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Abstract

The use of Bayesian statistical methods to handle missing data in biomedical studies has
become popular in recent years. In this thesis, we propose a novel Bayesian sensitivity
analysis (BSA) model that accounts for the influences of missing outcome data on the
estimation of treatment effects in randomized control trials with non-ignorable missing
data. We implement the method using the probabilistic programming language Stan, and
apply it to data from the Vancouver At Home (VAH) Study, which is a randomized control
trial that provided housing to homeless people with mental illness. We compare the results
of BSA to those from an existing Bayesian longitudinal model that ignores missingness
in the outcome. Furthermore, we demonstrate in a simulation study that, when a diffuse
conservative prior that describes a range of assumptions about the bias effect is used, BSA
credible intervals have greater length and higher coverage rate of the target parameters than
existing methods, and that sensitivity increases as the percentage of missingness increases.

Keywords: Bayesian methods; longitudinal analysis; missing data; sensitivity analysis;
Simon Fraser University; Vancouver At Home study
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Chapter 1

Introduction

In longitudinal studies, repeated observations of the same subjects are taken over a
period of time. In an ideal world, researchers would be able to monitor every subject
at every scheduled point. However, just as most things in life, studies do not always go
according to plan and missing observations to various extents do occur against the best
wishes of everyone involved.

Numerous methods have been devised to deal with the issue of missing data [8][16][17][28].
In this thesis, we propose a novel Bayesian sensitivity analysis (BSA) specifically for non-
ignorable missing data, also known as missing not at random (MNAR) data, and apply this
method to data obtained from a study.

In the rest of this chapter, we conduct a review of different types of missing data and their
occurrence in longitudinal studies, as well as existing methods in the literature for sensitivity
analysis of MNAR data. Chapter 2 discusses an example of a real life longitudinal study
with such a problematic type of missing data. It concerns a randomized controlled trial
that provided housing to homeless people with mental illness from Vancouver (Patterson
et al. [25]). In Chapter 3 we review an existing standard Bayesian random effects model
that ignores missing data, which can be compared to the novel BSA method we introduce
in Chapter 4. Chapter 5 details a simulation study on the performance of the new method
in comparison with the existing method. Discussions are presented in the last chapter.

1.1 Review of Missing Data

Missing data are a common occurrence in research in vast majority of scientific disciplines
[8]. Governments, firms and organizations may withhold or fail to report key statistics of
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national or commercial interest, which is mostly applicable to studies in social sciences
[23]. When data are collected using surveys and interviews, non-response may be a cause
of concern, where participants fail to respond to one or more items, or an entire survey
altogether (although such cases can be safely ignored) for various reasons. Questions on
certain subjects of a private nature, such as level of income, may elicit a higher rate of
non-response in a particular group of participants [33].

Missingness may also be inadvertently caused by researchers in the form of human errors,
as a consequence of mistakes in data collection and data entry [1]. Nevertheless, this type
of missing data can be relatively easy to rectify if the original measurements or observations
are available.

Various problems can arise due to missing data. A significant lack of data translates
to a reduction in sample size and lower statistical power than intended. In addition to
complicating otherwise straightforward statistical analyses, incomplete data may also cause
bias in the estimation of model parameters, potentially rendering the conclusions invalid
[32]. Bias can occur when the observed data are not representative of the entire population
under study, for example, when study participants that have complete observations are
healthier and more affluent than the others.

1.2 Missing Data in Longitudinal Studies

Missing data are a critical issue in longitudinal studies. In fact, it has been said that “in
longitudinal studies in health sciences, missing data are the rule, not the exception” [10].
The most common type of missingness here is attrition, or dropout. As the name implies,
such incidents take place when participants drop out of the study before its completion,
resulting in missing observations.

The choice of methods for handling missing data in longitudinal studies is primarily
dependent on the pattern and mechanism of missingness, which we outline in the following
subsections.

1.2.1 Patterns of Missing Data

Two patterns of missing data exist in longitudinal studies. A monotone missing pattern
occurs when a study participant is absent for measurement or observation at a particular
point and all points afterwards [17]. That is, once they fail to show up, they are never heard
from again.
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On the other hand, data are non-monotone missing, or intermittent missing, if obser-
vations on a participant are made after they miss a previous data collection point [17].
It is possible that they become missing again, either temporarily or permanently. These
participants are not technically considered dropouts since they did not leave of the study
forever at the first instance of absence.

In reality, a strictly monotone missing pattern is an uncommon occurrence [16], since
it is unlikely that all participants would be able to adhere to the study schedule without
missing any intermittent points due to personal or other reasons.

1.2.2 Classification of Missing Data

In a landmark paper on missing data [27], Rubin classifies them into three categories,
missing completely at random (MCAR), missing at random (MAR) and neither. The last
category was later named as missing not at random (MNAR) [28].

Data are MCAR if the probability of failing to observe a value is independent of any
observed or unobserved values of the response variable, or any other observed values [28].
A hypothetical example could be that, in a study on the effect of diet on cholesterol level,
participants roll a dice to decide whether to attend a measurement session. Under the
MCAR assumption, the observed data can be considered as a random sample of the complete
data and there is no bias in the parameter estimates.

Data are said to be MAR if the probability of failing to observe a value is independent
of any unobserved values of the response variable, but dependent on observed values of the
response variable or some other variables [28]. In this regard, it is perhaps more intuitive to
interpret this type of data as “missing conditionally at random”. In our hypothetical study,
MAR would occur if participants with a lower measured cholesterol level in a session are
more likely to miss subsequent sessions, or if participants on a specific type of diet are more
inclined to be absent.

By definition, if data are MCAR, they are also MAR [4]. Both MCAR and MAR are
ignorable within the likelihood and Bayesian frameworks, whereas in frequentist framework,
ignorability is only applicable to MCAR [27].

When the probability of failing to observe a value is dependent on the missing value
itself, it is known as MNAR, or informative missing [28]. Failure of participants to turn
up for a session in the cholesterol study should be attributed to MNAR provided that the
missingness is related to their cholesterol level in that very session, MNAR is non-ignorable
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because there is no information on the influence of the missing data, requiring the missing
mechanism to be modelled. Treatment of MNAR data is the focus of this thesis.

It is very difficult to ascertain the missing data mechanism in any given study, al-
though several methods have been developed to test for MCAR assumption by Little [22],
Listing and Schlittgen [20][21] and Diggle [7], among others. Enders [8] discusses two pro-
cedures that distinguish between MCAR and MAR, which rely on the assessment of the
independence of the missing indicator and the observed covariates using tools such as lo-
gistic regression. Notwithstanding, in general there is no way to determine whether MAR
or MNAR exists for they rely on information that is missing, unless follow-up data are
obtained from non-respondents for verification [29].

1.3 Review of Existing Methods in the Literature for Sensi-
tivity Analysis of MNAR Missing Data

Popular and well-documented methods for handling missing data include multiple im-
putation, maximum likelihood estimation, complete case analysis and Bayesian methods
[17]. Application of these methods to MNAR data requires specification of the missing
data mechanism, which calls for the use of sensitivity analysis to assess the sensitivity of
model-based inferences to the unverifiable MAR assumption.

Limited resources on sensitivity analysis for non-ignorable missing data in longitudinal
studies exist in the statistical literature, probably as a consequence of the highly speculative
nature of such analyses. Of those available, the textbook of Daniels and Hogan [6] describe
the procedures applied to two longitudinal studies.

The first example is the Growth Hormone study conducted by Kiel et al. [19]. It is
a controlled trial of longitudinal data that investigates the effect of growth hormone and
exercise on changes in quadriceps strength, with missing outcome data. Daniel and Hogan
[6] limit the discussion to two study arms, exercise plus placebo versus exercise plus growth
hormone. In a similar approach to ours (to be introduced later), they construct a pattern
mixture model with a large number of sensitivity parameters, which are eventually reduced
to a subset of the intercept sensitivity parameters that are allowed to vary in order to account
for the deviation from the MAR assumption [6]. Subsequently they carry out a sensitivity
analysis examining the posterior inferences about the treatment effect by summarizing the
posterior mean and posterior probability over a domain that is calibrated with relevant
posterior distributions under MAR.
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The second example described by Daniels and Hogan [6] concerns the OASIS trial. This
was a randomized controlled trial that compared the effect of standard versus enhanced
counselling interventions on smoking cessation rates among alcoholics, with missing binary
outcomes. Daniel and Hogan fit both parametric selection models and pattern mixture mod-
els with elicited informative priors on the odds ratio at each stage of assessment. Departure
from MAR was realized by defining a pair of log odds ratio parameters. They concluded
that sensitivity analysis was inappropriate in the case of parametric selection models due
to identifiability and that the pattern mixture models fit well because of easily separable
parameter space [6].

Elsewhere in the literature, Kenward [18] pedagogically illustrates the use of a sensi-
tivity analysis to examine the effect of the distributional assumptions on the estimation of
dropouts using the outcome-based selection model proposed by Diggle and Kenward [7].
In a later paper, Verbeke et al. [35] presents a local influence approach based on the work
of Diggle and Kenward to sensitivity analysis for MNAR data, adopted on the concept
of individual-specific infinitesimal perturbations around the MAR model. It involves the
assignment of a perturbation within the linear predictor of the model to the potentially
unobservable measurements.

A different strain of the local influence approach is proposed by Ganjali and Rezaei [12],
who utilize a generalized Heckman model to assess the influence of a small perturbation of
elements of the covariance structure on the likelihood. It functions as a global sensitivity
analysis for cross-sectional and longitudinal data with two periods. The authors suggest
the use of normal curvature for longitudinal data with more periods.

Troxel et al. [34] propose a measure of local sensitivity based on a Taylor series ap-
proximation to the non-ignorable likelihood, evaluated at the parameter estimates under
the ignorability assumption. An index of sensitivity to non-ignorability is derived from the
approximated likelihood, which allows researchers to evaluate the need for more elaborate
sensitivity analysis or MNAR modelling.
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Chapter 2

Data Example

To motivate our discussion of missing data in longitudinal studies, we consider the
dataset described by Patterson et al. [25]. The data concern 297 homeless people from
Vancouver, British Columbia who participated in the Vancouver At Home (VAH) Study
between 2009 and 2013. The VAH Study was a randomized control trial in which homeless
participants with mental illness were randomly allocated to receive housing with supports
(treatment) or no housing (control), and then followed prospectively to collect information
about health outcomes and service use with repeated measurements over time [31].

2.1 Background: Homelessness in Canada and the At Home
/ Chez Soi Study

Over the last three decades, homelessness has emerged to be one of the most prominent
social issues in Canada [36]. According to the Canadian Observatory of Homelessness, it is
defined as “the situation of an individual or family without stable, permanent, appropriate
housing, or the immediate prospect, means and ability of acquiring it” [2]. A report by
the same organization estimates that in 2016, at least 235,000 Canadians were subject
to homelessness at some point during the previous year and that 35,000 Canadians were
homeless on any given night [11]. In particular, as one of the largest cities in Canada,
Vancouver too has seen a steadily growing population of homeless individuals, most of
whom are concentrated in Downtown Eastside [5]. As of 2011, 2650 people experienced
homelessness in Metro Vancouver, compared to 1121 in 2002 [15].

Studies have demonstrated that homeless people are particularly susceptible to mental
illnesses [9] and substance addiction [24], which doubtlessly have detrimental effects on
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their already difficult and stressful circumstances. Many of these vulnerable individuals
are unable to receive adequate healthcare and social support due to limited funding and
investments in community-based mental health programs and affordable housing [14].

To combat homelessness, many policy experts recommend a “Housing First” approach.
Housing First provides homeless people with immediate access to subsidized housing, to-
gether with supports [14]. No pre-conditions, such as bringing substance abuse under control
or being stabilized on medications are imposed. The premise of Housing First is that people
should be more capable of moving forward with their lives if they are first provided with
housing.

To better understand the impact of a Housing First approach to tackling homelessness
in a Canadian context, in 2008 the Mental Health Commission of Canada undertook a $110
million national study called the At Home / Chez Soi Study [36]. This project recruited 2500
participants over four years in five Canadian cities, namely Moncton, Montreal, Toronto,
Vancouver and Winnipeg.

2.2 The Vancouver at Home (VAH) Dataset

For this MSc thesis, we will analyze data in the VAH Study that covers specifically the
city of Vancouver. In other words, we will focus on data from the Vancouver portion of
the nationwide At Home / Chez Soi Study. A complete description of the study protocol is
given by Somers et al. [31].

We consider a dataset consisting of the n = 297 high-needs (HN) homeless individuals
participating in the VAH. Participants were 19 years of age or older, and homelessness was
defined as having no fixed place to sleep for more than 7 nights with little likelihood of
obtaining accommodation. High need individuals, as defined by Somers et al. [31], had
severe mental illness combined with criminal justice involvement, substance dependence or
other factors.

In the VAH Study, the 297 participants were randomly assigned to one of three study
groups:

1) Independent Housing First with Assertive Community Treatment, which consisted of
scattered subsized rental housing around the city

2) Congregate Housing First, where all participants were housed together in a single
building in downtown Vancouver, or

3) Treatment-as-Usual (TAU), a control group
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People in the TAU group received no further housing or support services from the study
apart from the existing services for homeless individuals with mental illnesses in Vancouver.

The participants were randomly assigned to the three treatment groups and then fol-
lowed prospectively for up to two years. See Figure B.1 for a diagram of the treatment
assignment. Data were collected by interview, and each participant was interviewed up
to 5 times: once at baselined prior to randomization, then then up to four more times at
6-month intervals.

Several study hypotheses were formulated, among which was that Housing First would
have a positive influence on the quality of life (QoL) of the homeless individuals with mental
illness as compared to TAU. Thus, the dependent variable in our analysis was the QoL score
(see below for details).

The previous analysis by Patterson et al. [25] concluded that the QoL of participants in
HF improved significantly more than that of participants in TAU at both 6 and 12 months
post baseline. Still, an important potential limitation was that a small proportion of study
data was missing as some participants failed to attend one or more scheduled interviews.
We are unable to ascertain its impact on the results, especially as participants in TAU were
established to be more likely to drop out of the study.

2.3 Basic Descriptive Statistics and Pattern of Missing Data

The objectives of this project are to examine the effects of missingness in the response
variable, QoL scores, in the VAH study, and additionally to develop an effective method to
explore the sensitivity of analysis results to missing data.

Before conducting any analyses, we begin with the simplifying assumption that the first
two Housing First treatment groups (scattered-site housing versus congregated housing) are
merged into a single treatment group, which we henceforth call “HF” for Housing First, to
facilitate comparison with the control group TAU. This is due to the consideration that the
first two groups both involved the provision of housing and there were no statistically signif-
icant differences in the measurements of QoL in both groups across the entire study period.
Thus, we assume that there are only two arms in the randomized trial: HF (treatment)
versus TAU (control). The limitations are discussed further in the Discussion (Section 6.1).

There are a total of 11 variables in the dataset,
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id A unique and de-identified id for participant
visit.number The visit number
visit.type A description of the visit type (baseline, 6 months etc.)
visit.date Month and year of visit
csi Colorado Symptom Index (see below)
qol Quality of life score (see below)
male Indicator variable, 1 if participant is male
age.ord Age as an ordinal variable with 3 categories
num.health.ind Total number of health conditions
hf Indicator variable, 1 if Housing First
total.num.visits Total number of visits

We begin with presenting the descriptive statistics of the baseline characteristics of the
297 participants in the study, as shown in Table B.1. A total of 198 (66.7%) individuals
were allocated to the HF group and 99 (33.3%) to the TAU group. A total of 72.4% of
the participants were male (n = 212), reflecting the actual predominance of males in the
homeless population in Vancouver. The largest age group represented was 25-40 years of
age (n = 179, 61.1%), followed by over 40 (n = 90, 30.7%) and below 25 (n = 24, 8.2%).

All participants were homeless with mental illness at baseline. Consequently, they had
a median of 4 chronic health conditions (interquartile range (IQR) 2-7), which were defined
as serious health problems such as diabetes that lasted longer than 6 months. The median
Colorado Symptom Index (CSI) score was 30 (IQR 21-41). CSI is a continuous measure
of mental health symptoms based on 14 questions with Likert scale 1-5 and higher values
represent worse mental health. If more than 50% of the questions were completed, the
remainder were imputed with the arithmetic average of the completed questions, otherwise
the CSI scores were recorded as missing.

The dependent variable in this MSc thesis is QoL. The median QoL at baseline was
87 (IQR 70-102). The QoL metric adopted in the study was the Quality of Life Interview
20 (QOLI-20), which measures 20 subjective items in 6 subscales: family, finances, leisure,
living situation, safety and social. Additionally, there is a global item that assesses an
individual’s overall satisfaction with life. As some participants did not complete all 20 QoL
questions, two approaches were used to handle the missing responses. If more than 50% of
the questions were completed, the remainder were imputed with the arithmetic average of
the completed questions. Otherwise their QoL scores were recorded as missing.

Table B.3 presents the mean QoL scores (standard deviation (SD)) in HF versus TAU
at baseline and at the 4 subsequent 6-month visits. p-values to test for differences were
calculated using a 2-sample t-test. As expected, there was no significant difference in the
QoL at baseline (p = 0.8819) because the participants were randomly assigned to both
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groups and HF cannot affect the outcome at baseline. However, significant differences were
found for 6 months (p = 0.0028), 12 months (p = 0.0116) and a slightly weaker one for 24
months (p = 0.0808), indicating higher mean QoL scores in the HF group.

Figure B.1 shows the mean of the QoL trajectories in HF and TAU. It is clear that there is
an increasing trend in both groups and the HF group sees a faster increase overall. However,
an interesting curiosity is that the difference between the curves tends to diminish over time.
Thus, although HF has a positive impact on QoL compared to TAU, the magnitude of the
treatment affect appears to be greatest earlier in the follow-up period. The increase of the
mean QoL score in TAU was also observed in Patterson et al. [25]. A likely explanation
for this interesting finding is that the participants were in such poor health at the time of
recruitment that their QoL scores improved even in the absence of provision of housing.

To illustrate the longitudinal nature of the data, Figure B.2 and Figure B.3 present in-
dividual QoL trajectories for a random sample of 30 participants from both groups. Figures
B.2 and B.3 illustrate the within-subject and between-subject variability in QoL scores over
time.

An important concern in the VAH Study, which is the basis of this thesis, is missing
data. All participants were scheduled to be interviewed a total of 5 times (baseline, 6, 12,
18 and 24 months). Although data were collected for all 297 at baseline, the number of
participants that were revisited at 6 months was reduced to 270, which further declined to
264, 247, 231 at 12, 18 and 24 months, as shown in Table B.2. While a number of dropouts
occurred, some individuals remained in the study but skipped one or more intermediate
revisits.

Moreover, TAU participants were less likely to participate in follow-up interviews. Out
of all QoL measurements at 4 revisits, 9.7% were missing in the HF group (n = 75). At
21.5%, the percentage of missingness in the TAU group is slightly more than twice that in
HF. (n = 85). Clearly and unsurprisingly, participants that were not favoured by the god of
probability in the random treatment assignment had little incentive to remain in the study
because they did not get housing.

The key scientific question is therefore whether the excess loss to follow-up in the TAU
group may have biased the analysis findings. For instance, if healthy TAU participants were
less likely to be lost to follow-up, this could in theory bias the mean QoL trajectory curve
in the TAU group and decrease the treatment effect. In effect, there would be a “selective
attrition” where the TAU group comprised predominantly healthy individuals (with high
QoL scores), which would describe a MNAR scenario. However, we have no way to confirm
this as the available data cannot answer this question.
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Chapter 3

A Longitudinal Analysis that
Ignores Missing Data in the
Outcome Variable Quality of Life

Recall that the data consists of longitudinal measurements of Quality of Life Scores in
n = 297 participants, who were followed prospectively for 24 months. Each participant
was randomly allocated to either treatment (Housing First (HF)) or control (Treatment as
Usual (TAU)). They were then interviewed up to 5 times (baseline, 6 months, 12 months,
18 months and 24 months), and detailed data were recorded. The dependent variable in
the analysis was repeated measures of Quality of Life (QoL).

Previously, longitudinal data analyses of the VAH data were conducted in a paper by
Patterson et al. [25]. The authors used a linear mixed effects regression to model the asso-
ciation between the different types of HF and the normally distributed outcome QoL. In the
regression analysis, the authors included time (discrete 6 month intervals) and interaction
terms between time and study arm, which capture the treatment effects. Furthermore, in
the multivariable model the authors adjusted for baseline covariates including age, gender
and other variables such as housing status at baseline and duration of previous homeless-
ness. Patterson et al. [25] found that HF was associated with significantly greater QoL
scores as compared to TAU.

The statistical issue that motivates this research project is the intermittent missing data
of QoL measurements. As described in Chapter 2, participants assigned to TAU were less
likely to be interviewed in the follow-up period because of a lack of incentive to participate
in the study. Yet such missingness does not constitute loss to follow-up as some participants
skipped one or more interviews but were interviewed again later in the study. The concern
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here is then how this might have affected the results. For example, if TAU participants
with worse health were more likely to be lost, the QoL trajectory in TAU may have been
biased as a result of attrition of the sickest patients.

In this section of the thesis, we begin by replicating the linear mixed effects analysis
of Patterson et al. [25] using Bayesian methods implemented in the software STAN. The
analysis results will serve as a point of comparison with the subsequent analyses where we
model the missing QoL score directly using a non-ignorable missing data model.

3.1 Model

Building upon the analysis of Patterson et al. [25], we present a Bayesian linear mixed
effect models to account for correlation in repeated measures of QoL scores in the VAH
Study. For ease of reference, this model will be named as the “naïve” model because it
naïvely ignores the role of missing data in the analysis.

3.1.1 Variables and Notation

Let Yij be the quality of life score for ith participant in the jth record, where i =
1, 2, . . . , 297 and j = 1, 2, 3, 4, 5 represents baseline and first to fourth visit respectively.

Let Xi be an indicator variable for the group allocation of the ith participant, such that

Xi = 1 if ith participant is in the HF group

= 0 if ith participant is in the TAU group

Note that in the VAH study the treatment allocation was fixed over time. Despite that,
the TAU participants were not prevented from find housing on their own. Consequently, a
limitation (discussed in Chapter 6) is that the TAU individuals might in fact have obtained
housing through other means.
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To model time (i.e. follow-up visit), for each participant in the jth record, we create a
vector Ṽj of length 4 to represent the number of visit, such that

Ṽj = [0, 0, 0, 0] for baseline (0thvisit),

= [1, 0, 0, 0] for the first visit,

= [0, 1, 0, 0] for the second visit,

= [0, 0, 1, 0] for the third visit,

= [0, 0, 0, 1] for the fourth visit.

Therefore the data consist of (Xi, Ṽj , Yij), where Xi and Ṽj are always observed, but
the outcome variable Yij is sometimes missing for certain combinations of i and j and those
missing values are simply ignored in this model.

3.1.2 Model for QoL that Ignores Missing Data (Naïve)

We present the naïve model here, which ignores missing data. The underlying assump-
tion in this model is that the QoL score of each participant at any time is affected only
by the group allocation and time of visit. We model Yij using the following linear mixed
effects model

Yij |Xi, Ṽj ∼ N(θi + Ṽ T
j β̃v + (Ṽ T

j β̃vx)Xi, σ2) (3.1)

for all pairs (i, j) such that Yi,j is observed. In the dataset there were 1305 QoL scores
available for analysis, although we would expect a total of 297 × 5 = 1485 observations.

In the model, the quantity θi is a random effect that can be interpreted as the mean QoL
score for individual i at baseline if they were assigned to TAU. We assign a model for the
random effects as N(µθ, δ2

θ), where µθ captures the mean and δ2
θ governs the heterogeneity.

The vector β̃v = [βv1, βv2, βv3, βv4] of time effects models how the mean of the QoL
trajectory changes over time in the TAU group. The vector β̃vx = [βvx1, βvx2, βvx3, βvx4]
consists of treatment-by-period interactions. Finally, σ is the residual standard deviation
of the QoL scores that is not explained by the model.

For simplicity, Equation (3.1) does not include any covariates (e.g. age and gender) and
in principle they could be easily added to the model.
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The interaction β̃vx are the main target of inference in the analysis because they describe
the treatment effect. To illustrate, the expected QoL score for participants in the TAU
group, marginalizing over the random effects θi, can be expressed as

E[Y |X = 0, Ṽ ] = µθ + Ṽ T(β̃v) (3.2)

whereas the expected QoL score for participants in the Housing First group is given by

E[Y |X = 1, Ṽ ] = µθ + Ṽ T(β̃v + β̃vx) (3.3)

Consequently, the vector of four treatment effects at times 6, 12, 18 and 24 months is
then

E[Y |X = 1, Ṽ ] − E[Y |X = 0, Ṽ ] = Ṽ T(β̃vx) (3.4)

Note that the treatment effect at time zero (baseline) is set to exactly zero in equation
(3.1) since, by definition, when participants were assigned to treatment at time zero, the
causal effect of treatment must be zero.

3.2 Prior Distributions

There are five parameters in the aforementioned model, namely µθ, σ2
θ , β̃v, β̃vx, σ2. Fol-

lowing Gelman et al. [13], the following priors were chosen for the parameters,

µθ ∼ N(0, 100)

σ2
θ ∼ N(0, 100000)+

β̃v ∼ N

0,


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100





β̃vx ∼ N

0,


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100




σ2 ∼ N(0, 100000)+

14



where N(a, b)+ is a normal distribution with mean a and variance b that is truncated to
be strictly positive. An N(0, 100) prior is assigned to the random effect, time effect and
treatment by period interaction to reflect the realistic variation in QoL scores (in the range
[20, 140] in the dataset). However, a diffuse prior N(0, 100000) is used for the variances
σ2

θ and σ2 due to a lack of prior information, indicating that a large range of values are
plausible.

3.3 Computations Using Stan

Stan is a probabilistic programming language for Bayesian statistical inference [3]. Writ-
ten in C++, it is used to specify statistical models and implements Markov Chain Monte
Carlo (MCMC) methods, gradient-based variational Bayesian methods and gradient-based
optimization for penalized maximum likelihood estimation. Stan is realized in R using the
rstan package.

In the analysis, we defined the list of data,

int n; (number of participants)
int nk; (number of data records)
int id[nk]; (vector of participant ids of length 5n)
real y[nk]; (vector of observed QoL scores of length nobs)
real x[nk]; (vector of group allocations of length 5n)
matrix[nk, 4] v; (matrix of visit numbers)

and the list of the parameters,

real theta[n]; (random effects in linear mixed effects model)
real mu_theta; (mean of the random effects)
vector[4] betav; (time effect)
vector[4] betaxv; (time effect)
real<lower=0> sigma_theta; (sd of the random effects)
real<lower=0> sigma; (sd of the QoL)

as well as the priors specified in the previous section.

The y values were modelled in the following for loop,

for (i in 1:(nmis))

y[i] ∼ normal(v[i] * betav + (v[i] * betavx) * x[i] + theta[id[i]],

sigma);
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Accordingly, we analyzed the VAH dataset and ran the Hamiltonian Monte Carlo algo-
rithm for 2000 iterations with a burn-in of 1000. Sample convergence was assessed using
the effective sample size and scale reduction factor, which are automatically generated in
Stan.

3.4 Results

The posterior means and 95% posterior credible intervals for all model parameters from
the Stan computations are presented in Table B.4. We observe that all of the posterior
coefficient estimates of time effects, β̃v = [βv1, βv2, βv3, βv4], are positive, which confirms
the findings of Patterson et al. and in Chapter 2 (Table B.3 and Figure B.2) that, within
the TAU group, we witness a dramatic upsurge in the QoL scores over time. For example,
the posterior mean of βv4 is 15.0, which indicates that QoL scores rose by an average of 15
points from baseline.

An important observation is that the QoL scores tended to increase to a large extent
initially and then level out. This confirms a well known result in the VAH study that all
participants tended to improve dramatically after study enrollment, irrespective of whether
they were allocated to HF or TAU. However, this increase occurred primarily during the
early period of the study.

The important part of Table B.4 concerns the treatment by period interaction coef-
ficients βvx1, βvx2, βvx3, βvx4, which are the treatment effect at each of the four follow-up
times points. For example, βvx1 was estimated as 8.4, which means that at 6 months the
QoL trajectory was on average 8.4 points higher in the HF group as compared to TAU.
Furthermore, this difference was statistically significant in the sense that the 95% credible
interval did not include zero.

While the time effect increases steadily from 6 months to 24 months, the treatment
by period interaction, with a posterior mean of βvx1 = 8.4 at 6 months, dips at 12 and
18 months (βvx2 = 5.9, βvx3 = 0.7). A small increase is seen at 24 months (βvx4 = 4.3)
but this, along with βvx3, is deemed insignificant due to the inclusion of 0 in its 95% high
probability density (HPD) credible interval.

We conclude that although HF had a large effect on QoL scores during the first 12 months
of follow-up, it nearly vanished during the second year. This finding was not reported in the
linear mixed effects model of Patterson et al. [25] as it analyzed only one year of follow-up.
Essentially, the improvement in outcomes for the TAU group was so substantial that it
erased much of the anticipated benefit of HF. We emphasize however that the treatment
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effect estimates in Table B.4 were still strictly positive at all time points, and this points
to an overall conclusion of benefit albeit with larger uncertainty.
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Chapter 4

Bayesian Sensitivity Analysis
(BSA) for Non-ignorable Missing
Data

4.1 Model

It was shown in the previous chapter that some of the QoL scores were missing. A
natural question of interest is whether the inclusion of these missing data would distort
the conclusions drawn from the analyses using only existing data, and if so, the extent
of influence. The key issue is whether the data are missing at random or non-ignorable
missing. However, this cannot be ascertained from observed data because we cannot tell
how the missing data differs from the observed data.

To better understand the impact of non-ignorable missing data, we approach the problem
from a sensitivity analysis perspective [6]. We propose a novel methodology called “Bayesian
sensitivity analysis” (BSA) to explore sensitivity to nonignorable missing data. The idea
is to propose a model for the complete data (observed and unobserved) that is indexed by
non-identifiable sensitivity parameters that describe how the missingness is non-ignorable.

Although the data do not tell us much about the sensitivity parameters, they can still be
manipulated as part of a sensitivity analysis, allowing us to examine whether the analysis
results of Chapter 3 are robust to different and potentially extreme assumptions about
non-ignorability. Moreover, it is straightforward to consider the sensitivity analysis within
a full Bayesian analysis framework where we assign prior probability distributions to the
sensitivity parameters. However, as the resulting model is not identifiable (i.e. the data
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cannot distinguish between different models even asymptotically), the Bayesian method has
unusual statistical properties.

We begin this chapter with proposing a modified pattern mixture model that accounts
for the effect of missingness on the observations, following Hogan et al. [6].

4.1.1 Missing Data Model

Let Yij be the quality of life score for ith participant in the jth record, where i = 1, 2, 3,
..., 297 and j = 1, 2, 3, 4, 5 represents baseline and first to fourth visit respectively. In the
ideal scenario where there is no missing data, there would be 297 × 5 = 1485 observations.

Let Xi be an indicator variable for the group allocation of the ith participant, such that

Xi = 1 if ith participant is in the Housing First group

= 0 if ith participant is in the Treatment as Usual group

For each participant in the jth record, we create a vector Ṽj of length 4 to represent the
number of visit, such that

Ṽj = [0, 0, 0, 0] for baseline (0thvisit),

= [1, 0, 0, 0] for the first visit,

= [0, 1, 0, 0] for the second visit,

= [0, 0, 1, 0] for the third visit,

= [0, 0, 0, 1] for the fourth visit

Let Iij be an indicator variable for missingness in the outcome Yij , such that

Iij = 1 if Yij is missing,

= 0 if Yij is observed

Note that the quantities Iij , Xi, and Ṽj are always observed for all possible combinations
of i and j.
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4.1.2 Pattern Mixture Model for Missing Data

It is clear from the study that the QoL score of each participant at a specific time is
affected by the group allocation and time of visit. To model the missing data, we additionally
allow QoL to depend directly on the missing indicator variable. By definition of conditional
probability, we factorized the conditional distribution of Yij , Ii given Xi, Ṽj as

P (Yij , Iij |Xi, Ṽj) = P (Yij |Xi, Ṽj , Iij)P (Iij |Xi, Ṽj) (4.1)

where P (Yij |Xi, Ṽj , Iij) is the pattern mixture and P (Iij |Xi, Ṽj) is the model for indicator
variable of missingness. The phrase “pattern mixture” is used to indicate that the marginal
model for the complete data, P (Yij |Xi, Ṽj), is a mixture with two different components.
This differs from a selection model in that the later specifies the joint distribution of Yij and
Iij through models for the marginal distribution of Yij , P (Yij |Xi, Ṽj), and the conditional
distribution of Iij given Yij , P (Iij |Xi, Ṽj , Yij) [6].

Since Yij consists of the random effect, time effect, treatment by period interaction and
bias due to missingness, it can be approximated by a Normal distribution,

Yij |Xi, Ṽj , Iij ∼ N(θi + Ṽ T
j β̃v + (Ṽ T

j β̃vx)Xi + (Ṽ T
j β̃vm)Iij , σ2) (4.2)

where θi is the random effect with the distribution N(µθ, δ2
θ), β̃v = [βv1, βv2, βv3, βv4] is a

vector of time effects, β̃vx = [βvx1, βvx2, βvx3, βvx4] is a vector of treatment by period inter-
actions, σ is the standard deviation, and finally the quantity β̃vm = [βvm1, βvm2, βvm3, βvm4]
is a vector of “bias parameters” that describe the influence of the missing indicator Iij on
the QoL score.

The quantity β̃vm can be interpreted as the difference in QoL score for the same par-
ticipant at each visit in the observed case and in the unobserved case, holding all other
variables constant. For instance, βvm1 = 0 means that at 6 months the mean QoL scores
for missing participants is identical to that of participants with an observed QoL score (no
bias, hence the data are Missing at Random). Conversely, if βvm1 = −10, QoL scores for
missing participants are on average 10 points lower than observed participants.

To further simplify the BSA method, we assumed the bias parameters are the same for
all four visits, i.e.

β̃vm = [βvm, βvm, βvm, βvm].

Consequently, the user needs to specify only a single parameter βvm in order to undertake
the sensitivity analysis. In principle, this assumption could be weakened if we had reason to
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believe that the impact of attrition on the study changed over time. However, a disadvantage
is that it would require the user to specify a total of four non-identifiable bias parameters
rather than just one.

Note that Equation (4.2) omits interactions between the missingness indicator Iij and
treatment. This means that we assume that, at each time point, the difference in mean QoL
for observed versus unobserved participants does not depend on the assigned treatment.
Thus there is a “uniform impact of missingness” that is identical in TAU versus HF. In
principle the model could be extended, although with further complications of requiring
more bias parameters.

To complete the pattern-mixture model specification we require a model for the missing
data indicator variable, which we construct as a logistic regression model

P (Iij |Xi, Ṽj) = P (Iij |Xi) = δXi
(4.3)

Hence in the missing data model, there are two missing data proportions: δ1 and δ0,
which are the proportions of data missing when X = 1 or 0. Note that this model allows
the missingness to depend on the treatment assignment (e.g. allows higher missing data in
the TAU group), however it assumes that the missingness does not change over time. This
assumption is a little unrealistic because the missing data are likely to be more common
during later follow-up (see Table B.2). As Iij and Xi are fully observed for all participants,
we can assess the adequacy of the logistic regression model.

For the sensitivity analysis, we used different values of βvm to assess the influence of the
MNAR assumption on the estimated treatment by period interaction.

4.1.3 Parametrization of Effect of HF on QoL for the BSA Model

In the dataset, we are able to observe the conditional probability of QoL among observed
participants given group allocation and visit number, P (Yij |Xi, Ṽj , Iij = 0) and the prob-
ability of missingness in either group, P (Iij |Xi). Therefore we can calculate the observed
treatment effect, which is E[Y |X = 1, Ṽ , I = 0] − E[Y |X = 0, Ṽ , I = 0].

However, our goal is to find out the marginal treatment effect taking into account both
observed and unobserved cases, which is given by E[Y |X = 1, Ṽ ] − E[Y |X = 0, Ṽ ], where

E[Y |X, Ṽ ] = E[Y |X, Ṽ , I = 1]P (I = 1|X, Ṽ ) + E[Y |X, Ṽ , I = 0]P (I = 0|X, Ṽ ). (4.4)
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Let δ1 = P (Iij = 1|X = 1) be the probability of missingness in the HF group, and
δ0 = P (Iij = 1|X = 0) be the probability of missingness in the TAU group. Then the
expected QoL score for the TAU group is

E[Y |X = 0, Ṽ ] = E[Y |X = 0, Ṽ , I = 1]δ0 + E[Y |X = 0, Ṽ , I = 0](1 − δ0)

= (µ0 + Ṽ T(β̃v + β̃vm))δ0 + (µ0 + Ṽ T(β̃v))(1 − δ0)

= µ0 + Ṽ T(β̃v + δ0β̃vm))

(4.5)

where δ0β̃vm is the bias shift.

On the other hand, the expected QoL score for the Housing First group is

E[Y |X = 1, Ṽ ] = E[Y |X = 1, Ṽ , I = 1]δ1 + E[Y |X = 1, Ṽ , I = 0](1 − δ1)

= (µ0 + Ṽ T(β̃v + β̃vx + β̃vm))δ1 + (µ0 + Ṽ T(β̃v + β̃vx))(1 − δ1)

= µ0 + Ṽ T(β̃v + β̃vx + δ1β̃vm))

(4.6)

where δ1β̃vm is the bias shift.

Therefore the overall treatment effect can be shown to be

E[Y |X = 1, Ṽ ] − E[Y |X = 0, Ṽ ] = Ṽ T(β̃vx + (δ1 − δ0)β̃vm). (4.7)

This gives a simple analytical formula for exploring sensitivity to non-ignorable missing
data. We see that β̃vx is the observed treatment effect and additionally, the quantity
(δ1 − δ0)β̃vm is the bias. If the probability of missingness is different in both groups (i.e. if
δ0 ̸= δ1) and the bias parameter β̃vm ̸= 0, there is a bias due to missingness.

4.2 Prior Distributions

There are six parameters in the aforementioned model, namely µθ, σ2
θ , β̃v, β̃vx, βvm, σ2.
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Building on Chapter 3 for the Bayesian linear effects model, we assign the following
prior distributions for the parameters,

µθ ∼ N(0, 100)

σ2
θ ∼ N(0, 100000)+

β̃v ∼ N

0,


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100





β̃vx ∼ N

0,


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100




σ2 ∼ N(0, 100000)+.

(4.8)

For βvm, we used two different approaches to assign a prior distribution. First, we
assigned specific fixed values to βvm (so that βvm is not a random variable). Seven values
ranging from -30 to 30 were selected to cover a broad range of possible values of βvm.
Thereafter, we repeated the analysis and assigned a prior βvm ∼ Uniform(−30, 30). Thus
the first analysis is a classic “sensitivity analysis” in the sense that the bias parameter βvm

is fixed at a specific value that ranges over a grid in order to study the sensitivity analysis
of the results, whereas the second analysis is a classic Bayesian sensitivity analysis where
we model our prior beliefs about βvm as a uniform distribution.

Since the QoL scores are in the range [20, 140], it would be reasonable to assign a
N(0, 100) prior to the random effect, time effect and treatment by period interaction.
However, there is no information on the variances σ2

θ and σ2. As such, a diffuse prior
N(0, 100000) is used.

A crucial aspect of the BSA method is justifying the range of values for βvm. Our
approach allowed βvm to vary between -30 and 30. As mentioned above the data should
reveal nothing about the true value of the βvm, even as n → ∞. Thus choosing a prior is
highly speculative and this prior will strongly influence the results. As described in section
4.1.2, βvm can be interpreted as the difference in the QoL score of the same participant
at each visit in the observed case versus the unobserved case, holding all other variables
constant. Based on a review of the literature, we feel that ± 30 is the maximum plausible
range for βvm in the VAH data.
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4.3 Computations Using Stan

In the analysis using the rstan package, the list of data was first defined,

int n; (number of participants)
int nobs; (number of observed records)
int nmis; (number of missing records)
int id[nobs+nmis]; (vector of participant ids of length 5n)
real yobs[nobs]; (vector of observed QoL scores of length nobs)
real x[nobs+nmis]; (vector of group allocations of length 5n)
matrix[nobs+nmis, 4] v; (matrix of visit numbers)
real betavm; (bias due to missingness)

followed by list of the parameters,

real theta[n]; (random effects in linear mixed effects model)
real mu_theta; (mean of the random effects)
vector[4] betav; (time effect)
vector[4] betaxv; (time effect)
real<lower=0> sigma_theta; (sd of the random effects)
real<lower=0> sigma; (sd of the QoL)
real ymis[nmis] (missing data to be imputed)

and the priors specified in the previous section.

The missing data was imputed in the following for loop,

for (i in 1:(nmis))

ymis[i] ∼ normal(v[i+nobs] * (betav + betavm) + (v[i+nobs] * betavx)

* x[i+nobs] + theta[id[i+nobs]], sigma);

with the observed data in another loop,

for (i in 1:(nobs))

yobs[i] ∼ normal(v[i] * betav + (v[i] * betavx) * x[i] + theta[id[i]],

sigma);

We ran the Hamiltonian Monte Carlo algorithm for 2000 iterations with a burn-in of
1000. Sample convergence was once again assessed using the effective sample size and scale
reduction factor, which are automatically generated in Stan.
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4.4 Results

4.4.1 Sensitivity Analysis Where βvm is Fixed over a Specific Grid of
Values

Sensitivity analysis results with fixed βvm over a specific grid of values produced esti-
mates of β̃vx parameters as displayed in Table B.5. As βvm decreases from 30 (mean QoL
for missing participants 30 points higher than observed participants) to -30 (mean QoL
for missing participants 30 points lower than observed participants), we witness a clear
monotonic increase in the estimates of all four treatment effect parameters β̃vx.

Upon closer inspection we can see that when βvm is positive (QoL for missing higher
than observed), there is no or little significant treatment effect at all four time points. Since
the percentage of missingness is higher in the TAU group, higher QoL scores for missing
participants would result in a smaller actual difference between HF and TAU than observed,
thus overriding any perceived treatment effect.

On the contrary, negative βvm values (QoL for missing lower than observed) signify
that the actual difference in QoL between HF and TAU is larger than observed, thereby
amplifying the treatment effect. Naturally, its estimates are much more significant.

The case of βvm = 0 is trivial, as we were simply assuming that there is no difference in
QoL between missing and observed participants (i.e. MAR), which is essentially equivalent
to ignoring the missing data. As such, the estimates should be very similar to those we
obtained using the naïve model (Table B.4).

It should also be noted that even at an extremely low value of βvm = -30, the treatment
effect at 18 months βvx3 is still non-significant, and that at 24 months βvx4 is only slightly
significant. Whereas βvx1 stays significant throughout the range of βvm values. These
observations provide good evidence that the treatment effect is highly non-sensitive to
changes in the bias parameter βvm.

4.4.2 Bayesian Sensitivity Analysis Where βvm is a Random Variable with
Prior Distribution

We now present the BSA results, wherein we assign a prior probability distribution to
βvm. The results from Stan computations using a Uniform prior for βvm are summarized in
Table B.6. The key observation is that the posterior means and 95% HPD credible intervals
of µθ, σ2

θ , β̃v, β̃vx and σ2 are very similar to their counterparts in the naïve model (Table
B.4). In other words, the BSA model gives very similar inferences to the naïve model.
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This tells us that the analysis results in the VAH dataset are robust to even quite extreme
assumptions about bias from non-ignorable missing data.

Table B.4 also shows that βvm has a posterior mean of -4.3 and 95% HPD credible
interval of (-29.8, 23.1). The considerable width of this credible interval ensures that it
encompasses the more extreme values of βvm and reinforces our view that β̃v, β̃vx are non-
sensitive to drastic changes in the bias due to missingness.

We theorize that the lack of any real difference in the BSA versus naïve analysis results
can be explained by the fact that the difference in missingness between the two groups is
relatively small (9.7% in HF, 21.5% in TAU, with a difference of 10.8%) and that βvm is
small in magnitude. This is to say that since only 10% to 20% of the QoL scores are missing,
even extreme assumptions about MNAR data do not unduly influence the analysis results
about the effect of HF on QoL.
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Chapter 5

Simulations

5.1 Generating Simulated Datasets

The main comparison that is important in this thesis is Table B.4 versus Table B.6.
Results in Table B.4 ignores the problem of missing data, whereas Table B.6 does a BSA
that incorporates very extreme assumptions about how detrimental the missing data are.
However, it is interesting to note that the results in Table B.4 and B.6 are very similar.
In Table B.6 we see that the 95% HPD CIs are only somewhat wider. This is reassuring
because it means that even if the missing data were very different from the observed data,
it would not change the overall conclusions in the analysis of the VAH data.

We suspect that one reason that the analysis results are insensitive to missing data is
that the proportion of missing QoL scores was only 9.7% in the HF group and 21.8% in the
TAU group. In order to better understand the behaviour of BSA, we conducted a simulation
study where we applied the BSA method to simulated data (i.e. synthetic data generated
using a computer). This will better illustrate BSA in extreme situations.

In this section, we outline the procedures for generating simulated datasets using ap-
propriate choices of parameters.

In the simulation, the number of participants n and number of visits k were defined to
be 300 and 5 respectively. A vector id was then created, which contained the id numbers
from 1 to 300 repeated five times element-wise.

We drew the group allocation of each participant from a Binomial distribution with
parameters (1, 0.5), which was stored in the vector x. This ensures that each participant
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has a equal probability of being assigned to the treatment group (HF) or the control group
(TAU), as is the case in the actual randomization procedure.

Corresponding to each element in the vector id, a visit number, which ranges from 0
to 4 (with 0 as the baseline) was created and stored in the vector t. This was used to
construct a design matrix of dummy variables, v, where the rows represent participants at
each visit and columns represent the visit number (1 to 4). An element (5x+a, y) in the
matrix takes the value 1 if the (a + 1)th entry of participant x was recorded at visit number
y and 0 otherwise, with 0 6 a 6 4.

A mean QoL score of 70 at baseline beta.0 was used, as we felt it is a realistic estimate
as suggested by the VAH data.

The random effects theta.i was generated using the Normal distribution N(0, 64),
with an estimated standard deviation of 8. For simplicity, we fixed the time effect beta.v
to be (10, 10, 20, 20) for each visit, with later visits resulting in a higher effect. On the
other hand, the treatment by period interaction beta.vx = (10, 10, 10, 10) would be
constant throughout all four visits.

The probability of missingness in the HF and TAU group was determined to be 0.25
and 0.75 respectively in a hypothetical scenario where participants in TAU are significantly
more likely to drop out of the study. Clearly, most if not all studies in real life would not
see such an extreme rate of attrition on accounts of protocol restrictions,

Last but not least, we assigned a value of -5 to the bias parameter beta.vm, which we
believe is a reasonable estimate of the true value in most situations.

Having determined the individual parameters, we sampled 1500 y values from the dis-
tribution specified in Equation (4.2), which complete one simulated dataset. The same
parameters above were used to generate 100 independent simulated datasets.

5.2 Analysis of Simulated Datasets

In order to compare the performance of estimation of the actual treatment effects, we
coded both the naïve model and the BSA model, as described in Chapter 3 and 4, using
the Stan language realized by the rstan package. Thereafter we applied them to the 100
simulated datasets and obtained the 95% HPD credible intervals of the treatment effect
βvx.
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Subsequently, we calculated the average length of the 100 credible intervals and their
coverage rate of the true βvx values (10, 10, 10, 10). The coverage rate is defined as the
proportion of times that the credible intervals contain the true βvx values.

5.3 Results

Table B.7 offers clear evidence that the BSA model produces considerably wider credible
intervals (average length of 23.1) of treatment effects than the naïve model (average length
of 4.5). Consequently, the true values of βvx are covered approximately twice as often
by the BSA credible intervals (87%, 89%, 90%, 89%) as by the naïve credible intervals
(45%, 46%, 39%, 38%). The narrow length and low coverage rate of the credible intervals
produced by the naïve model substantiates the notion that it is ill-suited to handle datasets
with significant amount of missingness (in this case, 50% in total), since simple omission of
the missing data could result in a drastic reduction in the variance of posterior βvx and a
decisive bias in the analysis results.

The consistent performance of the BSA model in this simulated study with a large
proportion of missing data suggests that it is a better choice than the existing naïve model
when the bias is truly present because its credible intervals are able to cover the true values
of βvx much more frequently. This would be more apparent when the extent of missingness
is less extreme, as is the case in many studies in real life.
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Chapter 6

Discussion

In this thesis, we proposed a novel Bayesian Sensitivity Analysis method to explore
sensitivity to nonignorable missing data for the outcome variable. In summary, we utilized
a modified pattern mixture model for the complete data including observed and unobserved
information that are indexed by non-identifiable sensitivity parameters that accounts for
the effect of missingness on the observations. To use the method, the analyst must specify
different values of the sensitivity parameter β̃vm, which can be interpreted as the average
difference in the mean QoL scores for missing versus observed participants. When each
component of β̃vm is equal to zero, the the missingness is ignorable (MAR). Conversely,
a negative value such as -20 means that the missing individuals tend to have lower QoL
scores. Alternatively, a prior probability distribution dependent on the analyst’s prior
beliefs about bias should be assigned to β̃vm. Informative priors can be constructed from
literature reviews and expert opinions on the subject matter, while weakly informative and
non-informative priors can be modelled using distributions such as Normal and Uniform.
Analysis results would be presented as a table (e.g. Table B.5 and Table B.6).

The BSA method provides a major advantage over the naïve Bayesian longitudinal
analysis that ignores the effect of missing data in that it produces reliable estimates of the
sensitivity parameters with credible intervals as an evidence of the robustness of the other
model parameters. Furthermore, in cases where there is a large difference in the frequency of
missingness between the treatment and the control groups, then the credible intervals of the
treatment effect parameters for BSA are markedly wider and provide much higher coverage
of the true values than those for the naïve method. This is an important characteristic that
enables us to ascertain the true value of treatment effect in the presence of missing data
with greater confidence.
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However, for the BSA model careful selection of a prior on the sensitivity parameter
β̃vm is required to conduct a meaningful analysis, as inappropriate priors would result
in confidence intervals of extreme widths of the treatment effect. Furthermore, the non-
identifiability of the model dictates that the true values of its underlying parameters cannot
be theoretically calculated and the data usually reveal very little about the true values
of β̃vm. Consequently, the analyst must carefully choose the prior distribution because it
may greatly influence the analysis results. This could constitute a key challenge if there
is insufficient information to determine suitable choices. For example, in the VAH dataset
there no information in the literature that helps us estimate the true value of β̃vm.

Curiously, non-informative priors for β̃vm do not exist because the model is non-identifiable.
So for example, if we assign a prior of Unif(−1010, 1010) to β̃vm, the resulting posterior on
the treatment effects would be infinitely wide.

Another disadvantage of the BSA is that, as are many Bayesian methods that involve
Monte Carlo simulations, it could be computationally intensive, especially when a large
number of missing observations exist and need to be estimated. It is also known that there
is considerable computational difficulty in Bayesian MCMC simulation for non-identifiable
models [30], as a result of correlated parameters in and irregular shape of the posterior
distribution (Figure B.5) [26].

We applied the BSA method to the VAH data to estimate the effect of the HF interven-
tion on QoL of the homeless participants. In particular, we used BSA to explore sensitivity
of the analysis results to different assumptions about non-ignorable missing data (i.e. dif-
ferent values of β̃vm). We found that there is remarkably little sensitivity to assumptions
about missing data. In other words, missingness is not a great concern as it had little effect
on the analysis outcomes, which is doubtlessly good news to the researchers. Table B.5
shows that there is a slight difference in overall conclusion only when the value of β̃vm

approaches +30 or -30, corresponding to the extreme assumption that the QoL scores in
missing participants are 30 points higher (or lower) than otherwise similar observed par-
ticipants, which is not reasonable. The rather low level of sensitivity is attributable to the
fact that the missingness only 10 to 15 percent.

Perhaps the most curious result of the VAH study is the diminution of the effect of
Housing First in the later stages of the study, which was so apparent as to rendering the
effect at 18 and 24 months insignificant. In other words, we show that providing supporting
housing to homeless people has little or no impact on QoL beyond the first year. This
controversial finding was not previously shown in Patterson et al. [25], since they had
access to the first 12 months of data only. In addition, given the lack of sensitivity, we are
able to rule out missing data as a plausible explanation for this anomaly.
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6.1 Limitations

Due to limited time and scope of this thesis, several important statistical issues that
arose from the study design, data collection and analysis are not addressed.

The response variable in the study, Quality of Life, is a composite sum of scores for
20 question items. While some of the responses to the questions were missing (see Section
B.1 for details), they were not considered in the analysis as another aspect of missing data.
For our analysis, we followed the same technique of Patterson et al. [25] that used mean
substitution for the individual question item provided that no more than half of the items
were missing (and otherwise the total QoL score was taken as missing). The effect of
ignoring uncertainty in the imputed question items should be investigated further, however
it is beyond the scope of this thesis.

In reality, participants were not interviewed at exact 6 months intervals owing to various
reasons. The interview timings were grouped as such for the sake of convenience, even
though we do have access to the data about the exact month and year of revisits. An
analysis using these data would allow us to evaluate the treatment effect at any point
within 24 months, which may be useful information in studies of participants that drop
out of the HF scheme. Further research should examine the benefits and disadvantages
of modelling QoL using smooth non-parametric curves over time. Suitable approaches are
described in Chapter 19 of Fitzmaurice et al. [10] entitled “Smoothing longitudinal data
using semi-parametric regression models”.

Another issue regarding the study design is that TAU participants were not explicitly
prevented from find housing on their own. In other words, even though homeless individuals
randomly assigned to TAU did not get housing through the VAH study, they were not being
prevented from finding housing elsewhere. Such occurrences may have been difficult to
avoid due to ethical concerns. This may have resulted in a form of crossover in some cases.
However, the VAH Study includes a “housing stability” variable that was measured at each
interview to look at where the participant was living. In future analysis this variable would
be good to incorporate this variable into the study as a control variable.

One of the fundamental assumptions we made in the analysis, as discussed in Section
B.1, is the amalgamation of the two modalities of HF in the high needs group. Treating
them as separate treatment groups would have given us more insight on the benefit of each
specific type of HF.

A final limitation is that in the Patterson et al. study [25], the authors imputed the
missing quality of life values using the multivariate imputation by chained equation (MICE)
method and proceeded to analyze the entire dataset with a model that does not consider
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the effects of any missing data, while we simply ignored these missing responses in our
implementation of the naïve method. Moreover, the analysis of Patterson et al. adjusted
for several predictors of QoL, such as age and gender. Such covariate adjustments did
not exist in our analysis. To give a fairer comparison of BSA versus the naïve Bayesian
longitudinal analysis, it would be useful to additionally apply MICE to the VAH dataset.

6.2 Future Work

The simulation study was somewhat limited because we generated data where β̃vm

was only fixed at -5. A better alternative could be “Bayesian” simulations where data are
generated by randomly sampling values of β̃vm from some parameter sampling distribution,
with the advantage of showing “average” coverage rate and comparison with the naïve
method over an entire distribution range of β̃vm values. Nevertheless, the choice of a
suitable parameter generating distribution would be another concern.

The BSA model proposed in this thesis is a rather basic one, as it includes only the most
important variables, specifically time of visit, treatment effect, effect due to missingness
and random effect. Further modifications could be made to the BSA model to produce
more accurate analysis results, such as the incorporation of the exact timing of the QoL
measurements rather than just 6 months interval, as well as other meaningful covariates
like age and gender.
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Appendix A

Code

A.1 Bayesian Linear Mixed Effects Model that Ignores Miss-
ing Data

## Stan model specification

lme_code <- '

data {
int n; // number of participants
int nk; // number of records
int id[nk]; // participant id
real y[nk]; // QoL
real x[nk]; // group assignment indicator
matrix[nk, 4] v;
// design matrix of dummy variables to indicate visit time

}

parameters {
real theta[n]; // random effects
real mu_theta; // mean of the random effects
vector[4] betav; // time effect
vector[4] betaxv; // treatment effect

real<lower=0> sigma_theta; // sd of the random effects
real<lower=0> sigma; // sd of the QoL

}

model {
mu_theta ~ normal(0, 100); // priors
betav ~ normal(0, 100);
betaxv ~ normal(0, 100);
sigma_theta ~ normal(0,100);
sigma ~ normal(0, 100);
theta ~ normal(mu_theta, sigma_theta);
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for (i in 1:nk)
y[i] ~ normal(v[i] *betav + (v[i] * betaxv) * x[i] + theta[id[i]], sigma);
// model QoL

}
'

## Translate Stan model specification to C++ code
tcode <- stanc(model_code = lme_code, model_name = `mymodel', verbose = TRUE)

## Construct Stan model
tmodel <- stan_model(stanc_ret = tcode, verbose = FALSE)

## Specify list of data
ah.data <- list(id, y, x, v, n, nk)

## Sample from Stan model
tsamples <- sampling(tmodel, data = ah.data, chains = 1, iter = 2000,
thin = 1, verbose = TRUE)

## Extract MCMC samples
MCMC.samples <- extract(tsamples)

A.2 Bayesian Sensitivity Analysis for Non-ignorable Missing
Data

## Stan model specification

bsa_code <- '

data {
int n; // number of participants
int nobs; // number of observed records
int nmis; // number of missing records
int id[nobs+nmis]; // participant id
real yobs[nobs]; // observed QoL

real x[nobs+nmis]; // group assignment indicator
int m[nobs+nmis]; // missing data indicator
matrix[nobs+nmis, 4] v;
// design matrix of dummy variables to indicate visit time

}

parameters {
real theta[n]; // random effects
real mu_theta; // mean of the random effects
vector[4] betav; // time effect
vector[4] betavx; // treatment effect

real<lower=0> sigma_theta; // sd of the random effects
real<lower=0> sigma; // sd of the QoL
real ymis[nmis]; // missing QoL
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real gamm0; // logistic regression parameter
real gammx; // logistic regression parameter

real<lower=-30, upper=30> betavm; // bias due to missingness
}

model {
mu_theta ~ normal(0, 100); // priors
betav ~ normal(0, 100);
betavx ~ normal(0, 100);
sigma_theta ~ normal(0, 100000);
sigma ~ normal(0, 100000);
theta ~ normal(mu_theta, sigma_theta);

gamm0 ~ normal(0, 100);
gammx ~ normal(0, 100);

for (i in 1:(nmis))
ymis[i] ~ normal(v[i+nobs] * (betav + betavm) + (v[i+nobs] * betavx) *
x[i+nobs] + theta[id[i+nobs]], sigma);
// imputing the missing data using the true value of betavm

for (i in 1:(nobs))
yobs[i] ~ normal(v[i] * betav + (v[i] * betavx) * x[i] +
theta[id[i]], sigma);
// analysis of the observed data

for (i in 1:(nmis+nobs))
m[i] ~ bernoulli_logit(gamm0 + gammx * x[i]);
// logistic regression for estimating the proportion missing parameters

}
'

## Translate Stan model specification to C++ code
tcode <- stanc(model_code = bsa_code, model_name = `mymodel', verbose = TRUE)

## Construct Stan model
tmodel <- stan_model(stanc_ret = tcode, verbose = FALSE)

## Specify list of data
ah.data <- list(id, yobs, x, v, m, n, nobs, nmis)

## Sample from Stan model
tsamples <- sampling(tmodel, data = ah.data, chains = 1, iter = 2000,
thin = 1, verbose = TRUE)

## Extract MCMC samples
MCMC.samples <- extract(tsamples)
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Appendix B

Tables and Figures

Figure B.1: Group allocation of high needs participants in the At Home study
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Variable Count (Percentages) Median (IQR)
Housing First (versus TAU) 198 (66.7%) -
Male 212 (72.4%) -
Age

<25 24 (8.2%) -
25-40 179 (61.1%) -
>40 90 (30.7%) -

# Health Conditions - 4 (2-7)
QoL - 87 (70-102)
CSI - 30 (21-41)

Table B.1: Descriptive statistics of the Vancouver at Home dataset of n=297 homeless
individuals with mental illness

Visit Baseline 6 months 12 months 18 months 24 months
Number of participants 297 270 264 247 231

Table B.2: Number of participants at baseline and each revisit

Visit Time HF Mean ± SD TAU Mean ± SD p-value
Baseline 73.32 ± 21.6 74.71 ± 21.5 0.8819
6 Months 89.71 ± 22.3 80.53 ± 25.7 0.0028
12 Months 90.83 ± 23.3 83.34 ± 19.5 0.0116
18 Months 89.05 ± 24.1 87.06 ± 19.2 0.5308
24 Months 93.75 ± 24.3 87.84 ± 20.8 0.0808

Table B.3: QoL mean scores at baseline and 6, 12, 18 and 24 months followup by study
arm
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Figure B.2: Average QoL trajectories in HF and TAU groups

Figure B.3: Individual QoL trajectories for a random sample of size 30 generated from the
HF group
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Figure B.4: Individual QoL trajectories for a random sample of size 30 generated from the
TAU group

Variable Posterior Mean 95% HPD CI
Time

Baseline
6 Months βv1 6.5 (2.6, 11.9)
12 Months βv2 10.3 (5.9, 15.1)
18 Months βv3 14.0 (9.4, 18.9)
24 Months βv4 15.0 (10.4, 19.8)

Time × Housing First
HF × 6 Months βvx1 8.4 (2.9, 13.7)
HF × 12 Months βvx2 5.9 (0.7, 10.9)
HF × 18 Months βvx3 0.7 (-4.8, 6.0)
HF × 24 Months βvx4 4.3 (-1.5, 9.5)

µθ 74.5 (71.8, 77.0)
σθ 15.6 (13.8, 17.3)
σ 16.6 (15.9, 17.3)

Table B.4: Posterior mean and 95% HPD credible interval of variables in a traditional
Bayesian longitudinal model that ignores missing data (naïve model)
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βvm βvx1 βvx2 βvx3 βvx4
30 5.5 (0.8, 11.1) 3.0 (-1.8, 8.8) -2.1 (-7.3, 3.0) 1.1 (-4.5, 6.9)
20 6.2 (0.9, 11.8) 3.6 (-1.7, 9.7) -1.5 (-7.1, 4.3) 1.7 (-4.1, 7.4)
10 7.3 (2.1, 12.2) 4.9 (-0.5, 9.9) -0.3 (-5.7, 5.2) 3.0 (-2.3, 8.8)
0 8.4 (3.4, 13.9) 5.8 (0.8, 11.4) 0.6 (-4.2, 6.7) 4.1 (-1.6, 9.2)
-10 9.2 (4.4, 14.7) 6.9 (1.8, 11.8) 1.8 (-3.3, 6.8) 4.9 (-0.3, 10.1)
-20 10.3 (5.3, 15.2) 7.6 (2.6, 12.9) 2.4 (-2.9, 8.5) 5.8 (0.3, 11.4)
-30 11.1 (5.7, 15.9) 8.7 (3.2, 13.9) 3.5 (-2.2, 8.8) 6.9 (0.7, 12.3)

Table B.5: Posterior mean and 95% HPD credible interval of overall treatment effect for
βvm = {-30, -20, -10, 0, 10, 20, 30} with varied γ0 and γx

Variable Posterior Mean 95% HPD CI
Time

Baseline
6 Months βv1 6.9 (2.5, 11.0)
12 Months βv2 10.6 (6.2, 14.9)
18 Months βv3 14.2 (9.5, 18.6)
24 Months βv4 15.4 (10.6, 20.8)

Time × Housing First
HF × 6 Months βvx1 8.4 (2.3, 13.8)
HF × 12 Months βvx2 6.1 (0.8, 12.0)
HF × 18 Months βvx3 1.0 (-4.8, 7.6)
HF × 24 Months βvx4 4.2 (-2.5, 10.5)

µθ 74.4 (71.9, 77.0)
σθ 15.5 (13.9, 17.1)
σ 16.6 (15.9, 17.3)
βvm -4.3 (-29.8, 23.1)

Table B.6: Posterior mean and 95% HPD credible interval of model parameters for Bayesian
sensitivity analysis (BSA) applied to the At Home data using a uniform (-30, 30) prior
distribution on the bias parameter βvm

Method βvx1 βvx2 βvx3 βvx4
Cov. Length Cov. Length Cov. Length Cov. Length

Naïve 45% 4.5 46% 4.5 39% 4.5 38% 4.5
BSA 87% 23.1 89% 23.1 90% 23.2 89% 23.1

Table B.7: Coverage and length of 95% HPD credible intervals for the naïve and BSA
methods obtained from the simulation study
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Figure B.5: Prior and posterior density of βvm obtained using Bayesian sensitivity analysis

45


	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Review of Missing Data
	Missing Data in Longitudinal Studies
	Patterns of Missing Data
	Classification of Missing Data

	Review of Existing Methods in the Literature for Sensitivity Analysis of MNAR Missing Data

	Data Example
	Background: Homelessness in Canada and the At Home / Chez Soi Study
	The Vancouver at Home (VAH) Dataset
	Basic Descriptive Statistics and Pattern of Missing Data

	A Longitudinal Analysis that Ignores Missing Data in the Outcome Variable Quality of Life
	Model
	Variables and Notation
	Model for QoL that Ignores Missing Data (Naïve)

	Prior Distributions
	Computations Using Stan
	Results

	Bayesian Sensitivity Analysis (BSA) for Non-ignorable Missing Data
	Model
	Missing Data Model
	Pattern Mixture Model for Missing Data
	Parametrization of Effect of HF on QoL for the BSA Model

	Prior Distributions
	Computations Using Stan
	Results
	Sensitivity Analysis Where vm is Fixed over a Specific Grid of Values
	Bayesian Sensitivity Analysis Where vm is a Random Variable with Prior Distribution


	Simulations
	Generating Simulated Datasets
	Analysis of Simulated Datasets
	Results

	Discussion
	Limitations
	Future Work

	Bibliography
	Appendix Code
	Bayesian Linear Mixed Effects Model that Ignores Missing Data
	Bayesian Sensitivity Analysis for Non-ignorable Missing Data

	Appendix Tables and Figures

