Supplementary Material

Estimates of Phylogenetic Diversity Loss

To determine how the observed distribution of threat influences the expected loss of phylogenetic diversity across all 329 amphibian genera compared to an even distribution of threat, we ran 2000 simulations where each species had a 44.61% probability of being lost (the overall proportion of threatened species in the dataset). The phylogenetic diversity per genus was estimated based on the genus' net diversification rate using the crown age method-of-moment estimator according to equation in Theorem 5 from Mooers et al. 2012:

Clade Phylogenetic Diversity =
$$\frac{2*e^{R*t}}{\mu} * \ln(\frac{\rho*e^{R*t}-1}{(\rho-1)*e^{R*t}})$$
 (1)

Whereby *R* is the net diversification rate, *t* is the crown age, μ is the assumed extinction rate, and ρ is the relative speciation rate (λ/μ). For estimates of genera phylogenetic diversity we assumed a value of $\rho = 1.49$. We used either the clade stem age or double the crown age as the estimate of phylogenetic diversity for monotypic genera and ditypic genera, respectively. The total phylogenetic diversity represented by all genera included both their within clade phylogenetic diversity (eq. 1) and the clades' stem ages.

The surviving phylogenetic diversity in each clade following pruning of threatened species was based on the observed extinction risk in each genera, using equation 7 from Mooers et al. 2012:

$$s = 1 - \frac{N_{threatened}}{N_{assessed}}$$
(2)

$$a = 1 - \frac{1}{\rho} \tag{3}$$

Surviving Clade Phylogenetic Diversity =
$$\frac{s}{(s-a)} * \ln(\frac{s}{a}) * \frac{1-a}{\ln(a)}$$
 (4)

The estimated phylogenetic diversity loss was the difference between surviving phylogenetic diversity for each genera relative to total clade phylogenetic diversity. When a clade was facing complete extinction, ie. all species are threatened, then the clades' stem was considered to be lost as well and this was counted towards loss of total phylogenetic diversity across the 329 genera.

Simulating random extinctions across the 329 genera in proportion to their extant diversity would, on average, represent an estimated loss of 10,605 million years of evolutionary history (95% confidence intervals: 10,050 m.y., 11,181 m.y.). If each genus suffered extinction proportional to its current ratio of 'threatened'-to-'non-threatened' species, then a total of 11,371 million years of evolutionary history would be lost. For comparison, the species in these 329 genera are estimated to represent ~52,884 million years of evolutionary history in total.

To investigate patterns of phylogenetic diversity loss, we identified all non-monotypic clades that are threatened with complete extinction (ie. all species are threatened). We altered the extinction risk of each clade (n = 20; Table S1) by reducing the number of threatened species by 1, and recalculated the surviving phylogenetic diversity in each clade and the additional effect of saving each stem. This resulted in an estimated total loss of 9967 m.y. of evolutionary history, a difference of 1.4 billion years from the previous estimate based on the observed proportions. **Table S1.** Twenty amphibian genera with all assessed species at risk, and therefore facing potential lineage extinction, indicating the species richness and phylogenetic diversity (PD) within each group, the lineage's stem age, and the potential prevention of PD loss by saving one species within each clade (PD saved).

Genus	Genus richness	Stem age	Estimated PD	PD saved
Atelopus	96	54.90743	463.7012	88.6121
Barbourula	2	64.68169	56.07272	106.1026
Batrachuperus	6	19.77388	33.06141	35.17404
Celsiella	2	20.37109	26.09523	46.46633
Cryptotriton	7	57.20819	44.42109	80.50812
Dendrotriton	8	54.3852	49.06105	71.94602
Hoplophryne	2	78.76856	46.04282	112.7804
Isthmura	6	27.66576	46.47246	52.04169
Ixalotriton	2	33.03582	28.53986	54.11821
Liuixalus	7	67.22534	23.42124	84.52661
Lyciasalamandra	10	30.25005	56.12362	51.93925
Lynchius	4	58.80917	78.68933	106.6179
Neurergus	4	21.68313	22.95125	33.72161
Phrynopus	28	62.3764	160.47	112.7496
Plectrohyla	18	15.38757	43.41713	24.85855
Probreviceps	6	50.81095	62.11515	76.98978
Sechellophryne	2	35.83857	39.02736	64.66807
Sooglossus	2	35.83857	35.09326	61.76195
Taruga	3	42.32515	21.1003	55.1449
Thorius	26	62.62314	111.5563	83.37591

References

Mooers, A. Ø., Gascuel, O., Stadler, T., Li, H. & Steel, M. 2012 Branch lengths on birth-death trees and the

expected loss of phylogenetic diversity. Syst. Biol. 61: 195–203.

Model Posterior Distributions

Stem diversification rate vs. Genera extinction Risk

Crown diversification rate vs. Genera extinction Risk

Stem diversification rate vs. Genera Range Size

Crown diversification rate vs. Genera Range Size

