obese altered mortality of septic shock. They found that
mortality in obese (BMI of 30 kg/m2 or more) and overweight (BMI of 25-29.9 kg/m2)
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patients was significantly lower than in low or normal weight patients (BMI of less than 25
kg/m2). Whereas Wacharasint et al. [2013] analysed the effect of BMI on survival time,
in this project we simplify and use a binary indicator of 28-day survival as the outcome.
After data cleaning and adjustment for known confounders (Chapter 3), we find that an
overweight patient is estimated to have a 1.4-times higher odds of survival than a normal or
low weight patient with the same values of the confounding variables, and an obese patient
is estimated to have a 1.8-times higher odds of survival than a normal or low weight pa-
tient with the same confounders. The objective of this project is to re-analyse the VASST
data using methods for causal inference. The question is whether the observed association
between BMI on 28-day survival is causal or more likely due to confounding.

Instrumental variables (IVs) are used to control for unmeasured confounding. An IV G

is a variable that is (i) predictive of the exposure X, (ii) associated with the outcome Y
only through the association with X and (iii) is independent of unobserved confounders U
[Smith and Hemani, 2014]. Figure 1.1, provides a graphical representation of instrumental
variable (IV) assumptions. The arrows indicate the direction of causal relationships between
variables. The absence of any arrow between two variables indicates that the variables are
not related. In addition to G, X, U and Y , the Figure includes observed confounders O;
these are depicted as independent of G, but such independence is not required by the models
we use in Chapter 2. In the Econometrics literature, the variables with no arrows pointing
towards them (such as G, U and O) are called exogenous variables, and those with arrows
pointing towards them (such as X and Y) are called endogenous variables. Thus, exogenous
variables are not influenced by other variables in the system of causal relationships and
endogenous variables are internal, being affected by the other variables.

Figure 1.1: Instrumental variable (IV) assumptions

IV methods infer a causal relationship between the endogenous exposure and the out-
come by studying the association between the exogenous instrumental variable and the
outcome. According to the diagram, the exposure-outcome association is confounded by
unmeasured confounders, but the IV-outcome association is not since there is no direct line
between IV and unmeasured confounders. Since IVs are associated with the exposure, but
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not directly associated with the outcome, any association of the IVs with the outcome must
come via the IV’s association with the exposure, and this is taken as evidence for causality
between exposure and the outcome. Causal inferences based on IV methods are only valid if
these IV assumptions are satisfied. However, it is difficult to prove that these assumptions
hold. It is only possible to justify the validity of these assumptions based on subject matter
or background knowledge.

In our study, BMI is the exposure, 28-day survival following septic shock is the out-
come and observed confounders are age, gender and APACHE II score. In our data set,
vasopressin and norepinephrine drug data were not available. If drug data were available,
it would have been a confounder and would affect second-stage model and might lead to
better prediction of outcome. We used genetic variants (single-nucleotide polymorphisms,
or SNPs) as instruments. Genetic variants are suitable instruments because they are in-
herited at conception and do not change over one’s lifetime. This random inheritance from
parents to offspring ensures that association between genetic variants and outcomes are
not likely to confounding [Smith and Hemani, 2014]. Instrumental variable analysis with
genetic variants as instruments is called Mendelian Randomization (MR).

The project is organized as follows. In Chapter 2 we discuss causal inference methods
for the VASST data and in Chapter 3 we apply these methods. Chapter 4 summarizes our
findings. Supplementary data summaries and analysis results are given in Appendix A.
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Chapter 2

Instrumental Variables: Models
and Inference

In this chapter we first describe models for the relationships between the variables in Figure
1.1, and then discuss the IV assumptions.

2.1 Models

As discussed in the Introduction, an association between the IV, G, and the outcome,
Y , implies a causal relationship between the exposure, X and Y . Thus, under the IV
assumptions, testing for a G-Y association is a test of the causal effect of X on Y . However,
to estimate causal effects we must specify models for the exposure and outcome. We use
the general model of Terza et al. [2008], specialized to the case of a binary outcome and
a categorical exposure. In this general model, there is a first stage model for the mean
exposure as a function of the IVs and observed confounders, and a second stage model for
the mean outcome as a function of the exposure and all confounders. We discuss the second
stage model first, as it is the model of primary interest.

2.1.1 Second-stage Model

With a binary outcome Y , the second stage model is a logistic regression of Y on a vector of
covariates Z that encodes information on X, O and U . Let O = (O1, . . . , Op) denote a row
vector of information on the observed covariates and X = (X1, X2) encode BMI status, with
X = (0, 0) for low or normal weight, X = (1, 0) for overweight and X = (0, 1) for obese.
The precise definition of U = (U1, U2) depends on the first stage model, and is described
below. Lastly, let Z = (O,X,U). Corresponding to Z is a column vector β = (βT

O, β
T
X , β

T
U )T

of parameters of length p + 2 + 2, where T denotes vector transpose. For convenience we
suppose that O1 ≡ 1 so that βO1 is an intercept term. The logistic model is for the log-odds
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of survival:

log
(
P (Y = 1|Z)
P (Y = 0|Z)

)
= Zβ =

p∑
k=1

OkβOk +X1βX1 +X2βX2 + U1βU1 + U2βU2. (2.1)

Equivalently,
P (Y = 1|Z) = exp(Zβ)

1 + exp(Zβ) .

The parameters βX1 and βX2 are the causal effects of BMI on survival and are the object
of inference. Model (2.1) cannot be fitted because U is not observed. Without U the model
is of P (Y = 1|O,X) which depends on the unknown joint distribution of (Y,O,X,U) in
the population and need not be of logistic form [Greenland et al., 1999]. To illustrate the
dependence of P (Y = 1|O,X) on the joint distribution of (Y,O,X,U), suppose U is a
discrete random variable taking values u1, u2, . . . ,. Then

P (Y = 1|O,X) = P (Y = 1, O,X)
P (O,X) =

∑∞
i=1 P (Y = 1, O,X,U = ui)∑∞

i=1
∑1

y=0 P (Y = y,O,X,U = ui)
.

2.1.2 First-stage Model

The first stage model is a multinomial logistic regression of X on G and O. Whereas
logistic regression is used when the outcome has two possible categories, multinomial logistic
regression is used when the outcome has more than two categories. A baseline category is
chosen (e.g., low or normal weight) and the probability of each remaining category relative
to the probability of the baseline category is modeled as log-linear in the covariates. Let G
denote the genotype information. This could be a column vector of allele counts at multiple
SNPs, or an allele score that is a weighted average of allele counts. Let W = (O,G). Then
the multinomial logistic model is

log
(
P (X = (1, 0)|W )
P (X = (0, 0)|W )

)
= Wα1; log

(
P (X = (0, 1)|W )
P (X = (0, 0)|W )

)
= Wα2, (2.2)

where α1 = (αT
1O, α

T
1G)T is a column vector of regression parameters for overweight versus

low/normal and α2 = (αT
2O, α

T
2G)T is a column vector of regression parameters for obese

versus low/normal. The linear predictors Wαi expand to
∑p

k=1OkαiOk +GαiG. It can be
shown that an equivalent specification of model (2.2) is

P (X = (1, 0)|W ) = exp(Wα1)
1 + exp(Wα1) + exp(Wα2) ≡ p1(W ), and

P (X = (0, 1)|W ) = exp(Wα2)
1 + exp(Wα1) + exp(Wα2) ≡ p2(W ).
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In Terza et al. [2008] the unobserved confounder variables U = (U1, U2) from the second
stage model are defined as residuals from the first stage model; that is, U = X − p(W ),
where p(W ) = (p1(W ), p2(W )). Comments on this definition are given in the next section.
The utility of defining U to be an error term is that it can be estimated by fitting the first
stage model, and these residuals can be used in the second stage regression. That is, we (i)
fit model (2.2) to n observations to obtain p̂(Wi), i = 1, . . . , n, (ii) calculate the residuals
Ûi = Xi− p̂(Wi), and then (iii) use Ûi, i = 1, . . . , n in place of Ui, i = 1, . . . , n in the second
stage model. Terza et al. [2008] show that this two-stage residual inclusion (2SRI) method
yields consistent estimates of the causal effects, meaning that, as the sample size grows, the
causal effect estimates tend in probability to the true values.

2.2 IV Assumptions

2.2.1 Definition of U

In Figure 1.1 we see that G, O, and U all affect X, but according to the first stage model
they do so in different ways. The multinomial logistic regression model p(W ) includes G and
O, but cannot include the unobserved U . Instead, unmeasured confounders are collected
together into an additive error term U in the model X = p(W )+U . These U then appear as
covariates in the second stage model. It seems reasonable to suppose that the additive errors
from the first stage model depend on the unmeasured confounders. However, it seems like
a strong assumption to suppose that the second stage model depends on the unmeasured
confounders only through these additive errors.

2.2.2 Population Stratification

It is important to take appropriate measures to avoid introducing confounding of the G-Y
relationship through population stratification. Population stratification occurs when there
exist population subgroups that experience both different disease rates and have different
frequencies of alleles of interest [Lawlor et al., 2008]. Figure 2.1 depicts the confounding
effect of population stratification.

Figure 2.1: Effect of population stratification
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To avoid population stratification, one can restrict analyses to ethnically homogeneous
groups, and apply correction methods using principal component analysis (PCA). Principal
components (PCs) obtained from PCA are orthogonal axes of variation that could represent
the population structure of individuals. The top few PCs can be used as covariates in the
analysis, in order to adjust for any existing population structure [Price et al., 2006]. An
alternative to PCA is multidimensional scaling (MDS; Mardia et al. [1979]).

2.2.3 Many Weak Instruments

An instrument is considered a weak instrument if it explains only a small proportion of vari-
ance in the exposure. Weak instruments provide less information about the causal effect.
Individual SNPs are weak predictors of BMI, since BMI is a complex trait. To improve
the strength of IV, multiple SNPs can be used as IVs [Palmer et al., 2011]. If multiple
SNPs cumulatively explain more variability in the exposure, they can jointly serve as better
instruments to improve the prediction of the exposure and its causal effect estimate on the
outcome. Thus, we use multiple SNPs as instruments to predict BMI.

Multiple instruments can be used as separate explanatory variables or they can be used
to construct a single allele score. However, instrumental variable estimates of causal ef-
fects could be biased when using many weak instruments as separate explanatory variables
[Davies et al., 2015]. Using many instruments as separate explanatory variables will tend
to overfit BMI in the first stage and hence predicted BMI will be very similar to observed
BMI. Thus we will essentially use observed BMI in the second stage, leading to confounded
estimates of the BMI effect. Davies et al. [2015] suggested that constructing a single allele
score such as unweighted or weighted Genetic Risk Score (GRS) can eliminate this bias.

Single Allele Scores
Each genetic variant is coded as 0, 1, or 2 depending on the combination of BMI-increasing
alleles.

The weighted genetic risk score (GRS) is calculated as the weighted sum of alleles of SNPs
associated with the exposure of interest, with weights equal to the published per-allele
effects for the exposure. For each individual i, the weighted genetic risk score is calculated
using an additive genetic model. The score is the product of individual’s allele count for the
jth SNP and the weight for the effect of the jth SNP on the exposure, across all J SNPs.

WGRSi =
J∑

j=1
β̂j ∗ allelecountij

7



where, β̂j is the estimated weight of the effect of jth SNP on the exposure and allelecountij
is the allele count for the jth SNP of ith individual.

2.3 Bootstrap

The causal effect estimates of 2SRI method introduced by Terza et al. [2008] were shown to
be consistent; however, the estimated variances of the second-stage model are incorrect due
to inclusion of residuals rather than the actual error terms in the second-stage regression.
These estimated residuals are an extra source of variation that is not accounted for in the
standard error from the logistic regression. We can utilize the nonparametric bootstrap
to obtain approximately correct standard errors and confidence intervals from two-stage
models [Guan, 2003].

The bootstrap is a resampling technique. Suppose that we have a random sample of size
n from an unknown distribution, and we want to make statistical inferences about param-
eters. In our case the parameters are β = (βT

O, β
T
X , β

T
U )T of length p + 2 + 2. The method

is demonstrated as follows:

1. draw a random sample of size n with replacement from the data set;

2. fit the first-stage regression model to obtain p̂(W );

3. calculate the residuals, Û = X − p̂(W );

4. fit the second-stage model using Û as explanatory variables;

5. repeat steps 1-4 for N number of bootstrap replicates, and

6. empirical standard errors are the standard deviation of the empirical distribution of
the estimates and a 95% confidence interval is given by the 2.5th and 97.5th percentiles
of the empirical distribution [Efron and Tibshirani, 1986].
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Chapter 3

Application

In this chapter we apply instrumental variables methods to the VASST data. VASST is
a multicenter, randomized, stratified, double-blind trial, evaluating the efficacy of vaso-
pressin versus norepinephrine on mortality in patients with septic shock [Russell et al.,
2008]. VASST collected phenotype and genotype data. The phenotype data consists of age,
gender, ethnicity, weight, height and APACHE II (Acute Physiology and Chronic Health
Evaluation II) measurements of 632 patients with sepsis. APACHE II is a severity-of-disease
classification system, which is applied within 24 hours of admission of a patient to an ICU.
The score can range from 0 to 71, with higher values corresponding to more severe disease
and a higher risk of death [Knaus et al., 1985]. Age of the patients ranged from 17 to 99
years with median age 63. Around 60% of the patients were males and the APACHE II
score ranged from 0 to 49.

Body mass index (BMI) for patients was calculated as weight (in kilograms) divided
by height squared (in meters). Participants with BMI less than 14 kg/m2 or greater than
80 kg/m2 were excluded from the analyses on the basis that values outside this range are
unlikely to be physiologically plausible [Shungin et al., 2015]. Among the patients, 589
patients had valid BMI measures. Then patients were grouped into BMI categories es-
tablished by the World Health Organization (WHO): underweight (BMI < 18.5 kg/m2),
normal weight (BMI 18.5-24.9 kg/m2), overweight (BMI 25-29.9 kg/m2) and obese (BMI ≥
30 kg/m2). Since only 18 patients (4%) were present in the underweight category, normal
and underweight patients were grouped into a single category of BMI less than 25 kg/m2.
The outcome measurement was 28-day survival, a binary variable labeled 0 for patients who
were admitted to the ICU and died before 28-day follow-up period and 1 for patients who
survived 28-day follow-up period, respectively.

The sample was restricted to patients with self-reported ethnicity as Caucasian to limit
the influence of any population stratification. We then removed 17 of these patients because
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they were outliers, with respect to the first two principal coordinates (PCs) from multidi-
mensional scaling (MDS) [Mardia et al., 1979] based on the identity-by-state (IBS) distance
matrix [Purcell et al., 2007]. Further details related to MDS are described in section 3.2.1
and Appendix A. After data cleaning steps all the analyses were carried out with 476 Cau-
casian patients with complete data on 28-day survival and BMI, of whom 315 (66%) had
survived 28-days. In Table 3.1, we show the baseline characteristics of patients and the
outcome in each BMI category.

Table 3.1: Baseline characteristics among different BMI categories

Characteristics BMI<25 kg/m2 BMI 25-29.9 kg/m2 BMI≥30 kg/m2 p-value*
(n=172) (n=134) (n=170)

Demographics:
Age (years) 59.43 (17.37) 61.02 (15.71) 61.59 (14.50) 0.73
Gender (Female) 63 (36.6%) 45 (33.6%) 79 (46.5%) 0.04
Severity of Illness:
APACHEII score 25.53 (8.03) 26.34 (5.8) 26.70 (8.15) 0.11
D28 Survival:
Yes 105 (61%) 90 (67.2%) 120 (70.6%) 0.16

Continuous variables are reported as means with standard deviations (SD) and categorical
variables as frequencies with percentages.
* p-values for a nonparametric test of any association with BMI categories, as explained in
the text

We tested whether any of the covariates had a significant association with BMI cate-
gories. The associations of baseline characteristics with BMI were tested using the Kruskal-
Wallis test for continuous data and the chi-square test for categorical data. Association tests
showed an association of gender with BMI (p=0.04) but no association with age (p=0.73)
or APACHE II score (p=0.11). We further investigated the association between BMI and
age. Figure A.1. in Appendix A shows BMI versus age, and suggests a quadratic effect of
age. We therefore tested for an association between age2 and the BMI categories and found
age2 was significantly associated with BMI (p=0.005).

3.1 Observational Association

To study the observational association between BMI and 28-day survival, we carried out
logistic regression analyses considering BMI less than 25 kg/m2 as the reference category
and two binary variables, indicating overweight and obese, respectively. We evaluated
the association of BMI and survival for both unadjusted and adjusted models for known
confounders age, gender and APACHE II score (Table 3.2 and Table 3.3).
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Table 3.2: Observational association between BMI and 28-day survival unadjusted for
known confounders

Coefficients Odds Ratio 95% Confidence Interval
BMI-overweight 1.3051 (0.8149, 2.1026)
BMI-obese 1.5314 (0.9779, 2.4098)

For a logistic regression model unadjusted for known confounders, an overweight patient
is estimated to have a 1.3-times higher odds of survival than a normal or low weight patient
(95% CI: 0.8-2.1) and an obese patient is estimated to have a 1.5-times higher odds of
survival than a normal or low weight patient (95% CI: 0.98-2.4).

Table 3.3: Observational association between BMI and 28-day survival adjusted for known
confounders age, gender and APACHE II

Coefficients Odds Ratio 95% Confidence Interval
BMI-overweight 1.4372 (0.8815, 2.3591)
BMI-obese 1.8393 (1.1454, 2.9781)

The logistic regression model adjusted for known confounders, showed a significant rela-
tionship between BMI and 28-day survival (likelihood ratio test, p=0.03). We find that an
overweight patient is estimated to have a 1.4-times higher odds of survival than a normal
or low weight patient with the same values of the confounding variables (95% CI: 0.88-2.3),
and an obese patient is estimated to have a 1.8-times higher odds of survival than a normal
or low weight patient with the same confounders (95% CI: 1.1-3.0). Therefore, based on the
observational study, the overweight and obese patients had a higher probability of survival
compared to the patients with low or normal weight.

3.2 IV Analysis

Genetic variants (SNPs) for the IV analysis were extracted from the VASST genotype data.
Genotype data was available on 662 patients and 1,199,187 SNPs.

3.2.1 Quality Control

We carried out quality control (QC) measures to ensure the quality of the genetic variants
extracted for the analysis. For QC we followed the recommendations in Anderson et al.
[2010] and all the QC analyses were performed using PLINK [Purcell et al., 2007]. SNPs
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with minor allele frequency less than 5% and SNPs with more than 5% missing genotypes
were excluded. After these quality control steps, variants that showed a significant deviation
(p<0.001) from Hardy-Weinberg equilibrium (HWE) were identified and excluded from the
study.

MDS was performed to investigate the population structure of the genome data in
patients who self-reported as Caucasian. We identified 17 outliers and these patients were
removed from the study. Outliers were detected as described in Appendix A Section A.1.
After removing outliers, MDS was re-applied to the reduced data and since further principal
coordinates did not reveal evidence of population structure, only the first two PCs were used
to adjust for any existing population stratification [Price et al., 2006]. We used the top two
MDS principal coordinates as covariates in the regression analyses as suggested by visual
inspection of the scree plot.

3.2.2 Construction of the single allele score

Genome-Wide Association Studies (GWAS) have identified SNPs related to BMI at dif-
ferent chromosome locations. Our analyses were based on BMI-related SNPs identified by
Speliotes et al. [2010] and Locke et al. [2015]. We used these established BMI-related SNPs
and their reported effects on BMI in our study. We extracted 47 BMI-related SNPs from
the VASST genotype data set. We found alternative SNPs, that can be used as proxies
(R2 > 0.8) for the SNPs that were not in our data using linkage disequilibrium (LD) and
were able to find 11 "LD proxy" SNPs. Altogether 58 BMI-related SNPs were extracted
from the VASST data and used as instruments for the IV analysis (Appendix A Section A.2).

Each SNP was coded 0, 1, or 2 depending on the combination of BMI-increasing alleles
each individual had. As we discussed in section 2.2.3, a single allele score was used as an
instrument to avoid the many-weak-instruments bias. We constructed the weighted genetic-
risk score (GRS) by multiplying the number of risk alleles for the corresponding effect sizes,
as reported by Speliotes et al. [2010] and Locke et al. [2015] (Table A.1 and Table A.2).

3.2.3 Estimation

We used the two-stage residual inclusion (2SRI) method explained in Section 2.1 to estimate
the causal effect of BMI on 28-day survival.

First-stage Model
For the first-stage, a multinomial logistic regression model for BMI categories on GRS was
fitted adjusting for known confounders and principal components. The normal/low weight
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category was considered as the baseline category. The coefficients of the first-stage model
using GRS as the IV are shown in Table 3.4.

Table 3.4: Regression coefficients of the first-stage model

BMI-Overweight BMI-Obese
Coefficients Estimate 95% Confidence Interval Estimate 95% Confidence Interval
Intercept -1.4448 (-3.2073, 0.3175) -1.5702 (-3.1906, 0.0502)
GRS -0.2702 (-1.5587, 1.0182) 0.7219 (-0.5190, 1.9629)
Age -0.0220 (-1.2894, 1.2454) 0.1366 (-1.0970, 1.3702)
Age2 -0.6919 (-1.9753, 0.5914) -1.4602 (-2.7630, -0.1575)
Gender(Fe) -0.0669 (-0.5493, 0.4154) 0.4591 (0.0150, 0.9032)
APACHEII 0.6291 (-0.8979, 2.1563) 1.0454 (-0.3968, 2.4877)
PC1 0.8206 (-0.4077, 2.0491) 1.1173 (-0.0400, 2.2747)
PC2 1.3111 (-0.1366, 2.7589) 0.3803 (-0.8525, 1.6131)

A comparison of the fitted first-stage model to the null model suggested that the fitted
model is better than the null model, with p-value 0.01. However, a likelihood-ratio test
to compare the models with GRS and without GRS suggested that GRS is not significant
(p=0.29). Therefore, we find that the GRS is a weak instrument. However, since the GRS
has been established as an instrument in other Mendelian randomization studies [Jokela
et al., 2012, Tyrrell et al., 2016], we proceed to the second-stage analysis with the results
of first-stage analysis.

Second-stage Model
Estimated residuals from the first-stage model were used as explanatory variables in the
second-stage model accounting for unmeasured confounders. For the second stage, a logistic
regression model for 28-day survival on BMI was fitted, adjusting for known confounders
and principal coordinates.

The second-stage model uses estimated variables as explanatory variables, therefore, es-
timated standard errors for the logistic regression model are considered incorrect. Second-
stage standard errors needed to be corrected for uncertainty in the estimated residuals. We
used the bootstrap, as described in Section 2.3, with 10,000 bootstrap replicates to account
for uncertainty in the estimated residuals and to correct standard errors.
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Table 3.5: Mendelian randomization analysis of association between BMI and 28-day sur-
vival

Coefficients Odds Ratio Bootstrap 95% CI
BMI-overweight 1.2451 (0.7591, 2.3033)
BMI-obese 1.2781 (0.7497, 2.4366)
Residuals-overweight 1.4201 (0.8470, 2.2947)
Residuals-Obese 1.8178 (1.2065, 2.9195)

We find that an overweight patient is estimated to have a 1.2-times higher odds of sur-
vival than a normal or low weight patient with the same values of the confounding variables
(bootstrap 95% CI: 0.76-2.3), and an obese patient is estimated to have a 1.3-times higher
odds of survival than a normal or low-weight patient with the same confounders (bootstrap
95% CI: 0.75-2.4) when we used weighted GRS as the instrument. Based on the IV analysis,
the overweight and obese patients had a slightly higher odds of survival compared to the
patients with low or normal weight, but the odds ratios are not significantly different from
one. Interestingly, the odds ratio for residual obesity, which represents the effect of unmea-
sured confounders on the probability of survival, is very similar to the estimated effect of
obesity in the observational analysis (Table 3.3). This similarity suggests that the obesity
effect in the observational analysis can be attributed to unmeasured confounders.

A graphical comparison of the estimated effects of BMI on 28-day survival for the unadjusted
observational association, adjusted observational association and IV method are shown in
Figure 3.1. Confidence intervals for the IV analysis are 95% bootstrap confidence intervals
using the 2.5th and 97.5th percentiles of the bootstrap distributions. The obese BMI category
was associated with survival in the adjusted observational analysis, but this association
weakened and was not statistically significant in the IV analysis, suggesting the absence of
a causal effect between obesity and survival.
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Figure 3.1: Estimated effects of BMI on survival for different estimation methods
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Chapter 4

Concluding Remarks

The study conducted by Wacharasint et al. [2013] found a significant association between
higher BMI and survival from septic shock in the VASST data. However, it was not cer-
tain whether the observed association is causal or more likely due to confounding. We
re-analyzed the VASST data using an IV method to obtain an unconfounded estimate of
the effect of BMI on survival. In particular, we applied Mendelian randomization with
genetic variants as instrumental variables. We used 58 BMI-related SNPs combined into
a genetic-risk score (GRS) to produce an instrument for BMI. The goal of introducing the
genetic-risk score as an IV was to remove the effects of unmeasured confounders that may
confound the relationship between BMI and survival. The GRS was used to predict BMI
in the first-stage model. Based on the model introduced by Terza et al. [2008], unmeasured
confounders were defined as residuals from the first-stage model. These residuals were used
as explanatory variables in the second-stage model to control for confounders.

In this project, we first analyzed the data for the observational association and obtained
similar results to Wacharasint et al. [2013] with a significant association between higher
BMI and survival. Then, we applied the Mendelian-randomization approach to the same
data to assess whether the observed relationship is causal or not. In our study, we could not
detect a strong causal association between BMI and 28-day survival following septic shock,
though our results suggested that overweight and obese patients had slightly higher odds
of survival than normal or low weight patients with the same values of the confounding
variables. Taken together, our analyses suggest that the observational finding that obesity
increases the probability of 28-day survival is due to unmeasured confounders.

There were several limitations of our analyses. The main limitation is the small number
of patients available in our analysis. The first-stage analysis indicated that the GRS used
as the instrumental variable was weak. The genetic risk score constructed for this project
as an instrumental variable has been established as an instrument in several other studies
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[Jokela et al., 2012, Tyrrell et al., 2016]. However, we note that the SNPs used to construct
the GRS do not explain very much variation in BMI. For example, the SNPs identified by
Speliotes et al. [2010] only accounted for 1.45% of the variation in BMI and SNPs identified
by Locke et al. [2015] only accounted for 2.7% of the variation in BMI. This suggests that
SNPs alone cannot explain a complex trait such as BMI fully. Furthermore, our sample
only included patients with Caucasian ethnicity; however, the genetic-risk score might be
differently associated with BMI in different ethnic groups, so our findings may not generalize
to other ethnic groups directly. Our data only showed observational associations when we
treated BMI as an categorical variable. The first-stage model would have been a simpler
least squares regression if we had used BMI, or some normalizing transformation of BMI,
in the second-stage analysis. It is possible that the SNPs from the Speliotes et al. [2010]
and Locke et al. [2015] studies are more predictive of BMI than they are of overweight and
obesity status. However, we did not find an association between BMI and survival in the
observational analysis of the VASST data, and so we used BMI categories throughout.
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Appendix A

Data summaries and analysis
results

Figure A.1: Plot of BMI vs Age
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A.1 Multidimensional scaling (MDS)

Before conducting MDS, SNPs were pruned to remove clusters of highly correlated SNPs.
SNPs were pruned calculating the LD between each pair of SNPs and removing one of a
pair of SNPs if the LD was greater than 0.5. In this way we were able to obtain a subset of
SNPs in which all pairs have low correlations.

MDS was performed on the identity-by-state (IBS) distance matrix for these pruned data.
Outliers were detected as follows. We first computed pair-wise distances between observa-
tions based on the first 20 MDS PCs. Observations more than six standard deviations from
their nearest neighbour were declared outliers. For the covariate adjustment in the first-
and second-stage models, we selected the top two PCs based on the scree plot (Figure A.2).
Plink [Purcell et al., 2007] was used for prunning and MDS.

Figure A.2: Scree plot and Plot of the top 2 PCs used in the analysis
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A.2 Construction of the single allele score

Speliotes et al. [2010] examined associations between BMI and around 2.8 million SNPs and
confirmed 14 known obesity susceptibility SNPs and identified 18 new SNPs associated with
BMI. Together, these 32 BMI related SNPs explained 1.45% of the variation in BMI. This
study is not adjusted for age and gender, and the 32 BMI related SNPs and the correspond-
ing effect sizes are reported in Table 1 of the original paper. Locke et al. [2015] identified
97 common genetic variants that were associated with BMI at genome-wide significance in
the GIANT consortium in studies upto 339,224 people. The 97 BMI related SNPs account
for about 2.7% of the variation in BMI and the corresponding effect sizes for the European
population based study are reported in Table 7 of the original paper. 16 of the 32 SNPs
from Speliotes et al. [2010] and 31 of the 97 SNPs from Locke et al. [2015] were presented in
the VASST genotype data. For the rest of the SNPs that were not included in the VASST
genotype data, we were able to find 11 LD proxy SNPs that were in linkage disequilibrium
(LD) with R2 > 0.8. These 58 BMI related SNPs were used to construct the single allele
score as an IV for the analysis.

Some of the SNPs in the VASST genotype data set had switched alleles. For e.g. in the
VASST data the SNP is coded as A/G but the risk allele for the particular SNP is reported
as C. Then to identify the corresponding risk allele, the alleles needed to be flipped as A
-> T, T -> A, C -> G and G -> C. Table A.1 and Table A.2 shows the 58 SNPs and the
corresponding effect alleles and effect sizes for the BMI.
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Table A.1: SNPs associated with BMI and corresponding effect sizes

BMI related SNPs Effect Allele Effect Size

SNPs from Speliotes et. al.

rs2867125 C 0.31
rs571312 A 0.23
rs2815752 A 0.13
rs7359397 T 0.15
rs3817334 T 0.06
rs29941 G 0.06
rs543874 G 0.22
rs987237 G 0.13
rs7138803 A 0.12
rs2241423 G 0.13
rs2287019 C 0.15
rs1514175 A 0.07
rs13107325 T 0.19
rs10968576 G 0.11
rs13078807 G 0.10
rs206936 G 0.06

SNPs from Locke et. al.

rs11583200 C 0.02
rs3101336 C 0.035
rs12401738 A 0.022
rs2820292 C 0.02
rs10182181 G 0.03
rs11126666 A 0.015
rs1016287 T 0.028
rs11688816 G 0.02
rs1528435 T 0.02
rs7599312 G 0.017
rs6804842 G 0.02
rs16851483 T 0.056
rs11727676 T 0.027
7rs205262 G 0.022
rs1167827 G 0.023
rs4740619 T 0.017
rs6477694 C 0.016
rs1928295 T 0.021
rs10733682 A 0.018
rs11191560 C 0.027
rs12286929 G 0.017
rs11057405 G 0.026
rs12429545 A 0.038
rs7141420 T 0.029
rs3736485 A 0.016
rs758747 T 0.023
rs1000940 G 0.021
rs12940622 G 0.015
rs1808579 C 0.02
rs7243357 T 0.02
rs17724992 A 0.02
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Table A.2: LD proxy SNPs associated with BMI and corresponding effect sizes

BMI related SNPs LD Proxy SNPs R2 Effect Allele Effect Size
rs1558902 rs1421085 1 C 0.39
rs10938397 rs12641981 1 T 0.18
rs10767664 rs2030323 1 C 0.19
rs10150332 rs10146997 1 G 0.13
rs713586 rs713587 1 T 0.14
rs12444979 rs11639988 1 A 0.17
rs2112347 rs40060 0.96 T 0.10
rs887912 rs759250 0.98 T 0.10
rs1555543 rs11165643 0.98 C 0.06
rs4771122 rs1475221 0.82 G 0.09
rs4929949 rs9300092 1 C 0.06
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