
Algorithms for Colourful Simplicial Depth
and Median in the Plane

by

Olga Zasenko

B.Sc., Taras Shevchenko National University of Kiev, 2014

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the

Department of Mathematics

Faculty of Science

c• Olga Zasenko 2017
SIMON FRASER UNIVERSITY

Spring 2017

Copyright in this work rests with the author. Please ensure that any reproduction

or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name:

Degree:

Title:

Examining Committee:

Olga Zasenko

Master of Science

Algorithms for Colourful Simplicial Depth and
Median in the Plane

Chair: Natalia Kouzniak
Senior Lecturer

Tamon Stephen
Senior Supervisor
Associate Professor

Zhaosong Lu
Supervisor
Associate Professor

Michael Monagan
Internal Examiner
Professor

Date Defended: 7 April 2017

ii

Abstract

The colourful simplicial depth (CSD) of a point x ∈ R2 relative to a configuration P =
(P 1, P 2, . . . , P k) of n points in k colour classes is exactly the number of closed simplices
(triangles) with vertices from 3 different colour classes that contain x in their convex hull.
We consider the problems of efficiently computing the colourful simplicial depth of a point
x, and of finding a point in R2, called a median, that maximizes colourful simplicial depth.

For computing the colourful simplicial depth of x, our algorithm runs in timeO (n logn+ kn)
in general, and O(kn) if the points are sorted around x. For finding the colourful median,
we get a time of O(n4). For comparison, the running times of the best known algorithm for
the monochrome version of these problems are O (n logn) in general, improving to O(n) if
the points are sorted around x for monochrome depth, and O(n4) for finding a monochrome
median.

Keywords: Computational geometry; data depth; colourful simplicial depth; bivariate
medians; topological sweep

iii

Dedication

To my grandmother, the strongest woman I know who achieved so much in her life, despite
all the obstacles. You are my mentor, my strongest inspiration, and my most empowering
supporter. I love you.

iv

Acknowledgements

I would like to thank my supervisor Tamon Stephen for continuous support and guidance
throughout my time as a student at SFU. Reaching this milestone would not be possible
without having someone to look up to, to ask for advice or feedback. His expertise and
knowledge were my source of truth when in doubt while writing a paper or this thesis. I also
thank Dr. Stephen for supporting my decision to complete two co-op terms while doing my
Master’s at SFU.

My sincere thanks goes to my examiner Dr. Monagan for reading and editing this thesis,
and for sharing great questions and suggestions. The small but important details that we
have missed couldn’t escape from his vigilant eye.

A very special gratitude goes out to Natalia Kouzniak who made moving to a foreign
country and adjusting to the local university culture for me much easier. Also she was the
only person I could speak to in my mother tongue, which I miss very much.

I express my gratitude to all the people who were by my side these last couple of years.
Although most of my family is far away, I always feel their encouragement and confidence
in my efforts, just as if they were here. It is truly astonishing that they never get tired
of me talking about research and writing during our Skype calls. I am grateful for having
such caring friends who are always there for me. They give me the strength to set goals
and achieve them.

v

Table of Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements v

Table of Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Colourful Simplicial Depth and Medians . 1
1.2 Background . 2

1.2.1 Facts about Simplicial Depth and Medians 2
1.2.2 Facts about Colourful Simplicial Depth and Medians 7
1.2.3 Known Algorithms for Simplicial Depth 8
1.2.4 Known Algorithms for Simplicial Medians 8
1.2.5 Known Colourful Algorithms . 9

1.3 Organization and Main Results . 10

2 Computing Colourful Simplicial Depth 11
2.1 Preliminaries . 11
2.2 Outline of Strategy . 12
2.3 Data Structures and Preprocessing . 14
2.4 Computing Di

∗ . 15
2.5 Algorithm and Analysis . 17

2.5.1 Implementation of the Algorithm . 20

3 Computing Colourful Simplicial Medians 23
3.1 Preliminaries . 23

vi

3.2 Notation . 25
3.3 Computing the median . 27

3.3.1 Computing r(s) and l(s) . 31
3.4 Running Time and Space Analysis . 33

4 Three-dimensional case 36
4.1 Simplicial Depth in R3 . 36

4.1.1 Runtime . 38
4.2 Challenges of Computing the CSD in R3 . 38

5 Conclusions and Questions 40

Bibliography 41

Appendix A Plots 45

vii

List of Tables

Table 2.1 Comparison of Operation Count for Brute Force Algorithm vs Our
Algorithm for fixed n. 21

Table 2.2 Comparison of Operation Count for Brute Force Algorithm vs Our
Algorithm for fixed k. 21

Table 2.3 Comparison of Operation Count for Brute Force Algorithm vs Our
Algorithm for fixed k. 22

viii

List of Figures

Figure 1.1 Point x is contained in exactly 4 triangles 4ABC, 4ABE, 4ADC,
4ADE, therefore, D(x) = 4. 1

Figure 1.2 A configuration P of 8 points in R2 surrounding a point x with
D̂(x, P) = 6. 2

Figure 1.3 A configuration P of 7 points in R2, whose unique simplicial median
is G2 which has depth 8. 2

Figure 1.4 A configuration P of 6 points in 3 colours, where E and F have
maximum CSD of 5. 3

Figure 1.5 A configuration of 6 points in 3 colours, where D, E and F have
maximum CSD of 5. 3

Figure 1.6 A configuration of 7 points in 3 colours, where E and G have maxi-
mum CSD of 7. 4

Figure 1.7 Trivial cases when colourful simplicial median is a convex set. . . . 4
Figure 1.8 An example of a DD-plot of two distributions f and g. 6

Figure 2.1 Antipode Ā falls in the minor arc between B and C and, therefore,
the triangle 4ABC contains x. 12

Figure 2.2 The antipodes of D, C, and E fall in the shorter arc between A and
B, hence the triangles 4ABE, 4ABC, and 4ABD contain x. All
of these triangles have 2 or 3 red vertices, which is due to the fact
that both A and B are red, and we are counting the antipodes of all
possible colours between them. 13

Figure 2.3 Illustrations of the index l(i, j). 15

Figure 3.1 Examples of phantom vertices. 24
Figure 3.2 An example of a cell. 25
Figure 3.3 Every point on the interior of the segment (A,B), for example p,

is contained in the triangles 4ABC, 4ABD, 4ABE, as well as
4ABF , 4ABG, 4ABH. 26

Figure 3.4 s+ and s− of the segment s = (A,B). 26
Figure 3.5 A topological line crossing the configuration. 28

ix

Figure 3.6 The CSD of p is 14, and the CSD of v is 12 since as we move along
DE from CF to BG, we leave triangles 4CFA, 4CFD, 4CFG
containing p and enter only 4BGH that contains v. 29

Figure 3.7 Two adjacent vertices p and v and their corresponding line segments. 30
Figure 3.8 Points that may require the execution of the colourful simplicial

depth algorithm. 31
Figure 3.9 How the half-space depth algorithm works. 33

Figure A.1 A configuration P of 500 points in 4 different colours. 45
Figure A.2 A configuration P of 6000 points in 10 different colours. 46
Figure A.3 A degenerate configuration P of 23 points in 5 different colours. . . 47
Figure A.4 Operation count versus n, for k = 3. Here green indicates the num-

ber of floating operations performed, whereas red is the number of
comparisons in steps 11 and 14 of Algorithm 1. 48

Figure A.5 Operation count versus k, for n = 1000. Here green indicates the
number of floating operations performed, whereas red is the number
of comparisons in steps 11 and 14 of Algorithm 1. 49

x

Chapter 1

Introduction

1.1 Colourful Simplicial Depth and Medians

The simplicial depth D(x, P) of a point x ∈ R2 relative to a data set P is exactly the number
of simplices (triangles) formed with the points from P that contain x in their convex hull
(Figure 1.1). A simplicial median of the set P is any point in R2 which is contained in the
most triangles formed by elements of P , i.e. has maximum simplicial depth with respect
to P .

x

A

B

C

D

E

Figure 1.1: Point x is contained in exactly 4 triangles 4ABC, 4ABE, 4ADC, 4ADE,
therefore, D(x) = 4.

In this thesis we consider a set P in R2 that consists of k colour classes P 1, . . . , P k,
where k ≥ 3. The colourful simplicial depth D̂(x, P) of x ∈ R2 with respect to configuration
P is the number of triangles with vertices from 3 different colour classes that contain x

(Figure 1.2). We call such triangles colourful triangles. A colourful simplicial median of
a configuration P = (P 1, P 2, . . . , P k) is any point in the convex hull of P with maximum
colourful simplicial depth.

For the median, we illustrate an example in Figure 1.3, where a median is unique and
lies at the point G2. Another example is Figure 1.4, where median is not unique – it lies at
the points E and F . Moreover, in Figure 1.5 a median is three points D, E, and F , whose

1

x

Figure 1.2: A configuration P of 8 points in R2 surrounding a point x with D̂(x, P) = 6.

depth is also 5. In Figure 1.6 E and G are the deepest points with CSD of 7, but the line
joining them contains 2 other vertices whose CSD is equal to 6.

Even though a colourful simplicial median is usually a discrete set of points, in some
fairly trivial cases it can be a convex set. For instance, in Fig. 1.7a colourful simplicial
median is a line, and in Fig. 1.7b it is a triangle.

R1

R2

R3

G1

G2

B1

B2

a b

c
e

d
f g

h i

Figure 1.3: A configuration P of 7 points in R2, whose unique simplicial median is G2 which
has depth 8.

Our objective is to find efficient algorithms for finding both the colourful simplicial depth
of a given point x with respect to a configuration P , and a colourful simplicial median of
P ∈ R2.

1.2 Background

1.2.1 Facts about Simplicial Depth and Medians

We begin with a discussion of the simplicial depth introduced by Liu in 1990 [Liu90], [LPS99],
which is one of several notions of data depth. Up to a constant, it can be interpreted as the

2

A
B

C

D

E

F

Figure 1.4: A configuration P of 6 points in 3 colours, where E and F have maximum CSD
of 5.

A

B

C
D

E F

Figure 1.5: A configuration of 6 points in 3 colours, where D, E and F have maximum CSD
of 5.

probability that a given point x lies inside the convex hull of a random simplex generated
by the points in a data set P . Suppose X1, X2, and X3 are three independent observations
from P . Then for any point x in R2, the following function calculates the simplicial depth
of x: Prob(x ∈ 4(X1, X2, X3)) = 6D(x)/|P |3. The simplicial depth measures the relative
position of a point with respect to a distribution, and hence reflects its underlying proba-
bilistic geometry. Liu calls it the “insideness” of a point relative to P , marking that points
near the “centre” of the distribution should be more likely to lie within the random triangle
4(X1, X2, X3)). Hence the centre is a point x that maximizes D(x); it is a type of bivariate
median.

The colourful version of the simplicial depth [DHST06], generalizes this notion to se-
lecting points from k distributions. And the colourful version of the bivariate median
in turn generalizes it to finding the deepest point among k distributions with respect
to all of them. Suppose we have a colourful configuration P = {P1, P2, P3} ∈ R2 and
X1 ∈ P1, X2 ∈ P2, X3 ∈ P3 are independent uniformly distributed observations from the
corresponding data sets, then colourful simplicial depth of a point x with respect to P can
be written as Prob(x ∈ 4(X1, X2, X3)) = D̂(x)/[|P1||P2||P3|]. All mentioned concepts ex-
tend to Rd and are natural objects of study in discrete geometry. The simplicial depth of x

3

A

B C

D

E

F

G

Figure 1.6: A configuration of 7 points in 3 colours, where E and G have maximum CSD
of 7.

A

B C

D

(a) A configuration of 4 points in 3
colours, where the whole line BD
has CSD of 2.

A

B

C

(b) A configuration of 3 points in
3 colours, where the whole triangle
4ABC has CSD of 1.

Figure 1.7: Trivial cases when colourful simplicial median is a convex set.

in Rd can be defined as D(x) = Prob(x ∈ S[X1, . . . , Xd+1]), where X1, . . . , Xd+1 are inde-
pendent and identically distributed observations from P and S[X1, . . . , Xd+1] is the simplex
with vertices X1, . . . , Xd+1. Then colourful simplicial depth of a point x with respect to
P = {P1, P2, . . . , Pd+1} ∈ Rd can be written as D̂(x) = Prob(x ∈ S[X1, X2, . . . , Xd+1]),
where X1 ∈ P1, X2 ∈ P2, . . . , Xd+1 ∈ Pd+1 are independent and identically distributed ob-
servations from the corresponding data sets. The colourful simplicial depth represents the
number of basic solutions to a colourful linear programming problem, see [BO97, DHST08].
Applications of colourful linear programming include computing Nash equilibria in a bima-
trix game [MS17].

The medians are central points which are in some sense most representative of the
distribution(s). They are also called location estimators, i.e. points that best describe or
estimate the data.

For more background on simplicial depth (SD) and competing measures of data depth,
see [Alo06] and [FR05]. Monochrome depth has seen a flurry of activity in the past few
years, most notably relating to the First Selection Lemma, which is a lower bound for the
depth of the median, see e.g. [MW14]. Among the recent work on colourful depth are proofs
of the lower [Sar15] and upper [ABP+16] bounds for depth of colourful medians conjectured
by Deza et al. [DHST06].

4

1.2.1.1 Data Depth

Data depth was originally introduced as a way to generalize the concepts of median and
quantiles to a multivariate framework. Many definitions of the data depth have been intro-
duced in recent years, along with the algorithms to compute them. We present only some
of these definitions below:

• Tukey’s depth [Tuk75] also known as half-space depth of a point x is the smallest
number of data points in a closed half-space with boundary through x.

• Oja’s depth [Oja83] of a point x relative to a data set P in Rd is the cumulative volume
of all simplices formed by x and a subset of d elements from P .

• Convex hull peeling depth [Bar76] of a point x is the level of the convex layer x belongs
to. At every step the points on the border of the convex hull are removed from the
data set and the convex hull is reconstructed.

• Simplicial depth [Liu90] of a point x relative to the data set P is the number of
simplices formed with the points from P that contain x.

There are several properties that are desirable in a multivariate depth measure. Zuo and
Serfling [ZS00] investigated various depth functions on the subject whether these properties
hold for them or not. The following are desirable properties for a data depth function:

1. Affine invariance.

2. Maximality at centre.

3. Monotonicity relative to deepest point.

4. Vanishing at infinity.

5. Computability.

We observe that (1) and (4) always hold for simplicial depth, whereas (2) and (3) fail
in some discrete cases. A similar issue was later addressed by Fukuda and Rosta [FR05],
who pointed out that the depth contours (the sets of data points whose simplicial depth is
equal to a certain value) are not necessarily nested in case of simplicial depth, although they
always are for half-space depth. This means that we cannot use standard methods such
as convex hull peeling for finding a simplicial median. Interestingly, Burr et al. [BRS06]
considered an alternate definition of simplicial depth that behaves better in the counterex-
amples discovered by Zuo and Serfling [ZS00]. However, properties (2) and (3) still can fail
in some cases. Liu et al. [LPS99] points out that when there is a unique maximum of the
simplicial depth, the depth contours are indeed nested within one another.

5

Finally, property (5) is about how efficiently we can compute the depth function. For
simplicial depth in R2, good algorithms exist and are reviewed in Section 1.2.3. For general
dimension, tractability is a serious issue.

A number of statistical methodologies based on data depth has been developed. For ex-
ample, depth vs. depth plot or DD-plot plots the depth values of the combined sample under
the two corresponding empirical distributions F and G [LPS99]. It is a very useful general-
ization of the one dimensional quantile-quantile plot. Plots which deviate from diagonal line
from (0, 0) to (1, 1) in R2 indicate differences between the two distributions (Figure 1.8).
Different deviation patterns in the plot correspond to different types of variations between
the distributions. Some of the examples of these differences are:

• Location differences

• Scale differences

• Skewness differences

• Kurtosis differences

Figure 1.8: An example of a DD-plot of two distributions f and g.

To bring out some of these differences, certain properties of the distributions should be
normalized first, such as centre, scale, location, etc. Liu, et al. [LPS99] also make a very
important observation: “DD-plot with a common maximum point for both coordinates
indicates a common centre (i.e., no location shift) for the two underlying samples.”

6

Data depth is motivated by multivariate analysis. For instance, a package “Nonpara-
metric Depth Functions for Multivariate Analysis” [GMP08] is available for R – a language
and environment for statistical computing and graphics. It is an open source package that
allows calculation of depth values and depth-based location estimators, as well as draw-
ing contour plots and perspective plots of depth functions. Depth functions covered are
Tukey’s, Liu’s and Oja’s. A package called “Statistical Depth Functions for Multivariate
Analysis” [KBWZ16] offers a wider variety of depth functions: Euclidean depth, local depth,
Lp depth, Mahalanobis depth, modified band depth, projection depth, Tukey depth; as well
as drawing DD-plots, contour and perspective plots.

Another important factor is the robustness of the estimator, which is reflected by how
much the estimator changes if some of the data is perturbed.

Definition 1.2.1. The breakdown point is the proportion of data which must be moved to
infinity so that the estimator will do the same.

Donoho and Gasko present extensive research of the breakdown properties based on the
half-space depth in [DG92]. Computational convenience for different definitions of a multi-
dimensional median as well as common ideas of equivariance, symmetry and breakdown can
be found in “A Survey of Multidimensional Medians” by Small [Sma90]. Mosler [Mos12]
considers existing data depth definitions and suggests some approaches to define a multi-
variate depth statistic. Aloupis [Alo06] lists the main approaches of measuring the data
depth along with their properties and algorithms for computing them.

1.2.2 Facts about Colourful Simplicial Depth and Medians

The colourful setting for simplicial depth is suggested by Bárány’s approach [Bár82] to
proving a colourful version of Carathéodory’s theorem. Let us restate this famous theorem
here:

Theorem 1.2.2. Let S1, S2, . . . Sd+1 be d + 1 sets in Rd. Suppose that x ∈ conv(S1) ∩
conv(S2) ∩ conv(S3) ∩ · · · ∩ conv(Sd+1). Then there are x1 ∈ S1, x2 ∈ S2, . . . , xd+1 ∈ Sd+1

such that x ∈ conv(x1, x2, . . . , xd+1).

Later Holmsen, Pach, and Tverberg [HPT08] and Arocha et. al [ABB+09] independently
discovered a generalization of this colourful theorem:

Theorem 1.2.3. Let S1, S2, . . . , Sd+1 be d+ 1 sets in Rd. Suppose that x ∈ conv(Si ∪ Sj)
for every 1 ≤ i < j ≤ d + 1. Then there are x1 ∈ S1, x2 ∈ S2, . . . , xd+1 ∈ Sd+1 such that
x ∈ conv(x1, x2, . . . , xd+1).

Or, as Pach put it, “the right condition in the colored Carathéodory theorem is not that
every color class contains the origin in its convex hull, but that the union of every pair of
color classes contains the origin in its convex hull. This already guarantees that one can

7

pick a point of each color so that the simplex induced by them contains the origin.” Arocha,
et. al [ABB+09] called their generalization a Very Colourful Carathéodory Theorem.

Deza et al. [DHST06] formalized the notion of the colourful simplicial depth and con-
sidered its bounds of points in the intersection of the convex hulls of the colour sets or in
a core. They conjectured that the minimum colourful simplicial depth of any point in the
core in Rd is d2 + 1 and that maximum is dd+1 + 1.

1.2.3 Known Algorithms for Simplicial Depth

The monochrome simplicial depth in Rd can be computed by enumerating simplices in
time O(nd+1), but in general dimension, it is quite challenging to compute it more ef-
ficiently [Alo06], [CO01], [FR05]. Several authors have considered the two-dimensional
version of the problem, including Khuller and Mitchell [KM90], Gil, Steiger, and Wigderson
[GSW92], and Rousseeuw and Ruts [RR96]. Each of these groups produced an algorithm
that computes the monochrome depth in O(n logn) time, with sorting the input as the
bottleneck. If the input points are sorted, these algorithms take linear time.

Gil, Steiger, and Wigderson [GSW92] proposed an algorithm that finds the simplicial
depth of a point in R3 in O(n2) time. Later Cheng and Ouyang [CO01] discovered a slight
flaw in it and corrected the algorithm with the running time still O(n2). They also suggested
an adaptation of this approach in R4 and approximated the running time as O(n4).

1.2.4 Known Algorithms for Simplicial Medians

For simplicial medians, Khuller and Mitchell [KM90], and Gil et al. [GSW92] considered
an in-sample version of a simplicial median, that is they looked for a point from P with
maximum simplicial depth.

However, we consider a simplicial median to be any point x ∈ R2 maximizing the
simplicial depth. Rousseeuw and Ruts [RR96] found an algorithm to compute a simplicial
median in O(n5 logn) time, Aloupis et al. [ALST03] improved this to O(n4). In their paper,
Aloupis et al. [ALST03] compute the simplicial depth of all the intersection points of the
segments formed by all possible pairs of points in the data set, then they also compute the
simplicial depth of the data points in P . A point or a group of points with the maximum
depth is called a simplicial median. They use a topological sweep [EG89] to discover all
the intersection points, and several other techniques to improve the performance of their
algorithm. The total running time is O(n4).

The problem of finding the pairwise intersection points of the lines from a given set is
a well-studied problem. Bentley and Ottmann [BO79] proposed an algorithm that reports
all k intersection points in O(N logN + k logN) time, where N is the number of lines in
the configuration, N = O(n2). Their approach was to sweep a straight line through an
arrangement, tracking the order in which the segments intersect this line. If the order

8

of two segments swaps, that means they’ve intersected. Edelsbrunner and Guibas came
up with an idea of sweeping the arrangement with a topological line [EG89] which they
did in O(N2) time and O(N) space, where N is again the number of lines. A few years
later Chazelle and Edelsbrunner presented “An Optimal Algorithm for Intersecting Line
Segments in the Plane” [CE92]. It runs in O(N logN + k) time, where k is the number
of intersection points and N is the number of segments. Their approach was to insert one
segment at a time, checking for its intersection points with already inserted segments. The
space required is O(N+k) in the worst case, but they claim it to be much lower in practice.
Furthermore, Balaban reduced the storage complexity to O(N) [Bal95]. His strategy was to
split the arrangement into strips and recursively apply an algorithm that finds intersection
points within the strip. Moreover, Balaban’s algorithm not only works on line segments,
but also on curve segments.

1.2.5 Known Colourful Algorithms

The algorithm in [EG89], however, works with infinite lines, whereas we have bounded
segments. Rafalin and Souvaine [RS08] came up with a novel algorithm to find all the
intersection points in a complete graph. They have built upon the approach in [EG89],
i.e. also used a topological line to sweep an arrangement. The difference is that this line
could intersect a segment at most once, in contrast with an approach in [EG89], where
the topological line intersects every line exactly once. The algorithm in [RS08] runs in
O(K + NM) time, where K is the complexity of the graph measured as the number of
segments, N is the number of vertices in the graph, and M is the maximum number of
edges cut by any vertical line. Here N = |P | = n and M ∈ O(n2). K is the number of
graph segments which are the graph edges that are delimited by two adjacent intersections
or vertices along the graph edge (note these are different from segments of S). Therefore,
K ∈ O(n4). We conclude that the running time of the topological sweep executed on our
data is O(n4).

Moreover, it handles the degeneracies in the following way: dummy variables and addi-
tional information about the intersection points are added to the data structure. Rafalin
and Souvaine [RS08] mention that the degeneracy improves the running time of their algo-
rithm. However, such degeneracies as more than two lines intersect at one point increases
the running time of our algorithm. Instead we use a technique called the Simulation of
Simplicity described in [EM88]. It perturbs the data slightly by replacing each coordinate
by a polynomial in ε, where ε is assumed to be positive and sufficiently small, which allows
using it as an indeterminant and to handle primitive operations symbolically.

In addition, Rafalin and Souvaine [RS08] have demonstrated an application of their
algorithm for computing the simplicial median in [ALST03]. Aloupis et al. [ALST03] used
the topological sweep [EG89], but did not make it clear how to modify an algorithm that
works with infinite lines to work with finite segments. Whereas Rafalin and Souvaine [RS08]

9

made the change and suggested using their version of the topological sweep for finding the
simplicial median.

1.3 Organization and Main Results

In Chapter 2, we develop an algorithm for computing colourful simplicial depth that runs
in O(n logn + kn) time (Theorem 2.5.1), where k is the number of colours and n is the
number of points. This retains the O(n logn) asymptotics of the monochrome algorithms
when k is fixed. As in the monochrome case, sorting the initial input is a bottleneck, and
the time drops to O(kn) if the input is sorted around x. In this case, for fixed k, it is a
linear time algorithm.

In Chapter 3, we turn our attention to computing a colourful simplicial median. We
develop an algorithm that does this in O(n4) time using a topological sweep (Theorem 3.4.1).
This is independent of k and matches the running time from the monotone case.

In Chapter 4 we give some thought to solving the same problems in R3. Chapter 5
contains conclusions and discussion about future directions.

An extended abstract containing preliminary versions of some of these results appeared
in the conference proceedings of COCOA 2016 [ZS16].

10

Chapter 2

Computing Colourful Simplicial
Depth

2.1 Preliminaries

We consider a family of sets P 1, P 2, . . . , P k ⊆ R2, k ≥ 3, where each P i consists of the
points of some particular colour i. Refer to the jth element of P i as P i

j . We use superscripts
for colour classes, while subscripts indicate the position in the array.

We denote the union of all colour sets by P : P =
k⋃

i=1
P i. The total number of points

is n, where |P i| = ni,
k∑

i=1
ni = n. We assume that points of P

⋃
{x} are in general position

to avoid technicalities. Without loss of generality, we can take x = ~0, the zero point. We
will sometimes perform arithmetic operations on the subscripts, in which case the indices
are taken modulo the size of the array i.e. (mod ni).

Definition 2.1.1. A colourful triangle is a triangle with one vertex of each colour, i.e.
it is a triangle whose vertices v1, v2, v3 are chosen from distinct sets P i1, P i2, P i3, where
ii 6= i2, i3; i2 6= i3.

Definition 2.1.2. The colourful simplicial depth D̂(x, P) of a point x relative to the set
P in R2 is the number of colourful triangles containing x in their convex hull. We reserve
D(x, P) for the (monochrome) simplicial depth, which counts all triangles from P regardless
of the colours of their vertices.

Remark 2.1.3. We are checking containment in closed triangles. With our general position
assumption, this will not affect the value of D̂(x, P). It is more natural to consider closed
triangles than open triangles in defining colourful medians; the open triangles version of
this question may also be interesting.

Due to the fact that we consider closed triangular containments, when computing the
CSD of a coloured point, we also add the number of colourful triangles it forms with the

11

data points. In our case the point x is not assigned any colour, so we don’t have to worry
about those additional counts, but we will explain how to compute them in the end of
Section 2.5.

Throughout the thesis we work with polar angles θi
j formed by the data points P i

j and
a fixed ray from x. We remark that simplicial containment does not change as points are
moved on rays from x, see for example [ZS00]. Thus we can ignore the moduli of the P i

j ,
and work entirely with the θi

j , which lie on the unit circle C with x as its origin. We will at
times abuse notation, and not distinguish between P i

j and θi
j .

Note that the ray taken to have angle 0 is arbitrary, and may be chosen based on an
underlying coordinate system if available, or set to the direction of the first data point P1

in P . We can sort the input by polar angles, in other words, we can order the points around
x. In some cases, it is naturally presented this way. We reduce the θi

j to lie in the range
[0, 2π).

Definition 2.1.4. The antipode of some point α on the unit circle is ᾱ = (α+ π) mod 2π.

A key fact in computing CSD is that a triangle 4abc does not contain x if and only
if the corresponding polar angles of points a, b and c lie on a circular arc of less than π

radians. This is illustrated in Fig. 2.1, and is equivalent to the following lemma, stated by
Gil, Steiger and Wigderson [GSW92]:

Lemma 2.1.5. Given points A, B, C on the unit circle C centred at x, let Ā be antipodal
to A. Then 4ABC contains x if and only if Ā is contained in the minor arc (i.e. of at
most π radians) with endpoints B and C.

x

BC

Ā

A

Figure 2.1: Antipode Ā falls in the minor arc between B and C and, therefore, the triangle
4ABC contains x.

2.2 Outline of Strategy

Recall that we denote the ordinary and colourful simplicial depth by D(x, P) and D̂(x, P)
respectively. We start off by computing the simplicial depth of x with respect to all points

12

in P , where no distinction between colours is made. From D(x, P) we exclude the triangles
that contain x and have two or three vertices of the same colour i, denoting this quantity
by Di(x, P). When x and P are clear from the context, we will abbreviate these to D, D̂
and Di.

Since we can computeD(x, P) efficiently using the algorithms mentioned in the introduc-
tion [GSW92], [KM90], [RR96], the challenge is to compute Di(x, P) for each i = 1, 2, . . . , k.
Then we conclude:

D̂(x, P) = D(x, P)−
k∑

i=1
Di(x, P) . (2.1)

To compute Di efficiently for each colour i, we walk around the unit circle tracking the
minor arcs between pairs of points of colour i, and the number of antipodes between them.
As shown in the Figure 2.2, an arc between A and B contains 3 antipodes. Note that we
also include antipodes of the colour that matches the colour of the points that form the arc
(red in this case). Having three points in the arc between A and B means that there are 3
triangles with base AB that contain x and have less than three distinctly coloured vertices.
For each colour i, we consider all possible arcs formed by pairs of points of colour i and
that are shorter than π. For simplicity, we will sometimes refer to these arcs as intervals of
colour i.

x

A

B

C
D

E

Figure 2.2: The antipodes of D, C, and E fall in the shorter arc between A and B, hence
the triangles 4ABE, 4ABC, and 4ABD contain x. All of these triangles have 2 or 3
red vertices, which is due to the fact that both A and B are red, and we are counting the
antipodes of all possible colours between them.

Definition 2.2.1. An interval of colour i is an arc shorter than π formed by a pair of points
of colour i.

However, tracking all such intervals would be expensive, so we came up with a formula
that computes Di in linear time in ni. This builds on the approaches of Gil, Steiger, and
Wigderson [GSW92], and Khuller and Mitchell [KM90] for monochrome depth.

13

Remark 2.2.2. When computing Di, we count antipodes of all k colours; the triangles
with three vertices of colour i will be counted three times: 4abc, 4bca and 4cab. Thus the

quantity obtained by this count is in fact Di
∗ := Di + 2

k∑
j=1

D(x, P j). We separately compute

k∑
j=1

D(x, P j), allowing us to correct for the overcounting at the end.

2.3 Data Structures and Preprocessing

We begin with the arrays θi of polar angles, which we sort. All elements in
k⋃

i=1
θi are distinct

due to the general position requirement. By construction we have:

0 ≤ θi
0 < θi

1 < . . . < θi
ni−1 < 2π, for all 1 ≤ i ≤ k . (2.2)

Let θ̄i be the array of antipodes of θi for colour i, also sorted in ascending order. We
generate θ̄i by finding the first θi

j ≥ π, moving the part of the array that begins with that
element to the front, and hence the front of the original array to the back; π is subtracted
from the elements moved to the front and added to those moved to the back. This takes
linear time.

We merge all θ̄i into a common sorted array denoted by A which takes O(n log k). Now
we have all antipodes ordered as if we were scanning them in counter-clockwise order around
the circle C with origin x. Let us index the n elements of A starting from 0. Then, for each
colour i = 1, . . . , k, we merge A and θi into a sorted array Ai. Once again, this corresponds
to a counter-clockwise ordering of data points of colour i plus the antipodes of all k colours
around C. Merging two sorted arrays of sizes n and ni correspondingly takes linear time in
their cumulative size: O(n+ ni) = O(n).

While building Ai, we associate pointers from the elements of array θi to the correspond-
ing position (index) in Ai. This is done by updating the pointers whenever a swap occurs
during the process of merging the arrays. Denote the index of some θi

j in Ai by p(θi
j). Then

the number of the antipodes that fall in the minor arc between two consecutive points θi
j

and θi
j+1 on C is

p
(
θi

j+1

)
− p

(
θi

j

)
− 1, if p

(
θi

j

)
< p

(
θi

j+1

)
,

n+ ni − p
(
θi

j

)
+ p

(
θi

j+1

)
− 1, if p

(
θi

j

)
> p

(
θi

j+1

)
.

(2.3)

Remark 2.3.1. Note that p
(
θi

j

)
is never equal to p

(
θi

j+1

)
.

Now, for each point θi
j , we find the index l(i, j) in the corresponding array θi such

that ∠θi
j , x, θ

i
l(i,j) < π and ∠θi

j , x, θ
i
l(i,j)+1 > π (Fig. 2.3a). Thus looking 180 degrees in the

counterclockwise direction from θi
j on the circle C, we will see a following sequence of points:

θi
j , θ

i
j+1, . . . , θ

i
l(i,j), where θ

i
l(i,j) is the last one (Fig. 2.3b).

14

Viewing the minor arc between two points as an interval (Def. 2.2.1), the intervals formed
with the points from this sequence overlap and can be split into small disjoint intervals as
follows: [

θi
j , θ

i
t

)
=

t⋃
h=j+1

[
θi

h−1, θ
i
h

)
, where t = j + 1, . . . , l(i, j) . (2.4)

x
θi

j

θi
l(i,j)

θ̄i
j

θi
l(i,j)+1

(a) Index l(i, j) and index (l(i, j) + 1)

x
θi

j

θi
j+1

θi
j+2

θi
l(i,j)−1

θi
l(i,j)

· · ·

(b) Arcs
[
θi

j , θ
i
j+1
)
,
[
θi

j , θ
i
j+2
)
, . . . ,

[
θi

j , θ
i
l(i,j)

)
along the circle

Figure 2.3: Illustrations of the index l(i, j).

2.4 Computing Di
∗

Let us the denote the count of the antipodes of all k colours within the minor arc between
a and b by c(a, b). Then Equation 2.3 expresses what we denote by c(θi

j , θ
i
j+1). Recall that

Di
∗ stands for Di with overcounting the triangles that have all three vertices of the same

colour. Using the newly introduced notation, Di
∗ can be written as follows:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

c
(
θi

j , θ
i
t

)
. (2.5)

Note that index t is taken modulo ni. From (2.4) we have:

c
(
θi

j , θ
i
t

)
=

t∑
h=j+1

c
(
θi

h−1, θ
i
h

)
, for t = j + 1, . . . , l(i, j) . (2.6)

Due to (2.5) and (2.6), we have:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

t∑
h=j+1

c
(
θi

h−1, θ
i
h

)
. (2.7)

15

Let us store the counts of antipodes between two consecutive points of colour i in the array
Ci, so that Ci

h = c
(
θi

h−1, θ
i
h

)
, |Ci| = ni. Then (2.7) can be rewritten as:

Di
∗ =

ni−1∑
j=0

l(i,j)∑
t=j+1

t∑
h=j+1

Ci
h . (2.8)

We create an array of prefix sums: Si, where Si
t =

t∑
h=0

Ci
h, |Si| = ni. This array can be

filled in O(ni) time and proves to be very useful when we need to calculate a sum of the
elements of Ci between two certain indices. In fact, this sum can be obtained in constant
time using the elements of array Si:

t∑
h=j+1

Ci
h =


Si

t − Si
j , if t ≥ j + 1, j 6= ni − 1 ,

Si
ni−1 + Si

t − Si
j , if t < j + 1, j 6= ni − 1 ,

Si
t , if j = ni − 1 .

(2.9)

We process the case j = ni − 1 separately as follows:

Di
∗ =

ni−2∑
j=0

l(i,j)∑
t=j+1

(Si
t − Si

j) +

0, if t ≥ j + 1

Si
ni−1, if t < j + 1

+
l(i,ni−1)∑

t=0
Si

t . (2.10)

Noting that Si
j is not dependent on t, we get:

Di
∗ =

ni−2∑
j=0

 l(i,j)∑
t=j+1

Si
t − ((l(i, j)− j) mod ni) · Si

j

+
l(i,ni−1)∑

t=0
Si

t

+
ni−2∑
j=0


l(i,j)∑

t=j+1
Si

ni−1, when t < j + 1 ,

0, otherwise .

(2.11)

Note that the index t runs from j + 1 to l(i, j). So t < j + 1 in (2.10) and (2.11) only
occurs where j+1 > l(i, j) and we have wrapped around the array. In other words, t < j+1
is equivalent to j + 1 > l(i, j) and t = 0, . . . , l(i, j). Then:

Di
∗ =

ni−2∑
j=0

 l(i,j)∑
t=j+1

Si
t − ((l(i, j)− j) mod ni) · Si

j

+
l(i,ni−1)∑

t=0
Si

t

+
ni−2∑
j=0


l(i,j)∑
t=0

Si
ni−1, when l(i, j) < j + 1 ,

0, otherwise .

(2.12)

16

Following the previous logic, we create another array of prefix sums T i, where T i
j =

j∑
t=0

Si
t , |T i| = ni. This array is used to store the sum of elements of Si between two certain

indices in O(1) time. We write:

l(i,j)∑
t=j+1

Si
t =

T
i
l(i,j) − T

i
j , if l(i, j) ≥ j + 1 ,

T i
ni−1 + T i

l(i,j) − T
i
j , if l(i, j) < j + 1 .

(2.13)

And
l(i,ni−1)∑

t=0
Si

t = T i
l(i,ni−1) . (2.14)

Combining (2.12) with (2.13) and (2.14), we have:

Di
∗ =

ni−2∑
j=0

(
T i

l(i,j) − T
i
j − ((l(i, j)− j) mod ni) · Si

j

)
+ T i

l(i,ni−1)

+
ni−2∑
j=0

T
i
ni−1 + ((l(i, j) + 1) mod ni) · Si

ni−1, when l(i, j) < j + 1 ,

0, otherwise .

(2.15)

After all this preprocessing, computing Di
∗ is quite straightforward, and can be done in

O(ni) time. Then, overall, computing the Di
∗ for all i = 1, . . . , k takes O(

k∑
i=1

ni = n) time.

Following Remark 2.2.2, we finish by computing Di = Di
∗ − 2 ·

k∑
j=1

D(x, P j), where

D(x, P j) for each j is computed using one of the known algorithms from either [GSW92],
[KM90], or [RR96] that run in time O(ni) on sorted data.

2.5 Algorithm and Analysis

Algorithm 1 computes the colourful simplicial depth of a point x with respect to a data
set P . First, we find the polar angles corresponding to the data points in P and a fixed
ray from x, and then their antipodes. This takes O(n) in total. Second, we sort the arrays
of polar angles θi while permuting their corresponding antipodal elements in θ̄i, which is

O

(
k∑

i=1
ni logni

)
. Third, we need to rotate θ̄i, so that they are in an ascending order. This

takes O(n) time. Note then after this operation the correspondence between the elements
in θi and θ̄i will be lost, but having them all sorted in an ascending order is exactly what
we need for the purpose of finding the colourful simplicial depth.

For each i = 1, . . . , k, we compute the number of triangles with all three vertices of
colour i that contain x, i.e. D(x, P i), using one of the implementations given in [GSW92],
[KM90], or [RR96]. Without loss of generality, we decided to use the one provided in [RR96].

17

Algorithm 1 CSD(x, P)
Input: x, P = (P1, . . . , Pk). Output: D̂(x, P).
1: Sum1← 0, Sum2← 0;
2: for i← 1, k do
3: for j← 0, ni − 1 do
4: θi

j ← polar angle of (Pi
j − x) mod 2π;

5: θ̄i
j ← (θi

j + π) mod 2π;
6: end for
7: Sort(θi); . while permuting θ̄i

8: Restore the order in θ̄i;
9: Sum1← Sum1 + D(x, θi); . use the algorithm from [RR96]

10: end for
11: A← Merge(θ̄1, . . . , θ̄k); . A is sorted
12: D← D(x, A); . use the algorithm from [RR96]
13: for i← 1, k do
14: Ai ← Merge(A, θi); . update p(θi

j) the pointers of θi
j,

15: for j← 1, ni do . j = j mod ni
16: if p(θi

j−1) < p(θi
j) then

17: Cj ← p(θi
j)− p(θi

j−1)− 1; . C = Ci - array of antipodal counts
18: else
19: Cj ← n + ni − p(θi

j−1) + p(θi
j)− 1;

20: end if
21: end for
22: Find l(i, 0) using binary search in θi;
23: S0 ← C0; T0 ← S0; . S = Si, T = Ti - prefix sum arrays
24: for j← 1, ni − 1 do
25: Find l(i, j);
26: Sj ← Sj−1 + Cj;
27: Tj ← Tj−1 + Sj;
28: end for
29: Sum2← Sum2 + Di

∗(x, P) obtained from the formula (2.15);
30: end for

31: return D̂(x, P) = D− (Sum2− 2 ∗ Sum1) ; . Sum1 =
k∑

i=1
D(x, Pi)

However, instead of passing the data points P i as input of the algorithm, we pass the sorted
polar angles θi directly. This will allow for the algorithm to execute in O(ni), for each i,

or O(n) in total. Hence lines 2-10 of the Algorithm 1 take O
(

k∑
i=1

ni +
k∑

i=1
ni logni

)
=

O(n logn) time to complete. This follows from the facts that
k∑

i=1
ni = n and n logn is

convex.
To generate the sorted array A of antipodes, we merge the k single-coloured arrays

using a heap of size k (following e.g. [CLR89]) in O(n log k) time. We need to compute the
monochrome depth D(x, P) of x with respect to all points in P , regardless of colour. For

18

this we can use the sorted array of antipodes rather than sorting the original array. Thus
we again use the linear time monochrome algorithm [RR96] with x and A as input. Note
that working with the antipodes is equivalent due to the fact that the simplicial depth of x
does not change if we rotate the system of data points around the centre x.

After that, we execute a loop of k iterations – one for each colour. It starts with merging
two sorted arrays A and θi, which is linear in the size of arrays we are merging and takes

O

(
k∑

i=1
(n+ ni)

)
= O (kn) in total. Recall that during the merge we store the indices of

the θi in resulting Ai, which allows to fill each array Ci in linear time O(ni) using the
Formula 2.3. As we already mentioned in Section 2.4, prefix sum arrays can be filled in the
time linear in their size. The algorithm is very simple, and can be found in the lines 24-29
of the Algorithm 1. Since the arrays Ci, Si, and T i take O(3n) = O(n) space together for
all colours i, the time needed to fill them out is also O(n).

Note that the indices l(i, j) appear in sequence in the array θi. Therefore, it is more
efficient to find the first one l(i, 0) for each colour i, using a binary search that takes
O(logni), hence O(k logn) in total. And then find the rest of l(i, j), j = 1, . . . , ni − 1, in
O(ni) time for each i by scanning through the array starting from the element θi

l(i,0).
Computing the value of Di

∗(x, P) or simply Di
∗ takes O(n) overall. The remaining

operations take constant time to execute. Therefore, total running time of Algorithm 1 is
O (kn+ n+ n logn+ n log k + k logn) = O (n logn+ kn). The n logn term corresponds to
the initial sorting of the data points, if they are presented in sorted order, the running time
drops to O(kn). This compares very well to the monochrome case, where the algorithm
that finds the simplicial depth D(x, P) runs in O(n logn) time, and if the input data is
sorted, drops to O(n).

As for space, arrays θi, θ̄i and A take 3n = O(n) space in total. Note that merging
k sorted arrays into A can be done in place [GG10]. At each iteration i, we create Ai of
size O(n + ni), and Ci, Si, T i of size O(ni) each. Fortunately, we only need these arrays
within the ith iteration, so we can reuse them in the end (line 31 of the Algorithm 1) and
reuse the space freed. This is the reason we have omitted the superscripts of Ci, Si, and T i

in the Algorithm 1). Furthermore, to store the indices l(i, j), we need O(n) space, which
again can be reallocated when i changes. Thus the amount of space used by our algorithm
is O(n), which is exactly the same as in the monochrome case. We summarize with:

Theorem 2.5.1. Given a set of data points P in general position in k different colours,
k ≥ 3, and a point x in general position with P , the colourful simplicial depth of x relative
to P , D̂(x, P), can be found in O(n logn+ nk) time and O(n) space, where |P | = n. If the
points in P are sorted around x, the colourful simplicial depth of x with respect to P can be
computed in O(nk).

Remark 2.5.2. In Chapter 3, we will want to compute the colourful simplicial depth of the
data points themselves. This can be done by computing D̂(x, P \{x}) and counting colourful

19

simplices (triangles) that have x as a vertex. This is exactly the number of pairs of points
of distinct colours that also differ from the colour of x. Such quantity can be computed in
linear time.

For a point x of colour i′, this aforementioned quantity can be expressed as
k∑

i=1
i 6=i′

ni ·

k∑
j=i+1
j 6=i′

nj. A naive evaluation takes O(k2) time. To simplify it, we can use a prefix sum

array K. Let Ki =
i∑

j=1
j 6=i′

nj. Then
k∑

j=i+1
j 6=i′

nj = Kk −Ki. In conclusion, to compute the CSD

of x of colour i′, we run Algorithm 1, and then add
k∑

i=1
i 6=i′

ni · (Kk −Ki) to the obtained result.

Array K takes O(k) space and takes linear time to fill.

2.5.1 Implementation of the Algorithm

An implementation of this algorithm is available on-line [Zas16]. For this purpose we used
Java and the package jmathplot [Ric16] to draw the points. A uniform generator of points
in general position was written to test the program [Zas17b]. We have verified our im-
plementation by comparing it to the brute force enumeration [Zas17a]. Our brute force
implementation uses the cross product to check whether a point lies inside a triangle.

Instead of keeping track of the execution time, we count operations. Every time we
perform a floating point operation, such as addition, subtraction, multiplication, or division,
a count is increased by 1. This includes the calculations performed on array indices. Another
count we keep is the number of comparisons performed in the Algorithm 1 in steps 11 and
14, where we merge the arrays. All calculations were performed on a MacBook Pro machine
with 2.9 GHz Intel Core i5 Processor and 16 GB 1867 MHz DDR3 RAM.

A comparison of our method to the brute force enumeration for fixed n and varying k
is displayed in Table 2.1, where the last column is the number of floating point operations
followed by the number of comparisons in the parentheses. The results for k fixed and
varying n can be found in Table 2.3.

In Figure A.4 green dots show the floating operation count and red ones show the number
of comparisons carried out when merging plotted against the number of points in P , for a
fixed k = 3. Whereas Figure A.5 shows the same counts, but against the number of colours
for fixed n = 1000.

An example of a configuration in k = 4 colours and n = 500 points is shown in Figure
A.1, where D̂((0, 0), P) = 1, 962, 624. We’ve setmin andmax values on x and y coordinates
to −500 and 500 respectively. Another example is a configuration with k = 10 and n = 6000
D̂((0, 0), P) = 6, 480, 643, 500 (Figure A.2).

20

k n CSD
Operation Count

Brute Force Algorithm Our Algorithm

3 1000 9,276,741 1,477,639,471 102,095 (4,986)

6 1000 23,141,494 3,693,608,639 108,283 (10,163)

12 1000 31,855,526 5,078,991,246 120,436 (18,299)

24 1000 36,519,662 5,837,724,107 145,673 (32,247)

48 1000 38,827,340 6,214,214,800 200,371 (56,355)

Table 2.1: Comparison of Operation Count for Brute Force Algorithm vs Our Algorithm
for fixed n.

k n CSD
Operation Count

Brute Force Algorithm Our Algorithm

3 10 6 1,471 856 (36)

3 100 9,161 1,479,255 10,235 (482)

3 1000 9,219,163 1,477,116,053 102,224 (4,986)

3 10,000 47,909,756,342 1,476,881,399,348 1,020,891 (49,986)

Table 2.2: Comparison of Operation Count for Brute Force Algorithm vs Our Algorithm
for fixed k.

We’ve tested and confirmed that the algorithm works well with points not in general
position on small data sets. Figure A.3 displays an example where more than two points
lie on the same line. Our algorithm computed D̂((0, 0), P) to be 254.

21

k n CSD
Operation Count

Brute Force Algorithm Our Algorithm

6 10 6 2,390 963 (56)

6 100 22,488 3,679,709 10,935 (982)

6 1000 23,173,687 3,693,275,030 108,134 (10,163)

6 10,000 48,918,787,471 3,692,498,319,339 1,080,524 (10,2261)

Table 2.3: Comparison of Operation Count for Brute Force Algorithm vs Our Algorithm
for fixed k.

22

Chapter 3

Computing Colourful Simplicial
Medians

Now that we have an efficient algorithm to compute the colourful simplicial depth or CSD of
a point x ∈ R2 relative to a set P , we can proceed to finding a colourful simplicial median,
that is a point of maximum CSD that lies in the convex hull of P . The running time of our
algorithm is O(n4), which matches the monochrome case, being independent of the number
of colours. This is arguably as good as should be expected, following the observation of
Lemma 3.1.1 in Section 3.1 that shows that there are in some sense Θ(n4) candidate points
for the location of the colourful median.

If we wanted to find the in-sample colourful simplicial median, it would suffice to com-
pute D̂(p, P) for all p ∈ P . That takes O(n2 logn + kn2) time, or O(kn2) if we use the
algorithm from [LC85] to presort the data points in P .

Our algorithm is founded on the topological sweep for a complete graph as presented by
Rafalin and Souvaine. This removes some of the overhead of the general topological sweep
framework [EG89], notably in avoiding the use of phantom vertices. These are intersections
of an extension of a line segment with either another segment or with an extension of another
segment, see Figure 3.1, and were used in a preliminary version of this work [ZS16]. Here
we are going to use the topological sweep for a complete graph [RS08] which simplifies the
process significantly.

3.1 Preliminaries

Consider a family of sets P 1, P 2, . . . , P k ∈ R2, k ≥ 3, where each P i consists of the points
of some particular colour i. Define ni = |P i|, for i = 1, . . . , k. Let P be the union of all

colour sets: P =
k⋃

i=1
P i, points in P in general position. Recall that we denote the CSD of a

point x ∈ R2 relative to P by D̂(x, P). Our objective is to find a point x inside the convex
hull of P , denoted conv(P), maximizing D̂(x, P). Call the depth of such a point µ̂(P).

23

A

B

C

D

(a) Extensions of two segments
intersect.

A

B

C

D

(b) An extension of segment
(D,C) intersects the segment
(A,B).

Figure 3.1: Examples of phantom vertices.

Let S be the set of line segments formed by all possible pairs of points (A,B), where
A ∈ P i, B ∈ P j , i < j. We will refer to these as colourful segments. We call the intersection
points of the segments in S vertices and denote their set by V . The following lemma
(from [ALST03]) is here adapted to a colourful setting:

Lemma 3.1.1. To find a point with maximum colourful simplicial depth it suffices to con-
sider the intersection points of the colourful segments in S.

Proof. The segments of S partition conv(P) into cells1 of dimension 2, 1, 0 of constant
colourful simplicial depth [DHST06]. Cells are relatively open and simply connected. Con-
sider a 2-dimensional cell. Let p be a point in the interior of this cell, q a point on the
interior of an edge and v a vertex, so that q and v belong to the same line segment (Fig.
3.2). Then the following inequality holds: D̂(p, P) ≤ D̂(q, P) ≤ D̂(v, P), since any colourful
simplices containing p also contain q, and any containing q also contain v. This proves the
Lemma.

Observe that drawing the colourful segments is equivalent to generating a rectilinear
drawing of the complete graph Kn with a few edges removed (the monochrome ones).
Thus, unless the points are concentrated in a single colour class, the Crossing Lemma (see
e.g. [PRTT06]) shows that we will have N = Θ(n4) vertices. More precisely, we have
a rectilinear drawing of a complete k-partite graph; bounds for this are considered some
graphs from this family by Gethner et al. [GHL+17] and references therein. To find all
intersection points of the segments in S, the topological sweep [RS08] is applied. The
algorithm we present in this thesis is optimal, because we check all the data points and all
the intersection points. There is O(n2) segments and, hence, O(n4) intersection points.

1Unlike the monochrome case, here some cells may not be convex, and some points of conv(P) may fall
outside any cell.

24

p
q

v

Figure 3.2: An example of a cell.

Computing the CSD of each of these O(n4) vertices gives an O(n5 logn+kn5) algorithm
for finding a colourful simplicial median. To improve this, we follow Aloupis et al. [ALST03],
and compute the depth of most vertices based on the values of their neighbours and infor-
mation about the half-spaces of local segments. In [ALST03], the simplicial depth of a
vertex v is computed based on the already known depth of an adjacent vertex p and on
the number of triangles that we left and entered correspondingly when moving from p to
v. By the number of triangles that we leave we mean the triangles that contained p, but
do not contain v. Then the number of triangles that we enter consists of the triangles
that contain v but not p. These numbers can be obtained by calculating the number of
points on either side of the segments formed by the pairs of data points. This is due to the
fact that a segment has two endpoints that form a triangle with every point that is not an
endpoint of this segment. Then every point on the interior of this segment is contained in
such triangle, because we examine closed containment (Fig. 3.3). Suppose that a vertex p
lies on the segment (A,B) as shown in the Figure 3.3, and a vertex v lies on a completely
different segment (X,Y). Then, when we are moving from p to v, we leave 4ABC, 4ABD,
4ABE, i.e. the triangles formed with the points that lie on one side of (A,B) from v. We
will explain in more detail and provide a full example further, in Section 3.3.1, where we
talk about the colourful case.

3.2 Notation

Let col(A) denote the colour of a point A. We store the segments in S as pairs of points:
s = (A,B), col(A) < col(B). It is helpful to view each segment as directed, i.e. a vector,
with A as the tail and B as the head. Each segment s extends to a directed line dividing
R2 into two open half-spaces: s+ and s−, where s+ lies to the right of the vector s, and s−

to the left (Figure 3.4).
Denote the number of points in s+ that have colours different from the endpoints of s

by r(s), and those in s− by l(s). Let ri(s) and li(s) be the number of points of a colour i in
s+ and s− respectively. Let r̄i(s) and l̄i(s) be the number of points of all k colours except

25

C

D

E

B

F

G

HA

p

v

X

Y

Figure 3.3: Every point on the interior of the segment (A,B), for example p, is contained
in the triangles 4ABC, 4ABD, 4ABE, as well as 4ABF , 4ABG, 4ABH.

A

B

s+

s−

(a)
A

B

s+
s−

(b)

Figure 3.4: s+ and s− of the segment s = (A,B).

for the colour i in s+ and s− respectively. For example, given a segment s = (A,B), the
aforementioned quantities should be as follows:

r̄col(A)(s) =
k∑

i=1,
i 6=col(A)

ri(s) , l̄col(A)(s) =
k∑

i=1,
i 6=col(A)

li(s) . (3.1)

Then
r(s) = r̄col(A)(s)− rcol(B)(s) , l(s) = l̄col(A)(s)− lcol(B)(s) . (3.2)

The values needed to compute r(s) and l(s) for each segment s ∈ S as shown in Eq. 3.2,
can be obtained as byproducts of an algorithm that computes half-space depth.

The half-space depth HSD(x, P) of a point x relative to data set P is the smallest
number of data points from P in a half-plane through the point x [Tuk75]. An efficient
algorithm to compute the half-space depth of a point x ∈ R2 relative to a set P is provided
in [RR96]. It runs in O(|P |) time when P is sorted around x, which we are going to use to

26

our advantage. This algorithm draws a line between x and every Pi ∈ P , then calculates
the number of points in P that lie strictly to the left of each of these lines. However,
when calculating the number of points that lie to the right, p is included into the count.
We correct for this by subtracting 1 from those counts. Algorithm 4 manipulates different
combinations of the colour sets, usually already sorted, in order to obtain the necessary
values r(s) and l(s) for all s ∈ S and store them in a map M .

We use the algorithm in [LC85] that, for each Pi ∈ P , sorts P \ {Pi} around Pi in
Θ(|P |2) time. In particular, it assigns to every point Pi ∈ P a list of indices that determine
the order of points P \ {Pi} in the clockwise ordering around Pi. Denote this by List(Pi).
Since the HSD algorithm needs the data points to be sorted in the counter-clockwise order
around the centre, we read those lists in reverse order.

The next section gives extensive background on the topological sweep and how we use
r(s) and l(s).

3.3 Computing the median

To compute the CSD of all vertices, we carry out a topological sweep described in [RS08].
It fits our purpose very well, because the set of colourful segments S is a complete graph
with monochrome edges removed.

Here a topological line is swept through an arrangement of line segments, where the
discovery of each new vertex is called an elementary step. Each vertex is processed in
amortized constant time. The topological line can be thought of as a moving wall that
separates the arrangement into two regions: the already discovered intersection points and
the ones yet to be registered. At each elementary step we are computing the CSD of a
new vertex. Thus the moving wall separates the vertices with known CSD from the vetices
whose colourful simplicial depth has yet to be computed.

Combinatorially, the topological line is a cut in the sense of graph theory. It intersects
every edge of the graph at most once. An edge intersected by a cut is called active. An
active segment is the specific segment of the active edge that is intersected by the cut, it
extends to the right until it is intersected by another active segment or until it meets a
data point. Figure 3.5 demonstrates an example of a topological line with bold lines being
active segments. An active segment can contain several vertices formed by intersections
with inactive segments. We start the sweep with the leftmost cut which intersects no edges
of the graph. This is pushed to the right until it becomes the rightmost cut, in the process
performing elementary steps. An intersection point is called a ready intersection if all
incoming edges have active segments that are consecutive in the cut. When no intersection
points are ready, a vertex of the graph is processed by the topological sweep. In that case
we execute the CSD algorithm with an input that consists of this current data point and
the rest of the points in P .

27

A

BC

D

E

F

G

H

c1

c2

c3

c4

Figure 3.5: A topological line crossing the configuration.

We denote the set of ready intersections by I. For example, in Figure 3.5 current state of
I is {c1, c2, c3, c4, H}. As we start with the leftmost cut, the topological line is completely
outside the convex hull of P . To enter it, the topological line needs to cross one of the
points on the boundary of conv(P). Therefore, we initialize I with the points of P that are
vertices of the boundary of conv(P). At every iteration, we take a vertex from I, following
the rules described in [RS08]. At the end of every iteration we update I by deleting the
vertex we just crossed and by adding the vertices that have just become ready intersections
to it.

For each segment s ∈ S we store the last processed vertex that lies on this segment and
denote it by ver(s), along with its CSD. We also store the crossing segment that defines
ver(s) on s, and denote it by cross(ver(s)). Before starting the topological sweep, for
each s ∈ S we assign ver(s) = ∅. After completing an elementary step where we crossed
a vertex v that lies at the intersection of si and sj , we assign ver(si) ← v, ver(sj) ← v,
cross(ver(si))← sj , cross(ver(sj))← si. We need this so that we can compute the CSD of
a newly discovered vertex using the CSD of an adjacent one. However, when the elementary
step is performed on a data point p, we assign ver(s) = ∅ for each incoming segment s, i.e.
for each active segment that ends in p. It is safe to do so, because the algorithm [RS08]
deletes the edges terminating at a given data point from the list of active edges, so we won’t
hit them again. We also do nothing for the outgoing segments from p, that is the ones that
weren’t registered yet.

We now explain how we process a vertex v at an elementary step when we have an
adjacent vertex with already computed CSD. Assume v is at the intersection of si = (D,E)
and sk = (B,G), see Figure 3.6. If both ver(si) and ver(sk) are non-empty, we are free

28

to choose whichever one of them to compute the CSD of v. Without loss of generality we
take ver(si) = p, where cross(ver(si)) = sj . We view this elementary step as moving along
the segment si from its intersection point with sj to the one with sk. Each intersecting
segment forms a triangle with every point strictly to one side. Thus when we leave segment
sj = (C,F) behind, we exit as many colourful triangles that contain p as there are points
on the other side of sj of colours different from col(C) and col(F). In our example, we
leave 4CFA, 4CFD, and 4CFG, because the points A, D, and G have colours that are
different from the colours of C and F .The above mentioned triangles contain p, but not v,
so we can subtract them from the CSD of p.

When we encounter segment sk = (B,G), we enter the colourful triangles that contain
v formed by sk and each point of a colour different from col(G) and col(B) on the other
side of sk. In our example, there is only one such triangle 4BGH, because the colour of
point H is different from the colours of B and G.This triangle contains v, but not p, hence
we can add it to the CSD of p after we have subtracted the 3 triangles we left behind. Here
r(sj = (C,F)) = 3, l(sk = (B,G)) = 1. Then D̂(v) = D̂(p)−r(sj)+ l(sk) = 14−3+1 = 12.

A

BC

D

E

F

G

H

p
v

Figure 3.6: The CSD of p is 14, and the CSD of v is 12 since as we move along DE from
CF to BG, we leave triangles 4CFA, 4CFD, 4CFG containing p and enter only 4BGH
that contains v.

This is the cornerstone of our algorithm. The trick is to know which side of a segment
to consider, left or right, l(s) or r(s). But it turns out it’s quite easy to resolve. Let us
denote the head and the tail of a segment s by head(s) and tail(s) respectively, and x and
y coordinates of a point A by A.x and A.y respectively. Now, to compute the CSD of v
knowing the CSD of p, we execute Subroutine 2. We pass it the vertex p along with its
CSD which we then use to compute the CSD of v. Other arguments are two segments that
define the intersection points p and v with the segment along which we are moving. Let
us use Figure 3.7 as an example. Suppose we are moving from p to v along the segment

29

sk. Then the input to Subroutine 2 should be:
(
D̂(p), p, v, si, sj

)
. The output is simply

D̂(v). We use the cross product to determine which side of a vector a certain point lies in.
Subroutine 2 runs in constant time.

sk

si

sj

p

v

Figure 3.7: Two adjacent vertices p and v and their corresponding line segments.

Subroutine 2 Computing D̂(v) from D̂(p)
Input: D̂(p), p, v, sb, sa. Output: D̂(v).
1: if Subroutine 3 (v, sb) < 0 then
2: D̂(v)← D̂(p)− r(sb);
3: else
4: D̂(v)← D̂(p)− l(sb);
5: end if
6: if Subroutine 3 (p, sa) < 0 then
7: D̂(v)← D̂(v) + r(sa);
8: else
9: D̂(v)← D̂(v) + l(sa);

10: end if
11: return D̂(v);

Subroutine 3 Cross-product

Input: p, s = (A, B). Output: −→AB×−→Ap.
1: return (p.x− head(s).x)(tail(s).y− head(s).y)
2: −(p.y− head(s).y)(tail(s).x− head(s).x);

When both ver(si) = ∅, ver(sk) = ∅, i.e. vertex v is the first vertex to be discovered
for both segments and the only vertices with known CSD adjacent to it are the actual data
points, we execute CSD(v, P) to find the depth. In the example displayed in Figure 3.8, any
one of the vertices c1 through c8 may require computing the CSD from scratch. However,
we will only see at most one of these per segment. For example, once D̂(c1) is computed,
we will not run the CSD algorithm for the vertices c8 and c2. On the other hand, c5 cannot
cause such a situation either, because the topological sweep moves from left to right. So
would never approach c5 from H or E.

30

A

BC

E

H

c1

c2

c3

c4

c5

c6
c7

c8

Figure 3.8: Points that may require the execution of the colourful simplicial depth algorithm.

It is tempting to assign the data points themselves as last processed vertices, i.e. allow
ver(s) to be a data point, and avoid running the CSD algorithm on the points that are not
in P . However, consider the situation in Figure 3.8 after discovering vertex c3. It doesn’t
matter whether we came to it from C or from A, because both are data points. If we assign
ver(s = (C,B))← C, then we can use D̂(C) to calculate the D̂(c3). Due to this ambiguity,
we choose to run the colourful simplicial depth algorithm for all vertices whose immediate
neighbours with known CSD are all data points. We bound the number of cases when we
have to call the colourful simplicial depth algorithm as O(n2), as we never compute the CSD
of a vertex based on a movement from one segment to another. This adds O(n3 logn+kn3)
to the running time, but doesn’t exceed O(n4).

3.3.1 Computing r(s) and l(s)

Recall that r(s) is the number of points strictly to the right of s whose colours differ from the
colours of the endpoints of s. And l(s) is the number of points on the left respectively. We
compute these values with the help of half-space depth algorithm or HSD. The pseudocode
is available in Algorithm 4. First, we presort the data using the algorithm in [LC85] that
runs in O(n2) time. This gives us an advantage of reducing the running time of the HSD
algorithm from O(n logn) to O(n). For each point Pi ∈ P , the algorithm in [LC85] creates
a list of indices of P \Pi ordered around Pi in the clockwise order. Each list we read in the
reverse order and form k arrays from it: θ̄col(Pi) – polar angles of the points corresponding
to the ordering in List(Pi) with the points of col(Pi) excluded, and for each colour i′ other
than col(Pi) we form an array θi′ – polar angles of the points corresponding to the ordering
in List(Pi) only of colour i′. Together they take O(n) and we delete them at the end of
every iteration. Filling them takes linear time – just going through List(Pi) once.

31

Algorithm 4 Preprocessing: Computing r(s), l(s)
Input: P, P1, . . . , Pk. Output: M.
1: Construct List(Pi) lists of points sorted around Pi for each

i = 0, . . . , n− 1 [LC85];
2: for i← 0, n− 1 do
3: while List(Pi) 6= ∅ do
4: t← pop(List(Pi)); . recall t is an index
5: if col(Pt) 6= col(Pi) then
6: θ̄col(Pi) ← polar angle of Pt;
7: if col(Pt) > col(Pi) then
8: θcol(Pt) ← polar angle of Pt;
9: end if

10: end if
11: end while
12: Compute r̄col(Pi)(s), l̄col(Pi)(s) while running HSD(Pi, θ̄

col(Pi)) [RR96],
for every line drawn between Pi and p ∈ θ̄col(Pi) create a segment
s = (Pi, p), assign ver(s)← ∅, insert it into a map M as
s→

(
r̄col(Pi)(s), l̄col(Pi)(s), ver(s) = ∅

)
;

13: for i′ ← 1, k do
14: if i′ > col(Pi) then
15: Compute ri′(s), li′(s) during the execution of HSD(Pi, θ

i′) [RR96]
and for each segment s = (Pi, p), p ∈ θi′

, override the value of s in the
map M: s→ (r(s), l(s), ver(s) = ∅) by Eq. 3.2;

16: delete θi′
;

17: end if
18: end for
19: delete θ̄col(Pi);
20: end for
21: return M;

Then we execute HSD(Pi, θ̄
col(Pi)). A line is drawn from Pi to every point in θ̄col(Pi)

and the number of points on either side of each line is computed. Since we have points of
all k colours except for col(Pi), the counts obtained correspond to the values r̄col(Pi) and
l̄col(Pi) we defined in Section 3.2. Note that in Algorithm 4 we find and store all the colourful
segments in a map M , where initially the values of each key are r̄col(Pi)(s), l̄col(Pi)(s), and
ver(s) = ∅.

Afterwards, for each colour i′ such that i′ > col(Pi) (to avoid repeated segments), we
run HSD(Pi, θ

i′). Overall this will draw a line from Pi to the same set of points. However,
for a colour i′ a line will be drawn from Pi to the points of this colour, and the points of
colour i′ on either side of this line will be counted. Previously we denoted such counts of
points by ri′ and li′ . Now we have all the necessary counts to derive the r(s) and l(s). We
do so during the execution of HSD(Pi, θ

i′), where for every segments s that must already
be in the map we update its values to be r(s), l(s), and ver(s) = ∅, using the formulae

32

provided in 3.2. At the end of the Algorithm 4 we have a mapM with all colourful segments
as keys along with their corresponding values r(s), l(s), ver(s).

We illustrate Algorithm 4 with an example. Consider Figure 3.9. We start with H

as a point around which the rest of the data is ordered. Here θ̄red = {E,B,A,D, F,G},
θblue = {B,F}, θgreen = {A,D}, θyellow = {E,G}. First, we run HSD(H, θ̄red). That
draws all the lines displayed in Figure 3.9 and counts points on both sides of them. We get:
r̄red(H,E) = 0 (recall this is the number of points of all colours except red on the right
side of the segment (H,E)), l̄red(H,E) = 5, r̄red(H,B) = 1, l̄red(H,B) = 4, r̄red(H,A) = 2,
l̄red(H,A) = 3, r̄red(H,D) = 3, l̄red(H,D) = 2, r̄red(H,F) = 4, l̄red(H,F) = 1, r̄red(H,G) =
5, and lastly l̄red(H,G) = 0. Then we execute HSD(H, θblue) which draws lines from H

to only blue points, as a result we obtain rblue(H,B) = 0, lblue(H,B) = 1, rblue(H,F) =
1, rblue(H,F) = 0. Then r(H,B) = r̄red(H,B) − rblue(H,B) = 1 − 0 = 1, l(H,B) =
l̄red(H,B) − lblue(H,B) = 4 − 1 = 3, r(H,F) = r̄red(H,F) − rblue(H,F) = 4 − 1 = 3,
l(H,F) = l̄red(H,F) − lblue(H,F) = 1 − 0 = 1. The computations above match the data
displayed in the Figure 3.9: there is 1 point on the right of the segment (H,B) that is
neither blue or red; there are 3 points on the left of (H,B) that are neither blue or red;
there are 3 non-blue and non-red points on the right of (H,F); there is 1 yellow point on the
left of (H,F). After that we also run HSD(H, θgreen) and HSD(H, θyellow) and perform
similar deductions. Then we proceed to do the same with the next point around the circle
which is E in this case, until we reach G, the last point in the ordering.

A

B
C

D

E

F

G

H

Figure 3.9: How the half-space depth algorithm works.

3.4 Running Time and Space Analysis

Algorithm 5 is the main algorithm that computes the colourful simplicial median. First,
it obtains the map that contains half-space counts r(s) and l(s) for all s ∈ S by running

33

the Algorithm 4. The map we use in [Zas16] is a HashMap, which is a data structure that
contains keys and their corresponding values. A value can be obtained from the map by its
key using the method get(key) in O(1). Adding a value to the map is done via the method
put(key, value) which also takes constant time. It takes O(n2) to generate the List(Pi)
for all Pi ∈ P [LC85], then O(n) time to create the auxiliary arrays. Running the HSD

algorithm overall takes O(n · n +
k∑

i=1
ni ·

k∑
i′=i+1

ni′) ≈ O(n2). Hence the total running time

of Algorithm 4 is O(n2). The map M together with List(Pi) require O(n2) storage. After
executing Algorithm 4, ver(s) = ∅ for all s ∈ S.

Algorithm 5 Computing µ̂(P)
Input: P, P1, . . . , Pk. Output: v, µ̂(P).
1: M← Algorithm 4 (P, P1, . . . , Pk);
2: S← M.keys sorted by slopes;
3: max← 0;
4: for i← 0, n− 1 do
5: θi = polar angles of List(Pi);
6: end for
7: I← points of P that are vertices of the boundary of conv(P);
8: while I 6= ∅ do . Start of the topological sweep.
9: v← pop(I); . Only take v from I if it satisfies the rules in [RS08]

10: if v ∈ P then . Let it be Pi
11: D̂(v) = CSD(v, θi);
12: end if
13: if ver(si) = ∅ & ver(sk) = ∅ then . v lies at the intersection of si

and sk
14: D̂(v) = CSD(v, P);
15: else if ver(si) 6= ∅ then
16: D̂(v)← Subroutine 2 (D̂(p), p, v, sj, sk); . p = ver(si), sj = cross(ver(si))
17: else
18: D̂(v)← Subroutine 2 (D̂(p), p, v, sj, si); . p = ver(sk), sj = cross(ver(sk))
19: end if
20: if D̂(v) > max then
21: max← D̂(v);
22: median← v;
23: end if
24: ver(si)← v, ver(sk)← v, cross(ver(si))← sk, cross(ver(sk))← si;
25: Push the intersection points of active edges into I;
26: end while . End of the topological sweep.
27: return (median, max).

In step 2 of Algorithm 5 we take the keys ofM and sort them by the slopes, which yields
the set S. It takes O(n2 logn) time. We assume non-degeneracy and no vertical lines (these
can use some special handling, see [EM88]). Since we have already presorted the points in

34

P , we create arrays of polar angles θi for each Pi ∈ P in steps 4-6. The polar angles in θi

are already sorted around Pi.
Steps 7-24 represent the topological sweep which, as we mentioned earlier, runs in O(n4)

on our data. However, steps 10 and 13 in Algorithm 5 are not O(1) and could potentially
make the sweep more expensive. Step 10 is hit exactly n times and overall takes O(kn2).
Step 13 could happen O(n2) times as we mentioned earlier and, therefore, takes O(n3 logn+
kn3) in total. We conclude that overall this algorithm takes O(n4) time, where dominating
complexity lies in the topological sweep, establishing Theorem 3.4.1.

We do not store all the vertices in V , but only one per segment in map M . The storage
need for this algorithm is O(n2).

Algorithm 5 returns a point that has maximum colourful simplicial depth along with its
CSD. It is simple to modify the algorithm to return a list of all such points if there is more
than one. We believe that maintaining such a list will not increase the required storage,
i.e. it will contain O(n2) points throughout the execution of the algorithm, but we haven’t
proved this.

Theorem 3.4.1. Given a set of data points P in general position in k different colours,
k ≥ 3, a colourful simplicial median of P can be found in O(n4) time, where |P | = n.

35

Chapter 4

Three-dimensional case

In this Chapter we discuss what is known about the simplicial depth in R3 and why it is
hard to adapt to the coloured case. Gil et al. [GSW92] developed an algorithm that finds
the monochrome simplicial depth of a point x ∈ R3 relative to a dataset P in O(n2) time,
where n = |P |. Later, Cheng and Ouyang [CO01] detected a slight flaw in that algorithm
and presented a fixed version of it, retaining the running time of O(n2).

A simplex in R3 is a tetrahedron, so both algorithms [GSW92] and [CO01] count in how
many tetrahedra x is contained. To adapt these results to a colourful setting, we would
need to count only the colourful tetrahedra that contain x, i.e. tetrahedra with all 4 vertices
of distinct colours. Comparing to the two-dimensional case, the problem complicates sig-
nificantly, especially with colours involved. Just like in the two-dimensional case the points
were projected onto a unit circle, in R3 they are projected on a unit sphere centred at x.

We give an overview of how Cheng and Ouyang [CO01] compute the simplicial depth in
R3 in Section 4.1. Then in Section 4.2 we discuss the challenges of colourizing this problem.

4.1 Simplicial Depth in R3

Suppose we are given a set of points P in general position in R3 and a point x ∈ R3 in
general position with P . We project the points in P onto a unit sphere B(x) centred at x.
A point where the vector from the origin with the direction (Pi − x) intersects the sphere
is denoted by θi, and its antipode by θ̄i. The following lemma is from [GSW92]:

Lemma 4.1.1. Let P ′i be any point on the ray from x through Pi; the tetrahedron4PiPjPkPl

contains x if and only if the tetrahedron 4P ′iPjPkPl contains x.

Corollary 4.1.2. The tetrahedron 4PiPjPkPl contains x if and only if the tetrahedron
4θiθjθkθl contains the origin.

Definition 4.1.3. A spherical triangle 4Sθiθjθk is the area on the surface of the unit
sphere bounded by the short arcs of the great circles passing through any pair of points in
{θiθjθk}, given that θi, θj, and θk are not antipodal.

36

Then follows Lemma 4.1.4, which is a three dimensional version of Lemma 2.1.5:

Lemma 4.1.4. The tetrahedron θiθjθkθl contains the origin if and only if the spherical
triangle 4Sθiθjθk contains θ̄l.

Let us denote the set of all θ0, . . . , θn−1 by θ. Then by Lemmas 4.1.1 and 4.1.4, the
simplicial depth of x can be found by counting the number of spherical triangles that
contain θ̄i, for each θi ∈ θ, where the vertices of the spherical triangle are formed with
θ \ {θi}.

First, we need to make sure to pick a point y that is in general position with θ ∪ {x}.
Then the line ~xy forms an axis of rotation. We denote a plane that contains x and is
orthogonal to ~xy by Λ. We project the points in θ onto it, and denote the polar angles of
these projections by α0, α1, . . . , αn−1, where 0 ≤ α0 < α1 < . . . < αn−1 < 2π. Then we
relabel the points in θ, so that the indexing corresponds to the αi’s. As usual, ᾱi stands for
a point antipodal to αi.

We need to carefully choose how to draw a plane Πi, which divides the sphere into
two hemispheres, where the upper one contains θ̄i, and the lower one – θi. It also has to
retain the property that if we project all the data points onto Πi, the projections will be
in general position, and x will be in general position with them. [CO01] suggests that this
plane should contain the axis of rotation and the line on Λ that goes through the origin and
has the polar angle αi + εi/2. How εi is chosen is also explained in the paper.

Suppose we have a plane Πl. Then it contains the origin and separates θl from θi, θj ,
and θk. Let Π′l be a plane parallel to Πl, but at some distance from the origin. Denote
the radial projection of a point p onto Π′l by Π′l(p). Clearly, Π′l(p) = Π′l(p̄). Note that a
spherical triangle radially projected on a plane is just a triangle. Hence the lemma (also
from [CO01]):

Lemma 4.1.5. The spherical triangle 4sθiθjθk contains θ̄l if and only if, in the plane Π′l,
the triangle 4Π′l(θi)Π′l(θj)Π′l(θk) contains Π′l(θ̄l).

The algorithm in [CO01] rotates the dividing plane Πi for all i. At every step it counts
the triangular containments of antipodal points from the upper hemisphere projected on
the plane Π′i with respect to the regular points from the upper hemisphere projected on the
plane Π′i, by Lemma 4.1.5.

Suppose the upper hemisphere Ui defined by Πi contains the points {θi+1, . . . , θj , θ̄j+1, . . .,
θ̄i}. Then the lower one is Li = {θj+1, . . . , θi, θ̄i+1, . . . , θ̄j}. Let us also denote the regu-
lar points, i.e. not antipodes, in Ui by UR

i , and the antipodes by UA
i . Same holds for the

lower hemisphere. Therefore, UR
i = {θi+1, . . . , θj}, UA

i = {θ̄j+1, . . . , θ̄i}, and Ui = UR
i ∪ UA

i .
When we rotate Πi to Πi+1, θi+1 transitions to the lower hemisphere and some points
θj+1, . . . , θj+k do the opposite. Clearly, a new antipodal point θ̄i+1 comes into the upper
hemisphere and θ̄j+1, . . . , θ̄j+k leave. We don’t have to perform any calculations for the

37

antipodes that left. However, we have to consider what changes as new both regular and
antipodal points come in. Instead of computing the simplicial depth of all antipodes from
scratch after every rotation, the following two steps are executed:

1. for the points in UA
i ∩ UA

i+1 calculate the number of spherical triangles that contain
them, considering that one or more vertices of the triangles lie in UR

i+1 \ UR
i , and the

rest of the vertices – in UR
i ∩ UR

i+1;

2. compute its simplicial depth of θ̄i+1 relative to UR
i+1;

Further detail on how Cheng and Ouyang fixed the flaw from [GSW92], as well as proof
that each tetrahedron containing the origin will be counted twice can be found in [CO01].

4.1.1 Runtime

Projecting the points in P on the sphere, then projecting the points in θ on the plane
Λ and sorting them takes O(n logn). Projecting θ onto the Π′i for each i is O(n2) total.
Computing the simplicial depth of all antipodes during the first iteration can be done in
O(n2), with the data presorted using the algorithm in [LC85]. Lemma 6 in [GSW92] uses
geometric duality to prove that we don’t need to sort the points in Π′i’s after each rotation.
Instead we remove the points that left from the arrangement, and insert each point that
entered in its place. This takes O(n) time for each newly entered point. But since each
point switches hemispheres only once during the execution of the algorithm, the amortized
runtime is O(n2). Lemma 7 in [GSW92] also uses to duality to show that computing the
triangular containments for every iteration after the first takes O(n2) in total. Hence, the
overall running time of the algorithm that computes the simplicial depth of a point x ∈ R3

is O(n2). Hence the in-sample median can be found in O(n3) time.

4.2 Challenges of Computing the CSD in R3

In order to compute the colourful simplicial depth of a point x ∈ R3 relative to a data set
P = {P 1, . . . , P k} in k different colours, it would be sufficient to follow the Lemma 4.1.5,
but count colourful spherical triangular containments instead. This is possible as long as
we know how to manage the colour arrays and the common array.

Suppose we projected all θ1, . . . , θk onto the first plane Π0. Then we use [LC85] to sort
the points. After that we need to do what’s described in the end of Section 4.1 as two
steps. Cheng and Ouyang [CO01] point out that the mistake of Gil et al. [GSW92] was to
treat the first iteration differently, which led to the slight overcounting of tetrahedra. The
number of tetrahedra that contain x after the rotation from Πn−1 to Π0 was counted twice.
That’s why we won’t differentiate between the rotations, except that we will sort the points
for Π0 and then simply update.

38

The second step is much simpler to carry out. We compute the CSD of a point
Π′i+1

(
θ̄i+1

)
(an antipode that just entered the upper hemisphere) relative to the already

sorted set {Π′i+1 (θi+2) , . . . ,Π′i+1 (θj+k)} (all the regular points in current upper hemi-
sphere). Recall that we also keep these as separate colour sets, so doing this should be
straightforward.

The first step, however, involves a triangle having one or more vertices from one data
set, while the rest comes from a different data set. We could merge these data sets, which
in our case is simply UR

i+1, compute the sum of CSDs of the antipodal points in UA
i ∩ UA

i+1
with respect to UR

i+1, and then subtract the sum of CSDs of the same antipodal points
relative to the points in UR

i ∩ UR
i+1. This seems more expensive than simply running the

CSD algorithm for all points in UA
i+1 relative to the set UR

i+1. So that’s what we could do
at each iteration. This would bring the running time up to O(n3k), assuming the data was
sorted at each iteration.

According to [GSW92], the new arrangement after each rotation can be computed in
O(n2) amortized time, but we are not sure how it translates to the colourful case, where we
have the colour classes and the common array. This remains an open question.

In conclusion, if there is no need to sort the data after each rotation of the plane, we
approximate the running time of computing the colourful simplicial depth of x ∈ R3 with
respect to P as O(kn3). However, if we were to sort the data at each iteration, the overall
running time would remain the same, because it takes O(n2) time to sort the data and then
O(n2k) to compute the CSD of all points in UA

i+1 relative to the set UR
i+1, as mentioned

above.

39

Chapter 5

Conclusions and Questions

Our first main result, Theorem 2.5.1, is an algorithm computing the colourful simplicial
depth of a point x relative to a configuration P =

(
P 1, P 2, . . . , P k

)
of n points in R2 in k

colour classes in O(n logn + kn) time, or in O(kn) time if the input is sorted around the
origin. If we assume, as seems likely, that we cannot do better without sorting the input,
then for fixed k this result is optimal up to a constant factor. It is an interesting question
whether we can improve the dependence on k. The space requirement for our algorithm
matches the one of the monochrome simplicial depth algorithm, which is O(n).

Computing colourful simplicial depth in higher dimension is very challenging, in particu-
lar because there is no longer a natural (circular) order of the points. Non-trivial algorithms
do exist as discussed in Chapter 4, but we do not know of any non-trivial algorithms for
the general case. We offered in Chapter 4 some preliminary thoughts on extending the 3-d
algorithm to the colourful case, but work remains to be done. The general case remains an
appealing challenge even for monochrome simplicial depth. Indeed, for (d + 1) colours in
Rd, it is not even clear how efficiently one can exhibit a single colourful simplex containing
a given point [BO97], [DHST08].

The second main result, Theorem 3.4.1, is an algorithm computing the colourful sim-
plicial median of a configuration P =

(
P 1, P 2, . . . , P k

)
of n points in R2 in O(n4) time,

independent of k. This running time is optimal assuming we cannot avoid generating all
Θ(n4) intersection points of the colourful segments formed by pairs of points from P . One
would need to come up with a way of decreasing the pool of candidates for a colourful
simplicial median to improve the running time. The space used by our algorithm is O(n2).

40

Bibliography

[ABB+09] Jorge L. Arocha, Imre Bárány, Javier Bracho, Ruy Fabila, and Luis Montejano.
Very colorful theorems. Discrete & Computational Geometry, 42(2):142–154,
2009.

[ABP+16] Karim Adiprasito, Philip Brinkmann, Arnau Padrol, Pavel Paták, Zuzana
Patáková, and Raman Sanyal. Colorful simplicial depth, Minkowski sums, and
generalized Gale transforms. Preprint. ArXiv:1607.00347, 2016.

[Alo06] Greg Aloupis. Geometric measures of data depth. In Data depth: robust mul-
tivariate analysis, computational geometry and applications, volume 72 of DI-
MACS Ser. Discrete Math. Theoret. Comput. Sci., pages 147–158. Amer. Math.
Soc., Providence, RI, 2006.

[ALST03] Greg Aloupis, Stefan Langerman, Michael Soss, and Godfried Toussaint. Algo-
rithms for bivariate medians and a Fermat-Torricelli problem for lines. Comput.
Geom., 26(1):69–79, 2003.

[Bal95] Ivan J. Balaban. An optimal algorithm for finding segments intersections. In
Proceedings of the Eleventh Annual Symposium on Computational Geometry,
SCG ’95, pages 211–219, New York, NY, USA, 1995. ACM.

[Bar76] V. Barnett. The ordering of multivariate data. Journal of the Royal Statistical
Society. Series A (General), 139(3):318–355, 1976.

[Bár82] Imre Bárány. A generalization of Carathéodory’s theorem. Discrete Math.,
40(2-3):141–152, 1982.

[BO79] J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geo-
metric intersections. IEEE Transactions on Computers, C-28(9):643–647, Sept
1979.

[BO97] Imre Bárány and Shmuel Onn. Colourful linear programming and its relatives.
Math. Oper. Res., 22(3):550–567, 1997.

[BRS06] Michael A. Burr, Eynat Rafalin, and Diane L. Souvaine. Simplicial depth: an
improved definition, analysis, and efficiency for the finite sample case. In Data
depth: robust multivariate analysis, computational geometry and applications,
volume 72 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 195–
209. Amer. Math. Soc., Providence, RI, 2006.

41

[CE92] Bernard Chazelle and Herbert Edelsbrunner. An optimal algorithm for inter-
secting line segments in the plane. J. Assoc. Comput. Mach., 39(1):1–54, 1992.

[CLR89] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press and McGraw-Hill Book Company, 1989.

[CO01] Andrew Y. Cheng and Ming Ouyang. On algorithms for simplicial depth. In Pro-
ceedings of the 13th Canadian Conference on Computational Geometry, pages
53–56, 2001.

[DG92] David L. Donoho and Miriam Gasko. Breakdown properties of location es-
timates based on halfspace depth and projected outlyingness. Ann. Statist.,
20(4):1803–1827, 12 1992.

[DHST06] Antoine Deza, Sui Huang, Tamon Stephen, and Tamás Terlaky. Colourful sim-
plicial depth. Discrete Comput. Geom., 35(4):597–615, 2006.

[DHST08] Antoine Deza, Sui Huang, Tamon Stephen, and Tamás Terlaky. The colourful
feasibility problem. Discrete Appl. Math., 156(11):2166–2177, 2008.

[EG89] Herbert Edelsbrunner and Leonidas J. Guibas. Topologically sweeping an ar-
rangement. J. Comput. System Sci., 38(1):165–194, 1989. 18th Annual ACM
Symposium on Theory of Computing (Berkeley, CA, 1986).

[EM88] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity: a tech-
nique to cope with degenerate cases in geometric algorithms. In Proceedings of
the Fourth Annual Symposium on Computational Geometry (Urbana, IL, 1988),
pages 118–133. ACM, New York, 1988.

[FR05] Komei Fukuda and Vera Rosta. Data depth and maximum feasible subsystems.
In Graph theory and combinatorial optimization, volume 8 of GERAD 25th
Anniv. Ser., pages 37–67. Springer, New York, 2005.

[GG10] Viliam Geffert and Jozef Gajdoš. Multiway in-place merging. Theoret. Comput.
Sci., 411(16-18):1793–1808, 2010.

[GHL+17] Ellen Gethner, Leslie Hogben, Bernard Lidický, Florian Pfender, Amanda Ruiz,
and Michael Young. On crossing numbers of complete tripartite and balanced
complete multipartite graphs. Journal of Graph Theory, 84(4):552–565, 2017.

[GMP08] Maxime Genest, Jean-Claude Masse, and Jean-Francois Plante. depth: Non-
parametric depth functions for multivariate analysis. http://CRAN.R-project.
org/package=depth, 2008. Last updated January 7, 2017.

[GSW92] Joseph Gil, William Steiger, and Avi Wigderson. Geometric medians. Discrete
Math., 108(1-3):37–51, 1992.

[HPT08] Andreas F. Holmsen, János Pach, and Helge Tverberg. Points surrounding the
origin. Combinatorica, 28(6):633–644, 2008.

[KBWZ16] Daniel Kosiorowski, Mateusz Bocian, Anna Wegrzynkiewicz, and Zygmunt
Zawadzki. Depthproc: Statistical depth functions for multivariate analysis.
http://CRAN.R-project.org/package=DepthProc, 2016.

42

http://CRAN.R-project.org/package=depth
http://CRAN.R-project.org/package=depth
http://CRAN.R-project.org/package=DepthProc

[KM90] Samir Khuller and Joseph S. B. Mitchell. On a triangle counting problem.
Inform. Process. Lett., 33(6):319–321, 1990.

[LC85] D. T. Lee and Y. T. Ching. The power of geometric duality revisited. Inform.
Process. Lett., 21(3):117–122, 1985.

[Liu90] Regina Y. Liu. On a notion of data depth based on random simplices. Ann.
Statist., 18(1):405–414, 1990.

[LPS99] Regina Y. Liu, Jesse M. Pares, and Kesar Singh. Multivariate analysis by data
depth: descriptive statistics, graphics and inference. Ann. Statist., 27(3):783–
858, 1999. With discussion and a rejoinder by Liu and Singh.

[Mos12] K. Mosler. Depth statistics. ArXiv e-prints, July 2012.

[MS17] Frédéric Meunier and Pauline Sarrabezolles. Colorful linear programming, Nash
equilibrium, and pivots. Discrete Appl. Math., 2017. To appear.

[MW14] Jirí Matousek and Uli Wagner. On Gromov’s method of selecting heavily covered
points. Discrete Comput. Geom., 52(1):1–33, 2014.

[Oja83] Hannu Oja. Descriptive statistics for multivariate distributions. Statistics &
Probability Letters, 1(6):327 – 332, 1983.

[PRTT06] János Pach, Radoš Radoičić, Gábor Tardos, and Géza Tóth. Improving the
crossing lemma by finding more crossings in sparse graphs. Discrete Comput.
Geom., 36(4):527–552, 2006.

[Ric16] Yann Richet. Java interactive 2d and 3d plots (no opengl). http://github.
com/yannrichet/jmathplot, 2016. Last updated July 27, 2016.

[RR96] Peter J Rousseeuw and Ida Ruts. Bivariate location depth. Applied Statistics:
Journal of the Royal Statistical Society Series C, 45(4):516–526, 1996.

[RS08] Eynat Rafalin and Diane L. Souvaine. Topological sweep of the complete graph.
Discrete Appl. Math., 156(17):3276–3290, 2008.

[Sar15] Pauline Sarrabezolles. The colourful simplicial depth conjecture. J. Combin.
Theory Ser. A, 130:119–128, 2015.

[Sma90] Christopher G. Small. A survey of multidimensional medians. International
Statistical Review / Revue Internationale de Statistique, 58(3):263–277, 1990.

[Tuk75] John W. Tukey. Mathematics and the picturing of data. In Proceedings of the
International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 2,
pages 523–531. Canad. Math. Congress, Montreal, Que., 1975.

[Zas16] Olga Zasenko. Colourful simplicial depth in the plane. Java code, available at,
http://github.com/olgazasenko/ColourfulSimplicialDepthInThePlane,
2016. Last updated January 29, 2017.

[Zas17a] Olga Zasenko. Brute force solution of the problem of finding the colourful
simplicial depth. Java code, available at, http://github.com/olgazasenko/
BruteForceTriangle, 2017. Last updated April 1, 2017.

43

http://github.com/yannrichet/jmathplot
http://github.com/yannrichet/jmathplot
http://github.com/olgazasenko/ColourfulSimplicialDepthInThePlane
http://github.com/olgazasenko/BruteForceTriangle
http://github.com/olgazasenko/BruteForceTriangle

[Zas17b] Olga Zasenko. Points in general position generator. Java code, available
at, http://github.com/olgazasenko/PointInGeneralPositionGenerator,
2017. Last updated April 1, 2017.

[ZS00] Yijun Zuo and Robert Serfling. General notions of statistical depth function.
Ann. Statist., 28(2):461–482, 2000.

[ZS16] Olga Zasenko and Tamon Stephen. Algorithms for colourful simplicial depth
and medians in the plane. In Combinatorial Optimization and Applications
- 10th International Conference, COCOA 2016, Hong Kong, China, December
16-18, 2016, Proceedings, volume 10043 of Lecture Notes in Comput. Sci., pages
378–392. Springer, 2016.

44

http://github.com/olgazasenko/PointInGeneralPositionGenerator

Appendix A

Plots

Figure A.1: A configuration P of 500 points in 4 different colours.

45

Figure A.2: A configuration P of 6000 points in 10 different colours.

46

Figure A.3: A degenerate configuration P of 23 points in 5 different colours.

47

Figure A.4: Operation count versus n, for k = 3. Here green indicates the number of
floating operations performed, whereas red is the number of comparisons in steps 11 and
14 of Algorithm 1.

48

Figure A.5: Operation count versus k, for n = 1000. Here green indicates the number of
floating operations performed, whereas red is the number of comparisons in steps 11 and
14 of Algorithm 1.

49

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Colourful Simplicial Depth and Medians
	Background
	Facts about Simplicial Depth and Medians
	Facts about Colourful Simplicial Depth and Medians
	Known Algorithms for Simplicial Depth
	Known Algorithms for Simplicial Medians
	Known Colourful Algorithms

	Organization and Main Results

	Computing Colourful Simplicial Depth
	Preliminaries
	Outline of Strategy
	Data Structures and Preprocessing
	Computing Di*
	Algorithm and Analysis
	Implementation of the Algorithm

	Computing Colourful Simplicial Medians
	Preliminaries
	Notation
	Computing the median
	Computing r(s) and l(s)

	Running Time and Space Analysis

	Three-dimensional case
	Simplicial Depth in R3
	Runtime

	Challenges of Computing the CSD in R3

	Conclusions and Questions
	Bibliography
	Appendix Plots

