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Abstract

Virtualization is the cornerstone technology of cloud computing. Advancements in virtual-
ization enable researchers to tackle key challenges in today’s cloud. The first part of this
thesis delves into the emerging container virtualization and how leveraging containers we
address resource management and pricing challenges in the cloud. We try calling for an end
to the constant battle between public cloud providers and users over the pricing options of
cloud instances: the users generally have to pay for the entire billing cycle even on fractional
usage. Ideally, idle cloud instances with residual billing cycle should be resalable by their
users. Such trading demands efficient resource consolidation and multiplexing, because the
revenue and use cases are confined by the transient nature of the instances. This thesis
presents HARV, a novel cloud service that facilitates the management and trade of cloud
instances. The platform relies on hybrid virtualization, an infrastructure layout integrat-
ing both the hypervisor-based virtual machines and lightweight containers, incorporating a
truthful online auction mechanism for instance trading and resource allocation. Our design
achieves efficient resource consolidation with no need for provider-level support, and we
have deployed a prototype of HARV on the Amazon EC2 public cloud. Our evaluations
reveal that applications experience negligible performance overhead when hosted on HARV;
trace-driven simulations further show that HARV can achieve substantial cost savings.

The second part of the thesis explores the emerging Network Function Virtualization (NFV).
Virtualization and cloud computing constitute a major driving force for Internet innova-
tions. In today’s Internet, multimedia content traffic accounts for the largest share of all
traffic. Downstream towards the consumers, multimedia traffic often traverse through mid-
dleboxes, undergoing additional data processing imposed by content distributors. With
NFV, middleboxes are embedded in general-purpose, off-the-shelf servers, allowing content
distributors to conveniently borrow existing cloud technologies to process traffic. Despite
these benefits, we find NFV incurs an undue amount of energy consumption when carrying
out high packet forwarding performance. We identify the energy inefficiency issue in the
NFV dataplane which can be exacerbated if not handle properly. We outline a power man-
agement framework that exploits CPU frequency scaling to save energy.

Keywords: Cloud Computing; Virtualization; Multimedia Content Distribution
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Chapter 1

Introduction and Background

Cloud computing has been rapidly evolving in the past a few years. Emerging virtualization
technology such as container and Network Function Virtualization (NFV) are reshaping the
way people manage the cloud; whereas performance and cost remain the primary concerns
when people deploy cloud services or applications. A representative cloud service nowadays
is video streaming, whose traffic accounts for more than 80% of today’s Internet traffic; video
content providers such as Netflix migrate the majority of their infrastructure to the public
cloud while paying the bill to the cloud providers. In the meantime, downstream towards
the consumers, multimedia/video traffic often traverse through middleboxes, undergoing
additional data processing imposed by content distributors. The advent of NFV brings
unprecedented flexibility to implement and deploy these middleboxes. On the other hand,
the software-based packet processing approach adopted by NFV may not be as energy-
efficient as the traditional dedicated hardware-based approach, particularly when carrying
out high packet forwarding performance.

1.1 Contributions of this thesis

With an emphasis on real system measurement and implementation, my thesis explores,
evaluates, and stretches the capabilities of virtualization in the following aspects: resource
manageability, pricing, application performance, and energy-efficiency, all in the context of
cloud computing. As described in what follows:

In Chapter 1, we provide a background on the two emerging virtualization technologies
covered in this thesis, namely the container virtualization and Network Function Virtual-
ization. The technical survey on container and container empowered cloud computing was
published in IEEE Internet Computing, March 2016 [26].

In Chapter 2, we delve into the emerging container virtualization and how we can
facilitate cloud resource management and pricing leveraging containers. We identify there
has been a constant battle over the billing options of between the public cloud providers

1



and their users. The users generally have to pay for the entire billing cycle even on frac-
tional usage. Much like the house renting services Airbnb where house owners fractionally
use their house, the work proposes a “cloudbnb” service for cloud users. We designed
and implemented the service, HARV, leveraging the container virtualization. Our design
achieves efficient resource consolidation with no need from provider-level support, and a
prototype of HARV has been deployed over the Amazon EC2 public cloud. Evaluations on
both micro-benchmarks and real-life workloads reveal that applications experience negligi-
ble performance overhead when hosted on HARV. In the most conservative case, HARV
achieves over 20% cost savings as compared to the fixed-price billing options. The work has
been accepted to IEEE/ACM IWQoS, 2017 [27].

In Chapter 3, we show that NFV powered middleboxes are prone to high energy
overhead when delivering multimedia content. In particular, we find there exists energy
inefficiency in the data forwarding component of major NFV platforms. We demonstrated
this inefficiency is inherent to its design that excessively uses CPU cycles to attain high
performance. Since multimedia traffic is persistent throughout the streaming session and
usually impose additional QoS constraints, existing energy saving methods may not function
well. Based on these observations, we outline power management framework for NFV-based
multimedia content delivery. We show that CPU frequency scaling can achieve promising
energy savings without compromising the performance of multimedia applications. The
work has been accepted to publish in IEEE MultiMedia, 2017 [25].

We conclude the thesis in Chapter 4, where we sketch our thoughts about future
research directions pertaining to this thesis.

1.2 Virtualization Technologies Covered in the Thesis

1.2.1 Container Virtualization

Container is a lightweight, flexible, and application-driven tool for fine-grained resource
control and OS-level isolation. It offers cloud providers an alternative tool for resource
multiplexing and control other than virtual machines. A closer relative to container is an
operating system process since both of them essentially encapsulate a (single) application
runtime. What the container offers additionally is the capabilities of controlling and isolat-
ing OS resources assigned to the runtime, meanwhile including complete dependencies in a
container instance. As such, one may also refer to a container as a virtual environment.

The idea of the container and OS-level virtualization is not new. Linux-VServer [46]
and OpenVZ[10] are two earlier container-based virtualization platforms. Yet container has
only come to the fore in recent years, for two reasons. First, it has shifted from the original
role as a “hypervisor-free” virtual machine, where a single container instance had to be
built full-fledge to support a full OS (as in VServer and OpenVZ), to a lightweight runtime
environment for applications. Second, recent platforms significantly simplify the procedure
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Figure 1.1: Control Groups (cgroups) for CPU and Memory

of container creation and management. These two advancements meet the growing need
of deploying cloud-based distributed applications with “just enough” performance overhead
and maintenance cost. They have been jointly achieved by Docker [5], the most established
and popular container by far.

Docker relies on utilities of the modern Linux kernel to create and manage container
runtime1. First and foremost, a Control Groups (cgroups) module defines a collection of
kernel resource controllers for, including but not limited to CPU, memory, network and
disk I/O. User-level code are allowed to customize these controllers through cgroups virtual
file system. At the runtime, cgroups are assigned to a process through function hooking,
by which resource accesses of the process will trigger the corresponding hooks. As such,
without intervening performance-critical execution paths, cgroups is able to achieve resource
tracking and control efficiently. Figure 1.1 gives an example showing the use of cgroups with
container runtime. cgroups1 defines the control groups of two CPU cores 3, 4 and a limited
amount of memory shaded in light gray. It is assigned to ContainerB that encapsulates a
database server runtime (denoted by db-server). During its life-cycle, the CPU usage of db-
server is limited to cores 3, 4 (which in turn will be used exclusively by db-server) and the
memory footprint is limited by the given amount. As cgroups0 and cgroups2 indicate, it
is also possible to define the cgroups solely for CPU, memory and other manageable system
resources, or arrange them together in different combinations.

Docker further leverages the namespaces isolation feature, enforcing processes to have
separate namespaces for system resources including but not limited to PID, IPC, and net-
work. The resources allocated to the application runtime insides a container cannot be

1Later on Docker developed a native implementation of these modules, as a solution for cross-platform
support [9][13].
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addressed by the other containers, and vice-versa. With the use of cgroups and namespaces
isolation, a container runtime can readily be hosted. Docker has donated the implementation
of these modules to the OCI project in a collection called runC, serving as the cornerstone
to a standardized container runtime. Notably, both cgroups and namespaces isolation have
been used independently and flexibly to achieve resource control [39] or isolation [35], and
many other container platforms are built based on these modules [11][8][9], making the
container techniques versatile.

To facilitate container creation and management, Docker has also designed and imple-
mented the container (image) format. Each container runtime is created from an image
predefined, which includes all the dependencies the target application requires. Besides,
the images can be stored in publicly accessible repositories and conveniently distributed.
Finally, Docker utilizes a layered file system to allow efficient sharing of container images,
which significantly reduces the storage overhead.

1.2.2 Container vs. Virtual Machine

To date, machine virtualization remains the most common way of managing hardware
resources for cloud providers (e.g., Xen [15] for Amazon EC2 public cloud), and has attracted
significant standardization efforts (e.g., OVF). Containers share such common design goals
and features with virtual machines as resource isolation and imaging. Yet the new generation
of containers, represented by Docker, are built with important distinct tenets [46].

At the high-level, the container is upward-facing and application-driven, while the vir-
tual machine is downward-facing and hardware-driven. Hypervisor-based virtualization,
e.g., Xen, enables multiple users to create virtual machines that share the same physical
hardware, where distinct OSes, ranging from the proprietary to open-sourced, are hosted
in an isolated fashion. Containerization permits only applications to be encapsulated in
containers, which leads to greatly reduced deployment overhead and much higher instance
density on a single machine. It unfortunately disallows a full OS-stack to be run separately
from the host OS, prohibiting a multi-OS setting.

At the low-level, the container leverages the host OS utilities to achieve resource encapsu-
lation and management. Hypervisors, on the contrary, runs directly on top of the hardware
in the most privilege mode, taking charge of accessing and managing the underlying hard-
ware resources, akin to the role of an operating system kernel. The virtual machines/guest
OS kernels now run in a less privileged mode, such that any privileged system calls from
guest OSes will be trapped to the hypervisor’s kernel and executed in isolation. This pro-
cess can be done in two ways, either through modifying the Guest OS kernel and drivers to
enforce privileged calls being sent to the hypervisor directly, which is known as the Para-
virtualization (PV); or trapping those calls by special hardware extensions, known as the
Hardware-assisted Virtualization (HVM). As such, virtualization functions at the border of
hardware and OS. It is able to provide strong performance isolation and security guarantees

4



Figure 1.2: Hybrid virtualized layering in public cloud

with the narrowed interface between VMs and hypervisor. Containerization, which sits in
between the OS and applications, incurs lower overhead, but potentially introduces greater
security vulnerabilities such as namespace-agnostic system calls [23].

1.2.3 Hybrid Virtualization

The container is not a replacement to the virtual machine; rather, these two compliment
each other, and are to be placed into a unified framework for cloud vendors and users. When
they are used together (e.g. in a public cloud), with the underlying physical hardware and
the OS in between, they form the hybrid-virtualization layers sitting at the bottom of the
standard model (analogous to the link layers in the OSI model). This layering essentially
places containers insides hypervisor-based virtual machines which are then run on top of
the underlying hardware, and the rationale is that these two technologies, with distinct
design goals and characteristics as illustrated earlier, are in fact complementary to each
other. This hybrid layering is intuitive yet powerful, by which cloud users are allowed to
orchestrate their resources provisioned without any assistance from the underlying infras-
tructure providers. As shown in Figure 1.2, the cloud resource stack is, more often than
not, separated into user’s space and provider’s space. For security and overall cloud per-
formance, (public) providers do not allow users to freely launch any operations in their
space, making resource consolidation and orchestration in the user space a headache (left
half in the user space). In the hybrid layering (right half), container adds another layer of
abstraction in between the VM instance and applications, decoupling application-specific
scheduling and VM scheduling. A direct use of this model is Platform-as-a-Service (PaaS),
which will rely on the container to establish any service runtime environment effortlessly, in
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the meantime, the PaaS providers are exempted from handling the physical infrastructure.
IaaS providers can also benefit from this paradigm [1]. Without involving redundant and
unnecessary OS processes, the scaling out is more efficient for containers than VMs, which
enables finer-grained billing [7]. Noticeably, the hybrid layering is able to coexist with the
virtualization-only solution, as the figure indicates.

1.2.4 Network Function Virtualization

Led by global network operators, Network Function Virtualization (NFV) is an on-going
paradigm shift in the way people implement and deploy middlebox, i.e., a network device
that performs functions other than packet forwarding/routing such as NAT, firewall, load
balancer, and transcoders [17]. Traditionally, middleboxes are implemented on dedicated
hardware devices with high infrastructure and management costs. NFV targets at embed-
ding middleboxes2 on the off-the-shelf, general-purpose server machines. Potential NFV
users include cloud providers, network providers, and Telco CDNs (Content Distribution
Network); transitioning to NFV can help them alleviate the capital expenditures (CAPEX)
and operating expenses (OPEX). An attractive deployment target for NFV, for example, is
the carrier network edge or their Central Offices.

NFV reuses cloud technologies, including virtual machines and containers, to deploy,
manage, and scale middleboxes [44][41]. A middlebox is now a “software box,” running
as a normal cloud application inside a virtual machine, a container, or a hybrid-layer of
both3. As such, the process it takes to manage middleboxes is greatly simplified: installing
patches, monitoring, scaling up and out, etc., are much easier (and faster) to perform on
software than hardware.

Such flexibility comes with a price, however. Hardware devices enjoy circuit-level spe-
cializations to attain both high performance and high energy efficiency; whereas virtual,
software devices usually have to make a trade-off between these two objectives. We will
explore such trade-off in this thesis.

2In the context of NFV, middleboxes are often referred to as the network functions.
3At the cost of losing the benefits of virtualization, it is possible to run network functions on bare-metal

machines, too.
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Chapter 2

Container Empowered Resource
Management and Pricing

2.1 Overview

IaaS (Infrastructure as a Service) has been a major form of public cloud service deployment,
and it is estimated the IaaS market will grow from $15.1B in 2014 to $126.2B by 2026 [24].
State-of-the-art IaaS cloud providers generally offer resources to users as virtual machine
(VM) instances, and a user has to pay for the full billing cycle of an instance even if only
a fraction of the cycle is to be used. Existing studies have shown that this partial usage
issue exists extensively among cloud tasks [32]. As a matter of fact, 79.8% of cloud users
use less than 20% of billing cycle according to the previous analysis [32]. There have been
pioneer efforts toward fine-grained resource provisioning and pricing to offer instances that
better match the user demands [32][33][38]. Unfortunately, as we will show later, there is
a trade-off in terms of cost-effectiveness between a cloud provider and the users since the
former generally resists to refining the instance granularity.

An attractive alternative is to allow users to re-sell their unused instances [14]. Having
a cloud market allowing this not only improves the utilization of cloud resources but is
beneficial for building a healthier cloud ecosystem [20]. This is however easy said than done.
To generate re-usable resources, it is necessary to aggregate and consolidate the partially
used instances. Early solutions on resource consolidation are mostly done from the provider-
side, e.g., how to allocate virtual machines given the limited number of available physical
machines [19][53][29]. To achieve similar goals from the user-side in the public cloud, global
knowledge of the physical machine cluster will be needed, together with such operations as
VM live migration. It is hardly possible or feasible for a public cloud provider to expose
those low-level interfaces to its user’s given concerns from security and network/system
management. Such third-party solutions as Cloud Brokerage [49] suggest that a wholesaler
may purchase a large volume of instances from the cloud provider and re-sell them to users
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at discounted prices. While they do not require infrastructure changes to the public cloud
provider, the broker still operates at the VM level; thereby the usage waste problem of the
cloud instances remains to exist.

Moreover, maximizing the (re)usage efficiency demands effective resource-multiplexing,
i.e., allowing workloads from more than one user to run together on an instance. Without
a proper implementation, this will lead to nested virtualization that can introduce consid-
erable performance overhead [51]. Maximizing the (re)usage efficiency also calls for novel
pricing mechanism beyond those offered by the public cloud provider. Facing the ever
changing availability of partially used instances and the arrival patterns of their potential
users, a dynamic online solution is naturally expected.

In this chapter, we show strong evidence that the partially used instances are valuable
resources, which, if properly recycled, can remarkably improve the cost-effectiveness of pub-
lic cloud users. We also demonstrate that such an instance recycling service is doable with
limited overhead to both cloud users and providers. In particular, we design and implement
HARV, a third-party platform that HARnesses hybrid Virtualization to both recycle cloud
instances and manage their users’ tasks. The hybrid virtualization seamlessly combines ex-
isting hypervisor-based virtualization and containerization and does not require any change
to the infrastructure of the existing public cloud providers. We present a two-level schedul-
ing policy in HARV to simplify cluster resource management and ensure its applicability
with a public cloud. It also incorporates a truthful online auction mechanism to determine
the allocation of requests and the corresponding recycling price. We have implemented
HARV and deployed it with the Amazon EC2 public cloud. Extensive experiments with
real-world benchmarks and large-scale simulations verify that HARV is highly scalable and
cost-effective. It achieves cost savings up to 24% on a typical 1-hour billing cycle, and 19%
of the 15-minute billing cycle.

The remainder of this chapter is organized as follows. We first explore the public cloud
cost-effectiveness issues and present a system overview in Section 2.2. In Section 2.3, we
present details about our system design, including its scheduling and pricing policies. Ex-
tensive experiments and evaluations can be found in Section 2.4. Finally, we review related
literature in Section 2.6.

2.2 Background and Motivation

We start from investigating the (in)efficiency of state-of-the-art billing options offered by
IaaS cloud and how it affects users’ cost-effectiveness. We argue that a recycling mechanism
is necessary for utilizing the residual time of cloud instances, and suggest that hybrid
virtualization is the key toward real-world implementation and deployment.
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Figure 2.1: Augmented instance life cycle

2.2.1 Billing Inefficiency: Cause and Consequence

In Fig. 2.1, we depict the state transitions in a typical public cloud instance’s life-cycle (the
ones in solid lines). In general, the provisioned instance is considered in the same billing
cycle as long as it stays in the Running phase; however, if the user stops a running instance,
a new billing cycle will begin when it is restarted. It is because the cloud provider needs to
release the computing resources held by the instance (CPU cores, memory, IP, etc.) when
handling the stop request. As such, when the user “restarts” the instance, a new group
of resources has to be re-provisioned for it. Consequently, the user will be charged for the
newly provisioned resources, even if (in terms of time) it still falls into the same billing
cycle. Let Tactual be the actual time a user utilizes an instance, and Tcycle be the duration
of the billing cycle, the residual instance time TRI can be calculated as:

TRI = Tcycle − (Tactual mod Tcycle) (2.1)

In Fig. 2.2, we depict the number of potential residual instances (Tcycle = 1hr) per
time slot during a ≈ 6.5 hours record duration in a real-world cluster. Each of the four
lines denotes an assumed TRI range of the residual instances. The data are extracted from
one of the Google’s publicly accessible traces [30]. Those Google-cluster traces have also
been widely used in other recent cloud resource provisioning studies as well [19][49][54].
As shown, despite the fluctuation, there is a constant supply of residual instances: about
10,000 to 20,000 with TRI ≥ 15min, and the ones with TRI ≥ 30min account for nearly
half of the total.

Define the waste ratio:
Wratio = TRI/Tactual (2.2)
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Figure 2.2: The number of residual instances

which is bounded by Tcycle/Tactual; given the actual usage time is usually unpredictable, the
smaller the Tcycle, the less likely a cloud user will overpay the billing. Had the cloud providers
adopted an ideal “per-second billing", the billing would have been efficient. Unfortunately,
per-hour cycle is still the dominant billing model in the current IaaS market (e.g. Amazon
EC2)1. Although there exist cloud providers who offer per-minute billing after an initial
time interval2 such as Microsoft Azure Cloud and Google Compute Engine, their resource
offerings can vary compared to EC2’s [4][3][6]. In addition, we conjecture it is a business
decision for the per-minute billing cloud platforms to offer more competitive pricing schemes
than their market opponents [2] even if those schemes could yield a lower profit margin as
we will explain in what follows.

The above analysis raises the question: why IaaS providers favor long billing cycles?
In addition to other potential reasons, we conjecture that a longer billing cycle will help
compensate and reduce cloud providers’ operational costs, especially the costs for instance
provisioning (e.g., instance creation, decommission, VM image transfer, boot-time oper-
ations, scheduling costs, etc.). To be specific, first, we can infer from Fig. 2.2 that the
duration of user jobs vary substantially with the majority being short-term ones. We then
extract the history a user’s job requests during a 75-minute interval from the trace as de-
picted in Fig. 2.3. Supposing this user will create an instance and runs several jobs spanning
across our examined time interval; when the billing cycle is an hour, the user may subse-

1As shown later in this chapter, even when the billing cycle is much shortened (e.g. 15 minutes), our
solution can still provide substantial cost savings.

2The initial time interval is usually 10 to 15 minutes, also leading to potential billing inefficiency problems.
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Figure 2.3: Billing cycle: 1-hour vs. 5-minute

quently create two instances with the first one covering three jobs in the first hour (with a
waste ratio 1/3). When the billing cycle is shorter (e.g., 5 minutes), the user is allowed to
timely terminate the instance to avoid unnecessary billing cycle charges and create a new
instance upon the arrival of the next job (with a zero waste ratio). On the provider side,
however, the shortened billing cycle leads to 2x more instance creations and thereby surged
provisioning costs.

Despite it being an ideal case for users who have precise cost management, we can expect
most of the users would follow such a pattern to avoid unnecessary billing if shorter billing
cycle were available. Hence, a longer billing cycle could help reduce potential provisioning
costs for cloud providers. It transfers the complexity of consolidating workloads in the time
dimension to cloud users, which leads to the billing inefficiency.

2.2.2 Recycling Instances with Third Party

Given the resistance from the cloud service provider on shortening billing cycles, a better al-
ternative is to consolidate user-supplied residual instances, trade their computing resources,
and generate revenue. For brevity, we refer to the cloud users who “recycle” their instances
as sellers; those who purchase resources as buyers. As illustrated in Fig. 2.1, the instance
life-cycles can be augmented with additional states and transitions represented in dotted
lines. Before a seller decides to stop an instance, it can launch a recycle request, with the
necessary information to take over the instance and immediately clean its states. Once the
instance reaches the cleansed state, it can be added back to the cluster management. Buyers
can purchase resources from the cluster at a market-driven price, deploy their applications,
and the resulting revenue goes to the sellers. Each managed instance is associated with a
decommission deadline to ensure the seller not to be charged for another full billing cycle.

While there are instances available for recycling as shown earlier, the recycling is non-
trivial to accomplish from both the system’s perspective and the pricing perspective. As
described in Fig. 1.2 with the hybrid virtualized layering structure in the public cloud, at
the very bottom sits the physical layer with bare-metal machines, on top of which hypervi-
sor is placed to abstract and manage the underlying hardware. These two layers are marked
as the provider-space, as only the cloud providers have access to resource management on
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these layers for security reasons. As such, public cloud users are not allowed to access these
provider-space utilities, making resource consolidation difficult at the user-space. Even
worse, the heterogeneity and highly transient nature of recycled instances may significantly
limit the compatible workload types. In short, we are facing the following challenges:

• Managing a large amount of residual instances;

• Utilizing transient cloud resources efficiently;

• Identifying target workloads and providing platform-level supports accordingly;

• Determining the resource price and scheduling policies.

To address the first two challenges, there is a need for an additional virtualization layer
on top of the existing one. It will allow tenant isolation on the same recycled instance as
to achieve resource multiplexing. It is also a resource management layer where residual
instances can be consolidated even with no support from the provider. We emphasize here
that a third-party solution that does not rely on the provider for recycling is necessary: 1.
The instance’s billing cycle is fully paid regardless of whether the owner chooses to recycle
it or not. 2. Providers could have higher operational costs when residual instances are
recycled, since those instances will consume more resources as compared to when they are
idle. As such, without explicit incentives, providers themselves are less likely to offer the
recycling service on their own. More discussion on the incentives is offered in Sec. 2.5.

2.2.3 Why Hybrid-virtualization?

There are two potential candidates for building the additional layer, namely nested virtu-
alization3 and hybrid-virtualization. As depicted in Fig. 1.2, in the original user-space (left
side of the figure), applications are run directly in the provider-managed VM. With nested
virtualization, the applications are placed in the VMs managed by a nested hypervisor,
which is run on top of the original VM. By doing so, each application in the same VM
can now have their own virtualized resource pool and isolated runtime environment. This
is seemingly a natural choice to facilitate resource consolidation in the user-space [45][16].
However, placing a hypervisor on top of another often results in excessive overhead and
application performance penalties [51]. Further optimization would require tuning the un-
derlying hypervisor resides in the provider space, which unfortunately is not allowed in the
public cloud in general.

On the contrary, the alternative technique leverages both the traditional virtualization
and the emerging lightweight containerization, which we refer to as hybrid-virtualization.
As described in Chapter 1, in hybrid-virtualization, application containers are placed insides
virtual machines. The container, in its simplest form, is a collection of OS kernel utilities

3http://wiki.xenproject.org/wiki/Nested_Virtualization_in_Xen
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Resource Type (Benchmark) Bare-VM Hybrid-VM
CPU (7z Compression) 92.18Mbytes/s 92.26Mbytes/s
Memory (Sysbench, Read) 10.84Gbytes/s 10.85Gbytes/s
Memory (Sysbench, Write) 10.49Gbytes/s 10.08Gbytes/s
Disk (Bonnie++, Rewrite) 119.95Mbytes/s 118.22Mbytes/s
Network (Iperf, TCP Send) 126.60Mbytes/s 126.59Mbytes/s
Network (Iperf, TCP Recv) 126.53Mbytes/s 126.50Mbytes/s

Table 2.1: Performance of hybrid-virtualization

(e.g. cgroups) configured to manage the resources that an application uses. With contain-
ers, resources are monitored and managed through efficient function hooking devised in only
the non-performance critical execution paths, thereby incurring much lower overhead.

To validate this, we provisioned four m4.2xlarge general purpose instances from Amazon
EC2 cloud, powered by 8x vCPU on Intel Xeon Haswell processor, 32 GB memory, high-
throughput SSD storage, and enhanced networking. In the non-containerized test (the
baseline), benchmarks were run directly in the host VM. For container virtualization, we
installed the latest version of docker4, the mostly widely used container implementation.
In Table. 2.1, we present the experimental results. As we can see, for CPU, containers
are able to attain the compression speed within ±0.1% against the native VM. A closer
look at the MIPS number confirmed that container does not consume more CPU cycles in
compression. Similar observations can be made on the disk, memory, and network tests.
These results indicate that hybrid-virtualization is able to complement today’s public cloud
infrastructure with another lightweight resource management layer, and thereby has the
potential of supporting the instance recycling framework with limited performance penalties.

2.3 HARV: System Design and Implementation

We designed and implemented HARV, a third-party platform that HARnesses hybrid
Virtualization to realize the instance recycling mechanism. In this section, we first illustrate
the design considerations of HARV. We show how HARV uses a two-level scheduling policy
to simplify cluster resource management while improving its applicability. We show how it
handles workloads with different persistence and duration requirements. Further, we design
a truthful online auction mechanism to complement our system.

2.3.1 Cluster Architecture

In Fig. 2.4, we describe the architectural design of the HARV. Our cluster consists of recy-
cled/residual instances from contributors, a state manager module in charge of cluster state
updates, and a Tier-1 scheduler handles container allocation. Tier-2 scheduler and load

4Docker Container: https://www.docker.com/
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Figure 2.4: Cluster architecture with two-level schedulers

balancer are two complementary modules incorporating the two-level scheduling policies
and can be customized by the buyers themselves. The state manager holds a consistent
state information of the cluster, including details on each active residual instance, the avail-
able resources, and their decommission deadline. It is also in charge of detecting failures of
residual instances and containers through keep-alive messaging. Upon the arrival, failure,
or decommission of each residual instance, the state manager updates the state table and
notifies Tier-1 scheduler.

Containers are allocated based on our auction mechanism. As shown in Fig. 2.4, five
containers are placed in the leftmost instance, including two for web servers and three for
batch tasks. Those containers may have different arrival time, duration, and ownerships.
Meanwhile, each component of an application is encapsulated in different containers and
scheduled across the cluster. By allowing such, we can achieve not only resource consolida-
tion but also better resource multiplexing and statistical multiplexing in the user-space.

2.3.2 Two-level Scheduling

Another advantage brought by the hybrid-virtualization is allowing us to separate cluster-
level scheduling and application-specific scheduling. Specifically, HARV does not schedule
user-provided jobs directly. Instead, it only decides the container allocation on residual
instances, improving resource utilization, and optimizing recycling efficiency. We employ
the auction algorithm, described in Sec. 2.3.3, as the cluster-level scheduler (Tier-1) for this
purpose.
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Algorithm 1: Request dispatch algorithm
1: while Receiving request qi do
2: ui = qi.getUserID()
3: if qi.isContainerRequest() then
4: S = MS.getCurrentInstances()
5: τi = Ri.getResourceV ector()
6: if si = ∅ then
7: T1.declineRequest(qi)
8: else
9: MS.update(si, τi)

10: end if
11: else
12: T2i = MS.getT2Scheduler(ui)
13: T2i.scheduleWorkload(qi)
14: end if
15: end while

Meanwhile, the application-specific scheduler (Tier-2) enables buyers to deploy cus-
tomized scheduling policies. This is because, intuitively, users are the ones who ultimately
decide how to effectively use their provisioned containers, since the usage pattern is best
understood by themselves. Upon receiving a request, the cluster will run the dispatch algo-
rithm to determine whether it is a container request or an application request, and consult
to the (Tier-1 or -2) scheduler accordingly. We give the details of the request dispatch
process in Algorithm. 1, with symbols described in Table 2.2.

Following the two-level scheduling, buyers need to submit their requests with specifica-
tions on containers, by which the Tier-1 scheduler decides where to allocate them, consid-
ering both the decommission deadline and resource constraint. Sample specifications are
listed in Table 2.3 with specifications for database, web server, and batch job containers.
Here CPU is expressed in relative units, where the higher the amount, the more CPU share
the container can obtain. The maximum unit can be specified for a CPU/vCPU is 1024.

2.3.3 Tier-1 Scheduling and Instance Trading

An integral component of our cloud system is this container allocation scheduler (Tier-1)
as well as a market mechanism to facilitate the trading of recycled instances. To this end,
we built an auction-based instance trading module to meet both requirements. Current
pricing scheme in cloud markets is still fixed price dominant which usually does not lead to
an efficient market. Auctions have been widely used to determine the clearing prices that
reflect the demand and supply relationship in the market [53]. Our system differs from the
previously studied scenarios in that (1) the resources are inherently constrained by each
instance that are holding them. Treating each type of resource as a monolithic resource
pool like previous works did is not applicable to our system; (2) Instance pool in our system
is dynamic. To this end, we carefully modify the state of art auction mechanism [22] into

15



Symbol Description
MS Cluster state management service

T1, T2i Tier-1 scheduler and Tier-2 scheduler supplied by user i
si Instance i
τi Resource vector < ddli, ~resi >
bi Bid with request i (when use auction-based scheduling)
ui The utility when bi is satisfied
qi Request i: < ui, τi, (bi) >
Rrj Capacity of resource type r in an instance j
S Total number of instances
R Number of resource types
T The allowable running time of the auction

Lr, Ur Lower and upper bound of per unit resource valuation
tmin Minimum requested time of all bids
ti, tj Requested time for bid i and residual time for instance j
dri Demand of resource type r in a bid i

Table 2.2: Table of notation

our problem. The detailed algorithm is presented in Algo. 2, where the symbols used are
listed in Table. 2.2.

We set binary variable xi,j equal 1 if a container request i is allocated to instance j,
otherwise, this container request will not be satisfied by HARV. Our unit price updating
function is defined as λr,j = U r tminL

r

2TRSUr

β, where Lr = mini bi
dr

i
, U r = maxi bi

dr
i
. The intuition

behind this pricing function such is that the smaller the β, the fewer resources are left in
the system. Once β equals zero, the marginal price is set to be the upper bound of the
user’s value per unit of resources. Under such circumstance, no bid can win the auction,
guaranteeing the capacity constraint is satisfied. We are allowing as many requests as we
can to be satisfied by the platform in the beginning, and becoming more conservative with
the diminishing of resources.

Though the competitive ratio claimed in the original mechanism cannot be guaranteed
anymore5, our modified mechanism can still guarantee truthfulness and individual rational-
ity, two important economical properties of a good auction. The individual rationality is
guaranteed by our designed algorithm by ensuring that the utility for each selected requests
is nonnegative. Since the pricing scheme of this mechanism falls into the family of sequential
posted price mechanisms [18] in which truthful bid reporting is a dominant strategy, our
algorithm guarantees the truthfulness in bid value.

5While we leave the design of a more competitive mechanism as future works, our current mechanism is
able to achieve high social welfare and cost savings, as we will show in Sec. 2.4.
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Algorithm 2: Online auction algorithm (OA)
1: Initiate λr,j = tminL

r

2TRS , xi,j = 0, Lr, Ur
2: while Receiving bid i do
3: Calculate utility:ui = bi −

∑
r
λr,jd

r
i

4: if ui > 0 and ti ≤ tj then
5: j∗ = arg maxj(bi −

∑
r
λr,jd

r
i ), xi,j∗ = 1

6: pi =
∑
r
λr,j∗dri

7: Update dual variable: βrj∗ = Rr
j −

∑
i
xi,jd

r
i

Rr
j

,

8: λr,j∗ = Ur tminL
r

2TRSUr

β

9: else
10: xi,j = 0
11: end if
12: end while

2.3.4 Details in Resource Allocation and Sharing

HARV relies on the cgroups kernel feature to enforce the resource allocation decision made
by the Tier-1 scheduler, and the namespace isolation kernel feature to enable sharing of
resources among multiple buyers on the same residual instance. Specifically, each buyer’s
workload is encapsulated in a container which is associated with a resource vector ~resi

given in the buyer’s request. Through container management tools, HARV translates the
resource vector into corresponding control groups (cgroups), a collection of kernel controllers
for system resources including CPU, memory, network and disk I/O. These controllers are
assigned to the container runtime in the form of function hooking. When the container
starts running, its resource access will trigger the corresponding hooks to ensure that the
container does not use more than its resource share. Further, each container will be assigned
a unique set of resource identifiers for its PID, IPC, network, and file system etc., provid-
ing it a runtime environment isolated from other co-located containers’. HARV creates a
software bridge to allow co-located containers to share the host VM’s network (with packet
forwarding, NAT, and DNS configured).

2.3.5 Relocating/Migrating Containers

HARV is able to handle long-term task/containers through container migration. It con-
figures the Linux CRIU (Checkpoint/Restore In Userspace) utility to checkpoint a running
container, creates image files, sends those files to the next running destination, rebuilds
and restarts the container. An advantage of this approach is that applications usually have
dependencies such as OS binaries, third-party packages etc., while the container is able
to encapsulate those runtime dependencies, making it convenient to restart an application
without manually reconfiguring underlying host instance. Besides, buyers themselves (or
the Tier-2 scheduler) can handle the instance decommission through data migration.
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Job Type Duration
(min)

Persis-
tence

CPU
(Units)

Memory
(MB)

Network
(Mbps)

Storage
(GB)

Port

Web Front-end 35 No 256 100 200 0.1 80
Database n/a Yes 256 500 200 50 n/a
Sysbench 35 Yes 1024 512 100 0.5 n/a

Table 2.3: Sample container request specifications given job types

For batch tasks, migration can be efficient given it preserves computed results. For
applications such as web front-end server, when instance decommission occurs, instead of
migrating containers, a perhaps more efficient way is to simply treat it as container failures,
and reassign the job to containers launched in other instances. It is worth noting that, in
current version of our platform, there will be a service downtime from a few seconds to
minutes depending on the check-pointed image size. Although batch tasks should not be
affected much, service downtime may not be tolerable for other user-facing applications.

2.3.6 Target Workloads

HARV is an ideal platform for running short jobs or the ones with limited persistent data.
A variety of applications fit in this category, either in data processing including MapReduce
accelerator [21], or the web front-end servers. We categorize the potential workloads for
HARV and handling approaches based on their persistence and duration (long-term when
user-specified duration exceeds the maximum allowable residual hour) as follows.

Long-term Stateless and Short-term Stateless HARV runs them in recycled in-
stances and handles instance decommission through migrating or replicating containers
(treats the decommission as an instance failure).

Short-term Stateful A migration deadline will be set for tasks of this kind. The larger
the amount of state data, the earlier it is set prior to decommission deadline.

Long-term Stateful Since frequently migrating these jobs can be cost-prohibitive, our
current version of HARV handles them by provisioning on-demand or reserved instances
from the cloud provider, e.g. the database server shaded in dark gray in Fig. 2.4. Buyers
can also launch those jobs in their own (non-recycled) public cloud instances while linking
them to the accelerators deployed in recycled instances.

2.4 Evaluation

In this section, we present the results of system-level benchmarking and trace-driven simu-
lation on HARV. We show that HARV is able to attain high application performance with
substantial cost savings.
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Figure 2.5: Real-world web application performance on HARV

2.4.1 System-level Evaluation

Prototype and Benchmarks Setup

We deployed a prototype of HARV with Amazon EC2 public cloud. We used docker as
the containerization tool for the hybrid-virtualization setup. We run the master node that
accepts instance recycle requests and hosts Tier-1 scheduler in an On-demand m4.2xlarge

instance. We configured Amazon ECS service6 to handle cluster state management (namely
the state manager module). We modified its agent program to integrate it with the Tier-1
scheduler. Notably, except for the state management module, no other EC2 services were
used in our system. Since such a module is commonly available in major cloud providers7,
HARV can be easily ported to other cloud platforms. Our testing cluster contains a maxi-
mum of a hundred residual m4.large instances. We chose the following two representative
types of workloads:

Multi-tier Web Service: We used the RuBBoS8 on-line forum benchmark to model
the multi-tier application service. The number of containers provisioned for running the web
and application servers is equal to the initial amount of recycled instance whose specifica-

6Amazon ECS: https://aws.amazon.com/ecs/
7Azure Container Service Cluster: https://azure.microsoft.com/en-us/documentation/articles/container-

service-deployment/
8RUBBoS Bulletin Board Benchmark: http://jmob.ow2.org/
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tions are shown in Table 2.3. We set up a load balancer for the web servers and deployed an
emulated HTTP client9 on an on-demand m4.large instance to request web pages from the
server with different numbers of concurrent connections. We selected the average request
rate and average request completion time as the performance metrics. We also sampled and
calculated the average queue length in the load balancer.

Batch Task: We created batch workloads by devising a script that runs sysbench

multi-threaded benchmark repeatedly (with a short sleep time between each run). We
provisioned its container as specified in Table 2.3.

We began the test by running only one recycled instance with one web server container
and one batch task container requested. We used the HTTP client to launch page requests
with 10, 100, 1000 concurrent connections consecutively. We collected the average request
rate, throughput, request completion time as well as the number of queued requests in the
load balancer. To ensure fairness, we waited until the load balancer queue was emptied
before starting each new test. The client emulator is placed on an on-demand instance
within the same cloud region in order to minimize the interference from the network. We
then changed the number of recycled instance, the number of server container, and the
number of batch task container to 5, 10, 25, 50, and 100, and repeat these tests. Finally,
we obtained the baseline performance for both benchmarks by running each of them in a
single, non-containerized m4.large instance.

Results

We present the benchmark results in Fig. 2.5. As shown in Fig. 2.5a, the baseline perfor-
mance with a single m4.large instance (the “Bare-VM”) is considerably higher than the
single recycled instance case. This is due to, in the former case, the web servers being al-
lowed to use all of the VM resources; whereas in the latter the servers are run in containers,
and they have to share the resources with other co-located containers, thereby experiencing
lower performance. Nonetheless, the average request rate immediately catches up with the
baseline when there are five recycled instances and more. The effect of scaling out is also
significant when there are more concurrent connections. For example, when the connec-
tion is 1000, an additional 50 recycled instances doubles request rate from around 2500 per
second with 50 instances to near 5000 with 1000 instances.

Similarly, in Fig. 2.5b, the more recycled instances joining the HARV cluster, the less
the time to complete requests, with the average request completion time dropping from
above 3000 ms the highest to 300 ms the lowest for 1000 connections. Particularly, when
the number of recycled instances is higher than 10, the request completion time stays lower
than the baseline across all concurrent connection settings. To confirm the effect of scal-
ing, we depicted the average queue length in the load balancer in Fig. 2.5d. As can be

9Apache Benchmark: https://httpd.apache.org/docs/2.4/programs/ab.html
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Figure 2.6: Comparison of different online mechanisms in social welfare and cost saving

seen, when the number of recycled instances is lower than 10, a substantial amount of re-
quests are buffered in the load balancer’s queue, especially when the system experiences
high concurrent connections. This high-buffering leads to the excessive delay in the request
completion as observed in Fig. 2.5b. With more recycled instances and more web server
container allocated, the queue length plummets, because requests can be immediately dis-
patched to available or idle servers. These results indicate that the additional container
layer poses a minimal impact on user-perceived application performance. Considering the
low (monetary) cost of HARV containers, HARV is a good choice for web service providers
to provision for demand peaks.

For the performance of the batch tasks in Fig. 2.5c, the average job completion time
stays almost unaffected throughout the experiments. As aforementioned, we assigned a
better part of VM resources to the Sysbench container. This shows that in HARV, even
if applications (with different resource usage patterns) share the same residual instances,
HARV can still maintain their performance through differentiating the resources usage
priorities. We attribute this achieved performance isolation to the use of containerization
with each running container assigned an independent OS namespace and resource control
groups (e.g. cgroups in Linux).

Finally, we measured the management module overhead. We found that when the recy-
cled instance cluster is not trivially small, the overhead of running HARV is negligible. The
management overhead (excluding the user-level overhead, e.g., the load balancer and Tier-2
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scheduler) originates from the master node, state management module, Tier-1 scheduler,
and the agent program on each recycled instance. In terms of monetary costs, the master
node (running on m4.2xlarge On-demand instance in our prototype) costs $0.479 per hour,
an affordable price (in the real deployment, HARV can transfer some of the revenue to cover
this cost) that can be further reduced by provisioning the cheaper reserved instance as the
module will be running constantly. There is no additional charge for the state management
module from EC210. In terms of performance overhead, HARV takes 67.5 seconds (averaged
over 100 instances) to setup a recycled instance, a process that includes instance cleansing,
agent program installation, and containerization; and 4.2 seconds to handle a request (the
time between receiving the request and starting the container; averaged over 5000 requests).
For the agent program, HARV consumes less than 5% of CPU, limited memory footprint,
and network bandwidth. The results indicate that the time HARV takes to manage a re-
cycled instance is considerably shorter than the billing cycle, leaving most of the residual
instance time available to recycle.

2.4.2 Large-scale Trace-driven Simulations

Experimental Settings

In this part, we conduct simulations to evaluate the effectiveness and scalability of our trad-
ing module (Tier-1 scheduler). We select the publicly accessible Google Cluster trace [30]
(also used in Sec. 2.2), consisting of 3,535,030 entries, reporting each tasks’ ID, active time,
normalized resource demand (CPU, Memory), as well as task types, in an approximately
6 hours period. The time interval between each report update is 5 minutes. We identified
176,580 unique tasks after removing the reported anomalies, combining different entries
that belong to the same task and calculating their durations.

To simulate the residual instances, we firstly assume each task request will be handled
by a single on-demand VM/instance, and compute the corresponding residual instance
information, including the time it being recycled as well as the residual hour according
to Formula 2.1. Our event-driven simulator read the entries sequentially while checking
the “current time” of the cluster; it adds and removes a residual instance to simulate
the recycling and decommissioning process. Each request is submitted to the scheduler;
unsatisfiable requests are simply omitted.

Performance Metrics

We use cost saving and social welfare as our performance metrics. Cost saving is defined
as the percentage of saving can be achieved by using our trading system compared with
directly buying on-demand instances. Social welfare is the sum of utilities of all users and

10Amazon ECS Pricing: https://aws.amazon.com/ecs/pricing/
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the auctioneer (i.e.,
∑
i

(bi−
∑
r
λr,jd

r
i +

∑
r
λr,jd

r
i ) =

∑
i
bi), as defined in Algo. 2, an indicator

on how efficiently our system allocates resources to users who want them most. We test the
system performance under different instance lifecycle. We choose 1 hour since it is one of
the current prevalent instance life time settings. We also choose 15 minutes as the lifecycle
to reflect current trends in designing fine-grained resource provisioning scheme in academia.

Trading Systems Compared

We compare our instance trading system with other one-off sale markets where an instance
will only be sold once (i.e., no recycling will be involved). We implemented the online auction
algorithm (Sec. 2.3.3) in our trading system, whereas we adopted two other allocation
algorithms in the one-off market. First, we adopted the similarity-based scheduling policy
(Sim). In Sim, the vector similarity is computed between the container request vector
and the instance vectors, and the instance with the highest similarity score is chosen to
satisfy the request. Sim is a representative heuristic that being frequently used in designing
cluster scheduling algorithms [28]. The second algorithm is the online auction mechanism
with linear dual variable updates (OA-linear). In OA-linear, we change the dual variable
update function in Algo. 2 to a linear function to validate the effectiveness of the original,
exponential function. Finally, the pricing scheme in Sim is fixed, whereas OA and OA-linear
both implement dynamic pricing.

Results

We present the experimental results in Fig. 2.6. First, as shown in Fig. 2.6a, given 1-hour
lifecycle (current EC2 billing cycle setting) the proposed trading system with OA algorithm
consistently achieves higher social welfare than the other two methods in a flat-rate market.
Further, similar observations can be made in Fig. 2.6d where the lifecycle is reduced to
15 minutes. Notice that social welfare using 15 minutes lifecycle decreases when compared
with the 1-hour counterpart is because we have fewer requests in the trace to be satisfied
by the 15 minutes long instance. Though smaller billing cycle results in fewer resources
available on the market to accommodate container requests, OA still achieves considerably
higher performance than the other two methods.

Second, OA is able to maintain the cost savings even when the resource contention is
high. In Fig. 2.6b, the cost saving of OA achieves 14% at 1,000 bids and sustains over 10%
except for the 12,000 bids scenario. For the other two methods, however, the cost savings
drop from nearly 14% (OA-linear) and 13% (Sim) to below 10% when there are more than
3,000 bids, and plummet to around 5% at 12,000 bids. Cost savings of OA in 15 minutes
lifecycle in Fig. 2.6e also exhibit similar superiority. Notably, even OA-linear implements
a dynamic pricing scheme and Sim a fixed one, OA-linear achieves no better social welfare
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and cost savings than Sim. This confirms the importance and superiority of the pricing
function in OA.

Third, in Fig. 2.6c and Fig. 2.6f, we intend to show the cost saving effects of our system
to the jobs with different lengths. In the 1 hour lifecycle, our system constantly brings
over 15% cost saving gains to all jobs with less than 40 minutes duration in all tested
scenarios. Jobs with less than 5 minutes duration maintain around 20% cost saving. As we
have explained before, the reduction of lifecycle brings less space for requests consolidating,
which leads to smaller cost savings. However, jobs with less than 10 minutes duration still
can benefit from 15% cost saving in 1000 bids to 12% cost savings in 12000 bids. As a
conclusion, our auction-based trading system can achieve significant performance gain as
compared to those one-off markets with either flat-rate or dynamic-rate.

2.5 Discussion

Before concluding our paper, we discuss the following issues pertaining to the adoption and
practicality of the instance recycling service.

Provider’s Incentives and Support: Although HARV tackles the general, third-
party instance recycling problem where we assume the absence of cloud providers’ support,
there are indeed incentives for providers to support such service. Similar to Amazon EC2’s
spot instances (or Google Compute Engine’s preemptible VMs), recycled instances is a cost-
effective choice for certain types of workloads (see Sec. 2.3.6). They both allow users to buy
non-standard computing resources with a (likely) much lower price. On the other hand,
there are major differences between recycled and spot instances. First, recycled instances
can not only save costs for users who want to buy resources but also those who sell them,
i.e., the residual instances owners. Second, unlike spot instances, recycled instances do not
preempt workloads. They allow users to run workloads that are not interruptible. Third,
the resource offering of recycled instances is container as opposed to VM in spot instances.
As such, while spot instance has become a widely used service, cloud providers can exploit
recycled instances as another form of differentiated, value-added service to attract diverse
user groups, gain extra revenue, and further improve their resource utilization. Cloud
providers can either cooperate with a third-party instance recycling platform or build one
themselves. Within the extent of our knowledge, HARV is the first work that addresses the
motivation and technical challenges for building such service.

Trust and security issues: Trust and security issues have been one of the biggest
concerns over cloud computing in general [42]. On the one hand, HARV targets for major
public cloud deployment only and thereby these issues are not as pronounced as in other
platforms relying on private, customer-supplied resources (e.g., from a private cloud or
PCs) [48]. On the other hand, instance recycling indeed introduces new trust and security
challenges. For example, residual instances suppliers and buyers should not have each
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other’s data. In addition, malicious workloads should be prevented from sabotaging other
co-located workloads. HARV relies on containers to provide resource isolation as discussed
in Sec. 2.3.4. At the policy level, the supplier is required to grant root privileges to HARV
in order to successfully submit a residual instance to HARV (and they can choose to wipe
out their data beforehand). HARV will then drop the supplier’s root privileges and limit
the local container manager to root access only (i.e., the docker daemon in our prototype).
Notably, even if suppliers give up the root privileges, they will still be able to terminate
the instance or modify its running through the cloud providers’ API. Although HARV
can blacklist the untrustworthy instance suppliers, a well-rounded solution would require
cloud providers’ support. Moreover, advancements on cryptography allow more types of
privacy-sensitive workloads to be run on third-party platforms such as HARV. For example,
Order Preserving Encryption has been effectively used to preserve client’s confidentiality
for middlebox workloads running on the third-party cloud [34]. While in this chapter we
focus on other design dimensions of instance recycling, we will continue to address the trust
and security issues in our future works.

2.6 Related Work

Both cloud providers and users are faced with the resource inefficiency problem. While
cloud providers have the luxury of improving their resource provisioning methods, cloud
users may only leverage existing pricing options or application-level scheduling to alleviate
the issue. HARV provides an alternative solution for cloud users by enabling them to resell
their underutilized resources.

Resource Provisioning: Facing the resource inefficiency in current IaaS cloud, a
substantial works have been done on designing fine-grained resource provisioning meth-
ods [53][50][37]. Most of these works focus on solving resource allocation problems from
the provider’s perspective, and they all operate on VM level. HARV can be treated as
a cloud provider. Different from these works, HARV operates on containers for resource
provisioning and does not belong to the IaaS category. The advancement of containeriza-
tion techniques opens opportunities for cloud providers to supply flexible and efficient cloud
resource offering. Containers bring less CPU consumption, less reboot time, smaller im-
age size as compared to hypervisor-based VMs [36]. They also introduce little application
performance overhead as shown in our paper.

Pricing Options: Extensive works tried to improve cost-effectiveness for cloud users
by leveraging and improving the existing pricing options [21][55][49]. Chohan et al. [21]
explored the Spot Instance option to accelerate MapReduce jobs with greatly reduced mon-
etary cost. Wang et al. in [49] exploited the Reserve option and proposed a dynamic
instance acquisition scheme that minimizes the broker’s cost to accommodate given de-
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mands. Instead of exploiting existing billing options, we tackle this issue by introducing a
new cloud instance type, which can be used jointly with those existing frameworks, too.

Customer-supplied Cloud: Wang et al. [48] studied a customer-supplied cloud (Spot-
Cloud), where resources are provided from user’s physical machine instead of the public
cloud. HARV can be viewed as a customer-supplied cloud, too. The major difference
between HARV and SpotCloud is that HARV’s resources are from the public cloud only.
Compared to the residual instance we studied, a SpotCloud machine could introduce greater
performance variance and trust issues.
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Chapter 3

Energy Efficiency in NFV
Empowered Content Distribution

3.1 Overview

Multimedia traffic, in particular video traffic, accounts for the largest share of all traffic
in today’s Internet. By 2020, an estimation of 82% of consumer Internet traffic will be
attributed to video streaming according to Cisco [12]. Multimedia traffic is highlighted by
its volume, variety, multicast nature and additional QoS constraints. Downstream towards
consumers, multimedia traffic often traverse through middleboxes (i.e., network functions;
in this chapter, we use terms middlebox, network function, and network appliance inter-
changeably), such as WAN (Wide Area Network) optimizers, transcoders, content caches,
NATs (Network Address Translator) and traffic shapers, undergoing additional data pro-
cessing imposed by content providers and/or distributors.

Traditionally, middleboxes are implemented as dedicated, vendor-specific hardware, an
approach that leads to escalated management costs and an inefficient use of infrastructural
resources [44]. Network Function Virtualization (NFV) is an on-going movement led by
global network operators that aims to migrate network functions from dedicated hardware
to off-the-shelf, general-purpose servers. Potential NFV operators include cloud providers,
network providers, and Telco CDNs (Content Distribution Network); transitioning to NFV
can help them alleviate the capital expenditures (CAPEX) and operating expenses (OPEX).
For instance, an attractive deployment target for NFV is carrier network edge or their
Central Offices (see: http://opencord.org/).

While there are comprehensive works surrounding NFV’s performance and architectural
design [44][31][41], its energy cost has rarely been studied. Given the extensive presence of
middleboxes, energy cost (as a major contributor of OPEX) is likely to become one of the
deciding factors in the operators’ adoption of NFV. In this chapter, we show that NFV pow-
ered middleboxes are prone to high energy overhead when delivering multimedia content.
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Figure 3.1: A holistic view of middlebox traversal of a video stream.

In particular, we find there exists energy inefficiency in the data forwarding component of
major NFV platforms. We demonstrated this inefficiency is inherent to its design that ex-
cessively uses CPU cycles to attain high performance. Since multimedia traffic is persistent
throughout the streaming session and usually impose additional QoS constraints, existing
energy saving methods may not function well. Based on these observations, we propose
an outline of a power management framework for NFV-based multimedia content deliv-
ery. We show that CPU frequency scaling can achieve promising energy savings without
compromising the performance of multimedia applications.

3.2 NFV-based Multimedia Content Delivery:
the Energy Cost

NFV is often considered as an extension of cloud computing to the networking domain.
As a multimedia content provider or distributor, however, transitioning to NFV may not
be as easy as deploying a cloud application on its datacenter. Multimedia traffic often
traverses through a series of middleboxes, as described in Figure 3.1. This simplified example
captures how popular live broadcasting service providers, e.g., Twitch.tv, collect content
(video broadcasters send streams to the ingest server), process content (video transcoding)
and deliver content (via CDN) [52]. Two observations can be made here: first, there are
different types of middleboxes [17] along the path, and they may possess various runtime
characteristics such as resource usage and energy cost. Second, middleboxes are likely to be
owned by different operators. When transitioning to NFV, the operators need to reevaluate
their power budgets with the knowledge of energy costs for different middleboxes deployed
from place to place.

To better understand the energy cost, we measured the power and bandwidth consump-
tion of a NAT box with multimedia traffic is passing through. A typical NAT box modifies
the IP header of in-transit packets to remap one IP address space into another. We chose
the NAT box for its prevalence in today’s Internet as well as its simplicity: being a network
function with little application-layer processing, which provides a cleaner baseline for our
future measurements. We set up an ASUS RT-AC68U router with NAT acceleration turned
on for the hardware NAT, and the Linux iptables utility for the virtual NAT. We used
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Figure 3.2: Throughput and power consumption of a NAT box when multimedia traffic is passing
through. Three middlebox deployments in comparison: hardware NAT, virtual NAT with Linux
in-kernel bridge, and virtual NAT with Open vSwitch and DPDK forwarding engine.

the ffserver (https://trac.ffmpeg.org/wiki/ffserver) to set up a multimedia broad-
casting server and ffplay (https://ffmpeg.org/ffplay.html) as the client. The sample
multimedia traffic consists of a 1080p video stream (H.264 encoded, 3 Mbps bitrate), two
audio streams (320 kbps and 160 kbps bitrate) and meta data. We devised a script that
consecutively creates 300 sessions (starting from 0 session and every 10 seconds 10 more
sessions are added) in 5 minutes. More details on the testbed setup and data collection can
be found in Section 3.3.

We plot the results in Figure 3.2. As shown, the hardware NAT, sitting at the bottom,
sustains the power consumption of around 7.2 watts regardless of the network load. Sitting
in the middle is the virtual NAT implemented with Linux in-kernel bridge, whose power
consumption is roughly in proportion to the load. Although the virtual NAT achieves lower
power consumption than the hardware NAT when idle (6.16 W vs. 7.18 W), its power
consumption is considerably higher (average 9.84 W vs. 7.20 W) with the highest readings
doubling the power cost. Finally, the virtual NAT implemented with Open vSwitch and
Intel DPDK forwarding engine, a popular module used in NFV platforms [31][41], consumes
significantly more energy than the other two setups (average 23.24 W), tripling the cost of
hardware NAT. Moreover, it consumes around 22 watts even when there is no traffic passing
through. The results indicate that energy cost may indeed become a concern for multimedia
content provider and distributors when they transition to NFV.

29

https://trac.ffmpeg.org/wiki/ffserver
https://ffmpeg.org/ffplay.html


Figure 3.3: The NFV testbed consists of three dataplane setups: off-the-box in-kernel bridge, Open
vSwitch with native and DPDK forwarding engines, and two servers to inject traffic. Each vir-
tual machine (VM) emulates a physical machine, providing functionalities to run an OS and hence
network functions.

3.3 Background and Testbed

By drawing a comparison with the hardware middlebox, one can see that the NFV products
may greatly raise the energy costs when delivering multimedia content. To track the cause,
we built a single-host NFV testbed as summarized in Figure 3.3. We use the following terms
to refer to each component of the testbed:

• Virtual Network Function (VNF) A network function implemented by software
and embedded in commodity server.

• Virtualization Layer An isolated runtime environment for VNFs, e.g., virtual ma-
chines (VM) or application containers; we chose the former and used Linux qemu-kvm
utilities to create VMs.

• Dataplane The term originates from Software-defined Networking (SDN), which ad-
dresses the separation of network control plane (deciding how packets are routed) and
the data plane (forwarding and/or processing packets). In some literature a dataplane
may refer to any network component that operates on the traffic, including a VNF.
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In this chapter, we find it convenient use the term to describe the combined module
of a vSwitch and its forwarding engine only.

• Virtual Switch (vSwitch) A software program that facilitates network communi-
cations among VMs. Virtual switches often support SDN flow rule interface (e.g.,
OpenFlow), and can be thereby more versatile than a software bridge.

• Forwarding Engine A set of drivers and libraries that perform packet transmission
between a physical NIC and the virtual NIC (and thus to the VNF).

We set up a midrange server with a 3.4GHz Intel i7 quad-core CPU and an Intel I350
Gigabit Ethernet Network Interface Card (NIC) as the host machine. We installed an
additional Ethernet card to have an “out-of-band” control of the server, as in some of our
configurations, the access of NIC will bypass the host’s kernel entirely and cause the host
to loss its IP stack functionality. We set up two physical servers as the traffic generator
and receiver. The three physical machines are connected via a Netgear GS116NA Gigabit
switch. Finally, we created the following dataplane setups (as shown in Figure 3.3):

Linux in-kernel Bridge The bridge is available in most of mainline Linux distributions,
making it an ideal out-of-the-box solution for setting up an NFV platform.

Open vSwitch Open vSwitch (OvS) is one of the most widely deployed software switch
in the market. It features advanced flow caching, fast packet classification supports, and
compatibility with OpenFlow. In addition to its native kernel forwarding engine, OvS
also supports third-party forwarding engines such as Intel DPDK (http://dpdk.org/),
targeting to better line-rate performance. We built two versions of OvS from the source
(https://github.com/openvswitch/ovs), one with the native forwarding engine (OvS-
native) and the other with DPDK (OvS-DPDK).

Having two OvS versions with different allows us to track down the energy consumption
in vSwitch and forwarding engine separately. Across all setups, we configured virtio

(http://www.linux-kvm.org/page/Virtio) as the datapath between the host and VM.

3.4 Tracking the Energy Inefficiency

To begin with, we consider the following characteristics of multimedia traffic:

• Continuous Multimedia traffic are persistent, continuous and sizable flows that oc-
cupy the link bandwidth during a time period.

• QoS constraints Multimedia applications are user-facing. They impose additional
and possibly time-varying QoS requirements such as end-to-end delay, bandwidth,
and packet loss rate.
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Figure 3.4: Power consumption and CPU frequency measurements when multimedia traffic traverse
transcoding box on in-kernel bridge (top) and OvS-DPDK (bottom), with the common power man-
ager of OS turned on. The baseline power consumption (6.22 W) is the host server running without
any VNF or dataplane; the baseline CPU frequency is the lowest supported P-state frequency.

These characteristics are likely to contribute to the raised NFV power consumption and
affect the efficacy of power management methods. For instance, due to the continuity of
multimedia traffic, it is difficult to spot an idle time of the traversed middleboxes. Hence
it may become prohibitive to use sleep modes and deprovisioning unused middleboxes to
achieve energy savings. Due to the QoS constraints, power management frameworks must
also take into account the application performance when making power tuning decisions,
a problem that is unfortunately non-trivial [47]; whereas, for those background, non-user
facing applications, the middleboxes and network traffic can be better scheduled to achieve
energy savings with fewer concerns. In addition, multimedia traffic can trigger intensive
computations at the middleboxes and lead to high energy consumption. In the previous
experiment we evaluated the NAT box, a network function that does not touch the traffic
payload (i.e. the content) and involves little application-level processing; while there exist
middleboxes that are computational-intensive and pervasive such as the transcoding boxes
and content distribution boxes [52][17].

In Figure 3.4, we depict the experiment of multimedia traffic traversing a transcoding
box. We turned on the Linux on-demand power governor, a power saving module available
and used in mainline Linux distributions. It tunes the CPU frequency based on the CPU
utilization to conserve energy. As compared to the NAT box traversal, the energy cost is
raised considerably: when the in-kernel bridge is used, the average power consumption is
now close to 20 watts, doubled from the previous case (≈ 10 W); for OvS-DPDK, it is now
close to a staggering 30 watts. Besides, the majority of frequency is set to the maximum
frequency (3.6 GHz) for both cases, indicating that the power manager may have limited
influence on the overall energy savings (we offer discussion over this issue in Section 3.5.2).
Moreover, we can see that the combined effect of dataplane and application-level processing
on frequency and power consumption. The CPU frequency with OvS-DPDK stays above
2.4 GHz, hovering around 3.0 GHz and close to the maximum frequency. As a result, the
consumed power is consistently higher than 20 watts, more than four times of the baseline.
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Figure 3.5: Performance comparison of three dataplane setups under different packet rates: MTU
1500 (Left) and MTU 500 (Right). Note the difference in the Y-axis scale.

3.4.1 Benchmarking the Dataplane

The experiment with real-world multimedia traffic indicates that NFV may introduce high
energy overhead for content providers and distributors. They also hint us on potential
energy inefficiency: the dataplane. Supporting the same VNF, the OvS-DPDK dataplane
consumes much more power than the in-kernel counterpart (Figure 3.2). Yet it is not clear
whether the vSwitch or forwarding engine is to blame.

We ran the following experiments to investigate these issues. We used iperf (iperf:
https://iperf.fr/) network benchmark to generate traffic between the source and the
sink. Using the network benchmark allows the traffic generator to conveniently saturate
the link capacity and put the dataplane under heavy load. It also allows us to evaluate the
send and receive behavior separately. Besides, we were interested in the effect of different
packet rates. We adjusted the packet rate by changing the MTU at the traffic generator.

We used Intel RAPL (Running Average Power Limit) (https://01.org/rapl-power-meter)
to measure power consumption. RAPL provides both the holistic power readings (cores,
caches, and memory controller) as well as core-only power readings, allowing us to determine
the energy contributions of core and non-core components.
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Figure 3.6: Power consumption comparisons of three dataplane setups in standby (without traffic)
and busy (with traffic) scenarios and baseline for host OS and VM. MTU is set to 500.

We present the network performance results with three dataplane setups in Figure 3.5.
At the default 1500-byte MTU, both OvS-native and OvS-DPDK achieve higher through-
put in TCP sending and receiving than the out-of-the-box in-kernel bridge, although the
performance difference is only marginal (< 5%). When the MTU is 500, with roughly three
times more packets to process, the performance of three setups now differs prominently.
The TCP send throughput of in-kernel bridge plummets to 441 Mbps, less than half of the
original performance. Although the other two switches also suffer from performance loss,
they are able to attain much higher throughput. In particular, OvS-DPDK performs 2x
better on TCP send and 1.5x better on receive than the in-kernel switch. Moreover, com-
paring the results of OvS-native and OvS-DPDK reals that the choice of forwarding engine
has considerable impact over packet receiving performance, where OvS-DPDK increases the
throughput by about 30% from OvS-native.

The power consumption results are depicted in Figure 3.6. The baseline power perfor-
mance of our NFV testbed is about 6.22 watts when running the host OS alone; running
a virtual machine in it will add about extra 2 watts. In terms of the standby power, the
in-kernel bridge adds a negligible amount of energy and the OvS-native about 1 watt. The
staggering number appears in the case of OvS-DPDK. Even when no traffic is in transit,
OvS-DPDK consumes about 3 times more energy than the other two dataplanes, adding
250% energy overhead (15.57 W) on top of the host OS.

When they are used to forward traffic, the discrepancy between OvS-DPDK and the
other two dataplanes shrinks, despite the fact that OvS-DPDK still draws about 25% more
energy than the in-kernel bridge (400% of the idle host OS). From the core-only power
readings (the total accounts for other subsystems such as memory controller, last-level
cache, and graphic processor) we found that the CPU cores are the major contributor to
the energy discrepancy. OvS-DPDK brings in about 5 watts more consumption in its use
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of the core. In fact, without using DPDK, OvS-based dataplane achieves similar power
consumption at standby and even less when running as compared to the in-kernel bridge.

3.4.2 Forwarding Engine is the Energy Hog

Multimedia applications are often throughput demanding; using the advanced forward-
ing engines such as DPDK can benefit the application performance. We confirmed this
performance speed-up in the experiments, yet we also showed that high-speed forwarding
engine leads to an undue amount of energy consumption. To better understand this issue,
we conducted a profiling analysis of OvS-DPDK using Intel VTune Amplifier (https://

software.intel.com/en-us/intel-vtune-amplifier-xe), a binary instrumentation toolset.
Thanks to the open-source nature of DPDK, we are able to conduct detailed, code-level
analysis.

To put the dataplane under full load, we launched hping3 (hping3: https://linux.

die.net/man/8/hping3) on both the guest VM and the traffic generator to inject bidirec-
tional traffic at the maximum link speed. First, we found that there is a pmd_thread_main
accounts for around 99.7% CPU occupancy (i.e., a full core utilization). By cross referencing
to the source code, we found the hot-spots of this thread reside in the dpif−netdev.c:

2 , 850 : e r r o r = netdev_rxq_recv ( rxq , &batch ) ;

This function call accounts for 51.6% of the CPU usage. There are also other hot-spots
in the same function which we will omit here. By tracing back to the function’s caller in
pmd_thread_main(void ∗f_):

3 ,113 f o r ( ; ; ) {
3 ,114 f o r ( i = 0 ; i < pol l_cnt ; i++) {
3 ,115 dp_netdev_process_rxq_port (pmd,

l i s t [ i ] . port , p o l l _ l i s t [ i ] . rx ) ;
3 ,116 }
3 ,135 }

We found that the thread keeps spinning on this code block, indicating it is continuously
monitoring and executing the receiving data path. When we repeat the experiment with
OvS-native, we did not find such high CPU utilization and thread spinning. We then
collected other statistics including the CPI value (cycles per instructions) and branch mis-
prediction rate for both OvS-native and OvS-DPDK. We found that OvS-DPDK spends
more CPU cycles in fetching and decoding the instructions than actually doing computations
(CPI value: 0.693). And the majority of instructions are a result of bad speculation with a
lot of mis-predicted branches (i.e., the “if” statements). On the other hand, OvS-native gives
lower mis-prediction rate and yields much higher CPI value (1.364). The results demonstrate
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that OvS-native, as compared to OvS-DPDK, uses CPU more efficiently by spending cycles
on useful computations, although on average it spends more time to complete an instruction
(due to the use of interrupts).

As a conclusion, we confirm that OvS-DPDK improves its performance by running a
spinning thread that keeps polling for any newly received packets in the device buffer to
attain better performance. This approach yields higher performance than the traditional,
CPU-efficient interrupt based approach. On the other hand, the polling model also leads
to an inefficient use of CPU cycles that causes the significantly higher power consumption
than the interrupt based approach.

3.5 How to Manage the Power?

Our single-host experiments reveal energy inefficiency issues that lie in current NFV data-
plane implementations. In reality, dataplanes are often deployed in a multi-host, multi-hop
fashion, e.g., multimedia distribution (Figure 3.1), where energy inefficiency is likely to be
amplified or even propagated, making it a network-wide problem. We summarize the fol-
lowing challenges in designing power management frameworks for NFV-based multimedia
content delivery:

• At the single-host level, the framework should exploit the commonly available power
tuning interfaces on the host machines. Since dataplanes and VNFs are real-time,
data-intensive applications, the power tuning must be done carefully without risking
performance.

• At the multi-host level, the framework should preserve the Quality of Service (QoS) of
multimedia applications, which demands a global view of all transit VNFs performance
when applying power tuning.

In this section, we provide the outline of a performance-aware power management frame-
work. We then examined the energy and performance impact of CPU frequency scaling as
the power tuning method.

3.5.1 Overview of a Power Management Framework

In Figure 3.7, we depict the outline of a proposed power management framework. The
framework consists of an agent program deployed on each host server and a centralized
power manager. The power manager can be viewed as a control plane service. It should
query the NFV manager for the most updated VNF and the host server information. The
manager should take charge of generating a global policy for network-wide power saving,
based on the performance requirements of multimedia applications, stream characteristics,
and the current NF status.
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Figure 3.7: The proposed power management framework. It complies with the control and data plane
separation of SDN. The power agent is deployed on each VNF host server at the data plane and
a centralized manager that makes global power-performance tuning decision based on application-
supplied policies. Despite sitting at the control plane, the power manager may as well leverage the
APIs of other controllers.

3.5.2 Energy Savings Through CPU Frequency Scaling

Given multimedia traffic are continuous and multimedia middleboxes usually shared by
multiple streaming sessions, it can be rare to spot an idle time for the middlebox and its
underlying dataplane. As such, power tuning methods that rely on OS sleep modes may
not function well since they squeeze energy savings from the application idle time. To
incorporate the QoS requirements, power tuning methods should also enable fine-grained
power-performance trade-off and avoid QoS violations.

We decided that CPU frequency scaling could be a promising power tuning method for
NFV host server energy saving. First, the interface has long been supported by modern
CPUs and OSes, including most of the server-class machines. Second, it allows frequency
tuning at per-core granularity and permits access in the userspace [47][43]. Although there
exist some OS-level power management tools that exploit this interface (e.g., Linux power
governors), they cannot be directly used in our case because computation-intensive appli-
cations such as DPDK’s polling driver may run on a spinning thread and the OS will not
be able to distinguish whether it is under heavy load or not.

We repeated the iperf experiments in Section 3.4 with CPU frequency scaling. We
devised a script to provide simple frequency control. As a sample power agent, the script
probes the target frequency setting by gradually reducing the frequency until it sees the
target throughput drops for more than a given threshold, i.e., finding the Pareto frontier of
the power consumption and throughput. We leave the detailed design and implementation
of the full-fledge power agent and manager in our future work.

To illustrate the effect of frequency scaling, we configured the script to iterate through
the frequency range and collect the intermediate results. As shown in Figure 3.8, at the
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default 1500 MTU, we see a power reduction from 23 watts at 3.4 GHz to under 20 watts
at 2.6 GHz and 13 watts at 1.7 GHz with over 43% energy saving. As for the performance,
the throughput for both sending and receiving stay the highest across the frequency range.
When we change the MTU to 200, the power saving becomes more prominent with the total
power consumption halved at 2.6 GHz. On the other hand, the frequency tuning starts to
have an impact on the performance on the packet receiving. The throughput drops from
around 534 Mbps at the maximum frequency to 320 Mbps at the lowest. We conjecture
the performance penalty is caused by the overloaded PMD thread on the packet receiving
path. The sending performance remains unaffected. During the experiment, the frequency
control loop consumed less than 1% of CPU and negligible power consumption.
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Figure 3.8: Impact of CPU frequency scaling over power consumption and application performance
at low packet rate (top, MTU 1500) and high packet rate (bottom, MTU 200).

Based on these preliminary results, we conclude that when the network load on data-
plane is moderate or send-bound, it is performance-friendly to lower the CPU frequency to
conserve energy; when network load becomes high and receive-bound, the frequency should
be raised accordingly to avoid performance penalty. This leads to the idea of energy propor-
tionality, the desired property stating that the power consumed in computer systems should
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be in proportion to how much useful work they complete [43]. To incorporate this property
in our framework, the power manager needs to extract the multimedia stream information
and forward it to the power agents. A power agent will then exploit this information to
estimate the workload in the next time frame and adjust the CPU frequency accordingly.

3.6 Discussion

Traditional middleboxes rely on hardware specialization, e.g., Application-Specific Inte-
grated Circuit (ASIC), to attain high performance. At the computer architecture level,
ASICs differ from general purpose processors in their use of dataflow model. It minimizes
the overhead of instruction loading, where the program execution solely depends on the
availability of input data at the logic gates. Dataflow model is thus well-suited for real-
time, data-intensive applications such as packet forwarding and signal processing. On the
other hand, hardware specialization often imposes a lacking of flexibility. It has longer
time-to-market, higher (one-off) provisioning costs, and inconvenient patches and updates,
whereas its virtualized counterpart, run on general purpose processors, excel in addressing
those issues.

A main focus of the current NFV research is how to make reasonable trade-offs be-
tween performance and flexibility [31]. Based on our measurement study, we found energy
efficiency an equally important dimension in the design space of NFV, particularly when
NFV is integrated into Internet-scale services such as multimedia content delivery. Our
experiments have shown that performance optimizations in the dataplane could result in
substantial energy costs. NFV vendors and customers need to consider these three dimen-
sions together transitioning to NFV.

3.7 Related Work

Multimedia content delivery has attracted many research interests in recent years. Studies
have shown that multimedia broadcasting providers such as Twitch.tv place content pro-
cessing and distribution servers along the traffic flow path [52], and a majority of them can
be in fact categorized as middleboxes [17]. The rise of NFV will make it easier to deploy
and manage these middleboxes. It allows network functions to be provisioned as part of the
consolidated infrastructure in modern datacenter [44][41]. For instance, E2 [41] is one of the
first frameworks that provide common NFV-related mechanisms for creating and managing
network functions in compute clusters.

Performance and flexibility remain the central topic of current NFV research. For exam-
ple, NetVM [31] and ClickOS [40] allow network functions to be implemented on commodity
servers while preserving their line-rate performance. It employs several software-level op-
timizations such as zero-copy data transmission between VMs to achieve efficient packet
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processing. Energy efficiency has not drawn full attention in NFV research so far, particu-
larly in the context of multimedia distribution. Among the existing works, Prekas et al. [43]
designed OS-level mechanisms to achieve energy proportionality for latency-sensitive, data-
processing workloads. Song et al. [47] proposed a CPU frequency scaling based scheme
to conserve energy for video transcoding workloads in the non-NFV context. this chap-
ter takes the first step towards addressing the energy efficiency in NFV-based multimedia
content distribution.
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Chapter 4

Concluding Remarks and Future
Directions

4.1 Summary of this Thesis

In this thesis, we proposed an instance recycling mechanism to address the prevalent partial
usage waste problem faced by users in public IaaS cloud. We designed and implemented
a system (HARV) to enable efficient instance recycling. HARV incorporates a container-
virtualized layer to enable resource orchestration without provider-level supports. HARV
adopts a two-level scheduling policy which offloads application-specific scheduling to its
buyers while it only handles container allocations. Further, we designed an instance trad-
ing module, with an online auction to determine the market price. Evaluation on real-
world workloads demonstrates HARV’s practicality and scalability; the large-scale simula-
tion shows it achieves considerable cost savings, even when the life-cycle is shortened.

We investigated the energy cost of advanced NFV platforms for multimedia content
delivery. We found that the upsurge of energy consumption is due to the characteristics
of multimedia traffic, expensive computations of multimedia network functions and the
dataplane energy inefficiency. We proposed a power management framework that leverages
CPU frequency scaling to achieve energy saving.

We believe our findings apply to other major NFV platforms. The software components
of our testbed are the commonly used building blocks for NFV platforms (e.g., DPDK,
KVM), and we have identified the energy issues arise from the software stack as opposed
to the specific hardware configuration. Moreover, our measurement tools and methodology
can be reused on other hardware setups for obtaining quantitative results.
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4.2 Future Directions

We plan to extend HARV to handle those non-residual instances. Cloud instances are often
underutilized [19], if not completely idle, and their underused portions of resources can
as well being reused. This will result in a generalized definition of residual instances, i.e.
the instances with residual resources. New challenges will emerge from this more general
problem, including how to estimate residual resources with precision and design pricing
scheme with finer granularity. Nevertheless, with HARV demonstrating the feasibility and
benefits of instance recycling, we believe those challenges are worth addressing.

Further, we are going to implement a prototype of the NFV power management frame-
work. Based on the prototype, we will explore the integration with other control plane
services including SDN and NFV controllers.

More broadly, we plan to explore the following research topics inspired by this thesis:
Content distribution with software packet processing While NFV is gaining

its traction, it is foreseeable that a growing amount of multimedia/video traffic will flow
through software middleboxes and dataplanes, which are spread across multiple servers
and/or datacenters (e.g., at the origin, CDN, ISP, or client edge). Since multimedia ap-
plications are timid to network conditions, replacing or adding additional software packet
processing devices at any place of the path is likely to have an impact on the user-perceived
stream quality. It is critical to understand the performance and deployment nuances of these
devices. Existing QoE optimization schemes (e.g., bitrate adaptation) should be extended
accordingly to adapt to this trend.

Network function orchestration The cluster orchestration platforms are becoming
“the OS for the datacenter.” However, existing platforms may fall short-handed when they
lack the toolchain to express middlebox-related semantics (e.g., service composition). How
do we reuse the services of these platforms and extend them to handle middlebox operations?
The framework should facilitate cross-server coordination and ensure network-wide policy
enforcement. Customizing VM or container for middlebox (with the properties such as fault-
tolerance). For example, container checkpoint/restore can be reused for providing migration
for middleboxes. It may also increase the operational costs (e.g., energy) for the network
function providers, who need to make smart trade-off among flexibility, performance, and
energy efficiency. Such tools can benefit other cloud services deployed following the micro-
services architecture (e.g., Netflix’s design), as it bears similarities with NFV.
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