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Abstract

In this project, we first propose a multi-dimensional Bühlmann credibility approach to
forecasting mortality rates for multiple populations, and then compare forecasting perfor-
mances among the proposed approach and the joint-k/co-integrated/augmented common
factor Lee-Carter models. The model is applied to mortality data of the Human Mortality
Database for both genders of three well-developed countries with an age span and a wide
range of fitting year spans. Empirical illustrations show that the proposed multi-dimensional
Bühlmann credibility approach contributes to more accurate forecast results, measured by
MAPE (mean absolute percentage error), than those based on the Lee-Carter model.
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Chapter 1

Introduction

This chapter first highlights the motivation for proposing a multi-dimensional credibility
approach to Modeling the dynamics of mortality rates for multiple populations, and then
gives a brief outline of this project.

1.1 Motivation

In the past decades, life expectancy has been observed to increase drastically and thus
pose a severe challenge to pension plan sponsors, annuity providers and social security
systems. To hedge against losses associated with this longevity risk, it is of crucial impor-
tance to find more accurate mortality projections, since it provides an important actuarial
foundation for pricing annuities, life insurance and mortality-linked securities.

The convergence of demographic patterns around the world (see Wilson, 2001) chal-
lenged the traditional assumption of mortality independence, and thus finding more accu-
rate mortality forecasts requires multi-population mortality projections. Multi-population
mortality projections will eliminate potential long-term divergent behavior from single pop-
ulation mortality forecasts, and improve the model performance due to the increase in
available mortality data. Moreover, the development of mortality-linked securities requires
better estimate of the underlying mortality index, which is constructed as a weighted aver-
age of mortality rates over multiple populations. Therefore, to have a thorough assessment
of multi-population mortality risk and the financial payoffs of mortality-linked securities,
it is of great importance to take the dependence structure across different populations into
account and project future mortality rates for multiple populations simultaneously.

We have seen numerous studies on the improving of forecast accuracy of multi-population
mortality projection models, and we give a detailed literature review in Chapter 2. Nonethe-
less, a majority of research studies contributed to this subject by adding one or more terms
to the classical Lee-Carter model so that they do not lead to divergent long-term projections.
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On the other hand, Tsai and Lin (2017b) adopt the non-parametric Bühlmann credibility
approach to forecasting mortality rates for single population; this approach has proved to
generate more stable and satisfactory forecasts than the classical Lee-Carter model, and is
convenient for practical implementation. Therefore, in this project, we concentrate on gen-
eralizing the single population Bühlmann credibility model to its multi-population counter-
parts; that is, applying the multi-dimensional Bühlmann credibility approach to Modeling
mortality rates for multiple populations jointly. It provides a simple approach to Modeling
the development of multi-population mortality rates under the multi-dimensional credi-
bility framework, and eventually produces better forecast results compared to the multi-
population versions of the Lee-Carter model.

1.2 Outline

This project is organized as follows. Chapter 2 gives a literature review on previous re-
search on the development of mortality models, and the derivation of credibility theory. In
Chapter 3, we first review the three multi-population Lee-Carter-based mortality projection
models in details. Then we introduce the multi-dimensional Bühlmann credibility model,
and develop formulas for estimating parameters and projecting future mortality rates under
both non-parametric and semi-parametric frameworks. In Chapter 4, the models presented
in Chapter 3 are applied to mortality data from the Human Mortality Database for both
genders of three well-developed countries with an age span and a wide range of fitting
year spans; numerical results are provided for illustrations, which show that the multi-
dimensional Bühlmann credibility approach outperforms the multi-dimensional Lee-Carter
models based on the measure of mean absolute percentage error (MAPE). Chapter 5 con-
cludes this project. The classical Lee-Carter model and the one-dimensional Bühlmann
credibility approach to Modeling mortality rates for single population can be referred to
Appendices A and B, respectively.
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Chapter 2

Literature Review

The two main parts of this project are mortality projection models and Bühlmann
credibility theory. Section 2.1 goes through the main articles on mortality Modeling, and
Section 2.2 reviews those about credibility models.

2.1 Mortality Forecasting Models

Lee and Carter (1992) develop the well-known Lee-Carter model for mortality fitting and
forecasting. The model assumes that the dynamics of the natural logarithm of central death
rates are modeled by an age-specific factors plus a bilinear term. The Cairns-Blake-Dowd
(CBD) model by Cairns et al. (2006) introduce a novel approach to Modeling mortality
dynamics for an elderly age group. It assumes that the dynamics of the logit function of one-
year death probabilities are driven by an overall time trend and an age-specific time trend.
Extensions of the Lee-Carter and CBD models are common in the literature: Renshaw
and Haberman (2006) extend the Lee-Carter Modeling framework by including age-specific
cohort effects; Plat (2009) proposes a model combining the good factors in the Lee–Carter
and CBD models; Li et al. (2009) consider individual heterogeneity in each age-period cell
in the Lee–Carter model; Mitchell et al. (2013) propose a model that accounts for the
changes of mortality rate rather than mortality rate levels as in the classical Lee-Carter
model; Lin et al. (2015) employ the copula method to capture the inter-age mortality de-
pendence structure and AR-GARCH (autoregression-generalized autoregressive conditional
heteroscedasticity) models to capture the marginal dynamics of mortality rates. Tsai and
Yang (2015) propose an innovative linear regression approach to relating a target mortal-
ity sequence to the base mortality sequence. Different from all afore-mentioned models,
Tsai and Lin (2017a, b) adopt a commonly used approach in property and casualty insur-
ance, the Bühlmann credibility approach, to mortality fitting and Modeling: the former
incorporates the parametric Bühlmann credibility into the existing Lee-Carter/CBD/liner
relational models to improve their forecasting performances; the latter proposes the non-
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parametric Bühlmann credibility approach to forecasting mortality rates. Single population
models and their extensions failed to take the dependence structure across populations into
account, and thus may produce divergent forecast among populations.

Numerous multi-population extensions of the classical single population models were
developed in the past decades to model the mortality rates for multiple populations si-
multaneously, and thus ensure the parallel mortality levels in the long-run. For example,
Lee and Carter (1992) introduce the joint-k Lee-Carter model, which applies a common
time-varying index to all populations. A modification is the the augmented common factor
model suggested by Li and Lee (2005). They propose a two-step procedure to model the
dynamics for multiple populations: a common factor is first used to capture the overall
mortality level; then an augmented term is adopted to model the remaining residuals of
a specific population. Another major extension is the co-integrated Lee-Carter model by
Li and Hardy (2011), which assumes that there is a linear relationship between the time
varying index of a base population and that of each of all other populations. Cairns et
al. (2011) introduce a general framework for Modeling the mortality dynamics of two pop-
ulations jointly: they adopted a mean-reverting process that permits different short-term
trends in mortality improvements, but avoids long-term divergence problems. Dowd et al.
(2011) give a gravity approach to Modeling mortality dynamics of two populations of dif-
ferent size. Chen et al. (2015) propose a factor copula approach to Modeling mortality
dependence for a group of populations.

2.2 Bühlmann Credibility Theory

Credibility theory in property and casualty insurance is an effective and commonly used
approach to determining the premium for a group of risks. Bühlmann (1967) proposes a
general framework to compute Bühlmann credibility premium, which equals the weighted
average of the collective premium and the sample mean of the past observations of a given
risk. Bühlmann and Straub (1970) generalize the model by taking the exposure units of
risks into consideration, which is called Bühlmann-Straub model.

However, the afore-mentioned research studies commonly ignore dependence among
risks. It is not always the case in practice, and hence, Jewell (1975) introduces a hierarchical
model that allows dependence among entities; Yeo and Valdez (2006) and Wen et al. (2009)
extend the Bühlmann and Bühlmann–Straub credibility models to account for a special type
of dependence across risks, induced by common stochastic effects; Dannenburg (1995) and
Goulet (2001) propose crossed classification models and their generalizations; Wen and Wu
(2011) re-build the credibility estimators for the Bühlmann and Bühlmann–Straub models
assuming risks are generally dependent through risk parameters; Poon and Lu (2015) derive
the credibility predictors for Bühlmann-type credibility models allowing for both a depen-
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dence structure among risk parameters and a conditional spatial cross-sectional dependence
among losses.
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Chapter 3

Multi-dimensional Mortality
Models

In this chapter, we introduce the joint-k/co-integrated/augmented common factor Lee-
Carter models and the multi-dimensional Bühlmann credibility approach in more details.
The classical Lee-Carter model and the one-dimensional Bühlmann credibility approach
to Modeling mortality rates for single population are explained in Appendices A and B,
respectively. The study period [T1, T2], for which mortality rates are available, is divided
into two parts, [tL, tU ] and [tU + 1, T2], where tL > T1 and tU < T2. Assuming that we
currently stand at the end of year tU , the in-sample data in the rectangle [xL, xU ]× [tL, tU ]
are used in each model to get the estimated parameters, and then the out-of-sample data
in the rectangle [xL, xU ]× [tU + 1, T2] are compared to the projected mortality rates.

3.1 Concepts and notations

Let qx, t, i denote the probability that lives aged x in year t in the i-th population die
between t and t + 1. Denote µx, t, i the associated force of mortality, which represents the
instantaneous rate of mortality. Under the assumption that the force of mortality µx, t, i is
constant within each integer age x and year t, that is, µx+r, t+s, i = µx, t, i for r, s ∈ [0, 1), we
have µx, t, i = − ln(1− qx, t, i).

The central death rate mx, t, i, which is defined as the ratio of the number of deaths
during year t at age x to the average number of surviving lives between age x in year t and
age x+1 in year t+1, is another form of mortality rate that is frequently used in literature.
Again, under the piecewise constant force of mortality assumption, it can be shown that
µx, t, i = mx, t, i, and thus,

qx, t, i = 1− e−µx, t, i = 1− e−mx, t, i . (3.1)
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The equations above provide mortality data conversion between qx, t, i and mx, t, i (or µx, t, i).

3.2 Multi-population Lee-Carter Model

3.2.1 Joint-k Lee-Carter Model

To model the co-movements among the mortality rates for r different populations, Lee
and Carter (1992) introduce the joint-k model where the time-varying index kt, i, the general
mortality level over time, is the same for all populations, that is, kt, i = Kt, i = 1, . . . , r.

The natural logarithm of central death rates, ln(mx, t, i), for lives aged x in year t and
the i-th population can be expressed as

ln(mx, t, i) = αx, i + βx, i ×Kt + εx, t, i, x = xL, . . . , xU , t = tL, . . . , tU , i = 1, . . . , r,

where

• αx, i is the average age-specific mortality factor at age x for population i,

• Kt is the index of the mortality level in year t,

• βx, i is the age-specific reaction to Kt at age x for population i, and

• εx, t, i is the model error, which is assumed to be independent and identically
distributed (i.i.d.) normal for all t with mean 0 and variance σ2

εx,i, that is,
{εx, t, i}

i.i.d.∼N(0, σ2
εx, i).

For uniqueness of the model specification, the following two constraints are imposed:

r∑
i=1

xU∑
x=xL

βx, i = 1 and
tU∑
t=tL

Kt = 0.

Given the constrains, estimates of αx, i, Kt and βx, i can be obtained as follows:

• α̂x, i can be derived by averaging the sum of ln(mx, t, i) over the fitting year span
[tL, tU ]:

tU∑
t=tL

ln(mx, t, i) = n× αx, i + βx, i ×
tU∑
t=tL

Kt = n× αx, i

⇒ α̂x, i =

tU∑
t=tL

ln(mx, t, i)

n
, x = xL, . . . , xU ,

(3.2)

where n = tU − tL + 1;
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• K̂t is equal to the sum of [ln(mx, t, i)− α̂x, i] over the fitting age span [xL, xU ] and the
population index:

r∑
i=1

xU∑
x=xL

[ln(mx, t, i)− α̂x, i] = Kt ×
r∑
i=1

xU∑
x=xL

β̂x, i = Kt × 1

⇒ K̂t =
r∑
i=1

xU∑
x=xL

[ln(mx, t, i)− α̂x, i] , t = tL, . . . , tU ;

• β̂x, i can be obtained by regressing [ln(mx, t, i)− α̂x, i] on K̂t without the constant term
for each age x:

β̂x, i =
tU∑
t=tL

[ln(mx, t, i)− α̂x, i]× K̂t

(K̂t)2
.

Assume that the general mortality level in year t, K̂t, follows ARIMA(0,1,0), a random
walk with drift θ:

K̂t = K̂t−1, + θ + εt,

where

• the time trend error εt
i.i.d.∼N(0, σ2

ε ), that is, K̂t − K̂t−1
i.i.d.∼N(θ, σ2

ε ), for all t, and

• the time trend errors, {εt}, are assumed to be independent of the model errors, {εx, t, i}.

The unbiased estimator of the mean of the i.i.d. (K̂t − K̂t−1), θ̂, is given by

θ̂ = 1
n− 1

tU∑
t=tL+1

(K̂t − K̂t−1) = K̂tU − K̂tL

n− 1 .

Thus, KtU+τ can be projected as K̂tU+τ = K̂tU + τ · θ̂, where τ = tU + 1, . . . , T2.

Then we can forecast the natural logarithm of the central death rates, ln(mx, t, i), for
lives aged x in year t in the i-th population as

ln(m̂x, tU+τ, i) = α̂x, i + β̂x, i × (K̂tU + τ × θ̂)

= (α̂x, i + β̂x, i × K̂tU ) + β̂x, i × τ × θ̂

= ln(m̂x,tU ,i) + (β̂x, i × θ̂)× τ, τ = 1, . . . , T2 − tU .

It follows that
m̂x, tU+τ, i = exp

[
α̂x, i + β̂x, i × (K̂tU + τ × θ̂)

]
.

From Equation (3.1), the predicted deterministic one-year death rate, q̂x, tU+τ, i, for age x
in year tU + τ for population i is given by

8



q̂x, tU+τ, i = 1− exp
[
− exp

(
α̂x, i + β̂x, i × (K̂tU + τ × θ̂)

)]
.

Two error terms, the model error εx, t, i and the time trend error εt, can be added to the
natural logarithm of the predicted central death rates, ln(m̂x, tU+τ, i), to form the natural
logarithm of the stochastic central death rates, ln(m̃x, tU+τ, i), for age x in year tU + τ and
population i. Specifically,

ln(m̃x, tU+τ, i) = α̂x, i + β̂x, i × (K̂tU + τ × θ̂ +
√
τ × εtU+τ ) + εx, tU+τ, i

= ln(m̂x, tU+τ, i) +
√
τ × β̂x, i × εtU+τ + εx, tU+τ, i.

Similarly, the predicted stochastic central death rate and one-year death rate, m̃x, tU+τ, i

and q̃x, tU+τ, i, for age x in year tU + τ and population i are given respectively by

m̃x, tU+τ, i = exp
[
ln(m̂x, tU+τ, i) +

√
τ × β̂x, i × εtU+τ + εx, tU+τ, i

]
,

and

q̃x, tU+τ, i = 1− exp
[
− exp

(
ln(m̂x, tU+τ, i) +

√
τ × β̂x, i × εtU+τ + εx, tU+τ, i

)]
.

The estimate of the variance of the model error, σ̂2
εx, i , is obtained by

σ̂2
εx, i = 1

n− 2

tU∑
t=tL

(εx, t, i)2 =

tU∑
t=tL

[
ln(mx, t, i)− α̂x, i − β̂x, i × K̂t

]2
n− 2 ,

and the estimate of the variance of the time trend error, σ̂2
ε , is given by

σ̂2
ε = 1

n− 2

tU∑
t=tL+1

(εt)2 =

tU∑
t=tL+1

(
K̂t − K̂t−1 − θ̂

)2

n− 2 .

Therefore, the estimate of the variance of the natural logarithm of the stochastic central
death rate, σ̂2 (ln(m̃x, tU+τ, i)), is given as

σ̂2 (ln(m̃x, tU+τ, i)) = τ × β̂2
x, i × σ̂2

ε + σ̂2
εx, i .

3.2.2 Co-integrated Lee-Carter Model

Unlike the joint-k model, which assumes that all populations have the same time-varying
coefficient, the co-integrated model depicts the divergence of future forecasts in a different
way; that is, assuming the time-varying index for all other populations is a linear transfor-
mation of that of a base population.
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Assume that mortality rates for lives aged x in year t and i-th population follows the
classical Lee-Carter model as follows:

ln(mx, t, i) = αx, i + βx, i × kt, i + εx, t, i, x = xL, . . . , xU , t = tL, . . . , tU , i = 1, . . . , r.

The identification of the afore-mentioned model is ensured by two constraints:

xU∑
x=xL

βx, i = 1 and
tU∑
t=tL

kt, i = 0, i = 1, . . . , r.

Estimates of αx, i, kt, i and βx, i can be obtained as follows:

• estimates of αx, i can be obtained by averaging ln (mx, t, i) over the fitting year span
[tL, tU ]:

tU∑
t=tL

ln(mx, t, i) = n× αx, i + βx, i ×
tU∑
t=tL

kt, i = n× αx, i

⇒ α̂x, i =

tU∑
t=tL

ln(mx, t, i)

n
, x = xL, . . . , xU ;

• the initial estimates of kt, i can be obtained by summing [ln (mx, t, i)− α̂x,i] over the
fitting age span [xL, xU ]:

xU∑
x=xL

[ln(mx, t, i)− α̂x, i] = kt, i ×
xU∑
x=xL

βx, i = kt, i × 1

⇒ k̂t, i =
xU∑
x=xL

[ln(mx, t, i)− α̂x, i] , t = tL, . . . , tU ;

• estimates of βx, i can be obtained by regressing [ln(mx, t, i)− α̂x, i] on k̂t, i without the
constant term involved for each age x:

β̂x, i =
tU∑
t=tL

[ln(mx, t, i)− α̂x, i]× k̂t, i
(k̂t, i)2

.

The time-varying coefficient in year t, k̂t, i, is modelled by an ARIMA(0,1,0) process, a
random walk with drift θ:

k̂t, i = k̂t−1, i + θi + εt, i,

where

• εt, i
i.i.d.∼N(0, σ2

εi), that is, kt, i − kt−1, i
i.i.d.∼N(θi, σ2

εi) for all t, and

• the time trend errors, {εt, i}, are independent of the model errors, {εx, t, i}.
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In this sense, the drift parameter θi for population i can be estimated by

θ̂i = 1
n− 1

tU∑
t=tL+1

(k̂t, i − k̂t−1,i) = k̂tU ,i − k̂tL,i
n− 1 .

Hence, ktU+τ, i can be projected as k̂tU+τ, i = k̂tU ,i + τ × θ̂i.

In the co-integrated Lee-Carter model, we assume there is a linear relationship plus an
error term et,i between k̂t, 1 (the time-varying index for the base population) and k̂t, i for
i = 2, . . . , r, that is,

k̂t, i = ai + bi × k̂t, 1 + et, i, i = 2, .., r.

Then kt, i is re-estimated as

ˆ̂
kt, i =


k̂t, 1, i = 1,

âi + b̂i × k̂t,1, i = 2, . . . , r,

where âi and b̂i are obtained by the simple linear regression. Therefore, the re-estimated
drift of the time-varying index for population i, ˆ̂

θi, is given by

ˆ̂
θi =


1

n−1

tU∑
t=tL+1

(k̂t,1 − k̂t−1,1) = k̂tU ,1−k̂tL,1
n−1 = θ̂1, i = 1,

ˆ̂
ktU ,i−

ˆ̂
ktL,i

n−1 = b̂i ×
k̂tU ,1−k̂tL,1

n−1 = b̂i × θ̂1, i = 2, . . . , r.

Similarly, we can forecast the natural logarithm of the central death rates, ln(mx, t, i),
for lives aged x in year t and the i-th population as

ln(m̂x, tU+τ, i) = α̂x, i + β̂x, i × (k̂tU , i + τ × ˆ̂
θi)

= (α̂x, i + β̂x, i × k̂tU , i) + β̂x, i × τ × ˆ̂
θi

= ln(m̂x,tU ,i) + (β̂x, i × ˆ̂
θi)× τ, τ = 1, . . . , T2 − tU .

The logarithm of the stochastic central death rate for age x in year tU + τ and population
i, denoted by ln(m̃x, tU+τ, i), is

ln(m̃x, tU+τ, i) = α̂x, i + β̂x, i × (k̂tU , i + τ × ˆ̂
θi +

√
τ × εtU+τ, i) + εx, tU+τ, i

= ln(m̂x, tU+τ, i) +
√
τ × β̂x, i × εtU+τ, i + εx, tU+τ, i.
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The estimate of the variance of the model error, σ̂2
εx, i , is obtained by

σ̂2
εx, i = 1

n− 2

tU∑
t=tL

(εx, t, i)2 =

tU∑
t=tL

[
ln(mx, t, i)− α̂x, i − β̂x, i × k̂t, i

]2
n− 2 ,

and the estimate of the variance of the time trend error, σ̂2
ε, i, is given by

σ̂2
ε, i =



tU∑
t=tL+1

(k̂t,1−k̂t−1,1−θ̂1)2

n−2 , i = 1,

b̂2
i ×

tU∑
t=tL+1

(k̂t,1−k̂t−1,1−θ̂1)2

n−2 = b̂2
i × σ̂2

ε,1, i = 2, . . . , r.

Therefore, the estimate of the variance of the natural logarithm of the stochastic central
death rate, σ2 (ln(m̃x, tU+τ, i)), is given as

σ̂2 (ln(m̃x, tU+τ, i)) = τ × β̂2
x, i × σ̂2

ε, i + σ̂2
εx, i .

3.2.3 Augmented Common Factor Model

Lee and Li (2005) propose another approach, adding a common factor term to deal with
multiple population data without producing divergent future forecasts in the long-run.

First, the natural logarithm of central death rates, ln(mx, t, i), for lives aged x in year t
and the i-th population is represented as

ln(mx, t, i) = αx, i + βx, i × kt, i + εx, t, i, x = xL, . . . , xU , t = tL, . . . , tU , i = 1, . . . , r.

The following features are applied to the common term

βx, i = Bx, x = xL, . . . , xU ,

kt, i = Kt, t = tL, . . . , tU .

Thus, the classical Lee-Carter model becomes the so-called common factor model as follows:

ln(mx, t, i) = αx, i +Bx ×Kt + εx, t, i, x = xL, . . . , xU , t = tL, . . . , tU , i = 1, . . . , r.

Two similar constraints are applied to determine a unique solution, i.e.,

r∑
i=1

xU∑
x=xL

wiBx = 1 and
tU∑
t=tL

Kt = 0,

12



where wi, set to be 1
r in this project, is the weight for population i and

∑r
i=1wi = 1.

The expression of the estimate of αx, i is the same as that in Equation (3.2) for the
joint-k Lee-Carter model. That is,

α̂x, i =

tU∑
t=tL

ln(mx, t, i)

n
, x = xL, . . . , xU .

The estimate of Kt is obtained by

r∑
i=1

xU∑
x=xL

wi × [ln(mx, t, i)− α̂x, i] = Kt ×
r∑
i=1

xU∑
x=xL

wi ×Bx = Kt × 1

⇒K̂t =
r∑
i=1

xU∑
x=xL

wi × [ln(mx, t, i)− α̂x, i] , t = tL, . . . , tU .

To get B̂x, we can regress
∑r
i=1wi× [ln(mx, t, i)− α̂x, i] on K̂t without the constant term in-

volved for each age x, since
∑r
i=1wi×[ln(mx, t, i)− α̂x, i] = Bx×K̂t×

∑r
i=1wi+

∑r
i=1 εx, t, i =

Bx × K̂t +
∑r
i=1 εx, t, i.

To further improve the forecasting accuracy of the common factor model, Li and Lee
(2005) add a factor β′x, i × k′k,i for each population to the common factor model, and thus
the augmented common factor model is formed as

ln(mx, t, i) = αx, i +Bx ×Kt + β′x, i × k′k,i + εx, t, i, i = 1, . . . , r,

with an extra constraint
xU∑
x=xL

β′x, i = 1, which implies

k̂′t, i =
xU∑
x=xL

[
ln(mx, t, i)− α̂x, i − B̂x × K̂t

]
.

Finally, β̂′x, i can be derived by regressing
[
ln(mx, t, i)− α̂x, i − B̂x × K̂t

]
on k̂′t, i without the

constant term involved for each age x.

Moreover, K̂t and k̂′t, i are assumed to follow a random walk with drifts θ and θ′i, respec-
tively, that is, K̂t = K̂t−1 + θ + εt, and k̂′t, i = k̂′t−1,i + θ′i + εt, i, where

• εt
i.i.d.∼ N(0, σ2

ε ) and εt, i
i.i.d.∼ N(0, σ2

ε,i), and thus, K̂t − K̂t−1
i.i.d.∼ N(θ, σ2

ε ) and
k̂′t, i − k̂′t−1, i

i.i.d.∼N(θ′i, σ2
ε,i), and

• all of the three error terms, {εx, t, i}, {εt} and {εt, i} are assumed to be independent.
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Similarly, the parameters θ and θ′i can be estimated by

θ̂ = 1
n− 1

tU∑
t=tL+1

(K̂t − K̂t−1) = K̂tU − K̂tL

n− 1

and

θ̂′i = 1
n− 1

tU∑
t=tL+1

(k̂′t, i − k̂′t−1,i) =
k̂′tU ,i − k̂

′
tL,i

n− 1 .

Hence, KtU+τ and k′tU+τ, i can be projected as

K̂tU+τ = K̂tU + τ × θ̂ and k̂′tU+τ, i = k̂′tU ,i + τ × θ̂′i.

Therefore, the natural logarithm of the predicted central death rates, ln(m̂x, t, i), for lives
aged x in year t and the i-th population can be expressed as

ln(m̂x, tU+τ, i) = α̂x, i + B̂x × (K̂tU + τ × θ̂) + β̂′x, i × (k̂′tU , i + τ × θ̂′i)

= (α̂x, i + B̂x × K̂tU + β̂′x, i × k̂′tU , i) + B̂x × τ × θ̂ + β̂′x, i × τ × θ̂′i
= ln(m̂x, tU , i) + (B̂x × θ̂ + β̂′x, i × θ̂′i)× τ, τ = 1, . . . , T2 − tU .

Moreover, the logarithm of the stochastic central death rate for age x year tU + τ and
population i denoted by ln(m̃x, tU+τ, i) is

ln(m̃x, tU+τ, i)

= α̂x, i + B̂x × (K̂tU + τ × θ̂ +
√
τ × εtU+τ ) + β̂′x, i ×

(
k̂′tU ,i + τ × θ̂i +

√
τ × εtU+τ, i

)
+ εx, tU+τ, i

= ln(m̂x, tU+τ, i) +
√
τ × (B̂x × εtU+τ + β̂′x, i × εtU+τ, i) + εx, tU+τ, i.

Note that the variance of ln(m̃x, tU+τ, i) is estimated by

σ̂2 (ln(m̃x, tU+τ, i)) = τ × (B̂2
x × σ̂2

ε + β̂′2x, i × σ̂2
ε,i) + σ̂2

εx, i ,

where

• the estimate of the variance of the model error εx, t, i is

σ̂2
εx, i =

tU∑
t=tL

[
ln(mx, t, i)− α̂x, i − B̂x × K̂t − β̂′x, i × k̂′t, i

]2
n− 3 , i = 1, . . . , r;
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• the estimate of the variance of the time trend error εt is

σ̂2
ε =

tU∑
t=tL

(
K̂t − K̂t−1 − θ̂

)2

n− 2 ;

• the estimate of the variance of the time trend error εt, i for population i is

σ̂2
ε,i =

tU∑
t=tL

(
k̂′t, i − k̂′t−1,i − θ̂′i

)2

n− 2 , i = 1, . . . , r.

3.3 Multi-dimensional Bühlmann Credibility Approach

The afore-mentioned Lee-Carter-based models govern ln(mx, t, i). Empirical mortality
data of both genders of the U.S.A., the U.K. and Japan show that ln(mx, t)s display a
downward trend over t (see Figure 3.1), where the "Avg" curve is the average of ln(mx,t)s over
x = [25, 84]). To eliminate the downward trend, and thus apply the Bühlmann credibility
approach, we choose to model Yx, t, i = ln(mx, t, i) − ln(mx, t−1, i) for x ∈ [xL, xU ] and t ∈
[tL + 1, tU ] (see Figure 3.2).

3.3.1 Credibility Estimation

Assume we have (n−1) column vectors of past observed values, Yx, tL+1, . . . ,Yx, tU , and
we would like to get the credibility estimator Ŷx, tU+1 for ages x = xL, . . . , xU and the next
year tU + 1, where tU − tL = n − 1 and Yx, t = (Yx, t, 1, . . . , Yx, t, r)′ is a column vector of
length r. To implement the Bühlmann credibility approach, we further assume that Yx, t,
where t = tL + 1, . . . , tU , is characterized by an r× 1 column vector of risk parameters, Θx,
associated with age x.

Among the various possible predictors of Yx, tU+1, we choose to forecast Yx, tU+1 with a
linear function of the past data Yx(i), i = 1, . . . , r, i.e., cx, 0 +

∑r
i=1C

′
x, i Yx(i), where cx, 0 is

an r×1 vector with each element taking values in R, Cx, i is the (n−1)×r coefficient matrix
with each element taking values in R, and Yx(i) = (Yx, tL+1, i, . . . , Yx, tU , i)′. Specifically, we
would like to choose cx, 0,Cx, 1 . . . ,Cx, r to minimize the quadratic loss function Q, where

Q = E


[
Yx,tU+1 − cx, 0 −

r∑
i=1
C ′x, i Yx(i)

]2
 . (3.3)
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Figure 3.1: ln(mx, t, i) against t
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Figure 3.2: Yx, t, i = ln(mx, t, i)− ln(mx, t−1, i) against t
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It was proven in Wen et al. (2009) that the inhomogeneous (that is, cx, 0 is included in
Q) linear credibility estimator which minimizes the quadratic loss function in (3.3) is given
by

Ŷx,tU+1 = µYx, tU+1 + (ΣYx,tU+1,Yx)(ΣYx,Yx)−1(Yx − µYx), (3.4)

where

• Yx = (Yx, tL+1, . . . ,Yx, tU )′,

• E(Yx) = µYx , E(Yx, tU+1) = µYx, tU+1 , and

• ΣYx,Yx = Cov[Yx, Y ′x] and ΣYx,tU+1,Yx = Cov[Yx,tU+1, Yx] are invertible covariance
matrices.

3.3.2 Parametric Bühlmann Model

This section first introduces the notations and the assumptions used in this project.
Then, the construction of a multi-dimensional parametric Bühlmann credibility model is
presented.

The following specifies the additional assumptions of the distributions of Yx,t|Θx and
Θx to construct the multi-dimensional parametric Bühlmann credibility model,

Assumption 1. Conditional on the r×1 vector of risk parameters Θx = (Θx, 1, . . . ,Θx, r)′,
Yx,t = (Yx,t,1, . . . , Yx,t,r)′ are independent and identically distributed for t = tL, . . . , tU with E [Yx, t|Θx] = µ(Θx) = (µ (Θx, 1) , . . . , µ (Θx, r))′ ,

Cov
[
Yx,t, Y

′
x,t|Θx

]
= Σ(Θx) =

[
σ2 (Θx, i,Θx, j)

]
i, j=1,...,r .

Assumption 2. Θx = (Θx, 1, . . . ,Θx, r)′ are independent and identically distributed as
Θ = (Θ1, . . . ,Θr)′ for x = xL, . . . , xU with µ (Θx) = µ(Θ) = (µ (Θ1) , . . . , µ (Θr))′ ,

Σ (Θx) = Σ(Θ) =
[
σ2 (Θi,Θj)

]
i, j=1,...,r .

Assumption 3. The distribution of Θ is such that
µ = E [µ (Θ)] = (µ(1), . . . , µ(r))′ ,
V = E [Σ (Θ)] = [v(i, j)]i, j=1,...,r ,

A = Cov [µ (Θ)] = [a(i, j)]i, j=1,...,r .
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We denote the structural parameters of the multi-dimensional credibility model as fol-
lows:

• the hypothetical mean, µ(Θx) = E[Yx, t|Θx];

• the process covariance matrix, Σ(Θx) = Cov[Yx, t, Y ′x, t|Θx];

• the expected value of the hypothetical mean, µ = E [µ (Θx)] = E [µ (Θ)] = (µ(1), . . . , µ(r))′;

• the expected process covariance matrix, V = E [Σ (Θx)] = E [Σ (Θ)] = [v(i, j)]i, j=1,...,r;

• the covariance matrix of hypothetical mean, A = Cov [µ (Θx)] = Cov [µ (Θ)] =
[a(i, j)]i, j=1,...,r.

Lemma 1. Under Assumptions 1 to 3 and the notations above,

1. The means of Yx and Yx, tU+1 are given by

µYx = E(Yx) = µ⊗ 1n−1 and µYx,tU+1 = E(Yx,tU+1) = µ,

where ⊗ is the Kronecker product operator (see Appendix C for its definition and properties)
and 1n−1 = (1, . . . , 1)′, a column vector of length (n− 1).

2. The r(n− 1)× r(n− 1) covariance matrix of Yx is given by

ΣYx,Yx = V ⊗ In−1 +UAU ′, (3.5)

where

In−1 =


1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
...

...
...

0 0 · · · · · · 1


(n−1)×(n−1)

,

and

U =


1n−1 0 · · · · · · 0

0 1n−1 · · · · · · 0
...

...
...

...
...

0 0 · · · · · · 1n−1


r(n−1)×r

.

3. The r × r(n− 1) covariance matrix between Yx and Yx,tU+1 is given by

ΣYx, tU+1,Yx = AU ′. (3.6)
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4. The inverse of the r(n− 1)× r(n− 1) covariance matrix of Yx is given by

(ΣYx,Yx)−1 = (V −1 ⊗ In−1)− (V −1 ⊗ 1n−1)U
[
A−1 + (n− 1)V −1

]−1
U ′(V −1 ⊗ 1′n−1).

Proof. Please refer to Appendix D.

Theorem 1. Under Assumptions 1 to 3, the parametric Bühlmann estimate of Yx, tU+1,
Ŷx, tU+1 =

(
Ŷx, tU+1, 1, . . . , Ŷx, tU+1, r

)′
, for age x in year tU + 1, which is obtained by mini-

mizing the quadratic loss function in Equation (3.3) is given by

Ŷx, tU+1 = ZY x, • + (Ir −Z)µ,

where

• Z = A
(

1
n−1V +A

)−1
, and

• Y x, • =
(
Y x, •, 1, . . . , Y x, •, r

)′
= 1

n−1

(
tU∑

t=tL+1
Yx, t, 1, . . . ,

tU∑
t=tL+1

Yx, t, r

)′
.

Proof. Please refer to Appendix D.

3.3.3 Non-parametric Bühlmann Model

To get the non-parametric estimators of µ, V and A, we further assume that

Assumption 4. The pairs {(Θx,Yx), x = xL, . . . , xU}, where Yx = (Yx, tL+1, . . . ,Yx, tU ),
are independent.

The preliminary unbiased estimators of µ, V and A are presented in Tables 3.1 and
3.2. Here, Â = [â(i, j)]i, j=1,...,r is the estimator of the variance-covariance matrix of the
hypothetical mean vector; the diagonal elements, â(i, i)’s, are the estimators of the vari-
ances of the hypothetical means, and the off-diagonal elements, â(i, j)’s for i 6= j, are the
estimators of the covariances between all possible pairs of the hypothetical means. Note
that it is possible that â(i, i) < 0 or â(i, j) >

√
â(i, i)× â(j, j). It is customary to follow

the steps below suggested by Bühlmann and Gisler (2005)

• Step 1: set â(i, i) = 0 if â(i, i) < 0 for i = 1, . . . , r;

• Step 2: set â(i, j) = sign[â(i, j)]×min
[
|â(i, j)|,

√
â(i, i)× â(j, j)

]
for i, j = 1, . . . , r

and i 6= j.
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Table 3.1: Non-parametric Bühlmann estimation for µ(i), v(i, j) and a(i, j)

YxL(i) = (YxL, tL+1, i, . . . , YxL, tU , i)
′ µ̂xL(i) = Y xL, •, i = 1

n−1

tU∑
t=tL+1

YxL, t, i, i = 1, . . . , r

v̂xL(i, j) = 1
n−2

tU∑
t=tL+1

[
YxL, t, i − Y xL, •, i

] [
YxL, t, j − Y xL, •, j

]
...

...

YxU (i) = (YxU , tL+1, i, . . . , YxU , tU , i)
′ µ̂xU (i) = Y xU , •, i = 1

n−1

tU∑
t=tL+1

YxU , t, i, i = 1, . . . , r

v̂xU (i, j) = 1
n−2

tU∑
t=tL+1

[
YxU , t, i − Y xU , •, i

] [
YxU , t, j − Y xU , •, j

]
â(i, j) = 1

m−1

xU∑
x=xL

[
Y x, •, i − Y •, •, i

] [
Y x, •, j − Y •, •, i

]
− v̂(i, j)

n−1 , where m = xU − xL + 1

µ̂(i) = Y •, •, i = 1
m

xU∑
x=xL

Y x, •, i, i = 1, . . . , r

v̂(i, j) = 1
m

xU∑
x=xL

v̂x(i, j), i, j = 1, . . . , r

Table 3.2: Non-parametric Bühlmann estimation for µ, V and A

YxL = (YxL(1), . . . ,YxL(r)) µ̂xL = Y xL =
(
Y xL, •, 1, . . . , Y xL, •, r

)′
V̂xL = [v̂xL(i, j)]i, j=1,...,r

...
...

YxU = (YxU (1), . . . ,YxU (r)) µ̂xU = Y xU =
(
Y xU , •, 1, . . . , Y xU , •, r

)′
V̂xU = [v̂xU (i, j)]i, j=1,...,r

Â = [â(i, j)]i, j=1,...,r
µ̂ = (µ̂(1), . . . , µ̂(r))′ = 1

m

xU∑
x=xL

µ̂x

V̂ = [v̂(i, j)]i, j=1,...,r = 1
m

xU∑
x=xL

V̂x

Therefore, the non-parametric Bühlmann estimate, Ŷx, tU+1 =
(
Ŷx, tU+1, 1, . . . , Ŷx, tU+1, r

)′
,

for age x in year tU + 1, which is obtained by minimizing the quadratic loss function in
Equation (3.3) is given by

Ŷx,tU+1 = ẐY x, • +
(
Ir − Ẑ

)
µ̂,

where

• Ẑ = Â
(

1
n−1 V̂ + Â

)−1
,

• Y x, • =
(
Y x, •, 1, . . . , Y x, •, r

)′
= 1

n−1

(
tU∑

t=tL+1
Yx, t, 1, . . . ,

tU∑
t=tL+1

Yx, t, r

)′
, and

• µ̂ = (µ̂(1), . . . , µ̂(r))′ = (Y • •, 1, . . . , Y • •, r)′ = Y •, •.
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Remark 1. The non-parametric Bühlmann credibility estimate Ŷx, tU+1 is the weighted
average of Y x, • and Y •, •, where

• Y x, • = 1
n−1

∑tU
t=tL+1 Yx, t = 1

n−1
∑tU
t=tL+1(Yx, t, 1, . . . , Yx, t, r)′ is the average decrement

of the r-dimensional individual time trend, ({ln(mx, t, 1)} , . . . , {ln(mx, t, r)}), for age
x and r populations per year over the period [tL + 1, tU ], and

• Y •, • = 1
n−1

∑tU
t=tL+1 Y •, t = 1

n−1
∑tU
t=tL+1(Y •, t, 1, . . . , Y •, t, r), with

Y •, t, i = 1
m

xU∑
x=xL

ln(mx, t, i)−
1
m

xU∑
x=xL

ln(mx, t−1, i)

for i = 1, . . . , r, is the average decrement of the r-dimensional group time trend,({
1
m

∑xU
x=xL ln(mx, t, 1)

}
, . . . ,

{
1
m

∑xU
x=xL ln(mx, t, r)

})
, for r populations per year over

the period [tL + 1, tU ].

Finally, the r-dimensional non-parametric Bühlmann estimate of ln(mx, tU+1) for age x
in year tU + 1 is ln(m̂x, tU+1) = ln(mx, tU ) + Ŷx, tU+1.

To obtain the non-parametric Bühlmann credibility estimate Ŷx, tU+τ for year tU + τ

(τ > 2), which is

Ŷx, tU+τ = Z(tU + τ) · Y x, •(tU + τ) + [Ir −Z(tU + τ)] · Y •, •(tU + τ), (3.7)

where (tU + τ) is attached to each of Z, Y x, •, and Y •, • to indicate those quantities are for
year tU + τ , two strategies, the expanding window (EW) strategy and the moving window
(MW) strategy, are proposed (see Tsai and Lin, 2017a, b) in the following section.

Strategy EW: Expanding window by one year.

Under the expanding window (EW) strategy, the following steps are adopted to get the
Bühlmann credibility estimate Ŷx, tU+τ for τ > 2:

• first, add the credibility estimates {Ŷx, tU+1, . . . , Ŷx, tU+τ−1} to {Yx, tL+1, . . . ,Yx, tU }
such that the fitting year span is expanded by τ years to [tL, tU + τ − 1];

• next, obtain

Y x, •(tU + τ) = 1
n+ τ − 2

 tU∑
t=tL+1

Yx, t +
tU+τ−1∑
t=tU+1

Ŷx, t

 , (3.8)

µ̂(tU + τ) = Y •, •(tU + τ) = 1
m

xU∑
x=xL

Y x, •(tU + τ), (3.9)

and
Ẑ(tU + τ) = Â

( 1
n+ τ − 2 V̂ + Â

)−1
(3.10)
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using the data in the year span [tL, tU + τ − 1], where V̂ and Â in Z(tU + τ) are the
same as those in Ẑ(tU + 1);

• finally, obtain the Bühlmann credibility estimates Ŷx, tU+τ and ln(m̂x, tU+τ ) for year
tU + τ by

Ŷx, tU+τ = Ẑ(tU + τ)Y x, •(tU + τ) +
[
Ir − Ẑ(tU + τ)

]
Y •, •(tU + τ), (3.11)

and
ln(m̂x, tU+τ ) = ln(mx, tU ) +

τ∑
t=1
Ŷx, tU+t (3.12)

for τ = 1, . . . , T2 − tU .

It is worth noting that Z(tU + τ) in Equation (3.10) is increasing in τ for the EW
strategy.

Strategy MW: Moving window by one year.

Under the moving window (MW) strategy, the following steps are adopted to get the
Bühlmann credibility estimate Ŷx, tU+τ for τ > 2:

• first, add the Bühlmann credibility estimates {Ŷx, tU+1, . . . , Ŷx, tU+τ−1} to and remove
{Ŷx, tL+1, . . . , Ŷx, tL+τ−1} from {Yx, tL+1, . . . ,Yx, tU }, with Ŷx, t = Yx, t for t ≤ tU , such
that the fitting year span is moved by one year to [tL + τ − 1, tU + τ − 1];

• next, obtain

Y x, •(tU + τ) = 1
n− 1

tU+τ−1∑
t=tL+τ

Ŷx, t, (3.13)

µ̂(tU + τ) = Y •, •(tU + τ) = 1
m

xU∑
x=xL

Y x, •(tU + τ), (3.14)

and
Ẑ(tU + τ) = Â

( 1
n− 1 V̂ + Â

)−1
(3.15)

using the data in the year span [tL + τ − 1, tU + τ − 1], where V̂ and Â in Ẑ(tU + τ)
are the same as those in Ẑ(tU + 1);

• finally, obtain the Bühlmann credibility estimates of Ŷx, tU+τ and ln(m̂x, tU+τ ) for year
tU + τ by

Ŷx, tU+τ = Ẑ(tU + τ)Y x, •(tU + τ) +
[
Ir − Ẑ(tU + τ)

]
Y •, •(tU + τ), (3.16)

and
ln(m̂x, tU+τ ) = ln(mx, tU ) +

τ∑
t=1
Ŷx, tU+t (3.17)
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for τ = 1, . . . , T2 − tU

One noteworthy property of the MW strategy is that Z(tU + τ) in Equation (3.16) is
constant in τ , i.e., Z(tU + τ) = Z(tU + 1).

3.3.4 Some Properties

In this section, we prove Ŷx, tU+τ is constant for τ = 1, 2, . . . under the EW strategy
with Propositions 1 to 3. Therefore, the non-parametric Bühlmann credibility estimate of
ln(mx,tU+τ ) is a linear function of τ with slope parameter Ŷx,tU+1 and intercept parameter
ln(mx, tU ).

Proposition 1. Under both EW and MW strategies, we have

1
m

xU∑
x=xL

Ŷx, tU+τ = 1
m

xU∑
x=xL

Y x, •(tU + τ) = Y •, •(tU + τ), τ = 1, 2, . . . . (3.18)

Proof. From Equation (3.7), we get

xU∑
x=xL

Ŷx, tU+τ = Z(tU + τ)
xU∑
x=xL

Y x, •(tU + τ) + [Ir −Z(tU + τ)]
xU∑
x=xL

Y •, •(tU + τ)

= Z(tU + τ) ·m · Y •, •(tU + τ) + [Ir −Z(tU + τ)] ·m · Y •, •(tU + τ).

Dividing by m on both sides of the equation above gives

1
m

xU∑
x=xL

Ŷx, tU+τ = Y •, •(tU + τ) = 1
m

xU∑
x=xL

Y x, •(tU + τ), τ = 1, 2, . . . .

Remark 2. Proposition 1 implies that under both EW and MW strategies, the average of
the non-parametric Bühlmann credibility estimates Ŷx, tU+τ over the fitting age span [xL, xU ]
equals the average of the Y x, •(tU + τ) over the same age span.

Proposition 2. Under the EW strategy, we have

Y •, •(tU + τ) = Y •, •(tU + 1), τ = 2, 3, . . . (3.19)

Proof. We prove Equation (3.19) by induction on τ.
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Base Case: When τ = 2, by definition, and from Proposition 1 and Equation (3.8)

Y •, •(tU + 2) = 1
m

xU∑
x=xL

Y x, •(tU + 2)

= 1
m · n

xU∑
x=xL

 tU∑
t=tL+1

Yx, t + Ŷx, tU+1


= n− 1

n
· Y •, •(tU + 1) + 1

n
· Y •, •(tU + 1)

= Y •, •(tU + 1).

Thus, Equation (3.19) holds for τ = 2.

Induction Step: Suppose Equation (3.19) holds for t = τ ; then by definition, and from
Proposition 2 and Equation (3.8) again,

Y •, •(tU + τ + 1) = 1
m

xU∑
x=xL

Y x, •(tU + τ + 1)

= 1
m · (n+ τ − 1)

xU∑
x=xL

 tU∑
t=tL+1

Yx, t +
tU+τ−1∑
t=tU+1

Ŷx, t

+ Ŷx, tU+τ


= n+ τ − 2

n+ τ − 1 · Y •, •(tU + τ) + 1
n+ τ − 1 · Y •, •(tU + τ)

= Y •, •(tU + τ).

Hence, Equation (3.19) holds for t = τ + 1, and the induction step is complete.

Conclusion: By the principle of mathematical induction, it follows that Equation (3.19)
holds for all t = 2, 3, . . . , under the EW strategy.

Proposition 3. Under the EW strategy, we have

Ŷx, tU+τ = Ŷx, tU+1, τ = 2, 3, . . . , (3.20)

and thus ln(m̂x, tU+τ ) is a linear function of τ with slope parameter Ŷx, tU+1 and intercept
parameter ln(mx, tU ).

Proof. For the EW strategy, from Equation (3.19), multiplying

(n+ τ − 2)Ẑ−1(tU + τ) = (n+ τ − 2)
( 1
n+ τ − 2 V̂ + Â

)
Â−1

= (n+ τ − 2)Ir + V̂ Â−1

on both sides of Equation (3.11) and using Equation (3.8) yields
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[
(n+ τ − 2)Ir + V̂ Â−1

]
Ŷx, tU+τ

=

 tU∑
t=tL+1

Yx, t +
tU+τ−1∑
t=tU+1

Ŷx, t

+ (n+ τ − 2)
[
Z−1(tU + τ)− Ir

]
Y •, •(tU + 1)

=

 tU∑
t=tL+1

Yx, t +
tU+τ−1∑
t=tU+1

Ŷx, t

+ V̂ Â−1Y •, •(tU + 1).

Similarly, the equation above with τ being replaced by τ + 1 gives

[
(n+ τ − 1)Ir + V̂ Â−1

]
Ŷx, tU+τ+1 =

 tU∑
t=tL+1

Yx, t +
tU+τ−1∑
t=tU+1

Ŷx, t + Ŷx, tU+τ

+ V̂ Â−1Y •, •(tU + 1).

The difference between the preceding two equations produces[
(n+ τ − 1)Ir + V̂ Â−1

]
Ŷx, tU+τ+1 −

[
(n+ τ − 2)Ir + V̂ Â−1

]
Ŷx, tU+τ = Ŷx, tU+τ

⇔
[
(n+ τ − 1)Ir + V̂ Â−1

]
Ŷx, tU+τ+1 =

[
(n+ τ − 1)Ir + V̂ Â−1

]
Ŷx, tU+τ

⇔ Ŷx, tU+τ+1 = Ŷx, tU+τ for τ = 1, 2, . . . .

Therefore, the non-parametric Bühlmann credibility estimates of ln(mx, tU+τ ) for age x
in year tU + τ under the EW strategy is

ln(m̂x, tU+τ ) = ln(mx, tU ) +
τ∑
t=1
Ŷx, tU+t = ln(mx, tU ) + (Ŷx, tU+1) · τ, (3.21)

which is a linear function of τ with slope parameter Ŷx,tU+1 and intercept parameter
ln(mx, tU ).

3.3.5 Stochastic Mortality Rates and Semi-parametric Bühlmann Model

In this section, we first derive the formulas for the stochastic non-parametric Bühlmann
estimate, ln(ms

x, tU+τ ). Next, we propose an alternative semi-parametric approach for get-
ting the estimators of the structural parameters and the corresponding ln(ms

x, tU+τ ).

To get the stochastic non-parametric Bühlmann estimate, ln(ms
x, tU+τ ), for age x in

year tU + τ , we need to add error terms to the corresponding deterministic non-parametric
Bühlmann estimate, ln(mx, tU+τ ).
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• For the EW strategy, from Equation (3.11) and Proposition 3 that Ŷx, tU+t = Ŷx, tU+1, we
have

Ŷ s
x, tU+t = Ẑ(tU + t) · [Y x, •(tU + t) + εBCx, tU+t] + [Ir − Ẑ(tU + t)] · [Y •, •(tU + t) + εBCtU+t]

= Ŷx, tU+1 +
{
Ẑ(tU + t) · εBCx, tU+t + [Ir − Ẑ(tU + t)] · εBCtU+t

}
;

and then
τ∑
t=1
Ŷ s
x, tU+1 = (Ŷx, tU+1) · τ +

τ∑
t=1

{
Ẑ(tU + t) · εBCx, tU+t + [Ir − Ẑ(tU + t)] · εBCtU+t

}
. (3.22)

• For the MW strategy, from the fact that Z(tU + t) = Z(tU + 1) for t = 1, 2, . . ., we have

Ŷ s
x, tU+t = Ẑ(tU + t) · [Y x, •(tU + t) + εBCx, tU+t] + [Ir − Ẑ(tU + t)] · [Y •, •(tU + t) + εBCtU+t]

= Ŷx, tU+t +
{
Ẑ(tU + 1) · εBCx, tU+t + [Ir − Ẑ(tU + 1)] · εBCtU+t

}
;

and then
τ∑
t=1
Ŷ s
x, tU+t =

τ∑
t=1
Ŷx, tU+t + Ẑ(tU + 1)

τ∑
t=1
εBCx, tU+t + [Ir − Ẑ(tU + 1)]

τ∑
t=1
εBCtU+t; (3.23)

where

• εBCx, tU+t follows an i.i.d. multivariate normal distribution with mean 0 and covariance
matrix ΣεBCx

for t = 1, . . . , τ , i.e., {εBCx, tU+t}
i.i.d.∼N (0, ΣεBCx

) for each fixed age x;

• εBCtU+t follows an i.i.d. multivariate normal distribution with mean 0 and covariance
matrix ΣεBC for t = 1, . . . , τ , i.e., {εBCtU+t}

i.i.d.∼N (0, ΣεBC ); and

•
[
εBCx, tU+t

εBCtU+t

]
follows a multivariate normal distribution with mean

[
0
0

]
and covari-

ance matrix
[

ΣεBCx
ΣεBCx , εBC

ΣεBCx , εBC ΣεBC

]
, i.e.,

{[
εBCx, tU+t

εBCtU+t

]}
i.i.d.∼N

([
0
0

]
,

[
ΣεBCx

ΣεBCx , εBC

ΣεBCx , εBC ΣεBC

])
.

.

Note that ΣεBCx
, ΣεBC and ΣεBCx , εBC are estimated by

Σ̂εBCx
= 1
n− 2

tU∑
t=tL+1

[Yx, t − Y x, •(tU + 1)][Yx, t − Y x, •(tU + 1)]′,
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Σ̂εBC = 1
n− 2

tU∑
t=tL+1

[Y •, t − Y •, •(tU + 1)][Y •, t − Y •, •(tU + 1)]′,

and

Σ̂εBCx , εBC = 1
n− 2

tU∑
t=tL+1

[Yx, t − Y x, •(tU + 1)][Y •, t − Y •, •(tU + 1)]′,

where Y •, t = 1
m

xU∑
x=xL

Yx, t.

The stochastic semi-parametric Bühlmann estimate of ln(mx, tU+τ ) is therefore given by

ln(m̂s
x, tU+τ ) = ln(m̂x, tU ) +

τ∑
t=1
Ŷ s
x, tU+t, (3.24)

where
∑τ
t=1 Ŷ

s
x, tU+t is given in Equations (3.22) and (3.23) for the EW and MW strategies,

respectively.

If Yx, t = ([ln(mx, t, 1)− ln(mx, t−1, 1)], . . . , [ln(mx, t, r)− ln(mx, t−1, r)]), given Θx for t =
tL + 1, . . . , tU , follows an independent and identically multivariate normal distribution (see
Figure 3.2) with mean ΘBC

x and covariance matrix ΣεBCx
, then a semi-parametric Bühlmann

credibility approach can be applied to estimate the structural parameters. The normality
assumption of Yx, t, i for x = 35, 55, and 75 in six populations is supported by the Q-Q
plots displayed in Figures 3.3 to 3.5. The procedure is exactly analogous to that under the
non-parametric framework:

• estimate the hypothetical mean, µ(Θx) = E[Yx, t|Θx] = ΘBC
x , by

µ̂(Θx) = Θ̂BC
x = Y x, •(tU + 1) = µ̂x;

• estimate the process covariance matrix, Σ(Θx) = Cov[Yx, t, Y ′x, t|Θx] = ΣεBCx
, by

Σ̂(Θx) = Σ̂εBCx
= 1
n− 2

tU∑
t=tL+1

[Yx, t − Y x, •(tU + 1)][Yx, t − Y x, •(tU + 1)]′ = V̂x;

• estimate the expected value of the hypothetical mean, µ = E [µ (Θx)], by

µ̂ = 1
m

xU∑
x=xL

Θ̂BC
x = 1

m

xU∑
x=xL

µ̂x = 1
m

xU∑
x=xL

Y x, •(tU + 1) = Y •, •(tU + 1);
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• estimate the expected process covariance matrix, V = E [Σ (Θx)], by

V̂ = 1
m

xU∑
x=xL

Σ̂εBCx

= 1
m

xU∑
x=xL

 1
n− 2

tU∑
t=tL+1

[Yx, t − Y x, •(tU + 1)][Yx, t − Y x, •(tU + 1)]′


= 1
m

xU∑
x=xL

V̂x;

• estimate the covariance matrix of hypothetical mean,A = Cov [µ (Θx)] = E
{

[µ (Θx)]2
}
−

{E [µ (Θx)]}2, by

Â = 1
m

xU∑
x=xL

[Θ̂BC
x ][Θ̂BC

x ]′ − [Y •, •(tU + 1)][Y •, •(tU + 1)]′

= 1
m

xU∑
x=xL

[Y x, •(tU + 1)− Y •, •(tU + 1)][Y x, •(tU + 1)− Y •, •(tU + 1)]′.

It is worthwhile mentioning that the semi-parametric estimators for µ̂ and V̂ are the
same as those under the non-parametric credibility approach, whereas the estimators for
Â under the two approaches are different. The stochastic estimate ln(ms

x, tU+τ ) given in
Equations (3.22) and (3.24) for the non-parametric Bühlmann approach still applies to the
semi-parametric one.
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Figure 3.3: Q-Q plots of Yx, t, i for U.S.A. males and females
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(a) U.S.A. Males; x = 35

-2 -1 0 1 2

Standard Normal Quantiles

-0.15

-0.1

-0.05

0

0.05

0.1

Q
u

a
n

til
e

s 
o

f 
In

p
u

t 
S

a
m

p
le

(b) U.S.A. Females; x = 35
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(c) U.S.A. Males; x = 55
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(d) U.S.A. Females; x = 55
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(e) U.S.A. Males; x = 75
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(f) U.S.A. Females; x = 75
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Figure 3.4: Q-Q plots of Yx, t, i for U.K. males and females
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(a) U.K. Males; x = 35
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(b) U.K. Females; x = 35
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(c) U.K. Males; x = 55
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(d) U.K. Females; x = 55
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(e) U.K. Males; x = 75
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(f) U.K. Females; x = 75
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Figure 3.5: Q-Q plots of Yx, t, i for Japan males and females
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(a) Japan Males; x = 35
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(b) Japan Females; x = 35
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(c) Japan Males; x = 55
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(d) Japan Females; x = 55
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(e) Japan Males; x = 75
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(f) Japan Females; x = 75
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Chapter 4

Numerical Illustrations

In this chapter, the models presented in Chapter 3 are applied to mortality data of the
Human Mortality Database for both genders of three well-developed countries; numerical
results are provided for illustrations, which show that the multi-dimensional Bühlmann
credibility approach outperforms the multi-dimensional Lee-Carter models based on the
measure of mean absolute percentage error (MAPE).

This chapter is organized as follows. In Section 4.1, the parameters used for numerical
illustrations are presented. Section 4.2 gives a detailed illustration of the MAPE (mean
absolute percentage error), the statistical quantity for comparing the forecasting perfor-
mances among models. In the last section, we present the numerical results of the models
constructed in Chapter 3 with both visualized plots and summarized tables, followed by
comparisons and analyses.

4.1 Model Specification

Given a study period [T1, T2] for which mortality rates are available, we assume that we
are currently at the end of year tU , where tU < T2, and would like to forecast future mortality
rates and evaluate the forecast performance of each mortality model for the forecasting
period, [tU + 1, T2].

The mortality rates of each population for the age-year rectangle [xL, xU ] × [tL, T2],
where tL > T1, are divided into two parts, the in-sample data, [xL, xU ] × [tL, tU ], and
the out-of-sample data, [xL, xU ] × [tU + 1, T2]. The in-sample data, which consists of the
mortality data in the first rectangle [xL, xU ]×[tL, tU ], are used in each model to estimate the
parameters, and then the out-of-sample data, comprising the mortality data in the second
rectangle [xL, xU ]× [tU + 1, T2], are used for comparing with the predicted mortality rates.
Specifically,
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• for the study period, we adopt a 63-year period, 1951− 2013, that is, T1 = 1951 and
T2 = 2013;

• for the fitting age span, we choose 25− 84, i,e., xL = 25, an age of adults, xU = 84, a
life expectancy for some well-developed countries and m = xU − xL + 1 = 60;

• for the fitting year spans, we adopt a series of periods, [tL, tU ] = [1951, tU ], . . . , [tU −
4, tU ], with the shortest fitting year span being 5 years, to extensively evaluate the
forecast performances of the underlying mortality models;

• for the forecasting year span, we choose three periods, [tU + 1, T2] = [2004, 2013] (10
years window with tU = 2003), [1994, 2013] (20 years window with tU = 1993) and
[1984, 2013] (30 years window with tU = 1983).

Table 4.1: Summary of three forecasting year spans

Length of forecasting year spans T2 − tU 10 20 30
Ending year of fitting year spans tU 2003 1993 1983
Number of fitting year spans J 49 39 29

Fitting year spans [tL, tU ]

[1951, 2003] [1951, 1993] [1951, 1983]
[1952, 2003] [1952, 1993] [1952, 1983]

...
...

...
[1999, 2003] [1989, 1993] [1979, 1983]

Forecasting year spans [tU + 1, T2] [2004, 2013] [1994, 2013] [1984, 2013]

We illustrate the proposed models with mortality rates from the Human Mortality
database for four groups of populations:

• males and females of the U.S.A. (r = 2, with males of the U.S.A. as the base population
for the co-integrated Lee-Carter model);

• males and females of the U.K. (r = 2, with males of the U.K. as the base population
for the co-integrated Lee-Carter model);

• males and females of Japan (r = 2, with males of Japan as the base population for
the co-integrated Lee-Carter model); and

• males and females of the U.S.A., the U.K. and Japan (r = 6, with males of the U.S.A.
as the base population for the co-integrated Lee-Carter model).

4.2 Forecasting Errors

The forecasting performances of the proposed multi-dimensional non-parametric and
semi-parametric Bühlmann credibility models are compared with those of existing joint-
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k/co-integrated/augmented common factor Lee-Carter models. The MAPE (mean absolute
percentage error), a widely adopted forecasting performance measure as used in D’Amato
et al. (2012) and Lin et al. (2015), is selected to measure the forecasting errors between
the true (observed) out-of-sample mortality rate q and the estimated/forecasted one q̂.

Specifically, with the out-of-sample data, the forecast accuracy of a single one-year death
probability for age x in year tU + τ and population i , q̂x, tU+τ, i, measured by the MAPE
based on the fitting year span [tL, tU ] is given by

MAPE
[tL,tU ]
x, tU+τ, i =

∣∣∣∣∣ q̂x, tU+τ, i − qx, tU+τ, i
qx, tU+τ, i

∣∣∣∣∣ . (4.1)

For any given fitting year span [tL, tU ], to further examine the forecasting accuracy of
a model for the entire rectangle [xL, xU ] × [tU + 1, T2], the average of MAPE

[tL,tU ]
x, tU+τ, i over

the rectangle is calculated as

AMAPE
[tL,tU ]
[tU+1,T2], i = 1

m · (T2 − tU )

T2−tU∑
τ=1

xU∑
x=xL

MAPE
[tL,tU ]
x, tU+τ, i,

where m = xU − xL + 1 = 60.
Then the values of all AMAPE

[tL,tU ]
[tU+1,T2], i over tL = T1, . . . , tU − 4 are summed up

and the average, AAMAPE[tU+1,T2], i, which is employed as a measurement of the overall
performance of the underlying mortality model, is computed as

AAMAPE[tU+1,T2], i = 1
tU − 4− T1 + 1

tU−4∑
tL=T1

AMAPE
[tL,tU ]
[tU+1,T2], i.

By comparing the AAMAPE, we are able to rank the prediction accuracy of different
mortality models: the model which achieves a smaller AAMAPE implies better forecasting
performance.

4.3 Numerical Results

This section summarizes, with six figures and two tables, the forecast errors of one-year
death probabilities for all models we discussed in Chapter 3 for four groups of populations.

• Table 4.2 presents AAMAPE [tU+1, 2013], i, the average of AMAPE
[tL, tU ]
[tU+1, 2013], i over

all fitting year spans for tU = 2003, 1993 and 1983, for the first three groups of
populations, i.e., males and females of the U.S.A. (r = 2), males and females of the
U.K. (r = 2) and males and females of Japan (r = 2).

• Figures 4.1−4.3 display AMAPE
[tL, tU ]
[tU+1, 2013], i against tL = 1951, . . . , tU − 4 for tU =

2003, 1993 and 1983, respectively, for the first three groups of populations.
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• Table 4.3 gives AAMAPE [tU+1, 2013], i, the average of AMAPE
[tL, tU ]
[tU+1, 2013], i over all

fitting year spans for tU = 2003, 1993 and 1983, for the last group of populations, i.e.,
males and females of the U.S.A., the U.K. and Japan (r = 6).

• Figures 4.4−4.6 exhibit AMAPE
[tL, tU ]
[tU+1, 2013], i against tL = 1951, . . . , tU − 4 for tU =

2003, 1993 and 1983, respectively, for the last group of populations.

Informative observations are summarized as follows:

• The proposed semi-parametric and non-parametric Bühlmann approaches contribute
to similar forecasting performances, with the non-parametric Bühlmann approach
slightly outperforms the semi-parametric one. Due to this, we only plot AMAPE for
the EW and MW strategies under the non-parametric approach in Figures 4.1−4.6.
As exhibited in Tables 4.2 and 4.3, the AAMAPE [tU+1, 2013] values under the semi-
parametric and non-parametric Bühlmann approaches are quite similar for two strate-
gies (EW and MW) and three forecast periods over four groups of populations. That
is to say, the Bühlmann credibility approach under semi-parametric framework still
achieves better forecasting performances than the multi-dimensional Lee-Carter mod-
els.

• In Figures 4.1 to 4.6, AMAPE
[tL, tU ]
[tU+1, 2013], i is neither monotonically increasing nor

decreasing in tL for all of the multi-dimensional Lee-Carter models and the EW and
MW strategies. Stated differently, a shorter or longer fitting year span does not guar-
antee a lower AMAPE. As a matter of fact, the forecasting performance in terms of
AMAPE values totally depends on the dataset. For example, Figure 4.2 (c) demon-
strates that under the EW strategy, the smallest AMAPE for the U.K. males occurs
at tL = 1979 (the fitting year span [1979, 1993]), and after that AMAPE increases
in tL until the fitting year span narrows to the shortest one, [1989, 1993]. However,
in Figure 4.2 (f) for Japan females, the AMAPE curve displays a decreasing pattern
where the minimum AMAPE occurs at the shortest fitting year span [1989, 1993].

• AMAPE
[tL, tU ]
[tU+1, 2013], i values under all of the models and strategies are generally de-

creasing in tU , that is, the wider the forecasting period [tU + 1, 2013], the higher the
AMAPE

[tL, tU ]
[tU+1, 2013], i value. From Tables 4.2 and 4.3, we observe that the AAMAPE

values for all of the models and strategies for a wider forecasting period are on average
higher than those for a narrower forecasting period. For example, from Table 4.3, for
the 10-year forecasting period (tU = 2003), the average of the AMAPE

[tL, tU ]
[tU+1, 2013]

values over both genders of the three countries for the EW and MW strategies un-
der the semi-parametric approach are 7.06% and 6.99%, whereas for the other two
forecasting periods, the corresponding AAMAPE values are 12.05% and 11.84% for
20-year forecasting period (tU = 1993) and 14.95% and 14.10% for 30-year forecasting
period (tU = 1983).
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• Most of the AMAPE
[tL, tU ]
[tU+1, 2013] values for both of the MW and EW strategies under

the non-parametric approach are lower than those for the joint-k, co-integrated and
augmented common factor Lee-Carter models, except for a few cases. The AMAPE

EW or MW plot is almost located lowest in Figures 4.1 to 4.6. Moreover, in Table 4.3,
for the 10-year forecasting period (tU = 2003), the averages of the AMAPE values
over both genders of the three countries for the joint-k, co-integrated and augmented
common factor Lee-Carter models are 10.17% 9.32% and 8.85%, respectively, whereas
those for the non-parametric EW and MW strategies are 7.10% and 7.05%. For
the other two forecasting periods, the corresponding AAMAPE values for the non-
parametric EW and MW strategies are 11.77% and 11.66% (14.58% and 13.98%)
for tU = 1993 (tU = 1983), and 14.57%, 13.85% and 14.13% (19.05% 17.68% and
17.04%) with respect to the joint-k, co-integrated and augmented common factor Lee-
Carter models. The numerical illustrations above give strong evidence that the non-
parametric Bühlmann credibility approach outperforms the multi-dimensional Lee-
Carter models in forecasting mortality rates.

• In Figures 4.1 to 4.6, AMAPE
[tL, tU ]
[tU+1, 2013] curves for the MW strategy under non-

parametric approach are smoother in tL and generally lower than those for the EW
strategy under same approach. We also observe in Table 4.2 and Table 4.3 that the
MW strategy generally achieves lower AAMAPEs than the EW one. From this, we see
that mortality models with different strategies under the same credibility approach
can produce distinct responses in terms of their AAMAPE values.

To sum up, by comparing the forecasting performances across different mortality models,
countries and genders, we can see that the EW or MW strategy generally produce the best
forecasting performance for the wide age span 25 to 84, regardless of longer or shorter fitting
year span and forecasting period. This indicates that the multi-dimensional Bühlmann
credibility approach is an effective way to reduce forecasting errors. Out of the two proposed
strategies, the MW strategy is slightly favourable than the EW one for the non-parametric
and semi-parametric Bühlmann approaches.
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Table 4.2: AAMAPE[tU+1, 2013], is; two populations (r = 2)

Credibility models Lee-Carter models
Non Semi

Country Gender EW MW EW MW JoK CoI ACF
Panel A: tU = 2003; forecasting 2004− 2013 (%)

U.S.A.
Male 5.98 5.93 6.00 5.90 10.12 9.24 9.52

Female 6.03 6.10 6.14 6.17 8.85 8.71 8.22
Average 6.00 6.01 6.07 6.03 9.48 8.97 8.87

U.K.
Male 9.08 8.93 8.43 8.31 11.74 11.17 11.07

Female 7.92 7.94 7.82 7.85 8.51 8.90 8.85
Average 8.50 8.44 8.13 8.08 10.13 10.04 9.96

Japan
Male 5.55 5.64 5.83 5.86 7.32 7.50 7.44

Female 8.03 7.75 8.03 7.72 9.42 9.58 9.92
Average 6.79 6.69 6.93 6.79 8.37 8.54 8.68

Panel B: tU = 1993; forecasting 1994− 2013 (%)

U.S.A.
Male 15.53 15.62 16.89 16.76 17.34 16.97 16.76

Female 6.18 6.44 6.60 6.72 8.68 8.43 7.55
Average 10.86 11.03 11.75 11.74 13.01 12.70 12.16

U.K.
Male 15.31 15.21 13.67 13.31 17.19 16.95 16.88

Female 9.29 9.58 10.21 10.25 12.95 13.05 12.93
Average 12.30 12.39 11.94 11.78 15.07 15.00 14.90

Japan
Male 9.93 9.48 10.75 10.27 12.93 12.47 12.40

Female 14.36 13.62 14.28 13.51 15.54 15.55 15.96
Average 12.14 11.55 12.52 11.89 14.24 14.01 14.18

Panel C: tU = 1983; forecasting 1984− 2013 (%)

U.S.A.
Male 11.25 10.77 11.55 10.74 12.93 13.05 13.49

Female 15.47 16.15 15.42 16.02 16.93 15.52 16.14
Average 13.36 13.46 13.49 13.38 14.93 14.28 14.81

U.K.
Male 19.59 18.25 20.32 18.65 23.07 22.92 22.77

Female 9.08 8.63 11.86 10.44 16.24 16.34 16.47
Average 14.33 13.44 16.09 14.54 19.66 19.63 19.62

Japan
Male 13.20 12.19 13.58 12.32 17.44 16.45 16.29

Female 18.86 17.87 19.06 17.90 21.31 20.92 22.23
Average 16.03 15.03 16.32 15.11 19.38 18.69 19.26
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Figure 4.1: AMAPE
[tL, 2003]
[2004, 2013], i against tL with age span 25− 84 (2 populations)
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Figure 4.2: AMAPE
[tL, 1993]
[1994, 2013], i against tL with age span 25− 84 (2 populations)
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Figure 4.3: AMAPE
[tL, 1983]
[1984, 2013], i against tL with age span 25− 84 (2 populations)
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Table 4.3: AAMAPE[tU+1, 2013], is; six populations (r = 6)

Credibility models Lee-Carter models
Non Semi

Country Gender EW MW EW MW JoK CoI ACF
Panel A: tU = 2003; forecasting 2004− 2013 (%)

U.S.A.
Male 5.98 5.93 6.01 5.91 10.42 9.24 7.41

Female 6.03 6.10 6.12 6.15 8.64 8.71 8.25

U.K.
Male 9.08 8.93 8.60 8.48 13.81 11.49 13.04

Female 7.92 7.94 7.83 7.87 9.78 9.31 7.87

Japan
Male 5.55 5.64 5.77 5.82 7.69 7.89 6.37

Female 8.03 7.75 8.02 7.73 10.67 9.25 10.14
Average 7.10 7.05 7.06 6.99 10.17 9.32 8.85

Panel B: tU = 1993; forecasting 1994− 2013 (%)

U.S.A.
Male 15.57 15.63 16.75 16.64 17.09 16.97 18.66

Female 6.18 6.44 6.47 6.60 9.77 8.43 8.97

U.K.
Male 15.31 15.21 14.59 14.54 18.87 18.22 19.34

Female 9.29 9.58 9.60 9.76 13.67 13.75 10.69

Japan
Male 9.93 9.48 10.43 9.81 12.72 11.16 10.91

Female 14.36 13.62 14.43 13.66 15.33 14.58 16.21
Average 11.77 11.66 12.05 11.84 14.57 13.85 14.13

Panel C: tU = 1983; forecasting 1984− 2013 (%)

U.S.A.
Male 11.25 10.77 11.46 10.68 13.71 13.05 12.07

Female 15.47 16.15 15.41 16.04 17.20 15.52 16.25

U.K.
Male 19.59 18.25 19.90 18.36 24.87 24.29 23.68

Female 9.08 8.63 10.05 9.13 16.93 17.07 13.49

Japan
Male 13.20 12.18 13.62 12.31 18.82 15.95 14.55

Female 18.87 17.88 19.29 18.06 22.79 20.21 22.21
Average 14.58 13.98 14.95 14.10 19.05 17.68 17.04
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Figure 4.4: AMAPE
[tL, 2003]
[2004, 2013], i against tL with age span 25− 84 (6 populations)
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Figure 4.5: AMAPE
[tL, 1993]
[1994, 2013], i against tL with age span 25− 84 (6 populations)
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Figure 4.6: AMAPE
[tL, 1983]
[1984, 2013], i against tL with age span 25− 84 (6 populations)
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Chapter 5

Conclusion

In this project we employ a multi-dimensional Bühlmann credibility approach to mod-
eling the mortality dynamics of multiple populations jointly under both non-parametric
and semi-parametric frameworks. We further propose two strategies for forecasting mor-
tality levels for two or more years; one is expanding mortality data window by one year
(EW strategy) and the other is moving mortality data window by one year (MW strategy).
Moreover, the formulas for calculating corresponding stochastic mortality rates are also
provided in this project to simulate future mortality rates for applications and construct
predictive intervals.

We also give an informative credibility interpretation that the future decrement mor-
tality rate per year for age x is the weighted average of the the sample mean of the past
decrement rates per year for the individual time trend for x and that of the past decrement
rates per year for the group time trend for all ages. We prove that credibility forecasts
of the natural logarithm of the central death rate for age x in year tU + τ under the EW
strategy is a linear functions of τ with slope parameter Ŷx,tU+1, the decrement mortality
rate for age x and the first forecast year, and intercept parameter ln(mx,tU ), the natural
logarithm of the true (observed) central death rate for age x and the last fitting year.

Three well-known multi-population extensions of the Lee-Carter model and credibility
models proposed in this project are applied to mortality data of the Human Mortality
Database for both genders of the U.S.A, the U.K. and Japan. Empirical results show that
the credibility approach generally produces better forecasting performances, measured by
the MAPE, than those based on the Lee-Carter model. In addition to providing a simple
approach that produces satisfactory and stable forecasts, another major contribution of
this project is that it innovatively applies the multi-dimensional credibility approach, an
approach that is predominantly used in property and casualty insurance, to mortality fitting
and forecasting for multiple populations.
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Appendix A

Single Population Lee-Carter
Model

A.1 The Model

The natural logarithm of central death rates, ln(mx, t), for lives aged x in year t under the
well-known Lee-Carter model (see Lee and Carter, 1992) is expressed by:

ln(mx, t) = αx + βx × kt + εx, t, x = xL, . . . , xU , t = tL, . . . , tU ,

where

• αx is the average age-specific mortality factor at age x,

• kt is the index of the mortality level in year t,

• βx is the age-specific reaction to kt at age x, and

• εx, t is the model error and {εx, t : t = tL, tL + 1, . . .} i.i.d.∼N(0, σ2
εx).

For uniqueness of the model specification, the following two constraints are imposed:

xU∑
x=xL

βx = 1 and
tU∑
t=tL

kt = 0.

A.2 Fitting the Model

According to the two constrains, estimates of αx, kt and βx can be obtained as follows:
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• α̂x can be derived by averaging the sum of ln(mx, t) over the fitting year span [tL, tU ],

tU∑
t=tL

ln(mx, t) = n× αx + βx ×
tU∑
t=tL

kt = n× αx

⇒ α̂x =

tU∑
t=tL

ln(mx, t)

n
, x = xL, . . . , xU ,

where n = tU − tL + 1;

• k̂t is equal to the sum of [ln(mx, t)− α̂x] over the age span [xL, xU ],

xU∑
x=xL

[ln(mx, t)− α̂x] = kt ×
xU∑
x=xL

β̂x = kt × 1

⇒ k̂t =
xU∑
x=xL

[ln(mx, t)− α̂x] , t = tL, . . . , tU ;

• β̂x can be obtained by regressing [ln(mx, t)− α̂x] on k̂t without the constant term for
each age x; specifically,

β̂x =
tU∑
t=tL

[ln(mx, t)− α̂x]× kt
(k̂t)2

.

A.3 Modeling and Forecasting the Mortality Level Index kt

Empirical analyses (see Lee and Carter, 1992) shown that {k̂t : t = tL, . . . , tU} displays a
linear trend, so we apply the ARIMA(0,1,0) times series model, a random walk with drift
θ, to model k̂t by

k̂t = k̂t−1 + θ + εt,

where

• the time trend error εt
i.i.d.∼N(0, σ2

ε ), that is, k̂t − k̂t−1
i.i.d.∼N(θ, σ2

ε ), for all t.

• the time trend errors, {εt}, are assumed to be independent of the model errors, {εx, t}.

The unbiased estimator of the mean of the i.i.d. (k̂t − k̂t−1), θ, is given by

θ̂ = 1
n− 1

tU∑
t=tL+1

(k̂t − k̂t−1) = k̂tU − k̂tL
n− 1 .
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Thus, ktU+τ can be deterministically projected as k̂tU+τ = k̂tU + τ · θ̂, and stochastically
projected as k̃t+τ = k̂t+τ +

∑tU+τ
t=tU+1 εt, where

∑tU+τ
t=tU+1 εt has the same distribution as

√
τ × εtU+τ .

A.4 Forecasting Mortality Rates

The natural logarithm of the deterministic central death rates, ln(mx, tU+τ ), for lives aged
x in year tU + τ can be predicted as

ln(m̂x, tU+τ ) = α̂x + β̂x × k̂tU+τ

= α̂x + β̂x × (k̂tU + τ × θ̂)

= (α̂x + β̂x × k̂tU ) + β̂x × τ × θ̂

= ln(m̂x, tU ) + (β̂x × θ̂)× τ, τ = 1, . . . , T2 − tU ,

where ln(m̂x, t) = α̂x + β̂x × k̂tU .

It follows that
m̂x, tU+τ = exp

[
α̂x + β̂x × (k̂tU + τ × θ̂)

]
.

By Equation (3.1), the predicted deterministic one-year death rate, q̂x, tU+τ , for age x in
year tU + τ , is given by

q̂x, tU+τ = 1− exp
[
− exp

(
α̂x + β̂x × (k̂tU + τ × θ̂)

)]
.

We can add two error terms, the model error εx, tU+τ and the time trend errors εtU+t, t =
1, . . . , τ , to the natural logarithm of the predicted deterministic central death rates, ln(m̂x, tU+τ ),
to form the natural logarithm of the stochastic central death rates, ln(m̃x, tU+τ ), for age x
in year tU + τ . Specifically,

ln(m̃x, tU+τ ) = α̂x + β̂x × k̃tU+τ + εx, tU+τ

= α̂x + β̂x × (k̂tU + τ × θ̂ +
tU+τ∑
t=tU+1

εt) + εx, tU+τ

= ln(m̂x, tU+τ ) +
√
τ × β̂x × εtU+τ + εx, tU+τ ,

which follows that ln(m̃x, tU+τ ) ∼N
(
ln(m̂x, tU+τ ), τ × β̂2

x × σ2
ε + σ2

εx)
)
and

m̃x, tU+τ = exp
(
ln(m̂x, tU+τ ) +

√
τ × β̂x × εtU+τ + εx, tU+τ

)
.
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From Equation (3.1), the stochastic one-year death rate, q̃x, tU+τ , for age x in year tU + τ

is given by

q̃x, tU+τ = 1− exp
[
− exp

(
ln(m̂x, tU+τ ) +

√
τ × β̂x × εtU+τ + εx, tU+τ

)]
.

The estimate of the variance of the model error, σ̂2
εx , is obtained by

σ̂2
εx = 1

n− 2

tU∑
t=tL

(εx, t)2 =

tU∑
t=tL

[
ln(mx, t)− α̂x − β̂x × k̂t

]2
n− 2 ,

and the estimate of the variance of the time trend error, σ̂2
ε , is given by

σ̂2
ε = 1

n− 2

tU∑
t=tL+1

(εt)2 =

tU∑
t=tL+1

(
k̂t − k̂t−1 − θ̂

)2

n− 2 .

Therefore, the estimate of the variance of the natural logarithm of the stochastic central
death rate, σ2 (ln(m̃x, tU+τ )), is given as

σ̂2 (ln(m̃x, tU+τ )) = τ × β̂2
x × σ̂2

ε + σ̂2
εx ,

and a 100(1− γ)% predictive interval on qx, tU+τ is given by

1− exp
{
− exp

[
ln(m̂x, tU+τ )± z γ

2
× σ̂2 (ln(m̃x, tU+τ ))

]}
.
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Appendix B

One-dimensional Bühlmann
Credibility Model

The one-dimensional Bühlmann credibility model for forecasting mortality rates for single
population can also be referred to Tsai and Lin (2017b).

Suppose that we have (n−1) past observed values, Yx, tL+1, . . . , Yx, tU , where tU−tL = n−1,
and would like to get the credibility estimator Ŷx, tU+1 for ages x = xL, . . . , xU and the next
year tU +1. To implement the Bühlmann credibility approach, we further assume that Yx, t,
where t = tL, . . . , tU , is characterized by the risk parameter, Θx, associated with age x.

Among the various possible predictors of Yx, tU+1, we choose to project Yx, tU+1 with a linear
function of the past data Yx,tL+1, . . . , Yx,tU (see Bühlmann, 1967), i.e., cx, 0+

∑n−1
t=1 cx, tYx, tL+t.

That is, we would like to choose cx, 0, cx, 1, . . . , cx, n−1 to minimize the quadratic loss function
Q, where

Q = E


[
Yx, tU+1 − cx, 0 −

n−1∑
t=1

cx, tYx, tL+t

]2 . (B.1)

To minimize Q, we take the derivative of Q with respect to cx, t, for t = 0, . . . , n − 1, and
set to 0,

• ∂Q
∂cx, 0

implies that E[Yx, tU+1] = ĉx, 0 +
∑n−1
t=1 ĉx, tE[Yx, tL+t];

• ∂Q
∂cx, u

implies that E[Yx, tU+1 ·Yx, tL+u] = ĉx, 0E[Yx, tL+u]+
∑n−1
t=1 ĉx, tE[Yx, tL+t ·Yx, tL+u],

for u = 1, . . . , n− 1.

Special Case: (see Klugman et al., 2012) If µx = E[Yx, t] = µ, σ2
x(t, t) = Var[Yx, t] = σ2,

and σ2
x(t1, t2) = Cov[Yx, t1 , Yx, t2 ] = ρ · σ2 for t1 6= t2, where the correlation coefficient
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ρ ∈ [−1, 1], then we have

ĉx, 0 = (1− ρ) · µ
1− ρ+ (n− 1)ρ,

and
ĉx, t = ρ · ĉx, 0

(1− ρ) · µ = ρ

1− ρ+ (n− 1)ρ.

Thus, the credibility estimate of Yx, tU+1 is given by

Ŷx, tU+1 = (1− ρ) · µ
1− ρ+ (n− 1)ρ + ρ

1− ρ+ (n− 1)ρ ·
n−1∑
t=1

Yx, tL+t = (1− Z)µ+ ZY x, •,

where Z = (n−1)ρ
1−ρ+(n−1)ρ and Y x, • = 1

n−1
∑tU
t=tL+1 Yx, t. Note that if ρ ∈ [0, 1] then Z ∈ [0, 1],

and the credibility estimate is a weighted average of the expectation µ and the sample mean
Ȳx, •.

B.1 Parametric Bühlmann Model

The following specifies the additional assumptions of the distributions of Yx,t|Θx and Θx to
construct the one-dimensional parametric Bühlmann credibility model,

Assumption B.1. Conditional on the risk parameter Θx, {Yx,t} are independent and iden-
tically distributed for t = tL, . . . , tU with

{
E [Yx,t|Θx] = µ (Θx) ,
Var [Yx,t|Θx] = v (Θx) .

Assumption B.2. Θx are independent and identically distributed as Θ for x = xL, . . . , xU

with

{
µ (Θx) = µ (Θ) ,
v (Θx) = v (Θ) .

Assumption B.3. The distribution of Θ is such that
µ = E [µ (Θ)] ,
v = E [v (Θ)] ,
a = Var [µ (Θ)] .
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Denote the structural parameters as follows:

• the hypothetical mean, µ(Θx) = E[Yx, t|Θx];

• the process variance, v(Θx) = Var[Yx, t|Θx];

• the expected value of the hypothetical mean, µ = E [µ (Θx)];

• the expected value of the process variance, v = E [v (Θx)]; and

• the variance of the hypothetical mean, a = Var [µ (Θx)].

Under Assumptions B.1 to B.3, and the notations above, it follows directly that

• E[Yx, t] = E [E(Yx, t|Θx)] = E[µ(Θx)] = µ, where t = tL + 1, . . . , tU ;

• Var[Yx, t] = E[Var(Yx, t|Θx)]+Var[E(Yx, t|Θx)] = E[v(Θx)]+Var[µ(Θx)] = v+a, where
t = tL + 1, . . . , tU ; and

• Cov[Yx, t1 , Yx, t2 ] = E[Cov(Yx, t1 , Yx, t2 |Θx)]+Cov[E(Yx, t1 |Θx),E(Yx, t2 |Θx)] = 0+Var[µ(Θx)] =
a, where t1, t2 = tL + 1, . . . , tU and t1 6= t2.

Then, using the special case, we have ρ · Var[Yx, t] = Cov[Yx,t1 , Yx, t2 ] for t1 6= t2, that is,
ρ · (a+ v) = a. Thus, the Bühlmann credibility factor, Z, is given by

Z = (n− 1)ρ
1− ρ+ (n− 1)ρ = (n− 1)a/(v + a)

v/(v + a) + (n− 1)a/(v + a) = a

( 1
n− 1v + a

)−1
,

and the Bühlmann credibility estimate of Yx, tU+1 is

Ŷx, tU+1 = ZY x + (1− Z)µ,

where Y x = 1
n−1

∑tU
t=tL+1 Yx, t is the sample mean for age x,.

B.2 Non-parametric Bühlmann Model

To get the non-parametric estimators of µ, v and a, we further assume that

Assumption B.4. The pairs {(Θx, Yx), x = xL, . . . , xU}, where Yx = (Yx,tL+1, . . . , Yx,tU ),
are independent.
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Table B.1: Non-parametric Bühlmann estimation for µ, v and a

YxL = (YxL, tL+1, . . . , YxL, tU ), µ̂xL = Y xL = 1
n−1

tU∑
t=tL+1

YxL, t,

v̂xL = 1
n−2

tU∑
t=tL+1

(
YxL, t − Y xL

) (
YxL, t − Y xL

)
;

...
...

YxU = (YxU , tL+1, . . . , YxU , tU ). µ̂xU = Y xU = 1
n−1

tU∑
t=tL+1

YxU , t,

v̂xU = 1
n−2

tU∑
t=tL+1

(
YxU , t − Y xU

) (
YxU , t − Y xU

)
.

â = 1
m−1

xU∑
x=xL

(Y x − Y )(Y x − Y )− v̂
n−1 .

µ̂ = Y = 1
m

xU∑
x=xL

Y x,

v̂ = 1
m

xU∑
x=xL

v̂x, m = xU − xL + 1.

The preliminary unbiased estimators of µ, v and a are presented in Table B.1

Note that the preliminary non-parametric estimate of the variance of the hypothetical mean,
â, could be negative. Thus, the ultimate estimate of â is set by

â =
{
â, if â > 0,
0, if â < 0.

Therefore, the Bühlmann non-parametric estimate of Yx,tU+1, for age x in year tU + 1,
obtained by minimizing the quadratic loss function in (B.1), is given by

Ŷx, tU+1 = ẐY x, • +
(
1− Ẑ

)
µ̂, x = xL, . . . , xU , (B.2)

where Ẑ = â
(

1
n−1 v̂ + â

)−1
and Y x, • = 1

n−1
∑tU
t=tL+1 Yx, t.

Finally, the Bühlmann non-parametric estimate of ln(mx, tU+1) for age x in year tU + 1
is ln(m̂x, tU+1) = ln(mx, tU ) + Ŷx, tU+1 provided that Yx, t+1 = ln(mx, t+1) − ln(mx, t), t =
tL, tL + 1, . . ..

54



Appendix C

Kronecker Product

C.1 Definition and Example

Definition 1. Let F be an m × n matrix with elements fi, j for i = 1, · · · ,m and j =
1, · · · , n, and G be a p × q matrix; then the Kronecker product of F and G, denoted by
F ⊗G, is defined as the mp× nq block matrix:

F ⊗G =


f1, 1G · · · f1, nG

... . . . ...
fm, 1G · · · fm,nG

 .

Example: For m = n = p = q = 2, we have

[
f1, 1 f1, 2

f2, 1 f2, 2

]
⊗
[
g1, 1 g1, 2

g2, 1 g2, 2

]
=


f1, 1 ·

[
g1, 1 g1, 2

g2, 1 g2, 2

]
f1, 2 ·

[
g1, 1 g1, 2

g2, 1 g2, 2

]

f2, 1 ·
[
g1, 1 g1, 2

g2, 1 g2, 2

]
f2, 2 ·

[
g1, 1 g1, 2

g2, 1 g2, 2

]


=


f1, 1 · g1, 1 f1, 1 · g1, 2 f1, 2 · g1, 1 f1, 2 · g1, 2

f1, 1 · g2, 1 f1, 1 · g2, 2 f1, 2 · g2, 1 f1, 2 · g2, 2

f2, 1 · g1, 1 f2, 1 · g1, 2 f2, 2 · g1, 1 f2, 2 · g1, 2

f2, 1 · g2, 1 f2, 1 · g2, 2 f2, 2 · g2, 1 f2, 2 · g2, 2

 .
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C.2 Properties of the Kronecker Product

Property 1. Bilinearity and associativity: The Kronecker product is bilinear and associa-
tive:

• A⊗ (B +C) = A⊗B +A⊗C,

• (A+B)⊗C = A⊗C +B ⊗C,

• (kA)⊗B = A⊗ (kB) = k(A⊗B),

• (A⊗B)⊗C = A⊗ (B ⊗C),

where A, B and C are matrices and k is a scalar.

Property 2. Non-commutative: In general, A⊗B and B ⊗A are different matrices.

Property 3. The mixed-product property and the inverse of a Kronecker product: If A, B,
C and D are matrices of such size that one can form the matrix products AC and BD,
then

(A⊗B)(C ⊗D) = AC ⊗BD.

This is called the mixed-product property, because it mixes the ordinary matrix product and
the Kronecker product. It follows that A⊗B is invertible if and only if both A and B are
invertible, in which case the inverse is given by

(A⊗B)−1 = A−1 ⊗B−1.
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Appendix D

Proofs of Lemma 1 and Theorem 1

The proofs of Lemma 1 and Theorem 1 can also be referred to Poon and Lu (2015).

D.1 Proof of Lemma 1

Lemma 1. Under Assumptions 1 to 3, and the notations in Chapter 3,

1. The means of Yx and Yx, tU+1 are given by

µYx = E(Yx) = µ⊗ 1n−1 and µYx,tU+1 = E(Yx,tU+1) = µ,

where ⊗ is the Kronecker product operator and 1n−1 = (1, . . . , 1)′, a column vector of length
(n− 1).

2. The r(n− 1)× r(n− 1) covariance matrix of Yx is given by

ΣYx,Yx = V ⊗ In−1 +UAU ′, (D.1)

where

In−1 =


1 0 · · · · · · 0
0 1 · · · · · · 0
...

...
...

...
...

0 0 · · · · · · 1


(n−1)×(n−1)

,
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and

U =


1n−1 0 · · · · · · 0

0 1n−1 · · · · · · 0
...

...
...

...
...

0 0 · · · · · · 1n−1


r(n−1)×r

.

3. The r × r(n− 1) covariance matrix between Yx and Yx,tU+1 is given by

ΣYx, tU+1,Yx = AU ′. (D.2)

4. The inverse of the r(n− 1)× r(n− 1) covariance matrix of Yx is given by

(ΣYx,Yx)−1 = (V −1 ⊗ In−1)− (V −1 ⊗ 1n−1)U
[
A−1 + (n− 1)V −1

]−1
U ′(V −1 ⊗ 1′n−1).

Proof. 1. From Assumptions 1 to 3, we get

E(Yx, t) = E [E(Yx, t|Θx)] = E[µ(Θx)] = µ, (D.3)

implying that

µYx = E(Yx) = µ⊗ 1n−1 and µYx,tU+1 = E(Yx,tU+1) = µ.

2. From Assumptions 1 to 3, it follows directly that

E
[
Cov(Yx, t1 , Y ′x, t2 |Θx)

]
=
{

E [Σ (Θx)] = V , t1 = t2

0, t1 6= t2
, (D.4)

and
Cov

[
E(Yx, t1 |Θx), E(Y ′x, t2 |Θx)

]
= Cov

[
µ(Θx),µ(Θx)′

]
= A. (D.5)

From (D.4) and (D.5) and the well-known decomposition of the covariance matrix, we have

ΣYx,Yx = Cov
[
Yx,Y

′
x

]
= E

[
Cov(Yx, Y ′x|Θx)

]
+ Cov

[
E(Yx|Θx), E(Y ′x|Θx)

]
= V ⊗ In−1 +A⊗ (1n−11′n−1)

= V ⊗ In−1 +UAU ′.
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3. The proof of (D.2) follows analogously to the proof of (D.1), that is,

ΣYx, tU+1,Yx = Cov (Yx, tU+1,Yx)

= E [Cov(Yx, tU+1, Yx|Θx)] + Cov [E(Yx, tU+1|Θx), E(Yx|Θx)]

= 0 +AU ′

= AU ′.

4. Applying the matrix inversion identity (E+FGH)−1 = E−1−E−1F (G−1+HE−1F )−1HE−1

to (D.1), where we set E = V ⊗ In−1, F = U , G = A and H = U ′, we get

(ΣYx,Yx)−1 = (V ⊗ In−1 +UAU ′)−1

= (V ⊗ In−1)−1 − (V ⊗ In−1)−1U
[
A−1 +U ′(V ⊗ In−1)−1U

]−1
U ′(V ⊗ In−1)−1

= (V −1 ⊗ In−1)− (V −1 ⊗ 1n−1)
[
A−1 + (n− 1)V −1

]−1
(V −1 ⊗ 1′n−1).

In the last equality above, we have used

• (V ⊗ In−1)−1 = V −1 ⊗ I−1
n−1 = V −1 ⊗ In−1,

• (V ⊗ In−1)−1U = (V −1 ⊗ In−1)U =
[
v−1
i, jIn−1

]
i, j
U = V −1 ⊗ 1n−1,

• U ′ (V ⊗ In−1)−1 = U ′ (V −1 ⊗ In−1) = U ′
[
v−1
i, jIn−1

]
i, j

= V −1 ⊗ 1′n−1, and

• U ′ (V ⊗ In−1)−1U = U ′ (V −1 ⊗ In−1)U =
(
V −1 ⊗ 1′n−1

)
U =

[
v−1
i, j1′n−1

]
i, j
U =

(n− 1)V −1,

where v−1
i, j is entry of matrix V −1.

D.2 Proof of Theorem 1

Theorem 1. Under Assumption 1 to 3, the parametric Bühlmann estimate of Yx,tU+1,
Ŷx,tU+1 =

(
Ŷx,tU+1,1, . . . , Ŷx,tU+1,r

)′
, for age x in year tU + 1, which is obtained by mini-

mizing the quadratic loss function in (3.3) is given by

Ŷx, tU+1 = ZY x, • + (Ir −Z)µ,

where

• Z = A
(

1
n−1V +A

)−1
, and
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• Y x, • =
(
Y x, •, 1, . . . , Y x, •, r

)′
= 1

n−1

(
tU∑

t=tL+1
Yx, t, 1, . . . ,

tU∑
t=tL+1

Yx, t, r

)′
.

Proof. From Lemma 1 and

• U ′ (V −1 ⊗ In−1) = U ′
[
v−1
i, jIn−1

]
i, j

= V −1 ⊗ 1′n−1,

• U ′ (V −1 ⊗ 1n−1) = U ′
[
v−1
i, j1n−1

]
i, j

= (n− 1)V −1, and

• (V −1 ⊗ 1′n−1)(Yx − µYx) =
[
v−1
i, j1′n−1

]
i, j

(Yx − µYx) = (n− 1)V −1(Y x,• − µ),

it follows directly that

(ΣYx,tU+1,Yx)(ΣYx,Yx)−1(Yx − µYx)

= AU ′
{

(V −1 ⊗ In−1)− (V −1 ⊗ 1n−1)
[
A−1 + (n− 1)V −1

]−1
(V −1 ⊗ 1′n−1)

}
(Yx − µYx)

=
{
A(V −1 ⊗ 1′n−1)−AU ′(V −1 ⊗ 1n−1)

[
A−1 + (n− 1)V −1

]−1
(V −1 ⊗ 1′n−1)

}
(Yx − µYx)

=
{
A−A(n− 1)V −1

[
A−1 + (n− 1)V −1

]−1
}

(V −1 ⊗ 1′n−1)(Yx − µYx)

=
{
A−A(n− 1)V −1

[
A−1 + (n− 1)V −1

]−1
}

(n− 1)V −1(Y x, • − µ).

Applying the inverse matrix identity (E + F )−1 = E−1 −E−1F (E + F )−1, where we set
E = A−1 and F = (n− 1)V −1, leads to

(ΣYx,tU+1,Yx)(ΣYx,Yx)−1(Yx − µYx) =
[
A−1 + (n− 1)V −1

]−1
(n− 1)V −1(Y x, • − µ),

using (E + F )−1F = E−1(F−1 +E−1)−1, we have

(ΣYx,tU+1,Yx)(ΣYx,Yx)−1(Yx − µYx) = A

( 1
n− 1V +A

)−1
(Y x, • − µ) = Z(Y x, • − µ).

Plugging the equation above into (3.4), we thus get the credibility estimator of Yx,tU+1,

Ŷx,tU+1 = µ+ (ΣYx,tU+1,Yx)(ΣYx,Yx)−1(Yx − µYx)

= µ+Z(Y x, • − µ)

= ZY x, • + (Ir −Z)µ,

which is a weighted average of Y x, • and µ.
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