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Abstract 
Introduction:  

Air pollution has become a major global environmental health concern, and the importance of adequate 
air quality guidelines has been highlighted. Crude measurements of total particulate matter (PM) are not 
sufficient to protect population health since some components of PM are more associated with certain 
adverse health effects. Toxic heavy metal dusts are commonly found in PM, and found to exceeded or 
approached guidelines. Current air quality guidelines are mostly based on route-to-route (RtR) 
extrapolation from oral exposure studies which is a conventional approach to substitute insufficient 
inhalation-specific exposure data. 

Purpose:  

This project aims to compare RtR limits extrapolated from oral exposure limits of metal dusts set by the 
regulatory bodies to their respiratory exposure limits and various air quality guidelines, to quantify the 
differences in values, and to evaluate the competence of the guidelines with application of oral-to-
inhalation extrapolation. 

Methods:  

A systematic literature review on RtR extrapolation was performed along with a narrative review of 
documents from regulatory agencies in Canada and the US for assessing the current state of application 
of RtR extrapolation in air quality guidelines for environmental and occupational health purposes. Data 
was described and synthesized by calculating extrapolated values and comparing quantitatively. 

Results and discussion:  

The reliability of RtR extrapolation significantly depends on availability of toxicokinetic data. More route-
specific studies are necessary to enhance the database. Extrapolated exposure limits are higher by 1 to 3 
orders of magnitude than inhalation-specific minimal risk levels (MRL), possibly due to direct respiratory 
toxicity. This indicates reliance on RtR extrapolation alone to derive inhalation exposure limit is not 
sufficient to protect from adverse health effects. Environmental air quality guidelines are mostly below 
calculated RtR limits, but occupational air quality guidelines are generally above extrapolated exposure 
limits, posing concerns due to underestimation of toxicity. 

Limitations of the study include insufficient toxicokinetic data on the possibility of direct toxicity and 
bioavailability, potential interaction between toxics under multiple-substance exposure scenarios, and 
lack of a federally managed Canadian database. 

Public Health Implication and recommendations:  

It is advised to measure and analyze particulate matter components in air, conduct more route-specific 
experiments and human epidemiology studies for various durations of exposure research, and use 
extrapolated RtR limits with case-specific RtR factors or an uncertainty factor of at least 10 for new 
standards. It is recommended to disseminate the knowledge to health authorities highlighting the 
caveat of using RtR alone. Reassessment of regulatory limits for occupational guidelines is 
recommended. Also, it is necessary to establish a domestic federal toxicological database.   
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Introduction 
The World Health Organization (WHO) reports that air pollution has become a major 

environmental health concern, with nearly 4 million premature deaths attributable to ambient 

air pollution globally from causes such as cardiovascular diseases, cancers, and chronic and 

acute respiratory diseases caused by PM10 (particulate matter of 10 microns or less in diameter) 

in 2012 (World Health Organization, 2016a). More than 80% of urban inhabitants are exposed 

to air quality levels over WHO limits, and 98% of cities with population greater than 100,000 in 

low- and middle-income countries do not meet the WHO air quality guidelines1 (World Health 

Organization, 2016b). In 2014, it was estimated that 92% of the global population was residing 

in places exceeding the WHO air quality guidelines levels, which are 10 μg/m3 annual mean and 

25 μg/m3 24-hour mean for PM2.5 (particulate matter of 2.5 microns or less in diameter), and 20 

μg/m3 annual mean and 50 μg/m3 24-hour mean for PM10 (World Health Organization, 2016a). 

WHO acknowledges that even if the WHO air quality guidelines are intended to provide 

technical advice on policy formulation, each country may adopt different national standards 

based on the national context taking feasibility, capability, political factors, and socioeconomic 

considerations into account (World Health Organization, 2006). Therefore, adequate air quality 

guidelines and regulations for local contexts are crucial components of health policies to 

protect population health as well as occupational health. 

Toxic metal dusts are commonly found in air, and guidelines entailing monitoring and analyzing 

metal dust components in air are important; the chemical composition of particulate matter 

                                                           
1 “the term guideline refers to a prescribed ambient air concentrations that is not to be exceeded in the setting 
jurisdiction; guidelines can also be called objectives, standards, and criteria, and these terms are used inter-
changeably herein” (Galarneau et al., 2016) 
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(PM) is closely related to toxicity, severity, and types of adverse health effects since certain 

components are more or less toxic than others (Lippmann & Chen, 2009). Accordingly, 

monitoring chemical components of PM will benefit implementation of targeted regulations on 

the most toxic components (Lippmann, 2010, 2012). It is alarming that toxic heavy metals such 

as nickel, arsenic, cadmium, and lead, measured in Canada by the National Air Pollution 

Surveillance from 2009 to 2013, exceeded or approached at least one provincial guideline, even 

when the actual concentration is acknowledged to be underestimated due to measurement 

methods; yet, no specific federal guidelines exist for ambient air toxics2 in Canada (Galarneau et 

al., 2016). Adequate federal guidelines, including metal dusts control, based on scientifically 

rigorous evidences should be implemented for the best health outcome results.  

Due to a lack of inhalation-specific exposure data, air quality guidelines are mostly developed 

based on oral exposure studies of toxic metals via route-to-route (RtR) extrapolation, which is 

one of conventional approaches to substitute unavailable route-specific information (Rennen, 

Bouwman, Wilschut, Bessems, & Heer, 2004). Problems arise with integrity of RtR extrapolation 

since toxicokinetic mechanisms of oral and inhalation routes vary, resulting in over- or 

underestimation of no-observed-adverse-effect-level (NOAEL) because of large uncertainty 

factors, especially for route-specific effects (Rennen et al., 2004). There are other factors that 

influence the validity and reliability of extrapolation, including study design, quality of oral 

studies used, and physicochemical properties of the chemicals (Schröder et al., 2016). 

Furthermore, the complexity of dose estimation via inhalation route obscures oral-to-inhalation 

extrapolation since respiratory dose calculation is a function of number of factors including 

                                                           
2 Also known as hazardous air pollutants or air contaminants 
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concentration and duration of exposure, breathing patterns, absorption, and diffusion or 

deposition in lungs. Therefore, it is recommended not to use conventional default values from 

RtR extrapolation guidelines, but to calculate the conversion factor3 for each specific setting to 

extrapolate oral to inhalation exposure (Pauluhn, 2003).  

Purpose 
The main purpose of this paper is knowledge translation and risk communication targeting 

environmental health professionals, to deliver knowledge of environmental and occupational 

regulations of metal dusts in air and, therefore, implement appropriate policies for 

environmental and occupational health.  

This project aims to compare RtR inhalation exposure limits, extrapolated from oral exposure 

limits, to the research-based respiratory limits and various air quality guidelines, to quantify the 

differences in values, and ultimately to evaluate the competence of the guidelines with 

application of oral-to-inhalation extrapolation. The current promulgated guidelines are 

presumed inadequate as the exposure limits established by route-to-route extrapolation do not 

incorporate route-specific variability factors. The air quality guidelines of various heavy metals 

are reviewed to define the extent of accuracy of association between oral-to-inhalation 

extrapolated exposure limits and the guideline values. The oral-to-inhalation extrapolated 

exposure limits are compared to inhalation minimal risk limit (MRL), when available. The 

difference is quantified, and they are discussed with insight into the adequacy of the RtR 

extrapolation with recommendations proposed.  

                                                           
3 To translate the limit of oral exposure to that of respiratory exposure based on the equipotent dose 
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Background Review of Air Quality Guidelines and Metal Components of 

Particulate Matter 
In order to comprehend the current status of air quality guidelines and the competency to 

protect populations at risk, a background review was performed with academic and grey 

literature. For environmental air quality guidelines and occupational air quality guidelines, 

government databases were searched for existing guidelines. For risk assessments on metal 

dusts, “risk assessment metal dusts occupational health” and “risk assessment metal dust 

ambient air” were searched on PubMed. For health effects of vulnerable population, “air 

pollution health effects” was searched in combination with additional term, “pregnancy”, 

“children”, “elderly”, or “pre-existing medical condition” to search the risks specific to 

respective populations. I searched titles and abstracts with the inclusion criteria: 1) articles in 

English and 2) articles in peer reviewed journals; after the screening based on the abstracts, 

irrelevant articles and articles unable to be located were excluded. 

Current air quality guidelines  

In Canada, only 6 provinces4 where the majority of Canadian population reside, including British 

Columbia, promulgated ambient air guidelines for air toxics. Moreover, contaminants that are 

addressed and their guideline values are inconsistent across jurisdictions. For example, the 

objective concentration of nickel for 24-hour period range from 0.002 µg/m3 in Quebec to 2 

µg/m3 in Manitoba and Newfoundland (Government of Alberta, 2016; Government of 

Manitoba, 2005; Ministère du Développement durable & de l’Environnement et de la Lutte 

contre les changements climatiques, 2016; Newfoundland and Labrador, 2004; Ontario Ministry 

of the Environment, 2012). The hazardous air pollutants included in guidelines are not 

                                                           
4 British Columbia, Alberta, Manitoba, Ontario, Québec, Newfoundland and Labrador 
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consistent throughout the provinces as well; B.C. Ambient Air Quality Objectives list only 7 

contaminants, while Ontario and Quebec guidelines provide the criteria for more than 300 air 

pollutants. On the other hand, the guidelines for crude concentration of total PM are generally 

promulgated with the same guideline values; all jurisdictions adopted Canada Wide Standard 

for PM2.5 of 30 µg/m3 in a 24-hour period. This indicates that establishment of federal standards 

as a ground rule is indispensable to achieve consistent guidelines across Canada. Some 

countries monitor more comprehensive PM components in air than Canada at national level. 

United Kingdom and United States both require monitoring of lead in ambient air for national 

air quality guidelines (Department for Environment Food and Rural Affairs, 2012; US 

Environmental Protection Agency, 2008). European legislation has adopted the new Air Quality 

Framework Directive in 2008, stating a requirement to measure the composition of PM from at 

least one site, which enables metal analysis in ambient air (Quincey & Butterfield, 2009). 

For occupational health, the frequency, duration, concentration, and route of exposure are not 

in the same manner as the exposures in environmental health, and the population at risk is 

precise; therefore, guidelines or regulations are generally more specific and detailed to prevent 

adverse health effects. Population at risk is usually limited to those who work at or live around 

the occupational sites. The route of exposure relies on the occupational settings, but exposures 

are usually via inhalation and occasionally through the skin. Exposures at work occur at much 

greater concentrations compared to environmental exposure over a given period; on the other 

hand, the duration of total exposure taken into consideration is shorter than environmental 

exposure. It is easier to track the frequency and duration of exposure because workers and 

employers usually record the hours of work. The level of exposure may be a lot higher than 
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environmental exposure, which demands moderately sensitive measuring techniques to 

measure the exposure. Consequently, unlike environmental exposure assessment that requires 

more sensitive measuring instruments, occupational exposure can be assessed with simple and 

well-validated techniques (Semple, 2005). Occupational air quality regulations are in time-

weighted average (TWA) for a specific period which is 8 or 10 hours to state permissible 

exposure limits (PEL), recommended exposure limits (REL), or threshold limit values (TLV); or 

15-minute or 30-minute exposure average for short-term exposure limits (STEL), depending on 

regulatory agencies (Association Advancing Occupational and Environmental Health, n.d.; 

National Institute for Occupational Safety and Health, n.d.; United States Department of Labor, 

n.d.; Worksafe BC, 2015). Occupational guidelines generally have more detailed criteria of 

hazardous chemicals than ambient air quality guidelines. However, it should be noted that most 

regulatory limits of occupational air quality objectives are based on oral-to-inhalation 

extrapolation because route-specific toxicity data for inhalation exposure is insufficient due to a 

lack of studies (Rennen et al., 2004). This implies that the limitations of RtR extrapolation will 

prominently influence the appropriateness of guidelines. 

The needs to regulate the metal components of particulate matters  

Currently, most air quality guidelines for health purposes simply monitor the total mass 

concentration of PM due to administrative and financial constraints and limited number of 

sample collection sites. When air pollution is discussed, it is often focused only on the total 

concentration of PM, even though PM consists of various components, collectively categorized 

by the size. Studies have called attention to the fact that crude measurements of PM are not 

sufficient to observe the epidemiology of the adverse health effects attributable to airborne 
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exposure because some components of PM are more associated with and responsible for 

certain adverse health effects (Lippmann, 2010, 2012; Quincey & Butterfield, 2009). When 

components of PM2.5 were examined for their influences on the daily mortality associated with 

PM2.5, it was found that certain chemical components, namely aluminum, arsenic, nickel, 

sulfate, and silicon, significantly increased the mortality rates modification effects (Franklin, 

Koutrakis, & Schwartz, 2008). Monitoring and studying chemical components of PM and their 

effects will enable targeted regulations on the most toxic components with cost-effective 

methods. For example, since aluminum and nickel are the significant effect modifiers of 

mortality due to residual oil fly ash5, monitoring and regulation may be focused to those two 

components (Franklin et al., 2008). Therefore, it is important to identify the most toxic 

components to adopt more effective health policies.  

Air pollution is associated with numerous adverse health outcomes from allergies to lung 

cancer; however, there are no clear criteria of research methodology advising what specific 

components need to be measured to examine health effects attributable to air pollution. 

Escalating attention on traffic and fossil fuel combustion-related pollution, with increasing 

number of motor vehicles and their highly variable PM composition which may result in acute 

exposure, brings a need to analyze the metal components of PM (Lippmann, 2010; Lippmann & 

Chen, 2009). Toxic metals can result in various adverse health effects; Table 1 below describes 

some of the common toxic metals and the corresponding health risks (Agency for Toxic 

Substances and Disease Registry, n.d.; Järup, 2003). 

                                                           
5 A component of ambient particulate matter which consists of iron, aluminum, vanadium, nickel, carbon, and zinc 
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Table 1. Summary of common toxic metals and the health effects of acute and chronic exposure via various 

routes 

METALS HEALTH EFFECTS 

Aluminuma 
Impaired lung function, fibrosis, impaired neurobehavioral function, sensory 

function, and cognitive function 

Arsenica,b 
Nausea, vomiting, diarrhea, irritation, cardiovascular effects, encephalopathy, 

irritation, skin cancer, peripheral neuropathy, bladder cancer, lung cancer 

Berylliuma 
Respiratory damage (nasopharyngitis, shortness of breath, labored breathing, 

chemical pneumonitis), gastrointestinal damage, fibrosis, irritation, lung cancer 

Cadmiuma,b 
Kidney damage, lung damage, decreased lung function, decreases in bone 

mineralization, increased risk of bone fractures, emphysema, lung cancer 

Chromium (VI)a 
Respiratory and gastrointestinal irritation, altered pulmonary function, 

hemolysis, kidney failure, damaged reproductive systems, fibrosis, lung cancer 

Leada,b 

Decreased activity of Hematological enzymes, elevated blood pressure, kidney 

failure, reduced reproductive systems, neurological impairment 

(encephalopathy, peripheral neuropathy, neurobehavioral and 

neuropsychological effects in adults, cognitive and neurobehavioral effects in 

children) 

Mercurya,b 
Diarrhea, fever, vomiting, nausea, gastrointestinal, kidney, muscular, 

cardiovascular, and neurological damages (anxiety, tremor) 

a Agency for Toxic Substances and Disease Registry, n.d. ; b Järup, 2003 

As shown above, the range and severity of health effects vary depending on the metal in 

question, and certainly, they are not limited to those listed above. However, despite the 

importance of metal component monitoring in PM, neither the federal air quality guideline nor 

the current B.C. Ambient Air Quality Objectives have detailed criteria for metal dusts (British 

Columbia Ministry of Environment, 2016; Environment Canada, 2013). In addition, as 

mentioned in the previous section, not all guidelines have sufficiently described metal dusts 



12 
 

criteria for ambient air. Therefore, there is a necessity to include constant monitoring and 

control of metal components of PM with adequate criteria to better protect the population. 

Risk assessments on metal dusts in ambient air and occupational settings  

To set the criteria of metal components in PM for air quality guidelines, health risks of metal 

dusts in air should be assessed first. When searched for background reviews, only a handful of 

published articles are found on risk assessment of exposure to metal dusts in ambient air, 

mostly in Asia where ambient air pollution is severe, possibly due to the complexity linked to 

such risk assessments and the purpose which is usually regulatory or administrative rather than 

academic. Commonly studied heavy metals for exposure assessment of ambient air are lead, 

copper, zinc, arsenic, and cadmium along with iron, vanadium, chromium, manganese, cobalt, 

and nickel. These assessments were conducted around densely populated areas and industrial 

sites mostly in Asia for health outcomes such as cancer and neurobehavioral disorders (Cheng 

et al., 2017; Kong et al., 2012; Singh & Gupta, 2016; Tan et al., 2014). Some studies were 

conducted in New York City, assessing inhalation exposures resulting from the collapse of the 

World Trade Center towers (Lorber et al., 2007) and exterior lead dust (Caravanos, Weiss, 

Blaise, & Jaeger, 2006). One study was undertaken in Germany, finding platinum group metal 

particles in PM from traffic exhausts are present not only in areas close to the roads, but also in 

areas far from the sources (Zereini et al., 2001). The risk assessments of metal dusts in ambient 

air published in academic database do not cover enough environmental settings to draw 

conclusions which toxic metal is of the most concern. 

Risk assessment of heavy metal dusts in occupational settings is less complicated than ambient 

air as the source is often clear. Most of the studies are assessing welding, mining, and chemical 
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production industries. Sometimes, relationships of exposure and specific health outcomes are 

assessed; a literature review on the association between exposure to manganese dusts in 

welding industries and neurological disease such as Parkinson’s disease found that 

epidemiological evidence is not clear to conclude the causality (Flynn & Susi, 2009). Several 

models can be developed to take environmental exposure into account. A study on exposure to 

hexavalent chromium attributable to lung cancer in the chromate industry developed 6 

exposure-response models to evaluate the exposure including smoking (Park et al., 2004). 

Analytical cross-sectional study may prove to be beneficial in finding a linkage between the 

exposure and non-specific symptoms; a study on exposure to metal dusts among brass workers 

in Sri Lanka indicates that the prevalence of non-specific symptoms is higher with metal dust 

exposure, calling actions for preventive measures (Jayawardana, 2004). One interesting study 

was conducted at auto body shops in Nigeria, where imported used auto vehicle market is 

growing, on the exposure to lead, manganese, and copper from car paint dusts, concluding that 

chronic exposure to car paint dusts may lead to adverse health outcomes including cancers 

(Nduka, Onyenezi Amuka, Onwuka, Udowelle, & Orisakwe, 2016). Another study, assessing the 

occupational exposure of urban public bus drivers to trace metals in gas emissions from buses, 

quantified the concentration of specific metal dusts, mainly zinc, lead, and copper to conclude 

that there is a potential carcinogenic risk (Gao et al., 2015). Similar to ambient air risk 

assessment, not many risk assessments were found in academic database, perhaps because the 

purpose of such risk assessments is usually regulatory or administrative rather than academic. 
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Limited ambient air criteria for metal dusts in Canada 

In Canada, National Air Pollution Surveillance (NAPS) program, established in 1969 initially 

focusing on sulfur dioxide and PM, measures 340 air toxics including heavy metals to provide a 

uniform Canada-wide air quality database. The heavy metals that are tracked include selenium, 

nickel, manganese, lead, cobalt, chromium, cadmium, beryllium, arsenic, and antimony; but not 

all toxic metals are monitored by NAPS. One study assessed NAPS monitored air toxics and 

compared the concentrations with the air quality guideline standards of Canadian jurisdictions 

(Galarneau et al., 2016). It was found that many metal pollutants have exceeded or approached 

at least one guideline. It should be noted that this is only based on PM2.5 whereas most metal 

dusts are expected to be present in coarser PM10; therefore, the reported measurements are 

likely to be underestimated.(Galarneau et al., 2016). As mentioned above, many guidelines do 

not have complete criteria of ambient air metal concentrations. For an effective ambient air 

metal dust management, it is imperative to include such standards in the guidelines.  

Health effects to vulnerable populations 

A comprehensive air quality guideline should consider vulnerable populations such as pregnant 

women, children, elderly, and those with pre-existing medical conditions. Vulnerable 

populations may be more sensitive to the risks of air pollution, resulting in exacerbated adverse 

health effects; therefore, air quality guideline is desired to be sufficiently protective.  

Studies suggest that maternal exposure to ambient air pollution during pregnancy, particularly 

in the early-stages, is associated with various adverse birth outcomes of fetuses and infants 

(Estarlich et al., 2016; Laurent et al., 2016; Lavigne et al., 2017; Liang, Wu, Fan, & Zhao, 2014; S. 

Liu, Krewski, Shi, Chen, & Burnett, 2007; Malley et al., 2017; World Health Organization, 2017a; 
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Yao et al., 2016). The adverse effects of air pollution on birth outcomes are preterm birth, low 

birth weight, birth defects, childhood respiratory mortality, intrauterine growth retardation, 

and even early childhood cancers. However, the strength of associations between each birth 

outcome and air pollution varies. A systemic review on ambient air pollution and pregnancy 

outcomes revealed that there was a strong evidence to infer a causal relationship between air 

pollution and premature death in early childhood due to respiratory problems (Srám, Binková, 

Dejmek, & Bobak, 2005). The evidences to support the causality of air pollution to birth weight, 

preterm birth, and intrauterine growth retardation were not sufficient, requiring further 

research. However, molecular epidemiologic studies suggested biological mechanisms 

supporting the potential association of those birth outcomes to air pollution (Srám et al., 2005). 

The association of birth defects and air pollution was not significant. The reviewers described 

that particulates seem to be the most important pollutant for infant mortality; however, lack of 

availability of the precise pollutant composition limited the confidence of their conclusion. This, 

again, emphasizes the need of monitoring PM components. 

The exposure to ambient air pollution in young children is more problematic than adults due to 

their physiological susceptibility such as rapid neurological development and higher ratio of 

body surface area to volume leading to greater health risk; children under 2 years of age have 

toxicokinetic mechanism differences from adults, having much longer half-lives of some 

metabolites as well as their parent compounds (Falk-filipsson, Hanberg, Victorin, Warholm, & 

Walle, 2007). In addition, the behavioural characteristics, for instance, extended periods of time 

spent outdoors during daily peak times of air pollution, may increase the level of exposure. 

Ambient air pollution plays a significant role in the development of chronic respiratory diseases, 
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asthma, congenital anomalies, cardiovascular disease, diabetes, and cancers in early childhood 

(Lacasaña, Esplugues, & Ballester, 2005; World Health Organization, 2017b). Also, neurological 

and behavioural disorders have been associated with air pollution, possibly due to the heavy 

metal components in ambient air; studies identify air pollutants as neurotoxins resulting in 

disorders such as attention-deficit hyperactivity disorder and schizophrenia, which have life-

long effects on children (Min & Min, 2017; Pedersen, Raaschou-Nielsen, Hertel, & Mortensen, 

2004; Siddique & Banerjee, 2011). 

Elderly population and patients with existing medical conditions may be more susceptible to 

adverse health outcomes attributable to air pollution. It has been found that nickel is 

particularly influential to those sensitive to cardiac responses. Special attention is advised on 

both nickel and vanadium, which are most closely associated with residual oil combustion, for 

their health impacts on acute and chronic respiratory and cardiovascular diseases (Lippmann & 

Chen, 2009). One study emphasizes that ambient air pollution at levels below the air quality 

guidelines is associated with the mortality and morbidity of chronic obstructive pulmonary 

disease (COPD), and improvement of guidelines is imperative to protect the patients (Y. Liu et 

al., 2016). PM10 in ambient air is associated with increased emergency visits for asthma, 

especially for the patients with a prior history of allergic rhinitis or atopic dermatitis (Noh et al., 

2016). The risk of air pollutant exposure may be much higher when pregnant mothers have pre-

existing medical conditions, for both the fetus and the mother. A study found a substantial 

association of preterm birth with traffic-related air pollution in women with asthma (Mendola 

et al., 2016).  



17 
 

Overview of Route-to-route Extrapolation Guidelines 
Application of route-to-route extrapolation 

If heavy metal dusts in air are required to be controlled, what values should be established as 

standards? It is ideal to use the data of the same route of exposure, which is inhalation. 

However, due to the limited database of inhalation toxicity studies, the limits are often based 

on oral toxicity data, extrapolated from oral to inhalation toxicity level (Rennen et al., 2004). It 

is a traditional approach to use RtR extrapolation in risk assessments when route-specific data 

is not available, due to number of reasons. Interdepartmental Group on Health Risks from 

Chemicals (IGHRC) states in their draft guidelines on RtR extrapolation that the practical 

convenience of oral studies and complexity of inhalation exposure bring a pragmatic necessity 

to extrapolate toxicity data to assess human health risks via inhalation (Interdepartmental 

Group on Health Risks from Chemicals, 2005).  

Most of toxicity studies are undertaken using oral exposure because it is more straightforward 

to conduct and interpret than other routes with quantifiable dosimetry, especially by gavage, 

unless the examined chemicals are gases or highly volatile organic liquids (Interdepartmental 

Group on Health Risks from Chemicals, 2005). Also, oral exposure is likely to be less stressful for 

test animals particularly on acute toxicity, so it curtails ethical issues with animal studies. By 

excluding animal inhalation or dermal studies, it resolves time and financial constraints as well. 

Therefore, this brings a need of extrapolation from readily available oral data to estimate 

inhalation toxicity.  

Another substantial issue springs from the complexity of inhalation exposure. In addition to 

concentration and duration of exposure that are also considered in estimation of oral exposure, 



18 
 

the size of inhaled particles affects the sites of absorption at different part of respiratory tract. 

Coarse particles will only reach the upper respiratory tract whereas fine particles are able to 

penetrate deeper in lung to the alveoli. Other factors that influence the inhalation toxicity are 

solubility and reactivity of chemicals at lung tissue as well as physiological aspects such as lung 

capacity and breathing rate (Falk-filipsson et al., 2007; Interdepartmental Group on Health Risks 

from Chemicals, 2005; Pauluhn, 2003). All these additional factors must be considered to 

accurately estimate the dose of inhalation exposure, and obstruct inhalation exposure studies. 

However, RtR extrapolation has significant general limitations. The problems are mainly due to 

unavailability of data on toxicokinetics and effects of local toxicity. Toxicokinetic information on 

distribution, metabolism, and excretion is largely missing for inhalation exposure, which 

obstructs the true comparison of effective doses via ingestion and inhalation at target organs. 

Absorption factor is seldom available as well, but more obtainable than distribution or 

excretion. Some studies indicate that toxicokinetic data on absorption at least should be 

available to make reliable RtR extrapolation (Bessems & Geraets, 2013; Falk-filipsson et al., 

2007; Geraets, Bessems, Zeilmaker, & Bos, 2014; Interdepartmental Group on Health Risks from 

Chemicals, 2005; Schröder et al., 2016), as the absorption of chemicals will determine the 

target organ dosage. However, as it is mentioned for inhalation, the absorption via lung is vastly 

variable to that of oral absorption, depending on the physical and chemical properties. 

Absorption at alveoli leads to direct systemic circulation, passing through the heart into general 

circulation before reaching the liver for metabolism (Interdepartmental Group on Health Risks 

from Chemicals, 2005; Pauluhn, 2003). Diffusion relies on solubility. Thus, absorption factors 

cannot be determined without knowing the physical and chemical nature of substances, and 
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factors affecting absorption through inhalation differ from those for ingestion (Naumann et al., 

2009). Furthermore, if direct effect at the site of exposure leading to local toxicity is present, 

RtR extrapolation would not be appropriate because it is to estimate systemic toxicity, not 

taking local effect into account (Falk-filipsson et al., 2007; Geraets et al., 2014; Pauluhn, 2003). 

In addition, high reactivity leading to local toxicity reduces the amount of absorption 

(Interdepartmental Group on Health Risks from Chemicals, 2005). If a chemical has a first pass 

effect6 after ingestion, this may decrease the absorption. In that case, respiratory exposure, 

which does not go through first pass effect, will result in larger absorbed doses even with the 

same amount of exposure. If RtR extrapolation is used for these types of chemicals, the 

extrapolated value will consequently be underestimated (Falk-filipsson et al., 2007; Rennen et 

al., 2004).  

These limitations, mainly from limited amount of experimental data, hinder the reliability of RtR 

extrapolation and validation of definite conclusions. More studies are needed to build sufficient 

database that extrapolation can be based upon; however, this will take time and until then, 

extra caution must be taken when performing RtR extrapolation. Therefore, it is advised to take 

meticulous approaches to RtR extrapolation with assessment factors and repeated dose toxicity 

studies (Geraets et al., 2014; Interdepartmental Group on Health Risks from Chemicals, 2005).  

Criteria of route-to-route extrapolation and guidance 

Number of studies suggest the prerequisites to perform reliable RtR extrapolation (Geraets et 

al., 2014; Pepelko & Withey, 1985; Rennen et al., 2004). The Guidelines on Route-To-Route 

                                                           
6 If the parent compound is responsible for toxicity, the effective dose reduces greatly when orally administered 
compounds are absorbed by the gastro-intestinal tract, enter the liver, and go through metabolism before 
reaching the systemic circulation (Interdepartmental Group on Health Risks from Chemicals, 2005) 
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Extrapolation of Toxicity Data When Assessing Health Risks of Chemicals (Interdepartmental 

Group on Health Risks from Chemicals, 2005) suggest the following criteria:  

• Absorption is the same between routes, or the difference is known and can be 

quantified. 

• The critical target tissue is not at the portal of entry of the compound (i.e. the concern 

is with systemic toxicity and not local effects). 

• There is no significant metabolism of the chemical by oral, gut or skin enzymes or in 

pulmonary macrophages, nor transformation by other processes in the gut or lung. 

• First-pass effects are minimal. 

• The chemical is relatively soluble in body fluids. 

It also gives further specific guidance on oral to inhalation extrapolation. As there are higher 

possibilities that inhalation toxicity is underestimated when it is extrapolated from oral to 

inhalation, it is advised to assume the bioavailability of inhalation exposure to be 100% unless 

the information is available. In reality, some portion of inhaled dust or gas is exhaled without 

absorption. Coarse particles that are inhalable but not respirable mostly remain in the upper 

respiratory tract and are then absorbed via gastro-intestinal tract after swallowing; this will not 

be problematic since it can be practiced the same as oral toxicity (Interdepartmental Group on 

Health Risks from Chemicals, 2005). However, respirable particles, which can reach far deeper 

into the lung, can be absorbed for extended periods of time and often do not have exact 

bioavailability data by inhalation. Further complicating the assessment, it is not quite realistic to 
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measure the sizes of particles and define what portion will be respirable for each and every 

case. Hence, to be precautious, it is conservative to assume the absorption of such particles is 

100%.  

To avoid the underestimation of inhalation toxicity for the substances with lower oral toxicity, it 

is suggested to assume 10% oral bioavailability and 100% bioavailability by the inhalation route, 

and 50% oral bioavailability and 100% bioavailability by the inhalation route for substances with 

high oral toxicity, when data on inhalation bioavailability is missing (Interdepartmental Group 

on Health Risks from Chemicals, 2005). Table 2 is adopted from the Guidelines on Route-To-

Route Extrapolation of Toxicity Data to show the factors suggested by the guidelines. 

Table 2. Factors for deriving a respirable RtR NOAEL from an oral NOAEL (adopted from Guidelines on 
Route-To-Route Extrapolation of Toxicity Data)
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Adequacy of route-to-route extrapolation 

Therefore, it is necessary to evaluate the adequacy of using RtR extrapolation for each practice 

and each substance since there is no uniform or default correction factor, as researchers 

repetitively state (Geraets et al., 2014; Hinderliter, Delorme, & Kennedy, 2006; 

Interdepartmental Group on Health Risks from Chemicals, 2005; Rennen et al., 2004). 

Quantitative estimation of errors is required to assess the discrepancy between oral and 

respiratory toxicity and evaluate the guidelines. Since most heavy metal dusts are not gases or 

volatile organic liquids, it is highly probable that the standards are established based on oral 

toxicity data. Current air quality guidelines are often missing this assessment of RtR application 

or not publicly available. This leads back to the purpose of this project: to assess if it is 

acceptable to use RtR extrapolation for such guidelines, to sufficiently protect the population’s 

environmental and occupational health.  

Methods 
Data collection and sources 

A systematic literature review using ‘route-to-route extrapolation’ as the search term was 

performed, using PubMed as the primary database. The initial systemic search returned 35 

articles. I searched titles and abstracts with the inclusion criteria: 1) articles in English, 2) 

articles in peer reviewed journals, and 3) evaluation or model development for oral-to-

inhalation extrapolation; after the screening based on the abstracts, I excluded 15 articles with 

additional 3 articles unable to be located, leaving 17 articles.  

I also reviewed documents from regulatory agencies in the US and Canada to undertake a 

narrative review assessing the current state of application of RtR extrapolation in air quality 
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guidelines for environmental and occupational health purposes. No adequate federally 

managed Canadian toxicity database was found; thus, US databases were consulted for 

reference exposure limit values. Agency for Toxic Substances and Disease Registry (ATSDR) and 

United States Environmental Protection Agency Integrated Risk Information System (EPA IRIS) 

were used together as recognized surveillance data sources for reference oral exposure limit 

values, since they are complementary when values are only available in one database, and the 

data are mostly in agreement when present in both. If the values are not the same, ATSDR 

value was used. For ambient air quality guidelines, because there is no Canadian federal 

guideline addressing metal components, provincial air ambient quality guidelines from Ontario, 

Alberta, and Manitoba were referred, as well as US state guidelines from Texas as international 

guidelines for comparison. National Institute for Occupational Safety and Health (NIOSH), 

Occupational Safety and Health Administration (OSHA), Association Advancing Occupational 

and Environmental Health (ACGIH), and WorkSafeBC were consulted for occupational air quality 

guidelines. Minimal risk level(MRL) from ATSDR and reference dose (RfD) or reference 

concentration (RfC) values from EPA were collected to calculate RtR extrapolated limits to 

compare with governmental guidelines. The systemic review articles and the narrative review 

articles were collected together, and all the articles were closely reviewed.  
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Data description and synthesis  

Oral and Inhalation exposure limit values were converted into daily dose based on body weight, 

volume of daily inhaled air, and average bioavailability considering percentage deposition in 

lungs, if known. The reference values of body weight, volume of daily inhaled air, and 

bioavailability are adopted from ATSDR (Agency for Toxic Substances and Disease Registry, 

2005): 

• Body Weight (BW) = 70kg (adult, approximate average) 

• Daily Air Intake Rate (AR) = 20 m3/day 

Environmental air quality 

guidelines (n = 4) 
Occupational air quality 

guidelines (n = 4) 
 

Narrative literature review 

Abstracts located 

(n = 32) 

Preliminary database search 
(n = 35) 

Systemic literature review 

Unable to locate articles 

(n = 3) 

Excluded articles not 

meeting the criteria (n = 15) 

 

After screening with 

inclusion criteria (n = 17) 

Total articles included in the study 

(27 = 17 + 2+ 4 + 4) 

 

Toxicity data  

(n = 2) 

Figure 1. Flow chart of search strategy of the literature review 
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Figure 2. Equations and standard default values to calculate exposure dose (adopted from ATSDR 
appendix G) 

 

I developed my own formula for calculation for this project, based on the equations provided 

by ATSDR in Figure 2. The formula is shown below:  

Oral dose (mg/day) = Oral exposure limit (mg/kg/day) × BW (kg) 

Inhalation dose (mg/day) = Oral dose (mg/day) × 
Oral bioavailability (%)

Respiratory bioavailability (%)
 

Inhalation RtR limit7 (mg/m3) = 
Inhalation dose (mg/day) 

Daily Air Intake Rate (m3/day)
 

This calculated inhalation RtR limits were compared to available inhalation MRL or RfC provided 

by ATSDR or EPA. The RtR limits were compared to the guideline values as well. To clearly 

demonstrate the difference between RtR limits and guidelines with the same duration of 

exposure, acute and chronic exposure RtR limits were compared to ambient air quality 

guidelines of Ontario and Texas for 24-hour and annual values, respectively. 

                                                           
7 RtR limits are calculated values that are extrapolated from oral to inhalation exposure limits in this document 
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Results 
Systemic review of oral-to-inhalation extrapolation 

Table 3 shows the summary of systemic review. Out of 17 reviewed articles, 8 articles are 

applicable to risk assessment or risk characterization. Ten articles developed physiologically 

based pharmacokinetic (PBPK) modeling which can potentially be used in toxicity studies, and 

most of the studies are based on rat data. One study (Shankaran, Adeshina, & Teeguarden, 

2013) developed PBPK model using human toxicokinetic data, which gets rid of the uncertainty 

due to inter-species extrapolation. Some studies (Borghoff, Parkinson, & Leavens, 2010; 

Himmelstein et al., 2012; Hinderliter et al., 2006) found gender differences in metabolism and 

exhalation rates, resulting in inconsistent extrapolation factors between male and female. A 

number of articles, mostly on PBPK model development, suggest that reliable RtR extrapolation 

is achievable. However, some state the prerequisites for RtR reliability, including absence of 

direct toxicity and available toxicokinetic data. The articles expressing concerns with the 

reliability of RtR emphasize that case-by-case extrapolation adjustment factor8 is required along 

with application only to systemic toxicity, although it is acknowledged that RtR is pragmatic 

with limited dataset of inhalation toxicity (Falk-filipsson et al., 2007; Pauluhn, 2003). Many 

articles suggest dosimetry or extrapolation adjustment factor for the extrapolation, either from 

the PBPK models or conclusion of article reviews. Since many PBPK studies provide the 

adjustment factor based on chemical-specific scientific evidences, review articles chose to be 

conservative with adjustment factors to minimize underestimation of toxicity. Most exposure 

studies examined acute and sub-acute/sub-chronic exposures.  

                                                           
8 A conversion factor for exposure limit from point of administration (often oral) to another route of exposure (i.e. 
inhalation) with the equipotent dose 
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Table 3. Summary of systemically reviewed articles 

THEME JOURNAL ARTICLES 

Risk Assessment Bessems & Geraets, 2013; Falk-filipsson et al., 2007; Geraets et al., 

2014; Naumann et al., 2009; Pauluhn, 2003; Pepelko & Withey, 1985; 

Rennen et al., 2004; Schröder et al., 2016 

Physiologically based pharmacokinetic (PBPK) modeling 

Rat data Arts et al., 2004; Borghoff et al., 2010; Clewell et al., 2001; Himmelstein 

et al., 2012; Hinderliter et al., 2006; Naumann et al., 2009; Sweeney & 

Gargas, 2016; Sweeney, Saghir, & Gargas, 2008 

Human data Shankaran et al., 2013 

Simpler steady-state model 
development 

Chiu & White, 2006 

Gender difference found Borghoff et al., 2010; Himmelstein et al., 2012; Hinderliter et al., 2006 

Does it suggest RtR is reliable? 

Yes 
Chiu & White, 2006; Hinderliter et al., 2006; Shankaran et al., 2013; 

Sweeney & Gargas, 2016; Sweeney et al., 2008 

Yes, with conditions Arts et al., 2004; Bessems & Geraets, 2013; Borghoff et al., 2010; 

Pepelko & Withey, 1985 

No 
Falk-filipsson et al., 2007; Pauluhn, 2003; Rennen et al., 2004 

Dosimetry or adjustment 
factor provided by authors 

Arts et al., 2004; Borghoff et al., 2010; Chiu & White, 2006; Clewell et 

al., 2001; Falk-filipsson et al., 2007; Geraets et al., 2014; Himmelstein et 

al., 2012; Hinderliter et al., 2006; Naumann et al., 2009; Schröder et al., 

2016; Shankaran et al., 2013; Sweeney & Gargas, 2016; Sweeney et al., 

2008 

Is it conservative in 
absorption via inhalation? 

Geraets et al., 2014; Schröder et al., 2016; Sweeney & Gargas, 2016 

Duration of exposure 

Acute Clewell et al., 2001; Himmelstein et al., 2012; Hinderliter et al., 2006; 

Naumann et al., 2009; Shankaran et al., 2013 

Sub-acute/sub-chronic Arts et al., 2004; Borghoff et al., 2010; Clewell et al., 2001; Sweeney & 

Gargas, 2016 

Chronic Clewell et al., 2001; Sweeney & Gargas, 2016 
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Most studies recognize RtR extrapolation as a fairly reliable method for risk assessment 

although there are certain conditions to be satisfied, such as availability of toxicokinetic data 

and absence of local toxicity. The studies that do not agree on the reliability express their 

concerns on these prerequisites and suggest adjustment with case-by-case extrapolation 

factors. The reliability of RtR extrapolation significantly depends on the availability of 

toxicokinetic data; therefore, more route-specific studies are necessary to enhance the 

database. 

Most experimental studies are based on PBPK model using rats, since rats have shorter lifespan 

to study chronic health effects. However, despite this advantage, many studies examined acute 

and sub-acute exposures only. This may be due to time and financial constrains as well as the 

fact that acute exposure is considered more important to be studied. Further reproductive 

toxicity studies on multiple generations with pregnant rats might be necessary as pregnant 

women may be at greater risks which will affect the child. 

Intriguingly, not many studies considered a conservative approach in inhalation absorption. For 

empirical studies, they provide case-specific experiment-based extrapolation factors. A possible 

explanation for others is that the primary purpose of RtR extrapolation is to extrapolate NOAEL 

to assess human health risks in practical way. When too precautious in practice, it might lose 

the benefit of RtR extrapolation by overestimating toxicity. 

Comparison of guidelines and extrapolated values of inhalation exposure limit from 

reference oral l imit  

After reviewing literature for various perspectives toward RtR extrapolation, the reference oral 

exposure limit values from ATSDR and EPA IRIS were extrapolated to inhalation RtR limits to be 
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scrutinized with current air quality guidelines. The list of references and guidelines is shown in 

Table 4 below. The MRL database from ATSDR is more comprehensive than RfD database from 

EPA; however, as a lot of them are the same, when one value is missing in ATSDR, EPA RfD was 

considered as chronic MRL for calculation.  

Table 4. Summary of narratively reviewed articles 

 ARTICLES 

Reference for Exposure 
limits 

Agency for Toxic Substances and Disease Registry, n.d.; US Environmental 

Protection Agency, n.d. 

Ambient Air Quality 
Guidelines 

Government of Alberta, 2016; Government of Manitoba, 2005; Ontario 

Ministry of the Environment, 2012; Texas Commission on Environmental 

Quality, 2016 

Occupational Air Quality 
Guidelines 

Association Advancing Occupational and Environmental Health, n.d.; 

National Institute for Occupational Safety and Health, n.d.; United States 

Department of Labor, n.d.; Worksafe BC, 2015 

 

I extrapolated each oral exposure limit value from ATSDR and EPA into inhalation RtR limit 

value using the formula described in the methods section. A sample calculation with aluminum 

is shown below.  

Oral dose = 1 mg Al/kg/day (chronic) × 70 kg = 70 mg/day 

Inhalation dose = 70 mg/day × 
2.505 %

1.75 %
 = 100.2 mg Al/day 

Inhalation RtR limit = 
100.2 mg/day

20 m3/day
 = 5.01 mg Al/m3 

The oral-to-inhalation extrapolated RtR limit is compared to inhalation exposure limit provided 

by ATSDR or EPA, upon availability. For certain chemicals, for example, Molybdenum, 

regulations do not exist since proposed limits are questioned due to inadequate supporting 

evidence. It shows that the extrapolated values are larger than the literature values, indicating 
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that RtR extrapolation leads to underestimation of toxicity. Table 5 shows the oral-to-inhalation 

extrapolated RtR limit values compared to inhalation exposure limits based on studies; as not 

all values are available, only those that can be found are listed. 

Table 5. Oral-to-inhalation RtR limits compared to experiment-based inhalation exposure limits 

Metal extrapolated RtR limit (µg/m3) 
Experiment-based  

Inhalation exposure limit (µg/m3) 

acute intermediate chronic acute intermediate chronic 

Beryllium     0.035     0.020* 

Boron‡ 606 606 606* 300     

Cadmium‡   0.385 0.077 0.030   0.010 

Chromium metal‡             

Cr(III), insoluble   
 

375*   5.00 
 Cr(III), soluble   

  

  0.100 
 Cr(VI), Particulates   2.54 0.457   0.300 0.100* 

Cr(VI), aerosol   2.54 0.457   0.005 0.005 

Cobalt‡   26.8     0.300   

Manganese     19.6*     0.300 

Nickel‡     89.1*   0.200 0.090 

Vanadium‡   4.03   0.800   0.100 
*values from EPA; extrapolated RtR limits derived from RfD or experiment-based RfC directly referenced from EPA; 
‡Direct respiratory toxicity 

 

The oral-to-inhalation extrapolated RtR limits were also compared to ambient air quality 

guidelines as well as occupational guidelines. Figure 3 and 4 illustrate the results in graphs, and 

the results are shown in Table 6 and 7 for ambient and occupational air quality guidelines, 

respectively. 

In order to clearly visualize the discrepancy between the extrapolated RtR limits and guideline 

values in the same duration of exposure, values are normalized to the RtR limit values in 

graphs. Figure 5 and 6 illustrate the results with Ontario Ambient Air Criteria (AAC) and Texas 

Air Monitoring Comparison Values (AMCC). 
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Figure 3. Comparison of Ambient Air Quality Guidelines Values to Calculated RtR limits

ATSDR/EPA RtR limits
acute (mg/m3)

ATSDR/EPA RtR limits
intermediate (mg/m3)

ATSDR/EPA RtR limits
chronic (mg/m3)

Ontario Ambient Air
Quality Criteria 24 hr
(mg/m3)

Ontario Ambient Air
Quality Criteria annual
(mg/m3)

Alberta Ambient Air
Quality Objectives and
Guidelines 24 hr (mg/m3)

Alberta Ambient Air
Quality Objectives and
Guidelines annual
(mg/m3)
Manitoba Ambient Air
Quality Criteria 24 hr
(mg/m3)

Manitoba Ambient Air
Quality Criteria annual
(mg/m3)

Texas Air Monitoring
Comparison Values
Short-term AMCV
(mg/m3)
Texas Air Monitoring
Comparison Values Long-
term AMCV (mg/m3)
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Figure 4. Comparison of Occupational Air Quality Guidelines Values to Calculated RtR limits

ATSDR/EPA RtR
NOAEL acute
(mg/m3)

ATSDR/EPA RtR
NOAEL int
(mg/m3)

ATSDR/EPA RtR
NOAEL chr
(mg/m3)

NIOSH TWA
REL(10hr) inh
(mg/m3)

NIOSH
STEL(15min) inh
(mg/m3)

OSHA TWA PEL
inh (mg/m3)

OSHA
peak(30min) PEL
inh (mg/m3)

ACGIH Threshold
Limit Value (TLV)
TWA (mg/m3)

WorkSafeBC TWA
REL(8hr) inh
(mg/m3)

WorkSafeBC
STEL(15min) inh
(mg/m3)
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 Table 6. Oral-to-inhalation extrapolated RtR limits compared to ambient air quality guidelines 

 

extrapolated RtR limits (ug/m3) 
Ontario  

Ambient Air Quality Criteria 

Alberta Ambient Air Quality 

Objectives and Guidelines 

Manitoba  

Ambient Air Quality Criteria 

Texas Air Monitoring Comparison 

Values 

Metals Acute Intermediate Chronic 24 hr(ug/m3) annual(ug/m3) 24 hr(ug/m3) annual(ug/m3) 24 hr(ug/m3) annual(ug/m3) 
Short-term 

AMCV(ug/m3)† 

Long-term 

AMCV(ug/m3)† 

Aluminum   5010 5010 120           50 5 

Antimony‡     61.3* 25           5 0.5 

Arsenic 52   3.1 0.3   0.1 0.01 0.3   9.9 0.067 

Barium   448 448 10           5 0.5 

Beryllium       0.01               

Boron‡ 606 606 606* 120               

Cadmium‡   0.4 0.1 0.025 0.005     0.002   0.55 0.011 

Chromium metal‡                       

Cr(III), insoluble   

 

375* 0.5 

 

  

 

  

 

  

 Cr(III), soluble   

  

0.5 

 

  

 

  

 

  

 Cr(VI), Particulates   2.5 0.5 0.0007 0.00014 1 

 

4.5 

 

1.3 0.0043 

Cr(VI), aerosol   2.5 0.5 0.00035 0.00007 1           

Cobalt‡   26.8   0.1           0.2 0.02 

Copper, dust‡ 14.7 14.7   50       50   10 1 

Iron oxide, fume       4               

Lead       0.5 0.2 1.5   2 0.7     

Manganese, respirable     19.6* 0.1   2 0.2     2 0.2 

Manganese, inhalable       0.2               

Mercury, metallic‡       2               

Molybdenum     17.5* 120           30 3 

Nickel‡     89.1* 0.1 0.02 6 0.05 2   1.1 0.059 

Selenium‡     15.8 10           2 0.2 

Silver‡   

 

3.7* 1 

 

  

 

  

 

  

 
Tin, inorganic‡   1050   10           20 2 

Tin Oxide   1.1 1.1   

 

  

 

  

 

  

 
Vanadium, oxide, respirable dust‡   4.0 0.0 2           20 2 

Zinc, total dust‡   5010 5010 120           50 5 

*Values from EPA: extrapolated RtR limits derived from RfD; †Air Monitoring Comparison Values; ‡Direct respiratory toxicity 
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Table 7. Oral-to-inhalation extrapolated RtR limits compared to occupational air quality guidelines 

 
extrapolated RtR limits (mg/m3) NIOSHa OSHAb ACGIHc WorkSafeBCd 

Metals Acute Intermediate Chronic 
TWA REL 
(mg/m3) 

STEL (mg/m3) 
TWA PEL 
(mg/m3) 

Peak PEL 
(mg/m3) 

TLV TWA (mg/m3) 
TWA REL 
(mg/m3) 

STEL 
(mg/m3) 

Aluminum 
 

5.01 5.01 10 
 

15 
  

1 
 respirable dust 

   
5 

 
5 

 
1 

  Antimony‡ 
  

0.0613* 0.5 
 

0.5 
 

0.5 0.5 
 Arsenic 0.0520 

 
0.00312 

 
0.002 0.01 

 
0.01 0.01 

 Barium 
 

0.448 0.448 0.5 
 

0.5 
 

0.5 0.5 
 Beryllium 

  
0.000035 0.0005 

 
0.002 0.025 0.00005 0.00005 

 Boron‡ 0.606 0.606 0.606* 10 
 

15 
 

10 10 
 Cadmium‡ 

 
0.000385 0.000077 LOWEST AS POSSIBLE 0.005 

 
0.002 0.002 

 Chromium metal‡ 
          Cr(III), insoluble 
  

0.375* 0.5 
 

1 
 

0.5 0.5 
 Cr(III), soluble 

   

0.5 
 

0.5 
 

0.5 0.5 
 Cr(VI), Particulates 

 
0.00254 0.000457 0.0002 

 
0.005 

 
0.01 0.01 

 Cr(VI), aerosol 
 

0.00254 0.000457 0.0002 
 

0.005 
 

0.05 0.025 0.1 

Cobalt‡ 
 

0.0268 
 

0.05 
 

0.1 
 

0.02 0.02 
 Copper, dust‡ 0.0147 0.0147 

 
1 

 
1 

 
1 1 

 Iron oxide, fume 
   

5 
 

10 
 

5 5 10 

Lead 
   

0.05 
 

0.05 
 

0.05 0.05 
 Manganese, respirable 

  
0.0196* 1 3 5 

 
0.02 0.2 

 Manganese, inhalable 
       

0.1 
  Mercury, metallic‡ 

   
0.1 

 
0.1 

 
0.01 0.025 

 Molybdenum 
  

0.0175* 
       Insoluble, Respirable 

     
15 

 
3 3 

 Insoluble, Inhalable 
       

10 10 
 Soluble, Respirable 

   
5 

 
5 

 
5 0.5 

 Nickel‡ 
  

0.0891* 0.015 
 

1 
  

0.05 
 Elemental, inhalable 

       
1.5 

  Soluble inorganic, inhalable 
       

0.1 
  Insoluble inorganic, inhalable 

       
0.2 

  Selenium‡ 
  

0.0158 0.2 
 

0.2 
 

0.2 0.1 
 Silver‡ 

  
0.00368* 0.01 

 
0.01 

 
0.1 0.01 0.03 

Soluble compounds 
       

0.01 
  Thallium 

        
0.02 

 Tin, inorganic‡ 
 

1.05 
 

2 
 

2 
 

2 2 
 Tin Oxide 

 
0.00105 0.00105 2 

 
15 

 
2 2 

 Tin, Organic 
   

0.1 
 

0.1 
 

0.1 0.1 0.2 

Vanadium, oxide, respirable 
dust‡ 

 
0.00403 

  
0.05 0.5 

 
0.05 0.05 

 Vanadium fume 
    

0.05 0.1 
 

0.05 
  elemental  

   
1 3 

     Zinc, total dust‡ 
 

0.263 0.263 5 
 

15 
    Zinc oxide fume, respirable 

   

5 10 5 
 

2 2 10 

*Values from EPA: extrapolated RtR limits derived from RfD; ‡Direct respiratory toxicity; a TWA REL based on 10-hr, STEL based on 15-min exposure; b TWA PEL based on 8-hr, peak PEL 
based on 30-min exposure; c TLV TWA based on 8-hr exposure; d TWA REL based on 8-hr, STEL based on 15-min exposure 
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As B Cu

RtR limits 1.0 1.0 1.0

Ontario AAC 0.00577 0.198 3.40

Texas AMCC 0.191 0.680

0.001

0.01

0.1

1

10

Figure 5. 24-hour Ambient Air Quality Guideline Values 
Normalized to Extrapolated Acute RtR limits

Al Sb As Ba Cd
Cr(VI),

particulate
Cr(VI),
aerosol

Mn,
respirable

Mo Ni Se

RtR limits 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Ontario AAC 0.0649 0.000307 0.000153 0.000224

Texas AMCC 0.000998 0.00816 0.0215 0.00112 0.143 0.00942 0.0102 0.171 0.000662 0.0127

0.0001

0.001

0.01

0.1

1

Figure 6. Annual Ambient Air Quality Guideline Values 
Normalized to Extrapolated Chronic RtR limits
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Discussions 
Main findings 

When the oral-to-inhalation extrapolated RtR limits are compared to inhalation exposure limits 

based on route-specific studies available on ATSDR or EPA, the extrapolation results in an 

underestimation of toxicity, even when the bioavailability of both oral exposure and respiratory 

exposure is known. The underestimation ranges from one to three orders of magnitude; it is 

about 2 folds for beryllium and boron and three orders of magnitude for nickel. This suggests 

that there are uncertainty factors which adulterate the purpose and value of extrapolation. 

Major uncertainties come from direct toxicity such as direct upper and lower respiratory 

toxicity and transfer of xenobiotics from olfactory nerve. Other factors may be diffusion or 

deposition factor in lungs, toxicokinetic factor regarding distribution, metabolism, and 

excretion, uncertainty due to conversion from animal ingestion study to human inhalation limit, 

and uncertainty in relation to respiratory exposure that is not present in oral exposure. These 

uncertainties propose concerns that reliance on RtR extrapolation alone to derive inhalation 

exposure limit is insufficient to protect from adverse health effects. 

The RtR limits are compared to environmental guidelines for ambient air quality. When visually 

inspected with graphs, the guideline values generally fall below the RtR limits. When Ontario 

Ambient Air Criteria (AAC) and Texas Air Monitoring Comparison Values (AMCC) guideline 

values are normalized to the RtR limits in the same duration of exposure, the differences are 

one to two orders of magnitude for 24-hour exposure, and one to four orders of magnitude for 

annual exposure. Ambient air quality guidelines are objectives rather than regulatory limits of 

metal dusts concentration in ambient air; therefore, it has to be lower than level causing health 
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risks to vulnerable populations who may be more affected by air quality, resulting in a lot lower 

values than exposure limits by ATSDR or EPA.  

Interestingly, it appears that there is vast inconsistency across ambient air guidelines. For 

instance, the 24-hour objective values for chromium (VI) particulates differ by four orders of 

magnitude between Ontario and Manitoba. The short-term 24-hour ambient air standards of 

copper dusts in Ontario and Manitoba are above RtR limits by 5 folds.  Manitoba in general has 

higher guideline values than other ambient air guidelines. The scientific evidence reports to 

support how these objectives were determined were not available, but it may be necessary to 

revise the air quality guidelines based on rigorous scientific evidences as the guideline values 

are not consistent.  

The oral-to-inhalation extrapolated RtR limits are also compared to occupational air quality 

guidelines, and occupational guideline values are mostly above the RtR limits. This is worrisome 

as RtR extrapolation poses a possibility of underestimation of toxicity as discussed above. 

Consequently, the occupational guidelines may be exceedingly higher than the actual MRL, if 

the guidelines are based on RtR extrapolation alone. For some metals such as manganese, the 

difference between RtR limits and guidelines values are more than two orders of magnitude. 

This suggests that occupational air quality guidelines may need reassessment of regulatory 

limits, as the approach with RtR extrapolation alone is found inadequate to exclude 

uncertainties due to unexpected health risks or direct toxicity. The differences range from one 

to three orders of magnitude; therefore, the least conservative approach should include an 

uncertainty factor of at least 10.  
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limitations 

The major limitation of this study is insufficient toxicokinetic data. RtR extrapolation is greatly 

influenced by the presence of direct toxicity, which is why the Guidelines on Route-To-Route 

Extrapolation of Toxicity Data (Interdepartmental Group on Health Risks from Chemicals, 2005) 

clearly state a prerequisite of no direct toxicity in the criteria. However, there are not enough 

toxicological data for direct upper and lower toxicity information and olfactory transfer 

information, bringing issues of the integrity of extrapolation. Lack of sufficient data on duration-

specific exposure toxicity hinders meaningful evaluation of guidelines as well. Moreover, 

metabolisms for inhalation exposure and children are largely unknown; therefore, it was not 

considered in the extrapolation calculation for this assessment. 

Bioavailability data for oral exposure is usually available from ATSDR, but inhalation 

bioavailability is usually not stated due to lack of scientific evidences. Therefore, I had to make 

an assumption of 100% respiratory bioavailability for more than half of the metals that were 

assessed in order to be conservative. However, it should be noted that the respiratory 

absorption is a lot lower than oral absorption due to low deposition rate in lungs. Depending on 

the ratio of bioavailability used for extrapolation, the appropriateness of the guidelines may be 

interpreted differently. Even when both oral bioavailability and inhalation bioavailability are 

available, it is often provided as a range which sometimes is very broad. For instance, the oral 

bioavailability of cobalt is from 18 to 97% depending on the presence of other minerals. 

Mercury, on the other hand, has very low oral bioavailability, but bioavailability via inhalation is 

70 to 80%.  
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In addition, the interaction between absorbed heavy metals should be considered. The 

extrapolation is based on single-toxic exposure, which disregards any physiological toxicokinetic 

interaction with other substances. However, single-toxic exposure is rare in reality. Exposure to 

multiple toxics may result in a synergistic or antagonistic effect, or even potentiation. 

Finally, the availability of database is problematic. There is no federally managed Canadian 

toxicity database as ATSDR or EPA IRIS, which means that the toxicity data is heavily relied on 

the US databases. The only toxicity databases available from Health Canada are for human 

health risk assessments of federal contaminated sites and pesticides, which is not as adequate 

and complete like ATSDR or EPA IRIS to use for RtR extrapolation for heavy metal dusts in air.  

Implications and Recommendations for Public Health Practice  
The following is recommended based on the study findings: 

• Measurement and component analysis of air particulates is needed to understand the 

main source of pollutants and implement appropriate regulations for upstream risk 

management. 

• Further route-specific studies are warranted with various durations of exposure 

research for more extensive toxicity database.  

• Case-specific adjustment for RtR extrapolation factors should be quantified and 

analyzed until sufficient data is available for generalizable adjustment. It is advised to 

adopt conservative extrapolation factors to be precautious.  

• It is recommended to communicate with health authorities highlighting the caution 

regarding the approach of using RtR alone. When route-specific toxicity data is available, 
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it should be used for guideline values. In the absence of route-specific data, it is 

recommended to use at least one order of magnitude of uncertainty factor with RtR 

limit values to be conservative in order to protect vulnerable populations as well as to 

take potential direct toxicity into consideration. Relying on RtR extrapolation alone is 

neither sufficient nor adequate.

 

• Occupational air quality guidelines may need reassessment of regulatory limits as they 

are higher than RtR limits. 

• It appears to be necessary to establish Canadian federal toxicological database for 

health risks with respective durations of exposure. A joint project agency with the US 

may be possible like the European Chemicals Agency for European countries. 

Respiratory exposure limit available 
with route-specific data

If exist

Use for guidelines

If do not exist

Use calculated RtR limit values 
along with uncertainty factor 

of minimum 10
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Reflection of Public Health Practitioner’s Role 
This project emphasizes the importance of public health practitioner’s role in risk assessments 

using appropriate extrapolation methods and evaluation of conventionally performed RtR 

extrapolation for air quality guidelines. Air quality guidelines should be periodically updated to 

comprehensively protect the health of populations with sound knowledge and familiarity with 

toxicology. It is reasonable that conventional RtR extrapolation could be used to establish 

guideline criteria for practical issues; however, the findings of this project urge that constant 

efforts are required to expand and update the database for inhalation-specific exposures to 

better address air quality objectives.  
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