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Abstract 

Wearable devices are increasingly prevalent in our everyday lives. This thesis examines 

the potential of combining multiple wearable devices worn on different body locations for 

fitness activity recognition and inertial dead-reckoning. First, a novel method is 

presented to classify fitness activities using head-worn sensors, with comparisons to 

other common worn locations on the body. Using multiclass Support Vector Machine 

(SVM) on head-worn sensors, high degree of accuracy was obtained for classifying 

standing, walking, running, ascending/descending stairs and cycling. Next, a complete 

inertial dead-reckoning system for walking and running using smartwatch and 

smartglasses is proposed.  Head-turn motion can derail the position propagation on a 

head-worn dead-reckoning system. Using the relative angle rate-of-change between arm 

swing direction and head yaw, head-turn motion can be detected. The experimental 

results show that using the proposed head-turn detection algorithm, head-worn dead-

reckoning performance can be greatly improved. 

 

Keywords:  inertial sensors; wearable devices; sensor fusion; human activity 
recognition (HAR); pedestrian dead reckoning (PDR); 
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Chapter 1.  
 
Introduction 

1.1. Background and Motivation 

Wearable technology has taken the consumer market by storm in recent years. 

The industry is projected to grow substantially within the next decade [1]. Traditionally, 

wearable sensors are worn on the wrists, waist/hip or strapped onto shoelaces. Wrist-

worn devices such as Android Wear-based watches (Figure 1.1), Apple Watch, Fitbit, 

Microsoft Band and Garmin GPS watches are among the most popular wearable 

devices. Recently, the emergence of smartglassess like Recon Jet (Figure 1.1) and 

Google Glass provides an extra dimension in non-intrusive body locations. In a survey of 

6000 consumers across six countries, more than 40% of the respondents are interested 

in wearable eyeglasses [2]. In fact, according to an online database that tracks wearable 

devices available on the market [3], out of the 434 wearable devices listed, 204 (47.0%) 

are wrist-worn devices, followed by 79 (18.2%) head-worn devices and 25 (5.8%) 

devices worn on the torso. With the breadth of wearable devices’ market penetration, 

this calls for an investigation into fusing multiple wearable devices for two meaningful 

Figure 1.1. LG G Watch R (left) and Recon Jet (right) 
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research areas – Human activity recognition (HAR) and Pedestrian dead reckoning 

(PDR). 

Human activity recognition is an increasingly popular research area, fuelled by 

the development of low-cost, miniature sensors within the last decade [4]. HAR is an 

attractive area of research because it can benefit a wide variety of industries, such as 

health care, fitness and even the entertainment sector. In the health care industry, 

caregivers can monitor and assess patients’ progress more continuously and effectively 

with information from activities of daily living (ADL) [5]. In fitness applications, fitness 

software can estimate the user’s calorie expenditures more precisely given the context 

of user’s activities.  

Global Navigation Satellite System (GNSS) positioning is the most common 

outdoor positioning. However, GNSS solution degrades in areas with tall buildings due to 

signal blockage and multipath error. This is where inertial dead reckoning can improve 

performance of absolute positioning by propagating the position from a previously known 

position. Pedestrian dead reckoning is a widely studied subject, due to the immensely 

beneficial applications that span from tracking people with special needs such as elderly, 

children, and the vision impaired, to public safety services such as policemen and 

firefighters [6], [7]. It is also invariantly driven by the availability of small, low-cost 

microelectromechanical systems (MEMS) inertial sensors [7] that have seen their 

accuracy and cost improve significantly in the previous decade [8]. 

In this thesis, the potential of combining multiple wearable devices worn on 

different body locations is examines for improved fitness activity recognition and inertial 

dead-reckoning. 

1.2. Literature Review 

While there are many HAR research using inertial sensors, most of them focus 

on sensor placements on the trunk or the limbs. Bao and Intille [9] tested sensor 
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placements on the arm, wrist, hip, thigh and ankle with overall accuracies of over 84% in 

classifying 20 activities by using all five sensor locations. Ishimaru et al. [10] suggested 

that head-worn sensors have not been prominent in the past HAR research, possibly 

because of the obtrusiveness of previously available devices. They took the opportunity 

of using Google’s less obtrusive Glass smart glasses to test the feasibility of using head 

motion and eye blink frequency for activity recognition. However, only low-level activities 

(e.g., reading and talking) and no fitness activities were included in that study. Another 

head-mounted HAR study was done by Lo et al., who used ear-worn sensor (e-AR) for 

their studies and showed an average accuracy of 87% for reading, walking, lying and 

running [11], [12]. Activities that include vertical motions, such as walking on an incline 

or climbing stairs are typically hard to detect using just inertial sensors. Anastasopoulou 

et al. showed excellent results when a barometric pressure sensor is combined with 

inertial sensors mounted on the waist [13], with average accuracy of 98.2% in classifying 

7 activities.  

Pedestrian inertial dead reckoning can usually be categorized as self-contained 

and aided navigation [14]. The self-contained navigation, which is based on only inertial 

sensors, tends to drift over time. This drift is due to the integration of uncompensated 

time-varying bias of the low-cost, consumer grade MEMS inertial sensors. Thus, self-

contained navigation must be aided by an absolute positioning system for practical long-

term usage. For aided inertial navigation, GNSS [15] and cellular networks are typically 

used for outdoor navigation, while Wi-Fi [16], [17], Bluetooth, ultra-wideband (UWB) [18], 

[19], or even ultrasonic ranging [20] are used for indoor navigation. When the building 

map information is available, it can also be used for map-matching purposes [7], [21]. 

Previous inertial dead reckoning approaches in the literature are mainly based on 

sensors located on the foot [15], [20], [22]. This is because a foot-mounted IMU can 

provide frequent ground contact information, which helps to reduce drift. Some 

researchers have used waist-mounted sensors for dead reckoning [23]–[25] due to its 

closeness to the center-of-mass and because it can provide human stance or posture 

information. On the other hand, a wrist or head-worn device in the form of glasses or a 

watch is more user-friendly and acceptable compared to a foot or waist-worn device. 

However, head and wrist-worn devices have not been well-investigated for inertial dead 



 

4 

reckoning due to the complication of the head/wrist movements irrespective of the 

subject’s moving direction. Some research has explored the use of helmet-mounted 

sensors for pedestrian dead reckoning, but with the assumption that the head and body 

is a rigid system (i.e. the head facing in the direction of motion) [6]. Other head-worn 

navigation related studies include using laser scanner for Simultaneous Localization and 

Mapping (SLAM) [26], [27]. 

1.3. Research Objectives and Contributions 

The research objectives of this thesis are comprised of two distinct research 

areas – human activities recognition (HAR) and pedestrian dead reckoning (PDR). The 

common theme in this thesis is fusing the low-cost MEMS sensors found on multiple 

wearable device combinations.  The scope of this thesis is geared towards fitness 

applications, with the proposed HAR classifying standing, walking, running, cycling, 

ascending/descending stairs while the proposed PDR is specific to walking and running. 

In contrast to previous HAR works which concentrate mostly on trunk-based 

sensors, this thesis presents a novel method to classify six physical activities by using 

head-worn accelerometer, gyroscope, barometric pressure sensor and GPS. 

Furthermore, classification performance of various sensor location combinations is also 

presented for comparison purposes. 

For a PDR that is more dedicated to fitness applications such as walking and 

running, one can exploit the cyclic nature of the natural arm swing motion during these 

activities (Figure 1.2). Arm swing during human locomotion is a natural motion that is 

linked to lower body dynamics. It is suggested that arm swing during locomotion 

contribute to the overall gait stability of human locomotion [28], [29]. The main 

contribution of this thesis is to present a novel algorithm that exploits the cyclic nature of 

arm swing during walking and running, combined with head-worn sensors to improve the 

accuracy of an inertial dead reckoning system.  
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Figure 1.2. Arm swing in human locomotion during walking (top) and running 
(bottom) 

1.4. Thesis Outline 

This thesis is consists of the following four chapters.  

In Chapter 1, the HAR and PDR research topics are introduced along with the 

current state-of-the-art in research. This thesis’ research objective and contributions are 

also outlined. 

In Chapter 2, a HAR algorithm using head-worn sensors is proposed. The 

proposed HAR method is tested on 8 test subjects, and compared with HAR using 

different combination of sensor body locations. 

In Chapter 3, a complete PDR technique including step counting, step length 

estimation, head rotation detection and dead reckoning using the combination of 

smartwatch and smartglasses is presented.  

In Chapter 4, this thesis is concluded with a summary of each chapter, followed 

by suggestions for future works. 
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Chapter 2.  
 
Fitness Activity Classification by Using Multiclass 
Support Vector Machines on Head-worn Sensors 

2.1. Introduction 

Fitness activity classification on wearable devices can provide activity-specific 

information and generate more accurate performance metrics. Recently, optical head-

mounted displays (OHMD) like Google Glass, Sony SmartEyeglass and Recon Jet have 

emerged. This chapter presents a novel method to classify fitness activities using head-

worn accelerometer, barometric pressure sensor and GPS, with comparisons to other 

common mounting locations on the body. 

This chapter is organized as follows. Sec. 2.2 details the experimental 

procedures, the measurement systems and the test subjects’ statistics. Sec. 2.3 

describes the proposed Multiclass Support Vector Machines (SVM) and the features 

being used. Sec. 2.4 shows the results and discussions of the results. Finally, Sec. 2.5 

concludes this chapter with ideas for future works.   
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2.2. Data Collection 

2.2.1. Experimental procedure 

The data collection took place indoors at Simon Fraser University’s Surrey 

campus and outdoors at a nearby park. Each participant was directed to complete the 

activities listed in Table 2.1. The participants walked and ran at their own paces. In the 

cycling segment, the participants were encouraged to perform normal cycling maneuvers 

like cycling while seated, riding out of the saddle and the occasional coasting. During the 

whole experiment, the participants were encouraged to act as naturally as possible, and 

they were allowed to rotate their head or gesture with their hands as they normally 

would. 

Table 2.1. Data Collection Protocol 

Environment Activity Approx. duration (min) 

Indoor 

Standing 3 

Walking 10 

Ascending stairs 2 

Descending stairs 2 

Outdoor 

Standing 3 

Walking 10 

Running 5 

Cycling 10 

 Total time 45 

2.2.2. Measurement Systems 

Five inertial measurement units (IMUs), 4 MTx and 1 MTi-G from Xsens 

Technologies were used in the experiments (Figure 2.1). Both IMUs provide tri-axial 

acceleration and angular velocity measurements, with the MTi-G providing the additional 

GPS speed and horizontal dilution of precision (HDOP). The inertial data was collected 

at 100Hz, while the GPS data was collected at 4Hz. The MTi-G was mounted onto a 
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helmet, while the four MTx were strapped to the subject’s left arm, left wrist, left pant 

pocket and left ankle. The IMUs were connected to a laptop inside a backpack. A GoPro 

Hero3 camera was attached onto the helmet for tagging the activities. 

 

Figure 2.1. Sensors placement on head, arm, wrist, trouser pocket and ankle 

2.2.3. Test Subjects 

Eight healthy participants were recruited for the data collection experiments. The 

only requirements were that they can comfortably run and bike continuously for at least 

10 minutes. The participant group consisted of 5 males and 3 females, with an average 

age of 25.63±6.18 years old, an average height of 168.61±10.16 cm and an average 

weight of 61.77±15.99 kg. All the participants agreed and signed the participant consent 

form approved by Simon Fraser University’s Research Ethics Board.  

Xsens MTx 

Xsens MTi-G 

GoPro Hero3+ 
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2.3. Data Analysis 

All sensor data collected was tagged according to the participant’s activities 

using the GoPro video footage. Transitional motions like opening a door and mounting a 

bicycle were excluded from this study. 

2.3.1. Data Preprocessing 

The sensor signals were segmented into 2-second windows with 50% overlap. 

The 2-second window period is chosen because some stairs have steps between 

landings that often last less than a few seconds (Figure 2.2). The sensor data from 

Xsens IMUs are pre-calibrated and filtered, so no additional filtering was required. 

 

Figure 2.2. A short flight of stairs between floor and stair landing 

2.3.2. Feature Extraction 

For every 2-second window, 12 key features were extracted from the following 

sensors:  

Accelerometer 

Common time domain features like mean, standard deviation (STD), mean 

absolute deviation (MAD) and percentile (10th, 25th, 50th, 70th and 90th) [4] were 

computed from the magnitude of the 3-axis acceleration measurements. Frequency 
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domain feature like energy calculated from Fast Fourier Transform was also included as 

it has been shown to be effective for activity recognition [9].  

The features described can be computed using the equations below [4]: 

Mean: 𝑦 =
1

𝑛
       (2.1) 

STD: 𝜎 = √
1

𝑛−1
∑ (𝑦𝑖 − 𝑦)

2𝑛
𝑖=1      (2.2) 

MAD: √
1

𝑛−1
∑ |𝑦𝑖 − 𝑦|
𝑛
𝑖=1     (2.3) 

𝑘th Percentile:  𝑃𝑘 =
𝑛𝑘

100
+ 0.5    (2.4) 

Energy: 
∑ 𝐹𝑖

2𝑛
𝑖=1

𝑛
      (2.5) 

Barometer 

The slope of the barometric pressure measurements in the 2-second window 

was calculated using least squares linear regressions. The slope, 𝑎1 in a linear equation 

𝑦(𝑡) = 𝑎0 + 𝑎1(𝑡) can be found by first fitting the barometric data using least square [30] 

𝐴 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌     (2.6) 

where = [
𝑎0
𝑎1
] , 𝑋 = [

1 𝑡1
1 𝑡2
⋮
1

⋮
𝑡𝑛

] and 𝑌 = [

𝑦1
𝑦2
⋮
𝑦𝑛

]  

The standard deviation of the barometric pressure measurements was also used. 



 

11 

GPS 

A 2-second average of horizontal GPS speed is used. To accommodate indoor 

environments with poor or no satellite visibility, the average GPS speed is extracted 

based on horizontal dilution of precision (HDOP), as shown in Figure 2.3. 

 

 

 

Figure 2.3. Pseudocode for extracting GPS speed in 2-second signal window. 

 

Sensor Fusion 

In addition to the individual sensors, sensor-fused vertical speed is computed 

using a Kalman filter (KF) algorithm from our previous work [31] (See Appendix B). This 

KF algorithm uses accelerometer, gyroscope and barometric pressure sensor 

measurements to estimate the vertical speed. In a sample vertical speed plot from the 

experiment (Figure 2.4), larger negative peaks can be observed when a test subject is 

walking down the stairs (shaded areas a and c) versus walking on flat surface (non-

shaded areas b and d). Furthermore, the shaded-area c shows four negative peaks, 

which corresponds to the four stair steps shown in the screenshot of Figure 2.2.  

From vertical speed estimations, 4 additional features are extracted: the mean, 

standard deviation, maximum and minimum for each 2-second interval. Since the 

pressure sensor is only available on the Xsens MTi-G, the vertical speed was computed 

only for the head-worn sensor. 

1: for all HDOP hdopi in window 

2:     if hdopi < 5 

3:         gpsSpeedSum += gpsSpeedi 

4:         n++; 

5:     endif 

6: endfor 

7: if n==0 

8:     windowGpsSpeed = -1; 

9: elseif 

10:     windowGpsSpeed = gpsSpeedSum/n 

11: endif 
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Figure 2.4. Estimated vertical speed using head-worn sensors when 
descending stairs (shaded) and flat surface (non-shaded) 

 

Summary 

The summary of all the features used are listed in Table 2.2 

Table 2.2. Summary of Feature Extraction 

Feature 
number 

Description Sensor(s) 

1 Mean 

Accelerometer 

2 Standard deviation 

3 Mean absolute deviation 

4-8 Percentile 

9 FFT energy 

10 Slope 
Barometer 

11 Standard deviation 

12 GPS speed GPS 

13 Vertical speed mean 

Accelerometer, gyroscope & 
barometer 

14 Vertical speed standard deviation 

15 Vertical speed max 

16 Vertical speed min 

(
(a) 

(
(b) 

(
(c) 

4 large negative 
peaks 

(
(d) 
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2.3.3. Classification: Support Vector Machines 

A support vector machine (SVM) constructs a hyper-plane or set of hyper-planes 

in a high or infinite dimensional space, which can be used for classification or regression 

[32], [33]. SVM is versatile as it can be adapted to different classification problems using 

different Kernel functions (i.e. Linear, polynomial, radial basis function (RBF) and 

sigmoid).  

The multiclass Support Vector Machines classifier implemented in LIBSVM [34] 

is used through the MATLAB interface. SVM is fundamentally a two-class classifier, but 

various methods have been developed to solve multiclass problems. LIBSVM uses the 

“one-against-one” approach [34], [33] for multiclass classifier. The RBF kernel is 

selected as it shows higher accuracy compared to other basis functions. To tune the 

parameters 𝐶 and 𝛾 for the RBF, a coarse grid-search is used, with exponentially 

growing sequences of 𝐶 and 𝛾 (i.e.: 𝐶 = 2−5, 2−3, . . , 215 and 𝛾 = 2−15, 2−13, . . , 23). Finer 

grid searches were then used to search around the vicinity of the coarse grid-search 

results. The 𝐶 and 𝛾 pair with the best 10-fold cross-validation was found to be 𝐶  = 100 

and  𝛾 = 0.1.  
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2.4. Evaluation 

To evaluate our proposed fitness activity classification algorithm, the one-versus-

all validation method is used. The one-versus-all verification can assess the 

generalizability of results across all subjects [11]. Classification results are commonly 

presented in a confusion matrix (Table 2.3). 

Table 2.3. Confusion Matrix Example 

 
Predicted Class 

Class A Class B 

Actual Class 
Class A True Positive (TP) False Negative (FN) 

Class B False Positive (FP) True Negative (TN) 

Recall, precision and f-measure are used as the performance metrics, as the 

class imbalance will skew the accuracy ratings [35]. They are calculated as follows: 

Recall: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (2.7) 

Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
     (2.8) 

F-measure: 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
    (2.9) 

  



 

15 

2.4.1. Results and discussions 

Table 2.4 shows the confusion matrix for the head-worn sensor. The recall and 

precision for standing, walking, running and cycling are over 98%. Only ascending and 

descending stairs have lower precision and recall, as they are often confused with 

walking. This may be due to the noise in barometric pressure measurement and the 

similarity energy and gait frequency in walking and ascending/descending stairs. 

Ascending stairs performance is also significantly worse than descending stairs. This 

might be due to higher measurable impact when descending stairs. Larger vertical 

speed is also observed when descending stairs compared to ascending stairs. 

The usage of sensor-fused vertical speed as a feature in the head-worn sensors 

showed a big improvement in classifying ascending and descending stairs (Table 2.5): 

The F-measure of ascending/descending stairs increased from 82.85%/87.50% to 

87.19%/95.74%, bringing the average up from 94.43% to 96.66%. All in all, the head-

worn sensors show excellent results to be used in fitness activity recognition. 

 

Table 2.4. Confusion Matrix for Head-worn Sensors 

 
Classified as 

 

 Standing Walking Running 
Ascending 

Stairs 
Descending 

Stairs 
Cycling Recall 

A
c
tu

a
l 
a

c
ti
v
it
y

 

Standing 2620 s 1 s 1 s 1 s 0 4 s 99.73% 

Walking 0 9138 s 0 69 s 18 s 9 s 98.96% 

Running 2 s 0 2138 s 1 s 1 s 1 s 99.77% 

Ascending 
Stairs 

0 46 s 0 446 s 9 s 3 s 88.49% 

Descending 
Stairs 

0 12 s 0 0 461 s 0 97.46% 

Cycling 39 s 17 s 5 s 2 s 1 s 4583 s 98.62% 

 Precision 98.46% 99.18% 99.72% 85.93% 94.08% 99.63%  
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For further comparison purposes, the results of different sensors location 

combinations are evaluated. Table 2.5 shows the f-measure of all 31 sensor location 

combinations. For the case of one sensor, the ankle-strapped sensor performed the 

best, as can be expected from gait-based activities. Sensor worn on the head has the 

second highest f-measure, followed by the arm-strapped sensors. This coincides with 

the findings from Attala et al. [12], who suggested that the ear, arm and knee sensors 

are suitable for high-level activities such as running and cycling. The sensor inside the 

trouser pocket did not perform as well as the knee-strapped sensor. One factor might be 

because the sensor in the pocket was not strapped on, and some subjects wore loose 

fitting pants, resulting in the sensor moving relative to the leg. 

In the case of two-sensor combinations, head + ankle, arm + ankle and wrist + 

ankle show average f-measure of more than 97%. Bao et al. [9] reached a similar 

conclusion that having only two accelerometers on upper and lower body is effective for 

human activity recognition. For the cases of three, four and five sensors combinations, 

there was no visible improvement over the best of the two-sensor combination. 
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Table 2.5. F-measure of All Sensors Location Combination 

Sensor Combination 
F-measure of Activity Classification 

Standing Walking Running 
Asc. 
stairs 

Des. 
stairs 

Cycling Average 

One sensor 

Head 99.05 98.43 99.67 82.85 87.50 99.07 94.43 

Head (with vertical velocity) 99.09 99.07 99.74 87.19 95.74 99.12 96.66 

Arm 98.64 97.40 99.46 56.75 91.15 99.30 90.45 

Wrist 98.01 96.22 98.77 35.73 81.29 99.32 84.89 

Pocket 98.51 95.30 98.35 43.12 75.13 99.01 84.90 

Ankle 98.28 99.12 99.37 91.64 92.66 99.37 96.74 

Two sensors 

Head + arm 99.13 98.44 99.49 78.56 91.79 99.23 94.44 

Head + wrist 99.11 98.07 99.81 75.59 83.33 99.38 92.55 

Head + pocket 98.94 97.70 99.74 78.99 83.32 98.70 92.90 

Head + ankle 98.92 99.29 99.65 96.88 91.13 99.24 97.52 

Arm + wrist 98.75 97.23 99.13 51.55 89.99 99.44 89.35 

Arm + pocket 98.56 97.11 99.53 56.47 90.81 99.27 90.29 

Arm + ankle 98.51 99.34 99.58 95.77 94.78 99.45 97.90 

Wrist + pocket 98.56 95.08 99.07 41.95 69.45 99.41 83.92 

Wrist + ankle 98.27 99.40 99.60 94.37 96.45 99.44 97.92 

Pocket + ankle 98.34 98.94 99.32 88.31 95.18 99.34 96.57 

Three sensors 

Head + arm + wrist 99.03 98.08 99.53 74.50 88.94 99.41 93.25 

Head + arm + pocket 98.92 97.70 99.63 74.18 90.52 98.80 93.29 

Head + arm + ankle 98.81 99.37 99.63 95.90 94.09 99.35 97.86 

Head  + wrist + pocket 98.86 97.27 99.67 76.25 75.17 99.17 91.07 

Head + wrist + ankle 98.83 99.24 99.56 96.37 90.36 99.22 97.26 

Head + pocket + ankle 98.88 98.88 99.53 94.58 86.12 99.19 96.20 

Arm + wrist + pocket 98.49 97.14 99.44 58.31 89.12 99.46 90.33 

Arm + wrist + ankle 98.45 99.30 99.65 96.68 93.40 99.46 97.82 

Arm + pocket + ankle 98.41 98.71 99.51 88.66 91.68 99.43 96.07 

Wrist + pocket + ankle 98.43 99.16 99.30 93.47 95.32 99.44 97.52 

Four sensors 
       

Head + arm  + wrist + pocket 98.73 97.86 99.60 76.97 86.36 99.31 93.14 

Head + arm + wrist + ankle 98.64 99.33 99.67 96.18 92.96 99.47 97.71 

Head + arm + pocket + ankle 98.60 98.92 99.65 93.60 89.18 99.40 96.56 

Head + wrist + pocket + ankle 98.90 98.78 99.58 95.63 83.25 99.35 95.92 

Arm + wrist + pocket + ankle 98.62 99.02 99.39 95.04 90.70 99.55 97.05 

Five sensors 
       

Head + arm + wrist + pocket + ankle 98.66 98.97 99.65 95.18 87.88 99.53 96.64 
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2.5. Conclusion 

In this chapter, a novel method is presented for classifying fitness activities using 

head-worn sensors. In comparison to other common sensors locations, the head-worn 

sensors shows good results that are suitable for fitness activity classification, provided 

that they are not too obtrusive for use (which is expected of the next generation smart 

eyeglasses). Two-sensor combinations of upper-body and ankle showed the best 

performance, with additional sensors not providing much improvement.  
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Chapter 3.  
 
Inertial Dead Reckoning with Smartglasses and 
Smartwatch 

3.1. Introduction 

Wearable miniature inertial sensors have been widely used for inertial dead 

reckoning. Typical low-cost inertial dead reckoning systems use sensors attached to 

either the human trunk or feet.  The recent emergence of smartglasses and smart 

watches provides an opportunity to use both types of wearable devices in position 

tracking. This chapter proposes a novel method of utilizing both a smartwatch and 

smartglasses for pedestrian dead reckoning.  The general idea is to use the relative 

angle between arm swing direction and head yaw to detect any head-turn motion that 

would otherwise skew the position dead reckoning propagation. A complete inertial dead 

reckoning solution that includes step detection, step length estimation, head-rotation 

detection, and dead reckoning using a smartwatch and smartglasses that are currently 

available in the market is presented. 

The overall flow of this chapter is as follows. In Sec. 3.2, the architecture of the 

proposed dead reckoning system is presented. The data collection method is described 

in Sec. 3.3, followed by the experimental results and discussions in Sec. 3.4. Finally, 

Sec. 3.5 concludes this chapter. 
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3.2. System Architecture 

The overall block diagram of the proposed head-wrist pedestrian dead reckoning 

(HWPDR) system is shown in Figure 3.1. The following subsections describe each sub-

block of the system in detail. 

 
Figure 3.1. Proposed head-wrist pedestrian navigation system architecture 

3.2.1. Orientation Kalman Filter 

The orientation estimation is based on our previous algorithm described in [36], 

[37] (See Appendix A). This algorithm is a computationally efficient cascaded Kalman 

filter (CKF) that decouples the tilt (i.e. roll and pitch) Kalman filter and the yaw Kalman 

filter. This CKF algorithm uses tri-axial accelerometer and gyroscope data for tilt angle 

estimation in the first step. At the second step, the estimated tilt angles are fused with 

information from a tri-axial magnetometer and the tri-axial gyroscope to estimate the yaw 

angle. 
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The rotation matrix from the sensor frame (s-frame: a coordinate system 

attached to the inertial sensor) to the navigation frame (n-frame: a local level coordinate 

system with its 𝑥-, 𝑦- and 𝑧-axis pointing to the East, North and Up direction, 

respectively), 𝑅𝑠
𝑛 , is obtained from the orientation Kalman filter and used to estimate the 

acceleration in the n-frame: 

[

𝑎𝑒𝑎𝑠𝑡
𝑎𝑛𝑜𝑟𝑡ℎ
𝑎𝑢𝑝

] = 𝑅𝑠
𝑛 [

𝑎𝑥
𝑎𝑦
𝑎𝑧
]     (3.1) 

Where 𝑎𝑒𝑎𝑠𝑡 , 𝑎𝑛𝑜𝑟𝑡ℎ 𝑎𝑛𝑑 𝑎𝑢𝑝 are the East, North and Up components of the wrist 

acceleration; and𝑎𝑥 , 𝑎𝑦𝑎𝑛𝑑 𝑎𝑧 are the measured acceleration components from the tri-

axial accelerometer. 

3.2.2. PCA-based Wrist-swing Direction Estimation 

The wrist heading estimation is carried out in a similar fashion to previous works 

that use Principal Component Analysis (PCA) on a cellphone in a pocket or in multiple 

carrying mode [38]. The difference is that, in this study, the PCA is applied on wrist 

acceleration from the smartwatch’s sensors to determine its heading direction.  

The PCA is applied to every 2-second window of the horizontal acceleration in 

the n-frame (East and North components of the acceleration). The wrist swing direction 

is then simply the first eigenvector from the PCA (Figure 3.2). Since the head yaw angle 

will also be calculated in here, the 180 degree heading ambiguity from the PCA can be 

easily resolved by finding the closest angle to the head yaw angle. 
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Figure 3.2. PCA wrist-swing direction estimation for walking (left) and running 
(right) 

 

3.2.3. Step Counter 

The step counter uses the smartglasses’ tri-axial accelerometer signals. From 

our observations, using sensors on the head is more robust for step counting than using 

those on the wrist. This is because the head, while not rigidly connected to the human 

trunk, exhibits significantly less motion artifacts than the arms. When using a wrist 

acceleration-based step counter, one has to assume that the cyclic motion is only from 

walking/running, otherwise a more sophisticated activity classification method that can 

detect walking and running from other daily activities is desired. 

There are a variety of methods to detect steps based on acceleration signals 

including: windowed peak detection (WPD), hidden Markov model (HMM) and 

continuous wavelet transform. A previous study in [39] showed that WPD performed as 

well as other more computationally intensive methods. For the WPD, first, a 3rd order 

Butterworth filter with a cut-off frequency of 3.5Hz is used to filter out the double spikes. 

The frequency of 3.5Hz is equivalent 210 steps per minute, which encompasses the 

standard running cadence of around 180 steps per minute. Then, using peak-counting 
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with an acceleration threshold of 3m/s2, the number of steps can be accurately detected. 

The threshold is necessary to ignore the double peaks that are not successfully filtered 

out, as shown in Figure 3.3. 

 

Figure 3.3. Step counter using threshold peak detection 

3.2.4. Step Length Estimator 

In human gait, there are slight step length variations between steps. In [40], it is 

shown that by estimating the step length using an accelerometer, the final step distance 

can be more accurate. There are multiple step length estimation methods available in 

the literature. In [41], five common methods were compared, and it was suggested that 

the method that uses the empirical relation of the vertical acceleration [40] performs as 

well as the rest, while being relatively easy to implement. The step length, S, can then 

be estimated by: 

𝑆 = 𝐾√𝑎𝑢𝑝,𝑚𝑎𝑥 − 𝑎𝑢𝑝,𝑚𝑖𝑛 
4     (3.2) 

where 𝑆 is the step length, 𝐾 is a scalar constant, 𝑎𝑢𝑝,𝑚𝑎𝑥 is the maximum vertical head 

acceleration magnitude, and  𝑎𝑢𝑝,𝑚𝑖𝑛 is the minimum vertical head acceleration 

magnitude. 
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In this study, two different step length estimations for walking and running are 

used, as they have different acceleration signatures. Walking and running can be 

distinguished with a high accuracy by using the variance of the total acceleration [13]. 

3.2.5. Head Rotation Detection  

The proposed head rotation detection algorithm utilizes the sensors found on 

both the smartwatch and smartglasses. Using the hand swing direction derived from the 

PCA in Sec. II.B, the relative changes in the hand swing direction can be used to detect 

if a user is staying the course or taking a turn.  

Based on our observations, head and body rotations differ during walking and 

running in a few common scenarios, e.g.:  

1. While walking/running straight, the head stays in neutral position. This is the 

most common scenario, where the user is looking in the direction of walking or 

running motion. In this scenario, both the head angle and arm swing angle should 

have relatively small changes in heading. 

2. While walking/running straight, the head rotates to one side. When a user is 

walking or running, s/he might be looking left or right. In this case, the head angle 

slope will be either negative or positive, depending if s/he is looking left or right, while 

the arm swing direction should be relatively constant. 

3. While walking/running straight, the head rotates from side to side. For example, 

a runner might be checking for traffic on both sides before crossing. In this case, the 

head angle slope will go from negative to positive or vice-versa, depending if s/he is 

looking from left to right or from right to left. 

4. During a turn, the head and body turn at the same time. This is similar to 

Scenario 1, except that both the head and arm swing heading will change at the 

same time. 

5. During a turn, the head leads the body into a turn. Sometimes runners would look 

into a turn before they turn. In this scenario, the head heading will change followed 

by the arm swing heading. 
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6. During a turn, the body leads the head into a turn. As opposed to Scenario 5, a 

runner might turn his body first before looking into the new direction. In this case, the 

arm swing heading will change followed by the head angle. 

 

Figure 3.4. Head rotation detection algorithm flowchart 

The proposed head rotation detection algorithm shown in Figure 3.4 is used to 

detect if a user is rotating his/her head. Based on the above six scenarios, whether the 

head is rotating left or right can be classified based on the head yaw slope, arm swing 

slope, and potential body rotation (PBR). For every 1s window with 0.5s overlap, the 

head yaw angle slope is calculated using the orientation KF. Direction of the arm swing 

is subject to erratic variations due to the nature of unconstrained arm swing motion. Thus, a 

larger 2s window with 0.5s overlap is used to estimate its corresponding slope in every 

window. The PBR is a “memory” to keep track of the changes in arm swing slope in the 

case of Scenario 6, where the user rotates the body prior to rotating the head. It is set 

when there are changes in the arm swing slope but not in the head yaw slope, and 

cleared after 2s. The 𝛼𝑡ℎ𝑟𝑒𝑠 and 𝛽𝑡ℎ𝑟𝑒𝑠 are the head and body rotation thresholds, in 

degrees per seconds, respectively. In head rotation motion (Scenarios 2 and 3), 𝛼𝑡ℎ𝑟𝑒𝑠 

will be triggered (e.g., Figure 3.5). When changing direction (Scenarios 4-6), both 𝛼𝑡ℎ𝑟𝑒𝑠 

and 𝛽𝑡ℎ𝑟𝑒𝑠 will be triggered (e.g., Figure 3.6). 
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Figure 3.5 Right and left head rotation while walking (sample): Head yaw angle 
and arm swing direction (a) and their corresponding  

rate-of-change (b) 

 

Figure 3.6. Turning right while walking (sample): Head yaw angle and arm 
swing direction (a) and their corresponding rate-of-change (b) 

𝛿 
𝛽𝑡ℎ𝑟𝑒𝑠 

𝛼𝑡ℎ𝑟𝑒𝑠 

𝛽𝑡ℎ𝑟𝑒𝑠 

𝛼𝑡ℎ𝑟𝑒𝑠 

(a) 

(b) (a) 

(b) 
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Next, the head’s range of motion is divided into the following three states: looking left, 

forward, or right (see Figure 3.7). A buffer, 𝛿 of 20 degrees left and right of the body’s 

medial sagittal plane is set to be the “forward” state; 20 degrees or more right of the 

medial sagittal plane would be the “right” state; and 20 degrees left of the medial sagittal 

plane would be the “left” state (Figure 3.6). Then, Delta Last Known Heading (∆𝐿𝐾𝐻) is 

the difference between the current head angle, 𝜓𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and the last known forward 

heading, 𝜓𝑙𝑎𝑠𝑡:  

∆𝐿𝐾𝐻 = 𝜓𝑙𝑎𝑠𝑡 −𝜓𝑐𝑢𝑟𝑟𝑒𝑛𝑡     (3.3) 

The last known forward heading, 𝜓𝑙𝑎𝑠𝑡 is the head yaw measured when the active 

state is “forward”. The dash-line in the state diagram is a “fail-safe” logic in case it is 

stuck in the “left” or “right” state. The assumption is that a user would not be looking left 

or right for more than 5 seconds while walking or running in normal circumstances. 

 

Figure 3.7. Head direction state diagram 
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3.2.6. Dead Reckoning 

The dead reckoning algorithm uses the standard position propagation equation: 

{
𝑝𝑙𝑜𝑛𝑘 = 𝑝𝑙𝑜𝑛𝑘−1 + 𝑆 ∙ sin𝜓𝑙𝑎𝑠𝑡 /𝜆𝑙𝑜𝑛
𝑝𝑙𝑎𝑡𝑘 = 𝑝𝑙𝑎𝑡𝑘−1 + 𝑆 ∙ cos𝜓𝑙𝑎𝑠𝑡 /𝜆𝑙𝑎𝑡

                (3.4) 

where 𝑝𝑙𝑜𝑛𝑘 is the longitude at time 𝑘, 𝑝𝑙𝑎𝑡𝑘 is the latitude at time 𝑘, 𝑆 is the step 

length, 𝜓𝑙𝑎𝑠𝑡 is the last known forward heading; 𝜆𝑙𝑜𝑛 and 𝜆𝑙𝑎𝑡 are the length of a degree 

of longitude and latitude, respectively. 

The length of a degree of longitude, 𝜆𝑙𝑜𝑛 and latitude, 𝜆𝑙𝑎𝑡 on a WGS84 geodetic 

system for a given latitude, 𝜙 can be estimated by 

{
 

 𝜆𝑙𝑜𝑛(𝜙) =
𝑎(1−𝑒2)

(1−𝑒2 sin2(𝜙))
3
2

𝜆𝑙𝑎𝑡(𝜙) =
𝑎 cos (𝜙)

(1−𝑒2 sin2(𝜙))
1
2

     (3.5) 

where 𝑎 is the equatorial radius, defined exactly as 6378137 meters in WGS84 [42]. 

3.3. Data Collection 

To test the proposed head-wrist PDR, several separate data collection 

experiments were conducted to examine the performance of each distinct algorithm 

block (summarized in Table 3.1). Based on Table 3.1, the experimental trials aimed to 

verify accuracy of the step counting, step length estimation, the proposed head-rotation 

detection and the head-wrist PDR.  

Since the head-turn detection algorithm requires tuning of multiple thresholds, 

ten subjects were used for that test outlined in Sec. III. C.1. For the step length and 
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head-wrist PDR test outlined in Sec. III C.2 and C.3, only two subjects were tested as 

the step length algorithm has been tested in the previous literature [43], while the biggest 

variable in the Head-Wrist PDR performance is the head-rotation detection. 

Table 3.1. Summary of Field Tests Conducted 

Test Location Subjects 

1. Head-turn detection 
Various indoor and 
outdoor locations 

10 

2. Step-counter and step length Outdoor track 2 

3. Full PDR Suburb neighborhood 2 

 

3.3.1. Test Subjects 

Ten young healthy participants were recruited for the field tests. The only 

requirement was that they could comfortably run for at least ten minutes. The test 

subjects consist of nine males and one female, the average age is 27.7±5.2 years old 

with an average height of 173.2±6.4cm. For the step test and head-wrist PDR test, the 

two subjects were both male, 28 and 27 years old, 179cm and 165cm, respectively. Prior 

to the experiment, all the participants agreed and signed the participant consent form 

approved by Simon Fraser University’s Research Ethics Board. 

3.3.2. Field Test Equipment  

A smartwatch and smartglasses that are readily available on the market were 

used: LG G Watch R and Recon Jet (Figure 3.8). These wearable devices run 

customized Android and Android Wear operating systems, respectively. Two custom 

Android applications were installed to log the sensors data into the internal memory 

storage. The relevant sensors specifications are listed in Table 3.2 and 3.3. 
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Figure 3.8. A test subject wearing the smartglasses and smartwatch 

 

Table 3.2. Selected Recon Jet Sensors Specifications 

Sensor Accelerometer Gyroscope Magnetometer 

Part no. ST LSM9DS0 

Full range ±4g ±2000dps ±400uT 

Sensitivity 0.12mg 0.07dps 0.016uT 

Date rate 100Hz 100Hz 100Hz 
 

Table 3.3. Selected Lg G Watch R Sensors Specifications 

Sensor Accelerometer Gyroscope Magnetometer 

Part no. InvenSense MPU-6515 AKM AK8963 

Full range ±2g ±1000dps ±4900uT 

Sensitivity 0.061mg 0.03dps 0.15uT 

Data rate 50Hz 50Hz 50Hz 

Recon Jet 

LG G Watch R  
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3.3.3. Experimental Procedures 

Head-turn detection experiment 

In order to validate the thresholds 𝛼𝑡ℎ𝑟𝑒𝑠 and 𝛽𝑡ℎ𝑟𝑒𝑠 for the head rotation detection 

algorithm presented in Sec. 3.2.5, the ten participants were asked to perform the six 

scenarios outlined previously. Each participant was asked to perform the following 

combination of motion four times while walking and four times while running: 

1. Moving straight: look left (slow) 
2. Moving straight: look right (slow) 
3. Moving straight: look left (fast) 
4. Moving straight: look right (fast) 
5. Moving straight: look from left to right (slow) 
6. Moving straight: look from right to left (slow) 
7. Moving straight: look from left to right (fast) 
8. Moving straight: look from right to left (fast) 
9. Turn left: head-leads-body 
10. Turn right: head-leads-body 
11. Turn left: body-leads-head 
12. Turn right: body-leads-head 

The whole experiment was captured in a video for post-experimental video analysis. 

Step counter and step length estimation experiment 

To test the step counter and step length estimation performance of the algorithm 

on head-worn sensors, two subjects were asked to perform an outdoor experiment. 

Using the known distance on a standard Olympic-sized running track, each subject 

performed the test sequence in Table 3.4 once. To get the reference step counts, the 

whole experiment was recorded by a video camera. The “ground truth” step counts were 

obtained by manually counting the steps in post-experimental video analysis.  
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Table 3.4. Step Count and Step Length Test Sequence 

Test sequence Distance 

A) Walk 1 lap  400m 

B) Run 1 lap 400m 

C) Walk 1 lap followed by run 1 lap 800m 

Total distance 1200m 

 

Dead reckoning experiment 

To test the proposed head-wrist PDR, the same two subjects were asked to walk 

and run around a block in a suburban neighborhood. Each lap is about 400m, for a total 

of about 800m. They were instructed to walk and run naturally, and were free to rotate 

their heads while they ran. Since it is hard to run naturally while carrying a laptop and a 

survey grade GNSS systems (to provide reference trajectory) in a heavy and bulky 

backpack, the test subjects were instructed to run as closely to the predefined path as 

possible.  

3.4. Experimental Results and Discussions 

The data collected on the smartwatch and smartglasses were analyzed using 

MATLAB.  

3.4.1. Head-turn Detection Test 

After counting the total number of head and body turn motions, 36 to 40 head 

turns and body turn motions, respectively, were recorded from the ten subjects. Using 

𝛼𝑡ℎ𝑟𝑒𝑠 = 25 degree/s and 𝛽𝑡ℎ𝑟𝑒𝑠 = 20 degree/s, the head rotation motion (motion 1-8 

outlined in Sec. III.C-1) results are presented in Table 3.5. The left and right motions are 
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grouped into a single result because there are no distinctive differences in performance 

for left and right motions. The detection rate was calculated as 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =  
 𝑚𝑜𝑡𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑚𝑜𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
× 100%    (3.6) 

For the head rotation test, the worst performance is from single sided head-

rotation during walking, with 88.9% detection rate. From our video observation, some 

subjects have a higher degree of upper body rotation when instructed to look left/right. 

Thus, the head-turn detection algorithm misclassifies this as course change, since the 

head and arm-swing heading indicate a change in heading. For running, the head-

rotation detections are more successful, with the lowest being 90% for the single-sided 

head rotation. Again, some subjects were observed to over-rotated their upper body 

along with their head when they look left, which triggers the false negative outcome.  

Table 3.5. Head Rotation Test Results 

Activity Walking Running 

Head Rotate One side Side to side One side Side to side 

Speed Slow Fast Slow Fast Slow Fast Slow Fast 

Detected 64/72 65/72 67/72 65/72 72/80 76/80 76/80 74/80 

Detection 
Rate 

88.9% 90.3% 93.1% 90.3% 90% 95% 95% 92.5% 

 

The results for the course change test (motion 9-12 outlined in Sec. III.C-1) are 

presented in Table 3.6. For the course change test, it is more accurate to describe a 

successful detection as not detecting any head turns (false positives) due to turning 

motion. The head-leads-body turn while walking shows the worse performance with 

90.6% detection rate. This is caused by the delay in the arm swing direction change after 

the head rotation, or the arm swing direction change is not as abrupt as the body-leads-

head turn or full-body turn. For the body-leads-head turn, the performance is excellent 

with 98.4% detection rate. Less delay is observed in the body-leads-head turns than the 

head-leads-body turns. Some subjects found this motion awkward and unnatural for 
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walking turns. For running, all course changes are detected, be it head-leads-body or 

body-leads-head. This is because running turns are usually more abrupt than walking, 

so it is much easier to detect the change in direction for both head and arm swings. 

Table 3.6. Course Change Test Results 

Activity Walking Running 

Style Head lead Body lead Head lead Body lead 

Detected 58/64 63/64 72/72 72/72 

Detection 
Rate 

90.6% 98.4 100% 100% 

3.4.2. Step counter and Step length estimation test 

The step count test results are shown in Table 3.7. For step detection, the head-

worn sensors show excellent performance with an error less than 0.36%. There is no 

noticeable variation in step count accuracy between running and walking. 

Table 3.7. Step Count Test Results 

Step Count Trial Est. Actual Error % 

a) Walk 
Subject 1 571 573 0.35% 

Subject 2 561 559 0.36% 

b) Run 
Subject 1 347 346 0.29% 

Subject 2 333 334 0.30% 

c) Walk + run 
Subject 1 899 901 0.22% 

Subject 2 875 877 0.23% 

For the step length test, the walking lap (Trial A) and the running lap (Trial B) 

were used to train the K parameter in Eq. (2). Then, the step length estimation was 

tested in Trial C: the walking lap followed by a running lap. The results are shown in 

Table 3.8. With the known distance of 800m (2400m), the error is less than 19m, or 

2.36%.  
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Table 3.8. Step Length Test Results 

800m Track Test 

 Subject 1 Subject 2 

Cumulative 
distance 

781.13m 788.26m 

Error % 2.36% 1.47% 

To visualize the step length estimation test in Trial C, the walking and running 

trajectories are plotted on a Google map for Subjects 1 (Figure 3.9) and 2 (Figure 3.10). 

 

Figure 3.9. Dead reckoning on test track for walking and running (Subject 1) 
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Figure 3.10. Dead reckoning on test track for walking and running (Subject 2) 

3.4.3. Dead Reckoning Test 

The results for the head-wrist PDR test for two subjects are plotted on Google 

Map to show how it deviates from actual trajectories. For comparison, the dead 

reckoning performance using heading derived from head yaw, arm swing angle and 

head-wrist PDR with head-rotation detection are shown in Figure 3.11-3.13. 

As shown in Figure 3.11, the effect of unaccounted head-rotation can skew the 

dead reckoning position propagation towards the direction of the head turn. Note that in 

this test, the test subjects rotated their head right followed by left, so the final absolute 

position does not drift much as opposed to multiple left or multiple right head rotation in 

succession.  
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For comparison, the dead reckoning solution obtained using arm swing angle is 

also plotted in Figure 3.12. For walking, the arm swing heading produced a solution that 

is reasonable, with little offset from direction of motion. It is more noticeable in running 

that the arm swing derived heading angles have a larger offset from direction of motion. 

This is observable in running dynamics, where the arm swing often crosses the front of 

the body, at an angle from the direction of motion. 

Finally, by combining the sensors on the smartglasses and smartwatch, the head 

rotation can be detected, and the head yaw derived heading at those instances can be 

discarded. In Fig 3.13, it shows that the performance of the head-wrist PDR heading is 

similar to the head-only PDR in Figure 3.11, with those position propagation errors 

caused by head rotation being smoothed out. 

 

 
Figure 3.11. Full test with head-only PDR: Subject 1 (left) and subject 2 (right) 
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Figure 3.12. Full test with wrist-only PDR: Subject 1 (left) and subject 2 (right) 

 

Figure 3.13. Full test with the proposed head-wrist PDR: Subject 1 (left)  
and subject 2 (right) 

The head yaw, arm swing derived heading and the head-wrist PDR heading are 

plotted in Figure 3.14 and Figure 3.15 for Subjects 1 and 2, respectively. The head 

rotation periods are successfully detected and the last known forward heading is used as 

heading over these periods. From Figure 3.14 and 3.15, it can be seen that the wrist 

swing angles are relatively stable for walking, but are considerably more erratic during 

running. 
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Figure 3.14. Full test head yaw angle of walking and running (shaded)  

for Subject 1. 

 

Figure 3.15. Full test head yaw angle of walking and running (shaded)  
for Subject 2 

3.5. Practical Implementation and Limitations 

The limitations of this study are related to a few assumptions that are made. It is 

assumed that the user would only move forward with every step, never in-place, 

Look right 

Look left 

Look right 

Look left 
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backwards or sideways. It is also assumed that the user would only look left or right, not 

180 degrees backwards. Additionally, the user is expected to have a regular arm swing 

motion while walking and running. The current proposed algorithm also do not account 

for when the users put their hands in their pockets, holding something in their hand. 

However, with a more specialized application, such as for competitive running, these are 

valid assumptions. In future works, machine learning techniques can be implemented to 

detect regular arm swing motion to relax the assumption of the hand motion. 

In terms of practical implementation in wearable devices, the proposed algorithm 

is not computationally intensive. The orientation KF is computational efficient and 

performs well at 50Hz; the PCA and slope estimation for smartglasses and 

smartwatches can be computed every 0.5s. For data communication between these 

devices, they provide Bluetooth low energy (BLE) connectivity. In the particular 

combination of Recon Jet and LG G Watch R used in this study, the former would be 

chosen as the central processor. The smartwatch can transmit its PCA derived heading 

to the smartglasses at every 0.5s using BLE, with the main algorithm running on the 

latter. 

3.6. Conclusion 

This chapter presents a complete inertial pedestrian dead reckoning (PDR) 

system targeting walkers and runners using both a smartwatch and smartglasses. The 

shortcomings of using only the smartwatch or the smartglasses alone for PDR are 

shown in this study. For the smartglasses, the PDR trajectory is affected by unaccounted 

head-rotation, while arm swing derived heading does not work as well for running. By 

combining both types of wearable devices, head-rotation can be detected and correct 

the heading appropriately. The results show that it is highly feasible to fuse the 

smartwatch and smartglasses data in an inertial dead reckoning system that would 

otherwise be hard to implement on just a smartwatch or smartglasses alone. 
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Chapter 4.  
 
Conclusion 

In this concluding chapter, each chapter is be summarized, followed by 

discussions of practical implementation of the proposed methods. Finally, this thesis 

ends with recommendations and ideas for future works. 

4.1. Thesis Summary and Conclusion 

In this thesis, sensors fusion from multiple wearable sensors are proposed for 

human activity recognition (HAR) and pedestrian dead reckoning (PDR).  

Chapter 1 introduces the popularity of wearable devices and its potential growth. 

The immense benefits of HAR and PDR research and its state-of-the-art literature are 

also introduced. These factors motivate the research direction presented in this thesis. 

Chapter 2 presents a novel method to classify fitness activities using head-worn 

accelerometer, barometric pressure sensor and GPS, with comparisons to other 

common mounting locations on the body. Using multiclass SVM on head-worn sensors, 

an average F-score of 96.66% is obtained for classifying standing, walking, running, 

ascending/descending stairs and cycling. The best sensor location combinations were 

found to be on the ankle plus another upper body location. Using three or more sensors 

did not show a notable improvement over the best two-sensor combinations. 
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In Chapter 3, a complete inertial dead reckoning solution that includes step 

detection, step length estimation, head-rotation detection, and dead reckoning using a 

smartwatch and smartglasses that are currently available in the market is presented. By 

using arm swing direction from smartwatch and head yaw angle from smartglasses, 

head rotation can be detected. With this knowledge, the head-based PDR can 

distinguish between head yaw angle and true direction of motion. Using the 

smartglasses, step detection with an error rate less than 2.36% and a cumulative 

distance error of less than 2.36% on 800m walks and runs is achieved. In the dead 

reckoning field experiments, the proposed algorithm produces result that closely track 

the actual path when plotted on Google map, outperforming solutions that only use the 

smartwatch or smartglasses alone. 

4.2. Practicality of Proposed Algorithms 

The research presented in this thesis is motivated by the abundance of wearable 

devices currently available in the market. Therefore, the practicality of actual 

implementation of the proposed HAR and PDR algorithms is important.  

For the sake of discussions, the wearable devices listed in Table 4.1 are used as 

basis of implementation discussion. These devices run Android-based operating system. 

Android is a java-based application development platform. However, the Android SDK 

supports the use of native C/C++ to maximize computational speed using NDK (Native 

Development Kit). 
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Table 4.1. Selected Wearable Devices Technical Specs. 

Worn 
location 

Wearable Device Tech. Specs. Connectivity 

Head 

Google Glass 
Dual-core 1GHz ARM Cortex-A9  

1 GB RAM 

Bluetooth 4.0 

Wi-Fi 

Recon Jet 
Dual-core 1GHz ARM Cortex-A9 

1 GB RAM 

Bluetooth 4.0 

Wi-Fi 

Wrist 

Samsung Gear 
Live 

Quad-core 1.2GHz Cortex-A7  

512 MB RAM 

Bluetooth 4.0 

Wi-Fi 

LG G Watch R 
Quad-core 1.2GHz Cortex-A7  

512 MB RAM 

Bluetooth 4.0 

Wi-Fi 

In the proposed HAR method, it is shown that by just using head-worn sensors, 

fitness activities can be accurately classified with an average F-score of 96.66%. Since 

only 16 features are being used, the corresponding SVM operation is done in a pretty 

small scale. The SVM model can even be trained offline, and using the trained model for 

testing. Chapter 2 also showed that using 3 or more combination sensors does not show 

noticeable improvement over 2-sensors combination. In that case, the slower of the two 

wearable devices, the “slave” will send the sensors data to the more powerful device, the 

“master”. The SVM classifier will be ran on the “master” device. The head-worn devices 

like Google Glass and Recon Jet have more powerful processor, they are suitable to be 

the “master” while the smartwatches are the “slave”. Since they all have Bluetooth 4.0 

connectivity, that would be ideal for inter-device communication. 

 For the proposed PDR algorithm, the most complex operation would be the 

orientation Kalman filter. However, the proposed algorithm uses a decoupled Kalman 

filter that reduces the complexity of matrix inversion in the Kalman filter. A similar 

“master” and “slave” devices configuration can be used for the head-wrist PDR.  

 However, one drawback of the implementations is the power consumption of 

required for the continual processing, sensors operation and device connectivity. These 

wearable devices have considerably smaller battery capacity, as compared to a 

standard smartphone. However, as wearable devices become more power efficient and 

employ larger battery capacity, this problem will be minimized. 
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4.3. Future Works 

The HAR and PDR algorithms proposed are built on some basic assumptions 

and limitations. This section discusses some potential ideas for future works that can 

mitigate these assumptions and limitations. 

4.3.1. Combined HAR and PDR 

Since pedestrian dead reckoning is ultimately only valid for human locomotion, 

the HAR can be used as a pre-requisite to the PDR algorithm. By combining the 

proposed HAR and PDR, in which the PDR will only be activated when walking, running, 

ascending /descending stairs, the PDR will not be running in other non-valid activities 

such as cycling. 

4.3.2. Aided PDR System 

Inertial dead reckoning solutions will drift over long period of time, even when 

using tactical grade IMUs with accurate sensor modeling. The proposed PDR system 

can be combined with absolute positioning solutions like GNSS or Wi-Fi to achieve 

aided-PDR navigation. Inherently, GPS is also available in Recon Jet, as well as many 

fitness oriented wearable devices. A low-cost GPS-Inertial Navigation System can be 

implemented in these device combinations. For indoor localization, Wi-Fi and BLE are 

commonly available in the latest wearable devices. 

4.3.3. Expanded activities recognition 

Six fitness activities are classified using the proposed HAR – standing, walking, 

running, ascending/descending stairs and cycling. Other popular fitness activities such 

as inline skating, indoor cycling, and rowing can be included in future work.  
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4.3.4. Self-annotate HAR data collection 

In this thesis, the proposed HAR algorithm is only trained and tested on 8 test 

subjects. The data collection is time consuming due to the need to review video footage 

and tag the activities accordingly. However, most wearable devices nowadays support 

user-written applications. Custom apps can be written for a self-reporting data collection. 

Test participants just have to manually annotate their current activities in the app. This 

can pave the way for longitudinal data collection with a large number of subjects. 
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Appendix A.  
 
Cascaded Orientation Kalman Filter 

This section summarizes the cascaded orientation Kalman filter from [36]. This is a two-
step Kalman filter that decouples the tilt (roll/pitch) and yaw from a traditional central 
Kalman filter. The orientation of the sensor frame with respect to navigation frame (East, 
North and up) can be represented by a rotation matrix: 

X 
N

= RS
N

x 
S      (A.1) 

where x is an arbitrary 3 × 1 vector and left superscripts N and 𝑆 represent the 

navigation and sensor frame respectively. RS
N  is a 3 × 3 matrix expressed as: 

RS
N = [

𝑐𝛼𝑐𝛽 𝑐𝛼𝑠𝛽𝑠𝛾 − 𝑠𝛼𝑐𝛾 𝑐𝛼𝑠𝛽𝑐𝛾 + 𝑠𝛼𝑠𝛾
𝑠𝛼𝑐𝛽 𝑠𝛼𝑠𝛽𝑠𝛾 + 𝑐𝛼𝑐𝛾 𝑠𝛼𝑠𝛽𝑐𝛾 − 𝑐𝛼𝑠𝛾
−𝑠𝛽 𝑐𝛽𝑠𝛾 𝑐𝛽𝑐𝛾

]    (A.2) 

where 𝑐 and 𝑠 are abbreviations for 𝑐𝑜𝑠 and 𝑠𝑖𝑛 respectively; 𝛼 (yaw), 𝛽 (pitch), 𝛾 (roll) 
are the rotation angles about the 𝑍-, 𝑌- and 𝑋- axes of the navigation frame respectively.  

Tilt Kalman Filter 

The Tilt Kalman filter uses the following system model equations: 

𝐱1(𝑘) = 𝐀1(k − 1)𝐱1(k − 1) + 𝐰1(k − 1)    (A.3) 

𝐳1(𝑘) = 𝐂1(k)𝐱1(k) + 𝐯1(k)     (A.4) 

where 𝐱1 = [−𝑠𝛽 𝑐𝛽𝑠𝛾 𝑐𝛽𝑐𝛾] is the state vector, 𝐀1 is the state transition matrix, 𝐂𝟏 is 
the observation matrix. 𝐰1 and 𝐯1 are the process model noise and measurement noise 
model respectively. These matrices in (A.3) and (A.4) can be calculated using the 
following equations: 

𝐀1(k − 1) = 𝐈3 − Δt 𝐲̃G(k − 1)    (A.5) 

𝐰1(k − 1) = Δt (−𝐱̃1(k))𝐧G    (A.6) 

𝐂1(k) = g𝐈3      (A.7) 

𝐯1(k) = 𝐚ϵ
−

 
S (k) + 𝐧A     (A.8) 

𝐚ϵ
−

 
S (k) = 𝐚− 

S (k) + 𝐚 
S (k)    (A.9) 

𝐚− 
S (k) = ca 𝐚

+
 
S (k − 1)     (A.10) 
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where 𝐲̃G is the 3 × 3 skew-symmetric matrix of tri-axial gyroscope measurements and 

𝐱̃1 is the skew-symmetric matrix of 𝐱𝟏. 𝐈3 is the 3 × 3 identity matrix. 𝐚ϵ
−

 
S  is the external 

acceleration error in sensor frame and 𝐚 
S  is the acceleration measurement from the 

accelerometer. The superscripts + and – represents the a posteriori and a priori 
estimates in the Kalman filter. 𝐧G and 𝐧𝐀 are the gyroscope and accelerometer 
measurement noise and are assumed to be uncorrelated, zero-mean white Gaussian. 
0 ≤ 𝑐𝑎 ≤ 1 is a dimensionless constant and 𝑔 is the gravity constant. Once all these 
matrices are calculated, the Kalman filter is process with the following steps: 

Step 1: compute the a priori state estimates: 

𝐱1
−(𝑘) = 𝐀1(k − 1)𝐱1

+(𝑘 − 1)     (A.11) 

Step 2: compute the a priori error covariance matrix: 

𝐏−(k) = 𝐀1(k − 1)𝐏
+(k − 1)𝐀1

T(k − 1) + 𝐐1(k − 1)   (A.12) 

where 𝐐1(k − 1) = E[𝐰1(k − 1)𝐰1
T(k − 1)] is the process noise covariance matrix. 

Step 3: compute the Kalman gain: 

𝐊(k) = 𝐏−(k)𝐂1
T(k)[𝐂1(k)𝐏

−(k)𝐂1
T(k) + 𝐑1(k)]

−1
  (A.13) 

where 𝐑1(k) = E[𝐯1(k)𝐯1
T(k)] is the measurement noise covariance matrix. 

Step 4: compute the a posteriori state estimate: 

𝐱1
+(𝑘) = 𝐱1

−(𝑘) + 𝐊(k)[𝐳1(𝑘) − 𝐂1(k)𝐱1(k)]   (A.14) 

Step 5: compute the a posteriori error covariance matrix: 

𝐏+(k) = [𝐈3 −𝐊(k)𝐂1(k)]𝐏
−1(k)    (A.15) 

Then, the state estimate from (A.14) is 𝐱1
+(k) = [𝐗1,x 𝐗1,y 𝐗1,z]𝐓. The roll and pitch 

angle can be found with the following equations: 

𝛾(𝑘) = tan−1
𝑋1,𝑦

𝑋1,𝑧
    (A.16) 

β(k) = tan−1
−X1,x

X1,y/Sγ
    (A.17) 

Yaw Kalman Filter 

Using the roll and pitch angle obtained from the Tilt Kalman filter, the Yaw 

Kalman filter uses the following system model equations: 
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𝐱2(k) = 𝐀2(k − 1)𝐱2(k − 1) + 𝐰2(k − 1)    (A.18) 

𝐳2(k) = 𝐂2(k)𝐱2(k) + 𝐯𝟐(k)     (A.19) 

where 𝐱2 = [sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ]T is the state vector. 𝐀2, 𝐰2, 𝐂𝟐 and 𝐯2 

can be obtained with the following equations: 

𝐀2(k − 1) = 𝐈3 − Δt 𝐲̃G(k − 1)     (A.20) 

𝐰2(k − 1) = Δt (−𝐱̃2(k))𝐧G    (A.21) 

𝐂𝟐(k) = 𝐈3      (A.22) 

𝐯2(k) = 𝐧𝑀      (A.23) 

where 𝐧𝑀 is the magnetometer noise and is assumed to be a white noise. 

In order to estimate the measurement vector, 𝐳2, magnetometer measurement, 

𝐲M, is first rotated to the navigation frame: 

𝐲M 
tilt = RS

N
γ,β
𝐲M     (A.24) 

where RS
N

γ,β
𝐲M = [

𝑐𝛽 0 𝑠𝛽
0 1 0
−𝑠𝛽 0 𝑐𝛽

] [
1 0 0
0 𝑐𝛾 −𝑠𝛾
0 𝑠𝛾 𝑐𝛾

].  

Once these matrices are calculated, the Yaw Kalman filter is calculated with the 

following steps: 

Step 1: compute the a priori state estimates: 

𝐱2
−(𝑘) = 𝐀2(k − 1)𝐱2

+(𝑘 − 1)    (A.25) 

Step 2: compute the a priori error covariance matrix: 

𝐏−(k) = 𝐀2(k − 1)𝐏
+(k − 1)𝐀2

T(k − 1) + 𝐐2(k − 1)   (A.26) 

where 𝐐2(k − 1) = E[𝐰2(k − 1)𝐰2
T(k − 1)] is the process noise covariance matrix. 

Step 3: compute the Kalman gain: 

𝐊(k) = 𝐏−(k)𝐂2
T(k)[𝐂2(k)𝐏

−(k)𝐂2
T(k) + 𝐑2(k)]

−1
  (A.27) 

where 𝐑2(k) = E[𝐯2(k)𝐯2
T(k)] is the measurement noise covariance matrix. Here, 

conditions are set on 𝐑2(k) to filter out potentially perturbed magnetic field data: 
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R2(k) = {
E[𝐯2(k)𝐯2

T(k)]                ||𝐲M − h|| < εM
∞                                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (A.28) 

Where ℎ is the local earth’s magnetic field and εM is the disturbance threshold. 

Step 4: compute the a posteriori state estimate: 

𝐱2
+(𝑘) = 𝐱2

−(𝑘) + 𝐊(k)[𝐳2(𝑘) − 𝐂2(k)𝐱2(k)]   (A.29) 

Step 5: compute the a posteriori error covariance matrix: 

𝐏+(k) = [𝐈3 −𝐊(k)𝐂2(k)]𝐏
−1(k)    (A.30) 

With the a posteriori state estimate from (A.29), 𝐱2
+(k) = [x2,x x2,y x2,z]T, the best 

estimate for yaw angle, 𝛼 can be calculated as: 

α(k) = tan− (
−cγx2,y+sγx2,z

x2,x/cβ
)    (A.31) 
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Appendix B.  
 
Vertical Velocity/Position Kalman Filter 

This is a summary of the Vertical Position/Velocity Kalman filter from [31]. The 

Vertical Position/Velocity Kalman filter requires the roll, 𝛾 and pitch, 𝛽 input from 

Appendix A’s Tilt Kalman filter. 

The following system model equations are used in the Kalman filter to estimate 

vertical position and vertical velocity: 

𝐱2(k) = 𝐀2(k − 1)𝐱2(k − 1) + 𝐁2(k − 1)u2(k − 1) + 𝐰2(k − 1)  (B.1) 

𝐳2(k) = 𝐂2(k)𝐱2(k) + v2(k)     (B.2) 

where 𝐱2(k) = [ℎ(𝑘) 𝑣(𝑘)]𝑇 is the state vector. 𝐀2 and 𝐁2 are the state transition and 

input matrices, u2 is the input vector, being the vertical component of gravity 

compensated acceleration in the navigation frame, 𝐰2(k − 1) is the 2 × 1 process noise 

vector, 𝑧2(𝑘) is the relative height (Δh𝑏𝑎𝑟𝑜), which is calculated from the barometric 

pressure data, 𝐂2(k) and v2 are the observation matrix and measurement noise. These 

variables are calculated as follows: 

𝐀2(k − 1) = [
1 Δ𝑡
0 1

]     (B.3) 

𝐁2(k − 1) = [
1

2
Δ𝑡2

Δ𝑡
]     (B.4) 

u2(k − 1) = ([0 0 1]) ∙ ( RS
N

γ,β
𝐚+ 
S (k − 1))   (B.5) 

RS
N

γ,β
= [

𝑐𝛽 0 𝑠𝛽
0 1 0
−𝑠𝛽 0 𝑐𝛽

] [
1 0 0
0 𝑐𝛾 −𝑠𝛾
0 𝑠𝛾 𝑐𝛾

]    (B.6) 

𝐰2(k − 1) = [
1

2
Δt2

Δt
] σA     (B.7) 

𝑧2(𝑘) ≜ Δℎ𝑏𝑎𝑟𝑜 = 44330(1 − (
𝑝

𝑝0
)
0.19

) − ℎ𝑖𝑛𝑖𝑡  (B.8) 

𝐶2(𝑘) = [1 0]      (B.9) 
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RS
𝑁

γ,β
 is the rotation matrix that aligns the 𝑧-axis of sensor frame to the navigation frame. 

Δℎ𝑏𝑎𝑟𝑜 is the relative height with respect to the initial height (ℎ𝑖𝑛𝑖𝑡) and 𝑃0 is the standard 

pressure equal to 101,325 Pa. 

Once these matrices are calculated, the Vertical Velocity/Position Kalman filter is 

calculated with the following steps: 

Step 1: compute the a priori state estimates: 

𝐱2
−(𝑘) = 𝐀2(k − 1)𝐱2

+(𝑘 − 1)    (B.10) 

Step 2: compute the a priori error covariance matrix: 

𝐏−(k) = 𝐀2(k − 1)𝐏
+(k − 1)𝐀2

T(k − 1) + 𝐐2(k − 1)   (B.11) 

where 𝐐2(k − 1) = [
1

2
Δt2

Δt
]σA

2 [
1

2
Δt2

Δt
]

T

 is the process noise covariance matrix. 

Step 3: compute the Kalman gain: 

𝐊(k) = 𝐏−(k)𝐂2
T(k)[𝐂2(k)𝐏

−(k)𝐂2
T(k) + R2(k)]

−1
  (B.12) 

where R2(k) = σbaro
2  

Step 4: compute the a posteriori state estimate: 

𝐱2
+(𝑘) = 𝐱2

−(𝑘) + 𝐊(k)[𝐳2(𝑘) − 𝐂2(k)𝐱2(k)]   (B.13) 

Step 5: compute the a posteriori error covariance matrix: 

𝐏+(k) = [𝐈2 −𝐊(k)𝐂2(k)]𝐏
−1(k)    (B.14) 

The vertical position, ℎ(𝑘) and velocity, 𝑣(𝑘) best estimate can be obtained from 

(B.13), where 𝐱2
+(𝑘) = [[ℎ(𝑘) 𝑣(𝑘)]𝑇]. 
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Appendix C.  
 
Ethics Approval 

 


