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Abstract 

Digital soil mapping (DSM) is the intersection of geographical information systems (GIS), 

and (spatial) statistics and is a sub-discipline of soil science that has been increasingly 

relevant in helping to address emerging issues such as food production, climate change, 

land resource management, and the management of earth systems. Even with the need 

for digital soil information in the raster format, such information is limited for British 

Columbia (BC) where much of it is digitized from legacy soil survey maps with inherent 

spatial problems related to polygon boundaries; attribute specificity due to multi-

component map units; and map scale where small-scale surveys have limited use in 

addressing local and regional needs. In spite of these issues, legacy soil survey data are 

still useful as sources of training data where machine-learning techniques may be used 

to extract soil-environmental relationships from a survey and a suite of digital 

environmental covariates.  

This dissertation describes a framework for developing training data from conventional 

soil survey maps and compares various machine-learning techniques for predicting the 

spatial patterns of qualitative soil data such as soil parent material and soil classes. 

Results of this research included maps of soil parent material, Great Groups, and Orders 

for the Lower Fraser Valley and a soil Great Group map for the Okanagan-Kamloops 

region at a 100 m spatial resolution. Key findings included (1) the recognition of Random 

Forest being the most effective machine-learner based on two model comparison 

studies; (2) the conclusion that model choice greatly impacted the accuracy of 

predictions; (3) the method for developing training data greatly impacted the accuracy 

through a comparison of four methods; and (4) that training data derived from soil survey 

maps were more effective in representing the feature space of various classes in 

comparison to using training data derived from soil pits. This study advances the 

understanding of model selection and training data development in DSM and may 

facilitate the future development of methodologies for provincial maps of BC.  

Keywords:  Digital Soil Mapping; Machine-Learning; Soil Classification; 
Pedometrics; Model Comparison; Ensemble-Learning 
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Chapter 1.  
 
Introduction 

The demand for up-to-date soil information has been increasing in order to 

address emerging environmental issues such as sustainable food production; climate 

change regulation, adaptation, and mitigation; soil degradation; land resource 

management; and the provision of earth system services across all geographical extents 

(Sanchez et al., 2009; FAO and Global Soil Partnership, 2016). Additionally, better soil 

information is necessary for performing soil assessments; and the reduction and 

informing of risks for decision-making (Carré et al., 2007; Finke, 2012; Arrouays et al., 

2014).  

 Within the soil science discipline, pedometrics, a branch of pedology that aims to 

quantitatively characterize soil variation over space, has been used to provide soil 

information through the development of digital soil maps (Burrough et al., 1994; Sanchez 

et al., 2009). Although digital soil mapping - the intersection of soil science, geographical 

information science/systems (GIS), and (spatial) statistics – has existed as early as the 

1970s (e.g. Webster and Burrough, 1972a, 1972b), the advancements in computing 

technology, remote-sensing technology, GIS, data-mining and machine-learning 

techniques, and the increasing availability of spatial datasets have greatly facilitated the 

production of DSM products since the 2000s (McBratney et al., 2003; Scull et al., 2003; 

Minasny and McBratney, 2016). Furthermore, technological advancements have also 

allowed for digital soil maps to be produced at progressively larger spatial extents and 

higher resolutions (Minasny and McBratney, 2016). 

Digital soil maps (DSM) have been developed at a large range of scales for a 

wide array of applications. At the global scale, organizations such as the International 

Soil Reference and Information Centre (ISRIC) have recently produced predictions of 

soil attributes (e.g. soil organic carbon, pH, particle size fractions, bulk density, cation 

exchange capacity, soil depth, and coarse fragments) for six standard depth intervals 
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and the prediction of soil taxonomic units (Hengl et al., 2014) at a 1 km spatial resolution 

as part of the SoilGrids1km project. Continentally, similar developments have been 

made for the prediction of soil attributes and classes by way of an African project through 

the African Soil Information Service (AfSIS) and ISRIC at a 250 m spatial resolution 

(Hengl et al., 2015); or in the case of Australia, as part of the Soil and Landscape Grid of 

Australia project at a 90 m spatial resolution. In Europe, an extensive number of projects 

have applied DSM through the Joint Research Centre of the European Commission in 

order to predict soil erosion due to wind (Borelli et al., 2014) and water (Panagos et al., 

2015) as well as the prediction of total organic carbon stocks in order to test potential 

climate and land cover change scenarios (Yigini and Panagos, 2016). At regional and 

local scales, DSM methods have often been used as a tool to address specific 

environmental issues; for instance, to predict the spatial distribution of biological soil 

crusts in order to assess soil stability in (semi-) arid environments (Brungard and 

Boettinger, 2012); to identify distinct wine-producing soils (Hughes et al., 2012); to 

monitor seasonal changes in soil salinity in order to better mitigate the impacts of 

salinization (Berkal et al., 2012); or to produce crop-specific suitability maps and maps of 

gross margins for those crops (Harms et al., 2015; Kidd et al., 2015). This dissertation 

provides a framework to test various DSM methodologies, and presents three case-

studies for using existing soil data to train a variety of machine-learning techniques that 

will be extended for mapping the province of British Columbia where high-resolution 

digital soil data is currently limited.  

1.1. Background Information 

The objective of this section is (1) to provide a brief overview of conventional soil 

surveys and the limitations pertaining to them; (2) to summarize key concepts in digital 

soil mapping and provide a description of various soil-environmental covariates that 

facilitate the soil predictions; and (3) to provide an overview of various machine-learning 

techniques that are applicable in digital soil mapping. 
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 Conventional Soil Surveys 1.1.1.

Two major achievements contributed to the development of conventional soil 

survey methods in North America. The first achievement was the formalization of 

Jenny‟s Factors of Soil Formation (1941) and the second was the formalization of 

national soil taxonomic systems in the US (Soil Taxonomy; Soil Survey Staff, 1975) and 

Canada (The Canadian System of Soil Classification, CSSC; Canada Soil Survey 

Committee, 1978). The classification systems described how soils were classified based 

on soil morphology using morphological properties that could easily be measured and 

quantified in the field. Jenny‟s clorpt model (Eq. 1.1) characterizes the environmental 

conditions for which soils are found as a function of climate (cl), organisms (o), relief (r), 

parent material (p), time (t), and other local factors that influence soils (…): 

Eq. (1.1) S = f(cl, o, r, p, t, …) . 

The clorpt model was originally proposed as a method for studying how soils 

varied, quantitatively, as a function of various state factors. As such, soil properties were 

examined across a gradient of a single factor while the other factors were held constant 

in order to develop quantitative functions that related the change in one factor to the 

change in soils. It is necessary to note that the model does not describe how each factor 

influences soil formation nor does it treat the variables as formers of soil formation (a 

common misconception); and thus, system dynamics are not represented in the clorpt 

formulation. Rather, the clorpt factors are just variables that represent the environment 

from which soils and their properties are found. In other words, the factors define the 

state of the soil system. In principle, each of the soil-environmental variables were 

thought to be independent; however in practice, it was eventually realized that all the 

variables were interrelated with each other and, furthermore, they were also not truly 

independent from each other – with the exception of time (Phillips, 1998). Despite some 

of the limitations of the model, Jenny‟s soil-environmental variables were still extremely 

useful in assisting with soil surveys because the variables were generally observable at 

the field level or through the use of aerial photography, where changes in soil-

environmental conditions resulted in differences in soil characteristics – thus facilitating 

the delineation of map units. 
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Soils may be represented and viewed as profiles, pedons, polypedons, or map 

units. The soil profile is a 2-dimensional representation and the pedon is a 3-dimensional 

representation with an areal extent of approximately 1 m2. In principle, the properties of 

the pedon should not vary horizontally (only vertically) and when several similar pedons 

are connected, the resulting body of soil is represented as a polypedon. The polypedon 

concept differs from a map unit because the map unit – a distinct polygon that is mapped 

by soil surveyors – is an areal representation of a polypedon or a polypedon-complex. 

There are two types of mapping units: consociations and associations. Consociations 

are map units delineated based on a single taxonomic unit or soil class and may be 

referred to as a simple mapping unit, whereas associations consist of two or more 

dissimilar soil taxa (multiple components) that occur in a pattern that is too complex to be 

resolved at the selected mapping scale (Hole and Campbell, 1987; Schaetzl and 

Anderson, 2005). In the case of complex map units, the proportion of each soil class 

within the map unit is specified in the map legend or the map symbol (Bie and Beckett, 

1971) 

In a conventional soil survey, the mapper first uses preconceived hypotheses of 

what types of soils to expect at a location based on existing knowledge of soil-

environmental relationships. The mapper then uses aerial photographs to identify 

patterns where the soil-environmental variables exhibit an external expression on the 

landscape in order to attempt the correlation of landscape characteristics to soil 

boundaries (soil-landscape relationships). The underlying concept behind Jenny (1941) 

was that areas with similar soil-environmental characteristics should share similar soil 

characteristics based on a type of rule-based reasoning (Abraham, 2005). Once a 

preliminary reconnaissance map has been developed, the map is then tested in the field 

where morphological classification is performed on the preliminary map units and linked 

to a soil taxonomic unit. When the soil class has been identified, the mapper attempts to 

further delineate or adjust the boundaries of map units based on where the rate of 

change in soil properties is the greatest. Supplemented with field data and profile 

descriptions, map units with similar morphological characteristics are grouped into the 

same taxonomic unit (or series) and the soil properties and the range of environmental 

conditions from which the soils are found are then described in the soil legend. 
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Limitations with Conventional Soil Surveys 

Several concerns arise with conventional soil surveys. Firstly, the data is 

represented as discrete classes where the conditions are assumed to be homogenous 

within the polygons (Hole, 1978; Zhu and Band 1994). It is recognized that a significant 

amount of spatial generalization within the map unit occurs due to inclusions of 

subdominant soils that are too small to be resolved at the spatial scale of the map (Hole 

and Campbell, 1987). As a result, the purity of the mapping units are dependent on the 

complexity of the terrain, external expression of boundaries, survey effort, and mapping 

scale (Beckett, 1971). Although it would be ideal to have soil maps that consisted of only 

simple mapping units, increasing the proportion of „pure‟ map units has been shown to 

result in an exponential cost increase for developing the soil map (Bie et al., 1973). 

Other limitations may be related to the imprecision in map unit boundaries where 

the variability (or lack thereof) of the topographic surface does not necessarily coincide 

with the variability that may be occurring belowground (Hole, 1978). In addition the 

changes in soil are not necessarily discrete (as suggested by the use of boundaries), but 

rather, they are fuzzy where the soil attributes between two neighbouring map units may 

be an intergrade of the soil properties of the two units (Zhu and Band, 1994; Schaetzl 

and Anderson, 2005).  

The final set of challenges for conventional surveys stems from the soil 

surveyors, themselves, where the delineation of map units are based on the mental-

models of soil-environmental relationships, which are rarely ever recorded or reported. In 

addition, the mental-models may be based on a false hierarchy where some of the five 

soil-environmental variables are given preference over others when delineating 

boundaries – as a result, this may also lead to inconsistencies in mapping amongst 

different surveyors and also inconsistencies throughout time and landscapes. 

Consequently, these inconsistencies manifest themselves within and between soil maps 

as mismatching map unit boundaries between different map sheets, counties, 

states/provinces, and countries (Thompson et al., 2012; Dewitte et al., 2013). Such 

inconsistencies may also lead to problems where multiple soil series share the same soil 

properties, which results in redundancy, or even worse, where two soil series with the 

same name have completely different soil properties (Thompson et al., 2012). 
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Despite these issues, conventional soil maps have great value as sources of 

training data for machine-learning tools, where soil map units may be intersected with 

multiple soil-environmental variables and used to predict soils elsewhere (Bui, 2004). 

Such approaches have been demonstrated numerous times using decision trees (Bui 

and Moran, 2001, 2003; Moran and Bui, 2001; Grinand et al., 2008) and the Random 

Forest (RF) algorithms (Häring et al., 2012); and more recently, decision trees have also 

been used to disaggregate complex map units (Odgers et al., 2014; Subbarayalu, et al., 

2014). 

 Digital Soil Mapping 1.1.2.

Despite the wide use of Jenny‟s (1941) clorpt model, it is still largely a conceptual 

model. With the increasing capabilities of GIS and computers, coupled with the 

availability of geospatial data in digital format, the widely used clorpt model becomes 

inadequate for the purposes of modelling soils as a spatial phenomenon. McBratney et 

al. (2003) recognized the significance of a spatial component in soil formation theory and 

proposed the scorpan model:  

Eq. (1.2) Sc,a = f (sx,y,~t, cx,y,~t, ox,y,~t, rx,y,~t, px,y,~t, ax,y, n) 

The scorpan model includes the five factors from Jenny‟s clorpt model, which are 

climate (cl), organisms (o), relief (r), and parent material (p) at spatial position, (x,y), and 

the time of which an environmental covariate represents, t, and the age of the soil (a). In 

addition, the scorpan model includes existing soil knowledge or soil properties at a point 

(s), the spatial position (n) of a soil observation and a quantitative function, f(), that 

empirically links the scorpan variables to a soil class, Sc, or to a soil attribute, Sa.  The n 

factor was included with the intention that it would capture the spatial trends that were 

not captured by the other environmental covariates. As a result, scorpan allows for the 

digital mapping and modelling of soils as it takes into account where in geographical-

space a particular soil attribute or class occurs. The following sections provide a brief 

overview of soil-environmental covariates used in the DSM literature. 
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Relief (r) 

Based on McBratney et al. (2003), which reviewed 132 papers on DSM, it was 

observed that of all seven scorpan factors, the most widely used factor in DSM studies 

was „relief‟ (r), from which nearly 80% of the studies used digital elevation models 

(DEMs) and other terrain derivatives calculated from it. DEMs are particularly useful 

because they are readily available and are consistent in coverage. In addition, many 

terrain derivatives, such as slope, curvature, aspect, and drainage may be calculated 

from a DEM. The terrain derivatives may be used to inform the hydrologic processes that 

influence soil formation. Furthermore, it has previously been demonstrated that 

landscape classification could easily be produced using only a DEM (MacMillan et al., 

2000, 2003), and where soil properties such as organic matter, in particular, are often 

linked to landform elements (Pennock et al. 1987); in addition, landform classes have 

also been used as environmental covariates in soil mapping (Smith et al., 2012) and in 

predictive ecosystem mapping (MacMillan et al., 2007). 

Soils (s) 

The second most used scorpan factor was soil information, s, where it was used 

by nearly 40% of the reviewed studies in McBratney et al. (2003). Conventional soil 

survey data is commonly used to train models or build knowledge bases. Hewitt (1993) 

notes that the soil mapping rules, mental models, and the soil-landscape relationships 

originally used by soil surveyors were generally not recorded; however, soil maps can 

still provide valuable knowledge on the soil-landscape model. In Qi and Zhu (2003), it 

was recognized that the soil-landscape relationships could be extracted and used for soil 

mapping and classification. The extraction of knowledge from legacy data sources can 

be useful in cases where there are no experts or when the soil-landscape relationships 

are not recorded. In examples such as Bui et al. (1999), Qi and Zhu (2003), Moran and 

Bui (2002), and Grinand et al. (2008), soil-landscape relationships were extracted using 

classification trees and various other machine-learning algorithms. Furthermore, Qi and 

Zhu (2003) provided a method for extracting point data from soil survey polygons and 

similarly in Lagacherie et al. (1995), a reference area (or training area) with a small 

extent was used to identify and formulate the soil pattern rules from which the soil survey 
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was developed and where those rule-sets could then be used for extrapolation 

purposes.  

In addition to obtaining soil information from conventional soil maps, the s factor 

includes the use of remote sensing data. In these cases, soil samples are collected from 

the field and taken to a laboratory in order to determine the relationships between a 

soil‟s attributes and its spectral characteristics where airborne or space-borne data may 

then be used to map a soil attribute based on the soil-spectral relationships. In a review 

of the applications of remote sensing on soil mapping, Mulder et al. (2011) noted that 

remotely sensed data has been particularly useful for mapping soil mineralogy, soil 

texture, soil moisture, organic carbon, iron and carbonate contents, and salinity on bare 

soil. Coupled with the wide coverage and availability of satellite imagery and the 

expanding size of spectral libraries, mapping soils using only remotely sensed data will 

increasingly be utilized; however, issues related to atmospheric influences and spectral 

and spatial resolution still remain (Mulder et al., 2011). Furthermore, other sources of 

data may be obtained through the use of multi-spectral, hyper-spectral, and radar 

sensors; electoral conductivity; or gamma radiometric data (McBratney et al., 2003).    

Organisms (o) 

Compared to relief and soils, soil-environmental layers that represent organisms 

(o) have been used to a lesser degree (30% of the reviewed studies) (McBratney et al., 

2003). In DSM a major source of vegetation data may be derived from satellite imagery 

where numerous vegetative indices have been developed based on satellite band-ratios 

(Mulder et al., 2011). The Normalized Difference Vegetation Index (NDVI) is one such 

example and has been shown to be fairly effective as a covariate in mapping soil organic 

carbon (Boettinger, 2010; Marchetti et al., 2010; Zhao and Shi, 2010). Other similar 

indices that are adapted from the NDVI include the Soil Adjusted Vegetation Index 

(SAVI), Transformed SAVI (TSAVI), Modified SAVI (MSAVI) and the Global Environment 

Monitoring Index (GEMI) (Mulder et al., 2011). In addition to NDVI and its various 

renditions, remotely sensed data may also be used to determine other vegetative 

characteristics such as the Leaf Area Index (LAI), fractional canopy cover, plant water 

content, aboveground biomass, evapotranspiration, and vegetation height (Dorigo et al., 

2007). Applications of some of these vegetative indices have yet to be tested in DSM. 
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Crop data has also been used as a covariate for spatial prediction; for instance, 

crop yields are the result of the interaction between soils and the atmosphere. Therefore, 

crop yield data may be used as an indicator of soil properties since plant growth is 

influenced by properties such as clay content, moisture content, and nutrient content 

(e.g. Shatar and McBratney, 1999; McBratney et al., 2000). In a forested setting, a 

possible opportunity may lie in the use of forest inventory data where forest variables 

such as basal area, gross total volume, stand density, stand height, and aboveground 

biomass could provide some insight into the soil properties. Especially with the 

developments in LiDAR imagery, forest inventory data might become more available in 

the future (Woods et al., 2011; Treitz et al., 2012). Land class and vegetation class data 

may also be a useful source of data to represent o. In Smith et al. (2012), o was 

represented using Biogeoclimatic Ecosystem Classification data and the CIRCA land 

classification data for mapping soil classes in the Okanagan. 

Parent Material (p) 

With respect to parent materials (p), only 25% of the reviewed studies in 

McBratney et al. (2003) included a parent material layer; in addition, 75% of the cases 

that used a parent material map used geological maps rather than surficial material 

maps – an approach that may be appropriate for soils derived from residual parent 

material. Consequently, transported parent materials are poorly represented and the 

parent material maps used for DSM become biased in favor of residual parent materials 

(Lawley and Smith, 2008). Geological maps also suffer from the same problems as 

conventional soil maps, which sometimes use complex map units. As a result, parent 

materials have occasionally been mapped as a property of the soil rather than used as 

an environmental covariate for predicting soils (e.g. Bui and Moran, 2001; Lacoste et al., 

2011; Lemercier et al., 2012).  

Climate (c) 

Climate, c, is the least used of the environmental covariates of scorpan - several 

possible explanations are apparent. Firstly, the local climate is largely influenced by 

topography and as a result, topographic indices such as elevation and aspect may be 

used as a proxy for climate variables due to the relationship between elevation and the 

environmental lapse-rate and the relationship between slope-face direction and 
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temperature (Schaetzl and Anderson, 2005). In terms of climate layers, common 

covariates include mean annual temperature, mean annual precipitation, and 

evapotranspiration – all of which may be derived from satellite imagery (McBratney et al., 

2003). The usefulness of these covariates are largely dependent on the extent of the 

study area where constant climatic conditions may be assumed as the study area 

decreases in size.  

 Machine-Learning Techniques for Classification1 1.1.3.

A brief overview of various machine-learning techniques is presented here. The 

objective is not to provide a detailed explanation of each approach but rather to provide 

a summary of several approaches, and their relevance in DSM. In addition to the 

learners used in DSM, approaches that have been used in other disciplines but have yet 

to be explored in DSM are also summarized. The objective here is to examine machine-

learners for mapping soil taxonomic units, and therefore, the context of this overview is 

focused mainly on the use of machine-learners as classifiers for mapping qualitative soil 

properties rather than for the numerical mapping of soil attributes. 

Tree-Based Learners 

Tree-based algorithms are perhaps the most commonly used learners in the 

DSM literature. Tree-based learners consist of nodes and leaves where each node is a 

partition of the training dataset that aims to maximize the within-node homogeneity and 

the between-node heterogeneity, based on node splitting rules that are generated from a 

set of predictor variables - a type of if-then statement (Breiman et al., 1984). The leaves 

are the terminal nodes where a decision is made with regards to the response variable of 

interest. As a result of their hierarchical structure, tree-based learners are able to 

represent non-linear and non-smooth relationships between predictor and response 

variables as well as interaction effects where the relationship between a predictor and 

the response depends on one or more other predictors. In addition, tree-based learners 

 
1
 A version of this section has been published in “Heung, B., Ho, H.C., Zhang, J., Knudby, A., 
Bulmer, C.E., Schmidt, M.G., 2016. An overview and comparison of machine-learning 
techniques for classification purposes in digital soil mapping. Geoderma 265, 62-77.”  
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are also flexible as they are able to handle numerical, ordinal, or discrete predictors, and 

do not require assumptions on normality (Hastie et al., 2009).  

Tree-based learners have commonly been used for classification to map soil 

taxonomic units (e.g. Behrens et al., 2010; Bui and Moran, 2001, 2003; Bui et al., 1999; 

Grinand et al., 2008; Jafari et al., 2014; Moran and Bui, 2002; Nelson and Odeh, 2009; 

Schmidt et al., 2008; Scull et al., 2005; and Taghizadeh-Mehrjardi et al., 2014) or soil 

parent material classes (e.g. Bui and Moran, 2001; Lacoste et al., 2011; and Lemercier 

et al., 2012), and more recently, for the disaggregation of complex map units from 

conventional soil maps (e.g. Nauman and Thompson, 2014; Odgers et al., 2014; and 

Subburayalu et al., 2014). In addition, they have also been used to map soil attributes 

such as pH, soil depth, organic C, clay content, and total N and P using regression 

modeling (e.g. Bui et al., 2006, 2009; Henderson et al., 2005; and McKenzie and Ryan, 

1999). 

The RF learner is conceptually similar to tree-based learners and shares the 

same advantages; however, multiple decision trees are trained and the results are 

based on the predictions from an ensemble of the individual trees (Breiman, 2001). For 

the RF learner, each tree is trained from a randomized bootstrap sample of the entire 

training set and a subset of predictors used for the node-splitting rules is also randomly 

selected. Although the RF learner was adopted early on to analyze large datasets in the 

bioinformatics literature (e.g. Díaz-Uriarte and Alvarez de Andrés, 2006; Qi, 2012; and 

Svetnik et al., 2003), its usage in DSM appears to become increasingly more prominent. 

DSM applications of the RF learner, similar to those of the decision trees, have included 

the mapping of soil organic C (e.g. Grimm et al., 2008; Guo et al., 2015; and Wiesmeier 

et al., 2011;), soil texture (Ließ et al., 2012) as well as for classification purposes such as 

the mapping of soil parent material classes (Heung et al., 2014) or the updating and 

disaggregation of conventional soil survey maps (Häring et al., 2012; and Rad et al., 

2014). Despite the similarities between single tree-based learners and RF, few studies in 

DSM have compared the two, with the exception of Ließ et al. (2012) who compared 

them for the prediction of particle size fractions using regression and found that RF 

performed better. 
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Logistic Regression 

A review of DSM approaches by McBratney et al. (2003) identified that linear 

models (e.g. multiple linear regression and generalized linear models) have commonly 

been used for mapping soil attributes and have regularly been hybridized with kriging in 

regression kriging (e.g. Odeh et al., 1995; Hengl et al., 2007). For classification 

purposes, however, the most frequently used linear approach is through the use of 

multinomial logistic regression models (e.g. Kempen et al., 2009; Debella-Gilo and 

Etzelmüller, 2009; Collard et al., 2014; Jafari et al., 2012).  

Logistic regression models are a type of generalized linear model that is well 

suited for datasets where the dependent variable is categorical. These models are able 

to describe the relationships between a set of predictor variables and a dichotomous 

dependent variable that has values of 0 or 1. In the binomial case, outputs of logistic 

regression are expressed in probabilistic terms where values close to 0 indicate a low 

probability of occurrence, and values close to 1 represent a high probability of 

occurrence (Kleinbaum et al. 2008).  

In order to extend the logistic regression model approach to predict multinomial 

categorical response variables, both Kempen et al. (2009) and Debella-Gilo and 

Etzelmüller (2009) propose a multinomial logistical regression (MLR) approach. In both 

cases, logistic regression models were developed for each soil class that was found in 

the study area. The relationships between topography and soil taxonomic units were 

determined from legacy soil data. In order to convert a set of binomial logistic regression 

models into a generalized multinomial model, the following equation is used: 

Eq. (1.3)  p
 
  

  p  p  

  p(p1)   p(p2) …   p p  
 , 

where pi represents the probability of occurrence for class i, and the denominator of the 

equation represents the sum of the probabilities of occurrence for n classes. In the final 

classification, each data point is then assigned to the class with the highest probability of 

occurrence. 
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Distance-Based Learners 

Although the k-nearest neighbour (kNN) learner has been used for a wide variety 

of different applications in the natural sciences, such as the classification of agricultural 

land cover (Samaniego and Schultz, 2009), and is increasingly used in forest inventory 

studies (e.g. Meng et al., 2007; Bernier et al., 2010; Beaudoin et al., 2014), its usage is 

rare in DSM. One recent exception is in Mansuy et al. (2014), where the k-nearest 

neighbour method was used to predict forest soil properties such as forest floor 

thickness, total organic carbon and nitrogen concentrations, soil particle size fractions, 

and bulk density; however, the use of kNN as a classifier is still relatively limited. One 

example of using kNN for classification in the DSM literature may be found in 

Subburayalu and Slater (2013) and the disaggregation of Soil Survey Geographic 

database (SSURGO) polygons for mapping soil series. 

The main concept of the kNN learner is related to Tobler‟s First Law of 

Geography, where near things are more related than distant things, with the nuance that 

the kNN is concerned with distance in feature space rather than physical distance. 

Therefore, within the feature space, predictions are made based on a neighbourhood 

that is defined by the k number of training points that are located nearest to the predicted 

point (Hastie et al., 2009). When k = 1, a predicted location is assigned the value of the 

closest training point and when k > 1, classification is determined through majority vote. 

For a detailed explanation of the kNN, refer to Hastie et al. (2009). 

Nearest centroid learners are another type of distance-based learners; however, 

unlike in kNN where a pixel is assigned a class based on its distance to the nearest 

sample point(s), nearest centroid learners calculate the distance based on each 

feature‟s inverse coefficient of variation for each class. The most common nearest 

centroid learner is the nearest shrunken centroid learner (NSC). For the NSC learner, 

the class centroid is „shrunken‟ to the overall centroid based on a shrinkage threshold 

parameter. Predictions are based on the distance of a new sample to the closest 

shrunken centroid in feature space. If a predictor is shrunken to zero for all classes, the 

influence of that predictor on the classification rules become negligible. As a result, an 

advantage of the NSC approach is its inherent ability to determine variable importance 
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based on the distance of the shrunken class centroids to the overall centroids (Tibshirani 

et al., 2002). 

Logistic Model Trees 

Model trees are a relatively new approach that hybridizes linear models with a 

nonlinear tree model. Typically, linear models such as MLR have been shown to produce 

a stable model with a low variance and a potentially high bias and thus run the risk of 

under-fitting the model, whereas tree-based models may exhibit a low bias with a high 

variance as they capture non-linear relationships and thus risk over-fitting. As a result, 

the complementary nature of tree-based and linear models would seem appropriate for 

classification purposes, where the structure of a logistic model tree (LMT), proposed in 

Landwehr et al. (2005), consists of a decision tree where the leaves consist of individual 

logistic regression models.  

To summarize the construction of the LMT (Landwehr et al., 2005), at the stump 

of the tree, a logistic regression model is initially fitted to the entire training dataset and 

iteratively refined using the LogitBoost algorithm (Friedman et al., 2000) that optimizes 

the number of predictor variables and coefficient values. Once the initial regression 

model may no longer be refined, a node-splitting rule is applied and local regression 

models are fitted to the subset data points within the child nodes using LogitBoost. The 

fitting of partial logistic regression models on smaller subsets of data increase the overall 

fit of the model. The partial logistic regression models are incrementally refined to 

increasingly smaller subsets of the data and thus the decision tree is grown until a 

stopping criterion is met based on the size of the terminal nodes. To reduce model 

complexity and the computational demand of predictions, the size of the tree is reduced 

based on the CART pruning scheme. Because of this hybridized structure, the LMT has 

the advantage of being able to capture the nonlinearities and interaction effects in the 

dataset while minimizing the risk of over-fitting (Landwehr et al., 2005). A further 

advantage of the LMT is its flexibility in adapting to the complexity and size of a dataset 

where the structure of the tree becomes increasingly elaborate. 
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Artificial Neural Networks 

The origin of the artificial neural network (ANN) learner may be traced back to the 

1940‟s, where McCulloch and Pitts (1943) initially planned to develop a virtual “central 

nervous system” for computer modelling, which had similar data processes to a 

biological nervous system. The structure of an ANN consists of a set of interconnected 

units, or „neurons‟ that estimate the non-linear correlations between each variable. The 

input neurons, which represent predictor variables, are connected to a single or multiple 

layer(s) of hidden neurons, which are then linked to the output neurons that represent 

the target soil variable. In an ANN, the user parameterizes the number of hidden layers 

and neurons within each hidden layer. During the ANN training process, the connections 

between the neurons are established by assigning weights based on an intrinsic learning 

process where the weights are iteratively adjusted to match the outputs of the training 

dataset (Behrens et al., 2005).  

In DSM, ANN has typically been used to predict continuous soil variables such as 

particle size fractions (Chang and Islam, 2000; McBratney et al., 2000; Priori et al., 

2014), and soil erosion rates (Licznar and Nearing, 2003); the use of ANN for predicting 

discrete soil data still remains limited with some exceptions including Behrens et al. 

(2005) and Silveira et al. (2013). 

Support Vector Machines 

The support vector machine (SVM) classifier is a learner that is designed to 

construct an optimal separating hyperplane, in the feature space, between the various 

classes (Hastie et al., 2009). As such, the SVM classifier predicts the maximum margin 

of possibility between each class (Pal and Mather, 2005; Ocak and Seker, 2013). In the 

case of binary classification, or „one-class-classification‟, SVM detects the closest points 

between two classes in feature space and assigns a margin based on the distance 

between the hyperplane and the points. Following this, the margins are maximised by 

the „support vectors‟ (the optimal points that should be lying on the boundary) in order to 

estimate an optimal separating hyperplane between the two classes (Witten and Frank, 

2005). This hyperplane, from the maximized margins, is used as a criterion for 

subsequent classification.  
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In the case of models such as logistic regression and linear discriminant analysis, 

the decision boundaries between classes are separable using linear class boundaries. 

The SVM classifier is an extension of the linear approaches for cases where the classes 

are non-separable or overlap in feature space (Hastie et al., 2009). To account for 

overlap between classes, the SVM classifier reduces the weight of data points that fall 

into the wrong side of the hyperplane in order to reduce their influence on the 

classification. In order to implement nonlinear class boundaries for the classification of 

complex datasets, a SVM applies a linear model to the feature space of the training 

dataset, which has been transformed into a higher-dimensional space using a 

polynomial or radial basis expansion, in order to create a linear-like space that may be 

separated using a hyperplane. As a result, a linear hyperplane in the transformed space 

becomes a nonlinear hyperplane in the original non-transformed space (Witten and 

Frank, 2005).  

SVM is a relatively common classification technique used for land-use and land 

cover mapping with remotely sensed data (e.g. Huang et al., 2002; Melgani and 

Bruzzone, 2004; Mountrakis et al., 2011; Pal and Mather, 2005; Ocak and Seker, 2013); 

however, the use of SVM for classification is less common in DSM. Several applications 

of SVM have included Kovačević et al. (2010) for predicting soil chemical and physical 

properties and taxonomic units; Ahmad et al., (2010) for estimating soil moisture with 

remote sensing data; and Priori et al. (2014) where soil texture and stoniness was 

mapped using γ-radiometric data. 

1.2. Research Problem 

Despite the many uses of DSM products, the availability of high-resolution digital 

soil data for British Columbia (BC) – especially at regional scales – remains limited. 

Currently, the digital soil dataset with the most comprehensive coverage of British 

Columbia is the Soil Landscapes of Canada (SLC) dataset, which is provided by the 

Canadian Soil Information Service (CanSIS). The SLC dataset was created through the 

digitization of a combination of provincial and regional scale soil survey maps and is 

provided in a polygon format at a 1:1,000,000 scale (Schut et al., 2011). The portion of 

the SLC that covers BC consists of 2,651 multi-component polygons with an average 
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polygon size of 380 km2 (Geng et al., 2010). In order to meet the requirements for 

global-scale DSM products (e.g. GlobalSoilMap.net) and to provide DSMs of soil 

properties in the raster format, the SLC data has previously been rasterized and the data 

was harmonized in accordance with global specifications (Hempel et al., 2012 and 

2013). Although the SLC may be useful for addressing national- and global-scale DSM 

needs, its usefulness is diminished when addressing regional- or local-scale needs due 

to its small mapping scale. Another potential DSM product for BC may be extracted from 

the SoilGrids1km project, which captures more detail in comparison to the SLC; 

however, very few data points were obtained for BC to train the models. Consequently, 

any predictions made for the province may not be reliable in comparison to predictions 

made in the USA and Mexico, where the sample densities were drastically higher (Hengl 

et al., 2014).  

Although detailed soil surveys have been developed for BC at scales ranging 

from 1:25,000 to 1:125,000, those detailed soil surveys cover less than 50% of BC 

(Bulmer et al., 2016). In addition, existing soil surveys for forested and northern regions 

were either mapped at smaller map scales than used when mapping agricultural regions 

or they were not mapped at all. However, existing legacy soil maps are still a useful 

resource in developing training data for predicting soil distributions for unmapped 

regions, as well as in the refinement of existing soil surveys using machine-learning 

techniques.  

Examples of where legacy soil survey maps have been used as training data for 

DSMs have included studies such as Bui and Moran (2001, 2003), Moran and Bui 

(2002), Grinand et al. (2008), Odgers et al. (2008), and Kempen et al. (2008), where 

legacy soil survey maps for Australia, France, USA, and Netherlands were used to fill the 

gaps in coverage as well as the refinement of existing surveys. However, these studies, 

as well as most other studies in the DSM literature, provide a limited rationalization for 

their model choice where only one type of model was used. For instance, Bui and Moran 

(2001, 2003), Moran and Bui (2002), Grinand et al. (2008) and Odgers et al. (2008) only 

tested decision tree algorithms, while Kempen et al. (2008) only tested a multinomial 

logistic regression. In fact, there is a clear research gap in terms of how different models 

perform in DSM when using the same training data. Model comparison studies have 
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generally been few in the DSM literature, with some notable exceptions such as 

Taghizadeh-Mehrjardi et al. (2015) and Brungard et al. (2015) that compared 6 and 11 

models, respectively, using pit-derived training data. However, a model comparison 

study under the context of using soil surveys as training data has yet to be performed. 

Furthermore, an additional research gap exists regarding a direct comparison of the 

different types of training data where DSM studies typically only use pit-derived training 

data (e.g. Taghizadeh-Mehjardi et al., 2015; Brungard et al., 2015) or only soil survey-

derived training data – a comparison of these training data using the same set of models 

and environmental covariates has yet to be performed. 

In order to address the limited availability of digital soil data within the context of 

British Columbia; the limited number of model comparison studies; and the lack of a 

comparison between training data, the following research questions provide the impetus 

for this dissertation: 

1. Given the availability of digitized legacy soil survey maps for British 
Columbia, how may machine-learning techniques be used to extract the 
soil-environmental data from these maps and be used to predict the 
spatial patterns of soils?  

2. With the diversity of machine-learning techniques found within and 
beyond the DSM literature, how similar or dissimilar are soil predictions 
produced from different models using the same training data? What is the 
significance of performing model comparison studies in DSM? 

3. Within the DSM literature, data used to train models often come in the 
form of soil pit data or through the use of map units from legacy soil 
surveys in the polygon format – what are the differences in their usage as 
training data and how do they compare in terms of prediction accuracy? 

1.3. Research Objectives 

The main objectives of this study are: 

1. To develop a framework for extracting soil-environmental training data 
from detailed soil surveys and to test the framework in the prediction of 
soil types and parent materials at a regional-scale using machine-learning 
techniques.  
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2. To perform a comprehensive comparison of machine-learning techniques 
in DSM. 

3. To compare the accuracies of soil predictions produced using soil pit-
derived training data and soil survey-derived training data. 

1.4. Overview of Dissertation 

This dissertation consists of five chapters, where Chapters 2-4 are individual 

papers that were designed to address aspects of the objectives.  

Chapter 1 provides an introduction to DSM, where the background information, 

research problems and objectives are presented. Section 1.2 “Background Information” 

was designed to explore three themes: (1) a background of conventional soil surveys 

and their challenges; (2) a summary of common environmental covariates used in the 

DSM literature; and (3) an overview of machine-learning techniques that have been used 

for DSM and some techniques that have yet to be used in DSM.  

Chapter 2 directly addresses Objective 1 of the dissertation and explores three 

methods for extracting training data from conventional soil survey maps and the Random 

Forest (RF) machine-learner was tested as a classification algorithm. The framework 

and the RF algorithm were tested for mapping soil parent material for the Lower Fraser 

Valley of BC. Secondary objectives included (1) testing the necessity of optimizing the 

parameters of the RF model and (2) testing a variable reduction technique for improving 

predictions. 

Chapter 3 was designed to demonstrate the importance of model comparison in 

DSM studies by comparing a suite of 10 machine-learners (CART, CART with bagging, 

MLR, LMT, RF, kNN, SVM-Lin, SVM-RBF, and ANN) and comparing their accuracies in 

order to address Objective 2. Here, the model comparison was performed on the Lower 

Fraser Valley for mapping soil Great Groups and Orders as a case study, where training 

data was extracted using the same framework presented in Chapter 2. Secondary 

objectives included (1) the testing of methods for addressing the issue of class 

imbalance in training data – an issue identified in Chapter 2 and (2) the use of allocation 

and quantitative disagreement as accuracy metrics. 
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 Chapter 4 addresses a research gap that was identified in Chapter 3 and 

Brungard et al. (2015), where most DSM literature used only training data derived from 

either soil pit data or soil survey data and where comparisons between the two had yet 

to be made. To meet Objective 3, this study developed training data from soil surveys 

using the same framework in Chapters 2 and 3, and compared it to the predictions made 

from training data derived using legacy soil pit data obtained from the BC Soil 

Information System. Predictions were made for soil Great Groups for the Okanagan-

Kamloops region of BC as a case study. Secondary objectives included (1) the 

comparison of 9 machine-learners; (2) the comparison between single-model learners 

(CART, MLR, LMT, and kNN) and ensemble-model learners (CART with bagging, MLR 

with bagging, LMT with bagging, kNN with bagging; and RF); and (3) the development of 

classification uncertainty maps.  

Chapter 5 summarizes the key research findings of this dissertation and 

summarizes contributions to the DSM literature. 
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Chapter 2.  
 
Predictive Soil Parent Material Mapping at a Regional 
Scale: A Random Forest Approach2 

2.1. Abstract 

This study evaluated the application of a Random Forest (RF) classifier as a tool 

for understanding and predicting the complex hierarchical relationships between soil 

parent material and topography using a digital elevation model (DEM) and conventional 

soil survey maps. Single-component soil polygons from conventional soil survey maps of 

the Langley-Vancouver Map Area, British Columbia (Canada), were used to generate 

randomized training points for 9 parent material classes. Each point was intersected with 

values from 27 topographic indices derived from a 100 m DEM. RF‟s mtry parameter was 

optimized using multiple replicates of 5-fold cross validation and parent material 

predictions were made for the region. Predictive parent material maps were validated 

through comparisons with legacy soil survey maps and 307 field points. Results show 

that predictions made by a non-optimized RF resulted in a kappa index of 89.6% when 

validated with legacy soil survey data from single-component polygons and a kappa 

index of 79.5% when validated with field data. Variable reduction and mtry optimization 

resulted in minimal improvements in RF predictions. Our results demonstrate the 

effectiveness of RF as a machine-learning and data mining approach; however, the 

need for reliable training data was highlighted by less reliable results for polygon 

disaggregation in portions of the map where fewer training data points could be 

established. 

 
2
 A version of this chapter has been published in “Heung, B., Bulmer, C.E., Schmidt, M.G., 2016. 
Predictive soil parent material mapping at a regional-scale: A Random Forest approach. 
Geoderma 214-215, 141-154.” 
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2.2. Introduction 

Soil parent material is the initial state of the soil system and the material from 

which soils are derived (Jenny, 1941). Soil type, soil development and the physical and 

chemical properties of soils are influenced by parent material. Information on parent 

material and its texture is recognized as a useful factor in soil erosion (Weaver, 1991; le 

Roux et al., 2007; Heung et al., 2013) and would also be beneficial to the evaluation of 

forest and agriculture productivity potential; the hydrologic characteristics of watersheds; 

the suitability of materials for construction; and the assessment of terrain stability. 

Furthermore, information on soil parent material may also be used for predictive 

ecosystem mapping (MacMillan et al., 2007) and digital soil mapping studies (McBratney 

et al., 2003).  

Soil parent material is the product of geomorphic processes interacting with 

bedrock over long periods of time. In British Columbia, glaciation during the Pleistocene 

Epoch was a dominant process in the evolution of the modern landscape, where the 

majority of parent materials in the region now consist of unconsolidated sediments 

deposited on the land surface by ice, gravity, water and wind (Luttmerding, 1981; Howes 

and Kenk 1988). The geomorphic processes of erosion and deposition that were active 

at a particular location during glacial, post glacial, and modern times have also created a 

mosaic of distinct landforms across the region where a close association exists between 

the topographic landscape form and the characteristics of the unconsolidated parent 

material. Parent materials are classified in this area, and throughout Canada, based on 

their mode of formation and transport (Howes and Kenk, 1997).  

The majority of digital soil mapping studies reviewed by McBratney et al. (2003) 

used bedrock geology as a surrogate predictor for parent material - an approach that 

may be adequate for environments where the soils are predominantly derived from 

residual materials. However, for environments influenced by glaciation where 

geomorphic transport processes have significantly influenced the nature and distribution 

of parent material; bedrock geology likely provides an incomplete depiction of the 

influence of parent materials on soil properties when it is used alone. Consequently, 

transported parent materials may not be well represented and the resulting maps would 
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potentially become biased in favor of residual materials (Lawley and Smith, 2008). For 

these reasons, improving the quality and accuracy of digital soil maps in glaciated areas 

require more detailed parent material maps that have been derived with the 

consideration of transport processes.  

Conventional soil maps and other resource inventories are commonly developed 

by delineating map units based on climate, ecological features, topography, parent 

material, bedrock geology, soil, and vegetation (Resource Inventory Committee, 1998). 

The importance of parent material as a soil-environmental variable is illustrated by the 

use of this variable as both a fundamental and distinguishing characteristic between soil 

types at all mapping scales. There is an especially strong relationship between map unit 

boundaries and topography, since the topography reflects the dominant geomorphic 

process and parent material characteristics (Hole and Campbell, 1985), and also 

because topography has a significant influence on vegetation and other ecological 

attributes that are often of interest to map makers. In addition, soil surveys are 

commonly based on aerial photo interpretation and the boundaries of the mapping units 

are determined based from the external expression of soil-environmental variables on 

the landscape (Webster and Wong, 1969; Beckett, 1971). Therefore, the derived map 

units on a conventional soil map tend to contain soil types with a defined set of parent 

material attributes while also maintaining a close association with topographic features in 

the landscape.   

In British Columbia, the only comprehensive soil parent material map is the 

national level Soil Landscapes of Canada geographic dataset (SLC; Schut et al., 2011). 

The SLC database consists of 12,728 multi-component map units, with multiple 

taxonomic soil classes, that are generalized from detailed soil surveys and are mapped 

at a 1:1,000,000 scale (Geng et al., 2010). Despite having a consistent map database 

and comprehensive geographic coverage, the use of such highly aggregated polygon 

data may not be appropriate for mapping the spatial patterns of parent materials at 

regional or local scales. At regional-scales, existing soil surveys are available for many, 

but not all, parts of British Columbia and may be used to obtain information on parent 

materials. Examples include the 1:25,000 and 1:50,000 scale maps for the Langley-

Vancouver Area (Luttmerding, 1980); 1:126,720 scale maps for the Tulameen Area 
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(Lord and Green, 1974); and 1:20,000 scale maps for the Okanagan and Similkameen 

Valleys (Wittneben, 1986) with areal extents of approximately 5472 km2, 4008 km2, and 

3895 km2, respectively. In addition, other sources of parent material information may be 

taken from surficial and bedrock geology maps such as those for the New Westminster 

Area (Armstrong, 1957) and the Vancouver Area (Armstrong, 1956); however, such 

examples were mapped at smaller spatial extents in comparison to soil surveys.  

Extracting the knowledge from existing soil maps is complicated because such 

maps typically include a large number of multi-component map units, and therefore lack 

a spatially explicit representation of the soil‟s class and attributes (Webster and Beckett, 

1968; Hole and Campbell, 1985; Zhu and Band, 1994). Despite these spatial challenges, 

soil maps still have the potential to provide useful information about soil-landscape 

relationships (McBratney et al., 2003; Bui, 2004); for instance, Bui and Moran (2001) 

have previously used the map units from soil surveys to train the C5.0 decision tree 

algorithm and to validate the algorithm‟s outputs – an approach that was further 

extended in subsequent studies that mapped the soils of the Murray-Darling Basin, 

Australia (Moran and Bui, 2001; Bui and Moran, 2003). 

Decision trees are data mining, machine-learning, and rule-induction algorithms 

that classify data by inferring the relationships between a dependent variable and a set 

of predictors (Bui and Moran, 2001). They consist of nodes and leaves where each node 

represents an if-then statement and the leaves are terminal nodes where a decision is 

made with respect to the class variable (Breiman et al., 1984). The aim of a tree-based 

model is to examine all predictors in order to identify optimal node splitting rules where 

the within-node homogeneity is maximized. However, the manner in which the splits are 

made is dependent on the tree-splitting algorithm that is used. 

The decision tree modeling approach has many advantages. Firstly, it is a 

particularly useful modeling approach for handling non-parametric data where the 

predictors are not characterized as having a specific distribution (Breimann et al., 1984). 

Secondly, decision trees are not sensitive to missing data, to the inclusion of irrelevant 

predictors, or to the presence of outliers. Furthermore, decision trees operate effectively 

using numerical, ordinal, binary, and categorical datasets. Finally, decision trees are well 



 

34 

suited for identifying complex hierarchical relationships between predictors and response 

variables, as well as the relationships between predictors (Díaz-Uriarte and Alvarez de 

Andrés, 2006; Hastie et al., 2009). Decision trees have been used extensively to map 

soil classes (Bui et al., 1999; Bui and Moran, 2001, 2003; Moran and Bui, 2002; Scull et 

al., 2005; Grinand et al., 2008); soil properties such as pH (Henderson et al., 2005), 

organic C, % clay, and total N and P (Bui et al., 2006, 2009), or natural drainage 

(Lemercier et al., 2012).  In addition, decision trees have also been used for the 

purposes of predictive soil parent material mapping (e.g. Bui and Moran, 2001; Lacoste 

et al., 2011; and Lemercier et al., 2012); however, further evaluation of these methods 

would be valuable and incorporating detailed predictions of the distribution of parent 

materials, based on topographic characteristics, would likely help such efforts. 

The Random Forest (RF) classifier is conceptually similar to a decision tree; 

except, an ensemble of decision trees are combined in order to improve the 

classification accuracy (Breiman, 2001; Cutler et al., 2007). For each decision tree in the 

RF, a random selection of predictors and training points are used to identify splits when 

building the tree. RF, a hierarchical non-parametric modeling approach, shares similar 

model advantages to decision trees (e.g. insensitive to missing data, to the inclusion of 

irrelevant predictors and outliers, and is flexible with various types of datasets); however, 

RF provides a stronger prediction as it is less susceptible to over-fitting and it provides a 

better error measurement in comparison to decision trees (Breiman, 2001). Furthermore, 

RF has the advantage of incorporating „randomness‟ into its predictions through 

reiterative bootstrap sampling and randomized variable selection when generating each 

decision tree. Additional characteristics of RF include its ability to provide variable 

importance measures and its ability to provide good predictions when noisy training data 

is used (Hua et al., 2005). 

RF has widely been used in the field of bioinformatics (e.g. Svetnik et al., 2003; 

Svetnik et al., 2004; Díaz-Uriarte and Alvarez de Andrés, 2006; Statnikov et al., 2008; 

Qi, 2012). In ecology, examples of studies that have used RF include the mapping of 

tree species distribution (e.g. Prasad et al., 2006); land cover classification (e.g. 

Gislason et al., 2006); ecological classification (e.g. Cutler et al., 2007); the mapping of 

soil organic matter (Grimm et al., 2008; Wiesmeier et al., 2011); and soil texture (Ließ et 
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al., 2012). With the exception of Häring et al. (2012) in using RF to disaggregate multi-

component soil polygons, RF has not been used extensively for mapping categorical soil 

properties such as soil taxonomic units or parent materials. 

The objectives of this study were to first evaluate the methods for extracting 

training data from soil survey data and the optimization of RF parameters; then, to test 

the reliability of using the RF classifier within single-component polygons in learning the 

relationship between parent material and topography; and finally, to evaluate RF as a 

potential method for disaggregating multi-component parent material polygons. The 

approach was based on the assumption that changes in parent material were closely 

associated with changes in topography; and hence, all environmental covariates were 

derived from a digital elevation model (DEM) at a 100 m spatial resolution. The proposed 

approach may be extended to other resource inventory mapping studies such as 

ecosystem mapping (Resource Inventory Committee, 1998) and forest inventory 

mapping (Natural Resources Canada, 2004) where conventional mapping also uses a 

combination of single and multi-component map units. 

2.3. Methodology 

The workflow for this study is based on the integration of a DEM and 

conventional soil survey maps for the development of training data; RF for modeling the 

hierarchical relationships between parent material and topography; and the use of point 

data and a conventional soil survey map for assessing model outputs (Figure 2.1). In 

order to select suitable training areas, the map units from a conventional soil survey map 

were first separated into two categories: map units with a single parent material (single-

component) used as training areas and map units with multiple parent materials (multi-

component). To produce a topography-parent material matrix for submission into the RF 

classifier, random points were generated within training areas and intersected with a 

suite of topographic indices derived from a DEM of the study area. Using the inputted 

matrix, the RF parameters were optimized and a variable reduction procedure was 

tested. The output of the RF classifier was a parent material map of the study area, 

which was then assessed using the original soil survey map and also external point data. 

In addition, the ability of RF to disaggregate polygons with multiple parent material 
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components was assessed using the multi-component map units that are not used in the 

development of the training dataset. 

 Study Area 2.3.1.

The 5472 km2 study area ranges from 49o00‟ N to 49o56‟ N latitude and 121o16‟ 

W to 123o11‟ W longitude with an elevational range of 0 - 2555 m above mean sea level 

and located in the Coastal Western Hemlock biogeoclimatic zone (Figure 2.2) (Pojar et 

al., 1991). The zone receives mean annual precipitation of 2228 mm where snowfall 

constitutes less than 15% of the precipitation. The study area consists of the Lower 

Fraser Valley, which has predominantly an agricultural and urban land coverage, and 

includes portions of the predominantly forested Coastal Mountain Range located along 

the northern region of the area. 

 The pre-existing soil survey identifies 139 distinct soil series with 9 mineral 

parent material classes (Luttmerding, 1981). Organic parent materials are found in 

depressions and cover 6% of the landscape; however, they were not predicted for this 

study. Although the distribution of organic parent materials is affected by topography, 

these parent materials are also strongly dependent on climatic as well as vegetative 

factors, which were not included in this study. In the soil survey, the parent material 

classes were subdivided into 20 subclasses (Table 2.1). In this glaciated landscape 

there are very few residual materials except at high elevation, and parent materials are 

almost exclusively derived from the depositional and erosive processes of glaciation, 

gravity, wind and water. At low elevations, fluvial material is the dominant parent 

material; however, both marine and glaciomarine materials are also common. At higher 

elevations, morainal materials are the dominant parent material. 
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Figure 2.1. Workflow diagram of predictive soil parent material mapping using a 
digital elevation model, conventional soil survey data, and Random 
Forest algorithm. Digital elevation model is used to generate 
topographic indices; the conventional soil survey is used to train the 
Random Forest model and to assess model outputs.  
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Most of the Lower Fraser Valley is underlain by sedimentary rocks from the 

Cretaceous period (and younger) with approximately 30 m to 150 m of unconsolidated 

deposits overlying the bedrock (Armstrong, 1957; Valentine et al., 1978). Due to glacial 

advance during the Pleistocene, ice accumulation with a thickness of 2500 m resulted in 

the submergence of land into the Pacific Ocean. Both glacial till and glaciofluvial 

materials were deposited over large areas during this time and during the subsequent 

ice retreat. As a result of the melting of glacial ice and isostatic rebound, marine and 

glaciomarine sediments from the Pacific are also common in the Lower Fraser Valley 

(Luttmerding, 1981). The mountainous area in the northern portion of the study area is 

part of the Pacific Ranges of the Coast Mountains, where the bedrock is derived from 

Late Mesozoic intrusive igneous rocks (Valentine et al., 1978). On steep slopes, the 

dominant parent material is colluvium while depositions of glacial till are most common in 

areas with gentle and moderate slopes (Luttmerding, 1981). Exposed bedrock is 

uncommon even in the upland portions of the study area.  

 Development of Training Data 2.3.2.

The soil map for the study area was created at a 1:25,000 scale for the Lower 

Fraser Valley and at a 1:50,000 scale for the Southern Sunshine Coast and Southern 

Coast Mountains (Luttmerding, 1981). The soil surveys were subsequently digitized into 

a seamless coverage and made freely available through Agriculture and Agri-Food 

Canada and the British Columbia Ministry of Environment (Kenney and Frank, 2010). 

Data layers for topographic predictors were calculated using British Columbia‟s 

Terrain Resource Information Management (TRIM) DEM (B.C. Ministry of Sustainable 

Resource Management). The 25 m DEM, originally derived from a triangulated irregular 

network (TIN) built from TRIM mass-points and break-lines, was then aggregated to a 

100 m spatial resolution. The 100 m DEM is freely available from HectaresBC.org 

(Hectares BC, 2012).   

Three successive mean filters with window sizes of 3 x 3, 3 x 3, and 5 x 5 cells 

were applied to the DEM in order to remove anomalous pits and peaks. Similar to 

MacMillan et al. (2003) and Li et al. (2011), it was found through preliminary work that 
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the successive smoothing procedure reduces local-scale noise and improves landscape-

scale signals. In Grinand et al. (2008), it was also demonstrated that the application of 

an adaptive mean filter was able to incorporate spatial context into their outputs and 

improve predictions using the Multiple Additive Regression Tree algorithm (MART). 

Table 2.1. Mineral parent material classes and subclasses from The Soils of 
the Langley-Vancouver Map Area (Luttmerding, 1981). 

Parent Material 
Class 

Code Parent Material Subclass Code 

Colluvial C 
Colluvial Deposits (>1m thick) Cb 

Shallow Colluvial (<1m thick) over Bedrock Cv 

Eolian E Eolian E 

Fluvial F 

Fluvial Deposits - Deltaic (Sandy) sF-D 

Fluvial Deposits - Deltaic (Silty or Clayey) zcF-D 

Fluvial Deposits - Floodplain (Sandy) sFp 

Fluvial Deposits - Floodplain (Silty or Clayey) zcFp 

Fluvial Deposits - Local Streams (Sandy) sF-S 

Fluvial Deposits - Local Streams (Silty or Clayey) zcF-S 

Fluvial Deposits - Fans Ff 

Glaciofluvial FG 
Glaciofluvial Deposits FG 

Eolian Veneer over Glaciofluvial Deposits E/FG 

Lacustrine L 
Lacustrine Deposits (Sandy) sL 

Lacustrine Deposits (Silty or Clayey) zcL 

Glaciolacustrine LG Glaciolacustrine Deposits  LG 

Morainal M 
Morainal (Glacial Till) Deposits M 

Eolian Veneer over Morainal Deposits E/M 

Marine W 
Marine Deposits (Clayey) cW 

Marine Deposits (Lag or Littoral) W 

Glaciomarine WG Glaciomarine Deposits WG 



 

40 

Table 2.2. Topographic derivatives derived from a 100 m spatial-resolution 
DEM. 

Landscape Representation Terrain Derivative Code Reference 

        

Local Landscape 
Characteristics Transformed aspect  ASPECT Zevenbergen and Thorne, 1987 

  Curvature CURVE Zevenbergen and Thorne, 1987 

  Elevation  ELEV   

  Slope length factor  LS Moore et al., 1993 

  Plan curvature PLAN Zevenbergen and Thorne, 1987 

  Profile curvature PROF Zevenbergen and Thorne, 1987 

  Slope  SLOPE Zevenbergen and Thorne, 1987 

  Tangential curve TANCUR Florinsky, 1998 

  Terrain ruggedness index TRI Riley et al., 1999 

  Total curvature TCURVE Wilson and Gallant, 2000 

        

Hydrologic Characteristics Convergence index  CONV Koethe and Lehmeier, 1996 

  Distance to nearest river RiDIST   

  Distance to nearest stream StDIST   

  
Modified relative hydrologic slope 
position mRHSP MacMillan, 2005 

  Relative hydrologic slope position RHSP MacMillan, 2005 

  Stream power index StPI Moore et al., 1991 

  SAGA wetness index SWI Böhner et al., 2002 

  Topographic wetness index TWI Beven and Kirkby, 1979 

        

Landscape Context Multiresolution ridge top flatness index MRRTF Gallant and Dowling, 2003 

  
Multiresolution valley bottom flatness 
index MRVBF Gallant and Dowling, 2003 

  Midslope position MSLOPE SAGA Development Team, 2011 

  Normalized height NHEIGHT SAGA Development Team, 2011 

  Slope height SLOPEH SAGA Development Team, 2011 

  Valley depth VDEPTH SAGA Development Team, 2011 

        

Landscape Exposure Sky view factor SKYVIEW Häntzshel et al., 2005 

  Terrain view TERVIEW Häntzshel et al., 2005 

  Visible sky VISSKY SAGA Development Team, 2011 
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Figure 2.2. Single-component parent material map units from the Langley-Vancouver Map Area (Luttmerding, 1981). 
Inset: study area in relation to British Columbia. 
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Topographic and hydrologic attributes for 27 topographic indices (Table 2.2) 

were calculated from the successively filtered DEM using the System for Automated 

Geoscientific Analysis (SAGA) (SAGA Development Team, 2011). The indices were 

selected based on their ability to represent basic landscape characteristics of the local 

neighbourhood (e.g. elevation, slope, aspect, and curvature); hydrologic characteristics 

at the watershed scale (e.g. wetness index, convergence index, and relative hydrologic 

slope position); and landscape context (normalized height, slope height, sky view and 

terrain view). In addition, the distance to nearest stream and distance to nearest river 

was calculated in order to account for the presence of local streams as well as the 

Fraser River that runs through the study area. 

 Development of Training Data 2.3.3.

Soil survey map units include attribute data for parent material subclass where 

5645 polygons contained a single parent material subclass that covered 29.8% of the 

study area while 3025 multi-component polygons contained either 2 or 3 subclasses that 

covered 55.0% of the study area (Figure 2.2). The remaining 15.2% of the study area 

included miscellaneous land types such as anthropogenic land, bedrock, gravel pits, ice, 

recent alluvium, rock outcrops, talus, and tidal flats where bedrock only accounted for 

0.4% of the study extent. To minimize the uncertainty in the training data, only polygons 

with a single-component of parent material subclass were used to develop the predictive 

model; however, it was also recognized that these polygons may have small inclusions 

of other components. Overall, the dominant parent material subclasses included silty or 

clayey fluvial floodplain material and glaciomarine sediments for the Fraser Valley; and 

morainal material (glacial till) along the Coastal Mountain Range (Figure 2.3). The most 

common parent material class is fluvial, which accounts for approximately 41% of the 

single-component polygon training data. In addition, many of the soils in the area have 

had varying amounts of eolian material added as a veneer (>1 m thick) to the surface 

layers. Where such additions were present only in the surface layers, or where they 

were considered to have a minor influence, the soil parent material was classified based 

on the dominant material below the eolian veneer. In other areas where eolian materials 

were dominant throughout the soil profile, the area was classified as having an eolian 

parent material. 
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Predictive models were developed using randomly generated training points 

within each single-component polygon, where the points were intersected with the 

values for each topographic attribute and its parent material subclass. Three different 

methods for developing the training dataset were used with different allocations of the 

training points according to the following approaches: (1) equal number of points per 

parent material subclass, (2) equal number of points per polygon, and (3) the number of 

points was determined as an area-weighted proportion of the subclass‟ extent over the 

entire study area. For each sampling strategy, n = 28225 training points, with an average 

sampling density of 9.4 samples/km2, were used as inputs for RF. The number of 

training points was selected based on the equal number per polygon sampling scheme 

where 5 points were randomly generated within each of the 5645 polygons with a single 

parent material subclass. 

 Random Forest 2.3.4.

To establish the hierarchical relationships between parent materials and 

topography, the randomForest package in the statistical software, R, was used (Liaw 

and Wiener, 2002; R Development Core Team, 2012). The RF classifier uses numerous 

decision trees, ntree, that are grown from bootstrap samples of the entire sample 

population, n (Breiman, 2001). The bootstrap sampling makes RF less sensitive to over-

fitting in comparison to decision trees. Initially, the RF classifier uses a bootstrapped 

sample to grow a single RF tree. At each binary split, the predictor that produces the 

best split is chosen from a random subset, mtry, of the entire predictor set, p, where the 

number of predictors tried at each split, mtry, is defined by the user. As a result, mtry is 

recognized as the main tuning parameter of RF and should therefore by optimized 

(Svetnick et al., 2003; 2004) The tree growing procedure is performed recursively until 

the size of the node reaches a minimum, k, which is parameterized by the user (Hastie 

et al., 2009). Secondly, the remaining samples from the training dataset that was not 

used in the growing of a decision tree, the out-of-bag (OOB) samples, Xi, are inputted 

through the decision tree and a predicted class is assigned to each OOB sample, 

YOOB(Xi).  
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The resulting output of the RF is a single model that is accompanied with a single 

aggregated error estimate – the overall OOB error rate, EROOB, using the following: 

Eq. (2.1)         
-1∑       (  ) 

 
  1    , 

where the predicted class of a sample, YOOB(Xi), is compared against its actual class, Yi, 

using the indicator function, I (Breiman, 2001; Liaw and Wiener, 2002; Svetnick et al., 

2003). In Eq. (2.1), I has a value of 1 when YOOB(Xi   i  - otherwise I is 0. The OOB error 

is similar to k-fold cross validation (CV) and provides comparable values (Hastie et al. 

2009). As a result, RF and its OOB error rates may potentially be used when an 

independent validation dataset is not available.  

 In addition, the RF algorithm also provides two measures of variable importance: 

mean decrease in accuracy (MDA) and mean decrease in Gini (MDG). The MDA is a 

permutation-based measure of variable importance based on evaluating a variable‟s 

contribution to the prediction accuracy. The MDG also measures variable importance; 

however, it is based on the quality of each split (node) on a variable in a decision tree. A 

variable that produces high homogeneity in the descendent nodes results in a high MDG 

(Breiman, 2001). 

 In this study, the parent material training points, and their associated topographic 

attributes were used to train the RF classifier. The resulting non-spatial RF model was 

then applied to all unknown points in the study area using the set of topographic indices 

(Table 2.1). The output was a map of parent material subclasses in a raster format for 

the entire study area. 
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A)

B)

 

Figure 2.3. Coverage of single-component parent material polygons by (A) 
subclass and by (B) class from Soils of the Langley-Vancouver Area 
(Luttmerding, 1981). See Table 2.1 for a description of the parent 
material classes. 
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Optimization of mtry 

Based on preliminary results, ntree = 750 was use as it produced stable OOB error 

rates and was also small enough to maximize computational efficiency. In addition, a 

terminal node size of k = 1 was selected as an increasing k resulted in a monotonic 

increase in the OOB error rates. 

To optimize the primary tuning parameter, mtry values ranging from 1 to 27 were 

tested and the OOB error rates from 50 replicates for each mtry value were assessed. In 

addition, mtry values were further assessed using error rates obtained from 20 

replications of a 5-fold CV. Where mtry  = 1, a random predictor variable is selected at 

each node; contrarily, mtry = p has the same effect as bagging the predictors. 

Variable Reduction 

Variable reduction has previously been shown to result in slight error reductions 

(Svetnik et al., 2003; 2004), or to have minimal effect on the RF classifier (Xiong et al., 

2012) through the removal of potentially irrelevant predictor variables. In this study, 

variable reduction was tested in order to examine whether or not a smaller set of 

predictors would lead to an improvement in RF predictions based on the following 

algorithm adopted from Svetnik et al. (2003): 

1. The RF classifier was initially applied using the entire set of predictors. 
Variable importance, based on the mean decrease in accuracy, was used to 
rank the predictor variables. 
 

2. Using the variable rankings, the three least important predictors were 
removed. 
 

3. The training data was then partitioned into 5-folds for cross-validation and the 
error rates for each of the 5 cross-validation partitions were aggregated into a 
mean error rate. 20 replicates of 5-fold CV was performed. 
 

4. Steps 2 and 3 were repeated until 3 predictors remained. 

To test the effects of variable reduction, an initial variable importance plot was 

generated using the default settings of RF and the area-weighted sampling approach. 

Variable ranking was done using the MDA as it provides a more reliable measure of 

variable importance in comparison to the MDG (Bureau et al., 2003). 
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Since the choice of mtry depends on the total number of predictor variables (p), 

mtry was calculated as a function of p. Here, the mtry functions were defined as follows: 

mtry = p (bagging), p/2, p/4, and p1/2 (default setting). A resulting parent material 

prediction was generated using a reduced number of predictors with an optimal mtry 

function as a basis for comparison to the map produced using the entire variable set. 

 Assessment of Predictions 2.3.5.

Three approaches for assessing the predictions made by RF were used. Firstly, 

RF predictions were compared to the single-component polygons used as training areas 

from the soil survey. Secondly, RF predictions were compared to the multi-component 

polygons from the soil survey in order to examine RF‟s ability to disaggregate complex 

mapping units. Finally, the RF predictions were validated using point data. 

For assessment purposes, the raw parent material maps were reclassified by 

generalizing the 20 parent material subclasses to 9 classes in order to offset the limited 

number of field validation points for each parent material subclass. In addition, OOB 

error rates were recalculated in order to reflect this reclassification procedure. 

Furthermore, a preliminary study showed that RF performed better when the training 

data were derived from parent material subclasses and the results were later 

generalized to classes. 

Consistency with Single-Component Polygons 

Using Map Comparison Kit 3 (Van Vliet, 2003), overall agreement was calculated 

as the percentage of pixels that were correctly classified by RF and the disagreement 

with soil survey was calculated as the percentage of pixels that were incorrectly 

classified by RF. In addition, the kappa index, a measure of map agreement that 

considers map agreement that occurs by „chance‟, was also calculated for map 

comparison using the following (Visser and de Nijs, 2006): 

Eq. (2.2)      
P( )-P( )

1-P( )
 , 
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where P(A) represents the actual agreement fraction and P(E) represents the expected 

agreement fraction between the soil survey and the RF predictions. Because the 

„chance‟ factor is taken into account, the kappa index is consistently lower than the 

overall agreement. 

Disaggregation of Single-Component Polygons 

To evaluate the effectiveness of RF in disaggregating multi-component map 

units, the proportion of parent material classes specified for each unit in the soil survey 

was compared to the proportional extent of the predicted classes. Model residuals, εc,j, 

were calculated from the difference between RF‟s predicted extent,  ̂c,j [% of polygon], of 

a parent material class, c, for a polygon, j, and the parent material‟s estimated extent 

from the soil survey, nc,j [% of polygon] under the same polygon in the following: 

 Eq. (2.3)  εc,j =  ̂c,j - nc,j . 

Validation with Point Data 

Legacy soil pit data from the British Columbia Soil Information System (BCSIS) 

(Sondheim and Suttie, 1983), which consists of n = 248 points, were supplemented with 

additional data collected from fieldwork (between April and August, 2009; n = 59) in 

order to form an external validation point dataset with n = 307 points. Because the 

BCSIS data points were primarily located in the agricultural landscapes of the Lower 

Fraser Valley, supplemental data points were established along the Coastal Mountain on 

forested landscapes. Due to the forested and mountainous terrain, the supplemental 

data points were located along areas with good access and in places that reflected the 

range of materials present. To account for uncertainty in the location of the original soil 

pits, two levels of validation were used. At the first level, a predicted cell was considered 

valid if the validation point matched the prediction at that exact location (r = 0). At the 

second level, if a validation point matched a predicted cell that was located within a 

radius of 1 cell (r = 1), or within 100 m, surrounding the validation point, the predicted 

cell was considered valid. 
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2.4. Results & Discussion 

 Development of Training Data 2.4.1.

In general, the OOB error rates produced from RF‟s internal validation were 

similar to the disagreement with soil survey rates (Figure 2.4A). For the equal sampling 

by polygon approach, however, the OOB error rates were more than 10% lower than the 

disagreement with soil survey for the colluvium, glaciolacustrine, and morainal parent 

material classes. These discrepancies suggest that the OOB error rates may not be the 

most reliable measure of class error; hence, the overall agreement with soil survey and 

kappa indices were used to select the sampling approach used for the parameter 

optimization and variable reduction analyses. 

Overall agreement and kappa were highest for the area-weighted sampling 

approach when compared to the single-component polygons from the soil survey (Table 

3). Moran and Bui (2002) noted that the area-weighted sampling approach performed 

better because more training data points were used to represent geographically 

extensive classes in order to capture a greater amount of variability that occurs under 

these classes. In this study, it was observed that the area-weighted sampling approach 

resulted in a lower error in agreement with soil survey for the most common (majority) 

classes, which include fluvial, morainal, and glaciomarine parent materials. In 

comparison, the equal-class sampling approach was superior in predicting the minority 

classes (e.g. eolian, glaciolacustrine, colluvium, and lacustrine parent materials) (Figure 

2.4B). The discrepancy in performance between majority and minority classes was 

expected as machine-learning algorithms are recognized for their poor performance for 

minority classes (e.g. Kubat and Matwin, 1997; Van Hulse et al., 2007). 

Table 2.3. Overall agreement within single-component soil survey polygons 
based on sampling by equal number per polygon, equal-class, and 
area-weighted. 

Sampling Method RF Internal Validation Soil Survey 

  Out-of-Bag Error Overall Agreement Kappa 

  (%) (%) (%) 

By Polygon 7.8 86.6 82.9 

Equal-Class 7.0 90.3 87.1 

Area-Weighted 8.3 92.2 89.6 
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It was recognize that a potential problem that may arise with the use of the area-

weighted sampling approach was that such an approach would lead to an unbalanced 

training dataset – a common problem for various machine-learning approaches (Van 

Hulse et al., 2007; Van Hulse and Khoshgoftaar, 2009; Galar et al., 2011).  Despite 

these differences, this study was primarily aimed at producing a parent material map 

with the lowest overall error and, hence, the area-weighted sample set was selected for 

all remaining analyses. A rigorous study in addressing the issue of an unbalanced 

dataset was beyond the scope of this study; however, such a study would be of use in 

cases where a study‟s objective is to predict the presence of rare soils or unique 

features in a landscape.  

 Optimization of mtry 2.4.2.

The CV error rates reached a minimum when mtry ranged from 15 to 21; 

although, the increase of mtry from 11 to 15 only amounted to a minor decrease in CV 

error rate of 0.1% (Figure 2.5). In the optimization of RF‟s main tuning parameter, mtry, it 

was determined that the OOB error rate was a fairly adequate measure of the model 

error when compared to the 5-fold CV error rates. Generally, the OOB error rates were 

consistently lower than the CV error rates by a margin of roughly 1%. The lower OOB 

error rates were expected because fewer training points were used to build a RF using 

the partitioned 5-fold CV training dataset, which was further partitioned through 

bootstrap sampling. Based on 20 replicates of 5-fold CV, mtry = 11 was used; in addition, 

the smaller value of mtry was used in order to retain more of the „randomness‟ in RF‟s 

randomized variable selection process. 
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A) 

 

B)

 

Figure 2.4. (A) Out-of-bag error rates (%) and (B) disagreement with soil survey 
(%) by parent material class using sampling by polygon, equal-class 
sampling, and area-weighted sampling. 
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Figure 2.5.  Non-aggregated overall out-of-bag error rates and mean 5-fold CV 
error rates with respect to the number of predictor variables tried at 
each node (mtry). 
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 Variable Reduction 2.4.3.

Based on the MDA values from the variable importance plot generated by RF, it 

was observed that the most important variables were aspect, distance to nearest stream, 

convergence index, and distance to nearest river whereas slope-length, slope, plan 

curvature, and profile curvature were the least important (Figure 2.6). A detailed further 

examination between environmental covariates and parent material classes was beyond 

the scope of this study since the topographic indices were all derived from the same 

DEM; and hence, an inherently high level of cross-correlation between the indices would 

make such a detailed analysis to be highly complex. 

From this study it was determined that the CV error rates produced when mtry = 

p, p/4, p/2, and p1/2 remained fairly consistent until the number of predictors were 

reduced to p = 9 (Figure 2.7). As the number of variables reduced to p = 3, the CV error 

rates increased to 64% for each mtry function (not shown in Figure 2.7).  Overall, mtry = 

p/2 resulted in a slightly better overall performance; however, the difference in CV error 

rates in comparison to other mtry functions were less than 0.5%. Hence, it was found that 

variable reduction did not necessarily result in an improvement in RF performance with 

respect to the CV error rates. Furthermore, the minimal degradation in RF predictions 

when the predictors were reduced to p = 9 indicates that, for our study area, RF is 

insensitive to the presence of irrelevant predictors. These findings corroborate the 

results in Svetnick et al. (2003) and Xiong et al. (2012) where variable reduction 

algorithms were also tested. Although this study only examined a single approach for 

variable reduction, further studies may explore alternative dimension reduction 

approaches, such as the use of principal components as predictors for RF. 
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Figure 2.6. Variable importance plots based on mean decrease in accuracy 
using area-weighted sampling. See Table 2.2 for the description of 
predictor variables. 
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Figure 2.7. Non-aggregated mean cross-validation (CV) test error rates with 3 
predictor variables removed at each step using various mtry 

functions: mtry = sqrt(p); p/4; p/2; and p. 

 Assessment of Predictions 2.4.4.

Consistency with Single-Component Polygons 

There was a high overall agreement between the RF predictions and single-

component polygons from soil survey data (Table 2.4). Based on the overall agreement 

with soil survey data, mtry optimization resulted in a minimal effect when the entire 

variable set was used while variable reduction increased the overall agreement by 0.9% 

when compared to the optimized RF using 27 predictors. Kappa indices indicated a high 

overall agreement between predicted parent material maps and the soil survey data. The 

optimization of mtry and variable reduction, however, increased kappa minimally. 

By examining the various error rates for each parent material class (Figure 2.8), it 

was observed that mtry optimization had a minimal effect on improving the agreement 
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materials. Improvements in agreement for these classes were less than 0.5%. 

Improvements in agreement with soil survey data occurred primarily for the minority 

classes such as eolian, colluvium, and glaciolacustrine, which had an increase in 

agreement of 3.0%, 4.3%, and 12.5%, respectively.  

Table 2.4. Classification accuracy measurements using non-optimized RF, 
optimized RF with no variable reduction, and optimized RF with 
variable reduction. 

Number of 
Predictors 

RF Internal 
Validation 

Soil Survey 
 

External 
Validation 
(R = 0 cell) 

External 
Validation  
(R = 1 cell) 

 

Out-of-bag 
Error 

 Overall 
Agreement Kappa 

Overall 
Accuracy Kappa 

Overall 
Accuracy Kappa 

 
(%) (%) (%) (%) (%) (%) (%) 

Not 
Optimized 

27 
Optimized 

12 

8.3 
 

7.3 

92.2 
 

93.0 

89.6 
 

90.7 

77.5 
 

77.9 

69.1 
 

69.7 

85.0 
 

85.7 

79.5 
 

80.3 
27 7.7 92.8 90.4 77.5 69.2 85.7 80.4 

 By way of a visual comparison between the single-component parent material 

polygons and the continuous surface generated using RF (Figure 2.9), it was observed 

that RF was able to produce results that had patterns and boundaries that were 

qualitatively similar to the single-component polygons. Figure 2.9A shows a close-up of 

an area with low relief terrain, adjacent to the Fraser River, which is typical of the 

southern region of the study area and where fluvial, glaciofluvial, marine, and 

glaciomarine parent materials are most common. Based on the visual comparison and a 

low disagreement with soil survey for the listed parent materials, the RF results were 

fairly consistent with the single-component polygons for low relief terrain. This was to be 

expected since the majority of the training points were located in low relief terrains. In 

comparison, Figure 9b shows a close-up of an area with high relief terrain, which is 

typical of the northern region where the dominant parent material is moraine; however, 

the presence of colluvial, fluvial, and glaciofluvial deposits are also common. RF was 

able to produce parent material boundaries that were similar to single-component 

polygon boundaries; however, it was also noted that RF over-predicted the presence of 

morainal deposits and under-predicted the presence of colluvial deposits since the steep 

slopes were classified as morainal when colluvial materials were expected. 
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Disaggregation of Multi-Component Polygons 

Histograms of the distribution of model residuals, εc,j, were produced based on 

polygons where a parent material class, c, was a component of multi-component 

polygon, j (Eq. 2.3).  Examples for glaciomarine, fluvial, colluvial, and morainal parent 

materials using an optimized RF and p = 27 predictors are presented in Figure 2.10. In 

Figure 2.10, εc,j = 0 represents cases of multi-component polygons where the 

proportional extent of a parent material class estimated by the soil survey, nc,j, matched 

the extent of the same parent material class predicted by RF,  ̂c,j. Where εc,j > 0, the 

parent material class was over-predicted; conversely, where εc,j < 0, the parent material 

class was under-predicted for polygon, j. 

These results confirm the initial visual assessment from Section 2.4.3 and 

suggests that the topographic distinctions between morainal and colluvial deposits may 

be difficult for RF to detect. The distinctions between these parent materials were not 

entirely clear in the soil survey map (Luttmerding, 1981) for several reasons. Firstly, 

colluvial and morainal components were frequently coupled together in 481 multi-

component polygons; and therefore not included in the training dataset. Secondly, the 

soil survey was carried out at a 1:50,000 scale for the Coast Mountains whereas the 

Lower Fraser Valley was carried out at the 1:25,000 scale. Consequently, the smaller 

scale mapping of the Coast Mountains inherently resulted in greater generalization of the 

map units where localized colluvial deposits would not have been mapped as a single-

component map unit, but rather, a multi-component unit. The generalization of morainal 

and colluvial deposits into multi-component polygons would also explain the small 

number of single-component colluvium polygons that were available to train the RF and 

hence, the poor disaggregation of morainal-colluvial complexes. 
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A)

B) 

  

Figure 2.8.  Out-of-bag error rates (%), disagreement with soil survey (%), and 
error rates using validation points (%) by parent material class for a 
radius of R = 0 and R = 1 cells using (A) non-optimized Random 
Forest; (B) optimized Random Forest with  p = 27 predictor 
variables. 
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Figure 2.9.  Close-up map of single-component (pure) parent material polygons, RF results, and sample points overlaid 
on a hill-shade for (A) a low relief terrain and (B) a high relief terrain. The map uses an optimized mtry with p = 
27 predictor variables. 
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Figure 2.10.  Histograms of model residuals, εc,j, calculated as the difference 
between the predicted RF extent and the soil survey extent for each 
multi-component polygon, j. Histograms only consider polygons 
where parent material class, c, is a component of polygon, j. 
Histograms are based on an optimized mtry with p = 27 predictor 
variables. 
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The findings of using RF for polygon disaggregation are further summarized in 

Table 2.5. Most parent materials were not predicted by RF when they were not a 

component of a soil survey polygon, with the exceptions of morainal and fluvial 

materials. Both the optimization of mtry and variable reduction had little influence on the 

disaggregation of multi-component polygons. Colluvial, eolian, fluvial, glaciofluvial, 

marine, and glaciomarine materials were under-predicted when they were included as 

components of a polygon; whereas, lacustrine and morainal materials were over-

predicted. There were 815 instances where morainal materials were predicted in 

polygons where they were not identified in the soil survey; consequently, this inherently 

would have contributed to the under-prediction of the parent materials that were mapped 

as a component of a polygon. In contrast to the polygon disaggregation study in Häring 

et al. (2012), this study did not constrain the number of different parent material classes 

to the ones identified by the multi-component polygons in order to account for the 

inclusion of parent materials that were not recognized. Hence, the polygon components 

identified by the soil survey would have been under-predicted due to the presence of 

small inclusions of other parent materials in the polygons. 

Validation with Point Data 

When the predicted parent material maps were compared to the validation points 

(Figure 2.11), the overall accuracy and kappa indices were lower than the agreement 

with soil survey data (Table 2.4). It was observed that between 77% and 78% of the 

validation points matched the predicted parent material map exactly. Comparing the 

overall accuracy to the kappa index, there was a difference of 8%. Differences between 

the overall accuracy and kappa index suggest that there was a low to moderate 

probability that cells were correctly classified by chance. When examining the cells that 

were within a 1-cell (100 m) radius of a validation point, it was observed that the overall 

accuracy and kappa index increased by 8% and 10%, respectively on average. This 

suggests that the RF produced a fairly accurate map within 100 m with an average 

overall accuracy of 85% and an average kappa index of 80%. 
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Table 2.5. Descriptive statistics for model residuals, εc,j, calculated as the difference between the predicted RF extent 
and the soil survey extent of each parent material class, c, for each multi-component polygon, j. 

  
Parent Material Class n 27 Variables 

27 Variables + 
Optimization 

12 Variables + 
Optimization 

      Mean St. Dev. Mean St. Dev. Mean St. Dev. 

      (%) (%) (%) (%) (%) (%) 

Non-Component of 
Polygons

1 

Colluvium 1871 0.2 0.1 0.2 0.1 0.2 0.1 

Eolian 2969 0.0 0.0 0.0 0.0 0.0 0.0 

Fluvial 1989 7.4 0.5 7.8 0.5 7.8 0.5 

Glaciofluvial 2758 3.5 0.3 4.1 0.3 5.2 0.3 

Lacustrine 2924 0.2 0.1 0.2 0.1 0.2 0.1 

Glaciolacustrine 3015 0.0 0.0 0.0 0.0 0.0 0.0 

Morainal 2386 22.7 0.7 21.5 0.7 21.3 0.7 

Marine 2654 1.3 0.2 1.3 0.2 1.2 0.2 

Glaciomarine 2586 3.5 0.3 3.4 0.3 3.3 0.3 

  
       

  

Component of 
Polygons

2 

Colluvium 1154 -57.4 1.0 -56.8 1.0 -57.7 1.0 

Eolian 56 -61.4 4.1 -60.4 4.2 -61.1 4.1 

Fluvial 1036 -10.7 0.9 -10.4 0.9 -10.6 0.9 

Glaciofluvial 267 -29.7 2.4 -27.0 2.4 -25.9 2.5 

Lacustrine 101 16.3 3.5 17.6 3.5 15.9 3.8 

Glaciolacustrine 10 23.5 10.1 -65.9 7.8 -65.9 7.7 

Morainal 639 10.0 1.5 8.5 1.5 7.9 1.5 

Marine 371 -25.7 2.1 -24.4 2.1 -23.3 2.2 

Glaciomarine 439 -2.8 1.6 -4.4 1.6 -6.2 1.7 

1 Polygons where parent material class, c, is not a component of multi-component polygon, j. 
2 Polygons where parent material class, c, is a component of multi-component polygon, j.
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Figure 2.11.  Predictive parent material map using Random Forest at a 100 m spatial resolution with underlying hill-shade 
and overlying sample points for the Langley-Vancouver Map Area, British Columbia. The map uses an 
optimized mtry with p = 27 predictor variables. 
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Based on the validation using point data, mtry optimization and variable reduction 

resulted in little improvement in predictions for each parent material class (Figure 2.8). A 

comparison between the results produced with optimized RF and the results with 

variable reduction were similar with minimal differences (<1 %) in agreement with soil 

survey as well as with the validation points. For glaciolacustrine and colluvium classes, 

mtry optimization resulted in a 33% and 7.7% increase for those respective classes; 

however, the seemingly large increase is the result of a small sample size for those 

classes.  

 Map comparison using the single-component polygons from the soil survey data 

resulted in higher prediction accuracy compared to the prediction accuracy using the 

point data. These differences in accuracy are likely caused in part by the initial use of the 

soil survey data to stratify the training data for the RF model. Secondly, the soil survey 

polygons represent an aggregation of the soil-environmental conditions for each map 

unit whereas the point data may not necessarily be representative of the average 

environmental conditions from which map units are derived and from which the RF 

model is based on.  

2.5. Conclusions 

The objective of this study was to first evaluate methods for the extraction of 

training data from legacy soil data and the optimization of RF parameters. It was 

determined that the imbalanced area-weighted sampling resulted in higher overall 

agreement with soil survey with lower error rates for majority parent material classes 

such as fluvial, morainal, marine and glaciomarine materials; however, the prediction of 

minority classes was less successful. Using a balanced dataset improved the prediction 

of the minority parent material classes such as eolian, glaciolacustrine, colluvium, and 

lacustrine materials; however, overall agreement with soil survey decreased as a 

consequence. This research suggests that the selection of a sampling approach for 

training data should reflect the objectives of the study and whether the goal is to 

maximize overall accuracy or to maximize the accuracy of the minority classes. 

Furthermore, this research also suggests that the relationship between imbalanced 

multi-class training data and machine-learning approaches should be investigated 

further. 
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In terms of the optimization of RF parameters, this study has found through 

extensive CV testing, that both the mtry optimization and variable reduction had little 

effect in improving RF outputs. As a result, it was concluded that RF performs well with 

minimal user intervention through the parameterization of the model. In addition, it was 

found that RF was able to identify important predictors, internally, as the reduction of 

predictors resulted in marginal improvements in overall agreement with soil survey and 

overall accuracy. 

The second objective of this study was to assess the reliability of RF outputs 

within single-component polygons. It was determined that RF produced maps that had a 

high overall agreement with soil surveys and that RF was effective in extracting the 

relationships between parent material and topography. In comparison, however, it was 

also concluded that RF was not as effective in the disaggregation of multi-component 

parent material polygons. These results may illustrate the importance of the training 

dataset as much as the characteristics of RF, since our training data was concentrated 

in areas of the map with single-component polygons. This study has found that the RF 

classifier is an effective machine-learning and data mining approach. Our approach to 

developing a training dataset by extracting points from single-component polygons likely 

limited the performance of RF for disaggregation of multi-component polygons. 
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Chapter 3.  
 
A Comparison of Machine-Learning Techniques for 
Classification Purposes in Digital Soil Mapping3 

3.1. Abstract 

Machine-learning is the automated process of uncovering patterns in large 

datasets using computer-based statistical models, where a fitted model may then be 

used for prediction purposes on new data. Despite the growing number of machine-

learning algorithms that have been developed, relatively few studies have provided a 

comparison of an array of different learners – typically, model comparison studies have 

been restricted to a comparison of only a few models. This study evaluates and 

compares a suite of 10 machine-learners as classification algorithms for the prediction of 

soil taxonomic units in the Lower Fraser Valley.  

A variety of machine-learners (CART, CART with bagging, Random Forest, k-

nearest neighbour, nearest shrunken centroid, artificial neural network, multinomial 

logistic regression, logistic model trees, and support vector machine) were tested in the 

extraction of the complex relationships between soil taxonomic units (Great Groups and 

orders) from a conventional soil survey and a suite of 20 environmental covariates 

representing the topography, climate, and vegetation of the study area. Methods used to 

extract training data from a soil survey included by-polygon, equal-class, area-weighted, 

and area-weighted with random over sampling (ROS) approaches. The fitted models, 

which consist of the soil-environmental relationships, were then used to predict soil 

Great Groups and orders for the entire study area at a 100 m spatial resolution. The 

resulting maps were validated using 262 points from legacy soil data.  

 
3
 A version of this chapter has been published in “Heung, B., Ho, H.C., Zhang, J., Knudby, A., 
Bulmer, C.E., Schmidt, M.G., 2016. An overview and comparison of machine-learning 
techniques for classification purposes in digital soil mapping. Geoderma 265, 62-77.” 
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On average, the area-weighted sampling approach for developing training data 

from a soil survey was most effective. Using a validation of R = 1 cell, the k-nearest 

neighbour and support vector machine with radial basis function resulted in the highest 

accuracy of 72% for Great Groups using ROS; however, models such as CART with 

bagging, logistic model trees, and Random Forest were preferred due to the speed of 

parameterization and the interpretability of the results while resulting in similar 

accuracies ranging from 65-70% when using the area-weighted sampling approach. 

Model choice and sample design greatly influenced outputs. This study provides a 

comprehensive comparison of machine-learning techniques for classification purposes in 

soil science and may assist in model selection for digital soil mapping and geomorphic 

modeling studies in the future. 

3.2. Introduction 

Data mining may be defined as the automated or semi-automated process of 

uncovering patterns from large electronic datasets using trained models, where the 

patterns may then be used on new data for the purposes of prediction (Witten and 

Frank, 2005). The process of „training‟ a model is also synonymously described as a 

type of „learning‟, where „machine-learning‟ can be defined as the process of discovering 

the relationships between predictor and response variables using computer-based 

statistical approaches (Witten and Frank, 2005; Hastie et al., 2009).  

In soil science, machine-learning techniques have most commonly been used in 

the subfield of pedometrics for the development of predictive or digital soil maps (DSM; 

Scull et al., 2003; McBratney et al., 2003) due to developments in geographical 

information systems, availability of digital spatial data, and constantly advancing 

computer technology (McBratney et al., 2003). In DSM, the workflow for the 

environmental-correlation approach (McKenzie and Austin, 1993; McKenzie and Ryan, 

1999) entails the collection of soil point or polygon data that are co-located with a suite 

of clorpt soil-environmental variables (Jenny, 1941) in order to develop the training 

dataset (McBratney et al., 2003). The relationships between the soil and environmental 

covariates are fitted with a model, and the learned relationships are then applied to 

locations where soil data are not available. This generic procedure, a form of supervised 

learning, may be applied to the prediction of quantitative outputs (e.g. soil organic matter 
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content, clay content, pH, or electrical conductivity) using regression, or the prediction of 

qualitative outputs (e.g. soil taxonomic units) using classification (McBratney et al., 2003; 

Hastie et al., 2009). 

Numerous machine-learning algorithms are available, including the commonly 

used tree-based learners such as the classification and regression tree (CART) learner 

proposed in Breiman et al. (1984) and its extensions using bagging (Breiman, 1996) or 

boosting (Breiman, 1998) and, subsequently, the development of Random Forest (RF; 

Breiman, 2001). Other learners less commonly used in DSM include support vector 

machines (Kovačevic et al., 2010; and Priori et al., 2014), artificial neural networks 

(Aitkenhead et al., 2013; Priori et al., 2014; and Silveira et al., 2013), k-nearest 

neighbour (Mansuy et al., 2014), and linear approaches (Kempen et al., 2009; Vasques 

et al., 2014). With the notable exceptions of Brungard et al. (2015) and Taghizadeh-

Mehrjardi et al. (2015), the number of models compared in DSM studies have generally 

been restricted to a few models for each study (e.g. Cavazzi et al., 2013; Ließ et al., 

2012; Bourennane et al., 2014; Priori et al., 2014; Collard et al., 2014), rather than an 

expansive comparison where some learners, commonly used in other fields, have yet to 

be tested for DSM. 

The objectives of this study are (1) to evaluate and compare a suite of 10 

machine-learners as classifiers for the prediction of soil taxonomic units and (2) to 

evaluate different methods for generating training data from a conventional soil survey. 

The evaluation and comparison between the modeling approaches are based on a case 

study for the Lower Fraser Valley region of British Columbia, Canada, where the various 

classifiers are used to learn the relationships between soil taxonomic units and 

environmental covariates through the data mining of a conventional soil survey as 

described in Heung et al. (2014). In order to make a fair comparison between the 

learners, model parameters were all optimized to the training data. 

3.3. Methodology 

The methodology for this study follows the workflow provided in Heung et al. 

(2014) and is summarized here. The method entails the use of conventional soil survey 

maps where map units comprised of only a single taxonomic (single-component) unit 
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with the same soil Great Group were used as training areas for the machine-learners. To 

produce the training dataset, random points were generated within the single-component 

mapping units and intersected with a suite of topographic, vegetative, and climatic 

indices produced from digital elevation models (DEM), satellite imagery, and climate 

model outputs. Similar methods of sampling from conventional soil survey data may be 

found in studies such as Collard et al. (2014), Odgers et al. (2014), and Subburayalu et 

al. (2014). The resulting soil-environmental covariate matrix was then used to train the 

various machine-learners, and predictions were made for unsampled locations. The 

resulting output was a map of soil taxonomic units for the study area where model 

predictions were assessed for consistency with the original training area and also 

validated using legacy soil point observations. 

 Study Area 3.3.1.

The 5472 km2 study area ranges from approximately 49o00‟N to 49o56‟N latitude 

and 121o16‟W to 123o11‟W longitude with an elevational range of 0-2555 m above mean 

sea level, and is located in the Coastal Western Hemlock biogeoclimatic zone (Figure 

3.1; Pojar et al., 1991). This biogeoclimatic zone experiences a mean annual 

temperature range of 5.2-10.5 oC with a mean annual precipitation range of 1000-4400 

mm. In the southern region of the zone, where the study area is located, 15% of the 

precipitation is in the form of snowfall.  

The northern region of the study area encompasses portions of the Coastal 

Mountain Range and is predominantly covered by forests comprised mainly of a mixture 

of western hemlock (Tsuga heterophylla), Douglas-fir (Pseudotsuga menziesii), and 

western redcedar (Thuja plicata) tree species (Pojar et al., 1991). The soils of this area 

are classified as being mainly Ferro-Humic Podzols and Humo-Ferric Podzols derived 

dominantly from glacial deposits as well as colluvial deposits. In contrast, the southern 

region of the study area constitutes the Lower Fraser Valley where the land-use is 

primarily agriculture and urban. The soils of the Lower Fraser Valley are primarily 

derived from fluvial deposits at lower elevations while marine and glacio-marine 

deposits, originating from the Pacific Ocean, are found at higher elevations as a result of 

isostatic rebound due to glacial retreat. In general, Humic Gleysols and Rego Gleysols 

are common in this part of the study area (Luttmerding, 1981). 
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 Environmental Covariates 3.3.2.

A suite of 20 environmental covariates representing topographic, climatic, and 

vegetative indices were used as predictors for this study (Table 3.1). Information on 

parent material was not included in this study because it was previously shown in Heung 

et al. (2014) that the surficial materials were closely linked to topographic indices for this 

area. The use of bedrock geology was also considered; however, the soils in the region 

are primarily developed from transported sediments and hence the mineralogical 

characteristics of the underlying bedrock and transported sediments are most likely 

different. All environmental covariates were scaled because distance-based learners 

such as kNN and NSC require covariates to have a similar range in values. 

Topographic Indices 

26 topographic indices were calculated in the System for Automated 

Geoscientific Analysis (SAGA) (SAGA Development Team, 2011) using British 

Columbia‟s Terrain Resource Information Management (TRIM) DEM (B.C. Ministry of 

Sustainable Resource Management, 2002). The DEM was originally produced from a 

triangulated irregular network (TIN) developed from TRIM mass-points and break-lines 

at a 100 m spatial resolution. In order to reduce noise and anomalies in the DEM and its 

derived indices, three successive mean filters with window sizes of 3 x 3, 3 x 3, and 5 x 

5 cells were applied based on Heung et al. (2014).  
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Figure 3.1. Single-component soil Great Group map units from the Langley-Vancouver Map Area (Luttmerding, 1981). 
Inset: study area in relation to the province of British Columbia, Canada. 
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In addition, two distance metrics were also included as predictors: distance to the 

nearest stream and distance to the Fraser River. These distance metrics were calculated 

from stream polyline mapping from HectaresBC.org (Hectares BC, 2012) – a data 

repository that provides gridded data layers for the province of BC. These covariates 

were included as they were previously found to be important for capturing the distribution 

of fluvial sediments in the region (Heung et al., 2014). The topographic indices were 

selected in order to represent local scale morphometry (e.g. elevation, slope, aspect, 

and curvature); landscape scale morphometry (e.g. slope height, multi-resolution ridge 

top flatness, and valley bottom flatness); hydrological characteristics (e.g. wetness 

index, hydrologic slope position, and distance to nearest stream and river); and 

landscape exposure (e.g. sky view factor and terrain view) (Table 3.1). 

Since the topographic indices, with the exception of the two distance metrics, 

were calculated from the same DEM, a principal component analysis (PCA) was applied 

to the topographic covariates in order to reduce the number of variables used to train the 

learners as well as to remove predictor multi-collinearity. In the machine-learning 

literature, PCA is an appropriate step to take for the purposes of cleaning the covariate 

data (Witten and Frank, 2005) and has been shown to improve predictions for high-

dimensional datasets (Howley et al., 2006). The original set of 26 topographic covariates 

was reduced to the first 13 principal components, which together accounted for 95% of 

the cumulative variance. Other methods of dimension reduction have included the use of 

techniques such as correlation-based feature selection (Taghizadeh-Mehrjardi et al., 

2015); variable selection based on variable importance metrics from the RF algorithm 

(Brungard et al., 2015; Heung et al., 2014); and in Behrens et al. (2010), a PCA and an 

ANOVA filtering approach was compared as dimension reduction techniques. 

Climatic Indices 

Previous studies have applied temperature estimation from remotely sensed data 

to represent soil temperature for the prediction of soil taxonomic units (Chang and Islam, 

2000; Mansuy et al., 2014); however, such estimations of temperature, at the sensor-

level, often do not consider the effects from atmospheric transmission and absorption. 

Here, the land surface temperature (LST), corrected for atmospheric effects, was used 

as the climatic index where 14 cloud-free Landsat images retrieved from June to August 

and 5 images retrieved from November to February were used to calculate the average 
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LST for the years 2000-2014 during the winter (Nov – Feb) and the summer (Jun – Aug) 

seasons.  

In order to estimate LST, blackbody radiance at LST was calculated using Eq. 

3.1 (Coll et al., 2010): 

Eq. (3.1)  B(LST)   
Lsen- L

 

ε 
- 

1- ε

ε
L
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where B(LST) is the blackbody radiance at LST, Lsen is the at-sensor radiance, Lꜛ is the 

up-dwelling atmospheric radiance,  Lꜜ is the down-welling atmospheric radiance,   is the 

atmospheric transmittance, and ԑ is the emissivity value. Lꜛ, Lꜜ and   were obtained 

from NASA‟s Atmospheric Correction Parameter Calculator (Barsi et al. 2003) and ԑ was 

obtained for non-waterbody surfaces from Eq. 3.2 (Van de Griend and Owe, 1993): 

Eq. (3.2)   . 

To calculate the LST, an inversion of Planck‟s Law was applied (Ho et al, 2014): 

Eq. (3.3)  LST   
K2

ln(
K1

B(LST)
 1)

 , 

where K1 and K2 are thermal band calibration constants. Landsat bands 5, 7, and 8 

were obtained at a 120 m, 60 m, and 30 m spatial resolution, respectively, and 

resampled to a 100 m spatial resolution to match the grid size of the terrain attributes. In 

addition to LST, mean annual precipitation data was obtained from HectaresBC.org 

(Hectares BC, 2012). 

Vegetation Indices 

The Normalized Difference Vegetation Index (NDVI) and the Normalized 

Difference Water Index (NDWI) were used as vegetative indices. NDVI is commonly 

used to indicate the amount of healthy vegetation, and is defined as:  

Eq. (3.4)  NDVI   ( NIR-  
VIS) ( NIR  VIS ), 

e =
0.923 NDVI < 0.157
1.0094+ 0.047 × lnNDVI      0.157 £NDVI£ 0.727
0.994 NDVI > 0.727

ì

í
ï

îï
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where  NIR  and  VIS are surface reflectances in the near-infrared and visible red 

wavelengths respectively.  

NDWI can be used to quantify vegetation water content (Gao, 1996). Vegetation 

water content is known as one of the key variables that can strongly influence the land 

surface cooling by evapotranspiration. It may also reflect the size and health status of 

the vegetation, and be related to the amount of soil moisture.  NDWI is defined as: 

Eq. (3.5)  NDWI   ( NIR-  
MIR) ( NIR  MIR

 ), 

where  MIR is the surface reflectance in the mid-infrared wavelengths. 

As with the LST layers, 14 cloud-free Landsat images retrieved from June to 

August, and 5 images retrieved from November to February, were used to calculate the 

average NDVI and NDWI in the summer and winter. Landsat images were obtained at a 

30 m spatial resolution and resampled to a 100 m spatial resolution. 

 Development of Training Data 3.3.3.

The soil map used to determine the training areas was derived from a seamless 

digitized soil map for the Lower Fraser Valley, created at a 1:25,000 scale, and a map 

for the Southern Sunshine Coast and Southern Coast Mountains at a 1:50,000 scale 

(Luttmerding, 1981; Kenney and Frank, 2010). Using the soil survey, map units with a 

single-component at the Great Group taxonomic level of the Canadian System of Soil 

Classification (Soil Classification Working Group, 1998) were extracted and used as the 

training areas. The training area consisted of 3121 single-component map units (Figure 

3.1). The soil survey included 16 soil Great Groups, 6 soil Orders, and 4 miscellaneous 

land classes (bedrock, recent alluvium, rock outcrops, and talus slopes). Of the training 

areas, Humo-Ferric Podzols and Ferro-Humic Podzols were the majority classes that 

occupied 35% and 29% of the training areas respectively; whereas, minority classes 

such as Gray Luvisols, Folisols, Dystric Brunisols, Grey Brown Luvisols, and Sombric 

Brunisols each occupied < 0.1% of the training area (Figure 3.2). 
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Table 3.1. Environmental covariates derived from a 100 m spatial resolution 
DEM and 30 m Landsat imagery. 

Representation Environmental Covariate 

Local Scale Morphometry
1 

General Curvature  

Elevation 

Plan curvature 

Profile curvature 

Slope  

Slope length factor (Moore et al., 1993) 

Tangential curvature (Florinsky, 1998) 

Terrain ruggedness index (Riley et al., 1999) 

Total curvature (Wilson and Gallant, 2000) 

Transformed aspect  

 

Landscape Scale 
Morphometry

1
 

 

  

Multi-resolution ridge top flatness index (Gallant and Dowling, 
2003) 
Multi-resolution valley bottom flatness index (Gallant and 
Dowling, 2003) 

Mid-slope position 

Normalized height 

Slope height 

Valley depth 
  

Hydrologic Characteristics
1
 

 

  

Distance to nearest river 

Distance to nearest stream 

Modified relative hydrologic slope position (MacMillan, 2005) 

Relative hydrologic slope position (MacMillan, 2005) 

SAGA wetness index (SAGA Development Team, 2011) 

Stream power index (Moore et al., 1991) 

Topographic wetness index (Beven and Kirkby, 1979) 
  

Landscape Exposure
1
 

 

  

Sky view factor (Häntzschel et al., 2005) 

Terrain view (Häntzschel et al., 2005) 

Visible sky 
  

Climatic Indices 
 
  

Land Surface Temperature (Summer) (Ho et al., 2014) 

Land Surface Temperature (Winter) (Ho et al., 2014) 

Mean Annual Precipitation 
  

Vegetative Indices 

Normalized Difference Vegetation Index (Summer) 

Normalized Difference Vegetation Index (Winter) 

Normalized Difference Water Index (Summer) (Gao, 1996) 

Normalized Difference Water Index (Winter) (Gao, 1996) 
 

1. Principal component analysis was applied to topographic indices where the 26 indices 
were reduced to the top 13 principal components representing 95% of the cumulative 
variance.
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To create the soil-environmental training data matrix used to train the learners, 4 

methods of sampling the training areas were used: (1) equal number of sample points 

per Great Group (equal-class sampling); (2) equal number of sample points per polygon 

(by-polygon sampling); (3) the number of sample points determined as an area-weighted 

proportion of a Great Group‟s extent (area-weighted sampling); and (4) random over 

sampling (ROS) applied to the area-weighted sampling approach. Approaches (1-3) 

have all been used in previous DSM studies; for instance, Moran and Bui (2002) 

compared the equal-class and the area-weighted sampling approaches, Odgers et al. 

(2014) used by-polygon sample, and Heung et al. (2014) used all three. 

ROS is an approach that has been used with the intention of creating a 

„balanced‟ dataset where the number of samples for each class is equal. Whereas 

equal-class sampling (method 1) is a type of „random under sampling‟ (RUS) where 

training points are not duplicated, ROS duplicates the training points for the minority 

classes so that they equal the number of samples in the majority class (Van Hulse and 

Khoshgoftaar 2009; Van Hulse et al., 2008). The issue of class imbalance has been 

recognized as being influential on classification problems (e.g. Van Hulse and 

Khoshgoftaar 2009; Van Hulse et al., 2008), but has not been extensively studied in 

DSM, although recent studies such as Subburayalu and Slater (2013) and Heung et al. 

(2014) have examined the impact of different sampling methods on predictive mapping 

of discrete data. For each sampling method, with the exception of area-weighted with 

ROS, 15,605 training points were used with an average sampling density of 2.9 

samples/km2. The number of training points was chosen based on the by-polygon 

sample approach where 5 points were randomly generated within each map unit. In the 

case of ROS, where duplication of training points for minority classes are applied in 

order to match the number of training points for the majority class, 121,748 training 

points were generated. 

 Machine-learning Approaches 3.3.4.

The learners used in this study included: CART, CART with bagging, k-nearest 

neighbour (kNN), logistic model tree (LMT), multinomial logistic regression (MLR), 
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artificial neural network (ANN), nearest shrunken centroid (NSC), Random Forest (RF), 

linear support vector machine (SVM-Lin), and support vector machine with radial basis 

function (SVM-RBF) – all of which are available using the R statistical software (R 

Development Core Team, 2012) and the caret package (Kuhn, 2008). The caret 

package is particularly useful for model comparison studies as the package compiles a 

database of classification and regression algorithms from existing R packages and 

facilitates the optimization of model parameters and the selection of models through a 

repetitive cross validation (CV) procedure. As a result, users do not have to be familiar 

with the use of the original packages from which caret is compiled. Furthermore, the 

package is easily adaptable for spatial datasets.  

Parameter Optimization 

In order to make a fair comparison between the various learners, each learner 

was parameterized using a 5-fold CV procedure, where the training dataset was 

randomly partitioned into five subsets – four of the partitions, comprising 80% of the 

data, were then used to train the learner and the remaining 20% were used for 

validation. This process was repeated 5 times, using each fold for validation once. In 

order to account for the randomness from the partitioning, 10 replicates of 5-fold CV 

were used. For each learner, a range of parameter values were tested and the final 

predictions were made based on the combination of parameter values that produced the 

lowest averaged error rates from the CV procedure. Similar procedures were 

implemented in Brungard et al., (2015), Heung et al (2014), and Schmidt et al. (2008). 

 Assessment of Predictions 3.3.5.

Two approaches were used for assessing the predictions made by the learners. 

First, the predictions were compared to the mapping of the original training areas in 

order to assess the consistency of the predictions with the original soil survey. Secondly, 

the predictions were further validated using legacy soil point data. Assessments were 

done at two taxonomic levels: Great Group and order. To assess the results at the 

„order‟ level of taxonomy, the predictions made at the Great Group level were 

reclassified and aggregated to the higher level. 
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Consistency with Soil Survey 

To assess the consistency of predictions with the soil survey, the overall 

agreement (or proportion correct), C, was calculated as the percentage of pixels that 

were correctly classified by the machine-learner when compared to the single-

component map units.  

Validation with Point Data 

The external validation dataset used for calculating model accuracy consisted of 

n = 262 legacy soil pit data from the British Columbia Soil Information System 

(Sondheim and Suttie, 1983). In order to account for the uncertainties of the spatial 

location of the legacy soil pits, two levels of validation were done: (1) if the validation 

point matched the predicted pixel at the exact location, it was considered valid (r = 0) 

and (2) if the validation point matched a pixel within a radius of 1 pixel, it was considered 

valid (r = 1).  

In addition to calculating the overall agreement, the use of quantity disagreement 

(Q) and allocation disagreement (A) were also introduced in this analysis – both of which 

may be derived from an error matrix (Pontius and Millones, 2011; Warrens, 2015). The 

quantity disagreement, Q, represents the amount of difference between the validation 

and prediction dataset that is the result of disagreement in the proportion of each 

category and is calculated as follows: 

 Eq. (3.6)   Q   
1

2
∑ |p  - p

  |
 
  1  , 

where pi+ and p+i represent the row and column totals of the error matrix for ith class for j 

number of classes. Values of Q range from 0 to 1 where values close to 0 represent 

conditions where the proportions of coverage for each class between the validation and 

prediction datasets are in agreement. The allocation disagreement, A, represents the 

amount of difference between the validation and prediction dataset that is the result of 

disagreement in the spatial allocation of classes, given the class totals of the two 

datasets, and is calculated as follows: 
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 Eq. (3.7)       *∑ min(p
  
,p

  
)

 
  1 + -  , 

where C is the overall agreement. The values of A range from 0 to 1 where values close 

to 0 represent conditions where the spatial allocations for each class between the 

validation and prediction datasets are in agreement. Both Q and A are the result of 

decomposing the total disagreement, D, in the following relationship: 

 Eq. (3.8)  D = 1 – C = Q + A. 



 

86 

A)

 

 

Figure 3.2. Coverage of single-component map units by (a) soil Great Group 
and by (b) soil Order from the Soils of the Langley-Vancouver region 
(Luttmerding, 1981). Miscellaneous classes such as bedrock, recent 
alluvium, rock outcrops, and talus slopes are included. 
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3.4. Results & Discussion 

 Parameter Optimization 3.4.1.

The optimized parameter values and the averaged internal validation values with 

5-fold CV for each model using the 4 training data sampling methods are summarized in 

Table 3.2. It should be noted that models such as CART with bagging and MLR did not 

require parameterization while LMT only required the number of iterations for the 

LogitBoost algorithm (and hence an arbitrarily large number would be sufficient). As a 

result, predictions were efficiently made for these three models. Models that required 

parameterization while retaining efficiency included CART, kNN, and NSC due to the 

simplicity of those models and the minimal amount of time required for generating 

models for each CV fold. In terms of complex models, as classified by Brungard et al. 

(2015), models such as ANN, SVM-Lin, and SVM-RBF were extremely time consuming 

to parameterize. In the case of these models, parameters such as the number of units 

within a hidden layer (size) and decay weights (weights) for the ANN model and the cost 

parameter (c) and Gaussian smoothing parameter (sigma) for SVM have an infinite 

number of combinations for their values; hence, the challenge is the identification of an 

„optimal‟ combination of parameter values. Furthermore, SVM is inherently a 

computationally demanding model where an increase in the cost parameter results in an 

increase in processing time. This made the parameterization procedure extremely time 

consuming for large datasets in spite of the use of multi-core processing. Finally, 

parameters such as size for ANN and c for SVM have little intuitive meaning (Shawe-

Taylor and Cristianini, 2004). 
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Table 3.2. Parameter optimization values and internal validation rates for machine-learners requiring parameterization 
using 10 replicates of 5-fold cross-validation. 

MODEL
1,2 

EQUAL CLASS BY POLYGON 

  Correctness Optimized Parameters Correctness Optimized Parameters 

CART 0.38 maxdepth = 16 0.33 maxdepth = 7 

k-Nearest Neighbour 0.63 k = 2 0.57 k = 2 

Neural Networks 0.47 size = 20; decay = 0.3 0.40 size = 20; decay = 0.3 

Nearest Shrunken Centroid 0.37 threshold = 0.2 0.35 threshold = 0.1 

Random Forest
3 

0.78 mtry = 9; iter = 1000 0.72 mtry = 12; iter = 1000 

Support Vector Machine - Linear 0.57 c = 1000 0.42 c = 100 

Support Vector Machine - Radial Basis Function 0.75 c = 50; sigma = 0.1 0.69 c = 25; sigma = 0.25 

  
   

  

MODEL
 

AREA WEIGHTED AREA WEIGHTED + ROS 

  Correctness Optimized Parameters Correctness Optimized Parameters 

CART 0.61 maxdepth = 5 0.38 maxdepth = 14 

k-Nearest Neighbour 0.69 k = 4 0.98 k = 2 

Neural Networks 0.64 size = 20; decay = 0.1 0.44 size = 20; decay = 0.1 

Nearest Shrunken Centroid 0.55 threshold = 0.1 0.37 threshold = 0.1 

Random Forest 0.77 mtry = 12; iter = 1000 0.99 mtry = 9; iter = 1000 

Support Vector Machine - Linear 0.65 c = 100 0.63 c = 100 

Support Vector Machine - Radial Basis Function 0.76 c = 10; sigma = 0.1 0.99 c = 25; sigma = 0.5 

1. Multinomial logistic regression did not require parameter optimization. 
2. CART with bagging and logistic model tree are tree ensemble methods where an arbitrarily large number of trees were  
 grown (ntrees = 1000). 
3. Random Forest model is a tree ensemble method where an arbitrarily large number of trees were grown (ntrees = 1000). 
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Table 3.3. Consistency of model prediction with single-component soil survey polygons. 

  EQUAL CLASS BY POLYGON AREA WEIGHTED 
AREA WEIGHTED + 

ROS 

  Great Group Order
1 

Great Group Order Great Group Order Great Group Order 

CART with Bagging 0.67 0.77 0.54 0.70 0.79 0.88 0.78 0.88 

CART 0.29 0.38 0.36 0.52 0.62 0.78 0.40 0.51 

k-Nearest Neighbour 0.59 0.69 0.45 0.63 0.76 0.86 0.78 0.87 

Logistic Model Tree 0.61 0.73 0.43 0.63 0.73 0.87 0.73 0.84 

Multinomial Logistic Regression 0.45 0.58 0.42 0.64 0.64 0.81 0.44 0.57 

Neural Networks 0.49 0.61 0.44 0.64 0.63 0.78 0.22 0.33 

Nearest Shrunken Centroid 0.37 0.48 0.42 0.72 0.56 0.70 0.38 0.50 

Random Forest 0.69 0.79 0.55 0.72 0.79 0.88 0.80 0.89 

Support Vector Machine - Linear 0.54 0.67 0.42 0.63 0.65 0.83 0.56 0.70 

Support Vector Machine - Radial Basis Function 0.69 0.80 0.53 0.73 0.80 0.89 0.79 0.87 

1. Results for soil Orders are aggregated from predictions made from the Great Group level of soil taxonomy.



 

90 

Although RF may be considered to be a complex model (Brungard et al., 2015), 

the parameterization of the model was not a very time consuming task when compared 

to other complex models such as ANN, SVM-Lin, and SVM-RBF. The reason was that 

the main tuning parameter, mtry, which defined the number of random predictors tried at 

each node of a decision tree, had a finite number of potential values – the total number 

of predictors of the dataset. Furthermore, advances in parallel processing have led to the 

development of more efficient RF algorithms that greatly reduce the computational time 

required to parameterize RF through the use of R packages such as caret or sprint. 

 Consistency with Soil Survey 3.4.2.

Comparison of Machine-Learners 

Complex models such as CART with bagging, SVM-RBF, and RF generated 

models that were most consistent with the original soil survey – regardless of the 

sampling method used, with average overall agreements of 69%, 70%, and 71%, 

respectively (Table 3.3). In comparison, simple models such as CART and NSC resulted 

in very poor consistencies with soil surveys. The low consistency for NSC was likely the 

result of overlap in feature space between taxonomic units. The ambiguity in feature 

space was also observed by comparing the consistency between SVM-Lin and SVM-

RBF where the radial basis expansion allowed the SVM to produce a nonlinear 

separation plane between classes and improves model results when compared to SVM-

Lin.  

Several interesting connections between model complexity and consistency may 

be made from these results. Firstly, CART, CART with bagging, and RF are all tree-

based models that are successively more advanced than each other where ensemble 

learning and randomized variable selection each add a layer of complexity to the original 

CART model. With CART, only a single classification tree is expected to learn the 

complex relationships between a large number of categories (e.g. soil Great Groups and 

orders) and a large number of variables - the poorer predictions for this model might 

reflect the model‟s inability to handle such complex relationships. When ensemble-

learning methods were introduced to the model for CART with bagging, consistency is 
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drastically increased for all sampling methods. In the bagging procedure, the instability 

of a single-tree model is minimized through the aggregation of multiple models, which 

results in improved consistency (Breiman, 1996). In the case of RF, randomized variable 

selection is also applied and minimizes the potential model bias that occurs when a few 

predictors are used more often than others to generate the node-splitting rules (Breiman, 

2001). Therefore, it may be suggested that ensemble-learning and randomized variable 

selection are two techniques that improve the consistency of results with soil surveys 

where the relationships between variables are complex. 

The second interesting connection occurs between the MLR and LMT classifiers. 

Both these models are related; however, LMT is an advancement of MLR because it 

incorporates a tree-based structure on top of a linear classifier and thus increases model 

complexity. When the consistencies between MLR and LMT are compared, LMT shows 

an improved consistency regardless of sampling method. The improvement would 

therefore seem to suggest that not only are the soil-environmental relationships 

complex, they also have a hierarchical structure. Although the reason for a hierarchical 

variable structure is unclear, it may be partially due to the effects of soil forming 

processes operating at multiple scales. 

Influence of Training Data Development 

Even when using the same training dataset, the consistency of model predictions 

with soil survey differed markedly between individual learners and the sampling 

approach for developing the training dataset (Table 3.3). Area-weighted sampling 

resulted in the highest consistency when using overall agreement for assessment where 

the single-component map units were used for comparison. When the area-weighted 

sampling approach was compared to a balanced training dataset, such as equal-class 

sampling (similar to RUS), there was a large decrease in overall agreement with an 

average decrease of 11% in agreement across all models. The implementation of ROS 

on the area-weighted sampling approach generally resulted in a decrease in consistency 

or a negligible increase – as was the case with kNN, LMT, and RF. The sampling by-

polygon method, an intermediate between equal-class and area-weighted sampling 

methods, in terms of class balance, resulted in a lower consistency when compared to 
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area-weighted sampling; however, comparisons between equal-class and by-polygon 

sampling were mixed.  

 The overall model consistency metrics from Table 3 did not describe how 

well each model predicted individual soil taxonomic units for different sampling methods 

because the overall metrics were heavily biased in favour of the majority class. In our 

study area Humo-Ferric Podzols and Ferro-Humic Podzols accounted for 35% and 29% 

of the training area, respectively (Figure 3.2). For a better understanding of each 

individual class, the sampling methods, i, were ranked for each soil taxonomic unit for i 

 1, …, l based on the overall agreement for each taxonomic unit where the mean rank 

for each sample method, Ri, could be computed as 

 Eq. (3.9)      
1

l
 ∑ r  

l
  l  , 

where rij is the rank of the ith sampling method for the jth taxonomic unit. Furthermore, 

the standard deviation, SDi, of ranks was calculated as: 

 Eq. (3.10)      *
1

l
 ∑ (r  -   )

2l
   +

0.5

. 

The sampling method that results in the highest consistency with soil survey for the 

various taxonomic units should have a low mean rank and standard deviation of ranks 

(Laslett et al., 1987; Odeh et al., 1994).  

In Figure 3.3, the mean ranks were plotted against the standard deviation of 

ranks for the four models that had the highest consistencies with soil surveys (CART 

with bagging, RF, SVM-RBF, and kNN), where sampling methods that are closest to the 

origin of the plot represent the best prediction for the most soil Great Groups and orders. 

Area-weighted sampling with ROS resulted in the highest consistency for the most 

number of classes with a minimal decrease in consistency to the majority classes when 

using CART with bagging, RF or kNN, where RF and kNN appear to have benefited the 

most from ROS. For both these models, ROS resulted in a higher ranking for both 

majority and minority classes when compared to area-weighted sampling; furthermore, 

both models resulted in the best overall model consistency when ROS was used (Table 
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3.3). For CART with bagging and SVM-RBF, there appeared to be a trade-off between 

the consistencies within individual classes and the overall consistency. 

 

Figure 3.3. Mean rank plotted against the standard deviation of ranks for 
individual soil Great Groups (X) and soil Orders (O) based on 
predictions from (a) CART with bagging, (b) Random Forest, (c) 
support vector machine with radial basis function, and (d) k-nearest 
neighbour classifiers models using various soil survey sampling 
methods. AW = area-weighted sampling; EQ = equal-class sampling; 
BP = by-polygon sampling; and ROS = area-weighted with random 
oversampling. 



 

94 

 Visual Assessment 3.4.3.

Overall, the spatial patterns of the soil Great Groups were consistent with our 

understanding of soils in the study area. The key features include the presence of 

hydromorphic soils such as Humic Gleysols or Gleysols located at low elevations of the 

Lower Fraser Valley in close proximity to the Fraser River and the delta formed by the 

river; Humo-Ferric Podzols located at mid-elevations where there is improved drainage 

of the soils; and Ferro-Humic Podzols at higher-elevations along the Coast Mountains 

where the climate is cooler. Directions to accessing the high-resolution soil Great Group 

and soil Order maps for all 10 models and four sample approaches are provided in 

Section 3.7 “Supplementary Figures”. In general, the map units from the soil survey 

indicated a much greater diversity in soil classes along the Lower Fraser Valley and less 

diversity at higher elevations along the Coastal Mountain where this was partly due to 

the different map scales that these two regions of the study area were originally mapped 

at. As such, the map units were generally smaller within the valley where there was a 

greater diversity in soil classes with similar soil-environmental conditions; as a result, the 

model outputs appeared to have the greatest differences within the valley where simple 

models such as CART, MLR, and NSC were unable to capture the subtle differences in 

the feature space between the predicted classes. In the case of the CART models, for 

example, it was observed that spatial patterns produced by the models did not adhere to 

the physical features of the landscape – especially for Humic Gleysols. 

A visual comparison of results using the area-weighted sampling approach is 

shown in Figure 3.4 for a part of the study area that has a high diversity of soil Great 

Groups. In general, CART with bagging (Figure 3.4A), LMT (Figure 3.4D), RF (Figure 

3.4H), and SVM-RBF (Figure 3.4J) were effective in producing outputs with soil patterns 

and diversity of classes that were most similar to the training areas (Figure 3.4K). In 

comparison, models such as NSC (Figure 3.4G) and CART (Figure 3.4B) were not 

particularly effective because only 4 and 5 out of the potential classes were present in 

the outputs, respectively. Other models such as MLR (Figure 3.4E), ANN (Figure 3.4F), 

and SVM-Lin (Figure 3.4I) also did not reproduce the entire set of classes.  
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Results from using kNN (Figure 4.4C; Figure 4.5) were similar to the initial 

training areas; however, where the topography flattens along the Fraser River, the soil 

patterns become „blotchy‟ or „speckled‟ in appearance. The reason for this appearance 

may be over-fitting the model to the training data. In particular, the steps taken to 

optimize the parameters for kNN resulted in the selection of k values close to 1, where 

the decision boundaries between classes were effectively generated around a small 

number of training points. 

Methodologies used to generate the training data may result in drastically 

different outputs (Figure 3.5; Section 3.7). When the equal-class sampling was used, the 

complexity in the predicted soil patterns also increased due to the increased presence of 

minority classes within the training data; however, the increased complexity in the 

predicted patterns was not necessarily consistent with the known soil patterns of the 

area. For example, organic soil Great Groups (Fibrisols, Mesisols, Humisols, and 

Folisols) were predicted in locations where they are not found in the study area. 

 Validation with Point Data 3.4.4.

Overall, the machine-learner and sample design that resulted in the highest 

overall accuracies included RF using area-weighted; RF using area-weighted with ROS; 

and CART with bagging using an area-weighted design – all of which had C = 58% for R 

= 0 validation for Great Group predictions (Table 3.4). When compared to the cells that 

were within a 1-cell radius (R = 1) of a validation point, kNN and SVM-RBF using area-

weighted with ROS resulted in the highest overall agreement of C = 72% (Figure 3.6). 

When the predictions were aggregated to soil Orders, CART with bagging and RF both, 

with the area-weighted sample design, had the highest overall agreement with C = 70% 

using R = 0 validation; however, SVM-RBF with area-weighted sampling (and with ROS) 

and RF with area-weighted and ROS all produced results with a similar overall 

agreement of C = 68%. Using R = 1 validation, kNN and SVM-RBF with area-weighted 

and ROS produced the highest overall agreement of C = 80%. The following 

subsections describe specific comparisons between individual machine-learners and 

training data development methodologies.  
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Figure 3.4.  Close-up maps of soil Great Group predictions derived from the 
area-weighted training dataset using (A) CART with bagging, (B) 
CART, (C) k-nearest neighbour, (D) logistic model tree, (E) 
multinomial logistic regression, (F) artificial neural network, (G) 
nearest shrunken centroid, (H) Random Forest, (I) linear support 
vector machine, and (J) support vector machine with radial basis 
function learners. Training areas derived from single-component 
map units are shown in (K). Miscellaneous classes such as bedrock, 
recent alluvium, rock outcrops, and talus slopes are included. 
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Figure 3.5.  Close-up maps of soil Great Groups derived from area-weighted 
(AW), by-polygon (BP), equal-class (EC), and area-weighted with 
random over sampling (ROS) training datasets using k-nearest 
neighbour (kNN) and support vector machine with radial basis 
function (SVM-RBF) learners. Miscellaneous classes such as 
bedrock, recent alluvium, rock outcrops, and talus slopes are 
included. 
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Table 3.4. Classification accuracy metrics using overall agreement (C), quantity disagreement (Q), and allocation 
disagreement (A) using n = 262 validation points with r = 0 and r = 1-cell validation distances. 

 
1. Results for soil Orders are aggregated from predictions made from the Great Group level of soil taxonomy. 
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Figure 3.6.  Soil Great Group map using support vector machine with radial basis function at a 100 m spatial resolution 

with underlying hill-shade and overlying sample points for the Langley-Vancouver Map Area, British 
Columbia. 
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Comparison of Machine-Learners 

When the soil Great Group maps were compared to the validation points (Table 

3.4), the average overall accuracies, based on all sample designs, were between 26% 

and 52% for cases where the validation points matched the predicted map at the exact 

spatial location (R = 0). Among the different learners, RF outperformed all other models 

regardless of the sample design with an average overall accuracy of 52% while CART 

with bagging and SVM-RBF both produced results with a slightly lower average overall 

accuracy of 50%. When using R = 1 validation, there was a marked improvement in the 

average overall accuracy of the results where learners such as CART with bagging, 

kNN, LMT, RF, and SVM-RBF all had similar average accuracies ranging between 62% 

and 66%. The increased accuracy was partly attributed to having many validation points 

located near the boundaries of cells that were classified differently from the validation 

point. In terms of overall agreement, kNN benefited the most from using R = 1 validation; 

however, that substantial increase in agreement was probably related to the speckling of 

the kNN maps, where cells that were considered to be valid may have occurred due to 

chance. 

Decomposing the overall error into the quantity disagreement (Q) and allocation 

disagreement (A) helped explain the reasons why some models performed better or 

worse than others. For instance, both CART and NSC performed the worst with average 

accuracy rates of only 29% and 35%, respectively, when R = 1 validation procedure was 

used. The reasons for the low accuracy rates were attributed to high Q values of 0.52 

and 0.43 for the CART and NSC learners, respectively. The high Q values were due to 

the CART and NSC learners producing results with only 4 out of the 22 potential classes 

in the training data when using the area-weighted or by polygon sampling designs, which 

then caused large differences in the proportion of individual classes between prediction 

and validation datasets.  

When the Great Group results were aggregated into orders, the average 

increase in accuracy was 13%, regardless of whether or not R = 0 or R = 1 validation 

was used. The difference in overall accuracies between Great Groups and orders are 

the result of the subtle differences between different taxonomic units that occur at the 
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Great Group level of the hierarchical system that might not have been detectable by the 

models given the set of environmental covariates used and the spatial resolution of the 

results. For instance, the difference between a Eutric Brunisol and a Dystric Brunisol is a 

pH threshold of 5.5 – a differentiation that was difficult to model with the environmental 

covariates used in our study. 

The results were similar in terms of the relationship between model complexity 

and overall agreement in the results. The application of ensemble learning resulted in 

improved overall agreement when CART was compared to CART with bagging or RF; 

the implementation of a model tree structure was an improvement for MLR models 

without a hierarchical variable structure; and the use of nonlinear separation planes was 

an improvement when SVM-RBF was compared to SVM-Lin.  

When compared to other model comparison studies, the findings here were 

similar to those found in Brungard et al. (2015) where models such as CART, MLR, and 

NSC performed poorly. This is in contrast to the findings of authors such as Taghizadeh-

Mehrjardi et al. (2014, 2015) and Bourennane et al. (2014), where single decision-tree 

models were shown to produce accurate results.  Although it is difficult to explain the 

reasons for these differences, it may be speculated that models such as CART and 

single decision-trees might be more suitable when predicting only a few soil classes. For 

instance, Taghizadeh-Mehrjardi et al. (2014) predicted 6 soil classes, Taghizadeh-

Mehrjardi et al. (2015) predicted 5 soil classes, and Bourennane et al. (2014) predicted 3 

land surface types; however when the number of categories increases, in the cases of 

this study and Brungard et al. (2015), single decision-tree models were less effective. 

This would suggest that there may be a limit to the number of classes where single 

decision-tree models are an effective learner. Although this hypothesis is drawn from a 

rather small population of model comparison studies, the relationship between the 

number of categories and the effectiveness of machine-learners warrants further 

research in the future. 

In terms of the models that performed reasonably well, such as SVM-RBF and 

RF, our findings are consistent with those of Brungard et al. (2015) while in the case of 

Taghizadeh-Mehrjardi et al. (2015), the accuracy of predictions made by RF performed 
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competitively against other models despite not being ranked as the best. This would 

seem to suggest that SVM-RBF and RF are fairly effective as machine-learning 

techniques when using either legacy soil survey data or soil point data as training data; 

however, a direct comparison of these approaches should still be performed. 

Influence of Training Data Development 

Analysis of how sampling designs influenced the prediction of individual classes 

was not possible due to some classes having only a single or few sample points. As 

such, this section focuses on the overall performance of the sample designs and limits 

the analysis of individual classes to a visual assessment in Section 3.4.3. 

On average, the area-weighted sampling design resulted in predictions that had 

the highest overall agreement using R = 0 and R = 1 validation for soil Great Groups and 

orders. When ROS was applied to the area-weighted design, the results showed either a 

small improvement in overall agreement, such as a 5% improvement in Great Group 

prediction using R = 1 validation, or it decreased the overall accuracy by up to 23% in 

the case of using ANN. An interesting observation was that the by-polygon approach 

consistently had higher Q values for all predictions, indicating that the by-polygon 

approach was not effective in representing the class proportions between the predicted 

and validation datasets. A likely reason for this was that having a set number of sample 

points within each polygon did not account for the differences in the areal extent of each 

individual polygon. As a result, the method would not be truly representative of the total 

area occupied by each class in the training data; furthermore, the feature space 

occupied by large polygons would not be well represented in the training dataset. Similar 

observations were made in Moran and Bui (2002) and Heung et al. (2014). This was in 

contrast to the area-weighted and area-weighted with ROS where the areas of the 

polygons for each class were aggregated first and then followed with random 

oversampling; therefore, the likelihood of sampling from a large polygon was inherently 

higher than the likelihood of sampling from a small one. Overall, efforts to balance the 

initial training dataset resulted in little to no improvement to the overall accuracies of the 

predictions; however, the relationship between class imbalance and the accuracies of 

minority classes was still inconclusive due to the limited number of validation points 

representing the minority classes. 
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3.5. Conclusions 

This study compared 10 machine-learning techniques for mapping soil Great 

Groups and soil Orders using 4 approaches for developing training datasets from soil 

survey data. Key findings may be summarized as follows: 

1. SVM-RBF and kNN produced results with the highest accuracy for R = 1 
validation. In the case of SVM-RBF however, parameterization and the 
amount of time required to apply the model to new dataset was a 
challenge; hence, the use of SVM-RBF might be problematic for larger 
datasets. Although kNN also resulted in a high accuracy and was 
relatively efficient in terms of the parameterization process, the kNN 
learner might produce „speckled‟ results that are difficult to interpret – 
potentially due to over-fitting. Alternatives to these models would include 
the use of CART with bagging, LMT, or RF – all of which had similar 
accuracies and could be parameterized efficiently. 

2. The sampling method used to extract training data from soil surveys can 
greatly influence the resulting predictions – the area-weighted approach 
resulted in the highest overall accuracy. In an attempt to address the 
issue of class imbalance, it was observed that the equal-class sampling 
approach resulted in decreased accuracy when compared to the area-
weighted approach. Furthermore, the resulting maps showed soil patterns 
that were inconsistent with our understanding of the soils of the study 
area. Area-weighted with ROS approach resulted in minor improvements 
for some models; however, the amount of additional processing time 
required for parameterizing models makes the use of ROS unfeasible for 
larger datasets. 

3. An area of future research could lie in the extension of existing machine 
algorithms with techniques in ensemble learning through the use of 
bagging and randomized variable selection – as is the case with CART 
with bagging and RF. Further research could also be carried out in 
developing and testing model-tree learners that hybridize linear models 
with a tree-based structure in order to account for non-linear and 
hierarchical variable relationships – as is the case with the LMT learner 
that performed comparably reasonably well with other learners. 
 

Different machine-learning algorithms resulted in drastically different outputs. 

Future research in DSM, as well as in geomorphic or predictive ecosystem modeling, 

should not be restricted to a single learner or a small selection of them. Model 

comparison packages in R, such as the caret package, greatly increase the efficiency 

and ease of using and comparing multiple learners. 
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Chapter 4.  
 
Comparing the Use of Legacy Soil Pits and Soil 
Survey Polygons as Training Data for Mapping Soil 
Classes1 

4.1. Abstract 

Machine-learners used for digital soil mapping are generally trained using either 

data derived from field-observed soil pits or from soil survey polygons - although no 

direct comparison of the accuracy resulting from the two methods has yet to be 

undertaken. This study examined such a comparison over the Okanagan Valley and 

Kamloops region of British Columbia where good quality soil pit and soil survey data 

were available. A standard set of environmental variables including vegetative, climatic, 

and topographic indices were used to predict soil Great Groups in accordance with the 

Canadian System of Soil Classification. The pit-derived training dataset was developed 

using n = 478 points from the British Columbia Soil Information System while the 

polygon-derived training dataset was developed through random sampling of single-

component soil survey map units based on an area-weighted approach. In both cases, 

the training points were intersected with a suite of 18 environmental covariates, reduced 

from 21 covariates using principal component analysis, and submitted to a machine-

learner for predictions at a 100 m spatial resolution. Four single-model learners (CART, 

k-nearest neighbour, multinomial logistic regression, and logistic model tree) and five 

ensemble-model learners (CART with bagging, k-nearest neighbour with bagging, 

multinomial logistic regression with bagging, logistic model trees with bagging, and 

 
1
 A version of his chapter has been published in “Heung, B., Hodúl, M., Schmidt, M.G., 2017 
Comparing the use of legacy soil pits and soil survey polygons as training data for mapping soil 
classes. Geoderma 290, 51-68.” 
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Random Forest) were compared. Surfaces of prediction uncertainty were produced 

using ignorance uncertainty and results were validated using a 5-fold cross-validation 

procedure. Predictions made using polygon-derived training data were consistently 

higher in accuracy across all models where the Random Forest model was the most 

effective learner with C = 61% accuracy when using pit-derived training data and C = 

68% accuracy when using polygon-derived training data. Comparing single-model and 

ensemble-learner models, the bagging algorithm resulted in a 2-11% increase in 

accuracy when using pit-derived training data. Ensemble-models allowed for the 

visualization of prediction uncertainty. This study provides further insight into the use of 

legacy soil data and the development of training data for digital soil mapping. 

4.2. Introduction 

The soil-environmental variables identified in Jenny (1941) codified the concept 

of soil-environmental relationships, where easily measurable environmental properties 

could be used to predict soil properties. In digital soil mapping (DSM), the 

environmental-correlation concept (McKenzie and Ryan 1996), later formalized within 

the scorpan model (McBratney et al., 2003), takes spatial soil data and co-locates it to 

readily available environmental data such as digital elevation models (DEM) and 

remotely sensed data in order to form the training dataset for a type of supervised 

learning. The relationships between soil and environmental conditions are correlated 

through the fitting of a model using machine-learning and/or geostatistical techniques, 

where the soil-environmental relationships are then used to predict the soil properties for 

areas that have not been sampled. Furthered with increasing computational power, 

advancing remote sensing and GIS technologies, and the availability of accurate soil-

environmental data, the application of the environmental-correlation concept has been 

applied for the mapping of soil classes and attributes over progressively larger spatial 

extents and data sizes (Chaney et al., 2016; Hengl et al., 2014, 2015; McBratney et al., 

2003; Mulder et al., 2011, 2016). 

Within the DSM literature, training data for mapping categorical soil properties 

has typically come from one of two sources: soil pit data or soil polygon data that has 

been digitized from conventional soil survey maps (Brungard et al., 2015; Heung et al., 
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2016).  When using soil pit data for mapping soil taxonomic units, geolocated soil profile 

information is either recovered from a legacy soil database (Bui et al., 2006; Hengl et al., 

2014) or based on field data that were collected for specific studies (Brungard et al., 

2015; Rad et al., 2014). The use of pit data is particularly useful for situations when there 

is limited soil survey data available, when there is an existing database of field 

observations, or when the spatial resolution of existing soil surveys is too coarse. 

When using polygon data for model training purposes, the generic procedure 

typically involves the generation of training points within polygons where values from 

environmental covariates are extracted. This method has been used to map properties 

such as surficial geology and soil parent material (e.g. Bui and Moran, 2001) but has 

most commonly been used to map soil taxonomic units (e.g. Bui and Moran, 2001, 2003; 

Collard et al., 2014; Grinand et al., 2008; Odgers et al., 2014; Subburayalu and Slater, 

2013; Subburayalu et al., 2014). The methods for generating training points have varied 

amongst studies – some of which included an area-weighted approach where the 

number of randomly generated sample points for each class were proportional to the 

class‟ areal extent (e.g. Moran and Bui, 2002); a by-polygon approach where a set 

number of training points were randomly generated within each polygon (e.g. Odgers et 

al., 2014); equal class sampling where the number of randomly generated training points 

for each class were equal (e.g. Moran Bui, 2002); and a sampling approach that 

integrated expert knowledge in the selection of points (e.g. Bulmer et al., 2016). Studies 

that have compared some of these methods have typically identified an area-weighted 

approach to produce more accurate predictions, relative to other methods, as the spatial 

extent and variability of the largest classes were better represented within the training 

data (Moran and Bui, 2002; Heung et al., 2014, 2016). 

The main advantages of the polygon method include the ability for users to select 

an arbitrarily large sample size, which is beneficial for capturing more of the landscape‟s 

variability and the multivariate feature space of a categorical variable (Moran and Bui, 

2002; Heung et al., 2014, 2016); furthermore, this approach has also been shown to be 

effective for the refinement and improvement of existing maps through the 

disaggregation of complex map units (Collard et al., 2014; Häring et al., 2012; Holmes et 

al., 2015; Odgers et al., 2014; Subburayalu et al., 2014). A concern with this approach 
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has typically been related to the issue of map scale and the variability and purity within 

individual map units at given scales (Lin et al., 2005). For instance, in Heung et al. 

(2016), it was visually observed that as the map scale decreased from one region of the 

study area to another, there was a noticeable decrease in the diversity of soils that were 

predicted. Furthermore, soils developed from local-scale colluvial and fluvial processes 

were poorly predicted. The relationship between soil survey scale and the accuracy of 

predictions has also been observed in studies such as Bui and Moran (2003); in 

addition, that study also identified that the accuracy of predictions varied greatly even 

when soil surveys that were mapped at similar scales were used as training data due to 

differing survey methods and the time given to complete the survey. 

Although these two approaches have commonly been used in the DSM literature, 

studies such as Brungard et al. (2015), Heung et al., (2016), and Lacoste et al. (2011) 

have identified a potential research gap where these approaches have yet to be directly 

compared using the same suite of machine-learners and environmental covariates over 

a study area. As such, the primary objective of this study was to address the comparison 

between pit-derived and polygon-derived data as training data for predicting soil classes 

at the Great Group level of the taxonomic hierarchy, based on the Canadian System of 

Soil Classification (Soil Classification Working Group, 1998), for the Okanagan-

Kamloops region of British Columbia. Here, the pit-derived training data were obtained 

from legacy soil pit data taken from the British Columbia Soil Information System 

(BCSIS) (Sonheim and Suttie, 1983) and the polygon-derived training data were derived 

from legacy soil survey polygons using the framework provided in Heung et al. (2014). 

An identical suite of 27 environmental covariates and nine machine-learning algorithms 

for classification were tested on each of the two training datasets and as such, 

differences in the results could be constrained to the differences in training data. 

Secondary objectives included the comparison of nine machine-learning algorithms: four 

single-model learners and five ensemble-model learners. Validation of the predictions 

was performed using soil pit data and a cross-validation procedure. 
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4.3. Methodology 

 Study Area 4.3.1.

The study area was chosen due to the availability of both soil pit data and soil 

survey polygon data of high reliability and spatial quality, as well as a relatively high 

sampling density in the case of pit data. The study area represents a 47,350 km2 portion 

of south-central British Columbia (Figure 4.1) and is located at approximately 49.0° N to 

51.1° N latitude, 117.5° W to 120.8° W longitude, with an elevation range of 280-2720 m. 

There is a great diversity of ecosystem types within the study area with the 

Interior Douglas Fir (IDF) and Ponderosa Pine (PP) biogeoclimatic zones making up 

much of the valleys and the Bunchgrass (BG) zone at the lowest elevations. The IDF is 

the largest zone in the valleys, with a mean annual temperature of 1.6-9.5°C, and 300-

750 mm of precipitation, 15-40% of which falls as snow (Hope et al., 1991b). The zone is 

largely covered by mature stands of Douglas Fir (Pseudotsuga menziesii), although 

grasslands occur in some places. Soils here are primarily Luvisols and Brunisols, with 

Chernozems occurring in the grasslands. Due to the basic volcanic parent material and 

low leaching rates in the arid environment, the soils are considered to have a high 

nutrient status (Hope et al., 1991b). The PP zone occurs below the IDF zone, and is the 

driest and warmest forested zone in British Columbia, with a mean annual temperature 

of 4.8-10°C and 280-500 mm of precipitation. Soils here are much the same as in the 

IDF zone, consisting mostly of Chernozems and Brunisols. The lowest elevations, along 

valley bottoms of major rivers in the region, are occupied by the BG zone and is 

characterized by its warm, dry climate with sparse shrubs and grass cover, and 

Chernozemic soils (Hope et al., 1991a). 

Higher elevations are characterized by the forested Montane Spruce (MS) and 

Interior Cedar Hemlock (ICH) zones, with Engelmann Spruce Subalpine Fir (ESSF) and 

Interior Mountain Heather Alpine (IMA) zones located at the highest points (Ketcheson et 

al., 1991). The ICH zone has a mean annual temperature of 2.0-8.7°C, and 500-1200 

mm of precipitation of which 25-50% falls as snow. Humo-Ferric Podzols dominate at 

drier areas while Ferro-Humic Podzols and Gleysols occur in wetter areas. The MS zone 



 

115 

occurs at slightly higher elevations, leading to lower mean annual temperatures of 0.5-

4.7°C, and 380-900 mm of precipitation. The soils of the MS zone are mostly of the 

Brunisolic and Luvisolic orders formed from clayey volcanic parent material; however, 

Humo-Ferric Podzols can be found in areas that are moist with coarse parent materials 

(Hope et al., 1991c). The ESSF and IMA zones occur only at the highest elevations in 

the northeast portion of the study area, and represent only a small proportion of its total 

area.  

 Environmental Covariates 4.3.2.

27 environmental variables were derived from remote sensing, climate and digital 

elevation model (DEM) data (Table 4.1). In order to decrease multi-collinearity between 

the variables and computational demand, principal component analysis was performed 

on the topographic and vegetation data. The analysis resulted in a total of 18 covariates, 

which were then scaled in order to convert the covariate values into distributions with 

similar ranges – a procedure that is recommended for machine-learners (such as k-

nearest neighbors) where the decision boundaries for classes are defined based on the 

distance in feature space between observed and unobserved points. 

Topographic Indices 

Topographic indices were derived from a 100 m spatial resolution DEM of the 

study area, obtained from HectaresBC.org – a provincial repository of freely available 

environmental data. Consecutive smoothing was applied to the DEM in order to 

minimize the effects of spatially non-correlated noise on the calculation of topographic 

indices, in the form of three consecutive mean filters of 3 x 3, 3 x 3, and 5 x 5 pixels 

(Heung et al., 2014). All indices were calculated using the System for Automated 

Geoscientific Analysis (SAGA) suite of topographical analysis tools (SAGA Development 

Team, 2011). The topographic variables were selected based on their ability to represent 

local scale (e.g. elevation, slope, aspect, and curvature) and landscape scale (multi-

resolution ridge top flatness and valley bottom flatness; slope height and position; and 

valley depth) morphometric characteristics, hydrological characteristics (e.g. stream 

power index and wetness index), and landscape exposure (e.g. sky view factor and 

terrain view factor). To reduce computational time and improve prediction accuracy 
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(Howley et al., 2006), the initial 19 indices were reduced to their first 12 principal 

components, which accounted for 96.1% of the cumulative variance. 

Vegetative Indices 

Vegetative indices were derived from six Landsat satellite images with minimal 

cloud coverage. The Landsat images were obtained from the Landsat Surface 

Reflectance-Derived Spectral Indices dataset (Masek et al., 2006) as part of the USGS 

Landsat Higher Level Science Data Products. Spectral indices were calculated from 

surface reflectance images, which were calculated from Landsat data by applying 

atmospheric correction using the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS; Schmidt et al. 2013).  

Here, the Normalized Difference Vegetation Index (NDVI) was used to provide an 

indication of the amount of healthy vegetation and was formulated as follows: 

Eq. (4.1)  NDVI = ( NIR –  R) / ( NIR +  R), 

where  NIR and  R represent the surface reflectance of the near-infrared and visible red 

wavelengths respectively. In order to adjust for the effects of soil moisture and color, the 

Soil Adjusted Vegetation Index (SAVI; Huete, 1988) and the Modified Soil Adjusted 

Vegetation Index (MSAVI; Qi et al., 1994) were calculated where MSAVI has been 

shown to be more useful in areas with sparse vegetation coverage in comparison to the 

SAVI (Rondeaux et al. 1996). The SAVI was calculated as: 

Eq. (4.2)  SAVI = (1 + L) ( NIR –  R) / ( NIR +  R + L), 

where L = 0.5 was selected as the adjustment factor for vegetation density while MSAVI 

was calculated as: 

Eq. (4.3)  MSAVI = {2 NIR + 1 – [(2 NIR + 1)2 – 8( NIR –  R)]0.5}/2. 

The Enhanced Vegetation Index (EVI; Jiang et al., 2008), was used as a vegetative 

index that has been shown to minimize the effects of soil and atmosphere on satellite 

imagery and was calculated as: 
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Eq. (4.4)  EVI = 2.5( NIR –  R) / ( NIR + 2.5 R + 1). 

The Normalized Difference Water Index (NDWI) was calculated in order to provide 

information on the size and health of vegetation, soil moisture, and evapotranspiration 

and was formulated as follows (Gao, 1996): 

Eq. (4.5)  NDWI = ( NIR –  MIR) / ( NIR +  MIR), 

where  MIR represents the surface reflectance of the mid-infrared wavelengths. The five 

indices were reduced to the first three principal components, which accounted for 96.0% 

of the cumulative variance.  

Climatic Indices 

Climate data was taken from Climate BC (Wang et al., 2012), and accessed 

through HectaresBC.org. Three climate variables were used: mean annual temperature, 

mean annual precipitation, and number of frost free days. 

 Training Data 4.3.3.

This study compared the results produced training data derived from legacy soil 

pit data and training data derived from soil survey polygons. In both cases, training 

points were co-located with the environmental covariates and the soil-environmental 

matrix was submitted to the machine-learners for model training. 

Training Points using Legacy Soil Pit Data 

Pit data were obtained from the BCSIS database (Sondheim and Suttie, 1983), 

which is comprised of soil data from provincial and federal agencies and compiled from 

biophysical inventories, terrestrial ecosystem mapping, soil surveys, and habitat 

monitoring projects. A total of 478 individual field-observed points with a known soil 

Great Group were used for this project. Of the 18 classes, the majority classes included 

Eutric Brunisols, Dystric Brunisols, and Gray Luvisols, which consisted of 53% of the 

training points (Figure 4.2). 
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Training Points using Legacy Soil Survey Polygons 

The digitized soil survey data used for this study were obtained from the BC Soil 

Information Finder Tool (BC Ministry of Agriculture and BC Ministry of Environment, 

2016). The digitized data consisted of four soil surveys of the region: the Okanagan and 

Similkameen Valleys mapped at 1:20,000 scale (Wittneben, 1986); the Ashcroft Area 

mapped at 1:50,000 scale (Young et al., 1992); the Princeton Area mapped at 1:125,000 

scale (Green and Lord, 1979); and the Tulameen Area mapped at 1:50,000 scale (Lord 

and Green, 1974). 

To simplify the soil survey legend, the soil Series defined by the original soil 

surveys were reduced to soil Great Groups. In order to reduce the uncertainty in 

classification from within the training data, only single-component mapping units (pure 

polygons), based on soil Great Groups, were used as training areas. Of the study area, 

the coverage by single-component polygons occupied 53.2% (25,278 km2) of the entire 

extent (Fig. 4.3). First, polygons were rasterized to a 100 m spatial resolution where the 

training points selected were based on an area-weighted random sample of the pixels. 

The number of training points per class was selected from 5% of the areal extent of each 

class, which resulted in 129,465 training points. The 5% sampling density was selected 

in order to balance the need for an optimal sample size with concerns related to 

computational time when using datasets containing >100,000 training points (Heung et 

al., 2016). The majority classes included Humo-Ferric Podzols located in the forested, 

high-elevation regions of the study area; Dystric and Eutric Brunisols located in drier 

regions; and Gray Luvisols located along the transition zones between the grassland 

and forested areas (Fig. 4.2). 

 Machine-Learners 4.3.4.

This study tested two classes of machine-learners for classification: single-model 

learners and ensemble-model learners. Single-model learners included classification 

and regression trees (CART), k-nearest neighbour (kNN), multinomial logistic regression 

(MLR), and logistic model trees (LMT) while ensemble-model learners extended the 

single-model learners by coupling them with a bagging algorithm and thus included 

CART with bagging (CART+), kNN with bagging (kNN+), MLR with bagging (MLR+), 
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LMT with bagging (LMT+), and Random Forest (RF). Although this section will briefly 

summarize each model, more detail of the models are provided in Heung et al. (2016), 

where the models have been reviewed and compared. Model parameters were 

optimized using the cross-validation procedure described in Heung et al. (2014). All the 

modeling was done using the R statistical software (R Development Core Team, 2012) 

and the caret package, which included all the tested models (Kuhn, 2008). 

Single-Model Learners 

The kNN learner may be classified as a distance-based learner where an 

unobserved location is classified based on the distance to the nearest neighbouring 

point(s) within feature space using a distance function. As such, the main parameter of 

the kNN learner is in the selection of k, which determines the number of training points 

used to make a classification; as a result, when k = 1, the predicted location is assigned 

the class of the nearest neighbouring point in feature space and when k  > 1, the 

location is assigned based on a majority vote from multiple training points (Hastie et al., 

2009).  

Logistic regression models are one of the few linear models that have been 

applied in DSM and are used to represent dichotomous variables in probabilistic terms 

ranging from 0 (low probability of occurrence) to 1 (high probability of occurrence). In 

order to extend this model for multiclass purposes, individual logistic regression models 

are constructed for each class and generalized into the following multinomial model 

(Debella-Gilo and Etzelmüller, 2009; Kempen et al., 2009): 

Eq. (4.6)  p
 
  

exp (p )

exp(p ) exp(p ) … exp(p )
 ,  

where pi is the probability of a class (i) occurring at a location and the denominator 

represents the sum of occurrence probabilities for n classes. Class assignment is based 

on the class with the highest probability of occurrence. 

The classification and regression tree (CART) is a hierarchal modeling approach 

that consists of nodes and leaves, where at each node, it consists of an if-then 

statement that partitions the training data by maximizes the within-node homogeneity 
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and the between-node heterogeneity based on a node-splitting rule (Breiman, 1984). 

The advantages of tree-based models are in their ability to capture the non-linear 

relationship between predictor and response variables as well as the interactions 

between predictor variables. Although the CART model has been shown to 

underperform compared to others (Brungard et al., 2015; Heung et al., 2016), the model 

was used because of its shared characteristics with LMT and RF models. 

The LMT (Landwehr et al., 2005) classifier is a relatively new learner that has not 

often been used in the DSM or the machine-learning literature; however, in Heung et al. 

(2016) the model showed promise with results comparable to the predictions made by 

support vector machines and RF. Model trees, in general, are a type of hybridized model 

that combine  linear models with tree-based models and as such, they minimize the risk 

of over-fitting and under-fitting the data in the case of tree-based models and linear 

models, respectively. In the prediction of quantitative variables, examples of model trees 

include the Cubist and M5 model trees, where the terminal nodes (leaves) of a tree-

based model consist of a linear regression model (Quinlan, 1992). In the case of LMT, 

the terminal nodes consist of individual partial logistic regression models that have been 

iteratively fitted using a LogitBoost algorithm (Friedman et al., 2000), where the tree is 

reduced in size using the CART pruning procedure (Breiman, 1996). 

Ensemble-Model Learners 

Ensemble-model learners use multiple models that are integrated into a single 

predictive model with the intention of improving predictions when compared to single-

model learners (Rokach, 2010). In the machine-learning literature, the improvements in 

accuracy are particularly effective when a single-model learner is sensitive to 

perturbations in the training data (Breiman, 1996). Four key components form an 

ensemble-model: the training data; base inducer (single-model classifier); the diversity 

generator that incorporates perturbations into the modeling process; and a combining 

function that integrates the predictions of the individual single-models (Rokach, 2010). 

For this study, the base inducers tested included the CART, MLR, kNN, and LMT 

learners – as described previously. In order to generate a diverse set of learners, an 

independent ensemble approach was used where the predictions made by each single-
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model were independent of each other – as such, the bootstrap aggregation (bagging) 

method was applied (Breiman, 1996, 2001). When using the bagging method, single-

models are trained using a random bootstrap sample, with replacement, from the entire 

training dataset and the results are aggregated using a majority-vote combination 

function based on 100 iterations of the single-model learner. A bagging algorithm was 

chosen due to its effectiveness in reducing the impact of classifiers with a high variance 

such as CART and kNN (depending on the choice of k). As a result, CART+, MLR+, 

kNN+, and LMT+ ensemble learners were tested. In addition to CART+, the RF learner 

(Breiman, 2001) was also tested and differs to CART+ in that it includes an additional 

diversity generator that uses a subset of randomly selected predictor variables that are 

tested in making each node splitting rule. Although ensemble-modeling techniques result 

in a higher computational demand, processing time was minimized through the use of 

parallel processing. 

 Assessment of Predictions 4.3.5.

Predictions were evaluated using the BCSIS soil pits located within the study 

area. In order to account for validation points that were located along pixel boundaries, 

pixels were considered to be valid if the validation point matched a pixel within a radius 

of 1 pixel (Heung et al., 2014, 2016). To assess the consistency between soil survey 

polygons and the predicted results, single-component polygons were rasterized and 

accuracy metrics were calculated based on map comparisons. In addition, visual 

assessments were performed in order to evaluate the predictions based on expert-

knowledge of the soil-environmental relationships of the region. 

Accuracy metrics included overall agreement, C, which represents the 

percentage of correctly matched cases between prediction and validation datasets. In 

addition to the overall agreement, accuracy metrics included the calculation of the 

quantity disagreement (Q) and allocation disagreement (A) that could be calculated 

using the confusion matrices produced from the validation procedure (Pontius and 

Millones, 2011; Warrens, 2015). Both disagreement values are the result of 

decomposing the total disagreement, D, as follows: 



 

122 

 Eq. (4.7)  D = 1 – C = Q + A. 

Here, Q represents the amount of disagreement in the proportion of each soil class 

between the validation and prediction datasets and is calculated as: 

 Eq. (4.8)      
1

2
∑ |p  - p

  |
 
  1 , 

where pi+ and p+i represent the row and column totals of the confusion matrix, expressed 

as proportions of the population, for ith class for j number of soil classes. Values close to 

0 represent high agreement in the proportions of coverage for each class while values 

close to 1 represent high disagreement between class proportions. A represents the 

amount of disagreement in the spatial allocation of classes between the validation and 

prediction datasets and is calculated as: 

 Eq. (4.9)       *∑ min(p
  
,p

  
)

 
  1 + -  , 

where values close to 0 represent high agreement while values close to 1 represent high 

disagreement in spatial allocation for each class. 

To assess the predictions made using soil pit data, a 5-fold cross-validation (CV) 

procedure was applied. Training data points were randomly partitioned into five folds 

where 80% of the data were used to train the model used for the pit-derived predictions. 

The remaining 20% of the point data were reserved for validating the pit-derived results. 

In the CV procedure, each fold was used once for validation, which resulted in five sets 

of validation metrics which were then aggregated into an overall accuracy value. The CV 

procedure was necessary in order to make the best use of the limited sample size 

without the need for additional sampling while insuring independent validation. The 

polygon-derived results were also validated using the BCSIS point dataset in order to 

make a fair comparison between the results produced from the two different training 

datasets. In addition to using the soil pit data for validation, model results were 

compared to the single-component polygons in order to provide an indication as to how 

similar the soil pit-derived predictions were to the conventional soil survey maps. 
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 Prediction Uncertainty 4.3.6.

The use of ensemble-modeling techniques has the added benefit of being able to 

estimate the classification uncertainty from the individual models of the ensemble. For 

each pixel, a prediction of a soil Great Group was made by each member of the 

ensemble-model and the number of votes for which a Great Group was predicted by the 

member models was totalled into vote count surfaces that represent certainty for each 

class. Because each model was reiterated 100 times, values close to 100 would 

represent higher certainty of a particular Great Group occurring at that pixel. To 

represent overall uncertainty, ignorance uncertainty measures how evenly distributed the 

vote counts are for each class. When vote counts are more evenly distributed across the 

classes, the uncertainty is greater (Leung et al., 1993; Zhu 1997). In order to measure 

ignorance uncertainty, the information statistic, or entropy measure, H, was used to 

describe the degree to which the members of the ensemble-model concentrate their 

predictions to a particular class. H is calculated as (Zhu 1997): 

 Eq. (4.10)  ( ) 
1

ln 
∑    ( ) ln  ( )
 
  1 , 

where Pk is the proportion of instances where pixel x is classified as soil class k and 

where n is the number of members in the ensemble-model. The values of H range from 

0 to 1 with values close to 0 representing low uncertainty and values close to 1 

representing high uncertainty in classification. Although the use of entropy is most 

commonly used in fuzzy inference classification approaches (e.g. Goodchild et al., 1994; 

Leung et al., 1993; Zhu 1997), its extension for visualizing uncertainty in ensemble-

modeling has been shown to be appropriate (Kempen et al., 2009). 
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Figure 4.1. Biogeoclimatic zones of the Okanagan-Kamloops region. Inset: 
study area in relation to the province of British Columbia, Canada. 
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Table 4.1. Environmental covariates derived from a 100 m spatial resolution 
DEM and 30 m Landsat imagery. 

Representation Environmental Covariate 

Local Scale Morphometry 

Elevation 

Plan curvature 

Profile curvature 

Slope  

Terrain ruggedness index (Riley et al., 1999) 

Transformed aspect - eastness 

Transformed aspect - northness 

    

Landscape Scale 
Morphometry 

Multi-resolution ridge top flatness index (Gallant and Dowling, 2003) 

Multi-resolution valley bottom flatness index (Gallant and Dowling, 
2003) 

Mid-slope position 

Normalized height 

Slope height 

Valley depth 

    

Hydrologic Characteristics 

Slope length factor (Moore et al., 1993) 

Stream power index (Moore et al., 1991) 

Topographic wetness index (Beven and Kirkby, 1979) 

    

Landscape Exposure 

Sky view factor (Häntzschel et al., 2005) 

Terrain view (Häntzschel et al., 2005) 

Visible sky 

    

Climatic Indices 

Mean annual precipitation 

Mean annual temperature 

Number of frost free days 

    

Vegetative Indices 

Enhanced vegetation index (Jiang et al., 2008) 

Modified soil-adjusted vegetation index (Qi et al., 1994) 

Normalized difference water index 

Normalized difference vegetation index 

Soil-adjusted vegetation index (Huete, 1988) 
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Figure 4.2. Distribution of training points for soil Great Groups generated from 
polygon data (n = 129,456) and field collected pits from BCSIS (n = 
478). 
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Figure 4.3. Single-component soil Great Group map units from the Okanagan-
Kamloops region of British Columbia. 
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4.4. Results & Discussions 

 Accuracy Assessment 4.4.1.

The mapping accuracies for all models trained with soil pit data and soil survey 

polygon data are shown in Table 4.2. Accuracies for results using pit-derived training 

data ranged from 47 to 61%, with the RF model having the highest accuracy; in 

comparison, results using polygon-derived training data ranged from 50 to 70%, where 

kNN+ had the highest accuracy. The accuracy rates were consistent with our 

expectation that a larger training dataset would better capture the feature spaces 

occupied by each soil Great Group and would therefore have higher accuracies in 

comparison to the results produced using pit-derived training data. The need to 

adequately represent feature space is especially important for the prediction of minority 

classes using pit-derived training data, because for soil Great Groups such as Mesisols, 

Ferro-Humic Podzols, Humisols, Gleysols, Fibrisols, and Luvic Gleysols – soils that are 

uncommon in drier environments – it was unreasonable to expect them to be predicted 

well, since the number of training points were often no more than three for each of those 

classes. 

By decomposing error rates into quantity disagreement and allocation 

disagreement, it was observed that, with the exception of the CART learner, quantity 

disagreement values were similar regardless of which training dataset was used and 

ranged between 11 and 17%. When the CART learner was used, quantity disagreement 

was markedly higher with values of 17% and 27% when comparing pit-derived and 

polygon-derived training datasets, respectively. The higher disagreement was the result 

of the CART model not predicting the entire range of different soil Great Groups. Due to 

the general consistency in quantity disagreement values, the differences between 

prediction and validation datasets were due to consistently higher allocation 

disagreements and variability of allocation disagreement amongst the various learners. 

Finally, it was observed that on average, allocation disagreement was higher when using 

pit-derived training data, which would indicate that the predictions made using polygon-

derived results had a higher spatial accuracy. The higher spatial accuracy may have 

been the result of the larger training dataset obtained from the polygon data. 
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In terms of implementing an ensemble-modeling technique, bagging generally 

benefitted predictions made using the pit-derived training dataset by decreasing the 

allocation disagreement, while accuracies using the polygon-derived training dataset 

were similar with the exception of the CART model. The reason for the increased 

accuracy from the ensemble-models, when using pit-derived training data, was likely due 

to the improved stability of the models when training with a small number of training 

points. With a large number of training points, when considering the polygon-derived 

training data, the models became less sensitive to perturbations due to the size of the 

training data where the folds in the CV procedure were all similar in terms of the feature 

space occupied by each fold.  As a result, the variance of single-learner models would 

be initially low and the application of ensemble learning would not further decrease the 

model variance when that large training dataset was used (Brain and Webb, 1999). In 

contrast, the pit-derived training dataset was small and, as a result, the effects of 

decreasing model variance using ensemble-learning techniques became much more 

apparent as demonstrated by a 2 to 11% increase in accuracy. 

When considering the accuracies of the results produced using both training 

datasets, it was determined that the RF model performed the best overall (Figs. 4.4 and 

4.5). Even though kNN+ had the highest accuracy when using polygon-derived training 

data, RF performed comparatively well with an accuracy of 68%. Using a confusion 

matrix for the RF results (Table 4.3), it was determined that Regosolic soils were 

predicted particularly poorly with accuracies of 38% and 19% for polygon-derived and 

pit-derived predictions, respectively. The poor prediction of Regosolic soils was likely 

due to the models being unable to capture the environmental disturbances and 

processes that caused the formation of these poorly developed soils. Gray Luvisols were 

another soil that was often misclassified as Dark Brown Chernozems or Eutric Brunisols 

in both prediction results, where we suspected that an inclusion of geological information 

and better precipitation data would have improved the separation of these classes in 

feature space rather than the reliance on topographic data. 

The effectiveness of RF was also corroborated by model comparison studies 

such as Brungard et al. (2015), which used pit-derived training data to predict soil 

classes over three semi-arid study areas located in Utah, New Mexico, and Wyoming; 
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similarly, Taghizadeh-Mehrjardi et al. (2015) showed RF to perform well despite not 

being ranked the best model. In terms of using polygon-derived training data, Heung et 

al. (2016) showed the effectiveness of RF for mapping soil Great Groups for the Lower 

Fraser Valley of British Columbia. Overall, these studies seem to collectively suggest 

that RF is a consistently effective classifier regardless of whether or not the training data 

are derived from soil pit data or polygon data. 

 Comparison with Legacy Soil Surveys 4.4.2.

In addition to assessing the accuracy of the polygon-derived predictions, the 

single-component polygons from the original soil survey were also validated. The single-

component polygons had an accuracy of 65% based on the 285 soil pits that intersected 

with the polygons (Table 4.4). To investigate the influence of map scale on the soil 

survey accuracy, large-scale surveys had a higher accuracy of 67% for the 1:20,000 and 

1:50,000 scales in comparison to the reconnaissance mapping created at a 1:125,000 

scale where the accuracy was 48%. The discrepancy in accuracies may be partly due to 

the small number (n = 25) of points located on the 1:125,000 polygons; however, the 

more likely reason is due to the loss of detail and the greater amount of inclusions when 

mapping at smaller scales where the subtle variations in environmental covariates 

become generalized. The average overall accuracies for all models using either training 

dataset were similar (64%) to the accuracy of the single-component map units (66%). 

Most noticeable, however, was that even though single-component map units were used 

to derive one of the training datasets, the resulting predictions using the CART+, RF, 

kNN, and kNN+ models all had higher accuracies than the original soil survey. 

Improvements in accuracy were most noticeable for the CART+ and RF models in areas 

for which the 1:125,000 polygons were mapped with an increase by up to 9%. When 

predictions were made using pit-derived training data, their accuracies were not higher 

than the accuracy of the single-component polygons that were mapped at a 1:125,000 

scale. These results were surprising because, similar to Collard et al. (2014) that used 

an existing soil survey at a 1:250,000 scale to calibrate a model, their predictions had 

higher accuracies in comparison to the original soil map using MLR, RF, and  

classification tree models.  
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Another interesting finding comes from the consistency metrics obtained by 

comparing the results produced by soil pit data and the single-component polygons of 

the soil survey where the RF model had an agreement of C = 55% in spite of the low 

sample density of 0.01 samples/km2 (Table 4.2). When the accuracies of the pit-derived 

predictions that coincided with single-component polygons and the accuracies of the 

polygons were compared, the results seemed to suggest that DSM approaches using 

models such as CART+, RF, kNN, and kNN+ models could potentially produce outputs 

that are more accurate than maps produced using conventional mapping approaches 

when using the same point dataset (Table 4.4). In Kempen et al. (2012), a conventional 

soil survey map was compared to a DSM where it was observed that there was a 69% 

discrepancy between the two maps; furthermore, they also observed an increased 

accuracy using DSM methods where the accuracy increased as sampling density 

increased. These findings are promising because with higher sample densities and a 

sample design that effectively captures the feature space of the environment, such as a 

conditioned Latin hypercube design (e.g. Brungard et al., 2015; Minasny and McBratney, 

2006; Rad et al., 2014), pit-derived training data may potentially produce maps that are 

similar or better than conventional soil survey maps without the reliance on expert 

knowledge and manual delineation of map units – both of which are costly and 

subjective processes. The advantage of an automated mapping approach using a 

machine-learner is that the subjective process of correlating soil types to the 

environment becomes an objective process where the soil-environmental relationships 

may then be quantified consistently; whereas in the case of conventional soil surveys, 

the subjective mental models that describe the soil-environmental relationships are often 

lost or not recorded. 

Although this study has found similarities to Collard et al. (2014) and Kempen et 

al. (2012), the extent of these similarities and our analyses were limited to where single-

component polygons have been mapped in the conventional soil surveys. 
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Table 4.2. Classification accuracy and consistency metrics using overall agreement (C), quantity disagreement (Q), and 
allocation disagreement (A). Average accuracy calculated from 5-fold cross-validation procedure using n = 
478 sample points. Consistency metrics calculated based on single-component soil survey polygons for pit-
derived results. 

  Accuracy Consistency with Soil Survey  

  Pit-Derived Polygon-Derived Pit-Derived 

  C Q A C Q A C Q A 

  (%) (%) (%) (%) (%) (%) (%) (%) (%) 

CART  50 17 33 50 27 22 45 22 32 

CART + Bagging 60 12 28 67 15 18 48 9 43 

Random Forest 61 15 24 68 14 18 55 8 37 

    

 

  

  

  
 

 

  

Logistic Model Tree 50 7 43 62 11 27 40 17 44 

Logistic Model Tree + Bagging 58 12 30 61 12 26 41 16 43 

    

 

  

  

  
 

 

  

Multinomial Logistic Regression 47 10 43 53 14 33 41 14 46 

Multinomial Logistic Regression + Bagging 54 14 32 56 13 31 40 16 44 

    

 

  

  

  
 

 

  

k Nearest Neighbor 50 11 38 68 12 20 43 11 46 

k Nearest Neighbor + Bagging 52 12 36 70 14 16 45 11 44 
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Table 4.3. Confusion matrix between 478 observation points and predicted soil Great Group using a Random Forest 
model. Bold values represent the diagonal of the confusion matrix and the number of correctly classified 
pixels for each class. 

    Actual Great Group 
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BC 18 0 2 0 0 4 0 0 0 0 1 0 0 0 0 1 0 0 26 

BLC 1 18 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 

DBC 0 2 31 2 0 0 0 0 0 2 0 0 2 0 0 0 0 0 39 

DGC 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 3 

DB 2 3 2 0 88 7 1 0 1 6 0 3 2 0 0 0 6 2 123 

EB 2 3 3 8 4 84 0 0 0 8 0 0 2 2 2 0 9 0 127 

F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

FHP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GL 0 3 1 4 3 3 0 0 0 33 0 1 0 0 0 0 2 1 51 

H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HFP 0 0 0 0 6 1 0 1 0 5 0 28 1 1 0 2 1 4 50 

HG 0 0 0 0 0 0 0 0 1 0 0 0 7 1 0 0 2 0 11 

HR 0 0 0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 4 

LG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

M 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 3 

R 0 0 1 0 0 3 0 0 0 0 0 0 1 1 0 0 12 0 18 

SB 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

  Total 23 29 42 16 103 102 1 1 2 57 1 33 15 8 2 4 32 7   

 

Legend: Brown Chernozem (BC); Black Chernozem (BLC); Dark Brown Chernozem (DBC); Dark Gray Chernozem (DGC), Dystric Brunisol (DB); 

Eutric Brunisol (EB); Fibrisol (F); Ferro-Humic Podzol (FHP);  Gleysol (G); Gray Luvisol (GL); Humisol (H); Humo-Ferric Podzol (HFP); Humic 

Gleysol (HG) Humic Regosol (HR); Luvic Gleysol (LG); Mesisol (M); Regosol (R); Sombric Brunisol (SB). 
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Table 4.3 (cont.) 

    Actual Great Group 

    BC BLC DBC DGC DB EB F FHP G GL H HFP HG HR LG M R SB Total 
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 BC 10 0 3 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 16 

BLC 0 20 4 2 0 1 0 0 0 0 0 0 0 0 0 1 1 0 29 

DBC 4 3 21 1 0 2 0 0 0 4 0 0 1 1 0 0 1 0 38 

DGC 0 0 0 7 0 2 0 0 0 0 0 0 0 0 0 0 1 0 10 

DB 1 3 1 0 79 5 1 0 1 14 0 3 2 1 1 0 5 3 120 

EB 6 2 12 3 9 82 0 0 0 10 0 0 4 0 0 0 11 0 139 

F 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

FHP 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

G 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 2 

GL 2 1 0 2 8 4 0 0 0 25 0 0 0 0 0 0 2 0 44 

H 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

HFP 0 0 0 0 6 1 0 1 0 3 0 30 1 1 0 2 1 3 49 

HG 0 0 0 0 0 2 0 0 0 0 0 0 6 1 0 0 1 0 10 

HR 0 0 0 1 0 0 0 0 0 0 0 0 1 2 0 0 1 0 5 

LG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

M 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 2 

R 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 6 0 9 

SB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

  Total 23 29 42 16 103 102 1 1 2 57 1 33 15 8 2 4 32 7   

 
Legend: Brown Chernozem (BC); Black Chernozem (BLC); Dark Brown Chernozem (DBC); Dark Gray Chernozem (DGC), Dystric Brunisol (DB); 
Eutric Brunisol (EB); Fibrisol (F); Ferro-Humic Podzol (FHP);  Gleysol (G); Gray Luvisol (GL); Humisol (H); Humo-Ferric Podzol (HFP); Humic 
Gleysol (HG) Humic Regosol (HR); Luvic Gleysol (LG); Mesisol (M); Regosol (R); Sombric Brunisol (SB). 
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Table 4.4. Classification accuracy of soil Great Groups using soil pit observations coinciding with single-component 
map units and separated by map scale for polygon and pit-derived predictions and soil survey. 

Polygon-Derived Prediction Accuracy (%)               

Map Scale CART CART+ RF LMT LMT+ MLR MLR+ kNN kNN+ Average 

20,000 46 70 73 66 66 52 58 71 70 63 

50,000 58 72 73 66 65 55 57 76 76 67 

125,000 43 57 57 43 43 48 57 52 52 50 

Overall 53 69 71 64 63 53 57 72 72 64 
  

         
  

Pit-Derived Prediction Accuracy (%) 

      
  

Map Scale CART CART+ RF LMT LMT+ MLR MLR+ kNN kNN+ Average  

20,000 46 70 73 66 66 52 58 71 70 63 

50,000 58 74 75 68 66 56 59 77 77 68 

125,000 36 48 48 36 36 40 48 44 44 42 

Overall 53 71 72 65 63 54 58 72 72 64 
  

         
  

Single-Component Accuracy 

       
  

  Correct Total Accuracy  

      
  

  (n) (n) (%) 
      

  

SCALE 

         
  

20,000 53 79 67 
      

  

50,000 122 181 67 
      

  

125,000 12 25 48 
      

  
Overall 187 285 66               

Legend: Classification and regression tree (CART); CART with bagging (CART+); Random Forest (RF); logistic model tree (LMT); LMT with 
bagging (LMT+); multinomial logistic regression (MLR); MLR with bagging (MLR+); k-nearest neighbors (kNN); kNN with bagging (kNN+). 
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Table 4.5. Map comparison confusion matrix between polygon-derived and pit-derived predictions for soil Great Groups 
using a Random Forest model. Bold values represent the diagonal of the confusion matrix and the number of 
correctly classified pixels for each class. 

    Polygon-Derived Predictions (%) 

    BC BLC DBC DGC DB EB F FHP G GL H HFP HG HR LG M R SB SUM 

P
it

-D
e
ri

v
e

d
 P

re
d

ic
ti

o
n

s
 (

%
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BC 0.20 0.00 0.06 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.29 

BLC 0.03 1.66 0.54 0.02 0.19 0.49 0.00 0.00 0.00 0.32 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 3.28 

DBC 0.25 0.25 0.96 0.02 0.00 0.34 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.05 0.00 1.93 

DGC 0.02 0.13 0.23 0.01 0.02 0.16 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 

DB 0.00 0.00 0.00 0.00 8.81 0.73 0.00 0.00 0.00 4.04 0.00 5.60 0.00 0.00 0.00 0.07 0.29 0.00 19.55 

EB 0.28 0.69 0.59 0.07 1.45 9.57 0.00 0.00 0.00 2.54 0.01 0.14 0.07 0.00 0.00 0.00 1.03 0.00 16.44 

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FHP 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GL 0.01 0.23 0.06 0.01 6.96 4.52 0.02 0.00 0.00 14.39 0.01 1.95 0.00 0.00 0.00 0.10 0.06 0.00 28.31 

H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

HFP 0.00 0.02 0.00 0.00 1.81 0.26 0.00 0.01 0.00 0.86 0.00 25.28 0.00 0.00 0.00 0.04 0.00 0.09 28.36 

HG 0.02 0.00 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.19 0.00 0.31 

HR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.03 

LG 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 

R 0.01 0.01 0.02 0.00 0.19 0.05 0.00 0.00 0.00 0.14 0.00 0.01 0.03 0.01 0.00 0.00 0.20 0.00 0.67 

SB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.13 

  SUM 0.81 2.99 2.49 0.12 19.44 16.15 0.02 0.01 0.00 22.41 0.02 33.14 0.17 0.02 0.00 0.23 1.86 0.09   

Legend: Brown Chernozem (BC); Black Chernozem (BLC); Dark Brown Chernozem (DBC); Dark Gray Chernozem (DGC), Dystric Brunisol (DB); 
Eutric Brunisol (EB); Fibrisol (F); Ferro-Humic Podzol (FHP);  Gleysol (G); Gray Luvisol (GL); Humisol (H); Humo-Ferric Podzol (HFP); Humic 
Gleysol (HG) Humic Regosol (HR); Luvic Gleysol (LG); Mesisol (M); Regosol (R); Sombric Brunisol (SB).
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Figure 4.4. Soil Great Group map using a Random Forest classifier with 
polygon-derived training data at a 100 m spatial resolution. Map is 
shown with underlying hill-shade and overlying validation points for 
the Okanagan-Kamloops region of British Columbia. 
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Figure 4.5. Soil Great Group map using a Random Forest classifier with pit-
derived training data at a 100 m spatial resolution. Map is shown 
with underlying hill-shade and overlying validation points for the 
Okanagan-Kamloops region of British Columbia. 
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 Prediction Uncertainty 4.4.3.

Because the RF model resulted in the best overall performance when using pit-

derived and polygon-derived training data, combined, uncertainty analysis was done on 

the RF predictions. In Figs 4.6 and 4.7, the vote count surfaces of the most frequently 

occurring Great Groups are represented. When comparing the vote count surfaces 

produced from polygon-derived training data (Fig. 4.6) and the pit-derived training data 

(Fig. 4.7), the general patterns were similar; however, there was far less certainty in 

predictions when using the pit-derived training data as evidenced by the lower vote 

counts. 

The overall prediction uncertainty was represented using ignorance uncertainty 

surfaces in Figures 4.8 and 4.9. When using the polygon-derived training data (Fig. 4.8), 

values of uncertainty ranged from 0 to 0.78 with a mean of 0.31 and a standard deviation 

of 0.15. Ignorance uncertainty patterns showed large areas of low uncertainty at high 

elevations of the eastern region of the study area as a result of the mapping of large 

polygons representing Humo-Ferric Podzols. In general, the uncertainty was low for 

regions with high relief or along the side of hillslopes where the topographic covariates 

would likely have the greatest separation in the feature spaces of each Great Group. 

This was in contrast to the valley bottoms where the topography is flat and homogenous 

and would therefore lead to uncertainty because the soil Great Groups located in those 

regions (e.g. Chernozems, Gleysols, and Regosols) all occupy similar feature spaces. It 

is also necessary to point out that the uncertainties from the polygon-derived predictions 

are underestimated not just due to the large number of points used in that training 

dataset, but additionally that the training data was derived from a generalized 

representation of soil patterns in reality. Consequently, the localized and subtle 

variations in topography were not captured in the conventional mapping process – 

especially when the maps were produced at small-scales. 

The ignorance uncertainty surface produced from the results using pit-derived 

training data (Fig. 4.9) showed noticeably higher uncertainty with the range in values 

from 0 to 0.84, a mean of 0.57, and a standard deviation of 0.11. The spatial patterns of 

the uncertainty values were unclear; however, values appeared lower along the sides of 

hillslopes – similar to Figure 4.8. Although there appeared to be lower uncertainty in 
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areas that had clusters of sample points, especially along Lake Okanagan, the 

relationship between the intensity of sampling and uncertainty was not clear for the 

entire study area. Again, a higher sample density with a design that was optimized for 

capturing the feature space of the entire study area may have provided a solution for 

decreasing model uncertainty and increasing overall accuracy. 

 Visual Assessment 4.4.4.

Visual assessment and comparisons between the results produced from both 

training datasets were performed on predictions made using RF due to the model having 

the highest combined accuracy. In both cases, the distributions of soil Great Groups 

were consistent with their theoretical distributions within the landscape. Visually, the 

gradational transitions between soil Great Groups were most noticeable from the vote 

count surfaces (Figs. 4.6 and 4.7) that showed the dominance of Chernozemic soils at 

low elevations and in valley bottoms followed by a transition to Brunisols at mid-

elevations, and finally Gray Luvisols and Podzols at the highest elevations where the 

landscape receives greater precipitation and was forest covered.  

Where the grassland Chernozemic soils occur, predictions made by both training 

datasets showed the occurrence of Brown Chernozems at the lowest elevations 

(northwest corner of the study area) and regions with higher temperatures (south central 

region of the study area). As the temperature decreases at higher elevations, the Brown 

Chernozems transition to Dark Brown Chernozems and followed by Black Chernozems. 

The transition of Chernozemic soils observed was likely the result of decreased 

decomposition rates with decreasing temperatures, which would then cause the 

darkening of the soil due to organic matter accumulation (Pennock et al., 2011; Van 

Ryswyk et al., 1966). As the grasslands transition to a forested cover, Brunisolic soils 

became more frequently predicted with Eutric Brunisols most commonly found on lower 

slopes and valley bottoms where they may occur as complexes with Chernozemic soils. 

At mid-elevations and mid-slopes, Dystric Brunisols were predicted more prevalently 

where precipitation is higher and thus causing greater leaching of base cations and 

therefore decreasing the pH (Smith et al., 2011). The accumulation of acidic forest litter 

and sufficient precipitation results in the enhanced formation of leached horizons due to 
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the process of lessivage and the formation of Luvisolic soils at the higher elevations of 

the landscape (Lavkulich and Arocena, 2011). Finally, with increased precipitation at the 

highest elevations, Humo-Ferric Podzols were the most frequently predicted soil Great 

Group because with sufficient precipitation, both cations and clays are depleted which 

would allow for the process of podzolization to occur. 

 Map Comparison 4.4.5.

Although the results produced from the training datasets both showed general 

soil patterns that were consistent with the literature, the predicted extents of each Great 

Group were noticeably different. A quantitative map comparison between Figs. 4.4 and 

4.5 resulted in only a 60% match between the predictions in spite of their similar 

accuracies (Table 4.2). To further examine these differences a confusion matrix was 

created for a quantitative comparison between the RF results (Table 4.5). Between the 

two maps, the greatest confusion occurred between the Dystric Brunisolic and Gray 

Luvisolic soils, which accounted for 10% of the dissimilarity between the predictions. 

Typically, these differences occurred on mid-elevation regions of the study area where 

Gray Luvisols were more prominently predicted in the polygon-derived results whereas 

the pit-derived results had Dystric and Eutric Brunisols predicted. It is reasonable to 

expect these differences because those soil Great Groups are all common in forested 

landscapes and the differences between them are influenced more so by precipitation 

and soil pH rather than topography. At high elevations, polygon-derived predictions had 

a greater distribution of Humo-Ferric Podzols, where 5.60% and 1.95% of the study area 

were classified as Dystric Brunisols and Gray Luvisols, respectively, in the pit-derived 

predictions. Similar to the mid-elevation regions, the differences in these soils are 

caused by precipitation and less so by topography. It is also possible that some of these 

differences may have to do with the difference in mapping scale that the polygon-derived 

training data were derived from, where at mid- and high elevation and forested terrain, 

soil surveys were mapped at a 1:125,000 scale, whereas, agriculturally intensive regions 

and low elevations were mapped at a 1:20,000 scale.   

Major differences were also observable for the valleys of the study area, and in 

particular, the distribution of the Chernozemic Great Groups. When using the pit-derived 
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training data, the resulting predictions showed a greater occurrence of Black 

Chernozems with minor instances of the other types of Chernozems. In contrast, 

polygon-derived training data results showed a greater occurrence of Brown and Dark 

Brown Chernozems in the valley bottoms of the north-western region of the study area. 

North of Lake Okanagan, the predictions using pit-derived training data failed to detect 

the occurrence of Black Chernozems, which was possibly due to the lack of sample 

points that identified the soil Great Group in that area. Again, the differences between 

the results were likely due to the pit-derived training data capturing a narrower range of 

covariate values and therefore limiting the prediction of the Brown and Dark Brown 

Chernozems. 

 General Discussion 4.4.6.

Whereas this study only sampled from the single-component map units of a soil 

survey, it was one of the many different approaches for sampling soil surveys that may 

be found in the DSM literature; for instance, in Bui and Moran (2003), the polygons were 

assigned the dominant soil type. In another example such as the DSMART algorithm 

used in the POLARIS project (Chaney et al., 2016), all polygons were sampled; 

however, the SSURGO dataset used for that study consisted of primarily multi-

component map units where component labels were assigned using a random allocation 

that was weighted by the estimated proportion of occurrence from the components in 

each map unit. In the testing of the DSMART algorithm, complete random allocation and 

targeted allocation approaches were also tested on multi-component polygons (Odgers 

et al., 2014). Whereas, similar to this study, the approach of selecting only single-

component polygons has been used in Smith et al. (2016). The rationale for sampling 

only single-component polygons in this study stemmed from the intention to minimize 

attribute/class noise and uncertainty in the training dataset, which may potentially be 

added through weighted-random allocation or dominant-soil allocation. Although direct 

comparisons were not made between these different class-allocation approaches, 

machine-learning literature (e.g. Van Hulse and Khoshgoftaar, 2009) has shown that 

through the artificial introduction of noise into a training dataset for imbalanced datasets, 

the impacts of noise drastically varied amongst different machine-learning approaches 

and their prediction accuracies. Furthermore, the potential introduction of noise through 
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the sampling of multi-component polygons could cause the over-fitting of the models. 

Given that single-component map units were quite extensively mapped for this study 

area (53.2%), their usage seemed appropriate in order to attempt to maximize the 

separation amongst the classes within feature space. In comparison, for situations 

where single-component map units are less extensive, alternative methods would need 

to be considered. 
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Figure 4.6. Vote count surfaces based on 100 decision trees of the Random 
Forest model using polygon-derived training data at a 100 m spatial 
resolution for the Okanagan-Kamloops region of British Columbia. 
Most frequently occurring soil Great Groups include Humo-Ferric 
Podzols (HFP), Gray Luvisols (GL), Dystric Brunisols (DYB), Eutric 
Brunisols (EB), and Black Chernozems (BLC). 
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Figure 4.7. Vote count surfaces based on 100 decision trees of the Random 
Forest model using pit-derived training data at a 100 m spatial 
resolution for the Okanagan-Kamloops region of British Columbia. 
Most frequently occurring soil Great Groups include Humo-Ferric 
Podzols (HFP), Gray Luvisols (GL), Dystric Brunisols (DYB), Eutric 
Brunisols (EB), and Black Chernozems (BLC). 
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Figure 4.8. Ignorance uncertainty surface based on Random Forest model 
using polygon-derived training data produced at a 100 m spatial 
resolution for the Okanagan-Kamloops region of British Columbia. 
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Figure 4.9. Ignorance uncertainty surface based on Random Forest model 
using pit-derived training data produced at a 100 m spatial 
resolution for the Okanagan-Kamloops region of British Columbia. 
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4.5. Conclusions 

The primary objective of this study was to compare the development of training 

data derived from legacy soil pit data and soil survey polygons. Secondary objectives 

included the comparison of 9 machine-learning techniques; and the comparison of 

single-model and ensemble-model learners. In addition, ensemble-modeling techniques 

were used to visualize prediction uncertainty. Key findings are summarized as follows: 

1. Accuracies were consistently higher for predictions using polygon-derived 
training data - regardless of the model used. This was likely the result of 
the higher density of training data, which improved the representation of 
the feature spaces for the various soil Great Groups. In spite of the 
differences, the RF model performed reasonably well regardless of the 
training dataset used where it was ranked the highest, in terms of 
accuracy, when pit-derived training data were used while having an 
accuracy that was comparable to the kNN+ model when polygon-derived 
training data were used. 

2. Although the RF models had similar accuracy rates when using either 
training datasets, there were major differences between the results where 
both maps shared a 60% similarity. Based on a visual assessment of the 
results, predictions of the distribution of soil Great Groups were consistent 
with their theoretical distributions found in the literature; however, the 
specific extents of each soil Great Group differed considerably. 

3. Ensemble-modeling approaches were beneficial when predictions were 
made using pit-derived training data. Ensemble techniques likely resulted 
in greater model stability when using small sample sizes - as identified by 
machine-learning literature. Ensemble techniques were not particularly 
beneficial when using polygon-derived training data because of the 
inherent stability of models when using a large number of training data 
points and thereby decreasing the model variance. 

4. When the accuracy of the single-component polygons were compared to 
the accuracy of the CART+, RF, kNN, and kNN+ predictions made using 
either training datasets, the DSM approaches were more accurate in 
comparison to conventional soil mapping approaches. The study 
suggested that similar to Collard et al. (2014), a conventional soil map 
may be improved using machine-learning and similar to Kempen et al. 
(2012), DSM approaches may produce predictions that are similar or 
more accurate than the maps produced from conventional approaches. 

5. The use of ensemble-modeling approaches had the additional benefit in 
producing raster surfaces of model uncertainty for individual soil Great 
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Groups as well as overall uncertainty based on ignorance uncertainty, 
which could be used to aid the visualization of model uncertainty. 

This study is the first to illustrate the differences between using legacy soil pit 

data and soil survey polygons as training data for the prediction of soil classes. Although 

additional comparative studies on different environments may be required to make 

generalized statements about these differences, this study provides a better insight into 

how training data could be used in future DSM studies. 
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Chapter 5.  
 
Conclusions 

5.1. General Conclusions & Research Contributions 

This research focussed on the development of methodologies that would 

facilitate the production of digital soil maps using legacy soil data. Aspects of the 

modeling process were extensively tested throughout the chapters of the dissertation. 

Outcomes of this dissertation included the development of a framework for extracting 

soil information from legacy soil surveys as well as a comprehensive review and testing 

of machine-learning techniques for mapping soil taxonomic units for the Lower Fraser 

Valley. In addition, the dissertation also provides a comparison of the use of soil polygon 

and soil pit derived training data for the prediction of soil Great Groups for the 

Okanagan-Kamloops region of BC. Although the study was designed with the premise of 

facilitating the development of DSMs for BC, the themes explored in this dissertation are 

applicable to the broader DSM literature. This is especially the case with Chapter 3 

where the main messaging of its contents had the intention of alerting practitioners of 

pedometrics on the importance of performing comprehensive model comparison studies. 

Chapter 2 of this dissertation proposed a framework for DSM using legacy soil 

data from single-component map units of a detailed soil survey (Objective 1) where three 

sampling methods were tested for mapping soil parent materials. Here, it was 

determined that developing training data using an area-weighted approach was most 

effective in predicting soil parent material classes when the RF classifier was used. 

Additional objectives tested the parameter optimization when using RF, where it was 

concluded that optimization resulted in a minimal increase in accuracy; furthermore, 

variable reduction also had limited influence on accuracy. Due to the effectiveness of the 

proposed framework, it was later applied in the subsequent chapters of the dissertation.  
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As far as the DSM literature is concerned, the development of a specific 

framework may not be the main point of interest because there are numerous 

frameworks that have been developed by other researchers in the field. This framework 

was developed mainly within the context of using BC‟s legacy soil data and data 

structure; however, it is also recognized that much of the legacy soil data around the 

world share a similar structure by way of having mixtures of single-component and multi-

component polygons in legacy soil surveys and having a repository of legacy soil pit 

data. When considering the broader contribution of this chapter to the DSM literature, 

Heung et al. (2014) provided one of the first examples where RF was used specifically 

for classification purposes. Numerous recent studies, subsequent to its publication, have 

used RF. For example, Brungard et al. (2015), Kempen et al. (2015), and Taghizadeh-

Mehrjardi et al. (2015) for the prediction of soil classes using pit-derived training data; 

Collard et al. (2014) and Chaney et al. (2016) in the refinement of existing soil survey 

maps; Gambill et al. (2016) for classifying soils using soil quantitative variables; and 

Wang et al. (2015) for assessing flood hazard risk. Furthermore, the methodologies 

presented in the chapter were scaled up for the production of a soil parent material map 

for BC (Bulmer et al., 2016) while similar approaches for the development of training 

data from legacy soil surveys have subsequently been used for mapping soil types over 

regions of France (Collard et al. 2014; Vincent et al., 2016) and Cyprus (Camera et al., 

2017). 

Chapter 3 presented a model comparison study that addressed Objective 2 of 

the dissertation. Here, it was concluded that there were major implications in the choice 

of model when predicting categorical data where predictions using the same training 

data, but different models, would produce drastically different results. Secondly, the 

different methods of extracting training data from soil survey data, using the same 

model, also produce drastically different results. By comparing 10 machine-learning 

models, it was determined that models such as CART with bagging, LMT, and RF were 

the most useful models when factors such as parameterization time, computational time, 

and the interpretability of results were taken into account in addition to accuracy. 

Furthermore, when testing the effectiveness of balancing the training data, it was 

concluded, in conjunction with the results of Chapter 2, that using the imbalanced area-

weighted approach consistently produced higher accuracies in comparison to equal-
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class and by-polygon approaches. When ROS was used, the improvements in 

accuracies were minimal and not worth the additional computational demand. Although it 

was noted from the literature that numerous methodologies have involved a by-polygon 

approach for developing a training dataset (e.g. Odgers et al., 2014; Chaney et al., 

2016); here, it was recommended that area-weighted sampling from soil survey 

polygons is used in order to best capture the feature space of the individual classes. 

Chapter 3 along with the overview of machine-learning techniques for 

classification purposes in Section 1.1.3 of the dissertation was presented in Heung et al. 

(2016). The publication provided several important contributions to the DSM literature by 

compiling the first comprehensive overview of different types of machine-learning 

techniques specifically for DSM purposes. With the notable exceptions of Brungard et al. 

(2015) and Taghizadeh-Mehrjardi et al. (2015) that performed model comparison studies 

within the context of using soil pit-derived training data, Heung et al. (2016) was the first 

study that used training data from a conventional soil survey. The main message of the 

publication was to stress the importance of performing model comparison studies in 

DSM especially when numerous machine-learning models exist; yet, the majority of 

studies in the literature have limited their choice of model to either a few or a single 

model(s). Furthermore, the process of comparing numerous models was facilitated 

through the use of R packages such as caret, which greatly increased the efficiency of 

parameter optimization and developing R scripts in a standardized way – as such, model 

comparison should be adopted as „best practice‟ for DSM.  

Chapter 4 compared the accuracies of soil Great Group predictions when using 

training data derived from legacy soil pit data against training data derived from soil 

survey polygons – Objective 3 of the dissertation. Heung et al. (2017) provided a 

comparison of 9 machine-learning techniques, the results consistently showed that the 

use of polygon-derived training data resulted in higher accuracies when compared to soil 

pit-derived training data due to a better representation of the feature space of the various 

soil classes when using polygon data. The study also determined that the RF model 

performed reasonably well regardless of the training dataset used. Furthermore, single-

model learners were compared to ensemble-model learners, where it was determined 

that ensemble techniques improved predictions when soil pit-derived training data were 
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used. Improvements were likely due to greater model stability for small sample sizes. 

Finally, this study proposed the use of ensemble-modeling approaches as a way for 

assessing model uncertainty where the vote-count surfaces assisted in the visual 

interpretation of the results. 

The motivation behind this chapter was based on the identified need in Brungard 

et al. (2015) and Heung et al. (2016) for a comparative study between the use of 

polygon-derived and soil pit-derived training data for DSM where such comparisons had 

not been made, previously. Another contribution made by this chapter was in the novel 

development of several ensemble-models that have never been tested in DSM (e.g. 

MLR with bagging, LMT with bagging, and kNN with bagging). Finally, this study also 

made the unique observation that similar to Collard et al. (2014), DSM approaches have 

the potential to improve existing conventional soil maps. Furthermore, similar to Kempen 

et al. (2012), the accuracy of DSM approaches, using soil pit data, could produce 

predictions that are similar or more accurate than the maps produced from conventional 

approaches. 

In summation, this dissertation mainly contributes to the fields of pedometrics 

and soil science; however, the themes explored here may also contribute to other 

disciplines such as geomorphology and the modeling of surficial materials; hydrological 

modelling; and predictive ecosystem and resource mapping. Furthermore, the 

methodologies presented may be extended to provincial- or national-scale DSM 

initiatives. 

5.2. Research Limitations 

Throughout the course of this research, a number of limitations were identified 

with regards to the original mapping scale of the soil surveys; the choice of 

environmental covariates; quality of the point data; and the computational limitations of 

the modelling process.  

The mapping scales of the conventional soil surveys used to develop the training 

data would have undoubtedly influenced the amount of detail in the resultant maps as 
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well as the diversity of classes for those maps. For the agriculturally-intensive parts of 

the Lower Fraser Valley and the Okanagan-Kamloops regions, soils were mapped with 

greater detail – as reflected by the larger number of smaller map units. As a result, a 

visual assessment of the results for those areas showed soil patterns that were closely 

associated to the subtle changes in the landscape. In contrast, the soil surveys were 

performed at a larger map scale for the Coast Mountain region of the Lower Fraser 

Valley and forested landscapes of the Okanagan-Kamloops area. The map units for 

these regions were generally larger and unable to capture soil types that were the result 

of local-scale soil processes. As a consequence, localized occurrences of colluvial 

material were not mapped as effectively as the other parent material classes for the 

Lower Fraser Valley and where, similarly, the occurrence of hydromorphic soils adjacent 

to local streams may not have been captured by the training data or predicted by the 

models. 

In terms of the environmental covariates used for this project, Chapter 2 used 

only topographic indices derived from a DEM, while Chapters 3 & 4 included some 

climatic and vegetative indices in addition to a large number of topographic indices. For 

the purposes of mapping soil parent materials, the explicit use of topographic indices 

was justifiable because landforms are the product of geomorphic processes that 

transport and deposit materials across the landscape and thus give rise to the 

topographic features that may be characterized from a DEM. Other studies have 

previously used gamma-radiometric data using passive remote sensing techniques in 

order to quantify potassium, thorium, and uranium abundances of bedrock and 

weathered materials (Wilford and Minty, 2007); however, the use of such data for 

glaciated landscapes, where the geochemical properties of the parent materials is highly 

heterogeneous, is unclear. For mapping soil classes, topographic indices may be used 

as a proxy-variable to represent the climatic variability for local-scale mapping where the 

long-range trends in temperature and precipitation are assumed to be constant while 

local-scale trends are encapsulated within topographic indices such as elevation, slope 

position, exposure, and aspect. However, to extend DSM projects to regional-, national-, 

and global-scales, there would be a greater reliance on climatic indices derived from 

satellite imagery and climate model data (e.g. Hengl et al., 2015, 2017) – all of which 

were used to a limited extent for this study.  
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An inherent challenge with the use of legacy soil point data is in their spatial 

accuracy as well as their distribution over a study area. With respect to the BCSIS 

dataset, where soil data were collected since the 1970s for various government projects, 

the coordinates of sample sites were typically determined from an aerial photograph or a 

topographic map. Another issue with the BCSIS dataset, especially for the Okanagan-

Kamloops study area, related to the clustering of sampling locations due to the variability 

in study extents of the individual government projects that make up the BCSIS dataset. 

Generally, smaller projects resulted in greater clustering of sample points whereas larger 

projects resulted in a greater dispersion of sample points over the landscape. However, 

implementing an ideal sampling scheme, using approaches such as a conditioned Latin 

Hypercube sample design (Minasny and McBratney, 2006), was unfeasible in terms of 

cost and time given the size of the study area for this project. Another limitation in using 

the BCSIS dataset was due to the class imbalance issue, where the development of a 

training and validation datasets could have been improved with a greater number of 

sample points that represented the minority classes. 

In order to extend the mapping approaches used in this dissertation to larger 

spatial-extents or higher-resolutions, an inherent challenge relates to computational 

limitations in terms of computer processor speed (CPU), memory (RAM), and storage 

space. For this study, limited CPU power and RAM hindered the parameter optimization 

procedure and the model-fitting process in spite of using parallel processing techniques. 

In Chapter 3, it was noted that even though the SVM-RBF approach resulted in the most 

accurate soil Great Group map, the computational demand related to parameter 

optimization, especially for a model that has an infinite combination of model 

parameters, was not worth the small gain in accuracy in comparison to the RF learner. 

Similarly, the computational cost of performing ROS in order to address the class 

imbalance issue on the training data resulted in marginal gains in accuracy. Challenges 

related to computational limitations, however, will not be a long-term issue due to the 

greater use of super-computing technology and cloud-computing services in DSM 

research for the foreseeable future (e.g. Hengl et al., 2014, 2015, 2017; Chaney et al., 

2016).  
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