
Using Womb Grammars for Inducing the
Grammar of a Subset of Yorùbá Noun

Phrases
by

Ifeoluwanimi Adebara

M.Sc., University of Birmingham, 2012
B.Sc., University of Ibadan, 2009

Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in the
School of Computing Science
Faculty of Applied Sciences

© Ifeoluwanimi Adebara 2017
SIMON FRASER UNIVERSITY

Summer 2017

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Ifeoluwanimi Adebara

Degree: Master of Science (Computing Science)

Title: Using Womb Grammars for Inducing the
Grammar of a Subset of Yorùbá Noun Phrases

Examining Committee: Chair: Binay Bhattacharya
Professor

Veronica Dahl
Senior Supervisor
Professor

Fred Popowich
Supervisor
Professor

Trude Heift
Internal Examiner
Professor
Department of Linguistics

Date Defended: 30 August 2016

ii

Abstract

We address the problem of inducing the grammar of an under-resourced language, Yorùbá,
from the grammar of English using an efficient and linguistically savvy, constraint solving
model of grammar induction - Womb Grammars (WG). Our proposed methodology employs
Womb Grammars in parsing a subset of noun phrases of the target language Yorùbá, from
the grammar of the source language English, which is described as properties between pairs
of constituents. Our model is implemented in CHRG (Constraint Handling Rule Grammars)
and has been used for inducing the grammar of a useful subset of Yorùbá noun phrases.
Interesting extensions to the original Womb Grammar model are presented, motivated by
the specific needs of Yorùbá and similar tone languages.

Keywords: property grammars, constraint handling rules grammar, constraint handling
rules, womb grammars, linguistics, Yorùbá.

iii

Dedication

Agbanilágbàtán

iv

Table of Contents

Approval ii

Abstract iii

Dedication iv

Table of Contents v

List of Figures viii

1 Introduction 1
1.1 The Problem Statement . 1
1.2 The Motivation . 2
1.3 Our Contribution . 2

2 Literature Review: Grammar Induction 5
2.1 Grammar Induction . 6

2.1.1 A general overview of grammar induction 6
2.1.2 The different paradigms for grammar induction 10
2.1.3 Supervised, unsupervised and semi-supervised models 12
2.1.4 Formalisms of Grammar induction and results 12
2.1.5 Evaluation of grammar induction results 15
2.1.6 Womb grammars for grammar induction 16
2.1.7 Open questions . 16

2.2 Language documentation and description 17
2.2.1 A general overview of language documentation and description . . . 17
2.2.2 Recent advances in documentary linguistics 18

3 The Yorùbá Language 20
3.1 The Sociolinguistic Situation of Yorùbá in Nigeria 21
3.2 Phonology . 22
3.3 Morphology . 23
3.4 Orthography . 24

v

3.5 Constituent Structure of Noun Phrases . 25

4 Linguistic Details 28
4.1 Data Collection . 28
4.2 Strategies for Part of Speech Parsing . 29
4.3 Property Grammars . 31

5 The Womb Grammar Model of Grammar Induction 34
An Example . 35

5.0.1 Constraint Handling Rule Grammars (CHRG) 36
5.1 Some Implementation Details . 39
5.2 Methodology . 40

5.2.1 Modified parsing that calculates both failure and success explicitly . 41
5.2.2 How we save failed and succeeded properties 42
5.2.3 How we handle tones . 44
5.2.4 Glossing of phrases . 44
5.2.5 Failed and satisfied properties . 44
5.2.6 Inducing properties not present in the source language 45
5.2.7 How we handle syntactic number and gender 46
5.2.8 Parsing each property in our English subset 47

Parsing with dependence constraints 47
Parsing with the obligatority constraint 48
Parsing with precedence constraints 49
Parsing with constituency constraints 50
Parsing with requirement constraints 50

5.2.9 Parsing with properties not relevant to our subset of noun phrases . 52
Parsing with exclusion constraints 52
Parsing with unicity constraints . 53

5.3 Inducing the Grammar . 54
5.3.1 Inducing precedence properties . 54
5.3.2 Inducing obligatority properties . 55
5.3.3 Inducing consitutency properties . 55
5.3.4 Inducing requirement properties . 55
5.3.5 Inducing dependence properties . 56
5.3.6 Inducing properties not relevant to our subset 56

Inducing exclusion properties . 56
Inducing unicity properties . 57

5.3.7 How conditional properties are induced 57
Inducing conditional requirement properties 58
Inducing conditional dependence properties 59

vi

Inducing Conditional Precedence . 59
5.3.8 Inducing properties not relevant to our subset of noun phrases . . . 62

Inducing conditional unicity properties 62
Inducing conditional exclusion properties 63

5.4 Summary . 63

6 Results and supporting evidence of correctness 64

7 Conclusion 71
7.1 Possible extensions . 72

Bibliography 73

Appendix A Results 80

Appendix B Context free grammar of our subset Yorùbá noun phrases 100

Appendix C Property grammar of our subset of noun phrases of English 102

Appendix D Definitions 103

Appendix E Lexicon and input phrases in the Womb Grammar model 104

vii

List of Figures

Figure 2.1 A General Process of Grammar induction 10

Figure 5.3 A CHRG example, showing propagation, simplification and simpa-
gation rules . 38

Figure 5.4 Executing the parser . 39
Figure 5.5 A Simpagation rule from the previous implementation 40
Figure 5.6 A Simpagation rule in our model 41
Figure 5.7 Some rules to save succeeded propeties 43
Figure 5.8 Phrase transliterations . 44
Figure 5.9 Parse results of a sample phrase showing failed and succeeded prop-

erties . 45
Figure 5.10 Inducing precedence properties present in target phrase but absent

in source grammar . 46
Figure 5.11 Rules for updating the number and / or gender features of a word . 47
Figure 5.12 Dependency rules . 48
Figure 5.13 Rule for succeeding obligatority . 49
Figure 5.14 A conditional precedence property showing one of the conditions for

the ordering . 49
Figure 5.15 Precedence rule for checking success 50
Figure 5.16 The constituency rule . 50
Figure 5.17 Rules to test requirement failure . 51
Figure 5.18 The rule to test requirement success 51
Figure 5.19 Rule to test exclusion fail . 52
Figure 5.20 Rule to test exclusion success . 53
Figure 5.21 Rule to test unicity failure . 53
Figure 5.22 Rule to test unicity success . 54
Figure 5.23 The third rule for inducing precedence properties 54
Figure 5.24 Rule for inducing obligatority . 55
Figure 5.25 Rule for inducing constituency . 55
Figure 5.26 Rule for inducing requirement . 56
Figure 5.27 Rule for inducing dependence . 56
Figure 5.28 Rules to induce exclusion . 57

viii

Figure 5.29 Rules to induce unicity . 57
Figure 5.30 Helper rules for conditional precedence rules 61
Figure 5.31 A Conditional Precedence Rule . 62

ix

Chapter 1

Introduction

1.1 The Problem Statement

Grammatical induction also known as grammatical inference has its roots in a variety of
separate fields, and this explains why it has wide applicability. It is intuitively a difficult
problem to solve and the precise difficulty of a particular inference problem is determined
by the complexity of the target language, and the information available to the inference
algorithm about the target language. Naturally, simpler languages and more information
both lead to easier inference problems.

In the case of natural language, the difficulty of grammar induction is influenced by
many factors. First, natural languages have a very large lexicon and new words are added
so often, so that for instance, thousands of words are added to the lexicon of English
every year. Second, the words in the lexicon can be combined together to form an infinite
number of phrases, sentences and structures larger than the word. Also, because language
is dynamic, new stuctures are constantly developed. Third, is the problem of ambiguity
which results in the same word having different entries in the lexicon, having different
meanings in different contexts or other semantic, syntactic or pragmatic ambiguity. These
factors, and several others like the unrestrictive nature of language, language change through
language contact, language borrowings, grammatical errors, code mixing and more, make
grammatical inference in natural language a very hard problem.

Grammar induction ultimately aims at extracting meaning (semantics) from text. It is
formal grammars that specify relationship between text parts of speech such as nouns, verbs,
and adjectives and syntax: the implicit structure. However, we focus on efficiently inferring
a linguistically accurate syntactic structure of input phrases, as well as syntactico-semantic
relationships (such as features, see chapter 4.2) responsible for certain semantic structures
and we explicitly output this relationship for conditional properties. All other semantics
relationships analysis are beyond the scope of this work. Scientifically, we wanted to explore
to what extent the parsing-as-constraint-solving paradigm of Natural Language Processing

1

problem solving could achieve a great degree of linguistic descriptive formality without
sacrificing efficiency, in the realm of grammar induction and in particular for inducing
Yorùbá, which is a severely under-resourced and endangered.

1.2 The Motivation

Language endangerment and death has been of serious concern in linguistics and language
policy making. Close to seven thousand languages are currently spoken in the world, the
majority of which are understudied and endangered. It has been said that an alarming 50
to 90 percent of languages will be extinct by the end of the century [79].

For various reasons, some speakers of many minor, less studied languages may learn to
use a different language from their mother tongue and may even stop using their native
languages. Parents may begin to use only that second language with their children and
gradually the transmission of the native language to the next generation is reduced and may
even cease. As a result, only the elderly in such communities may use the native language,
after a while, there may be no speakers who use the language as their first or primary
language and eventually the language may no longer be used at all. Thus, a language may
become extinct, existing perhaps only in recordings, written records and transcription and
languages which have not been adequately documented completely disappear.

Linguists cannot keep up with the study of these languages even for educational pur-
poses, and there is a growing need for their automatic processing as well, since the amount of
text sources grows much faster than humans can process them. To make matters worse, most
linguistic resources are poured into English and a handful of other “first world” languages,
leaving the vast majority of languages and dialects under-explored. Clearly, automating
the discovery of an arbitrary language’s grammar would render phenomenal service to the
study and preservation of linguistic diversity.

1.3 Our Contribution

We adopt a novel grammar induction model, called, Womb Grammars (WGs), developed
by Dahl and Miralles [43]. WGs employ a property based methodology, which, relies on the
grammar of a source language to induce the grammar of a target language. WGs assume
that the grammar of the source language is correct and that the lexicon and input phrases
of the target language are correct and representative of phrases in the target language. It
adopts a constraint satisfaction approach whereby input phrases of the target language are
tested for satisfaction and unsatisfied constraints provide a lead for the reconstruction of
the target grammar using the source grammar.

In this work, WGs are used to induce the grammar of a subset of noun phrases in
Yorùbá, from that of an English grammar with same coverage [42]. We use English as

2

our source language and Yorùbá as the target language. English was chosen as the source
language for various reasons, especially because, it is a language the author can speak and
write fluently. English also has a wide audience, and, we believe that it will be easier for a
wider audience to understand the WGs model using a language as source such as English,
whose structure is well known. Using a well known language eliminates the need for the
reader to in addition to understanding the WG model, learn and understand the structure
of two less known languages (source and target languages). Also, because English is a
language which has been well studied by linguists, many linguistic resources are available
and easily accessible, and this made creating a correct property grammar (details in section
4.1) easier than using any language which has less resources easily accessible. The author’s
formal training in linguistics and native speaker competence in Yorùbá also made Yorùbá a
desirable language as the target. Since we need a correct grammar of both the source and
target language, English and Yorùbá languages were thus, the most accessible languages
for this task. In fact, the success achieved from using English to induce the grammar of
Yorùbá, reveals that, it is possible to use WGs for any pair of languages, including unrelated
languages, although with some modifications.

The novel approach of WGs, needs neither a pre-specified model family, nor parallel cor-
pora, nor any of the typical models of machine learning and works for more than just specific
tasks such as disambiguation[43]. It automatically transforms a given (task-independent)
grammar description of a source language, from just the lexicon of the target language and
a representative input set of correct phrases in the target language.

The syntactic descriptions of the source and the target language subset addressed are
stated in terms of linguistic constraints (also called “properties” in linguistic literature)
between pairs of constituents, although for the target language constraints we depart from
the classic formalism [23] in view of Yorùbá motivated extensions. This allows us a great
degree of modularity, in which constraints can be checked efficiently through constraint
solving.

This work differs from the previous model[43] in the following ways:

1 A failure driven approach was adopted in previous models, however we use a failure
conscious and success conscious approach (details in chapter 5.2.1).

2 Previously, WGs tested each property for failure only once in the entire input phrases,
however, due to the peculiarities of Yorùbá, we test each property for failure and
success in each input phrase (details in chapter 5.2.1).

3 While the grammar of the target language is implied from the level of satisfaction of the
properties tested, we explicitly reconstruct the grammar of the target language from
that of the source language(details in 5.3).

3

4 We induce conditional properties that involve the features of each word of the target
language (details in chapter 5.3.7).

5 We provide a count of the number of times each property fails and / or succeeds. This
is to enable users to have a deeper insight to how often or otherwise a property fails
and / or succeeds in a language (more in 5.2.2).

6 The previous version used only two traits (which we refer to as features) in describing
each word. We, however, introduce four additional features including tone. This
makes this version adaptable to other languages including tone languages (details in
chapter 4.2).

7 We provide a record of English gloss for every word in the target phrase (details in chapter
5.2.4).

8 Previously, only properties present in the source language can be inferred for the target
language. However, we extend this model to infer some properties which are present
in the target language but absent in the source (details in chapter 5.2.6). Morpho-
logically rich languages like Russian, may require an additional module to handle the
morphology of the language.

9 We explicitly output each failed and/or succeeded property, the word boundaries and
phrase boundaries for each input phrase (details in chapter 5.2.5)

10 Gender and number are syntactically defined in Yorùbá and as a result, we explicitly
update the gender and number of certain words in context according to Yorùbá rules
(more in chapters 3.5, 5.2.7).

11 While previous models of WGs do not test input phrases for constituency, this model
explictly tests the constituency property (details in chapter 5). We explicitly test for
constituency to ensure our system does not add the constituents in the source lanuage
that are absent in the target language.

12 We use a context-free grammar of the target language to evaluate the correctness of our
model.

Our results in applying and adapting the WG model for inducing Yorùbá noun phrases
show that this model compares favourably with others in solving the grammar induction
problem: it combines linguistic formality with efficient problem solving, and can transfer
into other languages, including languages in which tones have a grammatical and / or
semantic function.

4

Chapter 2

Literature Review: Grammar
Induction

There are multiple levels of language analysis and [39] divides the structure of human lan-
guage into Phonology, Morphology, Syntax, Semantics and Pragmatics. The multiple levels
of language interact beginning in the case of spoken language with the sounds produced
(phonology) to the meanings (semantics, pragmatics) that those sounds express.

Phonetics delves into the realm of speech sounds also referred to as phones and is
fundamental to the entire field of liguistics. Phonology studies the processes responsible
for phone patterns in a language. It focuses on groups of phones that are equivalent for
a given language (allophones), groups of sounds that account for meaning distinction in a
language (phonemes) and processes such as for instance assimilation which determine these
variations. An example is, the plural marker s which is realized as z in boys and as s in books
because of an assimilation process that is responsible for the plural marker being realized
as z after voiced sounds or vowels and as s after voiceless sounds.

Morphology focuses on word formation. Phonemes in turn are the constituents of mor-
phemes (minimal meaningful word segments) and these are building blocks for words (words
are a combination of one or more morphemes). Word formation processes using inflections,
derivations, compounding, affixes, reduplications and more are studied in the field of mor-
phology. Syntax studies how words are grouped into phrases and / or clauses, such as
noun phrases, verb phrases, adverb phrases adjective phrases and prepositional phrases. It
is a set of rules for arranging words into more complex units of language (sentences) and
which arrangment is grammatically correct in a language. Theories like universal grammar,
transformational generative grammars, syntactic trees and other syntactic compositions are
studied in the field of syntax.

At still higher levels of semantics and pragmatics, the focus is on linguistic meaning con-
veyed through language. While semantics focuses on lexical (morpheme and word meaning)
and compositional meaning (phrasal and sentence meaning), pragmatics is concerned with

5

meaning of language in context. In semantics, the meaning of morphemes, words and
phrases combine to provide meaning for the sentence [39].

Techniques have been developed for language analysis at all of these multiple levels.
However, we will focus on syntax which has been studied by many researchers.

2.1 Grammar Induction

2.1.1 A general overview of grammar induction

Grammar induction “is a method of inquiry that tries to understand the computations
involved in making inferences about grammars from observations under a variety of different
learning scenarios.” [58]. The “grammar” in “grammar induction” are models of knowledge
representation that may include the formalisms, logics, rules, constraints, and structures
that compose the systems underlying natural language. “Induction” refers to the process
involved in acquiring knowledge through hypotheses and observations [58].

“A grammar G is a finite representation that describes a (possibly infinite) language
GL” [58]. A language from a formal perspective is a set of finite or infinite strings, and
the corresponding language is called a finite or infinite language respectively. A grammar
thus, represents a language and the grammar of a language can be viewed as a theory of
the structure of the language. Also, a grammar is based on a finite number of observed
sentences which may also be referred to as a corpus, and this is projected to an infinite
set of grammatical sentences. This is achieved by establishing general grammatical rules
which are framed in terms of hypothetical constructs (phonemes, morphemes, etc) of the
language under analysis. A properly formulated grammar therefore should determine the set
of grammatical sentences of a language unambiguously [33]. Grammar has been categorised
into prescriptive, descriptive, formal and generative grammars [34].

Prescriptive grammars prescribe authoritative norms for a language regarding how peo-
ple should talk and write and / or how not to talk and write. The prescriptive grammar
thus serves to mold the spoken and written language of a particular class of people to some
acceptable standard or norm. For instance, in English, a noun and a verb is expected to
agree in number, so that John sings is considered grammatical, and correct while for John
sing the opposite is the case. These kinds of rules are prescriptive grammar rules of a
language [34].

Descriptive grammars attempt to describe actual usage of a language rather than enforce
rules arbitrarily. Studying the properties of languages and clarifying the basic conceptions
that underlie them is useful for arriving at a theory of linguistic structure. Scientific theories
are based on a certain finite set of observations and, by establishing general laws stated in
terms of certain hypothetical constructs, it attempts to account for these observations, to
show how they are interrelated, and to predict an indefinite number of new phenomena. The

6

first step in the linguistic analysis of a language therefore, is to provide a finite system of
representation for its sentences based on certain finite set of observations [33]. A descriptive
grammar of English for instance will say that determiners precede nouns and nouns are
compulsory constituents of English noun phrase. This kind of grammar only says what is
discovered through observations of a finite set of expression otherwise known as a corpus.

A formal grammar is a precise symbolic representation of a grammar, usually specified
by a system of rules and they can be used to either generate grammatical sentences or parse
sentences in order to discover their grammatical structure. The grammar a formal grammar
represents can either be descriptive or prescriptive in nature. A formal grammar is a 4 tuple
G = (N, Σ, P, S) such that:

1. N is a finite set of non-terminals

2. Σ, is a finite set of terminals and is disjoint from N

3. P, is a finite set of production rules

4. S ∈ N, is the start symbol

Formal grammars are usually represented with grammatical symbols in order to avoid am-
biguity. Chomsky [34] identified four hierachies for formal grammars: free or unrestricted
grammars, context-sensitive grammars, context-free grammars and regular grammars [58].
These hierarchies of grammar are representations of different types languages.

1 Free or unrestricted grammars, also called type zero grammars or recursively enumerable
grammars are grammars accepted by Turing machines (more details in appendix D).
Logic grammars are examples of type zero grammars [2]

2 Context-sensitive grammars are the second level of the hierarchy and they are accepted
by linear bounded automata. Their rules are of the form: αAβ, → αBβ; S → ϵ,
Where A, S ∈ N; α, β, B ∈ (N ∪ Σ)∗; B ̸= ϵ. Grammars of some natural languages,
e.g germanic languages are context sensitive (more details in appendix D).

3 The third hierarchy, context-free grammars are grammars in which the left-hand side
of each production rule consists of only a single nonterminal symbol. Grammars of
many natural languages can be defined with context-free formalisms. For example,
the context-free rule NP → D, N is a rule that rewrites any occurrence of NP (noun
phrase) into an occurrence of a D (determiner) and a N (noun) in English noun phrases
(more details in appendix D).

4 Regular grammars are those where the left hand side is only a single nonterminal symbol,
and the right-hand side is also restricted. The right side may be the empty string, a
single terminal symbol, or a single terminal symbol followed by a nonterminal symbol
(more details in appendix D).

7

Generative grammars are a variety of formal grammars borne out of the view that
humans have an innate language faculty which is reflected in how sentences are generated
by a subconscious set of procedures. These procedures are part of our cognitive abilities so
that when children learn their native languages, they acquire specific rules that determine
their choice of words, how words are strung together to form phrases, sentences etc as well
as the meanings these expressions convey. These rules are learned in a relatively short time
with little or no conscious effort from the children and these rules interact with each other
in complex ways. The goal of generative grammar is to model these procedures in order to
generate the grammar of a language. In other words, finding a procedure to figure out what
humans subconsciously know about the grammar of a language. In generative grammar, the
means for modeling these procedures is through a set of formal grammatical rules [34, 33].
In English, for example, information such as: the subject of a sentence precedes a verb,
can be encoded as a generative rule using a formal grammar symbolism. These rules are
referred to as generative grammars because they are thought to generate the sentences of
a language. Tree adjoining grammars, affix grammars and attributive grammars are some
examples of generative grammars [60].

Grammar induction is influenced by formal language theory which studies how knowl-
edge regarding a natural language can be modeled with a formal language. For instance,
a formal language is useful for modelling the knowledge of which sentences in a natural
language are well formed such that the formal language contains all and only those se-
quences of well formed sentences [58]. In phonology for example, there are some sequences
of phonemes (words) which a native speaker of any language would recognize as not being
a part of their language. This is not because they know all the words of their language,
but because they have the innate knowledge of well-formed combinations of sounds, and
this can be modeled with a formal language that comprises all and only those sequences of
phonemes which make up the plausible well-formed words of the language.

In order to represent a finite 1 language, one can simply return a list of all strings
in the set. This however becomes impossible, if we try to do the same for an infinite
2 language. So that, instead of trying to return the (infinite) list of all strings in the
set, we can resort to grammatical devices such as recursive rewriting rules for example
Sentence→ Nounphrase, V erbphrase, that allow us to describe an infinite set of sentences
with a finite set of grammar rules. In order to represent an infinite set with finite means
therefore, there arises the need for a grammar to provide a finite description of ways of
combining words into sentences, like our recursive rewriting rule above. This grammar is
denoted by a finite representation of the words and sentences of these formal languages,
thus making it possible to accommodate any plausible combination of well-formed strings
of the language [58]. For example, property grammars introduced by [23, 22] is a grammar

1A finite language is one that contains a finite number of strings.
2An infinite language is one that consists of an infinite number of strings.

8

representation formalism for expressing a possibly infinite set of sentences through a finite
set of property descriptions such as precedence, requirement, uniqueness, etc, properties
of language and can accommodate any plausible combination of ’well-formed’ categories of
a language. In essence, to describe languages, which may be finite or infinite, we require
predefined grammars (or we need to define them ourselves), and each grammar represents
its own finite or infinite language.

The grammatical inference process involves extracting language information from a lan-
guage model by means of an oracle 3. The language model can be a description, represen-
tation, or model of the correct phrases, sentences or any structure of the language. The
oracle can be a human expert, also called an informant, who provides information about the
language, the world wide web, a treebank or anything that can provide the required infor-
mation. The oracle provides the learner or grammatical induction model with information
which typically consists of strings according to the model, and it accesses the information
from a grammar, description, representation, or language model available to it. The learner
uses the aforementioned information to create its own model of the language, also known
as the induced language and / or grammar [58].

The grammar induction model usually has access to some language data which may be
sequential [67] or structured (graphs, words, trees etc) and is asked to return a grammar of
the language to be learned (we will refer to the language to be learned as target language
henceforth) which consists of a model of the target language and includes an explanation
or a labelling of the input data. The explanation or labels can be parts of speech tags,
a label of whether an expression is well-formed or not, or any other label or description
desired. For instance, our womb grammar model has access to data: correct phrases and
a lexicon of the target language, and returns a grammatical description of the structure of
input phrases in the target language, described in the property grammar formalism.

3An oracle is an entity in the learning environment (if a parent, I would not call him or her a “learning
environment”) that provides information from the language that is to be learned.

9

Figure 2.1: A General Process of Grammar induction

From figure 2.1, for example, in WGs, the oracle is a human expert who provides example
noun phrases and words in the lexicon, and these are used as input for the WG system. The
examples received from the oracle is the language model input as in figure 2.1, the oracle is
the human expert, the learner is the constraints in the WG model and the language model
output is the property grammar output of the target phrases (more details in chapter 6).

Formal and empirical grammar induction have been mentioned in [58]. The formal ap-
proach is concerned with whether specific families of languages as a whole can be efficiently
identified under certain conditions. The results are shown by providing formal, mathe-
matical proofs of learnability. Empirical induction is however concerned with grammatical
inference of specific individual languages. The results are a specification or approximation
of the grammar of the language. We will focus on empirical approaches.

2.1.2 The different paradigms for grammar induction

Speed, convergence of learning, type of input data (labelled or unlabelled) and quantity
of resources needed to learn are some criteria usually imposed on the language data in
order to secure a learning result. For instance, the criteria for a specific grammar induction
task may be to ensure that the data is representative of the target language, or to use
correct samples from the target language, or even to use a combination of both correct
and incorrect samples, etc. The results of a grammar induction task can be measured

10

as a specific number of iterations, a convergence to a predetermined good solution, etc,
and these criteria are used in different learning scenarios(active learning, probablistic, or
non-probablistic scenarios, etc). For instance, our womb grammar model requires that only
correct words and phrases of the target language are used for induction. The learning result
is also secured when all phrases have been tested with all relevant constraints (more of this in
chapter 6). In a non-probablistic setting [53], the criteria is such that the learner has access
to a “never ending” supply of information about the target language. These could be actual
strings of the language or labelled strings, each label indicating whether or not the string
belongs to the target language. Positive samples are made of strings or sequences over an
alphabet which are in the target language and negative samples are made of a set of strings
or sequences over an alphabet not belonging to the target language [32, 48, 86, 46]. The
probablistic setting however extends the criteria of the non-probablistic setting to include
probabilities for learning distribution [58].

In another setting called active learning [15], no data is directly available at first, or,
only unlabeled data is available. The inductive model is therefore expected to induce or
learn, as well as query the environment in order to obtain its data and / or a labeling of its
data. Membership queries and equivalence queries are two important queries in this setting.
The learner tries to find out if a certain string belongs to the language or not by asking an
oracle questions in what is called a membership query. In equivalence queries, the learner
can present the oracle with a candidate grammar and is expected to either answer yes, or
provide the learner with a counter-example [58]. Active learning uses a technique called
selective sampling to select the most informative examples, from a pool of unlabeled data
and the learner is able to determine the most informative samples through a predetermined
criteria. Selective sampling is usually achieved using two major methods: committee-based
sampling and certainty based sampling [15]. While the former relies on a group of learners
which have different hypotheses regarding the learning task, the later are those which select
samples which a single learner is least confident of, as determined by some selection criterion.

Active learning reduces the amount of human-annotated training data needed to train
models and it has been relevant for learning low-resource languages which do not have large
corpuses [90]. An active learning process thus involves a number of examples, batch size,
supervised learner, data set and a stopping criterion. The supervised learner is trained with
the input examples; the batch size is the number of examples that are queried or sampled
from the unlabeled pool, and added to the training pool at every iteration. The stopping
criterion is the condition that ensures the learning process ends at some point. It can be
either a desired performance level or the number of iterations. The iterative process of
training, selecting samples and annotation is thus repeated until there’s a convergence or
after a number of iterations. Evaluation is usually by comparing the learner’s performance
with a traditional parser’s. The active learner is said to have a better performance than
the traditional parser if the number of labelled data used to achieve the performance level

11

is lower than that used for the traditional parser. The performance level is also determined
by comparing the results with those of the test set at every iteration [58].

Learning settings like online learning, interactive learning, and batch learning have also
been explored [58] and the learner can access data either as samples, via access to a simulator
[15], or by running experiments. The learning model which can also be called a learning
algorithm, induction model or an inference model is at least partially automatic and the
model can then be used to compress, classify or provide a model for input data. In the case
of language, input data can be words, phrases, sentences or any other language structure
and the inference model is used to provide the grammatical information for instance, the
syntactic information the data conveys.

2.1.3 Supervised, unsupervised and semi-supervised models

A grammar induction paradigm based on the type of information its input contains can
belong to three classes: supervised, unsupervised and semi-supervised models and this
grouping is based on the input data type [58]. In supervised learning, the input data is
usually annotated manually by a qualified professional and the human expert would label
the set of instances that will be used for the induction process. The process of labelling
the data is a tedious and expensive process which requires high level skill and attention to
detail in order to avoid errors. The more labeled instances the induction model has access
to, the more precise the output, so that the amount of annotated data needed to reach a
desired quality is time-consuming. The advantage of using hand labelled inputs is that the
system can be better controlled: the system for instance, can be made more efficient by
ensuring that only non-redundant / relevant data, is available during the learning process.
For example, a system designed to induce the structure of noun phrases can be made to
have access to only noun phrase examples [59, 53].

Unsupervised learning does not use labeled data but attempts to find out similar patterns
in the data to determine the output. This approach was motivated because of the scarcity
of annotated data and the cost of producing one. Semi-supervised learning is a method that
uses both labelled and unlabelled data and the labeled data is used to help with labeling
the unlabeled data.

2.1.4 Formalisms of Grammar induction and results

Several formalisms are being used to describe natural languages and many grammar in-
duction algorithms have been developed to induce deterministic finite automaton [30],
context-free grammars [31], tree automaton [74], categorial grammars, stochastic automata
[30], stochastic context-free grammars [63], probablistic grammars [92], property grammars
[7, 4, 3] and more. These algorithms have been differently classified according to the various
features of the induction process.[13] provided a classification based on the underlying learn-

12

ing paradigm into: models based on Categorial Grammar, memory-based learning models,
evolutionary computing models, and string-pattern searches. In [49], grammar induction
methods are classified according to the type of input, which have been split into methods
that learn from a tagged dataset and methods that learn from untagged / raw data of text.
Classification as tag-based and word-based methods are also described [40], [46].

Categorial grammars are a lexicalized theory of grammar that does not include a separate
collection of rules for combining words. Rather, lexical categories of words such as nouns
and adjectives constitute functions that determine how these words can combine with other
categories [56]. They are said to be a foundation for many unsupervised models mainly
because the lexicon and the grammar are induced in the same task. It has been said to
be useful for producing a realistic psychological model of human language acquisition and
also for simpler and more efficient algorithms for the complex task of grammar induction
[13]. Memory-based models are those used to abstract information from a given data whilst
retaining all information and maintaining accuracy. It is useful in the analysis of unseen
data and its good performance is due to the fact that it does not forget any training
examples. Evolutionary computing models on the other hand use techniques similar to the
evolution process that humans use to learn, understand and communicate using language
to develope language acquisition devices. This approach though complicated is useful for
allowing natural selection which eventually leads to optimal language learning conditions.
All other algorithms which do not fit into any of the afore mentioned paradigms are captured
under string-pattern searches [13].

Grammatical induction has been extensively addressed by researchers in various fields.
In automata theory, finite-state automata has been used to decide whether a string belongs
to a certain language or not. A finite state automata accepts regular languages and it is a
5 tuple, A = (Σ, Q, q0, F, δ) such that:

1. Σ, is the input alphabet

2. Q, is the finite set of state

3. q0 ∈ Q, the start or initial state

4. F ⊆ Q be the set of final states

5. δ is a transition function. This function’s arguments typically takes a state and input
symbol and returns a state. For instance, let p and q be states, and b be an input
symbol. A rule δ(p,b) = q means that a state p, with an input symbol b transitions
to state q.

A finite-state automaton thus, is made of states as well as transitions between these states,
which are labeled by symbols from the predetermined input, also known as alphabet. At
least one state is chosen as the initial state, and some states are marked as accepting or

13

end states. An automaton is able to recognize a string if there exists a series of transitions
from an initial state to an end state that reads the string. The language an automaton
recognizes, is equivalent to the set of string it recognizes [58].

In language acquisition, grammatical inference has been explored in relation to the role
of semantics in how children acquire language [14], it has also been used for developing
models for empirical analysis of first language acquisition [36] and to answer several other
language acquisition questions [11, 36, 12]. In the field of computational linguistics, the fo-
cus of grammatical inference has been on how to automate the processes and decisions made
during communication with human language [58]. Several algorithms have been developed
for various aspects of human language communication such as algorithms to capture and
use acoustic‐phonetic variation during speech recognition [71], to determine the boundary
of words in continuous speech [77], that learn phonotactic 4 grammars of natural language
phonology [92], for morphological analysis [57], and for solving several other natural lan-
guage related problems [41, 25, 55] with the aim of multilingual translation [78].

Machine learning approaches [53] have also been used for grammar induction tasks. A
corpus of examples is divided into a training set and a test set. The learning algorithm
and a model of the task to be learned are specified. The algorithm then learns from the
training data to construct a parser that assigns syntactic annotations to input strings from
the test data. A gold standard of correct parses in a corpus may then be used to evaluate
the model by computing a percentage of correct parses that the algorithm produces when
tested on the test corpus. Machine learning algorithms are also more commonly evaluated
for performance by scoring the models ability to recall information and also for precision.
In evaluating an algorithm for recall, a percentage of structures the algorithm is able to
correctly identify in a given set is calculated. The precision on the other is measured as
the percentage of structures (recalled) which correspond to those in the gold standard. An
algorithm’s f-score is computed as an average of its recall and its precision.

Grammar induction has also been useful for using linguistic information from one lan-
guage to describe another language and it has yielded good results. However, it was used
for specific tasks like disambiguating the other language [29], or fixing morphological or
syntactic differences by modifying tree-based rules [68], rather than for syntax induction
which is our focus. This approach usually requires parallel corpora, although, there ex-
ists an exception[38] where a bilingual dataset is used to train parsers for two languages
simultaneously. This is accomplished by adding grammar weights in the two hidden gram-
mars, and is useful for learning dependency structure in an unsupervised empirical Bayesian
framework.

4the study of the rules governing the possible phoneme sequences in a language

14

2.1.5 Evaluation of grammar induction results

The aim of grammar induction models is to learn the grammar of the language which
performs best for any given task or group of tasks, making it an optimization problem,
where the most efficient and optimal solution is preferred. In order to be able to determine
how well a model performs, as well as compare it with other models, there is need for an
evaluation criteria to be specified. Several evaluation approaches have been discussed in the
literature. Some of them are: rebuilding well known grammars, looks-good-to-me approach,
comparing against a tree bank, etc and each have their advantages and disadvantages[58].

In the evaluation criteria that involves rebuilding well known grammars, one or more
toy grammars are selected. These grammars, which can be a context-free grammar or any
other, are used to generate data that will serve as input for the grammar induction model.
The output of the grammar induction model is then compared with the original grammar
to find language or structure equivalence. This evaluation method eliminates the need for
sequential data and additional data can be generated easily, if there is a need during the
induction process. However, it can allow for unfair comparisons if the grammar is selected
specifically for the algorithm [58].

The looks-good-to-me approach is applied to a collection of sequential data. The out-
put of the system, which can either be in the form of a treebank of the input data or a
grammar, is then evaluated manually. The evaluation may be a visual inspection of specific
constructions such as certain grammar rules, whether recursions occur, certain peculiar lan-
guage structures or tree structures. If the expected structures are found, the system will
be considered to be performing well. This approach is easy to use and realistic because
only unstructured data is required, which is easily accessible for several languages. The
main drawback of this approach however, is the bias of the evaluation expert, who may be
the developer of the system [58, 65]. Using an independent expert will often be a lot more
useful. The evaluation is usually described in textual comments thus making it sometimes
ambiguous and it varies from one evaluator to another [58].

Treebanks are seen as a gold standard and are considered to be correct. This is because
they are developed based on a language theory and they thus serve as good evaluation
models. In order to evaluate an inference model, plain strings which have been stripped
of their annotations are input into the grammar induction model. The only structure the
strings have will be the order in which words occur. The output of the grammar induction
model is then compared with the gold standard treebank. A parser may be used to analyse
the equivalence of the output with the gold standard if the output is not a tree structure.
Precision and recall are used to determine how closely related two tree banks are [58]. In
evaluating a model for recall, a percentage of structures the algorithm is able to correctly
identify in a given set is calculated. The precision on the other is measured as the percentage
of structures (recalled) which correspond to those in the gold standard. An algorithm’s f-

15

score is computed as an average of its recall and its precision. This evaluation method is very
objective, however, because many languages do not have treebanks, using this evaluation
method is out of reach for grammar induction of many languages including Yorùbá.

2.1.6 Womb grammars for grammar induction

The Womb Grammar model is a novel approach that induces the grammar of a target
language from a source language which does not even need to be related to the target. Like
active learning models, WGs is able to perfom well even with little data, thus making it
very useful for learning low-resourced languages. The approach is very straight forward and
only requires a correct property grammar of the source language and positive data which
consists of a lexicon of the target language, and a set of representative input phrases in
the target language. This representative input phrases must include at least one unique
example of each occurrence, i.e., grammatical structure present in the language or subset
of language considered. WGs model abhors negative data because it is implemented under
the premise of only correct input phrases and grammar. As a result, we used expert human
informats (linguists and native speakers) as our oracle, due to the resource scarcity of
Yorùbá. They provided us with correct noun phrases, each having different structures. Each
word in these phrases was labelled, and the labelled words, together with the input phrases
were used by WGs model to induce the grammar. Unlike machine learning algorithms
which require training and testing data, our model needs only test the input phrases for
constraint satisfaction and unsatisfation (as the case may be, more details in chapter 6),
the results of which provides adequate clues for grammar induction. Using this formalism
allows constraints to be evaluated independently of one another. The result of a parsed
input string is either satisfied or unsatisfied and this allows flexibility in the representation
of partial information, making it possible to describe any kind of output. The interest
of such a conception is that every property in the grammar states some constraint on well
formedness. It can be the case that all constraints are satisfied, but this is not an imperative
condition, so that all kinds of input can consequently receive a characterization. Evaluation
has been by comparing the results of our grammar induction with the linguistic descriptions
of Yorùbá noun phrase described by linguists and available in literature. We also compared
our results with a context-free grammar of Yorùbá noun phrases.

2.1.7 Open questions

In recent years, there have been advances in grammar induction of context-free grammars.
Due to the complexity of natural languages and the high amount of resources necessary for
producing induced grammars, research in automatic grammar induction continues to be of
interest. This is especially true for developing unsupervised grammar inference models that

16

are also very accurate when compared to supervised or semi-supervised models. Models
which are able to infer grammar from incomplete data, noisy data are also in demand [59].

2.2 Language documentation and description

2.2.1 A general overview of language documentation and description

Language documentation provides a record of the linguistic activity of a speech community,
such as a collection of speech recordings which are subsequently transcribed as texts. Lan-
guage description, on the other hand, presents a description of observed linguistic practices
such as a description of a language’s grammar, a phonological analysis of the sounds of the
language, lexicography and other linguistic abstractions [83, 54].

Language documentation and description are fundamental to linguistics and have been
beneficial in other areas of linguistics. Historical linguistics for instance has benefitted
greatly from ancient texts, grammars and dictionaries in reconstructing a language’s pre-
history, classifying language families, etc. It has also been beneficial in developing theories
related to language change and variation and also for testing theories of language typology
and universal grammar [54].

Although language documentation and description are old subjects of research, they
have experienced radical transformations due to the development of technologies for de-
scription, archiving, annotation, and dissemination of lingustic information. The new focus
of language documentation otherwise known as documentary linguistics, which is the branch
of linguistics that is concerned with the methods, tools, and theoretical underpinnings for
compiling a representative and lasting multipurpose record of a natural language or one of
its varieties [54, 16]. It has [16, 93] emerged as a result of the increasing need to maintain
language diversity and document the world’s languages not just for academic purposes but
also to mitigate language endangerment and language death. The data gathered through
language documentation are of tremendous benefit to grammatical induction.

Scholars such as [70] have argued for the separation of language documentation from
description, because the methods and end results of language documentation and descrip-
tion are different. While the former collects primary data through interactions with native
speakers, the later uses primary data to develop secondary data, which is a lingistic de-
scription of the primary data. However, because documentation is a means to an end, that
is, the collection and archiving of data for consequent linguistic analysis or description,
language description is dependent on language documentation and is seen as a complement
to the documentation process [69].

In fact, in practice, the documentation process can rarely occur all at once but involves
the collection of data and the analysis of data collected. This will eventually lead to the need
to collect more data, clarify transcriptions and verify the reliability of data collected and / or

17

transcribed. Therefore, language documentation must rely on the application of descriptive
linguistic methods in order to asertain the usability of data collected as well as to ensure
that they are correctly transcribed and comprehensive. It is only through linguistic analysis
that we can discover that some crucial speech genre, lexical form, grammatical paradigm or
sentence construction is missing or under-represented in the documentary record. Without
good analysis, recorded audio and video materials do not serve as data for any commu-
nity of potential users. Similarly, linguistic description without documentary support is
unverifiable.

2.2.2 Recent advances in documentary linguistics

Descriptive linguistics has experienced high level computational approaches to meet the
ever increasing corpora now available for many languages. Over the last two decades,
several tools have been developed with specialized support for various aspects of language
documentation and description. In order to do their specialized linguistic processing, each
of these tools depends on some model of linguistic information. Tools have been developed
for data management, speech analysis and phonetics, phonology and morphology, syntax
and grammar description, lexicon, text analysis, language survery and comparison.

Data management tools like the linguist’s shoebox, SIL Fieldworks, LinguaLinks, Hy-
percard and many more are mainly used for managing lexicon, texts, and grammar [84, 26].
Speech analysis and phonetic tools like SpeechAnalyzer, Signalyze, FindPhone, Praat etc
have been useful for acoustic and distributional analysis of speech sounds. In phonology
and morphology, tools like AMPLE, PC-PATR, TonePars, PC-KIMMO have been useful
in parsing. PC-PATR has also been useful for developing a syntactic corpus and grammar
description, as well as Rook, a system for authoring descriptive grammars. IT, Concor-
dance, Micro-OCP, shoebox, etc are useful for text analysis and interlinear annotated texts.
WORDSURV for language survey and comparision and many other software tools are being
developed to aid linguists in language documentation and description [84, 26]. However,
no tool has been developed to induce the syntactic structure of a target language from a
source grammar like our Womb grammar model does.

Documentary linguistics has also witnessed the initiative Dokumentation Bedrohter
Sprachen (DoBes) funded by the Volkswagen foundation, Germany. The Endangered Lan-
guages Documentation Programme (ELDP), Electronic Meta-structure for Endangered Lan-
guages Documentation (EMELD) and Documenting Endangered Languages (DEL) are some
of the advancement trends in the field [26]. These initiatives have been developed in order to
document languages that are potentially in danger of becoming extinct within a few years.
They provide revitalization and maintenance for endangered languages and collect informa-
tion regarding language diversity, cultural treasures and practices with the aim of preserving
a communities linguistic and social culture. They also ensure that linguistic information is
collected properly and that such information is submitted to documentation depositories.

18

The depositories contain music recordings and videos of cultural events and activities, pic-
tures of cultural activities, audio and video recordings with annotations of differing depths:
usually a transcription and a translation into one or more major languages is present and
often morphosyntactic glossing is included as well. Documents on language’s genetic affil-
iation, socio-linguistic context, phonetic and grammatical features, and the circumstances
of research, recording and documentation are also stored in depositories.

Although the theoretical distinction between language documentation and descriptive
linguistics is acknowledged, current linguistic trends [93], advocate a documentary process
which leads to a comprehensive reference grammar and corpus of texts that can be used
by linguists and speakers for a variety of purposes and our model provides a step in that
direction. Especially because our model still produces intelligible results for incomplete data
or data marked with errors like spelling mistakes and other grammatical errors introduced
during writing or word processing. Our model is also able to provide comparisons for
unrelated languages unlike other comparative syntax tools which are used for comparisons
between closely related languages.

19

Chapter 3

The Yorùbá Language

Yorùbá belongs to the Yoruboid group of the Kwa branch of the Niger-Congo language
family, which cuts across most of sub-Saharan Africa. It is a tonal dialect-continnum com-
prising about 20 distinctive dialects and spoken by over 30 million people in the western
part of Nigeria [51]. Niger-Congo is the largest of the five main language families of Africa.
The others being Nilo-Saharan, Afro-Asiatic, Khoisan and Austronesian (mainly found in
the nation of Madagascar).

Yorùbá is one of the three regional (national language contained in the constitution)
languages in Nigeria and is said to be the most studied African language. So that Yorùbá
is a regional language in the south western part of Nigeria. Yorùbá is spoken by more than
20 percent of the population of Nigeria (the largest single black nation on earth), a country
with a population of about 170 million people. The two other national languages are Hausa
and Igbo, both of which are also regional languages in the north and southeastern parts of
the country respectively. The Yorùbá language is a koine [51] a process involving dialect
mixing, levelling, and simplification [89]. Standard Yorùbá which can also be referred to
as the standard koine is a compendium of several dialects, mainly dialects of Ọ̀yọ́, Ìbàdàn,
Abẹ́òkúta and Lagos, which were major trade centers of early CMS missionary activities.

Apart from the standardized koine, there are twenty other dialects of Yorùbá: Ọ̀yọ́, Ìjẹ̀ṣà,
Ìlá, Ìjẹ̀bú, Oǹdó, Wo, Owe, Jumu, Iworro, Igbonna, Yagba, Gbedde, Ẹ̀gbá, Akono, Aworo,
Bunu (Bini), Èkìtì, Ìlàjẹ, Ìkálẹ̀, Awori. These dialects are largely mutually intelligible, albeit
with some variations in vocabulary and phonology and were largely spoken by different
groups of people who, though tracing their descent to their common progenitor (Oduduwa),
did not consider themselves as one people. Although there are several dialects of Yorùbá, it
is important to mention that the present research is based on the ‘standard’ Yorùbá. This
is because, ‘standard’ Yorùbá is the only variety referred to as Yorùbá and the only variety
taught in schools in Yorùbá land and diaspora. It is the variety used whenever media uses
Yorùbá and the variety used as a regional language. It is described as a resource scarce
language [9] due to the limited number of texts available in Yorùbá.

20

3.1 The Sociolinguistic Situation of Yorùbá in Nigeria

Despite the seemingly large population of Yorùbá speakers, according to [21], it is a deprived
language. A deprived language is one which although taught in schools, is dominated, as
Yorùbá is, by a powerful language, such as English. As we will explain later, many schools
do not use the Yorùbá at all, but will rather use English. Yorùbá has also been classified as
a seriously endangered language [50], based on [94], who categorised language status into:

(i) potentially endangered - there is a decline in the use of the language by children

(ii) endangered - youths have experienced a decline in the use of the language and children
experience language loss

(iii) seriously endangered - competent speakers are about 50 years old and above

(iv) moribund - competent speakers are very old, and many are dead

(v) extinct - when the last speaker dies.

This is influenced by the language policy of Nigeria which favours the use of English
above all indigenous languages. It also pays lip service to for instance the national language
policy of education, which states that the mother tongue or the language of the immediate
community must be adopted as the language of education in primary schools, and English
should only be introduced at a later stage. Other language policies in other domains that
encourage the use of mother tongues are also not adopted so that the regional or national
status of Yorùbá and other regional languages is theoretically but not fully implemented in
practice [50].

Colonialism imported the English language to Nigeria and English has since been adopted
as the official language in government, education and all official businesses. English is the
language of the elite and fluency in English is synonymous with a good education. As
a result, many parents, even those who are barely educated or not educated at all, en-
sure that their children are taught in English right from the elementary classes. In most
schools, indigenous languages are referred to as vernacular and are prohibited. Violation
usually attract fines and many times corporal punishment. Bilingualism is also believed to
affect children’s ability to attain competence in English and thus parents avoid speaking
mother tongues at home for fear of raising children with poor communication in English.
Many children therefore can neither speak, read nor write in Yorùbá and many do not even
understand the language at all.

The great linguistic diversity in Nigeria also prevents people from speaking Yorùbá as
often as they may have. Well over 450 languages are said to be spoken in Nigeria, therefore
necessitating the use of English as the lingua franca. Less educated people use the Nigerian
Pidgin, an English based pidgin, as a medium of communication, and some educated people
use the Nigerian pidgin in less formal environments. [8].

21

English is also the language spoken at offices, corporate organizations and the use of
Yorùbá has greatly declined, resulting in lower competency among many users, code-mixing,
code switching and several other language loss trends. In addition, although Yorùbá is still
widely used in media and there exist radio and television programs in Yorùbá as well as
newspapers, they receive their patronage from the older generation since there always exist
the English versions which receive a greater patronage.

All the afore mentioned language situation have influenced the lack of adequate language
development and consequently resulted in, resource scarcity of Yorùbá.

3.2 Phonology

The phonology of Yorùbá, which is how phonemes (unit of distinctive sound that account
for meaning distinction) are strung together to form words, comprises of seven oral vowels,
five nasal vowels, three syllabic nasals, seventeen consonants and two glides. Oral vowels
are produced from the oral orifice while nasal vowels are produced through the nasal orifice.
Nasalized vowels, those vowels produced with the nasal and oral orificies, are known to
occur through an assimilation process when vowels precede nasal consonants. All the seven
oral vowels can be nasalized.

Pitch, the perceptual correlate of vocal cords’ frequency, is distinctive in Yorùbá. This
distinctive or phonemic pitch is called tone. For example, the word rá(H) disappear, rà(L)
buy and ra(M) rub are distinguished by the three tones in Yoruba: High-tone, mid-tone and
Low-tone. High-tone is orthographically represented with acute accent, the Low-tone with
grave accent and the mid is unmarked. These tones can interact to form rising and falling
tones for instance yìí this and náà the. Vowels and syllabic nasals are the tone bearing units
in Yorùbá. We have been able to use tones in addition to other features in our model to
induce conditional properties. Details can be found in 6.3.7. Consonant clusters are not
permitted in Yorùbá but long vowels are possible.

22

Figure 3.1: Yorùbá Vowel and Consonant Chart.

In Figure 3.1, the vowel chart is made of both oral and nasalized vowels. The consonant
chart which occurs below the vowel chart contains the phonemes. Allophones are not
represented.

3.3 Morphology

Typologically, Yorùbá is an analytic language, that is, grammatical relations are expressed
with little or no use of inflection. Tense is not marked morphologically and agreement re-
lation is limited. It is a combination of isolating, that is, it has a low morpheme per word
ratio, and agglutinating through the use of prefixes, interfixes, and reduplication. Prefix-
ation and reduplication are the most common word formation processes in Yorùbá. Word
formation processes in Yorùbá are also derivational and words changed through inflections
are usually through tonal variations.

Prefixation is very dominant in the word formation process of Yorùbá. There is a set
of prefixes for verbs and nouns and there are prefixes for converting verbs to nominals
through a process called deverbalization. For instance, there is a prefix oní which works
with nouns to indicate possession, property or making of the particular noun. This prefix
is a combination of two prefixes o ‘he/she/it’ and ní ‘to have’. For example when the prefix

23

oní ‘to have’ is attached to a noun like bàtà ‘shoe’, as in oníbàtà, it can mean ‘shoe seller,
shoe maker or shoe owner’.

Compounding is another dominant word formation process. Due to the syllable struc-
ture, compounding usually involves vowel ellision, coalescense, epenthesis, and compen-
satory lengthening to resolve vowel hiatus and consonant clusters. During compounding:
(a) vowel assimilation may or may not occur. For example, the two words ọmọ ‘child’ and
àlè ‘concubine’ can compound to give either ọmọ-àlè ‘illegitimate child’ (without assimila-
tion), or ọmaàlè ‘incorrigible person’ (with assimilation). (b) one of the two vowels at the
morpheme boundary may or may not elide. For example the two words ọmọ ‘child’ and ilé
‘house’ can compound to give either ọmọ ilé ‘child in the house’ (without elision), or ọmọ
‘child’ lé ‘wall gecko or small lizard’ with vowel elision leading to contraction [18].

Reduplication is a prominent word formation process in Yorùbá. There are two types of
reduplication in the Yorùbá language – full or partial reduplication [18]. Full reduplication of
nouns can give the meanings of extentiveness or degree. For example ọmọ-ọmọ ‘grandchild,
descendant’; ilé-ilé ‘every house/home’; etc. It can also be used for plural marking in the
reduplication of a modifier. For instance ilé ńlá ‘big house’ ilé nla ńlá ‘big houses’ (more
on this in section 3.5). Partial reduplication occurs where a part of the stem is copied
either before the stem or after the stem. Examples are pa ‘kill’, pípa ‘to kill’; rá ‘buy’, rírá
‘buying’; where the copying is to the front of the stem.

Interfixation is another word formation process in Yorùbá, where an affix is added
between two word. Examples are ọmọkọ́mọ ‘child any child’, ilékílé ‘house any house’.

3.4 Orthography

Orthography refers to the standardized writing system of a language and it consists of the
symbols and conventions used in writing a language. An orthography should be consistent,
familiar to the users with the symbols adopted, it must have different ways to write all
different significant sounds of the language and it should be convenient to use.

A standard orthography is therefore, a convention which is learned, consistent, stable
and accepted as correct across a community. It is a set of conventions which are observed
by all writers and it is used in formal education. The Yorùbá language has been written
since the early 19th century. However, there have been several changes in the orthography
since then. [52, 72].

Orthographically, the Yorùbá alphabet consists of 25 letters and their variant forms i.e.
capital, small letter, spelling system and a set of punctuation marks. It also uses the familiar
Latin characters. Nasalized vowels are represented with a ‘n’ after the vowel. Syllabic
nasals are written as ‘n’ except when they occur before ‘b’ where they are represented as
‘m’. Although tones occur on syllables, there are orthographically marked on vowels and

24

syllabic nasals. Yorùbá syllables are open; this means they end in vowels. The syllables are
formed by a single vowel, by consonant or glide plus vowel or a syllabic nasal.

The present standards were established in 1974, however, there remains a great deal of
contention over writing conventions, spelling, grammar, the use of tone marks and some
other linguistic formalities. For the purpose of this research, we have adopted the generally
accepted formalities of the standard language according to grammars by Bamgbose and
Awobuluyi [17, 20]. This includes full tone marking including tone marks on syllabic nasals.

Figure 3.2 summarizes the letters used in Yorùbá orthography and the sounds they
represent. The letters are written in bold and the sounds that they represent are directly
below them in square brackets.

Figure 3.2: The Yorùbá alphabet and the sounds they represent

3.5 Constituent Structure of Noun Phrases

As in English, the canonical word order is SVO as in ọmọ ra oúnjẹ (child buy food), but
the word order is not as rigid as in English. However, there are are several interesting
differences between the constituent structure of Yorùbá and English. Five of these are
within the scope of noun phrases and have been handled in this work. Details of how we
address these differences are in chapter 5.

1 In the arrangement of constituents, Yorùbá has a determiner final structure and deter-
miners are not obligatory in noun phrases [10]. So that ajá kékeré ‘dog small’ and ajá
kékeré kan ‘dog small a’ are felicitous in Yorùbá.

2 Yorùbá has a superstructure from which ‘adjectives’ are derived [17, 20, 27, 19, 73]. For
instance the word pupa ‘red’ has two entries in the dictionary [19]. The first entry
as a noun in Pupa dára ju dúdú lọ (red good more black than which means red is
better than black) and as a verb in ọmọ́ pupa ‘child red’ which means ‘child is red’. It
is important to understand that in the example derived for the first entry, pupa and
dúdú are nouns because both words can be replaced with the pronoun ’ó ‘he/she/it’,

25

so that we can say ó dára ju ú lọ. The ó is derived as ú after ju through an assimilation
process because Yorùbá abhors vowel hiatus. In situations of plural and honorific (just
like tu and vous in french) nouns, we will have Pupa dára ju àwọn dúdú lọ ‘red, good
more plural, black than’ Pupa dára ju wọ́n lọ and ‘red good more them (or singular
honorific) than)’. In the second example however, ọmọ́ pupa has also gone through
a vowel deletion and elongation through an assimilation process which turned ọmọ ó
pupa to ọmọ́ pupa. The mid tone o was deleted and the high tone o was elongated.
Although the ó (which is a pronoun but functions as a determiner) in that sentence
is implied but will not articulated by native speakers of Yorùbá. ọmọ pupa ‘red child’
however is an example where pupa performs a modifier or adjective function to the
noun ọmọ. Several other words like kékeré ‘small’, ńlá ‘big’, púpọ̀ ‘plenty’ are examples
of some nouns or verbs that can function as adjectives. For the purpose of this paper,
nouns or verbs that modify other nouns are referred to as adjectives and are used in
their adjective function. Current model handles assimilation by representing the word
twice. The first with assimilation and the other without assimilation. Future work
will consider handling phonological processes such as assimilation in a more concise
way.

3 In Yorùbá, agreement is morphologically absent and as a result, plurality is shown syntac-
tically through the occurrence of a pronoun àwọn ‘they’ before a noun as in àwọn ọmọ
‘they child’ which means ‘children’; addition of cardinals or adjectives after a noun
as in ọmọ méjì ‘child two’ implies ‘two children’, addition of an elided form of the
pronoun àwọn, before a demonstrative as in ọmọ wọ̀n yẹn ‘child they that means those
children’, the use of quantifiers which are inherently plural or reduplication of certain
‘adjectives’ after the noun as in ajá dúdú dúdú ‘dog black black’ [10]. It is important
to note that the words used for plurality in Yorùbá have their own distinct meanings
and are used in certain contexts to depict plurality. For instance Ilé ńlá ńlá ‘house
big big’ will denote several houses but esè kòǹgbà kòǹgbà ‘leg big big’, which means
a very big leg, will not be a plural expression despite both phrases having identical
categories [73]. This shows how reduplication does not always result in plurality.

4 Yorùbá does not have a formal feature for indicating gender and when gender distinction
is mentioned in Yorùbá grammar, it is a translation equivalence or it is with reference
to the structure of English and not Yorùbá [20]. The use of words like akọ ‘male’,
abo ‘female’, obìnrin ‘female human being’, ọkùnrin ‘male human being’ can be used
to express gender in words like: Abo kìnìhún ‘lioness’, ọmọ obìnri ‘child female or
daughter’, akọ ẹlẹ́dẹ̀ ‘pig’ while the pronoun “o” is used to refer to ‘he/she/it’ [20].
We explain how we use gender features in section 5.2.7 and 5.3.7.

5 Another interesting distinction between Yorùbá and English structure is the position of
adjectives in phrases. Many adjectives occur after nouns, but it is also common to

26

have adjectives before the noun. For instance, òkú ‘dead’ always occurs before a noun
as in òkú ẹran ‘dead meat’. Adjectives that describe a part of something always occur
before a noun as in ìdajì oúnjẹ ‘half food’. Adjectives that describe the attribute of
a person or thing usually occurs before a noun as in kékeré ẹkùn ‘small leopard’, but
there are some cases where having the adjective after the noun are accepted as correct
[73], as in the example in item 3. We are able to handle these different arrangements
with our model’s ability to induce conditional properties described in 5.3.7 and our
results (in chapter 7) are consistent with this linguistic claims.

Although, we cannot discount language universalities, these peculiarities which can cause
difficulty in simple comparisons have been managed in very interesting ways.

27

Chapter 4

Linguistic Details

4.1 Data Collection

Data collection for this research has been a combination of introspective and empirical
collection methods. A representative subset of Yorùbá noun phrases were developed by
native speakers of Yorùbá, some of who are linguists, and also, by the author’s introspection.
These phrases were analysed by the author together with other linguists to determine their
part of speech tags (details in 3.5 and 4.2). In all, fourty five phrases (details in Appendix
D) were generated to be used as input phrases in the model to include at least one example
of all the different grammatical structures possible in the subset of Yorùbá noun phrases
we considered. A property grammar of English which covers the subset of the Yorùbá noun
phrases was created by the author using some books and scientific papers[1, 61, 62, 80] and
we further cross-checked with linguists.

A context-free grammar was also developed for evaluation purposes; to enable us to
compare the output of the model with the context-free grammar. This grammar was devel-
oped by linguists who have native competence in Yorùbá. The first context-free grammar
was developed by the author who is also a linguist and the grammar was extended (to
include other structures that were omitted) by the other linguists whose names are Demola
Lewis, Tunde Adegbola and Samuel Akinbo. The grammar was then used to generate noun
phrases. Native speakers of Yorùbá who do not have formal linguistic training were invited
to check these phrases generated by the context-free grammar in order to ascertain that
those phrases are intuitively correct to the regular user of the language.

We developed a context-free grammar because there is no known treebank of Yorùbá
and Penn Treebank only has a dictionary of words. This approach of data collection was
employed in order to ensure that our model is realistic, correct and robust. Introspection
has proven to be the most reliable process of data collection and also very useful for building
models which require high level linguistic competence such as this WG model [34]. Intro-
spection as previously mentioned, has been that of the author who is a native speaker of

28

Yorùbá and also has formal training in linguistics. As we aforementioned, we have double-
checked our introspective analysis of the data by consulting as well seven other native
speakers of Yorùbá, three of which also have formal graduate level training in linguistics.

Analysed data have also been compared with two exisiting grammar description of
Yorùbá. The first by Ayò Bámgbósé [20] and the other by Awóbùlúyí [17]. It was im-
portant to compare our analysis with these exisiting grammatical descriptions of Yorùbá,
considering that they are one of the earliest contributions of native speakers who have for-
mal linguistic training to the description of the Yorùbá grammar [83]. Although, there were
several similarities between our data analysis and those in the grammar, we were able to
identify differences too. The differences are majorly related to parts of speech tags assigned
to words and the syntactic theory adopted for their analysis, abscence of gender and num-
ber in analysis, etc. For instance, [20] describes the head of the noun phrase as the first
word occuring in a phrase, so that in a phrase like: àwọn ọm ọ (they child) which means
children, àwọn will be the head of the phrase and ọm ọ(child) will be a qualifier, whereas,
we analyze àwọn(they) as a plural marker and ọm ọ(child) as the head. However, [73]’s
description has been useful to back up our analysis, especially with regards to conditional
precedence properties induced, while, [10]’s description of Yorùbá noun phrases has also
been very useful especially in relation to plural marking.

4.2 Strategies for Part of Speech Parsing

Accuracy of part-of-speech tagging is a critical and fundamental building block for many
computational linguistic tasks including grammar induction tasks. Assigning correct part-
of-speech tags to each input word explicitly indicates some inherent grammatical structure
of any language and a wrong part-of-speech tag will distort the grammatical structure
of a language. Rule-based (derived from linguistic rules) [28], data-driven (derived from
statistical analysis of language data) [66] and hybrid methods (which are a combination of
rule driven and data driven approaches) [87] have been used extensively in literature for
part-of-speech tagging [95]. Data-driven approaches have yielded very good results, albeit
for Indo-European languages and other data rich languages like English, Dutch, German,
etc. However, data driven approaches have error rates which are usually reducible by only
a few percentage and also work poorly with languages which have a less fixed word order
[91]. Rule-based part-of-speech tagging on the other hand is the oldest approach that uses
hand-written rules for tagging. Rule based taggers depend on dictionaries or lexica that
contain word forms together with their associated part-of-speech labels as well as context
sensitive rules to choose the appropriate tags during application. The dictionary or lexicon
is consulted to get possible tags for each word. Hand-written context sensitive rules are used
to identify the correct tag if a word has more than one possible tag. The linguistic features
of the word and other words surrounding it are analyzed for disambiguation purposes. For

29

example, a tagger for English will have a rule such as: if the a word in a phrase is a
determiner then a noun must be present somewhere in the phrase.

We adopt a rule-based approach. The tagsets were developed with the use of the [19]
of Yorùbá as well as native speakers of Yorùbá who have formal linguistic training. The
tagsets were compared to the grammars of Ayò Bámgbósé [20] and Awóbùlúyí [17], one of
the earliest grammar descriptions of Yorùbá by native speakers who have formal linguistic
training. We also used [10] whose grammatical description of Yorùbá is more recent.

We use the following tagsets:

i noun - ajá (dog), ẹran (goat)

ii pronoun - àwọn (they), ìwọ (you)

iii proper-noun - Ayò, Bámgbósé

iv determiner - kan (a), náà(the)

v quantifier - gbogbo(every), ìdajì(half)

vi adjective - dúdú(black), pupa(red)

We further define features for each word in order to provide a fine-grained definition to
each word tag. We use the following features:

i Number - We define number as either singular, plural or dual. Dual number refers to
those words that can be both singular and plural.

ii Gender - We define feminine, masculine and neuter gender.

iii Tone - The mid, high and low tones are used as features. The tones of a word are stored
in a list which contains the tones on each syllable in that word.

iv Person - The first, second, third persons are features we use to define pronouns.

v Definitiveness- Determiners are defined as either indefinite or definite. This is in addition
to other features relevant to determiners.

vi Type - Nouns are defined as common, collective, abstract, and concrete. Adjectives
are divided into attributive, descriptive, quantity and number. Quantity is further
divided into countable and uncountable and descriptive is further divided into colour
and size. All categories are also classified as animate, inanimate or both. Those
which are labelled as both, refer to categories that can be used for both animate and
inanimate objects.

These features have been carefully chosen to ensure that our model accounts for the
unique traits of Yorùbá.

30

4.3 Property Grammars

The idea of constraint is present in modern linguistic theories such as Lexical Functional
grammars (LFG) and Head-driven Phrase Structure grammars (HPSG) [76]. However,
constraint satisfaction, a way of implementing constraints, is not really incoporated and
is not the basis of the implementation of these theories. We use a formalism called Prop-
erty Grammar (PG)[22] which is based completely on constraints: all linguistic information
is represented as properties between pairs of constituents, which allow parsing to be im-
plemented as a constraint satisfaction problem. The set of properties forms a system of
constraints expressed over categories. They represent different kinds of information (e.g.
agreement, morphology or semantics) that can be used typically for contextual restrictions.
PG differs from HPSG and LFG in that it does not belong to the generative syntax family.
HPSG belongs somewhere between the proof-theoretic and model-theoretic syntax and LFG
to the model-theoretic syntax one [24].

Constraints represent information and the first benefit of representing a problem using
constraints is that of partially solving it, so this allows for partial solutions to be found even
when a full solution is not available. In addition, constraints can be specified at any level
of the linguistic description: they can represent local properties, such as those for lexical
selection, or universal ones.

These constraint-based or property-based theories, such as Property Grammars (PG) [23]
evolved from Immediate Dominance/Linear Precedence (IDLP), which unfolds a rewrite
rule into the two constraints: (1) of immediate dominance (expressing which categories are
allowable daughters of a phrasal category) and (2) linear precedence (expressing which of
the daughters must precede which others).

For example in the PG framework, English noun phrases can be described using con-
straints such as: precedence (a determiner must precede a noun, an adjective must precede
a noun), requirement (a singular non-generic noun must be used with a determiner), obli-
gation (a noun phrase must contain the head noun), and so on. The linguistic structure
(e.g phrase, sentence, clause, etc) is characterized by a list of the constraints it satisfies and
a list of constraints it violates, so that even incorrect or incomplete phrases will be parsed.
Using PGs also enables us to relax certain constraints by declaring conditions under which
those constraints should be relaxed. For instance, the obligation rule of English can be
relaxed to allow pronouns and proper nouns instead of only a noun because pronouns and
proper nouns can also function as the head of a phrase. [44] encodes the input PG into a set
of Constraint Handling Rule Grammars (CHRG) rules that directly interpret the grammar
in terms of satisfied or relaxed constraints and a syntactic tree is the implicit result. Womb
Grammars which is an adaptation of this framework into grammar transformation [42], [35]
induces a language’s syntactic structure from that of another.

31

In theories that use constraint satisfaction, the modularity obtained by modelling gram-
matical information as constraints leads to more robust parsers, since it allows us to explic-
itly identify from the parser’s output which constraints are satisfied and which fail. As an
effect, even incomplete or incorrect sentences can be accepted, instead of silently failing to
be parsed. We can also produce some indication of the sentence’s degree of acceptability
by analyzing the failed properties.

The PG formalism presently comprises the following seven categories (we adopt the
handy notation of [47], and the same example):

Constituency A : S, children must have categories in the set S

Obligation A : △B, at least one B child

Uniqueness A : B !, at most one B child

Precedence A : B ≺ C, B children precede C children

Requirement A : B⇒ C, if B is a child, then also C is a child

Exclusion A : B ̸⇔ C, B and C children are mutually exclusive

Dependency A : B ∼ C, the features of B and C are the same

Example 1. For example, if we denote determiners by D, nouns by N, personal nouns
by PN, verbs by V, noun phrases by NP, and verb phrases by VP , the context-free rules
NP → D N and NP → N , which determine what a noun phrase is, can be translated
into the following equivalent constraints: NP : {D, N}, NP : D !, NP : △N, NP : N !,
NP : D ≺ N, D : {}, N : {}.

In the PG formalism, A refers to the phrase or sentence being defined. In our case,
A refers to Noun phrases, B and C are categories such as nouns, adjectives, etc. These
properties contain the basic syntactic information. The use of a dependency property
may make it possible to express certain features of a dependency grammar using the
formalism of property grammars. This is possible because, just like dependency gram-
mars, dependency property is concerned with syntactico-semantic relations. For instance
np(dependence(adjective,noun)) is concerned with using features (described in 4.2) to de-
termine the gender and number relationship between adjectives and nouns and other de-
pendency information can be modelled in similar fashion. The features are introduced for
each word in the lexicon (details in section 5.2) and all the subsets of categories involved
in the description of a given input can be characterized by the constraint system (i.e. the
grammar). The constituency property contains dependency information that tell us each
category can be associated to another.

32

Thus, there is a general notion of characterization formed by the set of properties that
succeed and those that fail which together characterize an input. The characteristics of
an input corresponds to the result derived from the constraint system at the end of the
parse. The result of a parsed property is either satisfied or unsatisfied and this allows
(ungrammatical) inputs to still be parsed rather than just fail. It is defined as the set of
properties that are satisfied plus the set of unsatisfied ones. The interest of such a conception
is that every property in the grammar states some constraint on well formedness. It can be
the case that all constraints are satisfied, but this is not an imperative condition. All kinds
of input can consequently receive a characterization.

33

Chapter 5

The Womb Grammar Model of
Grammar Induction

Womb Grammars was motivated by the need to describe the syntax of many minority
languages which are not being studied because of a lack of adequate resources; these re-
sources mainly being: linguistic data and linguists to analyse the data. The syntax of a
target language is induced from the grammar of the source language and the source and
target languages need not be closely related languages. The source language is the language
which functions as the initiator of inference for learning the target language, which is, the
language to be learned. A language’s phrases are described in terms of constraints or prop-
erties between pairs of direct daughters of a phrasal category referred to as properties. The
parsing capabilities inherent in these properties are extended into a grammatical induction
and parsing model [42].

There are two versions of WGs: Hybrid Womb Grammars, in which the source language
is an existing human language for which the syntax is known, and Universal Womb Gram-
mars, in which the source syntax is a hypothetical universal grammar created by the author,
and it contains all possible properties between pairs of constituents [42]. The Hybrid Womb
Grammars can use any language whose syntax has been studied by linguists as its source
language. We use a hybrid model in this work and English as the source language.. A
Universal Womb Grammars version on the other hand use a source grammar for a nonex-
istent language which can be created to include all plausible properties which encompass
all human languages. For instance, while an English source grammar will have rules that a
determiner precedes a noun, a universal grammar will have rules that a determiner precedes
a noun and the converse, a noun precedes a determiner. Parsing with WGs has the novel
approach of using constraint solving to address a problem which is more usually solved as
a machine learning problem.

In this work, the grammar of our source language, English, is described as properties
between constituents as described by [23]. We use the hybrid version of Womb Grammars

34

and not the universal version, to which we feed the following English grammar (the code
notation can be found in appendix c):

Constituency NP : determiner, noun, adjective, pronoun, proper-noun, quantifier;

Obligation NP : △noun,pronoun,proper noun

Precedence NP : determiner ≺ noun; NP : determiner ≺ adjective; NP : pronoun ≺ noun;
NP : pronoun ≺ adjective; NP : adjective ≺ noun; NP : quantifier ≺ determiner;
NP : quantifier ≺ pronoun; NP : quantifier ≺ adjective; NP : quantifier ≺ noun

Requirement NP : noun⇒ determiner

Dependency NP : quantifier ∼ noun; NP : adjective ∼ noun; NP : determiner ∼ noun

WG extends the parsing capabilities implicit in these properties into a model of gram-
matical induction, in addition to parsing. The previous implementation of WGs [42] al-
lowed greater efficiency by adopting a failure-driven approach where only failed constraints
were analyzed, rather than explicitly calculating all successful and unsuccessful constraints.
However in adapting the model into Yorùbá, we have found it more efficient to explicitly
calculate satisfied constraints as well. This is partly because in order to arrive at as nu-
anced a description as needed for Yorùbá, we had to extend the Property Grammar model
to accommodate what we call conditional constraints: those constraints which have failed
in some phrases and succeeded in others, but also have a unique pattern responsible for this
behaviour (more on this later).

The general WG model can be described as follows: Let LS be the source language and
its syntactic structure be referred to as LS

syntax. We will call the target language LT and its
lexicon will be (LT

lex). A correct and sufficiently representative set of phrases in LT can be fed
into a hybrid parser consisting of LS

syntax and LT
lex. A correct and sufficiently representative

set of phrases will consist of at least one example of all plausible syntactic structures.
Parsing the sentences may result in some of the sentences being marked as unsatisfied by
the parser and an analysis of the constraints which these “unsatisfied” sentences violate can
subsequently disclose how to repair the LS

syntax so that it accepts as satisfied, the sentences
in the corpus of LT which were previously unsatisfied. This process transforms LS

syntax into
LT

syntax by modifying the constraints that were violated into constraints that accept the
input. Figures 6.1 and 6.2 respectively show the problem and solution in schematic form
adapted from [42].

An Example

Let LS = English and LT = Yorùbá, and for example, let English determiners always
precede the nouns they modify, while in Yorùbá they always follow it (this could be an

35

LT
lex LT

syntax? LS
syntax

Figure 5.1: The Problem

LT
corpus LT

lex LS
syntax

WG
Parser

Violated syntax
properties

Model Transformation
Module

LT
syntax

Figure 5.2: The Solution

oversimplification, just for illustration purposes). Thus “a black book” is correct English,
whereas in Yorùbá we would more readily say “ìwé dúdú kan” (book, black, a).

If we insert the Yorùbá lexicon and the English syntax properties into our WG parser,
and run a representative input of correct Yorùbá noun phrases by the hybrid WG parser,
the precedence property will be declared unsatisfied when parsing phrases such as “ìwé dúdú
kan”. The model transformation module can then look at the list of unsatisfied properties,
and produce the previously unknown syntactic structure of LT ’s parser by modifying the
properties in LS

syntax so that there are no more violations in the input phrases of the target
language.

Some of the required modifications may be easy to identify and implement. For instance,
to accept “ìwé dúdú kan” the English rule that determiners precede nouns (noted det < n)
needs to be deleted. However, subtler modifications may be required, after some statistical
analysis: if in our LT corpus, which we assume to be representative, all determiners appear
after the noun they modify, Yorùbá will in addition to deleting the English precedence
property: det < n, add the reverse precedence property of English: n < det.

5.0.1 Constraint Handling Rule Grammars (CHRG)

Constraint Satisfaction has produced impressive results in many Artificial intelligence ar-
eas, including human language processing. To a large extent, this powerful problem-solving
paradigm serves as a bridge between languages for problem description and those for prob-
lem solving, a disjoin that has been prevalent in the field until recently.

36

Constraint Handling Rule Grammars (CHRG) are a constraint-based grammar formal-
ism added on top of Constraint Handling Rules (CHR) [88] similar to the way Definite
Clause Grammars are implemented over Prolog. A CHRG works as a bottom-up parser,
and the formalism provides several advantages for natural language analysis. A notable
advantage is that the notation supports context-sensitive rules that may consider arbitrary
symbols to the left and right of a sequence [35].

CHRG (CHRGrammars) strives to incorporate as much as possible of CHR’s expressibil-
ity. This includes propagation rules, simplification and simpagation rules and the capacity
for a grammar rule to make considerations for arbitrary grammar symbols that may occur
to the left and right of a sequence that is supposed to match a given nonterminal. Ambi-
guity is not a problem for CHRG, all different parses are evaluated in parallel in the same
constraint store - without backtracking. This results in tagger-like grammar rules that can
be used for disambiguating simple and ambiguous context-free grammar rules, and pro-
vides also a way to handle coordination in natural language. In case of errors, the parser
is robust enough to deliver as its result those subphrases that have been recognized. Since
the advent of CHR [88] and of its grammatical counterpart CHRG [35], constraint-based
linguistic formalisms can materialize through fairly direct methodologies.

In a nutshell, CHRG rules rewrite constraints into other constraints, that are subject to
possible checks described in a rule’s guard and stated as Prolog calls. Their general format
is:

α -\ β /- γ ::> G | δ.

This rule is called a propagation rule and it means, if α occurs before β, and β before
γ, and G condition is fulfilled, then store δ in the constraint store. The part of the rule
preceding the arrow ::> is called the head, G the guard, and δ the body; α, β, γ, δ are
sequences of grammar symbols and constraints so that β contains at least one grammar
symbol, and δ contains exactly one grammar symbol which is a nonterminal (and perhaps
constraints); α (γ) is called left (right) context and β the core of the head; G is a conjunction
of built-in constraints as in CHR and no variable in G can occur in δ. If left or right context
is empty, the corresponding marker is left out and if G is empty (interpreted as true),
the vertical bar is left out. The convention from DCG is adopted that constraints (i.e.,
non-grammatical stuff) in head and body of a rule are enclosed by curly brackets. Special
grammatical operators are provided for gaps and parallel matching (parallel matching is
used when it is required that more than one pattern matches the string to be recognized).
Gaps and parallel match are not allowed in rule bodies. A gap in the rule heads is noted
“...” while parallel match is denoted by “$$”. Gaps are used to establish references between
two long distant elements [42].

A simplification (grammar) rule is similar to a propagation rule except that the arrow
is replaced by <:> and the grammar symbols in the head are deleted. A simpagation

37

(grammar) rule is similar to a simplification rule, except that one or more grammar symbols
in its head are prefixed by a ! symbol, which means that such a grammar symbol is not
removed. It can also be fully integrated with Prolog and a single file can conveniently
incoporate prolog, CHR and CHRG codes.

An example with propagation, simplification and simpagation rules follows:

:- compile(chrg).
:- chrg_symbols np/0, adjective/0, verb/0, sentence/0.

np, verb, np ::> sentence.
adjective, np, verb, np <:> sentence.
!np, verb, adjective, np <:> sentence.
[dogs] ::> np.
[bones] ::> np.
[like] ::> verb.
[big] ::> adjective.

end_of_CHRG_source.

Figure 5.3: A CHRG example, showing propagation, simplification and simpagation rules

In Figure 5.3, np/0, verb/0, adjective/0 and sentence/0 declare grammar symbols of
arity 0 and so it can be used in the rules that follow. The first rule says that if a sequence
of np, verb and np occurs, then, a representation of sentence is added to the store. The
second rule states that if a sequence of adjective, np, verb and np occurs, then, a sentence
is added to the store and all symbols to the left of the sentence are deleted. The third rule
is like the second, however, the initial np is not deleted.

In order to execute the parser, we need only to call the parse predicate, a built-in prolog
predicate, with a list of Prolog atoms in the following way:

38

?- parse([big, dogs, like, bones]).
<0> big <1> dogs <2> like <3> bones <4>
token(3,4,bones)
token(2,3,like)
token(1,2,dogs)
token(0,1,big)
all(0,4)
sentence(0,4)
sentence(1,4)

Figure 5.4: Executing the parser

Our results in Figure 5.4, show the word boundaries, phrase boundaries, and also tell
us that two sentences were discovered: the first one being the entire sentence big dogs like
bones, and the second one dogs like bones.

Constraint solving as an implementation paradigm for WGs allows us to convey linguistic
constraints and also test them in a modular fashion. The results are also concise.

5.1 Some Implementation Details

Our CHRG implementation adapts the original implementation [35] where the appropriate
WG constraints were entered in terms of a constraint g/1, whose argument stored each
possible grammar property. For instance, our English grammar hybrid parser for noun
phrases includes the constraints below (some of these constraints are also in [42], although
we wrap each property in np) and some others in appendix C:

g(np(obligatority([noun, proper-noun, pronoun]))) - at least one noun or pronoun or
proper-noun child

g(np(constituency(determiner))) - determiner children must have categories in the set

g(np(constituency(adjective))) - adjective children must have categories in the set

g(np(precedence(determiner,adjective))) - determiner children precede adjective children

g(np(precedence(determiner,noun))) - determiner children precede noun children

g(np(requirement(noun, determiner))) - if noun is a child, then also determiner is a child

g(np(dependence(determiner,noun))) - the features of determiner and noun are the same

and so on.

39

In [42], these properties are weeded out upon detection of a violation by CHRG rules that
look for them e.g. an input noun phrase where a noun precedes an adjective may provoke
deletion of the constraint g(precedence(adjective, noun)) when the following CHRG rule
applies:

!word(C2,_,_), ... , !word(C1,_,_),
{g(precedence(C1,C2))} <:>
{update(precedence(C1,C2))}.

Figure 5.5: A Simpagation rule from the previous implementation

The parser worked by storing each word in the lexicon in a CHRG symbol word/3 along
with its category and traits which we now refer to as features, as in:

word(determiner,[singular,masculine],le).

Only gender and number features were used in previous versions. Since the CHRG parse
predicate stores the position of each word in the sentence, this simpagation rule in Figure
6.3 is triggered when a word of category C2 comes before category C1, given the existence
of the grammar constraint that C1 must precede C2. The precedence property will fail in
this case and update stores this property accordingly 1.

When the parse predicate is invoked, the constraints of the source grammar are tested
with the input phrases of the target language. The properties are tested on input phrases
only once, so that if 15 input phrases are to be tested and all properties have been found
and tested in the first 5 phrases, the remaining 10 phrases do not need to be tested for
any properties. This tests are done bottom-up. Constraints that are violated are output as
unsatisfied. Other constraints, those which did not fail and those irrelevant to the target
language were printed.

5.2 Methodology

In our model, we store each Yorùbá word in the lexicon in a CHRG symbol word/3 along
with its category and features (i.e. word(adjective,[dual,neuter,descriptive-colour,both,[mid-
mid]],funfun).).

1“Recall that in CHRG syntax the symbols prefixed with exclamation points are kept, while the ones
without are replaced by the body of the rule, in this case an update constraint that invokes some housekeeping
procedures.” [4]

40

!word(C2,F1,_):(N1,_),...,
!word(C1,F2,_):(_, N4),
{g(np(precedence(C1,C2)))}, {all(A, B)}<:>
{fail(np(precedence(C1,C2)), F1, F2, N1, N4, A, B)}.

Figure 5.6: A Simpagation rule in our model

This simpagation rule in Figure 5.6 is triggered when a word of category C2 comes
before category C1, given the existence of the grammar constraint that C1 must precede
C2 and the phrase boundaries in which the word is found. The property will fail and the
property (np(precedence(C1,C2)), features F1,F2, the word boundaries N1, N4 and the
phrase boundaries A,B will be stored.

For each phrase, constraints that are violated at least once are printed as unsatisfied
with the relevant word and phrase boundaries. Constraints that are satisfied on the other
hand are output as satisfied with the relevant word and phrase boundaries as well. We
maintain two lists, one which has all properties that are unsatisfied at least once with the
features and the number of times they fail as well as a second list which saves the properties
that are satisfied at least once with the number of times they succeed. The information in
these two lists are useful during the induction phase of our work. We provide more details
of our methodology in the following subsections.

5.2.1 Modified parsing that calculates both failure and success explicitly

Previous models of WG focused on failure driven parsing, under the assumption that failed
properties are usually the complement of those satisfied i.e., in order to improve efficiency
they calculated only the properties that failed. This implies that they can be derived from
the failed ones if needed and in general, a grammar is induced by repairing failures. However,
our more in depth analysis in the context of Yorùbá has uncovered the need for more detail
than simply failing or succeeding, as in the case of conditional properties. We therefore
now use a success conscious and failure conscious approach for inducing the grammar of
our target language, Yorùbá. Each input phrase of the target language is tested with all
relevant constraints for both failure and success. This makes the model slightly less efficient
than if we only were to calculate failed properties, but of course the gain is in accuracy.

Efficiency is still guaranteed by the normal CHRG way of operating: rules will only
trigger when relevant, for example, if a phrase is comprised of only a noun and an adjec-
tive, it will not be tested with for instance precedence(pronoun, determiner) or any other
constraint whose categories are different from those of the input phrase. In addition, if a
property fails in a particular phrase, it will not be tested for success again and vice versa.
This is because a property cannot succeed and fail at the same time.

41

We keep a list of all properties that fail and another for those that succeed, together
with the features of the categories of each input phrase as well as their counts.

It is important to state that constituency constraints are tested only for success. This is
because we are interested in checking that our target grammar shares similar constituents
with our source language and testing for failure will be irrelevant for these constraints. We
also are able to test for some properties that are present in the target grammar but are not
in the source grammar. We also test for success alone in such cases. More of this in section
5.2.6.

5.2.2 How we save failed and succeeded properties

We store failed properties and succeeded properties separately and we save each property
together with the categories, features, word boundaries and phrase boundaries. We first
check if a property is already in the list so that we do not duplicate properties. If the
property already occurs, we check if the features of the property to be added are different
from the features already in the list. The new features of the property to be added are
added to the property and the counter for the property and the features is incremented if
the feature does not already occur in the list. If it is already in the list, we only increment
the counter for the features and property respectively.

42

incnum(Count, Ncount):- Ncount is Count + 1.

succeed(Prop,Features1, Features2, N1, N2, A, B),

succeededproperties(_,List), succeededboundary(_, List1)<=>

member([Prop, FeaturesPairList,CountP],List),

not(member([Features1, Features2,_], FeaturesPairList)),

succeededboundary(_, [[Prop, N1, N2, A, B]|List1]),

delete(List, [Prop, FeaturesPairList,CountP], Nlist),

incnum(CountP, NcountP)|

succeededproperties(_,[[Prop, [[Features1, Features2, 1]|

FeaturesPairList],NcountP]|Nlist]).

succeed(Prop, Features1, Features2, N1, N2, A, B),

succeededproperties(_Prop_List,List),

succeededboundary(_, List1) <=>

succeededproperties(_X,[[Prop,[[Features1, Features2, 1]], 1] | List]),

succeededboundary(_, [[Prop, N1, N2, A, B]|List1]).

Figure 5.7: Some rules to save succeeded propeties

In figure 5.7, if there is a succeed/7, succeededproperties/2 and succeededboundary/2, we
test if the features of the property are members of the succeededproperties list. If we find
that the features are already in the list, we delete the property, features and the count;
increment the count for that property and update the property the features and the count.
If the list is empty, the property and features are added to the list and the count is equal
to one.

43

Incnum is a helper predicate that we use to increment the count of properties or features.

5.2.3 How we handle tones

Yorùbá is a tone language, therefore it was imperative to ensure that tones are properly
represented. We adopt a full tone marking approach (as described in section 3.2 and 3.4)
so that each word is marked with its tones in order to avoid ambiguities. The tones are
stored as features, such that for instance, the word tútù(cold) that has two syllables with
a high and low tone on each syllable respectively is stored as “High-low” in the features of
the word.

[tútù]::> word(adjective, [dual, neuter, descriptive, both, [high− low]], tútù).
These tones are used to infer conditional properties in the second phase of parsing so

that if a property is found to succeed only if it is around words with certain tones, such
property will be said to be conditional. The conditions of such a property will be the tones
which form a unique pattern in the success of the property. It is important to note that the
tones are not used in isolation of other features and a property will be said to be conditioned
on tones alone, if, tones are the only patterns responsible for its succeess or failure. The
addition of tones makes our approach extensible to many other languages including tone
languages.

5.2.4 Glossing of phrases

The system provides a record of the English gloss of every word in the target phrases and
this record is consulted during parsing to produce the English equivalent for each word in
the input phrases. The gloss is rendered below every phrase as in figure 5.8.

< 0 > àwọn < 1 > ọmọ < 2 > púpọ̀ < 3 >

they child plenty

Figure 5.8: Phrase transliterations

The gloss are provided to faciliate understanding especially of those who do not speak
or understand Yorùbá. This will be useful for any other language which is not intelligible to
the user, especially for linguists who often analyse languages that they can neither speak,
read nor write.

5.2.5 Failed and satisfied properties

For each phrase parsed, the failed and or satisfied properties are explicitly output. This
enables us to identify which specific properties are satisfied for each phrase and those which

44

are unsatisfied. We also explicitly retrieve the word boundaries of every word analysed
during parsing as well as the phrase boundaries where the words are found. This is basically
to eliminate ambiguity that can occur, in a situation where a single property fails, or
succeeds more than once in a phrase; or if the model is extended to include other phrases
for example a verb phrase. The boundaries before the semicolon represent the pair of words
boundaries while the second boundary after the semi colon represents the phrasal bondaries.

In Figure 5.9, the parse results show that np(obligatority([noun,proper-noun,pronoun]))
succeeds once because there is one noun in the phrase; np(constituency(determiner)) and
np(constituency(noun)) succeed once each because the phrase has one noun and determiner;
np(requirement(noun,determiner)) succeeds once because there is a noun and determiner in
the phrase and, np(dependence(determiner,noun)) succeeds once, although the reason for
the success of dependence is not visible here. np(precedence(determiner,noun)) fails once
because the noun comes before the determiner which is different from the English ordering
of determiner before nouns. We also printed boundaries beside each property with the word
boundaries displayed immediately after the property and the phrasal boundaries just after
semicolon.

< 0 > ilé-ìwé< 1 > náà < 2 >

school the

Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2

Succeeded Property: np(constituency(determiner))1-2; 0-2

Succeeded Property: np(constituency(noun))0-1; 0-2

Failed Property: np(precedence(determiner,noun))0-2; 0-2

Succeeded Property: np(requirement(noun,determiner))0-2; 0-2

Succeeded Property: np(dependence(determiner,noun))0-2; 0-2

Figure 5.9: Parse results of a sample phrase showing failed and succeeded properties

5.2.6 Inducing properties not present in the source language

WGs is also able to find all precedence and constituency constraints that are absent in our
source but present in our target language.

45

prec(precedence(X,Y)):-
english_properties(List),
not(member(g(np(precedence(X,Y))), List)),
not(member(g(np(precedence(Y,X))), List)),
X \= Y.

word(C1,F1,_):(N1,_),...,word(C2,F2,_):(_,N4),
{others}, {all(A, B)}::> prec(precedence(C1,C2))
|{succeed(np(precedence(C1,C2)),F1, F2, N1, N4, A, B)}.

Figure 5.10: Inducing precedence properties present in target phrase but absent in source
grammar

Figure 5.10 shows that during parsing, every pair of words with categories C1 and C2,
features F1 and F2 and word boundaries N1 and N2 are tested for precedence if and only
if the precedence rule of those words’ categories does not already exist in any precedence
rule of the property grammar of English. We define a predicate prec which checks that
the proposed precedence rule and its converse is not a member of the property grammar
of English while we use others, a CHRG constraint to trigger this precedence rule. We do
this in order to ensure that we do not create redundancies in a bid to infer precedence rules
that occur only in the target language.

We are equally able to test the precedence constraints by checking if such a constraint
succeeds in all relevant phrases and if the converse succeeds in any input phrase. If we find
that the converse does not succeed in any of the input phrases, this constraint is induced as
a property of the target language, else we search for a unique feature to ascertain if it should
be induced as a conditional feature. In the case of constituency, like we explained in section
5.3.3, we are only interested in finding the constituent and the number of times it occurs
although it is stored, is not relevant. If a constituent not present in the source grammar
is found at least once, in the input phrase of the target language, then the constituent is
induced as part of the grammar of the target language.

5.2.7 How we handle syntactic number and gender

As explained in section 3.5, number and gender are syntactically represented in Yorùbá.
This feature is especially useful for the dependence property where we want to determine
certain properties depend on another for gender and number. We also in section 4.2 explain
that each word is defined with either singular, plural or dual number and feminine, masculine
or neuter gender.

Before parsing, words which have a dual number and neuter gender accept the number
and / or gender of the word that occurs before or after it if and only if those words do not

46

have dual number and / or neuter gender. After this update, the words are parsed with
their updated features.

update(A,B,A,B).
word(_M,[N,G,_O,_P,_Q],_R)-\
word(noun,[dual,Y,Z,A,B],C),{g_update}<:>
N \= dual, G \= neuter, Y = neuter ->update(N, G, S, GR);
N \= dual, G = neuter, Y \= neuter->update(N,G,S,GR);
N \= dual, G = neuter, Y = neuter->update(N,G,S,GR)|
word(noun,[S,GR,Z,A,B],C).

word(noun,[dual,Y,O,P,Q],C)/-
word(_,[N,G,_,_,_],_),{g_update}<:>
N \= dual, G \= neuter, Y = neuter->update(N, G, S, GR);
N \= dual, G = neuter, Y \= neuter->update(N, G, S, GR);
N \= dual, G = neuter, Y = neuter->update(N, G, S, GR)|
word(noun,[S,GR,O,P,Q],C).

Figure 5.11: Rules for updating the number and / or gender features of a word

The first rule in Figure 5.11 is used to update nouns which occur before any word which
does not have dual number and / or neuter gender and if the constraint to update the
gender and number is in the constraint store. In the first condition, if the number feature
of the word preceding the noun is not dual and the gender feature is not neuter and if the
gender feature of the noun is neuter, then the noun is updated with the number and gender
features of the preceding word. We do this by assigning the number value X of the first
word to S and the gender value N to the G which is now stored as the updated value of
the noun. In the second condition and third conditions, if the word does not have a dual
number but has neuter gender, the number feature of the noun is only updated but the
gender remains the same. In this case, we update the value as in the first condition, except
that we assign the gender value of the noun to G. The second rule is like the first, however,
the noun occurs before the word that can be used to update its number and / or gender
features.

5.2.8 Parsing each property in our English subset

Parsing with dependence constraints

Due to the peculiarities of Yorùbá grammar with regards to gender and number, detailed
in section 3.5, we initialize all words with neuter gender and dual number, save a few words

47

which have their number inherent in their meaning and function (words such as ọ̀pọ̀lọpọ̀
‘numerous’, àwọn ‘third person plural’. We also implement a rule (Figure 5.11) that creates
a variant for each number or gender tag based on the environment in which the word
is found. This successfully handles the syntactic process of defining number and gender
in Yorùbá. The dependency rule of English is then tested for satisfaction and otherwise.
This parsing strategy clearly accomodates the existence of plurality in Yorùbá without
a previous knowledge of the peculiarities of Yorùbá’s syntactic strategies for number, as
well as gender which is in reference to English. However, though plurality and gender are
present in Yorùbá grammar and are seen to succeed in parse results, the presence of failed
dependence relations is further analyzed to determine if the dependency constraints should
be a conditional property in Yorùbá. Results show that there is no pattern under which
failure or success occurs. This lays credence to research findings by linguists who have
studied the Yorùbá grammar [17, 20, 10].

word(X,[F1,A,B,C,D],_):(N1,_),...,word(Y,[F2,E,F,G,H],_):(_,N4),
{g(np(dependence(C1,C2)))}, {all(NA,NB)} ::>
X=C1, Y= C2, F1=F2-> assign(X, [F1,A,B,C,D], Y, [F2,E,F,G,H] ,
Rg, FRg, Rd, FRd);
X=C2, Y= C1, F1=F2 ->assign(Y,[F2,E,F,G,H],X,[F1,A,B,C,D],Rg,FRg,Rd,FRd) |
{succeed(np(dependence(Rg, Rd)), FRg, FRd, N1, N4,NA,NB)}.

word(X,[F1,A,B,C,D],_):(N1,_),...,word(Y,[F2,E,F,G,H],_):(_,N4),
{g(np(dependence(C1,C2)))}, {all(NA,NB)} ::>
X=C1, Y= C2, F1 \= F2-> assign(X, [F1,A,B,C,D],Y,[F2,E,F,G,H],
Rg, FRg, Rd, FRd);
X=C2, Y= C1, F1 \= F2 ->assign(Y,[F2,E,F,G,H],X,[F1,A,B,C,D],Rg,FRg,Rd,FRd) |
{fail(np(dependence(Rg, Rd)), FRg, FRd, N1, N4,NA,NB)}.

Figure 5.12: Dependency rules

Parsing with the obligatority constraint

Previous models of Womb Grammars failed if a noun was absent; the obligatority constraint
now only fails if a phrase does not have a noun or pronoun or proper noun constituent as
described in section 5.2.8. Obligatority succeeds if the converse occurs. This idea eliminates
the possibility of obligatority failing because it contains a personal noun which is a valid
obligatory category.

48

word(C1,F1,_):(N1,N2),{g(np(obligatority(C)))},
{all(A,B)}::> member(C1,C)|
{succeed(np(obligatority(C)),C1,F1,N1,N2,A,B)}.

Figure 5.13: Rule for succeeding obligatority

In Figure 5.13, we declare a list of categories C which contains a noun, proper-noun and
pronoun (code implementation of the subset of property grammar of English noun phrases
can be found in Appendix C). The obligatority constraint is satisfied if C1 is a member of
C.

This approach enables us to check if pronouns and proper nouns in Yorùbá perform
the same head function as they do in English. Our results indicate that proper nouns and
pronouns can indeed function as the head of a phrase as in English.

Parsing with precedence constraints

In parsing precedence constraint, we use the precedence rules of English. A precedence
rule is satisfied if the target phrase has exactly the same ordering as English. For instance
in Yorùbá, every occurrence of precedence(det, n), precedence(det, adj) fails while prece-
dence(adj, n) fails in certain input phrases and succeeds in other input phrases (details of
this in appendix 1). This gives us adequate information to make a valid conclusion that in
Yorùbá determiners always come after nouns and after adjectives. However, with the pres-
ence of both failed and successful instances of adjectives and noun orderings, and a pattern
of features responsible, we can only make conclusions that Yorùbá nouns and adjectives
have different orderings. Our system materializes this in our output as:

-conditional precedence(adjective,noun):-
adjective precedes noun if adjective is plural,
quantity-uncountable, can be used for both animate and inanimate
nouns

Figure 5.14: A conditional precedence property showing one of the conditions for the or-
dering

Our results in Figure 5.14 reiterate linguistic findings by Yorùbá grammarians [17, 20].
It is important we state that the conditional precedence our system shows is that which has
identified unique features responsible for the order. So that, the other with more general
features can be inferred but is not explicitly output by our model.

49

word(C1,F1,_):(N1, _),...,word(C2,F2,_):(_, N4),
{g(np(precedence(C1,C2)))}, {all(A, B)}::>
{succeed(np(precedence(C1,C2)), F1, F2, N1, N4, A, B)}.

Figure 5.15: Precedence rule for checking success

In Figure 5.15 we show from our code that precedence constraints are satisified if and
only if there exists a precedence(C1,C2) rule in English, and an input phrase where C1
precedes textitC2. The categories C1, C2 and the features F1, F2 of the words are stored
in a list if the precedence rule is satisfied. We also retrieve the word boundaries and phrase
boundaries as described in 6.2.5.

Parsing with constituency constraints

A success driven approach is adapted for parsing constituency. This is because we are
only interested in the presence of the constituent and not the number of times it occurs
in parsed phrases. Previous Womb Grammar formalisms did not test for constituents and
this resulted in adding constituents that are absent in the target grammar to the target
grammar simply because they exist in the source grammar. We also have a function that
can induce constituents that are in the target language but absent in the source. More of
this in 5.2.6.

word(C1,F1,_):(N1, N2),{g(np(constituency(C1)))},
{all(A, B)}::>
{succeed(np(constituency(C1)), F1, N1, N2, A, B)}.

Figure 5.16: The constituency rule

In Figure 5.16, every time a word is found, the category of the word is tested with the
constituency rule of English. If the category of the word is found in the English properties,
then it is satisfied and added to a succeeded properties list and subsequently induced. We
also store the word boundaries and phrase boundaries as in 6.2.5

Parsing with requirement constraints

We test requirement by checking the constituent that co-occur with another constituent in
a phrase.

50

check_waits \ wait(Prop, F1, F2, N1, N2, A, B), g(Prop) <=>
fail(Prop, F1, F2, N1, N2, A, B).
check_waits <=> true.

word(Required,F1,_):(N1,N2),
{g(np(requirement(Required,Requiring)))},{all(A, B)} ::>
{wait(np(requirement(Required,Requiring)), F1, [], N1, N2, A, B)}.
{wait(np(requirement(_,Requiring)),_,_,_,_,_,_)},
!word(Requiring,_,_)<:>true.

Figure 5.17: Rules to test requirement failure

In Figure 5.17, we test whether requirement fails by checking that as daughter of the
same mother a Requiring category does not occur with a Required category. We achieve
this by saving the constraint wait/7 everytime we find a word with a Requiring category
and there exists a property that says Requiring category requires a Required category. We
continue to wait till the entire phrase is parsed, if peradventure Required will be a category
in the phrase which should not necessitate a failure. If no Required is found within that
phrase, the category Requiring and its features F2, its word boundaries (N1 and N2) and
the phrase boundaries A,B where Requiring was found are added to the failed properties
list; if Required is found, we delete wait/7.

assign(A,B,C,D,A,B,C,D).

!word(X,FX,_):(N1,_N2),...,!word(Y,FY,_):(_,N4),
{g(np(requirement(C1,C2)))},{all(A,B)} <:>
X = C1, Y = C2 -> assign(X, FX, Y, FY, Requiring, FRg, Required, FRd);
X = C2, Y = C1 -> assign(Y,FY,X,FX,Requiring,FRg,Required,FRd) |
{succeed(np(requirement(Requiring, Required)), FRg, FRd, N1, N4,A,B)}.

Figure 5.18: The rule to test requirement success

In testing for success as in Figure 5.18, if a daughter Requiring of a phrase requires a
sibling Required, we must check that in that phrase (e.g. np) when Requiring appears as
a daughter, Required is also a daughter of that phrase. In the implementation, we check
if a Requiring and Required occur in the same phrase. The order of the categories is not
important here, as we are simply checking if it occurs anywhere within a phrase. We store
the features F1, F2 of the word to induce conditional properties in the second phase of
parsing. We also store the word and phrase boundaries which were retrieved as in 6.2.5.

51

5.2.9 Parsing with properties not relevant to our subset of noun phrases

Parsing with exclusion constraints

In parsing exclusion, we are interested in finding that the categories in exclusion do not occur
together in a phrase. For instance, np(exclusion(Noun, Adjective)) will succeed if phrases
do not have both nouns and adjectives in the same phrase. A failure occurs if otherwise. We
are not interested in the order of the categories, so that for instance, np(exclusion(Noun,
Adjective)) and np(exclusion(Adjective, Noun)) should not occur in a phrase.

assign(A,B,C,D,A,B,C,D).

word(X,FX,_):(N1,_), ... , word(Y,FY,_):(_,N4),
{g(np(exclusion(C1,C2)))}, {all(A, B)}::>
X = C1, Y = C2 -> assign(X, FX, Y, FY, Rg, FRg, Rd, FRd);
X = C2, Y = C1 -> assign(Y,FY,X,FX,Rg,FRg,Rd,FRd) |
{fail(np(exclusion(Rg,Rd)),FRg,FRd, N1, N4, A, B)}.

Figure 5.19: Rule to test exclusion fail

In Figure 5.19, if a word with category X, features FX and word boundary N1 occurs
with a word with category Y, features FY and word boundary N4 and there is a constraint
that excludes categories C1 and C2, and phrase boundaries A and B, we check if X and Y
are equal to C1 and C2 or C2 and C1 respectively. We use the helper predicate assign/8
because we are not interested in the order of categories. We save the exclusion property
with the assigned categories Rg and Rd; features FRg and FRd; word boundaries N1 and
N4 and phrase boundaries A and B.

52

check_wait \ waits(Prop, F1, N1, N2, A, B), g(Prop) <=>
fail(Prop, F1, N1, N2, A, B).
check_wait <=> true.

word(C1,F1,_):(N1,N2), {g(np(exclusion(C1,C2)))}, {all(A, B)}
::> {waits(np(exclusion(C1,C2)), F1, N1, N2, A, B)}.
{waits(np(exclusion(_,C2)),F2,N1,N2,A,B)}, {all(A, B)},
!word(C2,F2,_):(N1,N2)<:>true.

word(C2,F1,_):(N1,N2), {g(np(exclusion(C1,C2)))}, {all(A, B)}
::> {waits(np(exclusion(C1,C2)), F1, N1, N2, A, B)}.
{waits(np(exclusion(C1,_)),F1,N1,N2,A,B)}, {all(A, B)},
!word(C1,F1,_):(N1,N2)<:>true.

Figure 5.20: Rule to test exclusion success

In figure 5.20, we test whether exclusion succeeds by checking that if a category C1
occurs, then it does not occur with a C2 category and vice versa. We achieve this by saving
the constraint waits/6 everytime we find a word with a C1 category and there exists a
exclusion property says C1 and C2 category. We continue to wait till the entire phrase is
parsed, if peradventure C2 will be a category in the phrase which should not necessitate a
success. If no C2 is found within that phrase, the category C1 and its features F1, its word
boundaries (N1 and N2) and the phrase boundaries A,B where C1 was found are added to
the succeeded properties list; if C2 is found, we delete it waits/6.

Parsing with unicity constraints

Unicity checks that a category is unique in a phrase. In figure 5.21, we check if a word
category C, features F1 and word boundaries N1 occurs with another category C, features
F2, word boundaries N4 and there is a constraint that C should be unique, and phrase
boundaries A and B. If all those conditions are met, the unicity constraint is saved in the
failed properties list together with the features F1 and F2, word boundaries N1 and N2 and
phrase boundaries A and B.

word(C,F1,_:(N1,_)), ... , word(C,F2,_):(_,N4),
{g(np(unicity(C)))}, {all(A, B)} ::>
{fail(np(unicity(C)), F1, F2, N1, N4, A, B)}.

Figure 5.21: Rule to test unicity failure

53

word(C,F1,_):(N1,N2),{g(np(unicity(C)))}, {all(A, B)}
::>{waits(np(unicity(C)),F1,N1,N2,A,B)}.
{waits(np(unicity(C)), F1, N1, N2, A, B)},{all(A, B)},
word(C,F1,_):(N1,N2)<:>true.

Figure 5.22: Rule to test unicity success

We test unicity success Figure 5.22 like we test exclusion failure. However, in this case,
we use waits/6 to check if there is more than one category C. If a second category C is
found, we simply delete it, success is no longer relevant.

5.3 Inducing the Grammar

Inducing the grammar occurs after the phrases have been parsed and tested with the rele-
vant properties. We discuss how the different properties are induced and how conditional
properties are inferred. Conditional properties are properties which only occur with cate-
gories which have certain specific features.

5.3.1 Inducing precedence properties

We have three rules for inducing precedence properties. In the first rule, every instance
of that property succeeds, so it is induced as a part of the grammar. In the second
rule, every instance of the property fails and the converse is induced. For example, if
np(precedence(adjective, noun)) fails in all relevant input phrases, we induce

np(precedence(noun, adjectve)).

In all cases, we provide a count of relevant sentences the precedence rule occurs.

check3(Lists,[[Prop,_,Count]|Listf]):-
not(member([Prop,_,_], Lists)),
Prop = np(precedence(X,Y)),
not(member([np(precedence(Y,X)),_,_], Lists)),
not(member([np(precedence(X,Y)),_,_], Lists)),
write('-'),write(np(precedence(X,Y))), writeln(':-'),
write(X), write(' precedes '), write(Y),
write(' in all '), write(Count),
writeln(' relevant phrases'), nl,
check3(Lists, Listf).

Figure 5.23: The third rule for inducing precedence properties

54

5.3.2 Inducing obligatority properties

The obligatority property as mentioned previously is a list of categories which can function
as the head of a phrase. In inducing obligatority, we check the failed properties list if there
is any occurrence of a failure of one or more of the categories. If no failure is found, we check
the number of categories that succeeded and output the number of phrases these categories
were members of.

check4([[Prop,Features,Count]|Tailsucceed],Listfailed):-
not(member([Prop,_,_], Listfailed)),
Prop = np(obligatority(X)),
write('-'),write(np(obligatority(X))), writeln(':-'),
write(X),write(' are obligatority. It succeeds in all '),
write(Count), write(' occurrences'), writeln('.'),
check_trait(Features),
check4(Tailsucceed, Listfailed).

Figure 5.24: Rule for inducing obligatority

5.3.3 Inducing consitutency properties

Constituency constraints were only tested for success, thus every constituent of phrases is
induced with a count of the times it occurs in the input phrases.

check4([[Prop,_,Count]|Tailsucceed],Listfailed):-
Prop = np(constituency(X)),
write('-'),write(X),
write(' is a constituent of noun phrases. It occurs in '),
write(Count), writeln(' phrases.'), nl,
check4(Tailsucceed, Listfailed).

Figure 5.25: Rule for inducing constituency

5.3.4 Inducing requirement properties

To induce requirement, we check the failed properties for an occurrence of a failed instance
of the requirment property. If no failure is found, we induce the requirement property with
the number of times the requirement occurred in relevant phrases.

55

check5([[Prop,_,Count]|Tailsucceed],Listfailed):-
not(member([Prop,_,_], Listf)),
Prop = np(requirement(X,Y)),
write('-'),write(np(requirement(X,Y))),
writeln(':-'), write(X),
write(' requires '), write(Y),
write(' in all '), write(Count), write(' phrases. '),
nl, nl,
check5(Tailsucceed, Listfailed).

Figure 5.26: Rule for inducing requirement

5.3.5 Inducing dependence properties

To induce dependence, we check the failed properties for an occurrence of a failed instance
of the dependence property. If no failure is found, we induce the dependence property with
the number of times the dependence occurred in relevant phrases.

check5([[Prop,_,Count]|Tailsucceed],Listfailed):-
not(member([Prop,_,_], Listfailed)),
Prop = np(dependence(X,Y)),
write('-'),write(np(dependence(X,Y))),
writeln(':-'), write(X),
write(' and '), write(Y),
write(' have a dependency relation '),
write(' in all '), write(Count), write(' phrases. '),
nl, nl,
check5(Tailsucceed, Listfailed).

Figure 5.27: Rule for inducing dependence

5.3.6 Inducing properties not relevant to our subset

Inducing exclusion properties

To induce exclusion, we check the failed properties for an occurrence of a failed instance
of the exclusion property. If no failure is found, we induce the exclusion property with the
number of times the exclusion occurred in relevant phrases.

56

check5([[Prop,_Traits,Count]|Tails],Listf):-
not(member([Prop,_,_], Listf)),
Prop = np(exclusion(X,Y)),
write('-'),write(np(exclusion(X,Y))),
writeln(':-'), write(X),write(' and '),write(Y),
write(' are in exclusion'),
write(' in all '), write(Count), write(' phrases. '),
nl, nl,
check5(Tails, Listf).

Figure 5.28: Rules to induce exclusion

Inducing unicity properties

To induce unicity, we check the failed properties for an occurrence of a failed instance of
the unicity property. If no failure is found, we induce the unicity property with the number
of times the property occurred in relevant phrases.

check5([[Prop,_Traits,Count]|Tails],Listf):-
not(member([Prop,_,_], Listf)),
Prop = np(unicity(X)),
write('-'),write(np(unicity(X))),
writeln(':-'), write(X),
write(' is unique '),
write(' in all '), write(Count), write(' phrases. '),
nl, nl,
check5(Tails, Listf).

Figure 5.29: Rules to induce unicity

5.3.7 How conditional properties are induced

The original Property-based model, as we have seen, succeeded in detecting and signalling
mistakes in the sentence, without blocking the analysis. In this first model, which is parsing-
oriented, incorrect sentences could be “accepted” through declaring some constraints as
relaxable. The relaxable constraints are those which have some contexts in which they do
not hold, and rules are written to indicate the contexts in which they should be relaxed.
For instance, while from the context-free grammar rules shown in 4.3 we would not be able

57

to parse “the the book” (a common mistake from cutting and pasting in word processors),
in the constraint-based formulation we can relax the uniqueness of determiner constraint.

Relaxation can be made conditional (e. g. a head noun’s requirement for a determiner
can be made relaxable in case the head noun is generic and in plural form, as in “Lions
sleep tonight”). The failure of relaxable constraints is signalled in the output, but does not
block the entire sentence’s analysis. Implementations not including constraint relaxation
capabilities implicitly consider all properties as relaxable. And in fact, when exploiting
constraint-based parsing for grammar transformation rather than for parsing, this is exactly
what we need, since in an unknown language any constraint may need to be “relaxed” and
even of course, corrected. Constraint relaxation, however, has its own pitfalls in that it can
get easily unwieldy, as more constraints are relaxed. This can result in a proliferation of
relaxation conditions.

For that reason, we have considered it more appropriate, in the context of grammar
induction, to state “exceptions” as part of a property itself, rather than separately in a
relaxation definition. Thus we have created conditional properties, e.g. “conditional prece-
dence(pronoun,noun)” which expresses that a pronoun preceding a noun is conditional. We
give the condition, “if the pronoun is plural, is a personal pronoun and can be used in place
of both animate and inanimate nouns”. We define a property as conditional if it happens
that there occurs a pattern for which the property fails for some phrases and succeeds
for others. All constraints that fail and succeed are tested in this phase. We find these
properties by searching for features which are unique to the failure and/or success of these
constraints.The features which are responsible for this difference in behaviour forms the
condition under which such property succeeds or fails.

Let us note that requirement(noun, determiner) is in fact a conditional property of
English and the condition under which this requirement property will not hold is if the
noun is plural and generic. So that while singular and / or definite forms of a noun require
a determiner (e.g The boy and The boys), a plural generic noun does not require a determiner
(e.g Chickens lay eggs).

We have also used conditional properties to express choice, e.g. whereas before we could
state that one element was obligatory in a phrase, we can now state that a property needs
to have one of a list of constituents. E.g., the g(obligatority([noun, pronoun, proper noun]))
constraint only needs to find one of noun, pronoun or proper noun to succeed. If none of
these is found, then a failure occurs which indicates that an obligatory head is absent.

Inducing conditional requirement properties

To induce conditional requirement, we are interested in finding what kind of Requiring
category exists without a Required category. As a result, we check only the features of the
first category of the requirement property in the failed properties list, with the first category
of the requirment property in the succeeded properties list.

58

check1([[Prop,Traitshs,_]|Tails],
[[Prop,Traitshf,_]|Tailf]):-
Prop = np(requirement(X,Y)),
check_succeeded_traits([Trait,_,_], Traitshs),
check_failed_traits([Trait,_, _],Traitshf),
write('-'),write('Conditional '),write(Prop),
writeln(':-'), write(X),
write(' requires '), write(Y),
write(' if '), write(X), write(' is '),
write_trait(Trait), nl, nl,
check1(Tails,Tailf).

Inducing conditional dependence properties

To induce conditional dependence, we are interested in finding which features are responsible
for instances of dependence. As a result, we compare the features of the first category of the
dependence in the succeeded properties list with those of the first category of the dependence
in the failed properties list and the features of the second category of the dependence of the
succeeded properties list with the second category of the dependence of the failed properties
list. If we find any unique features that occur in every instance of either a failure or a success,
we use those features as the condition under which to induce the property. If no such feature
is found, we check if there are any unique features that occur at least once.

Inducing Conditional Precedence

We have two rules for inducing conditional precedence. These rules are based on basic
comparing the features of properties in the failed properties list with those in the succeeded
properties list and a different approach may be adopted. The first rule compares each feature
of the first category of the precedence property in the succeeded properties list, with each
feature of the second category of the precedence property in the failed properties list and
each feature of the second category of the precedence property in the succeeded properties
list is compared with each feature of the first category of the precedence property in the failed
properties list. The comparison is done to find any features that occur in every instance (of
a failure or success) and that may be unique to the failure or succeess of the property. That
feature will be the condition under which the precedence rule will be induced. The feature
can be of only one category or of both. We do this because the order of categories of a
precedence property in the failed properties list will be swapped in a succeeded properties
list. For instance, given np(precedence(adjective,noun)), if this property fails, the features
of the nouns (which will be the first category if the property fails) will be followed by those

59

check1([[Prop,Traitshs,_]|Tails],
[[Prop,Traitshf,_]|Tailf]):-
Prop = np(dependence(X,Y)),
check_succeeded_traits([Trait,_,_], Traitshs),
check_failed_traits([Trait,_, _],Traitshf),
write('-'),write('Conditional '),write(Prop),
writeln(':-'), write(X),
write(' and '), write(Y),
write(' have a dependency relation '),
write(' if '), write(X), write(' is '),
write_trait(Trait), nl, nl,
check1(Tails,Tailf);
Prop = np(dependence(X,Y)),
check_succeeded_traits2([_,Trait,_], Traitshs),
check_failed_traits2([_,Trait, _],Traitshf),
write('-'),write('Conditional '),write(Prop),
writeln(':-'), write(X),
write(' and '), write(Y),
write(' have a dependency relation '),
write(' if '), write(Y), write(' is '),
write_trait(Trait), nl, nl,
check1(Tails,Tailf).

of the adjective. In a succeed case, the features of the adjective will be followed by those of
the noun.

60

write_features([]):-
write('.').
write_features([H|Features]):-
H = both,
write(' used for both animate and inanimate nouns, '),
write_features(Features).
write_features([H|Features]):-
H = n/a,
write_features(Features).
write_features([H|Features]):-
H \= n/a,
H \= both,
write(H),write(', '),
write_Features(Features).

Figure 5.30: Helper rules for conditional precedence rules

check_succeeded_features(_,[_]).
check_succeeded_features([H1, _, _],[[H1, _H2f, _]|T]):-
check_succeeded_features([H1, _, _], T).

check_succeeded_features2(_,[_]).
check_succeeded_features2([H1, H2, _],[[_, H2, _]|T]):-
check_succeeded_features2([H1, H2, _], T).

check_failed_features(_,[_]).
check_failed_features(H1,[[H1f, _H2f, _]|T]):-
H1 \= H1f,
check_failed_features(H1,T).

check_failed_features2(_,[_]).
check_failed_features2([H1,_,_],[[_H1f, H2f, _]|T]):-
H1 \= H2f,
check_failed_features2([H1,_,_],T).

61

check1([],[]).
check1(_,[]).
check1([],_).
check1([[Prop,[],_]|_Tailsucceed],[[Prop,_Traitshf,_]|_Tailfailed]).
check1([[Prop,Traitshs,_]|Tailsucceed],
[[Prop,Traitshf,_]|Tailf]):-
Prop = np(precedence(X,Y))->
check_succeeded_features([Features,_,_], Traitshs),
check_failed_features2([Features,_, _],Traitshf),
write('-'),write('Conditional '),write(Prop),
writeln(':-'), write(X),
write(' precedes '), write(Y),
write(' if '), write(X), write(' is '),
write_features(Features), nl, nl,
check1(Tailsucceed,Tailfailed);
Prop = np(precedence(X,Y))->
check_succeeded_features2([_,Features1,_], Traitshs),
check_failed_features([_,Features, _],Traitshf),
write('-'),write('Conditional '),write(Prop),
writeln(':-'), write(X),
write(' precedes '), write(Y),
write(' if '), write(X), write(' is '),
write_features(Features1), nl, nl,
check1(Tailsucceed,Tailfailed).

Figure 5.31: A Conditional Precedence Rule

In the second rule, we compare features in the order in which we did for the first,
however, we are interested in finding if a feature exists at least once, even if it is not in
every occurrence of a failure or success. The second rule will only be executed if the first
rule does not. We are correct in adding this rule because, there may be more than one
group of features responsible for the failure or success of a precedence property and this
rule allows us to infer all of them, even if they occur only once in the relevant property.

5.3.8 Inducing properties not relevant to our subset of noun phrases

Inducing conditional unicity properties

Unicity is a unary property, therefore, to induce conditional unicity properties, we compare
the features of the category of the unicity property in the failed properties list with those

62

of the succeeded properties list. If we find a specific features that occur in every succeeded
or failed instance, we induce this property. Otherwise, we check if such a feature occurs at
least once.

Inducing conditional exclusion properties

Conditional exclusion properties are induced just as dependence rules are induced.

5.4 Summary

We have describe how our model differs from previous implementations of womb grammars
as well as the features of our model. Our model renders a gloss for each word in each input
phrase, failed and succeeded properties are provided for each phrase, word boundaries and
phrases boundaries within which each property occurs are also displayed. We also describe
how we incorporate tones, save failed and / or succeeded properties, induce properties not
included in the source language but present in the target language as well as how we handle
syntactic number and gender.

We also explained how each property is parsed. We use a failure conscious and success
conscious approach in order to be able to track differences between the source language and
the target language. This approach has been useful in the induction of the grammar of the
target language, especially in inducing conditional propeties.

63

Chapter 6

Results and supporting evidence of
correctness

As we will show, our results have been consistent with linguistic research findings of Yorùbá
grammar except our dependency results which we were not able to verify from literature. We
used phrases generated by our CFG to evaluate our WG model and our induced grammar
have shown similarities with the CFG. Details of the Induced grammar is in appendix A
and the context-free grammar (CFG) of Yorùbá is in Appendix B.

It is important to state that despite equivalences that our induced grammar share with
the CFG subset, our induced grammar explicitly encodes more information than the CFG.
This is because, context-free formalisms are unable to directly accommodate extra infor-
mation and their related linguistic constraints. This is because their grammar symbols can
only be simple identifiers, with no possibility of carrying extra arguments, as logic grammar
symbols can, to transmit and consult such extra information.

We summarize our results into constituency, precedence, requirement, dependency and
obligatority.

1 Constituency: Our constituency results show that in Yorùbá, nouns, pronouns, proper-
nouns, adjectives, quantifiers and determiners are allowable categories in noun phrases.
These constituents are featured in noun phrases described by [73, 17, 20] as well as in
our CFG.

64

Figure 6.1: Summary of constituency results

65

In figure 6.1, the box labelled English constituency properties contains all the consi-
tutency properties of English used in our model. We represent each constituent with
different colours to enable readers to be able to easily read and identify the different
constituents. The consituency properties are input into the womb grammar model,
depicted with the use of arrows directed into the womb grammars box and the output
is rendered in the box labelled as induced Yorùbá grammar. These properties are also
labelled in different colours for the afore mentioned reasons. The box labelled induce
grammar of Yorùbá thus shows only properties present in the target language.

2 Precedence: We induce three conditional precedence properties:

- Conditional np(precedence(pronoun,noun)):- pronoun precedes noun if pronoun is
plural, neuter, used for both animate and inanimate nouns, third-person, [low,mid],

- Conditional np(precedence(adjective,noun)):- adjective precedes noun if
adjective is plural, neuter, quantity-uncountable, used for both animate and
inanimate nouns, [low-low-mid-low];
adjective precedes noun if adjective is dual, neuter, attributive, animate, [mid-
high-low],

- Conditional np(precedence(quantifier,noun)):- quantifier precedes noun if quantifier
is plural, neuter, quantity-whole, used for both animate and inanimate nouns,
[mid,mid]; and nine precedence properties detailed in appendix A.

Our conditional precedence imply that there are two orderings, which supports dif-
ferent orderings in pronouns and nouns, adjectives and nouns and in quantifier and
nouns in for instance, rules 10 and 11; 14 and 15 and 13 and 17 of our CFG and also
in literature [73].

We were also able to induce three precedence rules that are not in the English prop-
erties. We induced:

i np(precedence(proper-noun,adjective))

ii np(precedence(proper-noun,determiner))

iii np(precedence(quantifier,proper-noun))

66

Figure 6.2: Summary of precedence results

67

In figure 6.2, the box labelled English precedence properties contains all the precedence
properties of English used in our model. We represent each precedence constraint with
different colours to enable readers to be able to easily read and identify the different
constraints. The precedence properties are input into the womb grammar model,
depicted with the use of arrows directed into the womb grammars box and the output
is rendered in the box labelled as induced Yorùbá grammar. These properties are
also labelled in different colours for the afore mentioned reasons. For conditional
properties, we display only one ordering because, these are those induced by our
model for having unique traits, and the converse orderings can be infered. We can
assume that the ordering infered by our model is like an allomorph which occurs in
specific contexts and the converse not inferred is like a morpheme which occurs in a
more general context. The box labelled induce grammar of Yorùbá thus shows only
properties present in the target language.

3 Requirement: We do not induce any requirement between nouns and determiner. This
is because there exist no unique feature(s) which can be said to be responsible for
the requirement property succeeding sometimes and failing at other times. This is
consistent with our CFG which has rules where nouns occur without determiners as
well as rules where nouns occur with determiners. This conclusion is also presented
in research [20, 17, 10].

4 Dependency: Our model induced one dependency rule np(dependency(quantifier, noun)).
Our system was able to find that dependency between quantifiers and nouns succeeded
in all relevant phrases, but this is not explicit in our CFG. [10] lays claim to the fact
that quantifiers have plural number and the nouns beside them take on their plural
status, however, he did not explicitly mention a dependency relation between them.

5 Obligatority: Obligatority succeeded in all input phrases, showing that at least one of
noun, pronoun and proper-nouns is a compulsory constituent of Yorùbá. Our CFG
also shows these three constituents occur at least once in all rules.

68

Figure 6.3: Summary of requirement, dependency and obligatority results

69

In figure 6.3, the box labelled English dependency, requirement and obligatority prop-
erties contains all the dependency, requirement and obligatority properties of English used
in our model. We represent each dependency, requirement and obligatority constraint with
different colours to enable readers to be able to easily read and identify the different con-
straints. The dependency, requirement and obligatority properties are input into the womb
grammar model, depicted with the use of arrows directed into the womb grammars box and
the output is rendered in the box labelled as induced Yorùbá grammar. These properties are
also labelled in different colours for the afore mentioned reasons. The box labelled induce
grammar of Yorùbá thus shows only properties present in the target language.

70

Chapter 7

Conclusion

We have shown the simplicity with which Womb Grammars automatically induce the gram-
mar of Yorùbá from that of English despite the peculiarities in the grammar of Yorùbá and
English that can make this very difficult which makes our model very useful in language
development and language documentation.

We have also presented a concrete system, for inducing Yorùbá grammar that consti-
tutes a proof of concept for the Womb Grammar model[42]. WGs we learnt is a system
that allows users to input grammar description of a source language (ours being English)
in modular and declarative fashion, in terms of the linguistic constraints that relate to the
subset of noun phrases. We considered (constituency, precedence, dependency, obligator-
ity, requirement). Since such descriptions also stand alone as a purely linguistic model of a
language’s syntax, our system can cater even for users who are not conversant with coding,
such as pure linguists wanting to perform syntactic model transformation experiments aided
by computers. Their purely (constraint-based) linguistic descriptions of syntax automati-
cally turn into executable code when appended to our own code. We also used a subset of
noun phrases which can accept any number of adjectives making our model extensible to
induce even finer details such as precedence order of adjectives if we so desire.

As we have seen, our system automatically transforms a user’s syntactic description of
a source language into that of a target language, of which only the lexicon and a set of
representative sample phrases are known. While demonstrated specifically for English as
source language and Yorùbá as target language, our implementation can accept any other
pair of languages for inducing the syntactic constraints of one from that of the other, as
long as their description can be done in terms of the supported constraints.

We have thus adapted a flexible modelling framework solidly grounded in linguistic
knowledge representation which, through constraint solving, turns into an efficiently exe-
cutable problem solving tool. We maintain the modularity feature of the first implemen-
tation in our adaptation, therefore, our model can support revision and adaptation quite

71

straightforwardly: new constraints between immediate daughters of any phrase can be mod-
ularly added and implemented, without touching the rest of the system.

Our model allows for accommodating solution revisions at execution time by interacting
with a linguist whenever constraints can not be induced consistently. Visual representations
of the output that would be helpful for linguists in this respect have been explored in [5].

7.1 Possible extensions

We covered a useful subset of Yorùbá noun phrases, but there are some phenomena not
covered here. For instance, there are some words that are noun phrases with a determiner
interfixed between two words. For example, ọmọkọ́mọ (child any child), ilékílé (house any
house), asọkásọ (dress any dress), ìwàkuwà (behaviour any behaviour), ìgbàkigbà (time any
time) etc. In certain contexts, these words have a different meaning, as in, ọmọkọ̀mọ(child
bad child), ilèkìlè(house bad house), ìwàkuwà (behaviour bad behaviour) etc and these
contexts, determine the categories that can occur around them. It would be interesting
to develop a parser that accomodates these features. Extending our program to identify
and parse features such as vowel elision, assimilation of tones, compensatory lengthening
and other phonological processes that have grammatical functions in Yorùbá would also be
helpful.

Also, our formalism uses word/3 to build its own lexicon manually, which makes it dif-
ficult to use a very large corpus. Subsequent versions will work at implementing a module
that can automatically build the lexicon, perhaps using a tree bank. Further interesting
ramifications of our work would also include: testing our system for a larger coverage of syn-
tax (we have addressed noun phrases so far), inducing other constraints (besides precedence
and constituency constraints which we induced) present in the source language but not in
the target language, testing our model on other tonal-sensitive languages, studying how
assimilation influences language structure especially in tone languages, studying whether
any further constraints or approach extensions would be needed to accommodate families
of languages not easily describable within our approach (e.g. languages which have differ-
ent categories from the source language, those who have different inflectional paradigms
from the source language, those that exhibit constraints not among our allowable set of
constraints). Extending our work to also handle certain lexical, and syntactic ambiguities
will be a step in the right direction.

72

Bibliography

[1] Aarts, B. (1998). Binominal Noun Phrases in English. Transactions of the Philological
Society, 96: 117–158. doi: 10.1111/1467-968X.00025

[2] Abramson, H., Dahl, V.(1989). Logic Grammars. Monograph, Symbolic Computation
AI Series. Springer-Verlag.

[3] Adebara, I.(2016). Using Womb Grammars for Inducing the Grammar of a Subset of
Yorùbá Noun Phrases. In Triangle Journal, Tarragona.

[4] Adebara, I., Dahl, V. (2016). Grammar Induction as Automated Transformation be-
tween Constraint Solving Models of Language. In KNOWPROS, IJCAI 2016.

[5] Adebara, I., Dahl, V. (2015). Domes as a Prodigal Shape in Synthesis-Enhanced Parsers.
In SHAPES 3.0, Constraints and Logic Programming (CSLP’04).

[6] Adebara, I., Dahl, V. (2015). Shape Analysis as an Aid for Grammar Inductions. In
SHAPES 3.0, Constraints and Logic Programming (CSLP’04).

[7] Adebara, I., Dahl, V. (2015). Completing mixed language grammars through womb
grammars plus ontologies. Henning Christiansen, M. D. J. L., and Loukanova, R., eds.,
Proceedings of the International Workshop on Partiality, Underspecification and Natural
Language Processing, 32–40.

[8] Adegbija, E. (2004). Language Policy and Planning in Nigeria,Current Issues in Lan-
guage Planning, 5:3, 181-246.

[9] Adeyanju, S., Adegbola, T., Fakinlede, O. (2015). A Supervised Phrase Selection Strat-
egy for Phonetically Balanced Standard Yor‘ub´a Corpus. In: Computational Lin-
guistics and Intelligent Text Processing 16th International Conference, CICLing 2015,
Cairo, Egypt, April 14-20, 2015, Proceedings, Part II. Springer International Publishing
Switzerland 2015A. Gelbukh (Ed.), pp. 565582, 2015.

[10] Ajiboye, O.(2006). Interpreting Yor‘ub´a Bare Nouns as Generic 31S Berkeley Linguis-
tic Society Proceedings.

[11] Alishahi, A., Stevenson, S. (2008). A computational model of early argument structure
acquisition. Cognitive Science, 32(5), 789–834.

[12] Alishahi A. (2011). Computational Modeling of Human Language Acquisition. Morgan
and Claypool.

73

[13] Roberts, A., Atwell, E.(2002). Unsupervised Grammar Inference Systems for Natural
Language.

[14] Angluin, D. Becerra-Bonach, L. (2008). Learning Meaning Before Syntax.
In:Grammatical Inference: Algorithms and Applications: 9th International Colloquium,
ICGI 2008 Saint-Malo, France, September 22-24, 2008 Proceedings

[15] Angluin, D. (1987). Learning regular sets from queries and counterexamples. Infrmation
and Comp. 75, 87–106.

[16] Austin, P.K., Grenoble, L. (2007). Current Trends in Language Documentation. In
Peter K. Austin (ed.) Language Documentation and Description, vol 4. London: SOAS.
pp. 12-25

[17] Awobuluyi, O. (1978). Essentials of Yor‘ub´a Grammar. Oxford University Press

[18] Awoyale, Y. (1988). Complex predicates and verb serialization. In: Lexicon Project
Working Paper 28. Center for Cognitive Science, MIT, Cambridge, Mass.

[19] Awoyale Y. (2008). Global Yoruba Lexical Database v. 1.0 Linguistic Data Consortium,
Philadelphia. Retrieved on 28/10/2015 from Natural Language Processing Lab, School
of Computing Science, Simon Fraser University, British Columbia.

[20] Bamgbose, A.(1966). A Grammar of Yor‘ub´a. Cambridge University Press.

[21] Bamgbose, A. (1993). Deprived, Endangered and Dying Languages. Diogenes March
1993 vol. 41 no. 161 19-25.

[22] Blache, P., Rauzy, S. (2012). Hybridization and Treebank Enrichment with Constraint-
Based Representations. In: Proceedings of LREC.

[23] Blache, P. (2004). Property Grammars: A Fully Constraint-Based Theory. In:CSLP,
pp. 1-16.

[24] Blache, P. (2000). Property grammars and the problem of constraint satisfaction. In:
ESSLLI-2000 workshop on Linguistic Theory and Grammar Implementation.

[25] Blackburn, P., Bos, J. (2010). Computational Semantics. THEORIA: an International
Journal for Theory. 18(1) pp27.

[26] Bird, S., Simons, G. (2003). Seven Dimensions of Portability for Language Documen-
tation and Description. Language, Volume 79, Number 3, September 2003, pp. 557-582.
Linguistic Society of America.

[27] Bowen, T.J. (1858). Grammar and Dictionary of the Yor‘ub´a Language. Smithsonian
Institution.

[28] Brill, E., Magerman, D. (1990). Marcus Met al. Deducing linguistic structure from the
statistics of large corpus. In: Proceedings of the DARPA Speech and Natural Language
Workshop, pp.275–282. Addison Wesley Longman Limited, Hidden Valley.

[29] Burkett D. and Klein D. (2008). Two Languages are Better than One (for Syntactic
Parsing). In EMNLP. 877–886.

74

[30] Carrasco, R.C., Oncina, J. (1994). Learning Stochastic Regular Grammars by Means of
a State Merging Method. Proceeding ICGI ’94 Proceedings of the Second International
Colloquium on Grammatical Inference and Applications Pages 139-152. Springer-Verlag
London, UK

[31] Charniak, E. (1997). Statistical parsing with a context-free grammar and word statis-
tics. In Proc. 14th Natl. Conf. Artif. Intell. pp. 598–603, AAAI Press.

[32] Chater, N., Vitanyi, P. (2007). Ideal learning of natural language: Positive results about
learning from positive evidence. Journal of Mathematical Psychology, 51(3), 135–163.

[33] Chomsky, N. (1956). Three models for the description of language. I.R.E. Transactions
on Information Theory. Proceedings of the symposium on information theory. Volumn
IT-2, 113-123.

[34] Chomsky, N. (1957). Syntactic Structures. Walter de Gruyter.

[35] Christiansen, H. (2005). CHR grammars. TPLP, Number 4-5, Pgs 467-501.

[36] Clark A. (2004). Grammatical Inference and First Language Acquisition. In Workshop
on Psycho-computational Models of Human Language Acquisition.

[37] Clark, A., Coste, F., Miclet, L. (2008). Grammatical Inference: Algorithms and Appli-
cations. 9th International Colloquium, ICGI 2008 Saint-Malo, France, September 22-24,
2008 Proceedings. Springer-Verlag Berlin Heidelberg.

[38] Cohen S.B. and Smith N.A. (2010). Covariance in Unsupervised Learning of Proba-
bilistic Grammars. Journal of Machine Learning Research.11:3017–3051.

[39] Covington, M.A. (1994). Natural Language Processing for Prolog Programmers
Prentice-Hall.

[40] Cramer, B. (2007). Limitations of current grammar induction algorithms. In ACL:
Student Research.

[41] Cummins, C., Jan P. de Ruiter. (2014). Computational approaches o the pragmatics
problem. Language and linguistics compass. Volume(8)(4) pp 133-143.

[42] Dahl, V., Miralles, E. (2012). Womb Parsing. In: 9th International Workshop on Con-
straint Handling Rules, Pp.32-40.

[43] Dahl, V., Miralles, J. (2012). Womb grammars: Constraint solving for grammar in-
duction. In: Sneyers, J., Frühwirth, T. (eds.) Proceedings of the 9th Workshop on
Constraint Handling Rules. vol. Technical Report CW 624, pp. 32–40. Department of
Computer Science, K.U. Leuven.

[44] Dahl, V., Blache, P. (2004). Directly Executable Constraint Based Grammars. In: Proc.
Journees Francophones de Programmation en Logique avec Contraintes.

[45] Dediu A., Martin-Vide C., Truthe B. (Eds.). (2013). Proceedings Language and Au-
tomata Theory and Applications. 7th International Conference, LATA 2013 Bilbao,
Spain, April 2-5 2013, Springer-Verlag Berlin Heidelberg.

75

[46] de la Higuera, Colin. (2005). A bibliographical study of grammatical inference. Pattern
Recognition 38: 1332–1348.

[47] Duchier, D., Dao, T.B.H., Parmentier,Y. (2013). Model-Theory and Implementation
of Property Grammars with Features. In: Journal of Logic and Computation.

[48] Dupoint, P. (1994). Regular grammatical inference from positive and negative samples
by genetic search: the GIG method. Second International Colloquium, ICGI-94 Alicante,
Spain, September 21–23, 1994 Proceedings. pp 236-245.

[49] Edelman, S., Solan, Z., Ruppin, E., and Horn, D. (2004). Learning syntactic construc-
tions from raw corpora. In Proceedings of the 29th Boston University Conference on
Language Development, Boston:MA, USA.

[50] Fabunmi, F., Salawu, A. (2005). Is Yor‘ub´a an Endangered Language? Journal of
African Studies 14(3): 391408.

[51] Fagborun, O. (1994). The Yor‘ub´a Koine - its history and linguistic innovations.
Munchen: LINCOM EUROPA

[52] Fagborun, J. G. (1989). Some Practical Problems in Yoruba Orthography. In: The
Journal of West African Languages. Vol (19)(2).

[53] Gold, E.M. (1967). Language identification in the limit. Information and Control, 10,
pp. 447–474.

[54] Gippert, Jost, Himmelmann, N. P., Mosel, U. (eds.) (2006). Essentials of language
documentation (Trends in Linguistics. Studies and Monographs, 178). Berlin: Mouton
de Gruyter.

[55] Gliozzo, A., Strapparava, C.(2009). Semantic Domains in Computational Linguistics.
Springer-Verlag Berlin Heidelberg.

[56] Glyn Morrill (2010). Categorial grammar: Logical syntax, semantics, and processing.
Oxford University Press.

[57] Hana, J., Feldman, A.(2012). Resource-Light Approaches to Computational Morphol-
ogy Part 1: Monolingual Approaches. Languages and linguistics compass. Volume(6)(10)
pp 622-634.

[58] Heinz, J., Colin de la Higuera, Zaanen, M. (2016). Grammatical Inference for Compu-
tational Linguistics. Hirst, G. (Eds) Morgan and Claypool Publishers.

[59] Heinz, J., Sempere, J.M. (eds.). (2016). Topics in Grammatical Inference . Springer.

[60] Joshi, Aravind K., et al. (1975). Tree Adjunct Grammars. Journal of Computer Systems
Science, Vol. 10 No. 1, pp. 136-163.

[61] Keizer, E(2007). The English noun phrase: the nature of linguistic categorization
(Studies in English Language). Cambridge: Cambridge University Press.

[62] Keizer, M.E. (2002). Review of Inge de Mönnick, On the Move: the mobility of con-
stituents in the English noun phrase: a multi-method approach. English Language and
Linguistics 6/1, 210-216.

76

[63] Lari, K., Young, S.J. (1990). The estimation of stochastic context free grammars using
the inside–outside algorithm. Comput. Speech Lang., 4 (1990), pp. 35–56

[64] Luca S.M. (2010). Grammatical Inference and Games: Extended Abstract. In: Gram-
matical inference: learning automata and grammars Colin de la Higuera (Eds). Cam-
bridge ; New York: Cambridge University Press.

[65] Menno van Zaanen, Collin de la Higuera (2011). Computational Language Learning.
In: Handbook of Logic and Language (Second Edition) edited by Johan van Benthem,
Alice ter Meulen. Pp.765-780.,

[66] Merialdo, B. (1994). Tagging English text with a probabilistic model. Computational
Linguistics 20(2), 129.

[67] Moore. E. (1956). Gedanken-experiments on sequential machines. Shannon, C. and
McCarthy, J. (eds), Automata Studies, pages 129–153. Princeton University Press.

[68] Nicolas L. and Molinero M.A., Sagot B., Trigo E., de La Clergerie, Éric, Farré J. and
Vergés J.M. (2009). Towards efficient production of linguistic resources: the Victoria
Project.

[69] Nicholas, E. (2008). Review of Essentials of Language Documentation. Language Doc-
umentation and Conservation 2:340–350.

[70] Nikolaus, H. (1998). Documentary and descriptive linguistics. Linguistics 36(1):161–
195.

[71] Odette, S.(2008). Fine-phonetic variation in a computational model of word recogni-
tion. The Journal of the Acoustical Society of America 123(5)

[72] Olumuyiwa, T. (2013). Yoruba Writing: Standards and Trends. In: Journal of Arts
and Humanities, Vol(2)(1).

[73] Ogunbowale, T. (1970). Essentials of the Yoruba language. University of London Press.

[74] Parekh, R., Honavar, V. (2000). Automata induction, grammar inference, and language
acquisition, in: H.L. Moise, R. Dale, H. Somers (Eds.), Handbook of Natural Language
Processing, Marcel Dekker, New York.

[75] Perner, P. (Ed.). (2012). Machine Learning and Data Mining. In Pattern Recognition
8th International Conference, MLDM 2012 Berlin, Germany, July 13-20 Proceedings.

[76] Pollard, C., SAG, I. (1994). Head-Driven Phrase Structure Grammar. University of
Chicago pres.

[77] Rasanen, O.(2011). A computational model of word segmentation from continuous
speech using transitional probabilities of atomic acoustic events. Cognition Volume 120,
Issue 2, Pp 149-176.

[78] Rathod, S.G. (2014). Machine translation of natural language using different ap-
proaches. International journal of computer applications 102(15):26-31.

77

[79] Romaine, S. (2002). The Impact of Language Policy on Endangered Languages. In: In-
ternational Journal on Multicultural Societies, Vol. 4, No. 2,ISSN 1564-4901, UNESCO.

[80] Santorini, B. and Kroch, A. (2007). The syntax of natural language: An online
introduction using the Trees program. http://www.ling.upenn.edu/ beatrice/syntax-
textbook

[81] Searls, D.B. (2010). Molecules, Languages and Automata. In: Grammatical inference:
learning automata and grammars. Colin de la Higuera(Eds). Cambridge ; New York:
Cambridge University Press.

[82] Sempere, J.M., Garcia, P. (Eds). (2010). Grammatical Inference: Theoretical Re-
sults and Applications. In: 10th International Colloquium, ICGI 2010, Valencia, Spain,
September 13-16, 2010. Proceedings. Springer Berlin Heidelberg

[83] Shobhana, L. Chelliah, Willem J.de Reuse. (2010). Handbook of Descriptive Linguistic
Fieldwork. Springer.

[84] http://www-01.sil.org/computing/catalog/index.asp?by=cat.

[85] Spears, W.M., Gordon, D.F. (2000). Evolution of strategies for resource protection
problems. In: Advances in evolutionary computing: theory and applications, pp. 367–
392. Springer, Heidelberg.

[86] Stevenson, A., Cordy, J.R. (2014). A survey of grammatical inference in software en-
gineering. Sci. Comput. Program., 96, pp. 444–459

[87] Sun, M., Bellegarda, J.R. (2011). Improved Pos Tagging For Text-to-Speech Synthesis.
In: ICASSP 2011, pp. 5384–5387.

[88] Thom W. Fr¨uhwirth, T.W. (1998). Theory and practice of constraint handling rules.
J. Log. Program. 37(1-3), 95–138.

[89] Trudgill, P. (1986). Dialects in Contact. Oxford: Blackwell.

[90] Vamshi Ambati. 2012. Active Learning and Crowdsourcing for Machine Translation in
Low Resource Scenarios. Ph.D. Dissertation. Carnegie Mellon Univ., Pittsburgh, PA,
USA. Advisor(s) Jaime Carbonell. AAI3528171.

[91] Voutilainen, A. (2012). Part-of-Speech Tagging. The Oxford Handbook of Computa-
tional Linguistics Edited by Mitkov R.

[92] Wilson C. (2008). A maximum entropy model of phonotactics and phonotactic learning.
Linguistic Inquiry 39. 379–440

[93] Woodbury, T. (2003). Defining documentary linguistics. In, Austin, P.(ed.), SOAS,
35-52.

[94] Wurm, S. (1998). Methods of Language Maintenance and Revival, with Selected Cases
of Language Endangerment in the World. In: Studies in Endangered Languages, K.
Matsumura (ed.). Tokyo: Hituzi Syobo.

78

[95] Y. Wang and T. Li (Eds.) (2011). Knowledge Engineering and Management, AISC
123, pp. 389– 396. Springer-Verlag Berlin Heidelberg.

[96] Yoon, J.W., Godsill, S.J., Kang, C., Kim, T-S. (2007). Bayesian inference for 2D gel
electrophoresis image analysis, In Bioinformatics Research and Development, 343–356.

79

Appendix A

Results

1 <0> ọmọ <1>

child
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-1
Succeeded Property: np(constituency(noun))0-1; 0-1
Failed Property: np(requirement(noun,determiner))0-1; 0-1

2 <0> táyò <1>

Tayo
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-1
Succeeded Property: np(constituency(proper-noun))0-1; 0-1

3 <0> àwon <1>

they
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-1
Succeeded Property: np(constituency(pronoun))0-1; 0-1

4 <0> táyò <1> kan <2>

Tayo a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(determiner))1-2; 0-2
Succeeded Property: np(constituency(proper-noun))0-1; 0-2
Succeeded Property: np(precedence(proper-noun,determiner))0-2; 0-2

5 <0> táyò <1> kékeré <2> kan <3>

Tayo small a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3

80

Succeeded Property: np(constituency(adjective))1-2; 0-3
Succeeded Property: np(constituency(proper-noun))0-1; 0-3
Failed Property: np(precedence(determiner,adjective))1-3; 0-3
Succeeded Property: np(precedence(proper-noun,determiner))0-3; 0-3
Succeeded Property: np(precedence(proper-noun,adjective))0-2; 0-3

6 <0> táyò <1> òbùn <2> kékeré <3> kan <4>

Tayo dirty small a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-4
Succeeded Property: np(constituency(determiner))3-4; 0-4
Succeeded Property: np(constituency(adjective))2-3; 0-4
Succeeded Property: np(constituency(adjective))1-2; 0-4
Succeeded Property: np(constituency(proper-noun))0-1; 0-4
Failed Property: np(precedence(determiner,adjective))2-4; 0-4
Failed Property: np(precedence(determiner,adjective))1-4; 0-4
Succeeded Property: np(precedence(proper-noun,determiner))0-4; 0-4
Succeeded Property: np(precedence(proper-noun,adjective))0-3; 0-4
Succeeded Property: np(precedence(proper-noun,adjective))0-2; 0-4

7 <0> akọ <1> eran <2> kékeré <3>

male goat small
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(adjective))2-3; 0-3
Succeeded Property: np(constituency(adjective))0-1; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Failed Property: np(precedence(adjective,noun))1-3; 0-3
Succeeded Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(dependence(adjective,noun))1-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3
Failed Property: np(requirement(noun,determiner))1-2; 0-3

8 <0> abo <1> eran <2> kékeré <3>

female goat small
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(adjective))2-3; 0-3
Succeeded Property: np(constituency(adjective))0-1; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Failed Property: np(precedence(adjective,noun))1-3; 0-3
Succeeded Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(dependence(adjective,noun))1-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3
Failed Property: np(requirement(noun,determiner))1-2; 0-3

9 <0> kékeré <1> eran <2>

81

small goat
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(adjective))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

10 <0> aṣọ <1> kékeré <2> kan <3>

dress small a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(adjective))1-2; 0-3
Succeeded Property: np(constituency(noun))0-1; 0-3
Failed Property: np(precedence(determiner,adjective))1-3; 0-3
Failed Property: np(precedence(determiner,noun))0-3; 0-3
Failed Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(requirement(noun,determiner))0-3; 0-3
Failed Property: np(dependence(determiner,noun))0-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3

11 <0> aṣọ <1> funfun <2> kékeré <3>

dress white small
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(adjective))2-3; 0-3
Succeeded Property: np(constituency(adjective))1-2; 0-3
Succeeded Property: np(constituency(noun))0-1; 0-3
Failed Property: np(precedence(adjective,noun))0-3; 0-3
Failed Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(dependence(adjective,noun))0-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3
Failed Property: np(requirement(noun,determiner))0-1; 0-3

12 <0> eran <1> dúdú <2> ńlá <3> náà <4>

goat black big the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-4
Succeeded Property: np(constituency(determiner))3-4; 0-4
Succeeded Property: np(constituency(adjective))2-3; 0-4
Succeeded Property: np(constituency(adjective))1-2; 0-4
Succeeded Property: np(constituency(noun))0-1; 0-4
Failed Property: np(precedence(determiner,adjective))2-4; 0-4
Failed Property: np(precedence(determiner,adjective))1-4; 0-4
Failed Property: np(precedence(determiner,noun))0-4; 0-4
Failed Property: np(precedence(adjective,noun))0-3; 0-4

82

Failed Property: np(precedence(adjective,noun))0-2; 0-4
Succeeded Property: np(requirement(noun,determiner))0-4; 0-4
Succeeded Property: np(dependence(determiner,noun))0-4; 0-4
Succeeded Property: np(dependence(adjective,noun))0-3; 0-4
Succeeded Property: np(dependence(adjective,noun))0-2; 0-4

13 <0> ìwo <1> náà <2>

you the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(determiner))1-2; 0-2
Succeeded Property: np(constituency(pronoun))0-1; 0-2
Succeeded Property: np(precedence(pronoun,determiner))0-2; 0-2

14 <0> ọmọ <1> náà <2>

child the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(determiner))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(determiner,noun))0-2; 0-2
Succeeded Property: np(requirement(noun,determiner))0-2; 0-2
Succeeded Property: np(dependence(determiner,noun))0-2; 0-2

15 <0> ọmọ <1> àkókó <2> náà <3>

child first the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(adjective))1-2; 0-3
Succeeded Property: np(constituency(noun))0-1; 0-3
Failed Property: np(precedence(determiner,adjective))1-3; 0-3
Failed Property: np(precedence(determiner,noun))0-3; 0-3
Failed Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(requirement(noun,determiner))0-3; 0-3
Succeeded Property: np(dependence(determiner,noun))0-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3

16 <0> àwon <1> ọmọ <2> náà <3>

they child the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(pronoun))0-1; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3

83

Failed Property: np(precedence(determiner,noun))1-3; 0-3
Succeeded Property: np(precedence(pronoun,noun))0-2; 0-3
Succeeded Property: np(requirement(noun,determiner))1-3; 0-3
Failed Property: np(dependence(determiner,noun))1-3; 0-3
Succeeded Property: np(precedence(pronoun,determiner))0-3; 0-3

17 <0> ajá <1> ńlá <2> kan <3>

dog big a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(adjective))1-2; 0-3
Succeeded Property: np(constituency(noun))0-1; 0-3
Failed Property: np(precedence(determiner,adjective))1-3; 0-3
Failed Property: np(precedence(determiner,noun))0-3; 0-3
Failed Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(requirement(noun,determiner))0-3; 0-3
Failed Property: np(dependence(determiner,noun))0-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3

18 <0> okùn <1> gígùn <2>

rope long
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(adjective))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))0-1; 0-2

19 <0> okùn <1> gígùn <2> kan <3>

rope long a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(adjective))1-2; 0-3
Succeeded Property: np(constituency(noun))0-1; 0-3
Failed Property: np(precedence(determiner,adjective))1-3; 0-3
Failed Property: np(precedence(determiner,noun))0-3; 0-3
Failed Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(requirement(noun,determiner))0-3; 0-3
Failed Property: np(dependence(determiner,noun))0-3; 0-3
Succeeded Property: np(dependence(adjective,noun))0-2; 0-3

20 <0> ẹja <1> tútù <2>

84

fish fresh
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(adjective))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))0-1; 0-2

21 <0> òkú <1> eran <2> kan <3>

dead goat a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(adjective))0-1; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Failed Property: np(precedence(determiner,adjective))0-3; 0-3
Failed Property: np(precedence(determiner,noun))1-3; 0-3
Succeeded Property: np(precedence(adjective,noun))0-2; 0-3
Succeeded Property: np(requirement(noun,determiner))1-3; 0-3
Succeeded Property: np(dependence(determiner,noun))1-3; 0-3
Failed Property: np(dependence(adjective,noun))0-2; 0-3

22 <0> ayé <1> kan <2>

life a
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(determiner))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(determiner,noun))0-2; 0-2
Succeeded Property: np(requirement(noun,determiner))0-2; 0-2
Succeeded Property: np(dependence(determiner,noun))0-2; 0-2

23 <0> ilé-ìwé <1> náà <2>

school the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(determiner))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(determiner,noun))0-2; 0-2
Succeeded Property: np(requirement(noun,determiner))0-2; 0-2
Succeeded Property: np(dependence(determiner,noun))0-2; 0-2

24 <0> ìdajì <1> ọmọ <2> náà <3>

half child the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3

85

Succeeded Property: np(constituency(determiner))2-3; 0-3
Succeeded Property: np(constituency(quantifier))0-1; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Succeeded Property: np(precedence(quantifier,determiner))0-3; 0-3
Succeeded Property: np(precedence(quantifier,noun))0-2; 0-3
Failed Property: np(precedence(determiner,noun))1-3; 0-3
Succeeded Property: np(requirement(noun,determiner))1-3; 0-3
Failed Property: np(dependence(determiner,noun))1-3; 0-3
Succeeded Property: np(dependence(quantifier,noun))0-2; 0-3

25 <0> òbùn <1> ọmọ <2>

dirty child
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(adjective))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

26 <0> ọmọ <1> òbùn <2>

child dirty
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(adjective))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))0-1; 0-2

27 <0> àwon <1> ọmọ <2>

they child
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(pronoun))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(pronoun,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

28 <0> àwon <1> ọmọ <2> púpò <3> náà <4>

they child plenty the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-4
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-4
Succeeded Property: np(constituency(determiner))3-4; 0-4

86

Succeeded Property: np(constituency(pronoun))0-1; 0-4
Succeeded Property: np(constituency(adjective))2-3; 0-4
Succeeded Property: np(constituency(noun))1-2; 0-4
Failed Property: np(precedence(determiner,adjective))2-4; 0-4
Failed Property: np(precedence(determiner,noun))1-4; 0-4
Succeeded Property: np(precedence(pronoun,noun))0-2; 0-4
Succeeded Property: np(precedence(pronoun,adjective))0-3; 0-4
Failed Property: np(precedence(adjective,noun))1-3; 0-4
Succeeded Property: np(requirement(noun,determiner))1-4; 0-4
Failed Property: np(dependence(determiner,noun))1-4; 0-4
Succeeded Property: np(dependence(adjective,noun))1-3; 0-4
Succeeded Property: np(precedence(pronoun,determiner))0-4; 0-4

29 <0> àwon <1> ọmọ <2> won <3> náà <4>

they child they the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))2-3; 0-4
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-4
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-4
Succeeded Property: np(constituency(determiner))3-4; 0-4
Succeeded Property: np(constituency(pronoun))2-3; 0-4
Succeeded Property: np(constituency(pronoun))0-1; 0-4
Succeeded Property: np(constituency(noun))1-2; 0-4
Failed Property: np(precedence(determiner,noun))1-4; 0-4
Failed Property: np(precedence(pronoun,noun))1-3; 0-4
Succeeded Property: np(precedence(pronoun,noun))0-2; 0-4
Succeeded Property: np(requirement(noun,determiner))1-4; 0-4
Failed Property: np(dependence(determiner,noun))1-4; 0-4
Succeeded Property: np(precedence(pronoun,determiner))2-4; 0-4
Succeeded Property: np(precedence(pronoun,determiner))0-4; 0-4

30 <0> àwon <1> ọmọ <2> púpò <3>

they child plenty
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-3
Succeeded Property: np(constituency(pronoun))0-1; 0-3
Succeeded Property: np(constituency(adjective))2-3; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Succeeded Property: np(precedence(pronoun,noun))0-2; 0-3
Succeeded Property: np(precedence(pronoun,adjective))0-3; 0-3
Failed Property: np(precedence(adjective,noun))1-3; 0-3
Succeeded Property: np(dependence(adjective,noun))1-3; 0-3
Failed Property: np(requirement(noun,determiner))1-2; 0-3

31 <0> gbogbo <1> aṣọ <2> kékeré <3>

87

all dress small
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(quantifier))0-1; 0-3
Succeeded Property: np(constituency(adjective))2-3; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Succeeded Property: np(precedence(quantifier,adjective))0-3; 0-3
Succeeded Property: np(precedence(quantifier,noun))0-2; 0-3
Failed Property: np(precedence(adjective,noun))1-3; 0-3
Succeeded Property: np(dependence(quantifier,noun))0-2; 0-3
Failed Property: np(dependence(adjective,noun))1-3; 0-3
Failed Property: np(requirement(noun,determiner))1-2; 0-3

32 <0> gbogbo <1> àwon <2> aṣọ <3> won <4> náà <5>

all they dress they the
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))3-4; 0-5
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))2-3; 0-5
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-5
Succeeded Property: np(constituency(determiner))4-5; 0-5
Succeeded Property: np(constituency(quantifier))0-1; 0-5
Succeeded Property: np(constituency(pronoun))3-4; 0-5
Succeeded Property: np(constituency(pronoun))1-2; 0-5
Succeeded Property: np(constituency(noun))2-3; 0-5
Succeeded Property: np(precedence(quantifier,pronoun))0-4; 0-5
Succeeded Property: np(precedence(quantifier,pronoun))0-2; 0-5
Succeeded Property: np(precedence(quantifier,determiner))0-5; 0-5
Succeeded Property: np(precedence(quantifier,noun))0-3; 0-5
Failed Property: np(precedence(determiner,noun))2-5; 0-5
Failed Property: np(precedence(pronoun,noun))2-4; 0-5
Succeeded Property: np(precedence(pronoun,noun))1-3; 0-5
Succeeded Property: np(requirement(noun,determiner))2-5; 0-5
Failed Property: np(dependence(determiner,noun))2-5; 0-5
Succeeded Property: np(dependence(quantifier,noun))0-3; 0-5
Succeeded Property: np(precedence(pronoun,determiner))3-5; 0-5
Succeeded Property: np(precedence(pronoun,determiner))1-5; 0-5

33 <0> gbogbo <1> àwon <2> aṣọ <3> funfun <4>

all they dress white
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))2-3; 0-4
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-4
Succeeded Property: np(constituency(quantifier))0-1; 0-4
Succeeded Property: np(constituency(pronoun))1-2; 0-4
Succeeded Property: np(constituency(adjective))3-4; 0-4
Succeeded Property: np(constituency(noun))2-3; 0-4
Succeeded Property: np(precedence(quantifier,pronoun))0-2; 0-4
Succeeded Property: np(precedence(quantifier,adjective))0-4; 0-4

88

Succeeded Property: np(precedence(quantifier,noun))0-3; 0-4
Succeeded Property: np(precedence(pronoun,noun))1-3; 0-4
Succeeded Property: np(precedence(pronoun,adjective))1-4; 0-4
Failed Property: np(precedence(adjective,noun))2-4; 0-4
Succeeded Property: np(dependence(quantifier,noun))0-3; 0-4
Failed Property: np(dependence(adjective,noun))2-4; 0-4
Failed Property: np(requirement(noun,determiner))2-3; 0-4

34 <0> ìdajì <1> ọmọ <2> kékeré <3>

half child small
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(quantifier))0-1; 0-3
Succeeded Property: np(constituency(adjective))2-3; 0-3
Succeeded Property: np(constituency(noun))1-2; 0-3
Succeeded Property: np(precedence(quantifier,adjective))0-3; 0-3
Succeeded Property: np(precedence(quantifier,noun))0-2; 0-3
Failed Property: np(precedence(adjective,noun))1-3; 0-3
Succeeded Property: np(dependence(quantifier,noun))0-2; 0-3
Failed Property: np(dependence(adjective,noun))1-3; 0-3
Failed Property: np(requirement(noun,determiner))1-2; 0-3

35 <0> ìgbà <1> gbogbo <2>

time all
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(quantifier))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(quantifier,noun))0-2; 0-2
Succeeded Property: np(dependence(quantifier,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))0-1; 0-2

36 <0> gbogbo <1> táyò <2>

all Tayo
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(quantifier))0-1; 0-2
Succeeded Property: np(constituency(proper-noun))1-2; 0-2
Succeeded Property: np(precedence(quantifier,proper-noun))0-2; 0-2

37 <0> ìdajì <1> aṣọ <2>

half dress
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(quantifier))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2

89

Succeeded Property: np(precedence(quantifier,noun))0-2; 0-2
Succeeded Property: np(dependence(quantifier,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

38 <0> òpòlopò <1> ogbón <2>

plenty wisdom
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(adjective))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

39 <0> ẹbí <1> gbogbo <2>

family all
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(quantifier))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(quantifier,noun))0-2; 0-2
Succeeded Property: np(dependence(quantifier,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))0-1; 0-2

40 <0> gbogbo <1> àwon <2> ẹbí <3>

all they family
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))2-3; 0-3
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(quantifier))0-1; 0-3
Succeeded Property: np(constituency(pronoun))1-2; 0-3
Succeeded Property: np(constituency(noun))2-3; 0-3
Succeeded Property: np(precedence(quantifier,pronoun))0-2; 0-3
Succeeded Property: np(precedence(quantifier,noun))0-3; 0-3
Succeeded Property: np(precedence(pronoun,noun))1-3; 0-3
Succeeded Property: np(dependence(quantifier,noun))0-3; 0-3
Failed Property: np(requirement(noun,determiner))2-3; 0-3

41 <0> gbogbo <1> àwon <2> ilé-ìwé <3>

all they school
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))2-3; 0-3
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-3
Succeeded Property: np(constituency(quantifier))0-1; 0-3
Succeeded Property: np(constituency(pronoun))1-2; 0-3
Succeeded Property: np(constituency(noun))2-3; 0-3

90

Succeeded Property: np(precedence(quantifier,pronoun))0-2; 0-3
Succeeded Property: np(precedence(quantifier,noun))0-3; 0-3
Succeeded Property: np(precedence(pronoun,noun))1-3; 0-3
Succeeded Property: np(dependence(quantifier,noun))0-3; 0-3
Failed Property: np(requirement(noun,determiner))2-3; 0-3

42 <0> akúsè <1> ọmọ <2>

poor child
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(adjective))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

43 <0> òpòlopò <1> èrò <2>

plenty traveller
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(constituency(adjective))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

44 <0> òye <1> ńlá <2>

intelligence big
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(adjective))1-2; 0-2
Succeeded Property: np(constituency(noun))0-1; 0-2
Failed Property: np(precedence(adjective,noun))0-2; 0-2
Succeeded Property: np(dependence(adjective,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))0-1; 0-2

45 <0> àwon <1> egbé <2>

they group
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))1-2; 0-2
Succeeded Property: np(obligatority([noun,proper-noun,pronoun]))0-1; 0-2
Succeeded Property: np(constituency(pronoun))0-1; 0-2
Succeeded Property: np(constituency(noun))1-2; 0-2
Succeeded Property: np(precedence(pronoun,noun))0-2; 0-2
Failed Property: np(requirement(noun,determiner))1-2; 0-2

There are 45 phrases.

91

Failed properties with the number of times they fail:-
1[np(requirement(noun,determiner)),[[[plural,neuter,collective,animate,
[mid-high]],[],3], [[dual,neuter,abstract,inanimate,[mid-low]],[],1],
[[plural,neuter,collective,animate,[low-low]],[],1],
[[dual,neuter,common,animate,[mid-mid]],[],8],
[[plural,neuter,common,inanimate,[mid-high-low-high]],[],1],
[[plural,neuter,abstract,inanimate,[mid-high]],[],1],
[[plural,neuter,common,inanimate,[mid-mid]],[],3],
[[plural,neuter,abstract,inanimate,[low-low]],[],1],
[[plural,neuter,common,animate,[mid-mid]],[],3],
[[dual,neuter,common,inanimate,[mid-low]],[],1],
[[dual,neuter,common,inanimate,[mid-mid]],[],1]],24]
2[np(precedence(adjective,noun)),
[[[dual,neuter,abstract,inanimate,[mid-low]],
[dual,neuter,descriptive-size,both,[high-high]],1],
[[plural,neuter,common,animate,[mid-mid]],
[dual,neuter,descriptive-size,both,[high-mid-high]],1],
[[plural,neuter,common,inanimate,[mid-mid]],
[dual,neuter,descriptive-colour,both,[mid-mid]],1],
[[plural,neuter,common,inanimate,[mid-mid]],
[dual,neuter,descriptive-size,both,[high-mid-high]],1],
[[plural,neuter,common,animate,[mid-mid]],
[plural,neuter,quantity-countable,both,[high-low]],2],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,attributive,animate,[low-low]],1],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,descriptive,both,[high-low]],1],
[[dual,neuter,common,inanimate,[mid-low]],
[dual,neuter,descriptive,inanimate,[high-low]],2],
[[dual,neuter,common,animate,[mid-high]],
[dual,neuter,descriptive-size,both,[high-high]],1],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,number,both,[low-high-high]],1],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,descriptive-colour,both,[high-high]],1],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,descriptive-size,both,[high-high]],1],
[[dual,neuter,common,inanimate,[mid-mid]],
[dual,neuter,descriptive-colour,both,[mid-mid]],1],
[[dual,neuter,common,inanimate,[mid-mid]],
[dual,neuter,descriptive-size,both,[high-mid-high]],2],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,descriptive-size,both,[high-mid-high]],2]],19]
3[np(precedence(quantifier,noun)),[[[plural,neuter,collective,animate,
[mid-high]],
[plural,neuter,quantity-whole,both,[mid,mid]],1],
[[plural,neuter,abstract,inanimate,[low-low]],

92

[plural,neuter,quantity-whole,both,[mid,mid]],1]],2]
4[np(dependence(adjective,noun)),[[[dual,neuter,descriptive-size,both,
[high-mid-high]],[plural,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,descriptive-colour,both,[mid-mid]],
[plural,neuter,common,inanimate,[mid-mid]],1],
[[dual,neuter,descriptive-size,both,[high-mid-high]],
[plural,neuter,common,inanimate,[mid-mid]],1],
[[dual,neuter,attributive,animate,[low-high]],
[singular,neuter,common,animate,[mid-mid]],1]],4]
5[np(dependence(determiner,noun)),[[[dual,neuter,definite,both,[mid,low]],
[plural,neuter,common,inanimate,[mid-mid]],1],
[[dual,neuter,definite,both,[mid,low]],[plural,neuter,common,animate,
[mid-mid]],4],
[[singular,neuter,indefinite,both,[mid]],[dual,neuter,common,inanimate,
[mid-low]],1],
[[singular,neuter,indefinite,both,[mid]],[dual,neuter,common,animate,
[mid-high]],1],
[[singular,neuter,indefinite,both,[mid]],[dual,neuter,common,inanimate,
[mid-mid]],1]],8]
6[np(precedence(pronoun,noun)),[[[plural,neuter,common,inanimate,[mid-mid]],
[plural,neuter,both,third-person-elided,[mid]],1],
[[plural,neuter,common,animate,[mid-mid]],
[plural,neuter,both,third-person-elided,[mid]],1]],2]
7[np(precedence(determiner,noun)),[[[plural,neuter,common,inanimate,
[mid-mid]], [dual,neuter,definite,both,[mid,low]],1],
[[plural,neuter,common,animate,[mid-mid]],[dual,neuter,definite,both,
[mid,low]],4],
[[dual,neuter,common,inanimate,[mid-high-low-high]],
[dual,neuter,definite,both,[mid,low]],1],[[singular,neuter,abstract,
inanimate,[mid-high]],[singular,neuter,indefinite,both,[mid]],1],
[[singular,neuter,common,animate,[mid-mid]],[singular,neuter,
indefinite,both,[mid]],1], [[dual,neuter,common,inanimate,[mid-low]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,common,animate,[mid-high]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,common,animate,[mid-mid]],[dual,neuter,definite,both,
[mid,low]],3],[[dual,neuter,common,inanimate,[mid-mid]],
[singular,neuter,indefinite,both,[mid]],1]],14]
8[np(precedence(determiner,adjective)),
[[[plural,neuter,quantity-countable,both,[high-low]],
[dual,neuter,definite,both,[mid,low]],1],
[[dual,neuter,attributive,animate,[low-high]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,descriptive,inanimate,[high-low]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,descriptive-size,both,[high-high]],
[singular,neuter,indefinite,both,[mid]],1],

93

[[dual,neuter,number,both,[low-high-high]],
[dual,neuter,definite,both,[mid,low]],1],
[[dual,neuter,descriptive-colour,both,[high-high]],
[dual,neuter,definite,both,[mid,low]],1],
[[dual,neuter,descriptive-size,both,[high-high]],
[dual,neuter,definite,both,[mid,low]],1],
[[dual,neuter,descriptive-size,both,[high-mid-high]],
[singular,neuter,indefinite,both,[mid]],3],
[[dual,neuter,attributive,animate,[low-low]],
[singular,neuter,indefinite,both,[mid]],1]],11]

Succeeded properties with the number of times they succeed:-
1[np(precedence(pronoun,noun)),
[[[plural,neuter,both,third-person,[low,mid]],
[plural,neuter,collective,animate,[mid-high]],2],
[[plural,neuter,both,third-person,[low,mid]],
[plural,neuter,common,inanimate,[mid-high-low-high]],1],
[[plural,neuter,both,third-person,[low,mid]],
[plural,neuter,common,inanimate,[mid-mid]],2],
[[plural,neuter,both,third-person,[low,mid]],
[plural,neuter,common,animate,[mid-mid]],5]],10]
2[np(constituency(noun)),[[[plural,neuter,collective,animate,[mid-high]],3],
[[dual,neuter,abstract,inanimate,[mid-low]],1],
[[plural,neuter,collective,animate,[low-low]],1],
[[dual,neuter,common,animate,[mid-mid]],11],
[[plural,neuter,common,inanimate,[mid-high-low-high]],1],
[[plural,neuter,abstract,inanimate,[mid-high]],1],
[[plural,neuter,common,inanimate,[mid-mid]],4],
[[plural,neuter,abstract,inanimate,[low-low]],1],
[[plural,neuter,common,animate,[mid-mid]],7],
[[dual,neuter,common,inanimate,[mid-high-low-high]],1],
[[singular,neuter,abstract,inanimate,[mid-high]],1],
[[singular,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,common,inanimate,[mid-low]],2],
[[dual,neuter,common,animate,[mid-high]],1],
[[dual,neuter,common,inanimate,[mid-mid]],2]],38]
3[np(constituency(pronoun)),[[[plural,neuter,both,third-person,[low,mid]],11],
[[plural,neuter,both,third-person-elided,[mid]],2],
[[singular,neuter,both,second-person,[low,mid]],1]],14]
4[np(obligatority([noun,proper-noun,pronoun])),[[pronoun,14],[noun,38],
[proper-noun,5]],57]
5[np(dependence(adjective,noun)),
[[[dual,neuter,descriptive-size,both,[high-high]],
[dual,neuter,abstract,inanimate,[mid-low]],1],
[[plural,neuter,quantity-uncountable,both,[low-low-mid-low]],
[plural,neuter,collective,animate,[low-low]],1],
[[dual,neuter,attributive,animate,[mid-high-low]],

94

[dual,neuter,common,animate,[mid-mid]],1],
[[plural,neuter,quantity-uncountable,both,[low-low-mid-low]],
[plural,neuter,abstract,inanimate,[mid-high]],1],
[[plural,neuter,quantity-countable,both,[high-low]],
[plural,neuter,common,animate,[mid-mid]],2],
[[dual,neuter,attributive,animate,[low-low]],
[dual,neuter,common,animate,[mid-mid]],2],
[[dual,neuter,descriptive,both,[high-low]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,descriptive,inanimate,[high-low]],
[dual,neuter,common,inanimate,[mid-low]],2],
[[dual,neuter,descriptive-size,both,[high-high]],
[dual,neuter,common,animate,[mid-high]],1],
[[dual,neuter,number,both,[low-high-high]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,descriptive-colour,both,[high-high]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,descriptive-size,both,[high-high]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,descriptive-colour,both,[mid-mid]],
[dual,neuter,common,inanimate,[mid-mid]],1],
[[dual,neuter,descriptive-size,both,[high-mid-high]],
[dual,neuter,common,inanimate,[mid-mid]],2],
[[dual,neuter,descriptive-size,both,[high-mid-high]],
[dual,neuter,common,animate,[mid-mid]],3],
[[dual,feminine,attributive,animate,[mid-mid]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,masculine,attributive,both,[mid-mid]],
[dual,neuter,common,animate,[mid-mid]],1]],23]
6[np(constituency(adjective)),[[[dual,neuter,descriptive-size,both,
[high-high]],3],
[[plural,neuter,quantity-uncountable,both,[low-low-mid-low]],2],
[[dual,neuter,attributive,animate,[mid-high-low]],1],
[[dual,neuter,descriptive-size,both,[high-mid-high]],9],
[[dual,neuter,descriptive-colour,both,[mid-mid]],2],
[[plural,neuter,quantity-countable,both,[high-low]],2],
[[dual,neuter,attributive,animate,[low-low]],3],
[[dual,neuter,attributive,animate,[low-high]],1],
[[dual,neuter,descriptive,both,[high-low]],1],
[[dual,neuter,descriptive,inanimate,[high-low]],2],
[[dual,neuter,number,both,[low-high-high]],1],
[[dual,neuter,descriptive-colour,both,[high-high]],1],
[[dual,feminine,attributive,animate,[mid-mid]],1],
[[dual,masculine,attributive,both,[mid-mid]],1]],30]
7[np(precedence(adjective,noun)),
[[[plural,neuter,quantity-uncountable,both,[low-low-mid-low]],
[plural,neuter,collective,animate,[low-low]],1],

95

[[dual,neuter,attributive,animate,[mid-high-low]],
[dual,neuter,common,animate,[mid-mid]],1],
[[plural,neuter,quantity-uncountable,both,[low-low-mid-low]],
[plural,neuter,abstract,inanimate,[mid-high]],1],
[[dual,neuter,attributive,animate,[low-low]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,attributive,animate,[low-high]],
[singular,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,descriptive-size,both,[high-mid-high]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,feminine,attributive,animate,[mid-mid]],
[dual,neuter,common,animate,[mid-mid]],1],
[[dual,masculine,attributive,both,[mid-mid]],
[dual,neuter,common,animate,[mid-mid]],1]],8]
8[np(dependence(quantifier,noun)),[[[plural,neuter,quantity-whole,both,
[mid,mid]],[plural,neuter,common,inanimate,[mid-high-low-high]],1],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,collective,animate,[mid-high]],2],
[[plural,neuter,quantity-part,both,[low,mid,low]],
[plural,neuter,common,inanimate,[mid-mid]],1],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,abstract,inanimate,[low-low]],1],
[[plural,neuter,quantity-part,both,[low,mid,low]],
[plural,neuter,common,animate,[mid-mid]],2],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,common,inanimate,[mid-mid]],3]],10]
9[np(precedence(quantifier,noun)),[[[plural,neuter,quantity-whole,both,
[mid,mid]],[plural,neuter,common,inanimate,[mid-high-low-high]],1],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,collective,animate,[mid-high]],1],
[[plural,neuter,quantity-part,both,[low,mid,low]],
[plural,neuter,common,inanimate,[mid-mid]],1],
[[plural,neuter,quantity-part,both,[low,mid,low]],
[plural,neuter,common,animate,[mid-mid]],2],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,common,inanimate,[mid-mid]],3]],8]
10[np(precedence(quantifier,pronoun)),
[[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,both,third-person,[low,mid]],4],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[plural,neuter,both,third-person-elided,[mid]],1]],5]
11[np(constituency(quantifier)),[[[plural,neuter,quantity-whole,both,
[mid,mid]],8],[[plural,neuter,quantity-part,both,[low,mid,low]],3]],11]
12[np(precedence(quantifier,proper-noun)),[[[plural,neuter,quantity-whole,
both,[mid,mid]],[dual,neuter,tba,n/a,[high,low]],1]],1]
13[np(constituency(proper-noun)),[[[dual,neuter,tba,n/a,[high,low]],5]],5]
14[np(precedence(quantifier,adjective)),[[[plural,neuter,quantity-part,both,

96

[low,mid,low]],[dual,neuter,descriptive-size,both,[high-mid-high]],1],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[dual,neuter,descriptive-colour,both,[mid-mid]],1],
[[plural,neuter,quantity-whole,both,[mid,mid]],
[dual,neuter,descriptive-size,both,[high-mid-high]],1]],3]
15[np(precedence(pronoun,adjective)),[[[plural,neuter,both,third-person
,[low,mid]],[dual,neuter,descriptive-colour,both,[mid-mid]],1],
[[plural,neuter,both,third-person,[low,mid]],
[plural,neuter,quantity-countable,both,[high-low]],2]],3]
16[np(precedence(pronoun,determiner)),[[[plural,neuter,both,third-person,
[low,mid]],[dual,neuter,definite,both,[mid,low]],4],
[[plural,neuter,both,third-person-elided,[mid]],
[dual,neuter,definite,both,[mid,low]],2],
[[singular,neuter,both,second-person,[low,mid]],
[dual,neuter,definite,both,[mid,low]],1]],7]
17[np(requirement(noun,determiner)),[[[plural,neuter,common,inanimate,
[mid-mid]],[dual,neuter,definite,both,[mid,low]],1],
[[plural,neuter,common,animate,[mid-mid]],
[dual,neuter,definite,both,[mid,low]],4],
[[dual,neuter,common,inanimate,[mid-high-low-high]],
[dual,neuter,definite,both,[mid,low]],1],
[[singular,neuter,abstract,inanimate,[mid-high]],
[singular,neuter,indefinite,both,[mid]],1],
[[singular,neuter,common,animate,[mid-mid]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,common,inanimate,[mid-low]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,common,animate,[mid-high]],
[singular,neuter,indefinite,both,[mid]],1],
[[dual,neuter,common,animate,[mid-mid]],
[dual,neuter,definite,both,[mid,low]],3],
[[dual,neuter,common,inanimate,[mid-mid]],
[singular,neuter,indefinite,both,[mid]],1]],14]
18[np(precedence(quantifier,determiner)),
[[[plural,neuter,quantity-whole,both,[mid,mid]],
[dual,neuter,definite,both,[mid,low]],1],
[[plural,neuter,quantity-part,both,[low,mid,low]],
[dual,neuter,definite,both,[mid,low]],1]],2]
19[np(constituency(determiner)),[[[dual,neuter,definite,both,[mid,low]],10],
[[singular,neuter,indefinite,both,[mid]],8]],18]
20[np(dependence(determiner,noun)),[[[dual,neuter,definite,both,[mid,low]],
[dual,neuter,common,inanimate,[mid-high-low-high]],1],
[[singular,neuter,indefinite,both,[mid]],[singular,neuter,abstract,inanimate,
[mid-high]],1],[[singular,neuter,indefinite,both,[mid]],
[singular,neuter,common,animate,[mid-mid]],1],
[[dual,neuter,definite,both,[mid,low]],[dual,neuter,common,animate,
[mid-mid]],3]],6]

97

21[np(precedence(proper-noun,adjective)),[[[dual,neuter,tba,n/a,[high,low]],
[dual,neuter,attributive,animate,[low-low]],1],[[dual,neuter,tba,n/a,
[high,low]],[dual,neuter,descriptive-size,both,[high-mid-high]],2]],3]
22[np(precedence(proper-noun,determiner)),[[[dual,neuter,tba,n/a,[high,low]],
[singular,neuter,indefinite,both,[mid]],3]],3]

Induced Property Grammar rules for Yoruba Noun phrases::-

-Conditional np(precedence(pronoun,noun)):-
pronoun precedes noun if pronoun is plural, neuter, used for both animate
and inanimate nouns, third-person, [low,mid], .

-Conditional np(precedence(adjective,noun)):-
adjective precedes noun if adjective is plural, neuter, quantity-uncountable,

used for both animate and inanimate nouns, [low-low-mid-low], .

-Conditional np(precedence(adjective,noun)):-
adjective precedes noun if adjective is dual, neuter, attributive, animate,
[mid-high-low], .

-Conditional np(precedence(adjective,noun)):-
adjective precedes noun if adjective is plural, neuter, quantity-uncountable,

used for both animate and inanimate nouns, [low-low-mid-low].

-Conditional np(precedence(quantifier,noun)):-
quantifier precedes noun if quantifier is plural, neuter, quantity-whole,
used for both animate and inanimate nouns, [mid,mid], .

-np(precedence(quantifier,pronoun)):-
quantifier precedes pronoun in all 5 relevant phrases

-np(precedence(quantifier,proper-noun)):-
quantifier precedes proper-noun in all 1 relevant phrases

-np(precedence(quantifier,adjective)):-
quantifier precedes adjective in all 3 relevant phrases

-np(precedence(pronoun,adjective)):-
pronoun precedes adjective in all 3 relevant phrases

-np(precedence(pronoun,determiner)):-
pronoun precedes determiner in all 7 relevant phrases

98

-np(precedence(quantifier,determiner)):-
quantifier precedes determiner in all 2 relevant phrases

-np(precedence(proper-noun,adjective)):-
proper-noun precedes adjective in all 3 relevant phrases

-np(precedence(proper-noun,determiner)):-
proper-noun precedes determiner in all 3 relevant phrases

-np(precedence(determiner,noun)):-
determiner precedes noun in all 14 relevant phrases

-np(precedence(determiner,adjective)):-
determiner precedes adjective in all 11 relevant phrases

-noun is a constituent of noun phrases. It occurs in 38 phrases.

-pronoun is a constituent of noun phrases. It occurs in 14 phrases.

-np(obligatority([noun,proper-noun,pronoun])):-
[noun,proper-noun,pronoun] are obligatority.
It succeeds in all 57 occurrences.
pronoun succeeds in all 14 occurrences;

noun succeeds in all 38 occurrences;

proper-noun succeeds in all 5 occurrences;

-adjective is a constituent of noun phrases. It occurs in 30 phrases.

-quantifier is a constituent of noun phrases. It occurs in 11 phrases.

-proper-noun is a constituent of noun phrases. It occurs in 5 phrases.

-determiner is a constituent of noun phrases. It occurs in 18 phrases.

-np(dependence(quantifier,noun)):-
quantifier and noun have a dependency relation in all 10 phrases.

99

Appendix B

Context free grammar of our
subset Yorùbá noun phrases

We use adj for adjectives, det for determiners, pro for pronouns, pn for proper-nouns and
quant for quantifiers. We also create variables that refer to the multiple categories that can
occur in a particular environment. So that adjs refers to the presence of between 0 and
two adjectives; dets refers to 0 or 1 determiner; kernel refers to nouns or proper-nouns. We
accomodate any number of adjectives in our subset. [17].

1. adjs --> [].
2. adjs --> adj.
3. adjs --> adj, adjs.
4. dets--> det.
5. dets-->[].
6. kernel--> n.
7. kernel--> pn.
8. np--> kernel, adjs, dets.
9. np--> pro, dets.
10. np--> pro, n, adjs, dets.
11. np--> n, pro, dets.
12. np--> pro, n, pro, dets.
13. np--> n, quant.
14. np--> quant, n, adjs.
15. np--> adj, n.
16. np--> quant, kernel, dets.
17. np--> quant, pro, n, adj.
quant-->[gbogbo].%all
quant-->[idaji].%half
n-->[eran].%goat
n-->[iwe]. %book
n-->[ile-iwe]. %school
n-->[okun]. %rope
det-->[naa]. %definite article the

100

det-->[kan]. %indefinite article a
det-->[yii]. %this
adj-->[kekere].%small
adj-->[funfun].%white
adj-->[dudu].%black
adj-->[tutu].%fresh
adj-->[gigun].%long
adj-->[nla].%big
adj-->[pupo].%plenty
adj-->[obun].%big
adj-->[akoko].%big
pn-->[tayo].%proper noun
pro-->[awon]. % they
pro-->[tiwo]. % you

101

Appendix C

Property grammar of our subset of
noun phrases of English

english_properties([
g(obligatority([noun,proper-noun,pronoun])),
g(constituency(determiner)),
g(constituency(quantifier)),
g(constituency(pronoun)),
g(constituency(adjective)),
g(constituency(noun)),
g(constituency(proper-noun)),
g(np(precedence(adjective, proper-noun))) %beautiful British Columbia
g(np(precedence(determiner, proper-noun))) %the United states
g(precedence(quantifier, pronoun)), %all his
g(precedence(quantifier, determiner)), %all the
g(precedence(quantifier, adjective)), %all beautiful
g(precedence(quantifier, noun)), %all books
g(precedence(determiner,adjective)), %the beautiful...
g(precedence(determiner,noun)),%the baby
g(precedence(pronoun,noun)), %Your sons e.g (all your sons)
g(precedence(pronoun,adjective)),%Your young e.g (all your young...)
g(precedence(adjective,noun)),%beautiful baby
g(requirement(noun, determiner)),
g(dependence(determiner,noun)),
g(dependence(quantifier,noun)),
g(dependence(adjective,noun))]).

102

Appendix D

Definitions

1 Turing machine is a quintiple (K, Σ, δ, s,H) where: K = Finite set of states Σ = an
alphabet containing at least θ and ♢ but not ← or → s ∈ K is the start state, H ⊆ K
is the set of halting states, δ is a function such that: (K-H) * Σ to K * (Σ ∪ →, ←),
if ⋄ is input symbol, then the action is → and ⋄ can never be written.

2 Recursively enumerable grammar Rules are of the form: α → β, where α and β are
arbitrary strings over V and α ̸= ϵ

3 A context sensitive grammar is a four tuple G =(N, Σ, P, S), where: N = Set of non-
terminal symbols Σ = Set of terminal symbols S = Start symbol P = Finite set of
productions rules. Rule are of the form: αAβ → αBβ S → ϵ where A, S ∈ N α, β, B
∈ (N ∪ Σ)* B ̸= ϵ

4 A context-free grammar is a four tuple G =(V, Σ, P, S), where: V = A finite set of
symbols called a vocabulary Σ ⊆ V = Set of terminal symbols S ∈ (V-Σ)= Start
symbol P ⊆(V-Σ)* V*= Finite set of productions rules. Rules are of the form: A →
α where A ∈ V, α ∈ (V ∪ Σ)

5 A regular grammar is a four tuple G =(N, Σ, P, S), where: N = A finite set of symbols
called a vocabulary Σ = Set of terminal symbols S ∈ N = Start symbol P = Finite
set of productions, each having one of the following forms: A → aB A → a A → ϵ,
where A, B, ∈ N, a ∈ Σ and ϵ is the empty string

103

Appendix E

Lexicon and input phrases in the
Womb Grammar model

% LEXICON: word(Category,Traits,Word)
[kan]::> word(determiner,[singular,neuter, indefinite, both, [mid]],kan).
[náà]::> word(determiner,[dual,neuter, definite, both, [mid,low]],náà).
[yìí]::> word(determiner,[dual,neuter,demonstrative,both, [high,low]],yìí).

%nouns
[aṣọ]::> word(noun,[dual,neuter, common, inanimate, [mid-mid]],aṣọ).
[eran]::> word(noun,[dual,neuter, common, animate, [mid-mid]],eran).
[ọmọ]::>word(noun,[dual,neuter, common, animate, [mid-mid]],ọmọ).
[ẹja]::>word(noun,[dual,neuter, common, animate, [mid-mid]],ẹja).
[ajá]::>word(noun,[dual,neuter, common, animate, [mid-high]],ajá).
[okùn]::>word(noun,[dual,neuter, common, inanimate, [mid-low]],okùn).
[ilé-ìwé]::>word(noun,[dual,neuter,common,inanimate,
[mid-high-low-high]],ilé-ìwé).
[ìwé]::>word(noun,[dual,neuter, common, inanimate, [low-high]],ìwé).
[iṣé]::>word(noun,[dual,neuter, abstract, inanimate, [mid-high]],iṣé).
[ayé]::>word(noun,[dual,neuter, abstract, inanimate, [mid-high]],ayé).
[ìgbà]::>word(noun,[dual,neuter, abstract, inanimate, [low-low]],ìgbà).
[ogbón]::>word(noun,[dual,neuter, abstract, inanimate, [mid-high]],ogbón).
[òye]::>word(noun,[dual,neuter, abstract, inanimate, [mid-low]],òye).
[ẹbí]::>word(noun,[dual,neuter, collective, animate, [mid-high]],ẹbí).
[èrò]::>word(noun,[dual,neuter, collective, animate, [low-low]],èrò).
[egbé]::>word(noun,[dual,neuter, collective, animate, [mid-high]],egbé).

%adjectives
[kékeré] ::>
word(adjective,[dual,neuter,descriptive-size,both,[high-mid-high]],kékeré).
[ńlá] ::> word(adjective,[dual,neuter,descriptive-size,both, [high-high]],ńlá).
[dúdú] ::>
word(adjective,[dual,neuter, descriptive-colour, both,[high-high]],dúdú).

104

[funfun]::> word(adjective,[dual,neuter, descriptive-colour,both,
[mid-mid]],funfun).
[tútù]::>word(adjective,[dual,neuter, descriptive, both, [high-low]],tútù).
[gígùn]::>word(adjective,[dual,neuter,descriptive,inanimate,
[high-low]],gígùn).
[púpò]::>word(adjective,[plural,neuter, quantity-countable, both,
[high-low]],púpò).
[òpòlopò]::>word(adjective,[plural,neuter,quantity-uncountable, both,
[low-low-mid-low]],òpòlopò).
[àkókó]::> word(adjective,[dual,neuter, number, both, [low-high-high]],àkókó).
[òbùn]::>word(adjective,[dual,neuter, attributive, animate, [low-low]],òbùn).
[òkú] ::> word(adjective,[dual,neuter, attributive, animate, [low-high]],òkú).
[akúsè] ::> word(adjective,[dual,neuter, attributive, animate,
[mid-high-low]],akúsè).
[akọ]::> word(adjective,[dual,masculine,attributive,both,[mid-mid]],akọ).
[abo]::> word(adjective,[dual,feminine,attributive,animate,[mid-mid]],abo).

%quantifier
[gbogbo] ::> word(quantifier,[plural,neuter,quantity-whole,both,
[mid,mid]],gbogbo).
[ìdajì]::>word(quantifier,[plural,neuter,quantity-part,both,[low,mid,low]],ìdajì).

%proper noun
[táyò] ::> word(proper-noun,[dual,neuter,tba,n/a,[high,low]],táyò).

%pronoun
[àwon]::>word(pronoun,[plural,neuter,both,third-person,[low,mid]],àwon).
[ìwo]::>word(pronoun,[singular,neuter, both, second-person,[low,mid]],ìwo).
[tìwo]::>word(pronoun,[singular,neuter, both, second-person,[low,mid]],tìwo).
[won]::>word(pronoun,[plural,neuter, both, third-person-elided,[mid]],won).

tr(kan, a).
tr(náà, the).
tr(yii, this).
tr(akọ, male).
tr(abo, female).
tr(aṣọ, dress).
tr(eran, goat).
tr(ọmọ, child).
tr(ẹja, fish).
tr(ajá, dog).
tr(okùn, rope).
tr(iṣé, work).
tr(ẹbí, family).
tr(ogbón, wisdom).
tr(òye, intelligence).

105

tr(ayé, life).
tr(ilé-ìwé, school).
tr(ìwé, book).
tr(ìgbà, time).
tr(èrò, traveller).
tr(egbé,group).
tr(kékeré, small).
tr(ńlá, big).
tr(dúdú, black).
tr(funfun, white).
tr(tútù, fresh).
tr(gígùn, long).
tr(púpò, plenty).
tr(òbùn, dirty).
tr(àkókó, first).
tr(òpòlopò, plenty).
tr(òkú, dead).
tr(akúsè, poor).
tr(gbogbo, all).
tr(ìdajì, half).
tr(táyò, 'Tayo').
tr(àwon, they).
tr(ìwo, you).
tr(tìwo, yours).
tr(won, they).

translate([]).
translate([Yoruba|Tail]):-
tr(Yoruba, English),%dictionary
write(' '),
write(English),
write(' '),
translate(Tail).

%SAMPLE PARSES/TESTS
inputstring([
[ọmọ],
[táyò],
[àwon],
[táyò, kan],
[táyò, kékeré, kan],
[táyò, òbùn, kékeré, kan],
[akọ, eran, kékeré],
[abo,eran, kékeré],
[kékeré, eran],
[aṣọ, kékeré, kan],

106

[aṣọ, funfun, kékeré],
[eran, dúdú, ńlá, náà],
[ìwo, náà],
[ọmọ,náà],
[ọmọ, àkókó, náà],
[àwon, ọmọ, náà],
[ajá, ńlá, kan],
[okùn, gígùn],
[okùn, gígùn, kan],
[ẹja, tútù],
[òkú, eran,kan],
[ayé, kan],
[ilé-ìwé, náà],
[ìdajì, ọmọ, náà],
[òbùn, ọmọ],
[ọmọ, òbùn],
[àwon, ọmọ],
[àwon, ọmọ, púpò, náà],
[àwon, ọmọ, won, náà],
[àwon, ọmọ, púpò],
[gbogbo, aṣọ, kékeré],
[gbogbo, àwon, aṣọ, won, náà],
[gbogbo, àwon, aṣọ, funfun],
[ìdajì, ọmọ, kékeré],
[ìgbà, gbogbo],
[gbogbo,táyò],
[ìdajì, aṣọ],
[òpòlopò, ogbón],
[ẹbí,gbogbo],
[gbogbo, àwon, ẹbí],
[gbogbo, àwon, ilé-ìwé],
[akúsè, ọmọ],
[òpòlopò,èrò],
[òye, ńlá],
[àwon, egbé]
]).

107

	Approval
	Abstract
	Dedication
	Table of Contents
	List of Figures
	Introduction
	The Problem Statement
	The Motivation
	Our Contribution

	Literature Review: Grammar Induction
	Grammar Induction
	A general overview of grammar induction
	The different paradigms for grammar induction
	Supervised, unsupervised and semi-supervised models
	Formalisms of Grammar induction and results
	Evaluation of grammar induction results
	Womb grammars for grammar induction
	Open questions

	Language documentation and description
	A general overview of language documentation and description
	Recent advances in documentary linguistics

	The Yorùbá Language
	The Sociolinguistic Situation of Yorùbá in Nigeria
	Phonology
	Morphology
	Orthography
	Constituent Structure of Noun Phrases

	Linguistic Details
	Data Collection
	Strategies for Part of Speech Parsing
	Property Grammars

	The Womb Grammar Model of Grammar Induction
	An Example
	Constraint Handling Rule Grammars (CHRG)

	Some Implementation Details
	Methodology
	Modified parsing that calculates both failure and success explicitly
	How we save failed and succeeded properties
	How we handle tones
	Glossing of phrases
	Failed and satisfied properties
	Inducing properties not present in the source language
	How we handle syntactic number and gender
	Parsing each property in our English subset
	Parsing with dependence constraints
	Parsing with the obligatority constraint
	Parsing with precedence constraints
	Parsing with constituency constraints
	Parsing with requirement constraints

	Parsing with properties not relevant to our subset of noun phrases
	Parsing with exclusion constraints
	Parsing with unicity constraints

	Inducing the Grammar
	Inducing precedence properties
	Inducing obligatority properties
	Inducing consitutency properties
	Inducing requirement properties
	Inducing dependence properties
	Inducing properties not relevant to our subset
	Inducing exclusion properties
	Inducing unicity properties

	How conditional properties are induced
	Inducing conditional requirement properties
	Inducing conditional dependence properties
	Inducing Conditional Precedence

	Inducing properties not relevant to our subset of noun phrases
	Inducing conditional unicity properties
	Inducing conditional exclusion properties

	Summary

	Results and supporting evidence of correctness
	Conclusion
	Possible extensions

	Bibliography
	Appendix Results
	Appendix Context free grammar of our subset Yorùbá noun phrases
	Appendix Property grammar of our subset of noun phrases of English
	Appendix Definitions
	Appendix Lexicon and input phrases in the Womb Grammar model

