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Abstract

Motivated by the phenomenon of contextuality in quantum physics we study a particular
family of proofs of the Kochen-Specker theorem. A proof is represented by a pair consisting
of a hypergraph where each vertex has even degree, called an Eulerian hypergraph, and a
labeling of its vertices. If a hypergraph admits a labeling constituting a proof, we say it is
magic. We are interested in determining whether a given hypergraph is magic.

Working with the duals of Eulerian hypergraphs, we develop the parity minor relation,
which allows us to establish a concept of minimality for the magic property. We introduce
a splitting operation to show that certain hypergraphs are not magic. We combine the
parity minor relation and the splitting operation in order to search for minimally magic
hypergraphs whose duals are grafts, hypergraphs with one edge of size four and all other
edges of size two.

Keywords: Kochen-Specker Theorem; Hypergraph; Graph Minor; Quantum Information
Theory
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Chapter 1

Background

1.1 Introduction

The field of quantum computing relies on the exploitation of phenomena predicted by
quantum physics, but not by classical physics [10, 19, 30, 34]. One such phenomenon is
contextuality, and there have been numerous papers emphasizing its utility for quantum
computation [6, 17, 30, 31].

In 1935, when the theory of quantum physics was still disputed, Einstein, Podolsky and
Rosen [16] attemped to counter the probabilistic predictions of quantum mechanics by a
deterministic model known as a hidden variable model. The essential idea of this model
is that measurement outcomes exist before a measurement is made, and the process of
measuring simply reveals the preexisting outcome.

The hidden variable model was shown to be inadequate first by Bell in 1966 [4] in the
case that locality is assumed. Shortly thereafter, in 1967, Kochen and Specker [22] proved
that the hidden variable model is also unable to predict outcomes if non-contextuality is
assumed.

Non-contextuality is the assumption that the outcome of measuring some observable is
independent of its context, i.e. is independent of whether the measurement is done jointly
with other compatible observables. A proof of contextuality is a demonstration that, in
certain circumstances, the outcome of measuring an observable is, in fact, dependent upon
its context, and thus could not have existed before the measurement was made.

The first such proof (known as a Kochen-Specker proof or KS proof), in the 1967 Kochen-
Specker paper [22], is a parity proof based on rays and orthogonal bases, where rays cor-
respond to observables and orthogonal bases correspond to contexts. It necessitates 117
distinct rays and 132 bases of R3. As this example is quite large, it constitutes a somewhat
unsatisfying proof, and is also difficult to exploit for practical applications. Due to this,
much work has been done to find smaller examples, and indeed, a proof has been found
with 21 rays and 7 bases [24] (this has been proven to be minimal in the number of bases -
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assuming vertex-transitivity of the orthogonality graph), and another proof has been found
with 18 rays and 9 bases [12]. It should also be noted that an infinite number of such proofs
exist - for example, an infinite family is described in [23].

By replacing rays with corresponding projectors, bases with sets of mutually commuting
projectors, and labeling vertices of hypergraphs with the given projectors (so that edges
represent bases), these proofs can be displayed as labeled hypergraphs. In addition, there
exist KS proofs based on labeled hypergraphs that do not have corresponding ray based
proofs. The smallest such proof (in terms of vertices) found thus far was discovered by
Mermin [26] and Peres [29] in 1990, and its corresponding hypergraph contains only 9
vertices (observables) and 6 edges (contexts).

It is, however, not the case that each hypergraph admits a suitable labeling, and thus
we distinguish between those that do (we call these magic hypergraphs) and those that do
not (non-magic hypergraphs).

The problem of deciding whether a given hypergraph is magic is an interesting, and non-
trivial one. Little is known about the problem in general, and some evidence suggests that
it may be undecidable in its most general form [13, 35], though we have not encountered
any undecidable instances in our work. In the special case that the dual hypergraph is a
graph, the problem has been completely solved by Arkhipov [3], who showed that for this
special class of hypergraphs, the labeling of any magic hypergraph can be reduced to the
labeling of one of two fundamental hypergraphs (one of which is the previously mentioned
proof discovered by Mermin and Peres, and the other due solely to Mermin). Moreover, the
duals of these two hypergraphs are exactly the graphs K3,3 and K5 - the two fundamental
non-planar graphs.

In this thesis, we develop hypergraph minor operations in order to extend this result
to hypergraphs. Additionally, we develop a tool to show that many hypergraphs are non-
magic, and use a combination of these tools and other novel results to determine the magic
status of some hypergraphs whose duals are hypergraphs with exactly one edge of size four
(and all other edges of size two).

In the first chapter we provide an exposition of the necessary graph theory and linear
algebra background for our problem. There is no novel material in this chapter. Sections 1.2
and 1.3 focus on graph theory. For these sections, we shall closely follow Bondy and Murty
[8, 9], and also sometimes Diestel [15]. The purpose of Section 1.2 will be to introduce some
general graph theory terminology as well as to establish the notational conventions used
throughout the thesis. In Section 1.4 we introduce hypergraphs, the central objects of our
study. Section 1.5 introduces the necessary linear algebra with focus on quantum physics,
and will follow Nielsen and Chuang [28], as well as Kaye, Laflamme, and Mosca [21].
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1.2 Basic Graph Theory

Definition 1.2.1. A graph G is an ordered triple (V,E, ψ) consisting of a finite set V
of vertices, a finite set E, disjoint from V , of edges, and an incidence function ψ that
associates with each edge of G an unordered pair of not necessarily distinct vertices of G.

Definition 1.2.2. Let G = (V,E, ψG) and G′ = (V ′, E′, ψG′) be two graphs. We say that G
and G′ are isomorphic, and write G ' G′, if there are bijections θ : V → V ′ and φ : E → E′

such that ψG(e) = uv if and only if ψG′(φ(e)) = θ(u)θ(v).

Definition 1.2.3. Let G = (V,E, ψG) be a graph. Let e ∈ E be an edge of G, and let u and
v be vertices such that ψG(e) = uv. Then we say that u and v are adjacent (or neighbours),
and that u and v are the ends of e. Further, we say that e is incident to both u and v and
vice versa. The incidence between vertex u and edge e will be denoted either by u ∼ e or
e ∼ u. In addition, we shall often refer to the vertex set of G as V (G) and to the edge set
of G as E(G).

Definition 1.2.4. An edge with identical ends is a loop. If two edges have the same ends,
we say that they are parallel edges.

Definition 1.2.5. A graph is said to be a simple graph if it has no loops and no parallel
edges.

Oftentimes in literature, a graph as we have defined it is called a multigraph, and a
simple graph is called a graph. However, as we shall make heavy use of multigraphs, this
notation will be much more convenient.

Though we have defined a graph G = (V,E, ψ) formally as a triple, we shall, almost
without exception, refer to it informally as the tuple G = (V,E). If for some edge e we have
ψ(e) = uv, we shall simply say e = uv if there is no ambiguity.

Definition 1.2.6. Let G = (V,E) be a graph. The degree of a vertex v ∈ V is defined as
the number of edges it is incident to, with loops counted twice. This is denoted by degG(v)
or simply deg(v) if there is no ambiguity.

Definition 1.2.7. Let G = (V,E) and G′ = (V ′, E′) be two graphs. If V ′ ⊆ V and E′ ⊆ E,
then G′ is a subgraph of G, written as G′ ⊆ G. If additionally, V ′ = V , then we say that
G′ is a spanning subgraph of G.

If G′ is a subgraph of G, we often say that G contains G′ as a subgraph.

Definition 1.2.8. Let G = (V,E) be a graph. Let V ′ ⊆ V . By G[V ′] we denote the subgraph
of G with vertex set V ′ and whose edge set is the set of edges of G with both ends in V ′.
Further we say that G[V ′] is the subgraph of G induced on V ′ and call G[V ′] an induced
subgraph of G.
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We now define two classes of graphs which shall appear often throughout this thesis.

Definition 1.2.9. A path is a graph P = (V,E) of the form V = {x0, x1, ..., xk}, E =
{e1, e2, ..., ek}, where the xi are distinct for i ∈ {0, . . . , k}, and the ends of ei are xi−1 and
xi for i ∈ {1, . . . , k} where k ≥ 0. We shall refer to x0 and xk as the end vertices of P .
We say that the path P is from x0 to xk (or from xk to x0), and that x1, . . . , xk−1 are the
internal vertices of P . We define the length of P to be k.

Definition 1.2.10. A cycle is a graph C = (V,E) of the form V = {x0, x1, . . . , xk},
E = {e1, e2, . . . , ek+1}, where the xi are distinct for i ∈ {0, . . . , k}, the ends of ei are xi−1

and xi for 1 ≤ i ≤ k, and the ends of ek+1 are x0 and xk where k ≥ 0. We define the length
of a cycle to be k + 1. In the case that k = 0, the cycle is a loop.

When there is no ambiguity we often refer to a path or a cycle simply by its underlying
vertex sequence (x0, x1, ..., xk) or edge sequence (e1, e2, ..., ek).

Definition 1.2.11. A set of paths in G is said to be internally disjoint if no vertex of G is
an internal vertex of more than one path in the set.

Having defined a path and a cycle allows us to define several other graph concepts which
we shall need.

Definition 1.2.12. A graph G = (V,E) is said to be connected if there exists a path from
any vertex u ∈ V to any vertex v ∈ V . If G is not connected, we say that G is disconnected.
A maximal connected subgraph of G is called a componentof G.

Definition 1.2.13. Let G = (V,E) be a graph. Let e ∈ E, and let E′ := E − {e}. If
G′ = (V,E′) has more components than G, then we say that e is a bridge.

We now present two classes of graphs which shall arise frequently when we discuss
planarity.

Definition 1.2.14. Let G = (V,E) be a simple graph. If V = V1∪V2, where V1 6= ∅, V2 6= ∅,
V1 ∩ V2 = ∅, and E = {uv : u ∈ V1, v ∈ V2}, then G is a complete bipartite graph. If
|V1| = m and |V2| = n, then we denote G by Km,n (or Kn,m).

Definition 1.2.15. Let G be a simple graph on n vertices. If any two distinct vertices of
G are adjacent, then G is the complete graph on n vertices, and is denoted by Kn.

The following definition and proposition enable us to estimate the time complexity of
an algorithm developed in Section 3.2.

Definition 1.2.16. Let G = (V,E) be a graph. A subset M of E is called a matching
in G if its elements are non-loop edges and no two edges in M are incident to a common
vertex in G. A matching M saturates a vertex v if some edge of M is incident with v. If
M saturates every vertex of V , then M is a perfect matching.
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Proposition 1.2.17. Let G = K2n be the complete graph on 2n vertices. Then there are
(2n)!
n!2n perfect matchings of G.

Proof. Each perfect matching is a set of n edges which are incident to no common vertices,
and consequently each vertex of K2n is incident to exactly one edge (since there are no
loops).

We proceed by induction on n.
If n = 1, we are counting the number of perfect matchings in K2, which contains a single

edge - thus there is exactly 2!
1!21 = 1 perfect matching.

Now assume the result for n = k. Then for n = k + 1, we count the number of perfect
matchings in K2k+2. Let the vertices of K2k+2 be v1, . . . , v2k+2. Assume that the first edge
appearing in the set of any matching is incident to the vertex v1 (we can always do this by
re-ordering). Then there are 2k+ 1 choices for this edge, corresponding to the 2k+ 1 other
vertices in K2k+2. Once we have chosen this edge, the set of choices for the other k edges is
simply the number of perfect matchings of K2k which we know to be (2k)!

k!2k . Therefore, there
are a total of (2k + 1) (2k)!

k!2k perfect matchings of K2k+2.
Notice that (2k + 1) (2k)!

k!2k = 2k+2
2(k+1)(2k + 1) (2k)!

k!2k = (2k+2)!
(k+1)!2k+1 as required.

1.3 Graph Minors and Planarity

We now develop definitions in order to present the minor and the topological minor relation,
since two of the three most important theorems discussed in this thesis pertain to the theory
of graph (and hypergraph) minors.

Each relation relies on operations to transform one graph to another, and so we begin
by presenting these operations.

Definition 1.3.1. Let G = (V,E) be a graph, let v ∈ V , let V ′ := V − {v}, and let
E′ := {e ∈ E : e is not incident to v}. By G− v we denote the graph (V ′, E′), and we say
that G− v was obtained from G by deleting vertex v.

Definition 1.3.2. Let G = (V,E) be a graph, let e ∈ E, and let E′ := E − {e}. By G− e
we denote the graph (V,E′), and we say that G− e was obtained from G by deleting edge e.

Proposition 1.3.3. Let G and G′ be graphs. Then G′ is a subgraph of G if and only if G′

can be obtained from G by a sequence of vertex deletions and edge deletions. Further, G′ is
a spanning subgraph of G if and only if G′ can be obtained from G by a sequence of edge
deletions.

Definition 1.3.4. To identify vertices x and y of a graph G is to replace these vertices by
a single vertex incident to all the edges which were incident in G to either x or y. Any edge
incident to both x and y becomes a loop incident to the new vertex.
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Definition 1.3.5. To contract a non-loop edge e of a graph G is to delete the edge and
then identify its ends. The resulting graph is denoted by G/e.

Definition 1.3.6. Let G = (V,E) be a graph. To delete a set of vertices V ′ ⊆ V , means
to delete each vertex in V ′. This is denoted by G− V ′.

Definition 1.3.7. Let G and G′ be graphs. We say that G′ is a minor of G if G′ is
isomorphic to a graph that can be obtained from G by a (possibly empty) sequence of the
following operations:

• contracting an edge

• deleting an edge

• deleting a vertex.

Definition 1.3.8. Let G′ = (V ′, E′) be a graph, and let e = uv ∈ E′. Let V = V ′ ∪ {w}
for some new vertex w, and let E = E′ − {e} ∪ {e′, e′′} where e′ = uw and e′′ = wv. Then
we say that G = (V,E) was obtained from G′ by subdividing edge e. Further, we say that
any graph obtained from G′ by a sequence of subdividing edges is a subdivision of G′.

Definition 1.3.9. Let G,G′ be graphs so that G is a subdivision of G′. Then V (G) can be
partitioned into two sets of vertices, V (G) ∩ V (G′) called the branch vertices, and V (G)−
V (G′) called the subdividing vertices.

Proposition 1.3.10. Let G and G′ be graphs so that G is a subdivision of G′. Then we
can correspond any edge e ∈ E(G′) to a path Pe in G so that the end vertices of Pe are the
ends of edge e, and all other vertices of Pe are subdividing vertices. Furthermore, the set of
paths {Pe : e ∈ E(G′)} is internally disjoint.

Definition 1.3.11. Let G and G′ be graphs. We say that G′ is a topological minor of G if
there exists some subgraph of G which is isomorphic to a subdivision of G′.

Proposition 1.3.12. [15, Proposition 1.7.1] The minor relation and topological minor
relation are both partial orderings (reflexive, antisymmetric, and transitive) on the class of
finite graphs.

We have now presented two different relations, the topological minor relation and the
minor relation. How do these relate?

Proposition 1.3.13. Let G and G′ be graphs. If G′ is a topological minor of G, then G′

is a minor of G.

On the other hand, if G′ is a minor of G, it is not necessarily true that G′ is a topological
minor of G, as is illustrated by the graphs in Figure 1.1. In that figure, contracting edge

6



G G
0

e

Figure 1.1: Graphs G (left) and G′ (right) used to illustrate the difference between the
minor and topological minor relation

e in G yields the graph G′, and so G′ is a minor of G. However, note that G contains no
subdivision of G′, and thus G′ is not a topological minor of G.

We now give an introduction to planarity of graphs before discussing the connection
between planarity and graph minors. Without attempting to delve into a discussion on
topology which is outside the scope of this thesis, we offer the following definition of a
planar graph.

Definition 1.3.14. We say that a graph G is planar if G can be drawn on the plane (in
R2) so that edges meet only at points (vertices) corresponding to their common ends. We
refer to such a drawing as a planar embedding of G, and we call the embedded graph a
plane graph.

Definition 1.3.15. Let G be a plane graph. We refer to the components of R2 −G as the
faces of G.

Proposition 1.3.16. A planar embedding of a graph G = (V,E) can be represented by G
along with a clockwise cyclic ordering of the edges in E incident to each vertex in V .

Proposition 1.3.17. If G is planar and G′ is obtained from G by an edge contraction,
deletion or subdivision, then G′ is also planar.

Proposition 1.3.18 (Euler Characteristic for Plane Graphs). For any connected plane
graph G = (V,E) we have that |V | − |E|+ |F | = 2, where F denotes the set of faces of G.

Corollary 1.3.19. If G = (V,E) is a simple planar graph with at least 3 vertices, we have
that |E| ≤ 3|V | − 6.

Definition 1.3.20. We say that a simple planar graph G = (V,E) with at least 3 vertices
is a maximal planar graph if for any u, v ∈ V such that u 6= v and uv /∈ E, the graph
G′ = (V,E′) is non-planar where E′ = E ∪ {uv}.
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Proposition 1.3.21. Every simple planar graph is a spanning subgraph of some maximal
planar graph.

We give the two following major theorems due to Kuratowski and Wagner. These
theorems provide the link between the two graph minor relations we have presented and
graph planarity. The given lemma shows that the two theorems are equivalent, but we give
both formulations as they will each be useful in our work. Kuratowski’s original formulation
from 1930 is Theorem 1.3.22, and this result was reformulated by Wagner seven years later
as it is written in Theorem 1.3.24.

Theorem 1.3.22 (Kuratowski, 1930). [15, Theorem 4.4.6] G is a planar graph if and only
if G does not contain K5 or K3,3 as a topological minor.

Lemma 1.3.23. [15, Lemma 4.4.2] A graph contains K5 or K3,3 as a minor if and only if
it contains K5 or K3,3 as a topological minor.

Theorem 1.3.24 (Wagner, 1937). [15, Theorem 4.4.6] G is a planar graph if and only if
G does not contain K5 or K3,3 as a minor.

1.4 Hypergraphs

Hypergraphs, being the central objects of this thesis, are now defined. In general, since
they are generalizations of graphs, many of these definitions and propositions shall be quite
similar in nature to those appearing in Sections 1.2 and 1.3.

Definition 1.4.1. A hypergraph H is an ordered triple (V,E, ψ) consisting of a finite set
V of vertices, a finite set E, disjoint from V , of edges, and an incidence function ψ that
associates with each edge of H a multiset of vertices of H.

Wherever the translation is natural, the terminology used for graphs is extended to that
used for hypergraphs. For example, we say e = uvvw instead of ψ(e) = uvvw, and refer to
u, v, w as the ends of e, for some edge e, and vertices u, v, and w.

We now give a couple more definitions which naturally extend from graphs.

Definition 1.4.2. Let H = (V,E), and H ′ = (V ′, E′) be two hypergraphs. If V ′ ⊆ V,E′ ⊆
E, then H ′ is a subhypergraph of H, written as H ′ ⊆ H. If additionally, V ′ = V , then we
say that H ′ is a spanning subhypergraph of H.

Definition 1.4.3. Let H = (V,E) be a hypergraph. Let V ′ ⊆ V . By H[V ′] we denote the
subhypergraph of H with vertex set V ′ and whose edge set is the subset of edges of H with
all ends in V ′. Further we say that H[V ′] is the subhypergraph of H induced on V ′ and call
H[V ′] an induced subhypergraph of H.
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Definition 1.4.4. Let H = (V,E) be a hypergraph. We define the multiplicity of a vertex
v ∈ V with an edge e ∈ E to be the number of times that v appears in ψ(e), and we
denote this by mult(v, e). When multiple hypergraphs are referenced, we use the notation
multH(v, e) to specify the hypergraph in question.

Definition 1.4.5. Let H = (V,E) be a hypergraph, and let v ∈ V and e ∈ E. We say that
v is incident to e and vice versa, if mult(v, e) > 0. We denote this by v ∼ e or e ∼ v.

Definition 1.4.6. Let H = (V,E) be a hypergraph. We define the degree of a vertex v ∈ V
to be

∑
e∈E

mult(v, e), and we denote it by deg(v) or degH(v) if the vertex appears in different

hypergraphs.

Definition 1.4.7. Let H = (V,E) be a hypergraph. We define the size of an edge e ∈ E to
be

∑
v∈V

mult(v, e), and we denote it by |e| or |e|H if the edge appears in different hypergraphs.

The difference between graphs and hypergraphs, as we have defined them, is that hyper-
graphs contain edges of any size, whereas graphs contain only edges of size two. We should
mention that under this definition, for some hypergraph H = (V,E) we can have ψ(e) = v

for some edge e ∈ E and some vertex v ∈ V . This is not the same as a loop for a graph,
which would be denoted by ψ(e) = vv.

Definition 1.4.8. We say that a hypergraph H = (V,E) is proper if

• every vertex v ∈ V has degree greater than zero, and every edge e ∈ E has size greater
than zero,

• mult(v, e) ≤ 1 for every pair consisting of a vertex v ∈ V and edge e ∈ E,

• for every pair of edges e, f ∈ E such that mult(v, e) = mult(v, f) for every vertex
v ∈ V , we have e = f .

Notice that a proper hypergraph is the natural generalization of a simple graph with
no isolated vertices. Oftentimes, as in [5], hypergraphs are defined as proper hypergraphs,
since they are used to study set systems. We call them proper, because this is for our
purposes the proper definition of a hypergraph.

Our reasoning for defining these hypergraphs is that these are the hypergraphs which,
when labeled, appear in quantum physics as Kochen-Specker proofs (with the addition of
another condition which we shall see in Section 2.1). However, other hypergraphs naturally
arise in our work, and labeling these can be useful - even though these do not directly
constitute Kochen-Specker proofs. Finally, note that for a proper hypergraph, the degree
of a vertex is simply the number of edges it is incident to.

One of the main results of this thesis (Theorem 3.3.18) relies upon extending graph
minor operations to hypergraphs. We remark that some of the operations defined for graphs
translate naturally to hypergraphs. We list these here:
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1. vertex deletion

2. edge deletion

3. deletion of a set of vertices

We now introduce two structures which are intimately connected with a given hyper-
graph, and which we shall exploit frequently throughout this thesis: the deletion graph,
and the dual hypergraph.

Definition 1.4.9. Let H = (V,E) be a hypergraph. Let E′ ⊆ E be the set of edges in E of
size not equal to 2. Let G be the graph obtained by deleting each edge of E′ from H. Then
we say that G is the deletion graph of H.

Definition 1.4.10. Let H = (V,E) be a hypergraph with V = {v1, v2, . . . , vn} and E =
{e1, e2, . . . , em}. The dual of H is the hypergraph H∗ = (X,F ) whose vertex set is X =
{x1, . . . , xm} and edge set is F = {f1, f2, . . . , fn}, where mult(xi, fj) = mult(vj , ei) for any
pair 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Example 1.4.11. Figure 1.2 displays a hypergraph H and its dual J . Here, a box around
a vertex in H indicates that it is incident to edge e1. Vertex v1 has two boxes around it
indicating that v1 is incident to e1 and mult(v1, e1) = 2. Notice that mult(x1, f1) = 2, so
that mult(x1, f1) = mult(v1, e1) as expected.

Here are the same hypergraphs in list form: H = (V,E), J = (X,F ) where:

• V = {v1, v2, v3}

• E = {e1, e2}

• e1 = v1v1v2v3, e2 = v2v3

• X = {x1, x2}

• F = {f1, f2, f3}

• f1 = x1x1, f2 = x1x2, f3 = x1x2

We often deal with a hypergraph and its dual simultaneously. In order to avoid having to
refer to two different sets of vertices and edges, we do the following: we refer to the original
hypergraph by H = (P,B), and refer to its vertices as points, and its edges as blocks (as
is common for incidence structures). We refer to the dual by J = (V,E), referring to the
vertices and edges of the dual simply as vertices and edges. Thus the points of the original
correspond to the edges of the dual, and the blocks of the original correspond to the vertices
of the dual.
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= e1

e2

v1 v2

v3

H

f1
f2

f3

x2x1

J

Figure 1.2: An example of the dual operation: hypergraph H on left and its dual J on right
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1.5 Linear Algebra

In the introduction, we stated that we are interested in finding Kochen-Specker proofs in
the form of labeled hypergraphs. The labels which appear are matrices with certain special
properties. In this section, we develop the language necessary to define such matrices, and
list some of their properties.

Let C denote the field of complex numbers.

Definition 1.5.1. Let V be a vector space over C. A function 〈·, ·〉 : V × V → C is an
inner product if it satisfies:

1. 〈v,
∑
i
λiwi〉 =

∑
i
λi〈v, wi〉 for v, wi ∈ V , λi ∈ C [Linearity in the second argument]

2. 〈v, w〉 = 〈w, v〉 for v, w ∈ V [Conjugate-commutativity]

3. 〈v, v〉 ≥ 0 with 〈v, v〉 = 0 if and only if v = 0 ∈ V [Non-negativity]

where z denotes the complex conjugate of z.

Definition 1.5.2. We say that a vector space over C equipped with an inner product is an
inner product space over C.

As in [28] and [21], we forego a formal definition of Hilbert spaces. Instead, we remark
that, although in the infinite dimensional case, Hilbert spaces and inner product spaces
over C differ, in the finite dimensional case, they are equivalent. In this work, we almost
exclusively speak of finite dimensional Hilbert spaces, and so no further definition will be
required until necessary. However, the term Hilbert space is generally preferred in quantum
physics to finite dimensional inner product space over C, and so we follow this convention
(referring to inifite dimensional Hilbert spaces explicitly when necessary).

Throughout the thesis we use H to denote a finite dimensional Hilbert space. Given
H, we consider the group of invertible linear operators acting on it, and we denote it by
GL(H). These operators can also be viewed as invertible matrices in Cn×n for some positive
integer n.

Definition 1.5.3. Let M ∈ Cn×n be a matrix. We say that M is Hermitian if M∗ = M ,
where M∗ denotes the conjugate transpose of M .

Proposition 1.5.4. Let A,B ∈ Cn×n for some positive integer n. Then (AB)∗ = B∗A∗.

Remark 1.5.5. Throughout this thesis, we use the symbol I to denote the identity operator
on various vector spaces over C, without explicitly defining its dimensions. The dimensions
will always be apparent from the context.

Proposition 1.5.6. Let A ∈ Cn×n for some positive integer n. If A2 = I, then A = A−1.
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Matrices which are Hermitian and square to the identity are the matrices which appear
as labels for labeled hypergraph Kochen-Specker proofs. We thus provide the following
proposition which shall be used often throughout our work.

Proposition 1.5.7. Let A,B ∈ Cn×n for some positive integer n. If A2 = I, B2 = I, A∗ =
A, B∗ = B, and AB = BA, then (AB)2 = I, and (AB)∗ = AB.

Proof. We have (AB)2 = ABAB = A2B2 = I. In addition, we see that (AB)∗ = B∗A∗ =
BA = AB.

Contexts, referred to in the introduction, are sets of pairwise commuting matrices. Since
we are interested in proving things about these objects, the following simple Proposition
about sets of pairwise commuting matrices will often be of use.

Proposition 1.5.8. Let S ⊆ Cn×n be a set of mutually commuting matrices. LetM ∈ Cn×n

be a matrix that can be expressed as a product of elements from S. Then S ∪ {M} is a set
of mutually commuting matrices.

We now focus on a particular family of matrices which shall often appear as building
blocks for the labels in our examples.

The following matrices, well known in quantum physics, are called Pauli matrices.

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]

We state several useful properties of Pauli matrices.

Proposition 1.5.9. Following the notation above,

1. I,X, Y, Z are Hermitian,

2. X,Y, Z pairwise anti-commute: XY = −Y X, Y Z = −ZY , XZ = −ZX,

3. X2 = Y 2 = Z2 = I,

4. XY Z = iI.

We now present an operation to build larger matrices from smaller ones.

Definition 1.5.10. Let A = (ai,j) ∈ Cm×n, B = (bi,j) ∈ Cp×q. We define the tensor
product of A and B, denoted by A⊗B as

A⊗B =


a1,1B a1,2B ... a1,nB

a2,1B a2,2B ... a2,nB

... ... ... ...

am,1B am,2B ... am,nB


Note that A⊗B ∈ Cmp×nq.
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Here are several useful properties of tensor products:

Proposition 1.5.11.

1. Let A = A1⊗A2⊗ ...⊗Ak, B = B1⊗B2⊗ ...⊗Bk, where Ai, Bi ∈ Cn×n for 1 ≤ i ≤ k.
Then AB = (A1B1)⊗ (A2B2)⊗ ...⊗ (AkBk).

2. if C,D ∈ Cn×n, r ∈ C, we have (rC)⊗D = C ⊗ (rD) = r(C ⊗D)

3. if C,D ∈ Cn×n are Hermitian, then C⊗D is also Hermitian. Furthermore, if C2 = I

and D2 = I, then (C ⊗D)2 = I.

Proof. Let us first show that AB = (A1B1) ⊗ (A2B2) ⊗ · · · ⊗ (AkBk). The result clearly
holds if k = 1. If k = 2, let A1 = (a′i,j), B1 = (b′i,j). Then

AB = (A1 ⊗A2)(B1 ⊗B2)

=


a′1,1A2 a′1,2A2 . . . a′1,nA2

a′2,1A2 a′2,2A2 . . . a′2,nA2
...

...
...

...
a′n,1A2 a′n,2A2 . . . a′n,nA2




b′1,1B2 b′1,2B2 . . . b′1,nB2

b′2,1B2 b′2,2B2 . . . a2,nB2
...

...
...

...
b′n,1B2 b′n,2B2 . . . b′n,nB2



=


(a′1,1b′1,1 + . . .+ a′1,nb

′
n,1)A2B2 . . . (a′1,1b′1,n + . . .+ a′1,nb

′
n,n)A2B2

...
...

...
(a′n,1b′1,1 + . . .+ a′n,nb

′
n,1)A2B2 . . . (a′n,1b′1,n + . . .+ a′n,nb

′
n,n)A2B2


= (A1B1)⊗ (A2B2).

Thus if we assume the result for 1 ≤ i < k for some k ≥ 3 we find that AB =
(A1⊗A2⊗ . . .⊗Ak)(B1⊗B2⊗ . . .⊗Bk) = ((A1⊗ . . . Ak−1)⊗Ak)((B1⊗ . . . Bk−1)⊗Bk) =
((A1⊗. . .⊗Ak−1)(B1⊗. . .⊗Bk−1))⊗(AkBk) by the inductive hypothesis. Then by induction
we get ((A1B1)⊗ . . .⊗ (Ak−1Bk−1))⊗ (AkBk) = (A1B1)⊗ . . .⊗ (AkBk) as required.

We leave the second part without proof as it is easy to verify.
For the third part, let C = (ci,j). Then

(C ⊗D)∗ =


c1,1D . . . c1,nD

...
...

...
cn,1D . . . cn,nD


∗

=


c1,1D

∗ . . . cn,1D
∗

...
...

...
c1,nD

∗ . . . cn,nD
∗

 = C∗ ⊗D∗ = C ⊗D.

as required.
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Lastly, if C2 = I and D2 = I, we have (C ⊗D)2 = C2⊗D2 = I where the first equality
is due to part 1 of this proposition.

Corollary 1.5.12. If A = A1 ⊗ . . . ⊗ Ak and B = B1 ⊗ . . . ⊗ Bk, and AiBi = ±BiAi for
i ∈ {1, ..., k}, then A and B commute if and only if s := |{i : AiBi = −BiAi}| is even.

Proof. We have

BA = (B1A1)⊗ . . .⊗ (BkAk)

= (−1)s((A1B1)⊗ . . .⊗ (AkBk)) (by property 2 of Proposition 1.5.11)

= (−1)s(AB)

as required.

Definition 1.5.13. Let A = P1 ⊗ . . .⊗ Pk, where Pi ∈ {I,X, Y, Z} for i ∈ {1, . . . , k}. We
then say that A is a k-qubit Pauli matrix.

Notice that by Proposition 1.5.9 and Corollary 1.5.12, checking whether two k-qubit
Pauli matrices commute can be done without ever expanding their tensor products.

Corollary 1.5.14. Let A be a k-qubit Pauli matrix. Then A2 = I, and A is Hermitian.

Proof. This follows immediately from Proposition 1.5.11.

This last corollary confirms that k-qubit matrices are good label candidates for Kochen-
Specker proofs. They are especially useful due to the ease with which we can check com-
mutativity conditions - something we will need to do quite often in what follows.

1.6 Thesis Outline

Recall from the introduction that we are interested in labeled hypergraphs which constitute
Kochen-Specker proofs. To be more precise, for a hypergraph from a class called proper
Eulerian hypergraphs, we would like to assign operators from GL(H) to the vertices of the
hypergraph such that certain conditions are satisfied. If such a vertex labeling exists, we
say that the hypergraph in question is magic and that the labeling is a magic labeling. If
no such labeling exists, we say that it is non-magic.

In Chapter 2, we present a survey of work done on the central problem of the thesis
- Problem 2.1.8: Given a proper Eulerian hypergraph H, find a magic labeling of H, or
prove that no such labeling exists. We place particular emphasis on a result of Arkhipov,
which completely solves the central problem for the particular class of hypergraphs whose
duals are graphs. It is due to this result that we can consider this problem in a graph

15



theoretic framework instead of a purely algebraic one, and it is within this framework that
we approach the problem in Chapters 3 and 4. Let us briefly remark that algebraic methods
to Problem 2.1.8 do exist. We did not pursue such methods, but we mention some of them
in Chapter 5.

In Chapter 3 we develop two major theorems: the Splitting Theorem and the Parity
Minor Theorem. We also define an analogue of the magic property of proper Eulerian
hypergraphs for edge-even hypergraphs (the duals of Eulerian hypergraphs), called the
edge magic (or e-magic) property. The Splitting Theorem allows us to prove that many
hypergraphs are non-magic (and thus that their duals are not e-magic). Conversely, the
Parity Minor Theorem can be used to show that many edge-even hypergraphs are e-magic
and to subsequently generate e-magic labelings for them. Additionally, the Parity Minor
Theorem endows a concept of minimality onto the class of edge-even hypergraphs, and
allows one to prove that many e-magic hypergraphs are reducible to more fundamental e-
magic hypergraphs, which we call minimally e-magic (MEM) hypergraphs. We conclude
Chapter 3 by stating some required properties of MEM hypergraphs, and we motivate
Chapter 4 with a new problem - that of finding new MEM hypergraphs.

In Chapter 4, we begin a search for MEM hypergraphs within a class of edge-even
hypergraphs, which we call grafts. Using the two major theorems from Chapter 3, we derive
many required properties ofMEM grafts. We then describe an approach used to search for
such grafts based on creating grafts from maximal planar graphs, which we generate with
Gunnar Brinkmann’s and Brendan McKay’s program plantri [11]. The work of Chapter 4
serves the dual purpose of solving more of Problem 2.1.8 and also of highlighting the utility
of the theorems developed in Chapter 3.

As previously mentioned, there is evidence that Problem 2.1.8 is undecidable in the
most general case, however the approach taken in this thesis shows that much can still be
said if the class of hypergraphs is restricted. One should note that finding small minimally
e-magic instances is valuable as these would constitute fundamentally new Kochen-Specker
proofs. Therefore we believe that much progress can still be made, and the writer firmly
believes that this is fertile territory for further research.

16



Chapter 2

Magic Hypergraphs

Having presented all the relevant background, we now give the central problem of the thesis,
and acquaint the reader with current theory. There are no novel results in this chapter.

Section 2.1 begins with a simplified version of the central problem of this thesis, and
serves to motivate it. The section concludes by presenting the central problem in full
generality, and establishing notational conventions.

The purpose of Section 2.2 is twofold. On the one hand, it is a presentation of several
proofs of contextuality. On the other hand, each example presented will be of use later in
the thesis in establishing certain results.

Section 2.3 is a summary of the work done by Arkhipov [2, 3] on the central problem of
the thesis, and presents a solution to a subproblem.

Finally, in Section 2.4 we briefly discuss some closely related problems to those of this
thesis.

2.1 Problem Formulation

Recall from Definition 1.4.8 that a proper hypergraph is a hypergraph with no vertices of
degree zero, no edges of size zero, where for any pair consisting of a vertex v and edge e we
have mult(v, e) ≤ 1, and two edges e, e′ are the same if mult(v, e) = mult(v, e′) for every
vertex.

We begin by presenting a fairly simple puzzle.

Problem 2.1.1. Let H = (P,B) be a proper hypergraph. The problem is to find a
labeling α : P → {1,−1} of the vertices of H, so that for an odd number of b ∈ B we have∏
p:p∼b

α(p) = −1, or determine that no such labeling exists.

For convenience of notation, we shall refer to such a labeling as a classical labeling,
and to

∏
p:p∼b

α(p) as a block product henceforth. We shall also use the terms labeling and
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p1 p2 p3

p4 p5 p6

p7 p8 p9

Figure 2.1: The Mermin Square

assignment interchangeably. Further recall that for hypergraphs we shall often refer to the
vertices as points, and to the edges as blocks.

Ideally, we would like a polynomial-time algorithm to determine whether a classical
labeling exists for a given hypergraph. The solution lies in the following observation:

Lemma 2.1.2. If there are an odd number of blocks b ∈ B such that
∏

p:p∼b
α(p) = −1, then∏

b∈B

∏
p:p∼b

α(p) = −1.

Proof. Let r be the number of blocks b ∈ B such that
∏

p:p∼b
α(p) = −1. If r is odd, then∏

b∈B

∏
p:p∼b

α(p) = (−1)r = −1.

Let us consider an example:

Example 2.1.3. H = (P,B). P = {p1, . . . , p9}, B = {b1, . . . , b6}, b1 = (p1, p2, p3),
b2 = (p4, p5, p6), b3 = (p7, p8, p9), b4 = (p1, p4, p7), b5 = (p2, p5, p8), b6 = (p3, p6, p9). This
hypergraph (called the Mermin Square) is illustrated in Figure 2.1 (blocks are represented
by straight lines). In the Mermin Square, each point is incident to exactly two blocks.
Therefore, we find that for any α : P → {−1, 1}

∏
b∈B

∏
p:p∼b

α(p) =
∏
p∈P

α(p)2

= 1

6= −1

and so, by the previous lemma, we cannot come up with a classical labeling in this case.

Inspired by the previous example, we can solve this problem without too much difficulty.
All we need is the following observation:

18



Lemma 2.1.4. Let H = (P,B) be a proper hypergraph, and let α : P → {1,−1} be a
labeling, then

∏
b∈B

∏
p:p∼b

α(p) =
∏
p∈P

α(p)deg(p).

Proof. Each point p ∈ P is incident to deg(p) blocks, and thus appears deg(p) times in the
first product.

Proposition 2.1.5. Let H = (P,B) be a proper hypergraph. Then there exists a labeling
α : P → {1,−1} such that an odd number of blocks have block product −1 if and only if
there is some point p that has odd degree.

Proof. First, assume that each point has even degree. We have
∏
b∈B

∏
p:p∼b

α(p) =
∏
p∈P

α(p)deg(p)

by the previous lemma. Note that
∏
p∈P

α(p)deg(p) = 1 since deg(p) is even for all p ∈ P .

Then by Lemma 2.1.2 no classical labeling exists.
Thus, if a labeling exists, there must be a point p of odd degree. In this scenario, simply

let α(p) = −1, and α(q) = 1 for all q ∈ P − {p}. Then only the blocks incident to point p
have product −1, and there are an odd number of these since deg(p) is odd.

We now state the problem in full generality. Instead of the labeling α simply mapping
points to 1 or −1, it will now map points to Hermitian matrices which square to the
identity matrix. In addition, we restrict the class of proper hypergraphs considered to proper
Eulerian hypergraphs (defined below). The reasoning for this will appear immediately after
the problem is stated in full generality (in Definition 2.1.7).

Definition 2.1.6. Let H be a hypergraph where each point has even degree. We then say
that H is an Eulerian hypergraph.

Definition 2.1.7. Let H = (P,B) be a proper Eulerian hypergraph. If there exists some
labeling α : P → GL(H), where H is a Hilbert space, such that

1. for any point p ∈ P , α(p)2 = I, and α(p) is Hermitian

2. for any block b ∈ B, and points p, q ∼ b, we have α(p)α(q) = α(q)α(p)

3. for any block b ∈ B, we have

πH(b) :=
∏
p:p∼b

α(p) = ±I

4. for an odd number of blocks b ∈ B, we have πH(b) = −I

then we say that H is a magic hypergraph. If no such assignment α exists for H, then
we say that H is a nonmagic hypergraph. We also abbreviate these definitions by referring
to H as magic or non-magic instead of as a magic or non-magic hypergraph. In the case
that H is magic, and α is a labeling satisfying properties 1-4, we say that α is a magic
assignment for H.
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Notice that Problem 2.1.1 is simply the specific case of deciding whether such an as-
signment exists for H = C, and H not restricted to being a proper Eulerian hypergraph.
In fact, note that by Proposition 2.1.5, proper Eulerian hypergraphs are exactly the hyper-
graphs for which there exists no classical labeling of the vertices (since these are the proper
hypergraphs where each point is incident to an even number of blocks).

However, we cannot generalize Proposition 2.1.5 to magic assignments, and conclude
that no magic hypergraphs exist. This is because Lemma 2.1.4 does not generalize to
this case - matrices assigned to points that are not incident to a common block need not
commute.

This is the crux of this thesis, and why this problem is of interest. Recall from the
introduction that we are interested in finding labelings of proper hypergraphs which display
contextuality. This is manifested in the form of magic (proper) hypergraphs which do not
have any corresponding classical labeling (we can think of a classical labeling roughly as a
hidden variable model solution - something we do not want, since we would like to exploit
scenarios where classical physics cannot predict the effects predicted by quantum physics).
Therefore, proper Eulerian hypergraphs are the natural hypergraphs for us to study.

Let us now take a moment to state the main problem of this thesis.

Problem 2.1.8. Given some proper Eulerian hypergraph H, find a magic assignment for
H or show that none exists.

In the following section, we begin to give some ideas on how to find assignments, and
in Section 2.3, we present a solution of Problem 2.1.8 for a special class of proper Eulerian
hypergraphs.

2.2 Some Magic Assignments

Let us reconsider the Mermin Square pictured in Figure 2.1. By Corollary 1.5.14, we see
that tensor products of Pauli matrices are good candidates as point labels. Recall that a
matrix created by taking a tensor product of k Pauli matrices is called a k-qubit matrix.
If each matrix assigned in a labeling has k qubits, we say that the assignment is a k-qubit
assignment.

In what follows, when we display labeled hypergraphs, we illustrate the blocks with
block product −I by thicker lines.

Example 2.2.1. Figure 2.2 depicts a 2-qubit assignment of the Mermin Square. This
assignment, α : P → C4×4, is defined by: α(p1) = X ⊗X, α(p2) = Y ⊗ Y , α(p3) = Z ⊗ Z,
α(p4) = X⊗I, α(p5) = X⊗Z, α(p6) = I⊗Z, α(p7) = I⊗X, α(p8) = Z⊗X, α(p9) = Z ⊗ I.
For notational simplicity, we denote A⊗B as AB in diagrams, as all matrix multiplication
will be resolved before labeling.
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Figure 2.2: A magic assignment of the Mermin Square
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Figure 2.3: A magic assignment of the Mermin Pentagram

Figure 2.3 is an illustration of another Eulerian hypergraph (called the Mermin Penta-
gram) with a 3-qubit assignment.

Interestingly, it has been proven that the Mermin Pentagram has no 2-qubit assignment.
At this point, we should state a secondary problem of interest - one that expands on

our main problem.

Problem 2.2.2. Let H = (P,B) be a magic proper Eulerian hypergraph. Does H admit
a k-qubit assignment for some positive integer k? If so, what is the smallest such k?

We will address this problem later.
Waegell and Aravind [38, 39] have also done a lot of work in finding families of proper

Eulerian hypergraphs with magic assignments. We present a particular example of theirs
in Figure 2.4, as it is of relevance to us in an upcoming section.
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Figure 2.4: The 4-qubit Star along with a magic assignment

Example 2.2.3. The labeled Eulerian hypergraph in Figure 2.4 is called the 4-qubit star
by Waegell and Aravind in [39, Figure 1].

We should note that there exists an assignment using at most three qubits for this
proper Eulerian hypergraph (as we shall see in the following section). It is a problem
of interest to find irreducible (in the sense that no subset of observables or qubits can
be ignored) assignments on different (non-minimal) numbers of qubits. However, in this
thesis we are more concerned with solving Problems 2.1.8 and 2.2.2, than finding different
assignments for hypergraphs for which these two problems have already been solved. If the
reader is interested they are encouraged to see the paper referenced at the beginning of this
example, and also [38]. We also mention that in [39] Waegell and Aravind give constructions
for infinite families of irreducible Pauli-based assignments. We emphasize that irreducible
refers to the fact that no subset of observables or qubits can be ignored. These hypergraphs
are not minimally magic in our sense.

Until now we have only seen magic assignments based on Pauli matrices, however other
assignments do exist. As mentioned in the introduction, KS proofs based on rays and sets
of orthogonal bases can be transformed into labeled hypergraphs, and doing so for the 21
ray, 7 orthogonal bases proof appearing in [24] yields a magic assignment which maps points
of a hypergraph to matrices in C6×6.
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We remark that many more non Pauli-based proofs exist, some of which are described in
[40] where the simplest known critical KS sets in Hilbert spaces of even dimensions d ≥ 10,
and odd dimensions d ≥ 7 are derived (whereas Pauli-based proofs exist only in dimensions
2n for n ∈ N).

2.3 Magic 2-regular Hypergraphs

As of yet, we have not shown a proof that some proper Eulerian hypergraph H has no magic
assignment. Furthermore, when we showed that a certain proper Eulerian hypergraph is
magic, we simply displayed a labeling, and gave no insight as to how such a labeling was
constructed. This is largely because the labelings presented in the previous section were
generated in a rather ad hoc manner.

In this section, we present a result developed by Arkhipov in his 2012 Massachusetts
Institute of Technology Master’s thesis [2, 3]. This result shows that certain proper Eulerian
hypergraphs have no magic assignment, and also provides a labeling method for other proper
Eulerian hypergraphs which do have a magic assignment. Moreover, the result provides us
with a solution to Problem 2.1.8 for a certain class of proper Eulerian hypergraphs.

Definition 2.3.1. Let H be a hypergraph such that every point has degree k. Then we say
that H is a k-regular hypergraph.

Notice that the dual hypergraph of a 2-regular hypergraph is in fact a graph, as every
point of the 2-regular hypergraph, being incident to two blocks, corresponds to an edge of
size two. Thus, when referring to the dual hypergraph of a 2-regular hypergraph, we simply
say dual graph. If a 2-regular hypergraph is also proper, then its dual graph contains neither
loops nor vertices of degree zero.

Example 2.3.2. In Figure 2.5, we give the dual graphs of the Mermin Square and Mermin
Pentagram. We have labeled the vertices and edges to emphasize their correspondence to
blocks and points (respectively) in the original hypergraphs.

Note how properties 2-4 of Definition 2.1.7 appear in the dual graph - instead of the
properties corresponding to points incident to a block, they now correspond to edges incident
to a vertex. We formalize this for the sake of clarity.

Proposition 2.3.3. Let H be a proper 2-regular hypergraph, and let G = (V,E) be the dual
graph of H. Then H is magic if and only if there exists some labeling α : E → GL(H),
where H is a Hilbert space, such that

1. for any edge e ∈ E, α(e)2 = I, and α(e) is Hermitian

2. for any vertex v ∈ V , and e, f ∈ E incident to v, we have α(e)α(f) = α(f)α(e).
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Figure 2.5: Dual graphs of the Mermin Square and Mermin Pentagram: K3,3 (left) and K5
(right)

3. for any vertex v ∈ V , we have

πα(v) :=
∏
e:v∼e

α(e) = ±I

4. for an odd number of vertices v ∈ V , we have πα(v) = −I.

Proof. This is a direct consequence of the previous remark.

We refer to the graph G as e-magic, or edge magic. Furthermore, we shall refer to α
as an e-magic assignment (or e-magic labeling) of G. Lastly, we shall sometimes refer to
πα(v) as πG(v) if we are dealing with multiple graphs each containing unique assignments.
In addition, we may use the notation π(v) if we are dealing with a single graph and a single
assignment. We refer to this product as a vertex product.

We now present a technical lemma followed by the surprising and beautiful result.

Lemma 2.3.4. [3] Let G be a planar graph, and let α : E(G) → GL(H) for some Hilbert
space H, such that α(e)2 = I for every e ∈ E(G). Consider a planar embedding of G
which defines a clockwise cyclic ordering of the edges around each vertex. Assume that
for any vertex v ∈ V (G), for some sequence of the edges incident to v, obeying the cyclic
ordering, say e1, . . . , ek, we have α(e1)α(e2) . . . α(ek) ∈ {I,−I}. Then α(e1) . . . α(ek) =
α(ei)α(ei+1) . . . α(ek)α(e1)α(e2) . . . α(ei−1) for any i ∈ {1, . . . , k}.
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Proof. First, let us note that a clockwise cyclic ordering as described in the statement does,
in fact, exist by Proposition 1.3.16.

For i = 1, this result is trivial. Thus assume that the result holds for i = j, where
1 ≤ j < k. Let P = α(e1) . . . α(ek) (and note P ∈ {−I, I}, hence P commutes with ei for
i ∈ {1, . . . , k}).

We have

α(ej) . . . α(ek)α(e1) . . . α(ej−1) = P (by assumption)

=⇒ α(ej+1) . . . α(ek)α(e1) . . . α(ej−1) = Pα(ej) (since α(ej)2 = I)

=⇒ α(ej+1) . . . α(ek)α(e1) . . . α(ej) = P (since α(ej)2 = I)

= α(e1) . . . α(ek)

as required.
Therefore, the result holds for all i ∈ {1, . . . , k}.

Theorem 2.3.5. (Arkhipov) [3] Let H be a proper 2-regular hypergraph. Let G = (V,E)
be the dual graph of H. Then H is magic if and only if G is non-planar.

Proof. Let us first assume that G is planar. Let us also assume that G is connected (if it is
not, we can simply apply this proof to each component of G).

Consider a planar embedding of G defining a clockwise cyclic ordering of the edges at
each vertex v of V (G) (by Proposition 1.3.16). Let α be a labeling of the edges of G obeying
the assumptions of Lemma 2.3.4, noting that in the case that α is an e-magic assignment,
α would obey these conditions.

Let e1, . . . ek be the sequence of edges incident to some v ∈ V in clockwise cyclic order.
Then, we define π∗G(v) = α(e1)α(e2) . . . α(ek). By construction of α and by Lemma 2.3.4
this product is well defined and is either I or −I for every vertex in V , even in the case
that the α(ei) do not commute.

Now let e = uv be some edge in E, with u 6= v (the case where no such edge exists will be
treated subsequently). Let the edges incident to u be f1, . . . , fm, e, and the edges incident
to v be e, g1, . . . , gn in cyclic order without loss of generality (we can always put e first or
last as we are dealing with a cyclic ordering). If we contract edge e to obtain a graph G1,
then the new vertex w created from the contraction preserves the previous cyclic ordering.
(See Figure 2.6 for details). In other words, after the contraction of edge e, we will have
f1, . . . , fm, g1, . . . , gn as the cyclic order around w. Notice that π∗G(u) = α(f1) . . . α(fm)α(e),
and π∗G(v) = α(e)α(g1) . . . α(gn).
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Figure 2.6: Edge contraction in Theorem 2.3.5

So

π∗G(u)π∗G(v) = α(f1) . . . α(fm)α(e)2α(g1) . . . α(gn)

= α(f1) . . . α(fm)α(g1) . . . α(gn)

=⇒ α(f1) . . . α(fm)α(g1) . . . α(gn) ∈ {−I, I} (since π∗G(u), π∗G(v) ∈ {−I, I}).

Therefore, since f1, . . . , fm, g1, . . . , gn are the edges in clockwise cyclic order around w, and
since α(f1) . . . α(fm)α(g1) . . . α(gn) ∈ {−I, I} we find that by Lemma 2.3.4, π∗G1

(w) is well
defined.

Note that edges between u and v that were not e become loops for w. Just as we counted
loops twice when calculating the degree, the label assigned to a loop occurs twice in the
product of the vertex that is the end of the loop.

Notice that the resulting assignment for the graph obtained by contracting e also obeys
the assumptions of Lemma 2.3.4.

Thus, this edge contraction property (π∗G1
(w) = π∗G(u)π∗G(v), where w was obtained

from identifying vertices u and v in the contraction) holds for subsequent contractions as
well. Therefore, we can apply edge contraction inductively to finally arrive at a graph G+

with a single vertex vertex u′, and loops e′1, ..., e′s. As we also have a planar embedding
of G+, there must be an inner-most loop, and thus in the cyclic ordering, the two edge
labels corresponding to that loop appear consecutively in π∗G+(u′) and multiply to identity.
Therefore, π∗G+(u′) = I.

Since G is connected, we have
∏
v∈V

π(v) = π∗G+(u′) = I (we obtained u′ by identifying

all of the vertices in G). Then α cannot be an e-magic assignment of G since an e-magic
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assignment must have
∏
v∈V

πG(v) = −I (since an odd number of vertices have πG(v) = −I

for an e-magic assignment, by condition 4 of Proposition 2.3.3).
Now, let us assume that G is non-planar, and show that H is magic. Since G is non-

planar, by Kuratowski’s Theorem, it contains a K3,3 or K5 subdivision as a subgraph. Let
G′ be a subdivision of K3,3 or K5 appearing in G, and let K be either K3,3 or K5 so that
G′ is a subdivision of K. Then the branch vertices of G′ are exactly the vertices of K, and
each edge e = uv in K corresponds to a path Pe from u to v in G′ (by Proposition 1.3.10).
We know that K is e-magic as it is the dual graph of the Mermin Square or the Mermin
Pentagram, thus we have an e-magic assignment α : E(K)→ GL(H) respecting properties
1-4 of Proposition 2.3.3. Now we define α′ : E(G)→ GL(H) by the following rule:

α′(e) =


I if e /∈ E(G′)

α(f)
if e ∈ E(G′) ∩ E(Pf ) where Pf is the path in
K corresponding to edge f ∈ E(K)

Then we claim that α′ is an e-magic assignment of G.
First, note that property 1 of Proposition 2.3.3 holds for α′ since all edge labels are either

I or are also edge labels of α - which is an e-magic assignment and thus obeys property 1.
We now show that properties 2 and 3 of Proposition 2.3.3 hold for each vertex v ∈ V (G).

For any vertex v ∈ V (G)−V (G′), v is only incident to edges e such that α′(e) = I. Therefore,
commutativity holds and π(v) = I (where π(v) =

∏
e:v∼e

α′(e)). Thus we may restrict our
attention to G′, since all edges outside of E(G′) have label I, and do not affect the product
of any vertex in G′. If v is a vertex in G′, then v is either a branch vertex or a subdividing
vertex. If v is a subdividing vertex on some path Pf , then v is adjacent to two edges from
Pf , both with label α′(f). Thus π(v) = α′(f)2 = I, and commutativity again holds trivially.
Now assume that v is a branch vertex. Then, in G′, v is incident to edges corresponding to
edges in K, and with the same edge labels. Thus πG(v) = πG′(v) = πK(v) (where the first
equality is again due to the fact that all edges in E(G)− E(G′) have label I).

Finally, we prove that property 4 holds. Since an odd number of vertices in K have
product −I, we have that an odd number of vertices in G′ have product −I. Therefore, we
can finally conclude that we have an odd number of vertices with product −I in G.

Therefore since properties 1-4 of Proposition 2.3.3 hold, α is an e-magic assignment of
G as required.

Arkhipov’s result answers Problem 2.1.8 for the class of proper 2-regular hypergraphs.
In addition, it provides a partial answer for Problem 2.2.2 for the same class, namely, any
magic proper 2-regular hypergraph does admit a k-qubit assignment. Furthermore, any 2-
regular hypergraph whose dual contains a K3,3 subdivision has k = 2 as the minimal value
of k for a k-qubit assignment (it is easy to show that 1-qubit assignments exist only when
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Figure 2.7: Graph labeled via the standard labeling method

classical labelings do as well). To the best of the author’s knowledge, deciding whether a
2-qubit assignment can exist when only subdivisions of K5 appear in the dual graph is an
open problem.

Additionally, we can solve Problem 2.1.8 for 2-regular hypergraphs in linear time, in
the number of edges of the dual graph (and thus the number of points of the original
hypergraph). This can be done by applying one of the many well-known linear time planarity
testing algorithms to the dual graph, which either ascertain that a given graph is planar,
or output a subdivision of K3,3 or K5 appearing in the given graph. A number of such
algorithms are listed in Section 2.7 of the text Graphs on Surfaces by Mohar and Thomassen
[27]. One such algorithm, due to Williamson, is described in [41].

Once aK3,3 orK5 subdivision has been found by one of the previous planarity algorithms
mentioned, we proceed by the constructive labeling suggested by the proof of Theorem 2.3.5.

Definition 2.3.6. For a non-planar graph G, and a given subdivision of K3,3 or K5 ap-
pearing in G we refer to a labeling of G as in the proof Theorem 2.3.5 as a labeling obtained
by the standard labeling method.

Example 2.3.7. Figure 2.7 is an illustrative example of a labeling for a non-planar graph
via the standard labeling method. Note that branch vertices are denoted by squares and
path edges are drawn thicker to emphasize the chosen K3,3 subdivision.

In Section 2.2 we mentioned that the duals of each of the hypergraphs presented in [39]
are graphs. Therefore by Arkhipov’s result, they each have magic assignments using at
most three qubits. We present a particular example from that paper now.
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Figure 2.8: The dual of the 4-qubit Star
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Figure 2.9: K3,3 appearing as a subgraph in the dual

Example 2.3.8. The 4-qubit star illustrated in Figure 2.4 has a magic assignment with at
most three qubits because it is a proper 2-regular hypergraph. Using Magma code given in
Appendix A.1, we verified that the dual of the 4-qubit star (pictured in Figure 2.8) contains
a K3,3 subdivision, and thus the 4-qubit star has a two qubit magic assignment. In Figure
2.9 is a subgraph isomorphic to K3,3 appearing in the dual. Here the bipartition is v1, v3, v5

and v2, v4, v6. A labeling obtained via the standard labeling method is displayed in Figure
2.10.
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Figure 2.10: A labeling of the 4-qubit Star obtained by the standard labeling method

2.4 Parity Binary Constraint Systems

At this point we present some problems of a similar flavour to those of this thesis. The
purpose of this is to give the reader some context in terms of recent developments, and also
to show that the work done in this thesis has ramifications beyond the scope of Kochen-
Specker sets.

Definition 2.4.1. A parity binary constraint system (BCS) is a collection of constraints
C1, C2, . . . , Cm over variables x1, x2, . . . , xn, taking values in {−1, 1}, where each constraint
Ci (1 ≤ i ≤ m) is of the form

∏
x∈Si

x = ri, Si is a subset of the variable set, and ri ∈ {−1, 1}.

Definition 2.4.2 (Cleve, Mittal). [14] A parity binary constraint system has a quantum
satisfying assignment if there exists a finite dimensional Hilbert space H, and an assignment
of an operator Aj ∈ GL(H) to each variable xj such that the following conditions hold:

1. The operators satisfy each constraint when we substitute xj with operators Aj and 1
with I (and so also -1 with −I) for 1 ≤ j ≤ n,

2. For each j, Aj is Hermitian and A2
j = I,

3. Each pair of operators Aj , Ak that appear in the same constraint is commuting, i.e
AjAk = AkAj.
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The problem of finding a quantum satisfying assignment for a parity BCS is very similar
to Problem 2.1.8. Consider the proper hypergraph H = (P,B) arising by representing each
variable xj by a point pj ∈ P , and each constraint Ci by a block bi ∈ B where bi is
incident to a point pj if and only if xj appears in Si. If we insist that the block products
(πα(b) for labeling α, block b) in Problem 2.1.8 are prespecified, we see that Problem 2.1.8
corresponds to an instance of the problem of finding a quantum satisfying assignment of a
parity BCS. Moreover, any magic assignment α of a proper Eulerian hypergraph corresponds
to a quantum satisfying assignment for a corresponding parity BCS if riI = πα(bi) for each
1 ≤ i ≤ m.

Showing that a proper Eulerian hypergraph is not magic is therefore equivalent to prov-
ing that every parity binary constraint system for which the variables and constraints are
consistent with the points and blocks of the hypergraph, and with an odd number of −1’s
in the right-hand sides of its constraints has no quantum satisfying assignment.

A parity BCS also has an associated two-player game. There are two cooperating players,
Alice and Bob, who are allowed to agree on a strategy before the game begins but are not
allowed to communicate once it has begun. Alice is given some constraint Ci and Bob is
given some variable xj appearing in Si. Alice must assign a {−1, 1} value for each variable
in Si so that the values satisfy constraint Ci, and Bob must assign xj to some value in
{−1, 1}. Alice and Bob win if they have assigned the same value to xj .

In the case that Alice and Bob can win the game with probability 1, we say that the
game has a perfect strategy. If the parity BCS has a solution (an assignment of the variables
such that all constraints are simultaneously satisfied), then its associated game has a perfect
strategy - Alice and Bob agree on a particular solution and choose their variable assignments
based on this solution. Such a strategy is referred to as a perfect classical strategy. In the
case that the parity BCS has no solution, Alice and Bob can still win with probability 1
with a so-called quantum strategy (which we call a perfect quantum strategy in the case
that Alice and Bob do win with probability 1), which utilizes entanglement. There are
different models for quantum strategies, among which are the tensor product model, and
the commutative model. When we refer to a quantum strategy we are referring to the tensor
product model, but we make mention of this distinction since a recent paper by Slofstra [35]
showed that perfect quantum strategies exist for the commutative model where none exist
for the tensor product model (and thus solved a famous conjecture of Tsirelson), and that
the problem of determining whether a perfect quantum strategy exists for the commutative
model is undecidable.

We will not delve into an explanation of quantum strategies or entanglement, as this
venture requires background not covered in this thesis, but if the reader is interested they
are referred to [14, 13, 18, 35]. Instead, we will describe the relation between this field of
study and our own.
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Firstly, it can be shown that if a parity BCS has a quantum satisfying assignment,
then its corresponding parity BCS game has a perfect quantum strategy. Conversely, in
[14], Cleve and Mittal show that for any parity BCS, if a perfect quantum strategy exists
for the corresponding parity BCS game that uses finite or countably-infite dimensional
entanglement, then it has a quantum satisfying assignment. Therefore, proving that a
proper Eulerian hypergraph is non-magic is the same as showing that all of the corresponding
parity BCS games with an odd number of −1’s in the right-hand sides (of the parity BCS)
have no perfect quantum strategy. Additionally, for a parity BCS (with an odd number of
−1’s in the right-hand sides) that has a corresponding proper Eulerian hypergraph, showing
that the corresponding parity BCS game has a perfect quantum strategy using finite or
countably-infinite dimensional entanglement implies that the proper Eulerian hypergraph
is magic.

Secondly, for any binary constraint system with each variable in exactly two constraints,
Arkhipov’s result on 2-regular hypergraphs (Theorem 2.3.5) allows us decide whether its
corresponding game has a perfect quantum strategy in polynomial time [13].

Lastly, in [18], Ji gives a sequence of parity binary constraint systems such that for any
d ∈ N, there is some BCS in the sequence which has a quantum satisfying assignment,
and any quantum satisfying assignment for the BCS requires a Hilbert space of dimension
at least d (and whose corresponding game requires log2(d) dimensional entanglement). Ji
also shows that a quantum satisfying assignment using tensor products of Pauli matrices (a
k-qubit assignment for some k ∈ N) exists for each of these binary constraint systems. Thus
for any k ∈ N, there exists a parity BCS that has a k-qubit quantum satisfying assignment,
but no k′-qubit quantum satisfying assignment for any k′ < k. It is natural to ask whether
this property translates to our setting for the associated hypergraphs of this sequence of
binary constraint systems. This would show that for Problem 2.2.2 we can find proper
Eulerian hypergraphs which are magic, and for which the minimum value of k needed for a
k-qubit magic assignment is arbitrarily large. As this can have a large impact on our work,
we give Ji’s construction now.

Definition 2.4.3. [18] For any N ∈ N, N ≥ 2, let G = (V,E) be a complete graph with
vertex set V = {1, 2, . . . , N}. To each vertex j ∈ V , associate a variable xj, and to each edge
e = (j, k) for j < k, associate the variables y(e)

1 , y
(e)
2 , . . . , y

(e)
7 . For each edge e = (j, k) build

the constraints: y(e)
1 xky

(e)
2 = 1, xjy(e)

3 y
(e)
4 = 1, y(e)

5 y
(e)
6 y

(e)
7 = 1, y(e)

1 xjy
(e)
5 = 1, xky

(e)
3 y

(e)
6 =

1, y(e)
2 y

(e)
4 y

(e)
7 = −1. The parity BCS built from these variables and constraints is called the

Clifford BCS of rank N , and the game associated to it is the Clifford BCS game of rank N .

We quote Ji to indicate the inspiration of this construction and its name: ‘The basic
idea is to glue a bunch of magic squares and use the anti-commutativity relations implicit
in the magic square to form the defining relations of the Clifford algebra.’
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Figure 2.11: The hypergraph C3

Theorem 2.4.4. [18] For each quantum satisfying assignment of the Clifford BCS of rank
N , its corresponding Hilbert space has dimension at least 2b

N
2 c.

For each N , N ≥ 2, the Clifford BCS of rank N has the property that each variable
appears in an even number of constraints. Therefore, its associated hypergraph is not only
proper, but also Eulerian.

Example 2.4.5. In Figure 2.11 we display the proper Eulerian hypergraph associated to
the Clifford BCS of rank 3. We refer to the proper Eulerian hypergraph associated to the
Clifford BCS of rank N by CN . Note that all points which are labeled the same represent
the same point, so that points x1, x2, x3 all have degree 4. Additionally, the K3 used in our
construction has edges e = (1, 2), f = (1, 3), g = (2, 3).

Notice that for N ∈ N such that
(N

2
)
is odd (so N ≡ 2, 3 (mod 4)), the Clifford BCS of

rank N has an odd number of constraints Ci with ri = −1, and so a quantum satisfying
assignment for the Clifford BCS of rank N translates directly to a magic assignment of
CN . Thus we see that for N ≡ 2, 3 (mod 4), CN is magic. In Section 3.3 we study these
hypergraphs further, and find the minimum k value for a magic k-qubit assignment to exist
for CN for all N ∈ N, N ≥ 2.
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Chapter 3

New Results

As can be seen in the previous chapter, while Arkhipov’s result completely characterizes
the proper Eulerian hypergraphs with duals which are graphs, very little is known about
the case when the duals are not graphs. Ideally one would like an extension of this result
to the more general case.

The purpose of the remainder of this thesis is to use combinatorial and graph theoretic
techniques to make progress on Problems 2.1.8 and 2.2.2. In Section 3.1 we introduce an
algorithm called point splitting to show that certain hypergraphs are not magic using the
planarity of graphs. In Section 3.2, we then recast and generalize Problem 2.1.8 in a gen-
eralized dual space of proper Eulerian hypergraphs - the space of edge-even hypergraphs.
Additionally, we generalize the edge magic property defined for Arkhipov’s result to all
edge-even hypergraphs, and also recast the point splitting operation in the dual space. This
translation immediately allows us to derive useful time complexity information about the
point splitting operation. It also sets the groundwork for the approach taken in the rest of
the thesis - using graph theoretic techniques in the generalized dual space to make progress
on Problems 2.1.8 and 2.2.2. More precisely, in Section 3.3, we present a certain general-
ization of the graph minor relation to hypergraphs which we call the parity minor relation.
This allows us to reduce edge magic hypergraphs to minimally edge magic hypergraphs,
and thus it changes the nature of Problem 2.1.8 to one of finding minimally edge magic hy-
pergraphs. We conclude this section and chapter by describing the properties of minimally
edge magic hypergraphs.

Unless otherwise stated, any result appearing in the remainder of the thesis is novel.
We make special note that a recent preprint on arXiv by William Slofstra [35] (previously
referenced in Section 2.4) has results which bare a great similarity to some of our own - in
particular, to the parity minor relation. A talk based on results of an earlier version of this
thesis chapter was accepted for presentation [37] at the international Workshop on Algebraic
Structures in Quantum Computation held at the University of British Columbia in May
2016, and the preprint [35] appeared shortly thereafter. In Section 3.3 we will elaborate on
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this matter, discussing the similarities and differences between Slofstra’s work and our own.
For the moment, we recall from Section 2.4 that Slofstra’s work illustrates that undecidable
instances exist in the context of finding perfect quantum strategies (using the commutative
model) for parity binary constraint system games. It is possible that the method used
for this proof could be used to find undecidable instances for our own problem. However,
one should note that the smallest undecidable instance found by Slofstra so far has 400
variables and 300 constraints. Given that we are interested in finding new Kochen-Specker
proofs in the form of minimally edge magic hypergraphs, there is still much space left for
investigation. Even if no polynomial time algorithm analogous to Arkhipov’s result exists
for the class of all proper Eulerian hypergraphs, much can still be said, as evidenced in part
by our own work.

3.1 Point Splitting

In the previous chapter, we outlined the main motivation of this thesis - Problem 2.1.8:
Given a proper Eulerian hypergraph, decide whether or not it is magic, and in the case that
it is magic, to find a magic assignment.

We have now seen that this problem is solved by Theorem 2.3.5 in the case that H is
a proper 2-regular hypergraph i.e. each point has degree 2. In this section we present an
operation called point splitting which allows us to utilize Theorem 2.3.5 to show that many
proper Eulerian hypergraphs are not magic. This operation is further developed in Section
3.2, where it is also used to prove positive results.

We begin by presenting a motivating example.

Example 3.1.1. The proper Eulerian hypergraph in Figure 3.1 is called the 4-fan. Note
that point p1 is incident to four blocks, thus we cannot simply apply Theorem 2.3.5. What
if we instead considered the proper 2-regular hypergraph (called the Split 4-fan) illustrated
in Figure 3.2? We now show that if the 4-fan is magic, then the Split 4-fan is as well. Let
us assume there exists some magic labeling α of the 4-fan (pictured on the left of Figure
3.3). Let us denote α(pi) by Ai. We then display a labeling α′ of the Split 4-fan (on the
right of Figure 3.3). Note that each block in the 4-fan has a corresponding block in the
Split 4-fan whose block products contain the exact same matrices, and vice-versa. Thus α′

is a magic labeling of the Split 4-fan. But the Split 4-fan is not magic, as we can see by
its planar dual graph, illustrated in Figure 3.4. Thus we see that the 4-fan is not magic as
otherwise the Split 4-fan would be magic as well.

We now formalize the idea illustrated by the previous example for Eulerian hypergraphs.
Note that for this definition we do not insist that the given hypergraph is also proper. In
the following sections (particularly Section 3.3) it is useful to consider the general class of
Eulerian hypergraphs, as these will arise naturally by applying certain operations to proper
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Eulerian hypergraphs. In Chapter 4 we shall see the utility of defining the point splitting
operation to the more general setting, when we combine the results of this chapter to search
for irreducible magic proper Eulerian hypergraphs.

Definition 3.1.2. Let H = (P,B) be an Eulerian hypergraph, and let p ∈ P such that
deg(p) ≥ 4. Let b1, ..., bn be the set of blocks in H incident to p. For any bi, bj such that
1 ≤ i < j ≤ n or i = j and mult(p, bi) ≥ 2, we define the hypergraph H ′ = (P ′, B′) as
follows:

• P ′ = (P ∪ {q, r})− {p} (where q, r are not already in P ).

• B′ = (B ∪ {b′1, ..., b′n})− {b1, ..., bn} where:

for t ∈ {1 . . . , n}, for every s ∈ P ∩ P ′, multH′(s, b′i) = multH(s, bi)

for t ∈ {1, . . . , n} − {i, j}, multH′(q, b′t) = 0, multH′(r, b′t) = multH(p, bt),

if i 6= j, then for t ∈ {i, j}, multH′(q, b′t) = 1, multH′(r, b′t) = multH(p, bt)− 1,

else if i = j, then multH′(q, b′i) = 2, multH′(r, b′i) = multH(p, bi)− 2.

We shall refer to this operation as splitting the point p in H, or more simply as split-
ting p. We shall also refer to H ′ as a split of H. Additionally, we say that points q and r
were obtained by splitting p, and that b′i is the block corresponding to bi for i ∈ {1, . . . , n}.
To refer to a specific split, we say that blocks bi and bj were chosen in the process of splitting
p.

In principle point splitting could be defined also for non-Eulerian hypergraphs, but we
only use it for Eulerian hypergraphs, and thus have no need to generalize beyond this
setting.

Proposition 3.1.3. Let H = (P,B) be an Eulerian hypergraph with point p ∈ P such that
degH(p) ≥ 4, and let H ′ = (P ′, B′) be an Eulerian hypergraph obtained from H by splitting
point p, such that q and r are the points obtained by splitting p. Then degH′(q) = 2 and
degH′(r) = degH(p)− 2.

We present an example of the splitting operation on an Eulerian hypergraph. Note that
in the following example block b6 is unaffected by the split and is thus still b6 in the resulting
hypergraph (instead of being replaced by a block b′6).

Example 3.1.4. Consider the hypergraph H shown in Figure 3.5. Figures 3.6, 3.7, 3.8,
3.9, 3.10 display all of the non-isomorphic splits of H. In each of these figures, hypergraph
Hi,j was obtained by choosing blocks bi and bj in the process of splitting p.
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p2

p3

p4

p1

= b0
1

= b6

q

r

b0
2

b0
3

b0
4

b0
5
b0
5

H1;1
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H
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Figure 3.8: Eulerian hypergraph H1,3 obtained by choosing blocks b1, b3 in the split of p in
H
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Figure 3.10: Eulerian hypergraph H3,4 obtained by choosing blocks b3, b4 in the split of p
in H
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Figure 3.11: The two other hypergraphs obtained by splitting the 4-fan

As we see in the above example, the operation of splitting a point is not unique given
the hypergraph and the point - it is also dependent upon the choice of bi, bj .

Let us consider the specific case in which H = (P,B) is a proper Eulerian hypergraph.
Let p ∈ P be a point of degree at least 4. Then for any block b ∈ B, multH(p, b) ≤ 1 by
definition. Let H ′ be a hypergraph resulting from splitting p, so that q and r are the points
obtained by splitting p. Since degH(p) = degH′(q) + degH′(r) and for any block b we have
multH(p, b) = multH′(q, b′) +multH′(r, b′) (where b′ is the block corresponding to b in H)
we see that mult(q, b′) ≤ 1 and mult(r, b′) ≤ 1 as well. In addition, we see that q and r are
incident to no common block in H ′.

Utilizing this, if H = (P,B) is a proper Eulerian hypergraph, we can calculate an upper
bound on the number of non-isomorphic splits of H. If p ∈ P is incident to k 6= 4 blocks,
there are

(k
2
)
possible splits of p (corresponding to pairs of distinct blocks), and if p is

incident to 4 blocks, then there are (4
2)
2 = 3 splits (by symmetry).

Example 3.1.5. In addition to the split of the 4-fan illustrated in Figure 3.2, there are
two other possible splits. They are pictured in Figure 3.11. Note that we referred to the
structure before as the Split 4-fan (as opposed to a Split 4-fan) since all splits of the 4-fan
are isomorphic.

The splitting operation can also be applied recursively on Eulerian hypergraphs resulting
from splits. Thus to each Eulerian hypergraph H, there is associated a set of Eulerian
hypergraphs that can be reached from H by recursively splitting points, and for any other
Eulerian hypergraph H ′ we can ask the question of whether H ′ is in this set. We formalize
this idea.

42



Definition 3.1.6. Let H be an Eulerian hypergraph. If there exists a sequence of hyper-
graphs H = H1, H2, . . . ,Hn = H ′ such that Hi+1 can be obtained by splitting some point of
Hi (for i ∈ {1, . . . , n− 1}), then we say that H ′ is point split-obtainable from H.

We now give several properties of the splitting operation.

Proposition 3.1.7.

1. Any hypergraph which is point split-obtainable from an Eulerian hypergraph is an Eu-
lerian hypergraph. Any hypergraph which is point split-obtainable from a proper Eulerian
hypergraph is a proper Eulerian hypergraph.

2. For every Eulerian hypergraph H = (P,B) there is some sequence of Eulerian hypergraphs
H = H1, H2 . . . , Hl = H ′ such that Hi+1 can be obtained by splitting some point of Hi (for
i ∈ {1, . . . , l− 1}) and H ′ is a 2-regular hypergraph. Further, any sequence of l hypergraphs
beginning with H, and having the property that each hypergraph is obtained by splitting a
point in the previous hypergraph, terminates with a 2-regular hypergraph. Lastly, any such
sequence of less than l hypergraphs does not terminate with a 2-regular hypergraph, and no
such sequences of length greater than l exist.

We shall call l the split length of H. Explicitly, we will always have that l =
∑
p∈P

deg(p)−2
2 .

3. If H = (P,B) is an Eulerian hypergraph, with P = {p1, . . . , pk} and H ′ = (P ′, B′) is point
split-obtainable from H, then we can partition the points of P ′ into sets P ′1, . . . , P ′k where
points in P ′i were obtained by splitting point pi and successively splitting the points obtained
(for 1 ≤ i ≤ k). We shall call the points in P ′i the set of points corresponding to pi, or
alternatively the set of points obtained from splitting pi.

4. If H is a magic proper Eulerian hypergraph and H ′ is point split-obtainable from H, then
H ′ is magic (proven in Theorem 3.1.9).

Proposition 3.1.8. Let H be a magic proper Eulerian hypergraph, and let H ′ be obtained
from H by splitting a point. If H is magic, then H ′ is magic.

Proof. Let H = (P,B) and let H ′ = (P ′, B′). Let p ∈ P be the point split in H to obtain
H ′, and let q and r be the points in P ′ corresponding to p.

Since H is magic, there exists some magic labeling of H, α : P → GL(H). Then, we
define a labeling α′ : P ′ → GL(H)

α′(s) =

α(p) if s ∈ {q, r}

α(s) otherwise

We now show that α′ is a magic labeling of H ′.
Thus we must show that α′ obeys conditions 1-4 of Definition 2.1.7.
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1. For any point p′ ∈ P ′, we have α′(p′) = α(s) for some s ∈ P . Since α is a magic
assignment, α′(p′) is Hermitian and squares to the identity.

2. For any block b′ ∈ B′, and points p′, q′ ∼ b′, either both p′, q′ ∈ P ′ − {q, r}, or p′ is
obtained from the split, so that p′ = q and q′ ∈ P ′ − {q, r} without loss of generality
(q′ 6= r since the points obtained from the split are incident to no common blocks).

In the first case we have α′(p′)α′(q′) = α(p′)α(q′) = α(q′)α(p′) = α′(q′)α′(p′) as
required. In the second case, we have α′(p′)α′(q′) = α(p)α(q′). Since p′ is ob-
tained from the split, p and q′ must be incident to some common block in H. Thus
α′(p′)α′(q′) = α(p)α(q′) = α(q′)α(p) = α′(q′)α′(p′) as required.

3. Let b′ ∈ B′. Then either b′ ∈ B, or b′ is incident to exactly one point from q or r.

If b′ ∈ B, then
∏

p′:p′∼b′
α′(p′) =

∏
p:p∼b′

α(p) = ±I. Otherwise if b′ /∈ B′, let b′ =

(q, p′1, . . . p′k), where there is some corresponding block b = (p, p′1, . . . p′k) ∈ B. Then∏
p′:p′∼b′

α′(p′) = α′(q)
k∏
i=1

α′(p′i) = α(p)
k∏
i=1

α(p′i) =
∏

p′:p′∼b
α(p′) = ±I.

4. This follows directly from the proof of 3.

Thus we see that H ′ is magic, as α′ is a magic labeling of H ′.

We can now extend this proposition to the following theorem inductively.

Theorem 3.1.9. If H is a magic proper Eulerian hypergraph and H ′ is point split-obtainable
from H, then H ′ is magic.

Proof. By induction on the previous proposition.

Theorem 3.1.10 (Splitting Theorem). Let H be a proper Eulerian hypergraph. Let H ′ be
a proper 2-regular hypergraph that is point split-obtainable from H. Let G be the dual graph
of H ′. If G is planar, then H is non-magic.

Proof. Assume towards a contradiction that H is magic. Then by the previous theorem,
we see that H ′ is magic. But then G would be non-planar by Theorem 2.3.5. This is a
contradiction, therefore, H must be non-magic.

Example 3.1.11. Consider the k-fan (defined for even k) shown in Figure 3.12, the natural
generalization of the 4-fan. We can show that the k-fan is non-magic for any even k by
Theorem 3.1.10. Figure 3.13 shows a split of the k-fan, and in Figure 3.14 is the planar
dual graph of the split.

In general, we can test any proper Eulerian hypergraph H with Theorem 3.1.10 by
checking the dual graphs of all the possible proper 2-regular hypergraphs that are point
split-obtainable from H. Note that in many cases we do not have to check all of the dual
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Figure 3.14: The dual graph of the Split k-fan

graphs - we can terminate when we find the first planar one. This approach suggests the
two following questions:

Question 3.1.12. If all the proper 2-regular hypergraphs which are point split-obtainable
from some proper Eulerian hypergraph, H, have non-planar duals, is it true that H is magic?

Question 3.1.13. For a given proper Eulerian hypergraph H, what is the upper bound on
the number of 2-regular hypergraphs which are point split-obtainable from H?

In the following section, we answer both of these questions.

3.2 Dual Hypergraphs

One of the main results of this thesis is a generalization of one direction of Theorem 2.3.5 to
Eulerian hypergraphs. The proof of Theorem 2.3.5 relies on dual graphs; proper 2-regular
hypergraphs are never manipulated directly. Thus, it seems only natural that we should
understand a little more about the duals of proper Eulerian hypergraphs if we would like
to extend Theorem 2.3.5 (this is done in Section 3.3). Such a venture has the added benefit
of providing a different perspective on the point splitting operation, which we shall exploit
in order to answer Question 3.1.12 and Question 3.1.13.

Let us begin by describing the duals of Eulerian hypergraphs - these will be the central
objects of study for the remainder of this thesis.
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Definition 3.2.1. Let J be a hypergraph such that every edge is of even size. Then we say
that J is an edge-even hypergraph.

Proposition 3.2.2. The dual of an Eulerian hypergraph is an edge-even hypergraph.

Proof. Let H = (P,B) be an Eulerian hypergraph and let J = (V,E) be the dual hy-
pergraph of H. For any edge e ∈ E, and point p ∈ P corresonding to e, we have
|e|J =

∑
v∈V

multJ(v, e) =
∑
b∈B

multH(p, b) = degH(p). Since H is an Eulerian hypergraph,

deg(p) is even and so |e| is even as well. Thus we see that the dual hypergraph of an Eulerian
hypergraph is an edge-even hypergraph as required.

Example 3.2.3. In Figures 3.15 and 3.16 we provide illustrations of an Eulerian hypergraph
H and its edge-even dual J respectively. As before, edges of size greater than two are
depicted by concentric shapes around the vertices to which they are incident. Each shape
corresponds to a particular edge as indicated below each respective hypergraph. Note that
for example mult(v4, e7) = 2, and this is depicted by two circles centered at vertex v4.
These hypergraphs are also described in list form:

• H = (V,E)

• V = {v1, . . . , v5}

• E = {e1, . . . , e7}

• e1 = v1v5, e2 = v2v5, e3 = v1v3, e4 = v2v3, e5 = v1v2, e6 = v1v2v3, e7 = v3v4v4

• J = (X,F )

• X = {x1, . . . , x7}

• F = {f1, . . . , f5}

• f1 = x1x3x5x6, f2 = x2x4x5x6, f3 = x3x4x6x7, f4 = x7x7, f5 = x1x2

We now translate the magic property to the dual space. In doing so, we will also
implicitly generalize it to all Eulerian hypergraphs.

Definition 3.2.4 (Extension of Definition 2.1.7). Let J = (V,E) be an edge-even hy-
pergraph. Then we say that J is edge magic or e-magic if there exists some labeling
α : E → GL(H), where H is a Hilbert space, such that

1. for any edge e ∈ E, α(e)2 = I, and α(e) is Hermitian,

2. for any vertex v ∈ V , and e, f ∈ E incident to v, we have α(e)α(f) = α(f)α(e),
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3. for any vertex v ∈ V , we have

πα(v) :=
∏
e∈E

α(e)mult(v,e) = ±I,

4. for an odd number of vertices v ∈ V , we have πα(v) = −I.

If no such assignment exists, then we say that J is not e-magic. (Note that we take A0 = I

for any operator A ∈ GL(H)).

Proposition 3.2.5. Let H be a proper Eulerian hypergraph. Then H is magic if and only
if the dual of H is e-magic.

Proof. Since H is proper the multiplicities will all be zero or one. The rest follows directly
by following the correspondence of blocks and points of H to vertices and edges of its
dual.

Our goal for the rest of the thesis is to deal only with edge-even hypergraphs (the duals),
and do away with Eulerian hypergraphs. Thus, our current endeavour is to cast the major
results of Section 3.1 in this setting. Once we have done this, the remainder of this section
will be dedicated to answering Questions 3.1.12 and 3.1.13.

Definition 3.2.6 (Extension of Definition 3.1.2). Let J = (V,E) be an edge-even hyper-
graph, and let e ∈ E be an edge of size at least 4. Let v1, . . . , vn be the set of vertices in J
incident to e. For any vi, vj such that 1 ≤ i < j ≤ n or i = j and mult(vi, e) ≥ 2, we define
the hypergraph J ′ = (V,E′) as follows:

• E′ = E ∪ {f, g} − {e} (where f, g are not already in E).

• for t ∈ {1, . . . , n}, for every s ∈ E ∩ E′, multJ ′(vt, s) = multJ(vt, s),

for t ∈ {1, . . . , n} − {i, j}, multJ ′(vt, f) = 0, multJ ′(vt, g) = multJ(vt, e),

if i 6= j for t ∈ {i, j}, multJ ′(vt, f) = 1, multJ ′(vt, g) = multJ(vt, e)− 1,

else if i = j, multJ ′(vi, f) = 2, multJ ′(vi, g) = multJ(vi, e)− 2.

We refer to this operation as splitting an edge e in J , or more simply as splitting
e, or as an edge split of J . Additionally, we say that edges f and g were obtained
by splitting e. To refer to a specific edge split, we say that vertices vi and vj where
chosen in the process of edge splitting e.

Proposition 3.2.7 (Extension of Proposition 3.1.3). Let J = (V,E) be an edge-even hyper-
graph with edge e ∈ E such that |e|J ≥ 4 and let J ′ = (V ′, E′) be an edge-even hypergraph
obtained from J by splitting edge e, such that edges f and g are the edges obtained by
splitting e. Then without loss of generality |f |J ′ = 2 and |g|J ′ = |e|J − 2.
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Notice that if H is an Eulerian hypergraph, J is its edge-even dual, and H ′ is a split of
H, then the dual of H ′, say J ′, is an edge split of J .

Since for every Eulerian hypergraph H there is some 2-regular hypergraph that is point
split-obtainable from H, for every edge-even hypergraph J there is some graph that is edge
split-obtainable from J . Additionally, if J ′ is edge split-obtainable from J then the edges of
J ′ can be partitioned so that each set of edges in the partition corresponds to a unique edge
in J . Furthermore, since any hypergraph which is point split-obtainable from an Eulerian
hypergraph is Eulerian, any hypergraph which is edge split-obtainable from an edge-even
hypergraph is also edge-even.

We now prove a generalization of Proposition 3.1.8. The proof is similar, but contains
added details since we are dealing with the duals of arbitrary Eulerian hypergraphs, not
just duals of proper Eulerian hypergraphs.

Proposition 3.2.8 (Extension of Proposition 3.1.8). Let J be an edge-even hypergraph,
and let J ′ be obtained from J by splitting an edge. If J is e-magic, then J ′ is e-magic.

Proof. Let J = (V,E) and J ′ = (V,E′) and let α : E → GL(H) be an e-magic labeling
of J . Let f be the edge in J which is split to obtain J ′, and let g and h be the edges
corresponding to f in J ′.

Then define α′ : E′ → GL(H) as follows:

α′(e) =

α(f) if e ∈ {g, h}

α(e) if e ∈ E′ − {g, h}

We show that α′ is an e-magic assignment of J ′ by showing that Properties 1 − 4 of
Definition 3.2.4 hold.

1. For any edge e′ ∈ E′, α′(e′) = α(e) for some edge e ∈ E. Therefore α′(e′)2 = I and
α′(e′) is Hermitian since α is an e-magic assignment.

2. For any vertex v ∈ V not incident to g or h in J ′, v is incident to the same edges in
J ′ as in J , and these edges are labeled the same by α as by α′. Thus, since α is an
e-magic assignment, commutativity holds.

For any vertex v ∈ V incident to g or h in J ′, notice that v is incident to f in J .
Apart from that, v is incident to the same set of edges in J ′ as in J . Therefore, since
α′(g) = α′(h) = α(f) and all other edges are labeled the same by α as by α′, we see
that again commutativity holds.

3. For any vertex v ∈ V notice that multJ(v, f) = multJ ′(v, g) +multJ ′(v, h). Thus we
see that:
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πJ ′(v) =
∏
e∈E′

α′(e)multJ′ (v,e)

= α′(g)multJ′ (v,g)α′(h)multJ′ (v,h) ∏
e∈E′−{g,h}

α′(e)multJ′ (v,e)

= α(f)multJ (v,f) ∏
e∈E−{f}

α(e)multJ (v,e)

=
∏
e∈E

α(e)multJ (v,e)

= πJ(v)

4. We know from 3 that πJ ′(v) = πJ(v) for every v ∈ V . Therefore there are an odd
number of vertices in J ′ with vertex product −I since α is an e-magic assignment.

Therefore we see that α′ is an e-magic assignment of J ′ as required.

Continuing to transfer our knowledge to the dual framework, and implicitly generalize
results to more general Eulerian hypergraphs, we give a result akin to Theorem 3.1.10 - the
big result of Section 3.1.

Theorem 3.2.9 (Edge-splitting Theorem). Let J be an edge-even hypergraph. Let G be a
graph which is edge split-obtainable from J . If G is planar, then J is not e-magic.

Proof. Applying induction on Proposition 3.2.8, we see that if J is e-magic, then G must be
e-magic. But G is a planar graph, and thus not e-magic. Therefore J must not be e-magic
as required.

Having cast the major results of Section 3.1 (and generalized them) in terms of the
edge-even hypergraph duals, we now begin to justify the effort expended on this endeavor
by presenting answers to Question 3.1.13 and Question 3.1.12. Namely, we will give an
upper bound on the number of 2-regular graphs which are point split-obtainable from some
proper Eulerian hypergraph, and produce a counter-example, showing that a proper Eule-
rian hypergraph can be non-magic, even if any point split-obtainable 2-regular hypergraph
has a non-planar dual graph.

We begin by describing the set of graphs that are edge split-obtainable from a given
edge-even hypergraph that is a dual of a proper Eulerian hypergraph H. This will aid us
in providing an upper bound on the number of such graphs (and thus on the number of
2-regular hypergraphs which are point split-obtainable from H).

Proposition 3.2.10. Let J = (V,E) be the edge-even hypergraph defined by V = {v1, . . . , v2k}
and E = {e} where e = v1v2 . . . v2k for some positive integer k. Then the set of graphs which
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J G1 G2
G3

Figure 3.17: An edge-even hypergraph J (left) and the graphs arising from edge splitting
in J : G1, G2, G3 (right)

can be obtained by edge splits from J is the set of graphs with vertex set V and whose edges
form a perfect matching of K2k.

Proof. Let G be some graph which is split-obtainable from J . Since e has size 2k, there will
be k edges of size 2 in G corresponding to e. Any pair of these edges will not be incident
to any common vertex, since mult(vi, e) = 1 for all 1 ≤ i ≤ 2k. Also by construction, none
of these edges will be loops. Therefore, the set of edges will be a perfect matching.

Conversely, any perfect matching {e1, . . . , ek} can be obtained by choosing each edge
sequentially when splitting - i.e split e into e1 and f1 where f1 is incident to exactly those
vertices that e1 is not, then split f1 into edges e2 and f2 and so on. At each step, the
vertices that ei+1 is incident to must be a subset of the edges fi is incident to since the ei
are disjoint.

We give a simple example which illustrates the above proposition.

Example 3.2.11. Figure 3.17 shows the possible splits of an edge-even hypergraph J (on
the left), where the edge f of size 4 is indicated by 4 large squares. J induced on the vertices
incident to f is the hypergraph defined in Proposition 3.2.10 for k = 2. The three possible
splits are displayed to the right of J , and the edge sets of the graphs induced on the vertices
incident to f correspond to the three perfect matchings of a K4. Note that, even though
there is a non-planar split (the left-most split), all other splits are planar. Therefore J is
not e-magic.

We now give an upper bound on the number of graphs arising from point splits for a
particular edge-even hypergraph J , thus answering Question 3.1.13.
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In the following proposition, take hs(e) to denote half of the size of edge e.

Proposition 3.2.12. Let J = (V,E) be an edge-even hypergraph which is the dual of some
proper Eulerian hypergraph. The number of graphs that are split-obtainable from J is at
most

∏
e∈E:|e|>2

(2hs(e))!
(hs(e))!2hs(e) .

Proof. For any edge e, we know from Proposition 3.2.10 that the set of possible resulting
edges of size 2 (from successively splitting resulting edges) is exactly the set of perfect
matchings on K2(hs(e)). There are (2(hs(e)))!

(hs(e))!2hs(e) such matchings by Proposition 1.2.17. Then

in total, after splitting each edge to edges of size 2 there will be at most
∏
e∈E

(2(hs(e)))!
(hs(e))!2hs(e)

resulting graphs. There may be less due to isomorphism.

Thus to answer Question 3.1.13, the upper bound on the number of 2-regular hyper-
graphs which are point split-obtainable from some proper Eulerian hypergraph H = (P,B)
is:

∏
p∈P :deg(p)>2

(
(deg(p))!

( deg(p)
2 )! 2

deg(p)
2

)
.

In particular, an algorithm which checks the duals of all 2-regular hypergraphs arising from
some proper Eulerian hypergraph must check the planarity of at most this number of graphs.

We find easier representations in two special cases.
First we estimate an upper bound on the number of graphs that must be checked in

the case that H has a single point of degree 2n and all other points are of degree 2. We
use Stirling’s approximation (n! ∼

√
2πn(ne )n) appearing in [7, Chapter VII] to show that

(2n)!
n!2n ∼

√
4πn( 2n

e
)2n

√
2πn( 2n

e
)n =

√
2(2n

e )n. Thus, the number of graphs whose planarity must be checked

is on the order of Ω((2n
e )n) in this case.

Second if each point of H is of degree 4, it is easy to see that there are at most 3|P |

non-isomorphic graphs to check.
Thus we see that, in general, such an algorithm will have at least exponential time

complexity in the case that all of the graphs arising as duals of 2-regular hypergraphs,
which are point split obtainable from H, are non-planar.

Having answered Question 3.1.13, we now develop the tools to answer Question 3.1.12
(for a proper Eulerian hypergraph H, if every 2-regular hypergraph which is point split-
obtainable from H has a non-planar dual, is it true that H is magic?). We answer this
result in the negative via a counter-example.

First we give a definition and a few results which will be needed in order to show that
the hypergraph in our counter-example is not magic - since our only method for doing so
thus far is exactly by showing that it has some point split-obtainable 2-regular hypergraph
whose dual is planar. The results we present here are also used frequently at other points
in the thesis; their utility transcends our current motive.
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Definition 3.2.13. Let J = (V,E) be an edge-even hypergraph. Let α : E → GL(H). Let
J ′ = (V ′, E′) be a subhypergraph of J . Let α′ : E′ → GL(H) be defined by α′(e) = α(e) for
all e ∈ E′. Then we say that α′ is the labeling obtained by restricting α to E′ (or J ′).

Proposition 3.2.14. Let J = (V,E) be an e-magic hypergraph, and let α : E → GL(H)
be an e-magic assignment of J . For some f ∈ E, let αf : E → GL(H) be defined by
αf (e) = α(e) for e ∈ E − {f} and αf (f) = −α(f). Then αf is an e-magic assignment of
J .

Proof. Conditions 1, 2, and 3 of Definition 3.2.4 hold trivially.
For condition 4 notice that |f | is even since J is edge-even. Therefore mult(v, f) is odd

for an even number of vertices v ∈ V . Finally, we see that an even number of vertices in V
have the signs of their vertex products flipped, and so the parity of the number of vertices
with vertex product −I is the same for αf as it is for α. Since α is an e-magic assignment,
it follows that condition 4 holds for αf .

Since conditions 1-4 of Definition 3.2.4 hold, αf is an e-magic assignment of J .

Proposition 3.2.15. Let J = (V,E) be an e-magic hypergraph. If there exists an e-magic
assignment α : E → GL(H) of J such that α(e) = I for some edge e ∈ E, then J − e is
e-magic.

Proof. Let J ′ := J−e. Define α′ to be α restricted to J ′. Then we see that α′ is an e-magic
assignment of J ′ since conditions 1 and 2 of Definition 3.2.4 hold trivially and none of the
vertex products are changed.

Proposition 3.2.16. Let J = (V,E) be an e-magic hypergraph, and let v ∈ V be a vertex
of degree zero. Then J − v is e-magic.

Proof. Let J ′ = J − v. Let α be some e-magic assignment of J , and let α′ be α restricted
to J ′. Then α′ is an e-magic assignment of J ′ since conditions 1 and 2 of Definition 3.2.4
hold trivially, none of the vertex products in V − {v} have changed so that condition 3
holds, and finally only a vertex of product I is removed so that the number of vertices with
product −I is the same for α′ as it is for α - so that condition 4 also holds.

Corollary 3.2.17. Let J = (V,E) be an edge-even hypergraph. Let v ∈ V be a vertex such
that deg(v) is odd and deg(v) = mult(v, e) for some edge e ∈ E. If J is e-magic, then J −v
is e-magic.

Proof. Let α : E → GL(H) be an e-magic assignment of J . Then πα(v) =
∏
f∈E

α(f)mult(v,f) =

α(e)mult(v,e) = α(e) since mult(v, e) is odd and α(e)2 = I. But then α(e) ∈ {−I, I} since
πα(v) ∈ {−I, I}, and so we can assume without loss of generality that α(e) = I since minus
signs can be disregarded by Proposition 3.2.14. Then by Proposition 3.2.15 we see that
J ′ := J − e is e-magic. Lastly, in J ′, v is an isolated vertex, and therefore by Proposition
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v

= e

Figure 3.18: Counterexample to the converse of Theorem 3.1.10

3.2.16 J ′ − v is e-magic. Notice that since e is incident to v in J , that J ′ − v = J − v, and
so the result follows.

Now we are finally prepared to present an answer to Question 3.1.12 in the form of an
example.

Example 3.2.18. Consider the hypergraph J shown in Figure 3.18. Here the edge of size
4, e, is denoted by the 4 large square vertices. We can check that all 3 splits of edge e lead to
non-planar graphs. However, vertex v is incident only to edge e, and mult(v, e) = 1. Thus
we can apply the previous corollary (Corollary 3.2.17), and conclude that J is e-magic if
and only if J−v is e-magic. But J−v is a planar graph, and thus is not e-magic. Therefore
J is not e-magic.

The consequence of this example is that, in general, we cannot conclude whether an
edge-even hypergraph J is e-magic or not based solely on splitting edges and checking the
planarity of the resulting graphs. Even if every graph that is edge split-obtainable from J

is non-planar, it is not guaranteed that J is magic.
To briefly recapitulate, in this section we have introduced notation in order to enable

us to make direct arguments about hypergraphs arising as duals of Eulerian hyeprgraphs,
instead of attempting to work with the Eulerian hypergraphs themselves - which are some-
what harder to work with. Applying this to the theory of point splitting developed in
Section 3.1 led us to several results. In the upcoming section, we present our generalization
of Theorem 2.3.5.
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3.3 Parity Minor Theorem

Although Arkhipov’s result is stated in terms of the planarity of the dual graph, Wagner’s
result (Theorem 1.3.24) allows us to recast one direction of Arkhipov’s result in terms of
graph minors. Instead of saying that if G is non-planar, then G is e-magic, we can say: Let
G and G′ be graphs such that G′ is a minor of G. If G′ is e-magic, then G is e-magic.

Therefore, one approach to generalizing Theorem 2.3.5 is to consider a generalization
of the graph minor operations to hypergraphs. In other words, for some hypergraph minor
relation, we would like to say: Let J and J ′ be edge-even hypergraphs such that J ′ is a
hypergraph minor of J . If J ′ is e-magic, then J is e-magic.

We now provide a brief summary of several major results in graph and hypergraph
minors as they pertain to this thesis. As there are many definitions of hypergraph minors
developed for various applications which do not relate to the e-magic property, we do not
claim this section to be a survey of this topic.

Much work has been done in the topic of graph minors, culminating in the famous result
by Robertson and Seymour known as the graph minors theorem (see [15, Chapter 12] for a
sketch of the proof), which shows that the operation of graph minors imposes a well-quasi-
ordering on graphs. We define a well-quasi-ordering below.

Definition 3.3.1. [15, Section 12.1] A reflexive and transitive relation is called a quasi-
ordering. A quasi-ordering ≤X on a class X is a well-quasi-ordering, and the elements of
X are well-quasi-ordered by ≤X , if for every infinite sequence x1, x2, . . . where xi ∈ X for
all i, there are indices i < j such that xi ≤X xj.

In particular, in any infinite sequence of graphs G1, G2, . . . there must be a pair of graphs
Gi, Gj so that Gi is a minor of Gj and i < j. Therefore, we can deduce that in any infinite
set of graphs there must be a pair of distinct graphs such that one is a minor of the other.
This fact can be used to show that for any class closed under the operation of graph minors
(for example planar graphs), there is a finite set of so-called forbidden minors. This is a set
{Fi}ki=1 of graphs so that a graph G contains some Fi as a minor if and only if G is not in
the class. Thus, in the example of planar graphs, we see that {K3,3,K5} is exactly the set
of forbidden minors. The Graph Minors Theorem is an extensive project published in over
20 articles, and in the 23rd article [33], Robertson and Seymour describe a function called
a collapse which creates a well-quasi-order on the class of hypergraphs with mult(v, e) ≤ 1
for any vertex and edge of the hypergraph. We now present their definition.

Definition 3.3.2. [33, Section 1] Let J ′ and J be hypergraphs such that mult(v, e) ≤ 1 for
any vertex, edge pair of J ′ and for any vertex, edge pair of J . A collapse of J to J ′ is a
function η with domain V (J ′) ∪ E(J ′), such that

1. η(v) is a non-null connected subgraph of KV (J) for each v ∈ V (J ′), and η(u), η(v) are
disjoint for all distinct u, v ∈ V (J ′),
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2. η(e) ∈ E(J) for all e ∈ E(J ′), and η(e) 6= η(f) for all distinct e, f ∈ E(J ′),

3. if v ∈ V (J ′) and e ∈ E(J ′) and e is incident in J ′ with v, then η(e) is incident in J
with a vertex of η(v),

4. for each v ∈ V (J ′) and f ∈ E(η(v)) with ends x, y, there is an edge e of J incident
with x and y,

where KV (J) denotes the complete graph on the vertex set V (J).

As previously stated, Robertson and Seymour prove that the collapse defines a well-quasi
order on this class of hypergraphs.

Theorem 3.3.3. [33, 1.2] For every countable sequence Ji (i = 1, 2, . . . ) of hypergraphs
(such that mult(v, e) ≤ 1 for every vertex, edge pair) there exist j > i ≥ 1 such that there
is a collapse of Jj to Ji.

The collapse can also be viewed as a hypergraph minor relation with the following set
of operations:

1. vertex deletion

2. edge deletion

3. identification of two vertices incident to a common edge

4. shrinking of an edge - the replacement of an edge by any subset of the edge

Here the identification of two vertices is done by replacing vertices x, y ∈ V (H) with a
new vertex w such e ∼ w if and only if e ∼ x or e ∼ y.

Unfortunately, as the following example illustrates, the e-magic property is not preserved
under this hypergraph minor definition.

Example 3.3.4. Consider Figure 3.19. Notice that shrinking edge h to edge e (and deleting
the two vertices which were incident to h but not e) transforms a not e-magic hypergraph
(this was shown in Example 3.2.11) to K3,3, which we know to be e-magic.

Other more recent definitions of hypergraph minor also exist, for example in [1]. Of
these definitions we make special mention of the hypergraph minor relation defined by
Slofstra [35] as it bares a resemblance to our own. The motivation for Slofstra’s work is
related to perfect quantum strategies of parity binary constraint system games, and thus
the hypergraph minor relation is not restricted to edge-even hypergraphs. However, if we
enforce this restriction, it preserves the e-magic property. We shall return to this topic
after we present our own hypergraph minor relation in order to discuss the similarities and
differences in greater depth.

58



J K3;3

= h

e

Figure 3.19: An example which shows that Robertson and Seymour hypergraph minors
cannot be used for characterizing magic proper Eulerian hypergraphs.
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Our current purpose is to define a set of operations to apply to an edge-even hypergraph
J so that if the edge-even hypergraph resulting from these operations is e-magic, then J is
also e-magic.

Towards this end, we explicitly define some operations that have already been presented
for graphs - some of which we have already used for hypergraphs. We present them at this
point formally because they are pivotal to this section.

Definition 3.3.5. Let J = (V,E) be a hypergraph, let v ∈ V , let V ′ := V − {v}, and let
E′ := {e ∈ E : e is not incident to v}. By J − v we denote the hypergraph (V ′, E′), and we
say that J − v is obtained from J by deleting vertex v.

Definition 3.3.6. Let J = (V,E) be a hypergraph, let e ∈ E, and let E′ := E − {e}. By
J−e we denote the hypergraph (V,E′), and we say that J−e is obtained from J by deleting
edge e.

Definition 3.3.7. To identify vertices x and y of a hypergraph J = (V,E) is to replace
these vertices by a single vertex w such that mult(w, e) = mult(x, e) + mult(y, e) for each
edge e ∈ E.

Definition 3.3.8. To contract a non-loop edge e of size 2 of a hypergraph J is to delete
the edge and identify its ends. The resulting hypergraph is denoted by J/e.

In addition to these, we define two new operations which affect the size of edges of a
hypergraph.

Definition 3.3.9. To identify edges e and f of a hypergraph J = (V,E) is to replace these
edges by a single edge g such that mult(v, g) = mult(v, e)+mult(v, f) for each vertex v ∈ V .

Definition 3.3.10. Let J = (V,E) be a hypergraph, and let v ∈ V , such that for some edge
f ∈ E, we have either mult(v, f) > 2, or mult(v, f) = deg(v) = 2. Let J ′ = (V,E′), where
E′ = (E − {f}) ∪ {f ′}, such that mult(w, f ′) = mult(w, f) for every w ∈ V − {v}, and
mult(v, f ′) = mult(v, f)−2. Then we say that J ′ is obtained from J by a mod 2 reduction.

Notice that the incidence between an edge e and vertex v is only broken by mod 2
reductions if e is the only edge incident to v (since deg(v) = mult(v, e)). This is to avoid
potential problems arising from condition 2 of Definition 3.2.4 (the commutativity condi-
tion). Additionally note that an edge can be reduced to size zero by mod 2 reductions (but
is not deleted). An edge of size zero differs from a non-edge and allows us to create an
isomorphism between the edge sets of J and J ′. Note that edges of size zero have always
been implicitly present as these arise from taking the dual of an isolated vertex.

We have now defined all the operations which we need, and thus define our new hyper-
graph minor relation. Note that in this thesis, the operation of contracting an edge in a
hypergraph has only been defined for edges of size 2, and is thus applicable only to these
edges.
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Definition 3.3.11. Let J be an edge-even hypergraph, and let J ′ be a hypergraph obtained
from J by a (possibly empty) sequence of the following operations:

• deleting a vertex

• deleting an edge

• contracting an edge

• identification of a pair of edges

• mod 2 reduction applied to a vertex, edge pair.

Then we say that J ′ is a parity minor of J .

Proposition 3.3.12. Let J be an edge-even hypergraph and let J ′ be a parity minor of J .
Then J ′ is an edge-even hypergraph.

Proof. Out of the four operations associated to the parity minor, only two of these change
the size of an edge - the identification of edges and the mod 2 reduction. Identifying edges
yields an edge whose size is the sum of the two identified edges which both have even size,
and since all other edges of the hypergraph remain the same, the edge-even property is
retained. The mod 2 reduction operation changes the size of a single edge by two, and thus
retains the parity of the size of every edge.

Proposition 3.3.13. The parity minor relation is a partial ordering on the class of edge-
even hypergraphs.

Proof. It is clear that the parity minor relation is reflexive.
We show that it is anti-symmetric. Consider the following three parameters of a hyper-

graph J = (V,E):

• the number of vertices of J , i.e |V |.

• the number of edges of J , i.e |E|.

• the sum of the edge sizes of the edges of J , i.e
∑
e∈E
|e|.

We note that the application of any of the five parity minor operations to J does not increase
either of the three parameters. Additionally, vertex deletion strictly reduces the number
of vertices, edge deletion strictly reduces the number of edges, edge contraction strictly
reduces the number of vertices, edge identification reduces the number of edges, and mod
2 reduction strictly reduces the sum of the edge sizes. Therefore, we see that the parity
minor relation is anti-symmetric.

Finally, it is clear that the parity minor relation is transitive.
Therefore, we see that the parity minor relation is a partial ordering on the class of

edge-even hypergraphs.
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Proposition 3.3.14. Let J be an edge-even hypergraph. Let J ′ be a hypergraph obtained
from J by either the deletion of a vertex or the deletion of an edge. If J ′ is e-magic, then
J is e-magic.

Proof. Let J = (V,E) and J ′ = (V ′, E′). In this case we can simply extend an e-magic
labeling α′ of J ′ to J by labeling all edges in E − E′ by I. It is trivial to show that α is
then an e-magic labeling of J .

Proposition 3.3.15. Let J be an edge-even hypergraph. Let J ′ be a hypergraph obtained
from J by the contraction of an edge. If J ′ is e-magic, then J is e-magic.

Proof. Let J = (V,E) and J ′ = (V ′, E′) and assume that J ′ was obtained from J by
contracting some edge f ∈ E. Then f is a non-loop edge of size two, so assume that
f is incident to vertices u, v ∈ V , and that vertex w ∈ V ′ is obtained by identifying
vertices u and v in the contraction process. Then by definition every edge e ∈ E − {f}
has a corresponding edge e′ ∈ E′ such that multJ ′(w, e′) = multJ(u, e) + multJ(v, e) and
multJ ′(x, e′) = multJ(x, e) for each x ∈ V − {u, v}. Let α′ be an e-magic assignment of J ′,
and let α be defined by

α(e) =


α′(e′) if e ∈ E − {f} (where e′ is the edge corresponding to e)∏
g∈E−{f}

α′(g′)multJ (u,g) if e = f (where g′ is the edge corresponding to g)

We now show that α is an e-magic assignment of J (and that α(f) is well-defined in the
sense that all factors in the product pairwise commute).

Notice that condition 1 of Definition 3.2.4 holds since all labels of α are products of
labels of α′, which is an e-magic assignment.

Condition 2 of Definition 3.2.4 holds for any x ∈ V − {u, v} trivially since all labels
are the same for α as they are for α′ which is an e-magic assignment. Aside from f , each
edge incident to u or v in J has a corresponding edge incident to w in J ′ and has the
same edge label. Since all edges incident to w in J ′ have commuting labels, all of the edges
incident to u or v in J apart from f must also have commuting labels. Further, we see that
multJ(u, g) > 0 implies that edge g is incident to u in J , and so its corresponding edge g′

is incident to w in J ′. Thus we see that α(f) is the well-defined product of labels of edges
incident to w in J ′, and so must also commute with all edge labels incident to u or v in J .

Now we show that condition 3 of Definition 3.2.4 holds. By the same reasoning as in
condition 2, we know that the vertex product is ±I for any vertex x ∈ V −{u, v}, and thus
it remains to show that this holds for u and v. For u we have
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πJ(u) =
∏
e∈E

α(e)multJ (u,e)

= α(f)
∏

e∈E−{f}
α(e)multJ (u,e) (f is a non-loop edge of size two)

=
∏

e∈E−{f}
α′(e′)multJ (u,e) ∏

e∈E−{f}
α(e)multJ (u,e)

=
∏

e∈E−{f}
α(e)multJ (u,e) ∏

e∈E−{f}
α(e)multJ (u,e)

= I

For v we have

πJ(v) =
∏
e∈E

α(e)multJ (v,e)

= α(f)
∏

e∈E−{f}
α(e)multJ (v,e) (f is a non-loop edge of size two)

=
∏

e∈E−{f}
α′(e′)multJ (u,e) ∏

e∈E−{f}
α(e)multJ (v,e)

=
∏

e∈E−{f}
α(e)multJ (u,e) ∏

e∈E−{f}
α(e)multJ (v,e)

=
∏

e∈E−{f}
α(e)multJ (u,e)+multJ (v,e)

=
∏
e′∈E′

α′(e′)multJ′ (w,e′)

= πJ ′(w) ∈ {−I, I}

Therefore we see that condition 3 of Definition 3.2.4 holds.
Finally we show that condition 4 of Definition 3.2.4 holds. Notice that for every vertex in

x ∈ V −{u, v}, we have πJ(x) = πJ ′(x), and we have πJ(v) = πJ ′(w), and finally πJ(u) = I.
Therefore we see that the number of vertices with vertex product −I is the same for α as
for α′, and so condition 4 holds since α′ is an e-magic assignment.

Therefore we see that J is e-magic in this case.

Proposition 3.3.16. [35] Let J be an edge-even hypergraph. Let J ′ be obtained from J by
identifying two edges of J . If J ′ is e-magic, then J is e-magic.

Proof. Let e1, e2 ∈ E(J) be the edges of J identified, and let e′ ∈ E(J ′) be the edge obtained
from identifying e1 and e2. Note that if e1 or e2 is of size two, then J can be obtained by
splitting e′ in J ′. In this case J is e-magic if J ′ is e-magic by Proposition 3.2.8 (the roles
of the two hypergraphs are reversed in the statement). Note that the proof of Proposition
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3.2.8 does not require that either of the edges (e1 or e2) is of size two, so in particular the
proof that J is e-magic in this case is identical to that proof.

Proposition 3.3.17. Let J be an edge-even hypergraph. Let J ′ be obtained from J by a
mod 2 reduction. Then J is e-magic if and only if J ′ is e-magic.

Proof. Assume that J ′ is e-magic, and let α′ be an e-magic assignment of J ′. Let J = (V,E)
and J ′ = (V,E′). Let f ∈ E be the edge to which the mod 2 reduction is applied, and let
f ′ ∈ E′ be the corresponding edge in J ′. Define an e-magic assignment of J by labeling
each edge of e ∈ E − {f} with α′(e), and labeling f with α′(f ′).

The first condition of Definition 3.2.4 holds trivially since all edge labels of α are edge
labels of α′.

We show that the second condition of Definition 3.2.4 holds. Let w ∈ V be the vertex
with multJ ′(w, f ′) = multJ(w, f)− 2. Notice that for every vertex v ∈ V − {w} commuta-
tivity holds trivially. Thus we must show that commutativity holds for w. We know that
for any e ∈ E ∩E′, multJ(w, e) > 0 if and only if multJ ′(w, e) > 0, and so apart from α(f)
we know that all edge labels commute since they are labeled the same by α as by α′. For f
we have two cases: either multJ ′(w, f ′) > 0 and so f ′ is incident to w so that α′(f ′) = α(f)
commutes with all other edge labels, or multJ(w, f) = degJ(f) = 2 in which case, f is the
only edge incident to w in J , and so commutativity holds trivially.

Finally notice that for any vertex edge pair v, e we have multJ(v, e) ≡ multJ ′(v, e)
(mod 2) so that πJ(v) = πJ ′(v) for every vertex v ∈ V . Thus we see that conditions 3 and
4 of Definition 3.2.4 hold.

The reverse direction follows the same line of reasoning except that commutativity in
this case is straightforward.

Theorem 3.3.18 (Parity Minor Theorem). Let J be an edge-even hypergraph. Let J ′ be a
parity minor of J , and assume that J ′ is e-magic. Then J is e-magic.

Proof. By induction on the number of operations using Propositions 3.3.14, 3.3.15, 3.3.16
and 3.3.17.

We now give several of examples to demonstrate the utility of the Parity Minor Theorem.
More examples will appear in Chapter 4.

Example 3.3.19. Consider the hypergraph, J , depicted in Figure 3.20 (the edge of size 4
is denoted by squares surrounding the vertices that it is incident to). Contracting edge e in
J , results in hypergraph, J ′ depicted in Figure 3.21, and further contracting edge f in J ′,
yields the hypergraph J ′′ shown in Figure 3.22. From J ′′, we can apply a mod 2 reduction
on vertex v to obtain K3,3 (shown in Figure 3.23). Thus by the Parity Minor Theorem, J
is e-magic. We show the resulting magic labeling α : E → C4×4 in Figure 3.24.
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e

Figure 3.20: Hypergraph J with edge e

f

Figure 3.21: J ′: the result of contracting edge e in J
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v

Figure 3.22: J ′′: the result of contracting edge f in J ′

Figure 3.23: K3,3: the result of applying a mod 2 reduction to v in J ′′

Y Z

XY

XY

ZZ

Y X

IX

ZX

ZI

IZ

Y I

= Y Z

Figure 3.24: The resulting labeling of J
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= x1

= x2

= x3

J

Figure 3.25: The dual of C3

Example 3.3.20. Recall C3 (shown in Figure 2.11). Its dual, J , is displayed in Figure
3.25. We know that J is e-magic since the Clifford BCS of rank 3 has a quantum satisfying
assignment, but we do not know the minimum number of qubits needed for an e-magic
assignment. We abstain from labeling any edges apart from x1, x2, x3 in order to avoid
clutter. Consider the two components of the deletion graph which have some vertex incident
to x3 in J (i.e. the middle and right pictures). If we delete edge x3, and then contract
all edges belonging to these components of the deletion graph, we obtain the hypergraph
displayed in Figure 3.26. At this point we can apply mod 2 reductions to edges x1 and x2

(there is only one way of doing this), and then delete the arising vertices of degree zero to
obtain K3,3. Therefore we see that J has a 2 qubit e-magic assignment, and so the Clifford
BCS of rank 3 has a 2 qubit magic assignment.

Proposition 3.3.21. The proper Eulerian hypergraph CN has a 2 qubit magic assignment
for N ≥ 2.

67



= x1

= x2

Figure 3.26: The result of deleting edge x3 and contracting edges in the dual hypergraph
of the proper Eulerian hypergraph corresponding to the Clifford BCS

Proof. We know that the result holds for N = 2 since the dual of the C2 is the Mermin
square. For some other N ≥ 3, let J be the dual hypergraph of the CN . Choose any two xi
edges, say x1, x2 without loss of generality. Delete every xi for i ≥ 3 to obtain a hypergraph
J ′. Since N 6= 2, there is a unique component G′ of the deletion graph of J ′ which has
four vertices incident to edges of size 4 (these edges being x1 and x2). Contract all edges
(of size 2) in J not in E(G′). Then apply all possible mod 2 reductions to x1 and x2 to
obtain a graph J ′′. Then J ′′ will be a K3,3 along with

(N
2
)
− 1 vertices of degree 0. Deleting

all vertices of degree 0 yields K3,3 which is e-magic. Therefore we see that K3,3 is a parity
minor of the dual of CN for N ≥ 2. By Theorem 3.3.18 we see that the dual hypergraph
is e-magic, and thus CN is also magic. In addition, we know by our constructive labeling
system that a 2-qubit assignment exists.

Therefore we see that even though the required amount of qubits grows as bN2 c for
quantum satisfying assignments in the sequence of Clifford binary constraint systems, 2
qubits is the most we need for magic assignments of their corresponding hypergraphs.

At this point we should take a brief moment to relate this result to previously known
theory. The Parity Minor Theorem is a generalization of one direction of Theorem 2.3.5,
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and the concept of a parity minor is a generalization of the concept of graph minors to
edge-even hypergraphs. We formalize this now.

Corollary 3.3.22. Let G and G′ be graphs so that G′ is a minor of G. If G′ is e-magic,
then G is e-magic.

Proof. Since G′ is a minor of G, it can be obtained from G by edge deletions, vertex
deletions, and contractions of edges of size 2. The result follows immediately.

In Theorem 2.3.5, this result was proven using topological minors - and this is analogous
to Theorem 1.3.22 (Kuratowski’s Theorem). In contrast, our result is proven using the
minor relation - which is analogous to Theorem 1.3.24 (Wagner’s Theorem). This may
seem inconsequential since the two results are equivalent, but since both of these proofs
are constructive in the sense that they return a labeling, we note that the labelings given
by the Parity Minor Theorem may be different than those generated by Theorem 2.3.5.
Conversely, any labeling generated by that theorem can be replicated by ours. Note that,
we have only proven the constructive direction of Arkhipov’s result, and so our result says
nothing about planar graphs - it only states that if we can reduce a graph G to K3,3 or K5

which we know to be e-magic by Mermin and Peres, we can construct e-magic assignments
for G.

The parity minor relation also captures the edge splitting operation.

Corollary 3.3.23. Let J be an edge-even hypergraph, and let J ′ be edge split-obtainable
from J . Then J is a parity minor of J ′.

Proof. We show that this holds for a single edge split. The result follows by induction. If
J ′ is obtained from J by splitting a single edge e in J to obtain edges e′1 and e′2 in J ′, then
simply identify edges e′1 and e′2 in J ′ to obtain J . Therefore J is a parity minor of J ′.

We now explain some of the more technical elements of our defined parity minor oper-
ations.

The reader may be curious to know why we restrict edge contractions solely to edges of
size 2 and not to all edges. Below we give a counter-example to illustrate why this would
not work.

Example 3.3.24. The hypergraph on the left of Figure 3.27 is not e-magic as two of the
graphs resulting from splitting are planar. However, contracting the edge of size four yields
K3,3 (on the right) which we know to be e-magic. Hence contracting edges of size greater
than two in this simple manner cannot be allowed as a hypergraph minor operation for our
purposes.

In a similar vein, the mod 2 reduction conditions become rather technical when reducing
the multiplicity from two to zero, since we insist that mult(v, e) = deg(v), instead of simply
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Figure 3.27: A not e-magic hypergraph H (left), an e-magic hypergraph obtained by con-
tracting an edge of size 4 of H (right)

allowing any mod 2 reduction (after all, the vertex product will remain unchanged). We
now give an example which illustrates the importance of this condition.

Example 3.3.25. The hypergraph J illustrated in Figure 3.28 is not e-magic as can be
seen by the planar graph resulting from splitting the edge of size four into edges v0v6 and
v1v5. However, contracting edge v5v6 and then applying a mod 2 reduction to the vertex
resulting from the edge contraction (if this was possible) results in K3,3 which is e-magic.
Thus, without the vertex degree restriction in the mod 2 reduction, e-magic hypergraphs
would be parity minors of not e-magic hypergraphs.

This example illustrates the necessity to define hypergraphs (and also the parity minor
relation) as we have done, as opposed to defining only proper hypergraphs. This is analogous
to the necessity of defining the complex numbers in the setting of finding roots of polynomials
with real-valued coefficients. Though hypergraphs with multiplicities greater than one do
not appear in the statement of Problem 2.1.8, they arise inevitably in this framework and
can be used to derive valuable information about the proper hypergraphs which we are
interested in. For this reason we now state a generalization of Problem 2.1.8.

Problem 3.3.26. Given an edge-even hypergraph J , find an e-magic assignment of J or
show that none exists.

We now return to the two hypergraph minor relations defined at the beginning of this
section - one of which is defined by Slofstra, and the other by Robertson and Seymour.

Slofstra’s hypergraph minor relation is presented as a morphism between hypergraphs
in the following way:
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v0 v1

v2 v3

v4
v5v6

J

Figure 3.28: A not e-magic hypergraph J that could be reduced to K3,3 without a degree
restriction in the mod 2 reduction operation.
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Definition 3.3.27. [35, Definition 8.4] Let J and J ′ be hypergraphs. A generalized mor-
phism φ : J → J ′ consists of a pair of morphisms

φV : V (J)→ V (J ′) ∪ {ε} and φE : E(J)→ E(J ′) ∪ {ε},

such that, for all v ∈ V (J),

1. if φV (v) 6= ε, then

∑
e∈φ−1

E (e′)
multJ(v, e) = multJ ′(φ(v), e′),

for all e′ ∈ E(J ′), and

2. if φV (v) = ε, then

∑
e∈E(J)−φ−1

E (ε)
multJ(v, e)

is even, and φE(e1) = φE(e2) for all edges e1, e2 ∈ E(J)− φ−1
E (ε) incident to v.

The effect of mapping a vertex or edge to ε is to delete the vertex or edge respectively.
We quote from [35, Example 8.6] that the morphism allows the following operations:

1. deleting edges,

2. identifying edges,

3. deleting isolated vertices,

4. collapsing vertices incident to an even number of edges (deleting a vertex and identi-
fying all incident edges).

Clearly, we see that there are similarities between our hypergraph minor relation and
the morphism defined in Definition 3.3.27. Both utilize vertex deletion, edge deletion, and
edge identification. In addition, all mod 2 reductions of even degree vertices can be done
using this morphism. Our inclusion of the edge identification operation was motivated by
[35], and thus Proposition 3.3.16 is attributed to Slofstra accordingly.

As suggested by the list of operations above, and also discussed in [35, Section 1], the
morphism defined in Definition 3.3.27 can be viewed as a hypergraph minor relation. A no-
table difference exists between our Parity Minor relation and this hypergraph minor relation
since they were developed for different purposes. In particular, not all edge contractions
can be achieved using the morphism operations associated to Definition 3.3.27. For an edge
incident to a vertex v of degree two, such contraction can be done by identifying the two
edges incident to v and then collapsing v, however this cannot be done for edges incident
to vertices of higher degrees.
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We now recall from the introduction of this chapter, that the hypergraph minor op-
erations defined by Robertson and Seymour form a well-quasi ordering on the class of
hypergraphs where the multiplicity between any vertex, edge pair is at most one. Therefore
for any class closed under their hypergraph minor operation, there is a finite list of forbidden
minors. It is natural to ask if this is true of the parity minor operation and the class of not
e-magic hypergraphs - in other words, is there a finite list of forbidden parity minors? Of
course, we should now note that, if Problem 2.1.8 is undecidable, then there is no hope of
this being the case.

The following infinite sequence of hypergraphs illustrates that the Parity Minor relation
does not form a well-quasi ordering on the class of edge-even hypergraphs, thus this would
not be a valid method for proving whether or not the class of not e-magic hypergraphs has
a finite list of forbidden minors.

Example 3.3.28. Consider the sequence of hypergraphs J1, J2, . . . where Ji is a hypergraph
on 2i vertices with a single edge of size 2i containing all of the vertices. Then for any
m,n ≥ 1,m < n, Jm is a hypergraph minor of Jn under the definition of Robertson and
Seymour. Notice, however that Jm cannot obtained from Jn by any of the parity minor
operations.

Even in the case that there are an infinite number of forbidden parity minors, finding
some of them is still useful in order to characterize certain common properties of e-magic
hypergraphs and to make progress on Problem 2.1.8. We refer to such forbidden parity
minors as minimally e-magic hypergraphs, and define these formally now.

Definition 3.3.29. We say that an edge-even hypergraph J is minimally e-magic if J is
e-magic, and any parity minor of J , different from J , is not e-magic. We denote the set of
minimally e-magic hypergraphs by MEM .

Proposition 3.3.30. K3,3 and K5 are in MEM .

Proof. Both K3,3 and K5 are simple non-planar graphs (and therefore also proper hyper-
graphs) for which any vertex deletion, edge contraction or edge deletion yields a planar
graph. Additionally, no mod 2 reductions are possible and identifying any pair of edges
yields a hypergraph with a planar split. Hence, we conclude that both K3,3 and K5 are in
MEM .

Our current objective is to find other elements inMEM . We state this problem formally.

Problem 3.3.31. Find more elements of MEM .

To that end, we now state some properties of elements that are in MEM .
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3.3.1 Some Properties of MEM Hypergraphs

Definition 3.3.32. We say that a hypergraph J = (V,E, ψ) is simple if for every pair of
edges e1, e2 ∈ E such that ψ(e1) = ψ(e2), we have e1 = e2.

Proposition 3.3.33. Let J = (V,E, ψ) be an edge-even hypergraph. If there exist edges
e1, e2 ∈ E such that ψ(e1) = ψ(e2), then J is e-magic if and only if J − e2 is e-magic.

Proof. Assume J is e-magic. Let α be an e-magic assignment of J , and let J ′ = (V,E′) :=
J − e2. Then define α′ : E′ → GL(H) so that

α′(e) =

α(e1)α(e2) if e = e1

α(e) if e ∈ E′ − e1

Then α′ is an e-magic assignment of J ′.
Similarly, we can extend any e-magic assignment from J ′ to J simply by assigning I to

edge e2.

Corollary 3.3.34. Let J ∈MEM . Then J is simple and contains no loops.

Proof. The fact that J is simple follows directly from Proposition 3.3.33.
We show that J also contains no loops. Let J = (V,E), and let α be an e-magic

assignment for J . Let e ∈ E be a loop, so that mult(v, e) = 2 for some vertex v ∈ V and
mult(w, e) = 0 for every other vertex w ∈ V .

Then J − e is e-magic since e contributes α(e)2 = I to the vertex product of v (the only
vertex e is incident to), so that α′ defined as α restricted to J − e is an e-magic assignment
of J − e.

Proposition 3.3.35. Let J ∈ MEM such that J is not isomorphic to K3,3 or K5. Then
the deletion graph of J is planar.

Proof. Assume towards a contradiction that the deletion graph G of J is non-planar. Then
G is e-magic by Theorem 2.3.5. But G can be obtained from J by deleting all edges in E(J)
of size not equal to two. Note that J has some edge of size not equal to two, since J is
minimally e-magic and is not isomorphic to K3,3 or K5 and thus must not be a graph. Since
G is a parity minor of J and is not isomorphic to J , we see that J cannot be minimally
e-magic. This is a contradiction. Therefore the deletion graph of J is planar.

Proposition 3.3.36. Let J = (V,E) ∈MEM . Then mult(v, e) ≤ 2 for every vertex v ∈ V
and edge e ∈ E.

Proof. Assume towards a contradiction that mult(v, e) ≥ 3 for some vertex v ∈ V . Apply
a mod 2 reduction to v and e. Then the resulting hypergraph is e-magic since J is e-magic.
Therefore J /∈MEM . The result follows.
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Proposition 3.3.37. Let J = (V,E) be an e-magic hypergraph. If there exists some e-magic
assignment α : E → GL(H) such that α(e) = I for some edge e ∈ E, then J /∈MEM .

Proof. We know by Proposition 3.2.15 that J − e is also e-magic. But J − e is a parity
minor of J since it is obtained from J by an edge deletion. Therefore J is not minimally
e-magic.

Proposition 3.3.38. Let J = (V,E) ∈MEM . Then deg(v) ≥ 3 for any vertex v ∈ V .

Proof. Let α : E → GL(H) be an e-magic assignment of J . Assume towards a contradiction
that there exists some vertex v ∈ V such that deg(v) ≤ 2.

If deg(v) = 0, then πα(v) = I, and so J − v is e-magic, contradicting the minimality
of J .

If deg(v) = 1, then v has odd degree, and deg(v) = mult(v, e) for some edge e ∈ E.
Therefore by Corollary 3.2.17 we see that J − v is e-magic, contradicting the minimality
of J .

If deg(v) = 2, then there are two cases to consider.
Case 1. v is incident to a single edge.
In this case, there is some edge e ∈ E such that mult(v, e) = 2. Therefore it must be

the case that mult(v, e) = 2 and deg(v) = 2. But then consider the hypergraph J ′ obtained
by reducing e via a mod 2 reduction (note that we can do this since mult(v, e) = deg(v)
and mult(v, f) is even). Then J ′ is e-magic by Proposition 3.3.17, so J /∈ MEM since J ′

is an e-magic parity minor of J .
Case 2. v is incident to two different edges.
Let the edges incident to v be e1 and e2. Since πJ(v) = ±I, we know that α(e1) =

±α(e2). Furthermore, we can assume without loss of generality that α(e1) = α(e2) by
Proposition 3.2.14. But then the hypergraph J ′ = (V ′, E′) obtained by identifying edges
e1 and e2 to obtain a new edge e′ ∈ E′ is also e-magic, since we can define a labeling
α′ : E′ → GL(H) so that α′(e′) = α(e1) = α(e2) and α′(e) = α(e) for e ∈ E(J ′)− e′, which
can easily be checked to be an e-magic labeling of J ′. Thus J is not in MEM .

Therefore deg(v) ≥ 3 for every vertex v ∈ V as required.

Now that we have listed some of the properties of MEM elements, we restrict ourselves
to searcing for MEM ’s in a class of edge-even hypergraphs which we call grafts. In this
setting we are able to derive additional properties of such elements, as well as to design a
set of tools to search for them.
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Chapter 4

Grafts

Having presented our main results (Theorem 3.2.9 and Theorem 3.3.18) we now take a
systematic approach to Problem 2.1.8. Since the problem is solved for the case when the
dual is a graph, we consider the case when the dual is almost a graph. In the literature
(see for example [20]) a graft is defined as a pair (G, f) where G is a graph and f is a set of
vertices of G such that |f | is even. In this chapter, we use the term graft in a more restricted
manner, as given in Definition 4.0.1. The main purpose of this chapter is to describe and
find other elements of MEM within this class of grafts.

Definition 4.0.1. Let J = (V,E) be an edge-even hypergraph such that there is some edge
f ∈ E of size 4, and all other edges in E are of size 2. Then we say that J is a graft.

In this chapter, unless explicitly stated otherwise, f shall always indicate the edge of
size 4. Furthermore, f shall always be denoted pictorially by large square vertices. Lastly,
we will denote the set of vertices incident to f by V (f).

Example 4.0.2. Recall the edge-even hypergraph pictured in Figure 4.1. This edge-even
hypergraph is a graft. An e-magic labeling for this graft is shown in Figure 3.24.

Definition 4.0.3. Let the set of minimally e-magic grafts be denoted byM4.

In Section 4.1 we discuss what an element ofM4 would look like, and in Section 4.2 we
develop a set of tools to find such elements.

4.1 Properties of Minimally E-magic Grafts

Given the major results of Chapter 3, we can greatly narrow down the search space for what
a minimally e-magic graft could look like. The purpose of this section is to further narrow
the search space by studying the properties of such an element.

We recall that the deletion graph of a hypergraph is the graph obtained by deleting all
edges of size not equal to two from the hypergraph.
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Figure 4.1: A graft

Proposition 4.1.1. Let J ∈M4. Let g and h be edges obtained by splitting f , and let G be
the graph obtained. Let K be a subdivision of K3,3 or K5 appearing in G. Then g ∈ E(K)
or h ∈ E(K).

Proof. Assume towards a contradiction that there is some subdivision K appearing in G

such that g /∈ E(K) and h /∈ E(K). By Proposition 3.3.35 we know that the deletion graph
of J , G′, is planar. Notice that G′ is isomorphic to (G − g) − h. But since g /∈ E(K) and
h /∈ E(K), we see that K is a subgraph of G′. This is a contradiction since G′ is planar.

The result follows.

It is not trivial to construct a graft which satisfies the conditions of Proposition 3.3.35
and Proposition 4.1.1 - in particular since for the latter, this condition must hold for all
three splits of f . The problem of finding such grafts will be dealt with in Section 4.2.

Proposition 4.1.2. Let J = (V,E) ∈ M4. Then there is at most one vertex v ∈ V such
that mult(v, f) = 2.

Proof. Assume towards a contradiction that two such vertices exist in V , say u and v. Then
consider splitting f into edges e1, e2 such that mult(u, e1) = 2 and mult(v, e2) = 2 to obtain
some graph G. Then both e1 and e2 are loops. We know that G is non-planar by Theorem
3.2.9. In addition we know that (G− e1)− e2 is also non-planar since e1 and e2 are loops.
However notice that (G− e1)− e2 is the deletion graph of J , and so by Proposition 3.3.35
must be planar. This is a contradiction.

The result follows.
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Proposition 4.1.3. Let G = (V,E) be a non-planar graph, and let e ∈ E be a bridge. If
at least one of the components of G − e containing a vertex incident to e is planar, then
α(e) = ±I for any e-magic assignment α of G.

Proof. Let G′ = (V ′, E′) be the component of G − e that is planar, and let u be the sole
vertex in V ′ which is incident to e in G. Let α be an e-magic assignment of G, and let
α′ be the labeling obtained by restricting α to G′. Since G′ is planar, we can consider
some embedding of G′ defining a cyclic ordering around each vertex of V ′. Then for any
vertex v ∈ V ′ incident to edges e1, . . . , ek (where e1, . . . , ek are in clockwise cyclic order
according to the chosen embedding), define π∗G′(v) = α′(e1)α′(e2) . . . α′(ek). This product
is well defined for G′ since α is an e-magic assignment. Moreover, π∗G′(v) = ±I for every
v ∈ V ′ − {u} (again since α is an e-magic assignment).

By the same argument as in the proof of Theorem 2.3.5 we see that if we contract any
non-loop edge e = v1v2 in E′ which is not incident to u to obtain a vertex v and graph
G′′ = (V ′′, E′′), then πG′′(v) will be well defined, and πG′′(v) = πG′(v1)πG′(v2) ∈ {I,−I}.
Thus we can successively contract all of the edges of G′ which are not incident to u to
obtain a graph G+ such that every edge in E(G+) is incident to u or is a loop. As noted in
Theorem 2.3.5, every planar embedding has an innermost loop, and this loop contributes I
to the vertex product of the vertex it is incident to - and therefore loops have no effect on
vertex products. Additionally notice that for any vertex v ∈ V (G+), v 6= u, the set of edges
incident to both u and v will appear successively in the cyclic ordering of the edges around
u.

Then, we see that πG+(u) =
∏

v∈V (G+)−{u}
πG+(v). But notice that πG+(v) ∈ {I,−I} for

every v ∈ V (G+)−{u}. Therefore πG+(u) ∈ {I,−I}. But since none of the edges incident to
u have been altered, we see that πG+(u) = πG′(u). Finally notice that πG(u) = α(e)πG′(u)
and since πG(u), πG′(u) ∈ {I,−I}, we have α(e) ∈ {I,−I} as required.

Proposition 4.1.4. Let J ∈M4. Let G be obtained from some split of J . Then G contains
no bridges.

Proof. Let e1 and e2 be the edges obtained by splitting f . Assume towards a contradiction
that G contains some bridge g. Then we have two possible cases.

Case 1 At least one of the two components of G − g containing a vertex incident to
g is planar. Note that any e-magic assignment α of J has some corresponding e-magic
assignment α′ of G such that α′(e) = α(e) for every e ∈ E(G)∩E(J), and α′(e1) = α′(e2) =
α(f). Further, we know that α′(g) = ±I by Proposition 4.1.3 (G is non-planar since G is
obtained from some split of J , which is an e-magic graft), and so α(e) = ±I for some edge
e ∈ E(J). Therefore by Proposition 3.3.37, we know that J /∈M4.

Case 2 Both of the two components of G − g containing a vertex incident to g are
non-planar.
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Let G1 and G2 be the two components of G− g containing a vertex incident to g. Then
it must be the case that e1 ∈ E(G1) and e2 ∈ E(G2) (or equivalently e1 ∈ E(G2) and
e2 ∈ E(G1)), since otherwise J − f = (G− e1)− e2 is non-planar which is a contradiction
by Proposition 3.3.35. We can also conclude that G1 − e1 and G2 − e2 are both planar
by the same token, and so e1 must be in some subdivision of K3,3 or K5, K(1) which is a
subgraph of G1. Similarly, e2 must be in some subdivision K(2) which is a subgraph of G2.
In particular, this means that e2 must be in a cycle C in G2. Let P be the path C − e2.
Then consider the graph G′ obtained by contracting each edge of P in J , deleting each edge
incident to the vertex obtained by the identifications from the contraction process, and then
performing a mod 2 reduction to f on that vertex. The graph G′ is non-planar since G1

is a subgraph of G′, and thus e-magic. Additionally, G′ is a parity minor of J . Therefore
J /∈M4.

This concludes the proof.

Theorem 4.1.5. Let J ∈M4. Let G be obtained from some split of J . Then G is connected.

Proof. Let e1 and e2 be the edges obtained from the split. We prove that G is connected
by contradiction.

Assume towards a contradiction that G is disconnected. Then we can conclude that
one of its components is non-planar. Further, either both edges from the split are in this
component, or one edge is in one component and the other is in some other component.

Case 1 If e1 and e2 are in the same component, G1, then G1 must be non-planar since
every K3,3 or K5 subdivision of G must contain either e1 or e2 (by Proposition 4.1.1).
Additionally, any other component of G, G′ must be planar since otherwise G′ would be an
e-magic parity minor of J . But then, J [V (G1)] is an e-magic parity minor of J since for
any e-magic assignment α of J , for any component G′ of G other than G1, there must be an
even number of vertices in V (G′) with vertex product −I (since G′ is a planar component of
G). Therefore α restricted to J [V (G1)] must be an e-magic assignment of J [V (G1)]. Thus
we see that J [V (G1)] is an e-magic parity minor of J , since J [V (G1)] can be obtained by
deleting all vertices of J not in V (G1). Therefore J /∈M4.

Case 2 Now let us assume that e1 is in one component, say G1 and e2 is in another
component, say G2. Assume that G1 is non-planar without loss of generality. Note that
e2 must be in a cycle C in G2, since e2 is not a bridge by Proposition 4.1.4. Then, as in
the previous proof, let P = C − e2, and in J contract every edge of P , then delete every
edge incident to the vertex obtained from the identification from the contraction process
and finally apply a mod 2 reduction to f on that vertex. Let G∗ be the graph obtained by
these operations. Note that G∗ is non-planar, since G1 is a subgraph of G∗. Also, G∗ is a
parity minor of J . Therefore J /∈M4.

The result follows.
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Corollary 4.1.6. Let J ∈M4. Then the deletion graph of J is connected.

Proof. Let G be the deletion graph of J , and assume towards a contradiction that G is not
connected. Let G1 and G2 be two components of G. Let e1 and e2 be obtained by one of
the splits of f , and let G′ be the graph obtained. Then both e1 and e2 must have one end
in V (G1) and one end in V (G2), otherwise G′ is either not connected or contains a bridge
(contradicting Theorem 4.1.5 or Proposition 4.1.4 respectively). Let u1, u2 be the vertices of
G1 such that u1 is incident to e1 and u2 is incident to e2, and let v1, v2 be the vertices of G2

such that v1 is incident to e1 and v2 is incident to e2 (so that V (f) = {u1, u2, v1, v2}). Then
note that the graph obtained by splitting f in J to obtain edges e′1 = u1u2 and e′2 = v1v2

is not connected and thus contradicts Theorem 4.1.5.
Therefore we see that the deletion graph of J must be connected as required.

Proposition 4.1.7. Let J = (V,E) ∈ M4. Let G be the deletion graph of J . Then either
G[V (f)] has at most 2 edges or G[V (f)] is comprised of a cycle of size three and a vertex
of degree zero.

Proof. Assume that G[V (f)] has at least three edges.
First note that |V (f)| ≥ 3 sincemult(v, f) = 2 for at most one vertex of V by Proposition

4.1.2, and mult(w, f) ≤ 2 for every vertex w ∈ V (f) by Proposition 3.3.36. In the case that
|V (f)| = 3, if G[V (f)] has 3 edges, then G[V (f)] is a complete graph on 3 vertices (since
J is simple by Corollary 3.3.34). But then notice that any split of f introduces no edges
which are not either loops or parallel edges. Therefore, the graph obtained by any split of
f is non-planar if and only if G is non-planar. But we know that G is planar since G is the
deletion graph of J (by Proposition 3.3.35).

Thus we see that |V (f)| = 4. Let V (f) = {v1, v2, v3, v4}. Notice that up to relabel-
ing G[V (f)] must contain either edges v1v2, v2v3, v3v4, or edges v1v2, v1v3, v1v4, or edges
v1v2, v2v3, v1v3 (corresponding to the three non-isomorphic graphs on four vertices with
three edges).

Case 1 G[V (f)] contains edges v1v2, v2v3, v3v4.
In this case, consider the split of f into edges v1v2 and v3v4. Both of these are parallel

edges since edges of G already exist between these vertex pairs. Therefore the graph ob-
tained by this split of f is non-planar if and only if G is non-planar. Since G is planar, we
see that J is not e-magic in this case.

Case 2 G[V (f)] contains edges g1 = v1v2, g2 = v1v3, g3 = v1v4. In this case consider the
split of f yielding edges e1 = v1v2 and e2 = v3v4, and let G′ be the graph obtained from the
split. For each e-magic assignment α∗ of J , there is a corresponding e-magic assignment α
of G′ such that α(e1) = α(e2) = α∗(f). Note that we can create another e-magic assignment
α′ as follows: α′(e) = α(e2)α(e) if e ∈ {e2, g2, g3}, and α′(e) = α(e) otherwise. Thus in
particular we see that e2 is labeled by I by this assignment. Notice however that e1 is a
parallel edge in G′ since g1 is incident to the same two vertices. Therefore we know that
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e2 must be in every subdivision of K3,3 or K5 in G′. But since α′(e2) = I, this means that
G′ − e2 is e-magic which is a contradiction since G′ − e2 is planar.

Case 3 G[V (f)] contains edges v1v2, v2v3, v1v3. In this case, if G[V (f)] has any other
edges, G[V (f)] will contain a subgraph such that Case 2 will apply (up to relabeling). There-
fore G[V (f)] contains exactly the three edges v1v2, v2v3, v1v3 - and therefore is comprised
of a cycle of size three and an isolated vertex.

The result follows.

4.2 Finding E-magic Grafts

An initial method to find grafts which are minimally e-magic would be to start with edge
f , and make sure that every split is non-planar by ‘gluing’ a subdivision of K3,3 or K5 to
two of the vertices incident to edge f and removing the edge of the subdivision incident
to the two vertices of f . In this fashion, we are guaranteed that at least one split of f is
non-planar. We can then attempt to add extra edges so that all splits are non-planar. Such
an approach was taken in Example 3.2.18. However, it can be quite difficult to apply this
process while also ensuring that the deletion graph is planar. Furthermore, it would be
challenging to classify the e-magic grafts in this fashion.

Instead of beginning with the size four edge, f , we shall work backwards.
Note that a minimally e-magic graft appearing as a dual of a proper Eulerian hypergraph

will also be proper since it is simple, the multiplicities conditions are satisfied, each edge
is of size at least one, and each vertex is of degree at least one. In this section we explore
searching techniques for finding e-magic grafts of this sort that could potentially be inM4.

Example 4.2.1. Consider the graft J illustrated in Figure 4.2, with deletion graph T .
Since T is a maximal planar graph, T is planar and adding any new (non-parallel) edge to
T will yield a non-planar graph. Since T induced on V (f) contains an independent set of
size 3 (vertices 1,3 and 5), any split of f must introduce a new non-parallel edge to T , and
thus every split will be non-planar.

Notice that for any proper graft with a maximal planar deletion graph T , if instead of
an independent set of size 3, T induced on V (f) contained an isolated vertex (a vertex of
degree one), every split would still be non-planar (for example choosing f to be incident to
vertices 7,3,4, and 5 instead). We record this result in a proposition.

Proposition 4.2.2. Let J be a proper graft, such that the deletion graph of J is a maximal
planar graph T . Then every split of f is non-planar if and only if T induced on V (f)
contains either an independent set of size 3 or a vertex of degree 0.

Proof. Let v1, v2, v3, v4 be the vertices in J incident to f .
Every split of f in T is non-planar if and only if each split of f introduces a new edge

to T that is not a parallel edge. The possible edge pairs obtained from the split of f are:
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Figure 4.2: A graft J whose deletion graph is a maximal planar graph

1. v1v2 and v3v4, 2. v1v3 and v2v4, and 3. v1v4 and v2v3. Thus from each of these three
splits, at least one of the two edges must not already be in T . Let us assume without loss
of generality that in the first split v1v2 /∈ E(T ). Notice that if v1v3 /∈ E(T ) or v2v4 /∈ E(T ),
this is the same up to relabeling in f . Thus in case 2, assume without loss of generality
that v1v3 /∈ T . Lastly, either v1v4 /∈ T and so v1 is an isolated vertex in f or v2v3 /∈ T and
so {v1, v2, v3} is an independent set in T . Thus if every split of f in T is nonplanar, then T
induced on V (f) contains an independent set of size 3 or an isolated vertex.

Now assume T induced on V (f) contains either an independent set of size three or an
isolated vertex.

In the first case, let v1, v2, v3 be the independent set without loss of generality. Then,
notice that v1v2 /∈ E(T ), v2v3 /∈ E(T ), v1v3 /∈ E(T ). Notice that each possible split of f
must contain one of these three edges. Therefore, each split introduces a new non-parallel
edge, and is thus non-planar.

In the second case, let v1 be the vertex of degree 0. Then v1v2 /∈ E(T ), v1v3 /∈
E(T ), v1v4 /∈ E(T ). Again, each split of f must contain one of these three edges. Therefore,
each split introduces a new non-parallel edges in this case as well, and is non-planar.

Note that for the forward direction, we did not need that T is a maximal planar graph,
just that every split of f is non-planar. In other words, for any proper graft J such that
every split of f is non-planar, we must have that the deletion graph induced on V (f)
contains either an independent set of size 3 or a vertex of degree 0. From this observation,
we can construct the following theorem.

Theorem 4.2.3. Let J be a proper graft, so that the deletion graph of J is planar, and
every split of J is non-planar. Then J can be obtained by a sequence of edge deletions from
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some graft R with edge r of size 4, where the deletion graph of R is a maximal planar graph,
and R induced on r contains either an independent set of size 3 or a vertex of degree 0.

Proof. Since every split of J is non-planar, G induced on V (f) must contain either an
independent set of size 3 or an isolated vertex by the above remark. Further G must be
some spanning subgraph of a maximal planar graph T since G is planar (by Proposition
1.3.21).

Then let R be the graft obtained by adding edge f to T . Every split of f in R yields
a non-planar graph, since it will contain some split of J as a subgraph. It follows that R
induced on V (f) must have an independent set of size 3 or an isolated vertex since every
split of R is non-planar and T is a maximal planar graph. Thus R satisfies the conditions
of the Theorem.

Theorem 4.2.3 suggests a method for finding proper grafts which could potentially be
inM4. Using the program plantri developed by Gunnar Brinkmann and Brendan McKay
[11], we generated the maximal planar graphs up to isomorphism on a given number of
vertices. Utilizing this, for a given maximal planar graph G = (V,E), we found all sets of
four vertices V ′ ⊂ V (up to symmetry) such that the graph induced on V ′ contains either an
independent set of size three or a vertex of degree zero (we call such a set a fourset). Each
fourset V ′ along with G implicitly defines a graft J constructed by adding the edge incident
to all vertices of V ′ to G. Following this, we calculated the maximum sets of edges E′ such
that each split of the graft J ′ obtained by deleting every edge of E′ from J is non-planar.
At this point we checked by hand whether K3,3 or K5 is a parity minor of J ′, since the only
way to obtain K3,3 or K5 is through a sequence of edge contractions and mod 2 reductions
- and if |V | is relatively small, this is fairly simple.

We have applied this searching technique, but also taken into account an additional
property which we have not proven: if J ′ is e-magic, then J ′ − V ′ must contain a cycle.
To date, we have checked all grafts obtained in this manner on up to and including ten
vertices, and each of these was either not e-magic by Proposition 4.1.7 or could be reduced
to K3,3 or K5. For the code that we wrote and additional details, the reader may consult
Appendix A.2.

There is an inherent difficulty with this searching technique. The number of max-
imal planar graphs grows extremely quickly with number of vertices, n, the first few
terms of this sequence being: 1, 2, 5, 14, 50, 233, 1249, 7595, 49566, 339722, 2406841,
17490241, 129664753, 977526957, 7475907149, 57896349553, 453382272049, 3585853662949,
28615703421545 (we started with n = 4). The number of grafts we have to check is also
significantly larger since a single maximal planar graph could have many possible foursets.
Additionally, since a planar graph does not have a unique maximal planar graph containing
it as a spanning subgraph, we may check the same graft many times.
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Figure 4.3: A maximal planar graph T from which we can generate grafts

However, there is much room for improvement. In Chapter 5 we discuss a conjectured
proposition which could significantly reduce the number of foursets. It is also likely that
some of the propositions developed at the end of Section 3.3 and in Section 4.1 can be
utilized in order to simplify our work.

Example 4.2.4. The maximal planar graph shown in Figure 4.3 has four different foursets
of vertices which we could use to create a proper graft: {2, 4, 5, 6}, {1, 2, 4, 6}, {0, 2, 4, 6},
{2, 3, 4, 6}. These grafts are illustrated in Figure 4.4. How do we decide which of these is
e-magic and which is not? Consider the first graft, J , with f incident to 2, 4, 5, 6 (this is the
top left graft of Figure 4.4). This is e-magic by Theorem 3.3.18 since we can delete edges
34, 35, 05, 04, 56 of J to obtain the graft illustrated in Figure 4.5, then contract edge 45 and
apply a mod 2 reduction to the vertex resulting by the identification of vertices 4 and 5 to
obtain K5.
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Figure 4.4: The four proper grafts that can be obtained from T
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Figure 4.5: A graft obtained by deleting edges of J
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Chapter 5

Outlook

In this thesis we have presented many tools to aid us in solving Problems 2.1.8 and 2.2.2.
However, there is much work that can still be done on both of these problems.

I believe that there are more results which are in a similar vein to Proposition 4.1.7 that
can be attained for grafts. I think that with enough work, we can show that the deletion
graph of a graft J induced on the edge of size 4 of J must be an independent set of size 4
if J is proper and minimally e-magic. It could also very well be the case thatM4 is empty,
as every case which we have seen is either reducible to K3,3 or K5 or is not e-magic. We
formalize this below as a conjecture.

Conjecture 5.0.1. All e-magic grafts reduce to K3,3 or K5.

One can consider other candidate elements for MEM apart from grafts. In general,
ensuring that each split is planar can be difficult since, as we have seen, an algorithm
to check this can easily be at least exponential. However, if we choose hypergraphs on n

vertices, such that the graph resulting from each split will have more than 3n−6 edges, then
this condition will automatically hold. A study of such hypergraphs would be extremely
interesting work for the future, and could lead to a discovery of new operations to add to
the existing Parity Minor ones.

It is known [32] that for a fixed graph H, checking whether some graph G contains H as
a minor can be done in cubic time (in the number of vertices of G). It would be interesting
to study the complexity of this problem for the parity minor relation.

Proposition 4.1.3 suggests an approach using the theory of flows and circulations from
graph theory. The fact that each bridge (with the additional planar component condition)
must be labeled with identity is very reminiscent of the fact that every bridge must be
labeled with the identity element in flows over groups. Additionally, if we restrict ourselves
to matrices obtained by tensor products of Pauli matrices, we can attempt to make analogues
with flows in some group formed by cartesian products of Z2.

Another approach that could be taken for Problem 2.1.8 is an algebraic one. There
are several existing methods, such as expressing commutativity of Pauli matrices using the
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symplectic product and solving the arising quadratic equations using Groebner bases or
other elimination methods. These can be used to find magic Pauli assignments for a given
number of qubits, or show that no such assignments exist. For the more general case, an
approach is to view the relations arising from Definition 2.1.7 as a finitely presented group,
as is done in [25, 35]. In this setting, one can use the Knuth-Bendix algorithm to simplify
relations for the given proper Eulerian hypergraph [25]. Oftentimes the relations can be
simplified to the point where we can conclude that the hypergraph is non-magic. We have
not presented such an approach in this thesis as it would have required significant additional
background, however, these are certainly interesting avenues for research.

Lastly, we should note that our results have not disproved a conjecture made by Arkhipov
[3] - that any magic proper Eulerian hypergraph has a 3-qubit assignment.
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Appendix A

Code

A.1 Four Qubit Star

Here we display the Magma computation that was utilized to find a K3,3 minor occurring
in the dual of the 4-qubit star, represented here by G.

> G := Graph< { 1 .. 6 } |
> { {1,2}, {2,3}, {1,4}, {3,4}, {2,4}, {4,5},
> {1,6}, {2,5}, {3,6}, {5,6}, {1,5}, {2,6} } >;
>
> ispl, obstr := IsPlanar(G);
>
> ispl;
false
> obstr;
Graph
Vertex Neighbours

1 6 4 2 ;
2 5 3 1 ;
3 6 4 2 ;
4 5 3 1 ;
5 6 4 2 ;
6 5 3 1 ;

A.2 Minimally E-magic Graft Search

This appendix section contains the Magma code that we wrote to search for minimally
e-magic grafts. Within the main loop we access an auxiliary file populated by maximal
planar graphs in g6 format generated by plantri [11]. We then loop through the graphs,
calling the procedure process_triang which takes as input a single graph g. The procedure
process_triang is exactly as we have described in Section 4.2. In particular, checking the
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foursets up to symmetry is done by choosing a set of foursets so that each fourset corresponds
to a unique graft. We do this by calculating the automorphism group of the graph, grouping
the set of all foursets into sets of orbits, and finally choosing a random representative from
each orbit.

function is_indep_set(x,y,z)
return
(x notadj y) and (x notadj z) and (y notadj z);
end function;

function isFset(T,vseq)
u:=vseq[1];
v:=vseq[2];
w:=vseq[3];
x:=vseq[4];
return
(
is_indep_set(u,v,w)
or
is_indep_set(u,v,x)
or
is_indep_set(u,w,x)
or
is_indep_set(v,w,x)
or ( #(Neighbours(u) meet {v,w,x}) eq 0 )
or ( #(Neighbours(v) meet {u,w,x}) eq 0 )
or ( #(Neighbours(w) meet {u,v,x}) eq 0 )
or ( #(Neighbours(x) meet {u,v,w}) eq 0 )
)
and
not(IsForest(T - {u,v,w,x}))
;
end function;

procedure process_triang(t)
print t;
G, GV, GE := AutomorphismGroup(t);
orbit:=function(q)
return { { (Index(x))^g : x in q } : g in G };
end function;
V:=VertexSet(t);
V4:=[ [V!i,V!j,V!k,V!l] : i,j,k,l in [ 1 .. #V ]

| (i lt j) and (j lt k) and (k lt l)
];

Fsets := [ q : q in V4 | isFset(t,q) ];
Forb := { orbit(SequenceToSet(f)) : f in Fsets };
Fsets := { Random(o) : o in Forb };
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E := EdgeSet(t);
for f in Fsets do
fv := { V!i : i in f };
printf "\nF=%o\n",fv;
fsplits := { {a,b} : a,b in Subsets(fv,2) | #(a meet b) eq 0 };
D:=AssociativeArray();
D[1] := { {e} : e in EdgeSet(t)

|
(
not(IsForest(G-fv))
and ( { IsPlanar(G+spl) : spl in fsplits } eq {false} )
)
where G is t-{e}

};
printf "#D1=%o\n",#D[1];
k:=1;
while (k lt 3*#V-6) and (#D[k] gt 0) do
k:=k+1;
D[k] := { d join {e} : d in D[k-1] , e in EdgeSet(t)
|

(
( #(d join {e}) eq k )
and not(IsForest(G-fv))
and ( { IsPlanar(G+spl) : spl in fsplits } eq {false} )
)
where G is t-(d join {e})

};
if #D[k] eq 0 then print D[k-1]; end if;
printf "#D%o=%o\n",k,#D[k];
end while; // k
end for; // f in Fsets
end procedure;

// Main loop.

GF := OpenGraphFile("PT9.g6", 0, 0);
count := 0;
repeat
more, g := NextGraph(GF);
if more then
count +:= 1;
printf "\n\n\n____________\ncount=%o\n",count;
process_triang(g);
end if;
until not more;
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