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Abstract

The Hermiticity from conventional quantum mechanics guarantees that
the energy spectrum is real. However, if replace this mathematical condi-
tion by the physically transparent condition of parity-time reflection symme-
try (PT -symmetry), the non-Hermitian Hamiltonian still guarantees that its
entire energy spectrum is real if the Hamiltonian has unbroken PT -symmetry.
If its PT -symmetry is broken, then two cases can happen - its entire energy
spectrum is complex for the first case, or a finite number of real energy levels
can still be obtained for the second case. This was “officially” discovered since
1998. After that, the developments in PT -symmetric quantum theory rapidly
grew in the last 15 years - with more than 20 international conferences and
symposia, and over 2000 research papers about PT -symmetry already publis-
hed. Furthermore, at least 50 experiments to observe PT -symmetric system
were published during the last 10 years. Those experiments told us that it was
possible to experimentally measure complex eigenvalue and observe broken
and unbroken PT -symmetry.

Admittedly, PT -symmetric quantum theory is a young and new field - cur-
rently, still not many professors and researchers familiar with this subject.
That is why this thesis comes in, and tries to serve a role to introduce this
subject to wide audience from students to professors. In this thesis, the energy
spectrum from the PT -symmetric Hamiltonian H = p2 − (ix)N with x ∈ C,
N ∈ R and N ≥ 1 was studied in detail by using numerical and WKB approx-
imation. What the corresponding eigenfunctions look like were also examined
in numerical way. Lastly, a few interesting and weird phenomena from PT -
symmetric non-relativistic classical mechanics were explored in brief. We hope
that this study could not only demystify but also help people appreciate many
aspects of PT -symmetry.
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"Truth is stranger than �ction, but
it is because Fiction is obliged to
stick to possibilities; Truth isn't."

MARK TWAIN
Following the Equator

1897
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Chapter 1

Background

Sec.(1.1), Sec.(1.2) and Sec.(1.3) contain the primary work by Bender[8]. In
those sections, we introduce the concept of parity and time reversal symmetry
along with the charge operator. In Sec.(1.4), we introduce an experiment by
Schindler et al.[54] to realize the PT -symmetric system.

1.1 PT -symmetry and real energy
The operator P̂ is the parity reflection operator such that[8, p.3]

P̂ xP̂ = −x P̂pP̂ = −p P̂ iP̂ = i (1.1)

where x and p represent particle’s position and momentum in quantum mecha-
nics. The time reversal operator is T̂ such that

T̂ xT̂ = x T̂pT̂ = −p T̂ iT̂ = −i (1.2)

where in quantum mechanics with real x and p, the canonical commutation
relation [x̂, p̂] = i is invariant under both parity reflection and time reversal
operations. Consequently, we have(

P̂
)2
x
(
P̂
)2

= x
(
P̂
)2
p
(
P̂
)2

= p (1.3)(
T̂
)2
x
(
T̂
)2

= x
(
T̂
)2
p
(
T̂
)2

= p
(
T̂
)2
i
(
T̂
)2

= i (1.4)

and therefore (
P̂
)2

=
(
T̂
)2

=
(
P̂ T̂
)2

= I (1.5)

where I is an identity matrix. And the following commutation relation holds:[
P̂ , T̂

]
= 0 (1.6)

The commutation relation [x̂, p̂] = i still holds even if x and p are complex. In
such case, by (1.1) and (1.2) we have

P̂Re (x) P̂ = −Re (x) P̂ Im (x) P̂ = −Im (x) (1.7)

1
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P̂Re (p) P̂ = −Re (p) P̂ Im (p) P̂ = −Im (p) (1.8)

and
T̂Re (x) T̂ = Re (x) T̂ Im (x) T̂ = −Im (x) (1.9)

T̂Re (p) T̂ = −Re (p) T̂ Im (p) T̂ = Im (p) (1.10)

T̂ iT̂ = −i (1.11)

By (1.5) and (1.11), we have

T̂ i
(
T̂
)2

= −iT̂ =⇒ T̂ i = −iT̂ (1.12)

Let ψ be an eigenfunction of the operations P̂ T̂ with eigenvalue λ such that

P̂ T̂ψ = λψ (1.13)

then by (1.12)

P̂ T̂ P̂ T̂ψ = P̂ T̂ λψ

=⇒
(
P̂ T̂
)2
ψ = P̂ λ∗T̂ψ

=⇒
(
P̂ T̂
)2
ψ = λ∗P̂ T̂ψ

=⇒
(
P̂ T̂
)2
ψ = λ∗λψ

By (1.5) the eigenvalue for the operator P̂ T̂ must be (with θ ∈ R)

λ∗λ = 1

=⇒ λ = eiθ (1.14)

We say a Hamiltonian H is PT -symmetric if the operator P̂ T̂ commutes with
H such that [

P̂ T̂ ,H
]

= H
(
P̂ T̂
)
−
(
P̂ T̂
)
H = 0 (1.15)

where H does not have to be Hermitian. By (1.5), (1.15) can be rewritten as(
P̂ T̂
)
H
(
P̂ T̂
)
−
(
P̂ T̂
)2
H = 0

H =
(
P̂ T̂
)
H
(
P̂ T̂
)

H = HPT (1.16)

where the notation[8, p.3] HPT is an analogue of the notation for the Hermiti-
city H†.

There are infinitely many PT -symmetric Hamiltonians. What do they look
like? We list a few of their forms without explaining details of them in here
(See the corresponding references for details):

•
H =

[
a− ib 0

0 a+ ib

]
a, b ∈ R (1.17)

2
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• From quantum mechanical brachistochrone system[38]

H = E0

[
1 0
0 1

]
+ s

[
i sinα 1

1 −i sinα

]
E0, s, α ∈ R (1.18)

• From quantum computing[16, 63]

H =

[
x+ (z + iy) z

tan γ
− iy tan γ

z
tan γ
− iy tan γ x− (z + iy)

]
x, y, z, γ ∈ R (1.19)

• From Lee model[45, 43, 13]

H = H0 + gH1 (1.20)

where
H0 = mv0V

†V +mNN
†N +mθa

†a (1.21)

H1 = V †Na+ a†N †V (1.22)

• From time-like Liouville conformal logarithmic quantum field theory[25]

H = p2 − igx
(
eiax
)

(1.23)

• From Painlevé transcendents problem[20, 27]

H =
1

2
p2 + 2ix3 (Painlevé I) (1.24)

H =
1

2
p2 − 1

2
x4 (Painlevé II) (1.25)

H =
1

2
p2 +

1

8
x6 (Painlevé IV) (1.26)

• From supergravity[33, 2, 3, 26]

H = p2 − x4 ln (ix) (1.27)

• From Higgs vacuum[57, 26]

H = p2 − x4 ln
(
x2
)

(1.28)

As an example, let’s see why the non-Hermitian Hamiltonian H = p2 + ix3 is
PT -symmetric.

H−
(
P̂ T̂
)
H
(
P̂ T̂
)

= p2 + ix3 −
(
P̂ T̂
) (
p2 + ix3

) (
P̂ T̂
)

= p2 + ix3 −
(
P̂ T̂
)
p2
(
P̂ T̂
)
−
(
P̂ T̂
)
ix3
(
P̂ T̂
)

= p2 + ix3 −
(
P̂ T̂
)
p2
(
T̂ P̂
)
−
(
P̂ T̂
)
ix3
(
T̂ P̂
)

= p2 + ix3 −
(
P̂
)

(−p)2
(
P̂
)
−
(
P̂
)

(−i)x3
(
P̂
)

= p2 + ix3 − (p)2 − (−i) (−x)3

= 0

3
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By (1.16), H = p2 + ix3 is PT -symmetric. How about H = p2 − (ix)N for N ∈ R?

H−
(
P̂ T̂
)
H
(
P̂ T̂
)

= p2 − (ix)N −
(
P̂ T̂
)(

p2 − (ix)N
)(

P̂ T̂
)

= p2 − (ix̂)N −
(
P̂ T̂
)
p2
(
T̂ P̂
)

+
(
P̂ T̂
)

(ix)N
(
T̂ P̂
)

= p2 − (ix̂)N −
(
P̂
)

(−p)2
(
P̂
)

+
(
P̂
)

(−i)N xN
(
P̂
)

= p2 − (ix̂)N − (p)2 + (−i)N (−x)N

= − (ix)N + (−1)2N (ix)N

= − (ix)N + (1)N (ix)N

= 0

Therefore
H = p2 − (ix)N (1.29)

is PT -symmetric for any real N .
Let ψ be an eigenfunction of H such that

Hψ = Eψ (1.30)

We know that if two linear operators commute, they can be simultaneously
diagonalized. If a linear operator commutes with Hamiltonian H, then the ei-
genfunction ψ of H is simultaneously the eigenfunction of that linear operator.
However, from (1.11), the operation of complex conjugation by time reversal
operator T̂ causes the operator P̂ T̂ to be a nonlinear operator. To continue the
story, we assume that the eigenfunction ψ of H is simultaneously the eigen-
function of the operator P̂ T̂ with eigenvalue λ = eiθ. By (1.5),

P̂ T̂Hψ = P̂ T̂E

[(
P̂ T̂
)2]

ψ (1.31)

By (1.15), (1.13) and (1.12)

=⇒ HP̂ T̂ψ = P̂ T̂EP̂ T̂λψ

=⇒ Hλψ = P̂ T̂E
(
P̂ T̂
)
λψ

=⇒ λHψ = P̂E∗T̂ P̂ T̂ λψ

=⇒ λEψ = E∗P̂ T̂ P̂ T̂ λψ

=⇒ λEψ = E∗
(
P̂ T̂
)2
λψ

=⇒ Eλψ = E∗λψ

By (1.14), λ 6= 0, and consequently energy E is real.

E = E∗ (1.32)

In general, this conclusion about the reality of the energy is not true because
the eigenfunction ψ of H may not be simultaneously the eigenfunction of the
operator P̂ T̂ .
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If every eigenfunction of a PT -symmetric Hamiltonian is also an eigen-
function of the operator P̂ T̂ , we say that the PT -symmetry of H is unbroken.
Conversely, if some of the eigenfunctions of a PT -symmetric Hamiltonian are
not simultaneously eigenfunctions of the operator P̂ T̂ , we say that the PT -
symmetry of H is broken. For example, the PT -symmetry of the Hamiltonian
H = p2 − (ix)N from (1.29) is broken when N < 2 and unbroken1 when N ≥ 2.
In general, for a given Hamiltonian, it is difficult to prove whether the PT -
symmetry is broken or unbroken, so we omit2 this rigorous proof here, but
accept this as a fact. To correctly interpret (1.32), we say that all eigenvalues
associated with the Hamiltonian are real if that Hamiltonian has an unbroken
PT -symmetry.

1.2 The hidden charge operator Ĉ
In Hermitian quantum mechanics

〈ψ|H |ψ〉 = E 〈ψ |ψ〉 (1.33)

with H† = H, we have
(E∗ − E) 〈ψ |ψ〉 = 0 (1.34)

In continuous basis,

(E∗ − E)

ˆ
ψ∗ (x)ψ (x) dx = 0 (1.35)

Since
´
ψ∗ψdx is positive definite, so (E∗ − E) should vanish and consequently,

E is real.
For PT -symmetric potential, where

V (x)PT = V (x)

=⇒
(
P̂ T̂
)
V (x)

(
P̂ T̂
)

= V (x)

=⇒ P̂ V ∗ (x) P̂ = V (x)

=⇒ V ∗ (−x) = V (x) (1.36)

we still have
(E∗ − E) 〈ψ |ψ〉 = 0 (1.37)

However, we can not simply conclude that E is real, since we don’t know what
the norm 〈ψ |ψ〉 is. In fact, 〈ψ |ψ〉 = 0 may be true if PT -symmetry is broken.
So in cases of broken PT -symmetry 〈ψ |ψ〉 is not positive-definite. This rises an
urgent problem - for PT -symmetric quantum mechanics, we need to find the
inner product otherwise we may have trouble with the probabilistic interpre-
tation.

1“Unbroken when N ≥ 2” is actually not true if different pair of Stokes wedges is involved.
We will dig into the details in the next chapter.

2See [36] for rigorous proof, where techniques, such as monodromy group, Bethe ansatz,
Baxter T-Q relation, are used.

5



CHAPTER 1. BACKGROUND

To solve this problem, let’s look at PT -normalization first. By the definition
of unbroken PT -symmetry, if the PT -symmetry is not broken, then every ei-
genfunction ψn (x) of a PT -symmetric Hamiltonian is also an eigenfunction of
the operator P̂ T̂ with eigenvalue λn = eiθn from (1.14). If we define

φn (x) ≡ exp (iθn/2)ψn (x) (1.38)

then what happens? We know that exp (iθn/2) is just a phase factor so that
φn (x) is still an eigenfunction of the PT -symmetric Hamiltonian and also an
eigenfunction of the operator P̂ T̂ . With this property and using (1.13), (1.38),
(1.5), (1.12) and (1.14), we obtain

P̂ T̂ φ = ρφ

P̂ T̂ exp (iθ/2)ψ = ρ exp (iθ/2)ψ(
P̂ T̂
)2

exp (iθ/2)ψ = P̂ ρ∗ exp (−iθ/2) T̂ψ

exp (iθ/2)ψ = ρ∗ exp (−iθ/2)λψ

exp (iθ/2)ψ = ρ∗ exp (−iθ/2) exp (iθ)ψ

ψ = ρ∗ψ

So the eigenvalue of the eigenfunction φ (x) for the operator P̂ T̂ is

ρ = 1 (1.39)

Therefore, φn (x) from (1.38) is called “PT -normalized eigenfunction”, which
satisfies[15]

P̂ T̂ φn (x) = φ∗n (−x) = φn (x) (1.40)

Notice that for un-normalized eigenfunction ψn (x), by (1.13) we still have

P̂ T̂ψn (x) = eiθnψn (x) (1.41)

where the phase angle θn is a function of energy level n.
Now we have to guess what the inner product is, before examining the ort-

hogonality of eigenstates. The natural guess for the inner product of the PT -
normalized eigenfunction must be

〈φm (x) , φn (x)〉PT =

ˆ
c

P̂ T̂ φm (x)φn (x) dx

=

ˆ
c

φ∗m (−x)φn (x) dx

=

ˆ
c

φm (x)φn (x) dx

= 0 for m 6= n

This looks promising, however, the critical issue is that in general the norm

〈φn (x) , φn (x)〉PT =

ˆ
c

P̂ T̂ φn (x)φn (x) dx 6= 1 (1.42)
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It’s difficult but possible[8, 12] to use either numerical or analytical approx-
imation to show that the contour integral

´
c
P̂ T̂ φn (x)φn (x) dx approximately

behaves like (−1)n in great accuracy3 for N ≥ 2 from (1.29). Therefore, heuris-
tically, the PT -norm is defined exactly to be (−1)n.

〈φn (x) , φn (x)〉PT =

ˆ
c

P̂ T̂ φn (x)φn (x) dx =

ˆ
c

φn (x)φn (x) dx ≡ (−1)n (1.43)

Hence we obtain the following completeness relation[12]

∞∑
n=0

(−1)n φn (x)φn (y) = δ (x− y) (1.44)

Note that so far we only know the PT -norm for H = p2 − (ix)N is (−1)n and
we are not sure whether the value of the PT -norm is going to change for diffe-
rent PT -symmetric Hamiltonian or not. Furthermore, the boundary condition
associated with φn (x) is assumed to be φn (x) → 0 and φ′n (x) → 0 as |x| → ∞,
and the contour path

´
c

can be any path which satisfies the boundary condition.
Whether the value of the PT -norm is independent from the boundary condition
and the shape of contour path or not is unknown. More researches are needed.

Since the PT -norm is not positive-definite, inspired by Dirac, we define[8,
p.39] a linear operator Ĉ represented in coordinate space as a sum over the
PT -normalized eigenfunctions

Ĉ (x, y) ≡
∞∑
n=0

φn (x)φn (y) (1.45)

whose form is similar to (1.44) except of (−1)n. Therefore, Ĉ (x, y) satisfies the
following translation relation

Ĉφn (x) =

ˆ
c

Ĉ (x, y)φn (y) dy (1.46)

which is similar to the translation relation φn (x) =
´
δ (x− y)φn (y) dy from

Dirac delta function. With (1.46), we can define the CPT inner product as

〈φm (x) , φn (x)〉CPT =

ˆ
c

ĈP̂ T̂ φm (x)φn (x) dx =

ˆ
c

ˆ
c′
Ĉ (x, y)φ∗m (−y)φn (x) dxdy

(1.47)
The operator Ĉ has eigenvalues ±1, since from (1.46) and (1.43)

Ĉφn (x) =

ˆ
c

Ĉ (x, y)φn (y) dy

=
∞∑
m=0

φm (x)

ˆ
c

φm (y)φn (y) dy

= (−1)n φn (x) (1.48)

3Assume accurate at least 20 decimal places.
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So the operator Ĉ measures the sign of the PT -norm and behaves like a charge
conjugation operator who changes the sign of all quantum charges. Thus, we
also call Ĉ as a charge operator. Following from (1.47) and using (1.48), we
have

〈φm (x) , φn (x)〉CPT =

ˆ
c

ˆ
c′
Ĉ (x, y)φ∗m (−y) dyφn (x) dx

=

ˆ
c

ˆ
c′
Ĉ (x, y)φm (y) dyφn (x) dx

=

ˆ
c

(−1)m φm (x)φn (x) dx

= (−1)m
ˆ
c

φm (x)φn (x) dx

= 0

So the CPT -norm is positive-definite since

〈φn (x) , φn (x)〉CPT =

ˆ
c

ˆ
c′
Ĉ (x, y)φ∗n (−y)φn (x) dxdy

= (−1)n
ˆ
c

φn (x)φn (x) dx

= 1 (1.49)

Notice that it would be wrong[11, p.4] to use (−1)n
´
c
φ∗n (x)φn (x) dx for non-

Hermitian PT -symmetric Hamiltonian. It is φ2
n (x), not |φn (x)|2 so that the

complex conjugation is not involved.
Consequently, using (1.46), (1.48) and (1.44), the CPT -completeness rela-

tion must be
∞∑
n=0

φn (x)
[
ĈP̂ T̂ φn (y)

]
=
∞∑
n=0

φn (x)

[ˆ
c

Ĉ (x, y)φn (x) dx

]
=
∞∑
n=0

φn (x) (−1)n φn (y)

= δ (x− y)

The operator Ĉ also has following properties, which are stated below wit-
hout proof. For more information about this, see references [7, 8].
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• The operator Ĉ2 gives identity 1

Ĉ2φn (x) = Ĉ (x, y)

ˆ
c

Ĉ (x, y)φn (y) dy

= Ĉ (x, y)
∞∑
m=0

φm (x)

ˆ
c

φm (y)φn (y) dy

= Ĉ (x, y) (−1)n φn (x)

= (−1)n
ˆ
c

Ĉ (x, y)φn (y) dy

= (−1)n (−1)n φn (x)

= φn (x)

• The operator Ĉ commutes with Hamiltonian.[
Ĉ,H

]
= 0 (1.50)

where in coordinate space representation

H (x, y) ≡
∞∑
n=0

(−1)n φ (x)φ (y)En (1.51)

• It also commutes with the operator P̂ T̂[
Ĉ, P̂ T̂

]
= 0 (1.52)

• However, the operator Ĉ does not commute P̂ or T̂ .

• In general, the operator Ĉ is not the same as the parity operator P̂ , only
in special case when N = 2 from (1.29)

Ĉ = P̂ only if N = 2 (1.53)

where the parity operator P̂ in coordinate space is defined as

P̂ (x, y) ≡
∞∑
n=0

(−1)n φn (x)φn (−y) = δ (x+ y) (1.54)

where we have used the completeness relation from (1.44). Since Ĉ2 = 1 and
P̂ 2 = 1, Ĉ and P̂ are distinct square roots of the unity δ (x− y). For N 6= 2, Ĉ is
complex but P̂ is still real.

1.3 Observable
In PT -symmetric quantum mechanics, the position operator x̂ and momentum
operator p̂ are not observables. In fact, by solving Hamilton’s equations, the

9



CHAPTER 1. BACKGROUND

classical trajectories show that the expectation value in the ground state for
position operator is a purely imaginary number (See Fig.(4.3)). However, the
charge C and the energy E are observables. Hence, for a given particle, we
can measure its charge and energy, but not its position and momentum. These
are quite similar to the fermion quantum field, which is complex and has no
classical limit.

1.4 Experiment realizing PT -symmetric system
This section is the primary work by Schindler et al. based on the papers[54, 50].
All experimental data and graphs shown in the current section are extracted
from the paper[54].

Since 1998 when Bender et al. introduced[10] the PT -symmetric Hamilto-
nianH = p2−(ix)N , the scientific research activity and interest of this new type
of Hamiltonian grew rapidly. The number of conferences about PT -symmetry
grew exponentially. During the years of 2000s, more and more experimental
evidences appeared in the science community, so that nowadays this subject
originated from purely mathematical physics has been expanded into the re-
alm of experimental physics. In the last ten years, there are numerous and
interesting experiments[1, 21, 32, 35, 37, 39, 44, 46, 47, 48, 49, 51, 52, 53, 59,
62, 63, 64] of studying PT -symmetry. In this section, we briefly introduce one
experiment[54] designed by Schindler et al. in 2011, and we are trying to ans-
wer three questions:

1. Is it possible to build a physical system which is PT -symmetric?

2. Within the regime of broken PT -symmetry, part of the eigenvalue spectrum
or the whole spectrum becomes complex. Is it possible to measure com-
plex eigenvalues?

3. Is it possible in the experiment to find a critical point or region which
determines the broken and unbroken PT -symmetry? In other words, is it
possible to observe PT -phase transition?

The experimental setup is shown on Fig.(1.1), which includes two LRC circuits
with mutual coupling µ = M

L
= 0.2 and an amplifier on the left side of the

system to increase the power of the left LRC circuit (the Gain side). This am-
plifier acts like an air-pumper, which boosts the total energy of the Gain side
by a factor of 2. However, this boost is balanced or compensated by the loss of
energy due to two reasons. One is that the Gain side has internal resistance so
that the energy is lost due to its dissipation in the form of heat; The other one
is that through the mutual inductance, part of the energy from the Gain side is
transferred to the right LRC circuit (the Loss side), where an external resistor
is connected so that much more energy on the Loss side is dissipated. This
whole system is a physical realization of parity and time-reversal symmetry.

10
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Figure 1.1: [54]Electronic implementation of a PT -symmetric circuit. (The fol-
lowing figure(link to DOI) is reprinted with permission from Joseph
Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos,
Phys. Rev. A 84, 040101(R), October 2011, Copyright 2011 by the
American Physical Society.)

By Kirchhoff ’s law and some algebra, a system of two equations, which are
invariant under the combined P̂ (i.e. n = 1←→n = 2) and T̂ (i.e. τ ←→ −τ )
operations, are obtained:{

d2Qc1
dτ2

= −αQc
1 + µαQc

2 + γ
dQc1
dτ

d2Qc2
dτ2

= µαQc
1 − αQc

2 − γ
dQc2
dτ

(1.55)

where Qc
1 is the charge of the capacitor on the Gain side, Qc

2 is the charge of the
capacitor on the Loss side and

γ = R−1
√
L

C
(1.56)

Qc
n = CVn for n = 1, 2 (1.57)

α ≡ 1

1− µ2
≥ 1 (1.58)

τ ≡ ω0t (1.59)

in which ω0 is the natural (or damped) frequency for the isolated LC circuit.
Due to the use of τ , rather than the time t, all frequencies are measured in
units of ω0. The value γ is called gain/loss parameter which can be adjusted by
changing the external resistance on the Loss side and determines whether the
whole system is in the broken or unbroken PT -symmetry. When the resistance
on the Loss side is adjusted to be large, then γ becomes the loss parameter
since more energy is dissipated on the Loss side. When the resistance on the
Loss side is adjusted to be small, then γ becomes the gain parameter since less
energy is dissipated on the Loss side and meanwhile the amplifier is kept to
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constantly boost the total energy of the Gain side by a factor of 2. By adjusting
γ, they are able to balance the gain and loss for the whole circuit.

By Liouvillian formalism, (1.55) can be transformed into a new form

dΨ

dτ
= LΨ L =


0 0 1 0
0 0 0 1
−α µα γ 0
µα −α 0 −γ

 (1.60)

where Ψ ≡
(
Qc

1, Q
c
2, Q̇

c
1, Q̇

c
2

)T
. This new form (1.60) can be interpreted4[50, p.2]

as a Schrodinger equation with non-Hermitian effective Hamiltonian Heff =

iL. This Hamiltonian is symmetric with respect to generalized P̂0T̂0 operations
so that

[
P̂0T̂0,H

]
= 0 where

P̂0 =

[
σx 0
0 σx

]
T̂0 =

[
I
−I

]
κ̂ (1.61)

where σx is a Pauli matrix, I is a 2× 2 identity matrix and κ̂ is the operation of
complex conjugation. By a similarity transformation R, where

R =


b+ c b+ c i −i
b− c − (b− c) i i
− (b− c) b− c i i
b+ c b+ c −i i

 (1.62)

with b ≡
√

(α+α1/2)/2 and c ≡ −
√

(α−α1/2)/2,Heff can be related to a transposition-
symmetric, PT -symmetric and non-Hermitian Hamiltonian H. Specifically,

H = HT = RHeffR−1
[
P̂ T̂ ,H

]
= 0 (1.63)

where

T̂ = κ̂ = RT̂0R−1 P̂ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 = RP̂0R−1 (1.64)

H =


0 b+ iγ

2
c+ iγ

2
0

b+ iγ
2

0 0 c− iγ
2

c+ iγ
2

0 0 b− iγ
2

0 c− iγ
2

b− iγ
2

0

 (1.65)

Similarity transformation preserves all eigenvalues so that Heff and H have
the same spectrum. If there exists a Hermitian Hamiltonian which also des-
cribes the same system shown on Fig. (1.1), then this Hermitian Hamiltonian
must have the exactly same spectrum of the non-Hermitian Hamiltonian Heff

or H. Is this mathematically allowed? We don’t know yet.
4Since they used the effective Hamiltonian Heff to interpret the system, so it seems that

Heff is not a “natural” Hamiltonian of the system.
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CHAPTER 1. BACKGROUND

The system of two equations from (1.55) can be solved by using the substi-
tution

Qc
n = Ane

iωt (1.66)

where ω is the driving (or undamped) frequency for the voltage Vn (or Qc
n by

(1.57)), and wait to be measured. By the substitution, (1.55) has four solutions
(l = 1, 2, 3, 4) for the eigenfrequencies ωl:

ω1,4 = ±

√√√√
−

2 + γ2 (µ2 − 1) +
√

4 (µ2 − 1) + [2 + γ2 (µ2 − 1)]2

2 (µ2 − 1)
(1.67)

ω2,3 = ±

√√√√−2 + γ2 (µ2 − 1) +
√

4 (µ2 − 1) + [2 + γ2 (µ2 − 1)]2

2 (µ2 − 1)
(1.68)

These solutions can also be obtained by a direction diagonalization of the ma-
trix L from (1.60).

When γ < γPT , where

γPT ≡
1√

1− µ
− 1√

1 + µ
(1.69)

all four eigenfrequencies ωl are real, since the PT -symmetry is unbroken. When
in the broken PT -symmetry γ > γPT , Im (ωl) 6= 0. So γPT is the critical point
which distinguishes the broken and unbroken PT -symmetry. When γ > γ2,
where

γ2 ≡
1√

1− µ
+

1√
1 + µ

> γPT (1.70)

all four eigenfrequencies ωl become purely imaginary.

13



CHAPTER 1. BACKGROUND

Figure 1.2: [54]Eigenfrequencies ωl versus the normalized gain/loss parameter
γ/γPT . (The following figure(link to DOI) is reprinted with permission
from Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsam-
pikos Kottos, Phys. Rev. A 84, 040101(R), October 2011, Copyright
2011 by the American Physical Society.)

Now we come to the second question which is how to measure the complex
eigenfrequency ωl. All thanks should give to our old and lovely friend the expo-
nential - when ωl becomes complex, by (1.66) the exponential eiωt becomes real
so that the charge within either one of the capacitors grows up or vanishes as
time t goes. When ωl is real, eiωt is oscillatory so that the average charge within
either one of the capacitors keeps constant with respect to time. The oscillatory
frequency of charge (or voltage) versus γ is measured and shown on Fig.(1.2).
When γ < γPT , the purely oscillatory behavior with constant amplitude keeps
the eigenfrequency purely real. When γ > γPT , the amplitude of the oscillation
starts to grow exponentially and meanwhile Im (ωl) is no longer zero. The open
circles in the lower graph are reflections of the experimental data (lower curve)
with respect to the axis Im (ω) = 0, because only the exponentially growing
mode with Im (ω) < 0 is dominant and can be observed. The experimental data
matches the theoretical prediction pretty well.
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Figure 1.3: [54]The phase difference θl = φ
(l)
2 −φ

(l)
1 versus the normalized gain/loss

parameter γ/γPT . (The following figure(link to DOI) is reprinted with
permission from Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis,
and Tsampikos Kottos, Phys. Rev. A 84, 040101(R), October 2011,
Copyright 2011 by the American Physical Society.)

The voltage for either one of the capacitors must have the form similar to

V c
n =

An
C
eiωt =

∣∣∣∣AnC
∣∣∣∣ ei(ωt+φn) (1.71)

where φn is the phase angle. Studying the relative phase difference θl = φ
(l)
2 −

φ
(l)
1 within the voltages from the two capacitors is an excellent way to explore

related PT -symmetric feature, because this phase difference not only can be
measured but also has a critical point θPT (µ) when γ = γPT and can be calcu-
lated analytically.

θPT (µ) = arccos
(√

1−
√

1−µ2/
√

1+
√

1+µ2

)
(1.72)

When the mutual coupling µ → 0, θPT → π
2
. When µ → 1, θPT → 0. This

feature along with the phase difference versus normalized gain/loss parameter
γ/γPT is plotted on Fig.(1.3). The experimental data agrees with the theoretical
prediction.

Fig.(1.3) also shows that when γ = 0, the initial phase difference is π. No-
netheless, as γ increases, their subsequent phases can be anywhere since their
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eigenmodes are not orthogonal. The non-orthogonality causes the power to os-
cillate (even if γ < γPT ), so that the whole system is open - the total energy Etot
for the whole system is not conserved, even if γ < γPT . As shown on Fig.(1.4),
when γ < γPT , the total energy Etot

C (τ) of these capacitors is not conserved and
still oscillates with respect to time; When γ > γPT , unstable dynamics are ob-
served in that Etot

C (τ) not only oscillates but also grows exponentially with a
rate given by the maximum imaginary part of the eigenvalue max [Im (ωl)].

Figure 1.4: [54]Measured total energy EtotC (τ) of capacitors of the whole system
versus τ . (The following figure(link to DOI) is reprinted with permis-
sion from Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and
Tsampikos Kottos, Phys. Rev. A 84, 040101(R), October 2011, Copy-
right 2011 by the American Physical Society.)
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Chapter 2

The Eigenvalue Problem for the
Potential V = − (ix)N

2.1 Introduction of the current chapter
In this chapter, we will study the energy spectra of the PT -symmetric Hamil-
tonian H = p2 − (ix)N . There are two reasons why we study this Hamiltonian:

• Historically, this is the first PT -symmetric Hamiltonian scientists[10]
had studied since 1998.

• When N = 2, the PT -symmetric Hamiltonian describes the harmonic os-
cillator, which is familiar to most students. So this Hamiltonian provides
a good introduction to understand PT -symmetry.

Based this Hamiltonian, we have 1D Schrodinger equation in the complex
plane with N ∈ R and x ∈ C,

− ψ′′ (x)− (ix)N ψ (x) = Eψ (x) (2.1)

and we try to numerically calculate the eigenvalue E in the current chapter.
The boundary condition ψ (x) → 0 and ψ′ (x) → 0 as |x| → ∞ causes a great
difficulty for numerical or analytical method, because there are infinite number
of contour paths which go from a complex infinity to another complex infinity.
However, do all paths yield positive and discrete eigenvalue or just some of
paths? We’ll see.

The current chapter contains original work and is organized in the follo-
wing way. In Sec.(2.2), we introduce the concepts of Stokes lines, anti-Stokes
lines and Stokes wedges. In Sec.(2.3), through parametrization we numerically
calculate the eigenvalue E by integrating along various paths to see if the ei-
genvalues and eigenfunctions are independent from paths or not. Since the
Hamiltonian contains multiple families of energy spectrum, in Subsec.(2.3.4),
we plot the first four families and discuss the relation among them.
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2.2 Local asymptotic analysis
In our local asymptotic analysis, the definition of “asymptotic to” is straig-
htforward. Let f(x) and g(x) be two complex functions with the independent
variable x, we say f(x) is asymptotic to g(x)

f(x) ∼ g(x) as x→ x0 (2.2)

to mean that f(x) is arbitrarily close to g(x) without actually being equal to
g(x). A more rigorous definition about “asymptotic to” is

lim
x→x0

f(x)

g(x)
= 1 (2.3)

from which g(x) 6= 0. Therefore, we can never say in any case that function f(x)
is asymptotic to zero!

f(x) � 0 as x→ x0 (2.4)

2.2.1 For N ≥ 2

To find an ansatz to the solution of (2.1), we can easily solve the following
differential equation by just observation

ψ′ (x)− 5x2ψ (x) = 0 (2.5)

whose solution is
ψ (x) = Ce

5
3
x3 (2.6)

which suggests that we can try the solution

ψ (x) = eS(x) (2.7)

where with a ∈ C, a 6= 0 and b > 0, the phase S (x) is of the form

S (x) = axb (2.8)

So
ψ′ (x) = S ′ (x) eS(x) (2.9)

ψ′′ (x) =
{

[S ′ (x)]
2

+ S ′′ (x)
}
eS(x) (2.10)

Plugging (2.7) and (2.10) into (2.1) yield

S ′′ (x) + [S ′ (x)]
2

+ E + (ix)N = 0 (2.11)

From (2.8)
S ′′ (x) = ab (b− 1)xb−2 (2.12)

[S ′ (x)]
2

= a2b2x2b−2 (2.13)
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For b > 0, as |x| → ∞,

b− 2 < 2b− 2

=⇒ |x|b−2 < |x|2b−2

=⇒ |S ′′ (|x|)| <
∣∣∣[S ′ (|x|)]2∣∣∣

which implies that as |x| → ∞ and when N > 0,
∣∣∣(ix)N

∣∣∣� |E|, and
∣∣[S ′ (x)]2

∣∣�
|S ′′ (x)|. Hence

[S ′ (x)]
2 ∼ − (ix)N

=⇒ S ′ (x) ∼ ±
√
− (ix)N

=⇒ S (x) ∼ ±
xˆ √
− (iα)Ndα

=⇒ S (x) ∼ ± i
N
2
+1

N
2

+ 1
x
N
2
+1

We have assumed that the solution must have the form from (2.7), so is it
true if S (x) ∼ ± i

N
2 +1

N
2
+1
x
N
2
+1, then exp [S(x)] ∼ exp

[
± i

N
2 +1

N
2
+1
x
N
2
+1
]

as |x| → ∞? The
answer is “not true in general”. Let two functions have the asymptotic relation
f (x) ∼ g (x), then exp [f(x)] ∼ exp [g(x)] as x→ x0 is true only if f(x)− g(x)� 1
as x→ x0, due to the definition from (2.3)

ef(x) ∼ eg(x) ⇔ lim
x→x0

ef(x)

eg(x)
= 1 = lim

x→x0
ef(x)−g(x) ⇔ f (x)− g (x)� 1 (2.14)

As we’ll see that as |x| → ∞, the difference of S (x) − x
N
2
+1 is not negligi-

ble in comparing with 1, so ψ (x) � exp
[
± i

N
2 +1

N
2
+1
x
N
2
+1
]
, but instead, ψ (x) ∼

exp
[
± i

N
2 +1

N
2
+1
x
N
2
+1 + some function of x

]
. We can improve S (x) ∼ ± i

N
2 +1

N
2
+1
x
N
2
+1 by

assuming that S (x) has the following form

S (x) = ± i
N
2
+1

N
2

+ 1
x
N
2
+1 + A (x) (2.15)

such that
S ′ (x) = ±i

N
2
+1x

N
2 + A′ (x) (2.16)

S ′′ (x) = ±i
N
2
+1

(
N

2

)
x
N
2
−1 + A′′ (x) (2.17)

where as |x| → ∞, ∣∣∣∣∣± i
N
2
+1

N
2

+ 1
x
N
2
+1

∣∣∣∣∣� |A (x)| (2.18)

∣∣∣±iN2 +1x
N
2

∣∣∣� |A′ (x)| (2.19)
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CHAPTER 2. THE EIGENVALUE PROBLEM∣∣∣∣±iN2 +1

(
N

2

)
x
N
2
−1
∣∣∣∣� |A′′ (x)| (2.20)

Substituting (2.15), (2.16) and (2.17) into (2.11) yields

± i
N
2
+1

(
N

2

)
x
N
2
−1 +A′′ (x) + i2(

N
2
+1)xN ±2i

N
2
+1x

N
2 A′ (x) + [A′ (x)]

2
+E+ (ix)N = 0

(2.21)
By cancellation, (2.18), (2.19) and (2.20), we obtain following asymptotic equa-
tion as |x| → ∞

±2i
N
2
+1x

N
2 A′ (x) ∼ −E ∓ i

N
2
+1

(
N

2

)
x
N
2
−1

=⇒ A′ (x) ∼ ∓E
2i

N
2
+1x

N
2

− N

4x

=⇒ A (x) ∼ −N
4

ln |x| ∓ Ex−
N
2
+1

(−N + 2) i
N
2
+1

+ C1 (2.22)

where we have included a constant C1 here, because if N > 2, then x−
N
2
+1 →

0 � C1 as |x| → ∞. For N > 2, the condition (2.14) allows us to obtain the
leading order asymptotic behavior of ψ (x).

By (2.7), (2.15) and (2.22), the leading order behavior of ψ (x) is

ψ (x) ∼ C |x|−
N
4 exp

[
± i

N
2
+1

N
2

+ 1
x
N
2
+1

]
when N ≥ 2 and |x| → ∞ (2.23)

where C is a constant. Note that the asymptotic relation (2.23) for N ≥ 2 is
independent from the eigenvalue E. The dominant contribution in the leading
order behavior is the exponential factor exp

[
± i

N
2 +1

N
2
+1
x
N
2
+1
]
. To satisfy the boun-

dary condition ψ (x)→ 0 as |x| → ∞, we expect that

exp [S1,2 (x)] ≡ exp

[
± i

N
2
+1

N
2

+ 1
x
N
2
+1

]
→ 0 as |x| → ∞ (2.24)

which means that the oscillatory behavior of the exponential should eventually
vanish as |x| → ∞. If the oscillatory part of the exponential is equal to zero for
any value of |x|, then exp [S1,2 (x)] approaches zero in the fastest speed. For
example, for two real functions a (x), b (x) ∈ R, as |x| → ∞

exp [a (x) + ib (x)] = exp [a (x)]
fastest−→ 0 when b (x) = 0, a (x) < 0 (2.25)

Therefore, to satisfy the boundary condition in the fastest manner, we require
the following condition is true

Im [S1 (x)− S2 (x)] = 0 (2.26)
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The solution of (2.26) is the definition of so-called “Stokes lines”. Then we
have

Im

[
i
N
2
+1

N
2

+ 1
x
N
2
+1 −

(
− i

N
2
+1

N
2

+ 1
x
N
2
+1

)]
= 0

=⇒ Im
[
i
N
2
+1x

N
2
+1
]

= 0

Let’s assume that
x = reiθ (2.27)

then

=⇒ Im
[
ei
π
2 (N2 +1)eiθ(

N
2
+1)
]

= 0

=⇒ π

2

(
N

2
+ 1

)
+ θ

(
N

2
+ 1

)
= ±π

So we obtain {
θleft = −π + N−2

N+2
π
2

θright = −N−2
N+2

π
2

(2.28)

which define the locations of Stokes lines for the problem (2.1). Note that

θleft = −π − θright (2.29)

These Stokes lines are plotted on Fig.(2.2).
In fact, there are many Stokes lines, since

Im
[
ei
π
2 (N2 +1)eiθ(

N
2
+1)
]

= 0

=⇒ π

2

(
N

2
+ 1

)
+ θ

(
N

2
+ 1

)
= ±kπ for k = 0, 1, 2, 3, · · ·

which gives {
θleft = −π + N−4k+2

N+2
π
2

θright = −N−4k+2
N+2

π
2

when k = 0, 1, 2, 3, · · · (2.30)

We plot all those Stokes lines on Fig.(2.1).
If the exponential is purely oscillatory, then based on the example from

(2.25), as |x| → ∞,

exp [a (x) + ib (x)] = exp [ib (x)]→ maximally oscillatory when a (x) = 0
(2.31)

So the locations of “anti-Stokes lines” are defined as the solution of the follo-
wing equation

Re [S1 (x)− S2 (x)] = 0 (2.32)
then

Re

[
i
N
2
+1

N
2

+ 1
x
N
2
+1 −

(
− i

N
2
+1

N
2

+ 1
x
N
2
+1

)]
= 0

=⇒ π

2

(
N

2
+ 1

)
+ θ

(
N

2
+ 1

)
=
π

2
or

3π

2

21



CHAPTER 2. THE EIGENVALUE PROBLEM

gives

θ1 =
π

N + 2
− π

2
θ2 =

3π

N + 2
− π

2
(2.33)

which define the width of the “Stokes sector” or “Stokes wedge”

4 = |θ1 − θ2| =
2π

N + 2
(2.34)

The shape of a Stokes wedge is not really like a wedge or a slice of pie. They
are asymptotic concepts. The angular opening 4 from (2.34) of the wedge only
refers to the opening for |x| at certain range of complex infinity.

Figure 2.1: All Stokes wedges for non-negative integer N and all corresponding
turning points (yellow point with black edge)
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Except the top and bottom wedges which contain the imaginary axis, Fig.(2.1)
shows that the rest of all wedges form pairs symmetric with respect to the ima-
ginary axis. Each pair are labeled with a color - orange, green, pink, yellow,
red, etc. We may sometimes call those pairs as “PT -symmetric Stokes wedges”.
Each pair contains a pair of turning points1 which are also symmetric with
respect to the imaginary axis. The larger the N is, the more pairs of wedges
and of turning points are. Any wedge whose anti-Stokes line coincides with the
imaginary axis only shares one singular turning point with its pair, and that
singular turning point must be located on the imaginary axis. On Fig.(2.1),
when N = 0 and N = 1, we label the wedges as “hypothetical wedges”, because

1Turning points are defined by the solutions from the equation E = V . (See (3.1) for more
detail.) Based on this definition, the locations of turning points are eigenvalue E-dependent.
Here, for the purpose of visualization we set E as an appropriate constant. The phase angle
for each turning point are calculated and shown on (3.1).
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the locations of these wedges on the figure are actually not true2 for N < 2
according to (2.51) and (2.52) on Sec.2.2.2, where these wedges are eigenvalue
E-dependent.

Since different pair of wedges will pose different eigenvalue problem, to
proceed, we now only focus on one pair of wedges by choosing the orange pair
with the Stokes lines defined from (2.28) shown on Fig.(2.2) to calculate the
eigenvalue.

Figure 2.2: The chosen Stokes wedges for non-negative integer N and all corre-
sponding turning points (yellow point with black edge)
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2.2.2 For 0 < N < 2

We see that if N < 2, then x−
N
2
+1 9 0 and x−

N
2
+1 � C1 as |x| → ∞. So for

0 < N < 2, (2.22) becomes

A (x) ∼ −N
4

ln |x| ∓ Ex−
N
2
+1

(−N + 2) i
N
2
+1

(2.35)

by the condition (2.14), As |x| → ∞, we can conclude the leading order behavior
of ψ (x) is

ψ (x) ∼ k |x|−
N
4 exp

± i
N
2
+1

N
2

+ 1
x
N
2
+1 ∓

E
(
x−

N
2
+1
)

(−N + 2) i
N
2
+1

 when unknown < N < 2

(2.36)
2Even if the locations of these wedges for N < 2 on Fig.(2.1) is not true, we still plot them

since they can help us understand the origin of all those wedges for N > 2.
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where the lower bound of N is a positive and unknown number which can be
found by continuing our local asymptotic analysis.

Based on (2.15) and (2.35), we assume that S (x) has the following form

S (x) = ± i
N
2
+1

N
2

+ 1
x
N
2
+1 − N

4
ln |x| ∓ Ex−

N
2
+1

(−N + 2) i
N
2
+1

+B (x) (2.37)

so that, by using d
dx

(ln |x|) = 1
x
,

S ′ (x) = ±i
N
2
+1x

N
2 ∓ E

2i
N
2
+1x

N
2

− N

4x
+B′ (x) (2.38)

S ′′ (x) = ±i
N
2
+1

(
N

2

)
x
N
2
−1 ∓ E

2i
N
2
+1

(
−N

2

)
x−

N
2
−1 − N

4x2
+B′′ (x) (2.39)

where as |x| → ∞, ∣∣∣∣−N4 ln |x|
∣∣∣∣� |B (x)| (2.40)∣∣∣∣−N4x

∣∣∣∣� |B′ (x)| (2.41)∣∣∣∣− N

4x2

∣∣∣∣� |B′′ (x)| (2.42)

and ∣∣∣∣∣± i
N
2
+1

N
2

+ 1
x
N
2
+1

∣∣∣∣∣�
∣∣∣∣∣∓ Ex−

N
2
+1

(−N + 2) i
N
2
+1

∣∣∣∣∣ (2.43)

∣∣∣∣∣± i
N
2
+1

N
2

+ 1
x
N
2
+1

∣∣∣∣∣�
∣∣∣∣N4 ln |x|

∣∣∣∣ (2.44)

∣∣∣±iN2 +1x
N
2

∣∣∣� ∣∣∣∣∓ E

2i
N
2
+1x

N
2

∣∣∣∣ (2.45)

∣∣∣±iN2 +1x
N
2

∣∣∣� ∣∣∣∣−N4x
∣∣∣∣ (2.46)∣∣∣∣±iN2 +1

(
N

2

)
x
N
2
−1
∣∣∣∣� ∣∣∣∣∓ E

2i
N
2
+1

(
−N

2

)
x−

N
2
−1
∣∣∣∣ (2.47)∣∣∣∣±iN2 +1

(
N

2

)
x
N
2
−1
∣∣∣∣� ∣∣∣∣− N

4x2

∣∣∣∣ (2.48)

Substituting (2.37), (2.38) and (2.39) into (2.11), and after cancellation yield

±2i
N
2
+1x

N
2 B′∓ EB′

i
N
2
+1x

N
2

± EN

2i
N
2
+1x

N
2
+1
−B

′N

2x
+(B′)

2
+

N2

16x2
+B′′+

N

4x2
− E2

4iNxN
= 0

(2.49)
By (2.41) and (2.42), we conclude that

∣∣−B′N
2x

∣∣ � ∣∣(B′)2∣∣, ∣∣∣ N2

16x2

∣∣∣ � |B′′|. And by

(2.45), (2.46) and (2.47), we conclude that
∣∣∣±2i

N
2
+1x

N
2 B′

∣∣∣� ∣∣∣(∓ E

i
N
2 +1x

N
2
− N

2x

)
B′
∣∣∣.
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So we neglect those smaller terms to have the following asymptotic relation as
|x| → ∞

±2i
N
2
+1x

N
2 B′ ∼ ∓ EN

2i
N
2
+1x

N
2
+1
− N2

16x2
− N

4x2
+

E2

4iNxN

B′ ∼ − EN

4iN+2xN+1
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32i
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2
+1x

N
2
+2
∓ N

8i
N
2
+1x

N
2
+2
± E2

8i
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2

+1x
3N
2

B ∼ − E

4iN
x−N ±

(
N2

32i
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2
+1
(
N
2

+ 1
) +

N
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2
+1
(
N
2

+ 1
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1− 3N

2

)x− 3N
2

+1

It follows from (2.37) so that

S (x) = ± i
N
2
+1

N
2

+ 1
x
N
2
+1 − N

4
ln |x| ∓ Ex−

N
2
+1

(−N + 2) i
N
2
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4iN
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±

(
N2

32i
N
2
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(
N
2
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) +

N
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2
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(
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))x−N2 −1 ± E2

8i
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2
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2

)x− 3N
2

+1 + C2

(2.50)

As |x| → ∞, for 0 < N < 2,
∣∣∣xN2 +1

∣∣∣ → ∞, |ln |x|| → ∞,
∣∣∣x−N2 +1

∣∣∣ → ∞, and

x−
N
2
−1 → 0. For 0 < N < 2

3
, x−

3N
2

+1 → ∞ as well. Therefore, by the condition
(2.14), as |x| → ∞, the leading order behavior of ψ (x) is

ψ (x) ∼ k |x|−
N
4 exp

± i
N
2
+1

N
2

+ 1
x
N
2
+1 ∓

E
(
x−

N
2
+1
)

(−N + 2) i
N
2
+1

 when
2

3
< N < 2

(2.51)

ψ (x) ∼ k |x|−
N
4 exp

± i
N
2
+1

N
2

+ 1
x
N
2
+1 ∓

E
(
x−

N
2
+1
)

(−N + 2) i
N
2
+1
± E2

8i
3N
2

+1
(
1− 3N

2

)x− 3N
2

+1


(2.52)

when 0 < N <
2

3

In comparison with (2.23), we observe that these two asymptotic relations are
eigenvalue-dependent.

2.3 Numerical approximation

2.3.1 Levenberg-Marquardt algorithm
To solve the eigenvalue problem (2.1), by Levenberg-Marquardt algorithm (LMA)
we choose to minimize a square-function F (x∞, E) of the following complex mo-
dulus with respect to the energy E,
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F (x∞, E) ≡ |f (x∞, E)− ψ (x∞, E)|2 (2.53)

where x∞ is the right boundary point located within a right Stokes wedge and
f (x∞, E) can be calculated by Gauss-Legendre integration method (GLI)[34],
a type of implicit Runge-Kutta method. Fortran code for GLI is provided in
Alg.(1) in Appendix. Due to one of boundary conditions lim|x|→∞ ψ (x) = 0,

F (x∞, E) = |f (x∞, E)|2 . (2.54)

LMA is an iterative procedure, where the previous estimate E is replaced by a
new estimate, E+δE, for each iterative step. We can approximate f (x∞, E + δE)
by

f (x∞, E + δE) ≈ f (x∞, E) + J δE, (2.55)

where J is the gradient of f (x∞, E) with respect to E,

J =
∂f (x∞, E)

∂E
. (2.56)

In our case, the range of f (x∞, E) is complex and so is E. Let u, v, a and b be
real such that

f (x∞, E) = u (a, b) + iv (a, b) , (2.57)

E = a+ ib, (2.58)

then we have the following Jacobian matrix J

J =

[
∂u
∂a

∂u
∂b

∂v
∂a

∂v
∂b

]
, (2.59)

and (2.55) in vector notation is

f (x∞,E + δE) ≈ f (x∞,E) + J δE, (2.60)

where
f (x∞,E) =

[
u
v

]
δE =

[
δa
δb

]
. (2.61)

By (2.54) and (2.60), we obtain

F (x∞,E + δE) = [f (x∞,E) + J δE]2 = [f (x∞,E) + J δE]T [f (x∞,E) + J δE] .
(2.62)

To find the minimum, we set

∂F (x∞,E + δE)

∂ (δE)
= 0.
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Let G (x∞,E, δE) ≡ f (x∞,E) + J δE and we have

∂
{

[G (x∞,E, δE)]T G (x∞,E, δE)
}

∂G (x∞,E, δE)

∂G (x∞,E, δE)

∂ (δE)
= 0

2 [G (x∞,E, δE)]T J = 0

[f (x∞,E) + J δE]T J = 0

(δE)TJTJ = −fT (x∞,E)J[
(δE)TJTJ

]T
=
[
−fT (x∞,E)J

]T
δE = −

(
JTJ

)−1
JT f (x∞,E) .

Due to Levenberg’s and Marquardt’s modification on the last equation, we have
a damped factor λ, which is a positive parameter, such that

δE = −
[
JTJ + λdiag

(
JTJ

)]−1
JT f (x∞,E), (2.63)

where diag
(
JTJ

)
means a diagonal matrix with entries on the diagonal from

the matrix JTJ. As |x| → ∞, if the function
√
F (x∞,Enew) ≤

√
F (x∞,Eold)

after a single iterative step, we update Eold by

Enew = Eold + δE = Eold −
[
JTJ + λdiag

(
JTJ

)]−1
JT f (x∞,E), (2.64)

and meanwhile decrease the value λold by a factor, for example, λnew = λold/
√
2.

If after a single iterative step
√
F (x∞,Enew) >

√
F (x∞,Eold) , this means our

λ value is too small and we then increase λold by a factor, for example, λnew =
10λold. And the eigenvalue will not be updated so that we still have

Enew = Eold. (2.65)

How we adjust the value of λ becomes important to efficiently find the eigen-
value, yet so far there is no absolutely best way to optimize the value of λ.

2.3.2 Parametrization, eigenvalue and eigenfunction
2.3.2.1 Parametrization

We set up the following initial condition at the numerical infinity x0 ≡ ∞left

within the left Stokes wedge on Fig.(2.2):

x0 = r0 exp (iθleft) ψ (x0) = 0
dψ (x0)

dx
= 10−7, (2.66)

where θleft is defined by (2.28) and r0 is the complex modulus of the numeri-
cal infinity x0. In other words, r0 is the distance between the origin and the
point where the wave function and the derivative of the wave function almost
vanish. By observation on data, we choose r0 to be around 4. To have the fas-
test convergence to the eigenvalue, we’re tempted to use GLI to integrate along
the two Stokes lines given by (2.28). However, they are connected at the origin
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where is non-differentiable for N 6= 2. Since this causes non-smoothness (See
Fig.(2.3)) on the eigenfunction at the origin, one way to have smooth-looking
eigenfunction is to integrate along some new paths, which should satisfy the
following four conditions:

1. The potential − (ix)N has a numerical cut on the positive-imaginary axis.
So the new path must not cross it; otherwise we must have a different
eigenvalue problem.

2. The new path must go from one complex infinity within one Stokes wedge
and back to the other complex infinity in the other Stokes wedge. These
two complex infinities are symmetric with respect to the imaginary axis
of x.

3. The new path is smooth everywhere and can be parametrized by a diffe-
rentiable function.

4. Since GLI converges fastest if integrate along the two Stokes lines, it
would be more efficient if the path or the differentiable function has two
asymptotic lines coincident with the locations of the two Stokes lines.

Figure 2.3: The eigenfunction of the ground state for N = 4 along the Stokes
lines (non-differentiable at origin) with r0 = 4. The vertical-blue dot-
lines represent two numerical infinities ±Re (x0) = ±r0 cos 30◦. Along
the Stokes lines, the numerical result for the eigenvalue E does not
change even though the shape of the eigenfunction is not smooth, in
comparison with the smooth eigenfunctions associated with the hy-
perbolic paths.
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Figure 2.4: The eigenfunctions of the ground state for N = 4 along the differen-
tiable (hyperbolic) paths with three different values of a defined by
the hyperbolic equation Y− = −a

√
1 + X2

b2
. All three paths have the

same eigenvalue. The vertical-blue dotlines represent two numerical
infinities ±Re (x0) = ±r0 cos 30◦ with r0 = 4.
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To satisfy all four conditions and since Fig.(2.2) shows that the two Stokes
lines move below the real axis when N > 2, the best differentiable function
used for the parametrization when N > 2 must be hyperbola shown on the
miniplot on Fig.(2.4). In this hyperbolic parametrization, we treat Re (x) as the
parameter so that

x = Re (x) + i Im (x) = Re (x)− i
√
a2 + [Re (x)]2 (tan θ)2, (2.67)

where the angle θ between one of the asymptotic lines and the horizontal axis
is θ = arctan

(
a
b

)
. Also, θ = θright from (2.28). Fig.(2.4) shows that the shapes

of the corresponding eigenfunctions are smooth and different-looking since the
values of a defined by the hyperbolic equation Y− = −a

√
1 + X2

b2
is different.

For the upcoming work, we choose a = 0.2 since this hyperbola is quite close to
the location of the two Stokes lines and meanwhile keeps the shape of eigen-
function smooth.

For 0 < N < 2, Fig.(2.2) shows that the two Stokes lines move above the real
axis. Does the function satisfy the four conditions exist? Yes. As X → ±∞ the
following function with k > 0, real parameters c and t

f (X) =
X2 − c√
kX2 + t

(2.68)

has two asymptotic lines:

Y =
1√
k
X as X → +∞, Y = − 1√

k
X as X → −∞. (2.69)
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The angle θ between the asymptotic line associated with X → +∞ and the
horizontal axis satisfies

k =

(
1

tan θ

)2

. (2.70)

Fig.(2.5) shows a good news that the function satisfies all four conditions.

Figure 2.5: The differentiable path for N < 2 by choosing c = 1
10 and t = 8.
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With these parametrizations (2.67), (2.68) and along the real axis of x, we
are able to use LMA and GLI to find all eigenvalues and eigenfunctions associa-
ted with all pairs of wedges defined by Fig.(2.1). The final result of eigenvalues
is shown on Fig.(2.31), and we will explain it later.

2.3.2.2 When N = 2

The concept of Stokes wedge implies that the same eigenvalue is obtained if
we integrate along different paths, as along as the conditions 1 and 2 are sa-
tisfied. However, can we justify this by numerical analysis? How about their
eigenfunctions? Are they independent from the shape of path or not?
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Figure 2.6: Four distinct contour paths we follow for N = 2.
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The first step to answer these questions is to parametrize various paths and
calculate the corresponding eigenvalues to see if they agree each other or not.
We start with the case when N = 2 as a harmonic oscillator, and use LMA and
GLI to search for the eigenvalue by integrating along the four different paths
shown on Fig.(2.6), where two symmetric points A and B are located on the
real axis and treated as two numerical infinities. These four different paths
start from the same boundary point A and end to the same boundary point B.
One of the four paths is along the real axis, two complex paths (sym. path and
non-sym. path) are defined by (2.71), and we add another complex path (sin.
path) defined by a sinusoidal function.

It’s a bit of a challenge to parametrize the non-sym. path on Fig.(2.6).
We start with the following parametric curve with real parameter p shown
on Fig.(2.7) {

X = p− 2 sin p

Y = p2
(2.71)

which crosses itself once and is symmetric with respect to the Y -axis. So
this curve can be used to define the sym. path on Fig.(2.6). To get the non-
symmetric version, we can just rotate the curve by an given angle.
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Figure 2.7: Parametric curve crosses itself.

−6 −4 −2 0 2 4 6
0

5

10

15

20

25

X

Y
p=−5

p=1 p=−1

p=5

X = p − 2 sin(p)
Y = p2

The eigenvalues we found by following all four paths defined by Fig.(2.6) are
shown on the following Tab.(2.1), where the corresponding residues are obtai-
ned by calculating the complex modulus of the numerical eigenfunctions at the
right boundary point B. Ideally, these values should be zero, so we set our
tolerance of residue to be 10−13. Through observation, the real parts of eigenva-
lues are almost the same for all four paths, whereas the imaginary parts are so
small that they can be ignored. When the energy level increases, both real and
imaginary parts of eigenvalues E start to shift from the analytic results, which
are Ei ∈ {1, 3, 5, 7 · · · }. The higher energy level, the larger the shift. This is ty-
pical, since we fix the locations of boundary points A and B, and define them as
numerical infinities. When energy level becomes higher, the pattern of corre-
sponding eigenfunctions becomes more complicated - they wiggle more before
vanishing at the infinity so that the length of non-vanishing parts becomes lon-
ger. Ideally, to minimize the shift, we need to separate A and B even farther to
accommodate longer eigenfunction for higher energy level. For those, who are
meticulous, you may observe from Tab.(2.1) that following the real path has re-
latively smaller imaginary parts of eigenvalues than following complex paths.
The reason is the same as what we have just said. The non-vanishing parts of
corresponding eigenfunctions by following the complex paths are longer than
by following the real path, because the shapes of these complex paths are more
complicated than of the real path. In example from the next Sec.2.3.2.3, we
will numerically demonstrate that within the same pair of Stokes wedges and
independent from the shape of path, imaginary parts of eigenvalues become
smaller by separating A and B farther.
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Table 2.1: Eigenvalues E from four distinct paths for N = 2

Re(E) Im(E) Residue

Sym. path 1.000000000000000 -0.1003620374557331E-17 0.6933467498458673E-14

Non-sym. path 1.000000000000000 -0.9129470301709489E-16 0.6621862749722552E-15

Sin path 1.000000000000000 -0.1480602937730059E-19 0.6507080581691370E-13

Real path 1.000000000000000 -0.6115913653696003E-24 0.4344033594013260E-13

Sym. path 3.000000000000000 -0.3812557322801343E-17 0.7481390208835876E-14

Non-sym. path 3.000000000000002 -0.1004110601426235E-14 0.6295535561555787E-13

Sin path 3.000000000000000 -0.3128964148841211E-16 0.2291971606424135E-13

Real path 3.000000000000000 -0.9155685463116496E-25 0.4493053239887049E-16

Sym. path 5.000000000000013 0.2518834186125261E-15 0.2558806183336114E-13

Non-sym. path 5.000000000000021 -0.5549557037887328E-14 0.7809314498766232E-15

Sin path 5.000000000000013 -0.1256496099524602E-14 0.2522954352155260E-13

Real Path 5.000000000000013 -0.3282017032228570E-21 0.4056238283715534E-14

Sym. path 7.000000000000336 0.7951061118291276E-14 0.8926074464266579E-14

Non-sym. path 7.000000000000333 -0.2055555160518695E-13 0.9050089495233448E-14

Sin path 7.000000000000346 -0.3247942276399777E-13 0.5055081369636703E-13

Real Path 7.000000000000349 -0.1069414905172819E-21 0.5135175134438069E-16

Sym. path 9.000000000006479 0.1538114392730817E-12 0.9039626517473521E-13

Non-sym. path 9.000000000005852 -0.5231255443223443E-13 0.6176568383960844E-15

Sin path 9.000000000007047 -0.4597603658801041E-13 0.3218450841772004E-14

Real path 9.000000000006735 -0.5114475804683816E-18 0.1308960170235510E-13

Sym. path 11.00000000009739 0.2259281344709882E-11 0.6716526118006623E-13

Non-sym. path 11.00000000008690 -0.9751759350366208E-14 0.1637934803002069E-13

Sin path 11.00000000010035 -0.8913171072104399E-11 0.2633758435143849E-13

Real path 11.00000000010117 -0.2465880422978931E-18 0.4331758624064671E-15

Sym. path 13.00000000118508 0.2671384985266084E-10 0.6520143632534298E-13

Non-sym. path 13.00000000105809 0.1377279869903961E-11 0.1290710233287906E-13

Sin path 13.00000000122042 -0.1050745001235918E-09 0.3099083730781987E-13

Real path 13.00000000122972 -0.1303098653403670E-18 0.1945701205719875E-16
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Figure 2.8: Re (x) versus the eigenfunction of the ground level along the real and
sinusoidal path for N = 2 (Before using (2.72) to normalize).
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Figure 2.9: Re (x) versus the eigenfunction of the ground level along the real and
sinusoidal path for N = 2 (after using (2.72) to normalize).
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Now we plot the eigenfunctions associated with different paths. Fig.(2.10)
shows two mini-plots. One mini-plot is to show the shape of paths, while the
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other shows the parameter p defined by (2.71) versus the corresponding eigen-
function ψ (p) by following the sym. path. For N = 2, since all imaginary parts
of eigenfunctions associated with the real path are zero, that is why we only
see a vertical segment (the grey dash line) contributed by Re [ψ (x)] along the
real path on Fig.(2.11), Fig.(2.14) and Fig.(2.17).

It seems that the different path has different eigenfunction even though the
eigenvalues are the same. This is an illusion! All corresponding eigenfuncti-
ons are independent from the shape of paths as well. To demonstrate this,
we draw the vertical-red dotlines on all those figures to indicate where two
different paths intersect each other. At all those intersection points, the corre-
sponding two eigenfunctions cross each other as well. We call these behaviors
as “crossing events”. Suppose that two different paths intersect at one point
x∗, then a single crossing event is that the eigenfunction ψ (x∗) from the one
path and ψ (x∗) from the other path are crossed at x∗. For example, on Fig.(2.8),
Re [ψ (x)] from the real path and Re [ψ (x)] from the sinusoidal path are crossed
at 9 locations, and meanwhile Im [ψ (x)] from the real path and Im [ψ (x)] from
the sinusoidal path are crossed at another 9 locations. These two sets of 9 loca-
tions can be connected pair by pair by 9 vertical-red dotlines, whose horizontal
coordinates are the real coordinates of the 9 intersection points between the
two paths. On Fig.(2.11), however, the horizontal coordinates are changed to be
the imaginary coordinates of the corresponding intersection points. By obser-
vation on all figures from Fig.(2.10) to Fig.(2.18), we conclude that the number
of crossing events is equal to the number of vertical-red dotlines, and further
conclude that the eigenfunctions are independent from the shape of paths so
long as those paths all start from the same boundary point A and end at the
same boundary point B. In the later case (See Fig.(2.21)), we will numerically
demonstrate that the eigenfunction is not independent from path if that path
starts and ends on different boundary point.

The amplitude of eigenfunction depends on the shape of path. If a path
contains some points whose distances are far away from the origin, then the
amplitude of the corresponding eigenfunction must be large. That is why the
amplitude along the real axis is the smallest; whereas the amplitude along the
sym. path (on Fig.(2.10) and Fig.(2.11)) is the largest.

How about normalization? We’re tempted to use standard normalization
from conventional quantum mechanics. In numerical approximation, the nor-
malized wavefunction φn (x) would be

φn (x) =
ψn (x)√´

c
ψ∗n (x)ψn (x) dx

≈ ψn (p)√´ p2
p1
ψ∗n (p)ψn (p) dp

≈ ψn (p)√∑
p

ψ∗n (p) · ψn (p) · dp
.

(2.72)
where p is the real parameter which parametrizes the path. By this way, we
find that φn (x) satisfies

ˆ
c

φ∗n (x)φn (x) dx ≈
ˆ p2

p1

φ∗n (p)φn (p) dp ≈
∑
p

φ∗n (p) · φn (p) · dp = 1 . (2.73)
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for all wave functions from different energy level and different path. Hence,
it is possible to “normalize”3 all wave functions we have encountered so far!
However, except of the case by following the real path when N = 2, the condi-
tion of orthogonality

´
c
φ∗m (x)φn (x) dx = 0 may not hold to be true in all other

paths. For example, following the sinusoidal path on Fig.(2.9), we find that,
numerically,
ˆ
c

φ∗0 (x)φ1 (x) dx ≈ 0

ˆ
c

φ∗6 (x)φ3 (x) dx ≈ 0

ˆ
c

φ∗0 (x)φ5 (x) dx ≈ 0, (2.74)

but ˆ
c

φ∗0 (x)φ2 (x) dx = −0.92145 + 1.56493i 6= 0. (2.75)

The “official” way of normalization introduced by Bender[8] is to use the
recipe, which at first requires to find the PT -normalized eigenfunction through

φn (x) = exp (iθn/2)ψn (x) , (2.76)

which satisfies φ∗n (−x) = φn (x). Then we can verify
ˆ
c

φn (x)φn (x) dx = (−1)n . (2.77)

After that, we can use CPT -normalization defined by

〈φm (x) , φn (x)〉CPT =

ˆ
c

ˆ
c′
Ĉ (x, y)φm (y) dyφn (x) dx = δmn , (2.78)

which in some case may require to find the charge operator Ĉ first. For the po-
tential − (ix)N , the most difficult part is to find the phase angle θn from (2.76).
In this paper, we made no attempt to find θn, and therefore no attempt to nor-
malize any eigenfunction we have encountered.

Since (2.72) is only a numerical approximation of the normalization from
conventional quantum mechanics, Fig.(2.9) indicates that due to numerical er-
ror or using the conventional/wrong method to normalize, the two eigenfuncti-
ons no longer cross each other precisely at those intersection points between
the two paths. This means that the crossing events no longer happen. We sus-
pect that such conundrum will still exist even if we undertake the procedure of
the PT -normalization initiated at (2.76), because eventually (2.76) and (2.78)
may require us to use numerical approximation again. This adds another rea-
son why we don’t normalize eigenfunctions.

3However, we are not able to use Re (x) to “normalize” ψ (x) if Re (x) is not used to parame-
trize the contour path (For example, see (2.71)).
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Figure 2.10: Re (x) or p versus the eigenfunction of the ground level along three
paths (real, sin. and sym. path) for N = 2
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Figure 2.11: Im (x) versus the eigenfunction of the ground level along three paths
(real, sin. and sym. path) for N = 2
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Figure 2.12: Re (x) or p versus the eigenfunction of the ground level along three
paths (real, sin. and non-sym. path) for N = 2 (See magnification on
Fig.(2.13))
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Figure 2.13: Re (x) versus the eigenfunction of the ground level along three paths
(real, sin. and non-sym. path) for N = 2 (after magnifying)
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Figure 2.14: Im (x) versus the eigenfunction of the ground level along three paths
(real, sin. and non-sym. path) for N = 2
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For higher energy state, we plot the 4th level on the following figures where
we observe that the number of crossing events is equal to the number of inter-
section points between two different paths as well.
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Figure 2.15: Re (x) or p versus the eigenfunction of the 4th level along three paths
(real, sin. and non-sym. path) for N = 2 (See magnification on
Fig.(2.16))
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Figure 2.16: Re (x) versus the eigenfunction of the 4th level along three paths
(real, sin. and non-sym. path) for N = 2 (after magnifying)
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Figure 2.17: Im (x) versus the eigenfunction of the 4th level along three paths
(real, sin. and non-sym. path) for N = 2 (See magnification on
Fig.(2.18))
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Figure 2.18: Im (x) versus the eigenfunction of the 4th level along three paths
(real, sin. and non-sym. path) for N = 2 (after magnifying)
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By the way, it is not really that clear by looking at Fig.(2.10) and Fig.(2.11)
to figure out how the eigenfunction of the ground state associated with the
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sym. path behaves. To make more visualized, we shift the path from the grey
to the pink shown on Fig.(2.19) but still from A to B, and plot the eigenfunction
associated with the pink path (not with the grey path). Since the parametric
curve crosses itself, the corresponding eigenfunction also crosses itself but the
times of cross are more than once, as the figures clearly show!

Figure 2.19: Re (x) or p versus the eigenfunction of the ground level along the
pink path for N = 2
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Figure 2.20: Im (x) versus the eigenfunction of the ground level along the pink
path for N = 2
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2.3.2.3 When N = 3 and N = 2.9

Figure 2.21: Six distinct contour paths we follow for N = 3
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First, we draw three pairs of boundary points on Fig.(2.21). All these pairs AB,
CD, and C ′D′ are symmetric with respect to the imaginary axis of x. If label
the origin as O, then OA = OB and OC = OD = OC ′ = OD′. For further test,
we set six different paths for the case of N = 3. Poly. path AB and poly. path
CD are parametrized by two different polynomials, and both of paths are non-
symmetric with respect to the imaginary axis, and start on the left Stokes line
and end on the right Stokes line. In comparison, we add another four different
paths on Fig.(2.21), one of which is our old friend the sinusoidal path CD, the
other one from C to D crosses the positive-imaginary axis, and the rest two are
straight lines. One straight line path (real path C ′D′) is along the real axis from
C ′ to D′. The other straight line path (line path CD′) is slant, non-symmetric
and connects C to D′.

Table 2.2: Eigenvalues of the 0th and 2nd level from six distinct paths for N = 3

Re(E) Im(E) Residue

Ploy. AB 1.156267071989019 0.8699974233760738E-14 0.5837413712624328E-15

Poly. CD 1.156267071988113 0.2052808885668437E-23 0.3977525289004519E-13

Sin CD 1.156267071988113 -0.1490592751548809E-18 0.1223996206474492E-13

Real path 1.156267071988114 -0.8801464383118945E-17 0.4067876425200419E-14

Line CD’ Unknown Unknown Unknown

Cross cut CD 1.156267071988113 0.1230205329821445E-22 0.1793822595065940E-13

Ploy. AB 7.562273854416516 -0.8134071897365131E-12 0.6660422421018381E-15

Ploy. CD 7.562273854978828 -0.4436873189935206E-21 0.3680421771030331E-14

Sin CD 7.562273854978828 -0.7501915540619571E-17 0.2072196034721804E-13

Real path 7.562273854979419 0.5552050139288675E-14 0.8638177790903146E-15

Line CD’ Unknown Unknown Unknown

Cross cut CD 7.562273854978828 -0.8294706637359862E-20 0.3759133276627254E-13

We summarize the results on Tab.(2.2), where we choose the 2nd level to
represent the eigenvalue for higher energy state. As shown on Tab.(2.2), when
we separate AB even farther to CD, all imaginary parts of eigenvalues E along
the poly. path become smaller. These demonstrate the claim we made in the
previous example.

Since the straight line path CD′ does not yield any real eigenvalue, we then
conclude that the two infinities∞left and∞right or two boundary points have to
be symmetric with respect to the imaginary axis to have real eigenvalue.
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Figure 2.22: Re (x) versus the eigenfunction of the ground level along two paths
(poly. CD and sin. CD) for N = 3. The number of crossing events is
equal to the number of intersection points between the two paths.
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Figure 2.23: Re (x) versus the eigenfunction of the ground level along two paths
(poly. AB and sin. CD) for N = 3. No crossing event happens.
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Figure 2.24: Re (x) versus the eigenfunction of the ground level along two paths
(sin. CD and real C’D’) for N = 3. No crossing event happens.
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On Fig.(2.22), Fig.(2.23) and Fig.(2.24), our purpose is not to plot the en-
tire eigenfunctions, but only to show whether the crossing events occur or not.
On Fig.(2.22), we observe that the number of crossing events is equal to the
number of intersection points between the two paths. This is not only true for
integer N but also for fractional N (e.g. N = 2.9). However, if any two paths
start and end at different boundary points within a pair of Stokes wedges, then
the crossing event will not happen - for example, on Fig.(2.23) one path goes
from C to D while the other goes from A to B. Since A and B are closer to
the origin, the amplitude of the wave function is smaller so that no crossing
event happens. Another example is shown on Fig.(2.24), where one path goes
from C to D while the other goes from C ′ to D′, and no crossing event happens
even though OC = OD = OC ′ = OD′. Here, we want to emphasize that we do
not know if the missing crossing events from these two examples can recover
after applying the procedure of the CPT -normalization. More researches are
needed.

On Tab.(2.2), it is a little surprise to see that the path (cross cut CD) yields
the same eigenvalues as those paths without crossing the cut. The crossing
events also happen in this case, where the two paths (cross cut CD and sin.
CD) are involved. However, it is not “safe” to cross the cut if N is not an integer.
For example, in case whenN = 2.9, the locations of Stokes lines and anti-Stokes
lines on Fig.(2.25) are slightly changed, so that we shift the boundary points
A, B, C, D accordingly and calculate eigenvalues again. Tab.(2.3) shows that
the eigenvalue associated with the path (cross cut CD) is drastically changed
even if N is changed only by 0.1. We only find one real and negative eigenvalue.
The rest eigenvalues may be complex. Tab.(2.2) and Tab.(2.3) imply that the
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path which crosses the cut on the positive-imaginary axis must give the same
eigenvalue as those paths without crossing it, only if N is an integer. The
reason why the eigenvalue is drastically changed for fractional N along the
path is discussed in Sec.(3.4.7.5).

Figure 2.25: Six distinct contour paths we follow for N = 2.9
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Table 2.3: Eigenvalues of the 0th and 2nd level from six distinct paths for N = 2.9

Re(E) Im(E) Residue

Ploy. AB 1.131396959784506 0.5777489913638163E-13 0.8569487352765512E-14

Poly. CD 1.131396959777214 0.8957303021505091E-22 0.9308100275667645E-14

Sin CD 1.131396959777214 -0.8447986496680406E-20 0.4154156286659572E-13

Real path 1.131396959777217 -0.9406628029377684E-16 0.5091289899541294E-14

Line CD’ Unknown Unknown Unknown

Cross cut CD -0.1948727126451554 -0.4623434058293826E-22 0.2252527395492111E-13

Ploy. AB 7.227036694681535 0.3149672198986876E-11 0.1429208479853561E-14

Ploy. CD 7.227036699223195 0.5786131273235737E-19 0.9719366946079896E-14

Sin CD 7.227036699223195 -0.1490158943940993E-18 0.3886710658215337E-13

Real path 7.227036699222438 0.2781860593649764E-13 0.7206282171398339E-14

Line CD’ Unknown Unknown Unknown

Cross cut CD Unknown Unknown Unknown
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2.3.2.4 Summarize what we know so far

1. For the potential− (ix)N with N > 1, one necessary condition to have real-
positive eigenvalue is that the two boundary points for any path must be
symmetric with respect to the imaginary axis of x.

2. If none of paths crosses the cut, and suppose that one path has boundary
points A and B symmetric with respect to the imaginary axis, whereas
the other path has boundary points C and D symmetric with respect to
the imaginary axis, and A, B, C, D all lie within the same pair of Stokes
wedges, then eigenvalues for these two paths must be the same even if
A 6= C and B 6= D. However, their eigenfunctions may be different.

3. Suppose that two paths have the same boundary points A and B symme-
tric with respect to the imaginary axis, one path crosses the cut on the
positive-imaginary axis and the other does not, and A, B lie within a pair
of Stokes wedges, then their eigenvalues and eigenfunctions must be all
independent from the shape of path if N is an integer; and dependent if
N is an non-integer.

4. Suppose that two paths have the same boundary points A and B symme-
tric with respect to the imaginary axis, none of the paths crosses the cut
on the positive-imaginary axis, and A, B lie within a pair of Stokes wed-
ges, then their eigenvalues and eigenfunctions must be all independent
from the shape of path.
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2.3.3 Comparison between two pairs of PT -symmetric wed-
ges

Figure 2.26: Two distinct contour paths we follow for N = 5
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A typical question is what if we follow a path whose boundary points are out-
side of the chosen (orange) wedges. Can we find any real eigenvalue? The
answer is yes. As shown on Tab.(2.4), we have one family of real spectrum
by following the hyperbola path within the orange wedges and another family
of real spectrum by the real path within the green wedges on Fig.(2.26), and
the ratios between the two families approach to a constant as the energy level
increases. Here, we want to emphasize that based on our numerical test, inte-
grating along path starting from an orange wedge and ending in a green wedge
will not obtain any real eigenvalue. This strengthens our claim that the two
complex infinities must be symmetric with respect to imaginary axis in order
to have real eigenvalue.
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Table 2.4: Eigenvalues E from the two distinct paths for N = 5

Re(E) Im(E) Residue

Hyper. path 1.908264578170778 -0.1280852237254063E-29 0.2539743864912583E-15

Real path 1.164770407943415 -0.8118987372709177E-21 0.4528149482897403E-14

Hyper. path 8.587220836207222 -0.1377335521357117E-29 0.7836293195505335E-15

Real path 4.363784367712109 -0.1808147123828949E-19 0.4415401140561282E-13

Hyper. path 17.71080901173115 -0.4585871458868370E-28 0.4832720245229763E-14

Real Path 8.955166998240672 -0.2144296494147817E-18 0.9918986297875471E-13

Hyper. path 28.59510331173597 0.4326400861354853E-27 0.5138431564845830E-13

Real path 14.41775483027413 -0.1782545184561158E-17 0.2579378482133023E-13

Hyper. path 40.91889089052085 -0.9188980351779116E-26 0.1003605863909237E-13

Real path 20.61013751004891 -0.1197910951175074E-16 0.4827237348929240E-14

Table 2.5: Ratios of eigenvalues (Im (E) ignored) from the two distinct paths for
N = 5

Re(E) Ratio

Hyper. path 1.908264578170778 1.638318217184208
Real path 1.164770407943415

Hyper. path 8.587220836207222 1.967838030619607
Real path 4.363784367712109

Hyper. path 17.71080901173115 1.977719568513977
Real path 8.955166998240672

Hyper. path 28.59510331173597 1.983325673682043
Real path 14.41775483027413

Hyper. path 40.91889089052085 1.985376898653392
Real path 20.61013751004891

From (3.17) in the next chapter, we used conventional WKB method and
derived the following asymptotic relation[56]

En (γ2)

En (γ1)
∼
[

cos (γ1)

cos (γ2)

] 2N
N+2

for n→∞ (2.79)

where γ1 and γ2 are the phase angles associated with two turning points re-
spectively on the green and orange wedge on the right side of the imaginary
axis of x (see Fig.(2.26)). These two turning points and the other two associa-
ted with β1 and β2 defined by (3.2) form two symmetric pairs.
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When N = 5, by (3.1) the right turning point on the green wedge has the
phase angle γ1

γ1 =

(
2−N

2N
+

2j

N

)
π =

(
−3

10
+

4j

10

)
π =

1

10
π (2.80)

where by observing Fig.(2.26) we set j = 1. The right turning point on the
orange wedge has the phase angle γ2

γ2 =

(
2−N

2N
+

2j

N

)
π =

(
−3

10
+

4j

10

)
π =

−3

10
π (2.81)

where by observing Fig.(2.26) we set j = 0. Hence,[
cos (γ1)

cos (γ2)

] 2N
N+2

=

[
cos
(

1
10
π
)

cos
(
− 3

10
π
)] 10

7

= 1.988629015490531 (2.82)

Therefore, our numerical results from Tab.(2.5) agrees with the WKB approxi-
mation as the energy level n increases.

So the conclusion[56] is that there exists more than one family of real spectra
if N is large enough, and, as energy level increases, one family of real spectrum
over the other family maybe approaches to a constant ratio, which sometimes
can be predicted by the WKB approximation. For integer N , how many fami-
lies of real spectra there are depends on how many pairs of symmetric turning
points there are or how many pairs of symmetric but non-contacting wedges
there are. We will discuss more in Sec.(2.3.4) about the families of real spectra.

2.3.4 Eigenvalue E versus N

Figure 2.27: Energy spectrum of the 1st family from the pair of the orange wedges
(The grey curves are WKB approximation)
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Fig.(2.27) shows the relation between E and N after applied the boundary con-
dition within the orange wedges defined by Fig.(2.2). The grey curves are obtai-
ned by WKB approximation from (3.20). The other colored curves are numeri-
cal results, which are displayed in blue for N ≥ 2, in orange for N < 2, and in
green whenever N is near to a location of degeneracy.

The leading-order WKB method is a very good approximation, since on the
most part of Fig.(2.27) those grey curves are covered by the blue and orange
curves so that we barely see them. However, whenever N is approaching a lo-
cation of degeneracy, the WKB approximation is no longer reliable. The WKB
also fails when N approaches to 1, where only the ground state has real eigen-
value. When N = 1 exactly, we did not find any real eigenvalue, including the
ground level. We will talk more about the WKB approximation later.

How do we generate those eigenvalue curves on Fig.(2.27)? WhenN < 2, the
orange wedges shift above the real axis; when N > 2, the orange wedges shift
below the real axis. Based on this fact, in our code we set when N ≤ 1.6, we
follow the parametric path defined by (2.68); when 1.6 < N < 3.0, we follow the
real axis; when N ≥ 3.0, the hyperbolic path is followed. To obtain Fig.(2.27),
we start with the harmonic oscillator (N = 2), increase N by 0.1 and use the
previously found eigenvalue as a guess to search for he new eigenvalue. By
repeating this process until N = 5, we obtain the blue part of Fig.(2.27). Due to
the degeneracies of energy occur in the region where N < 2, we become more
careful so as to decrease N by just 0.025 rather than by 0.1. We start with
the harmonic oscillator (N = 2) and use the previously found eigenvalue as a
guess as well. When we approach to locations of degeneracies, we decrease N
by even lesser amount of value (for example, 0.0001) so that more data points
(the green points) are generated. On Fig.(2.27) the magnified region where the
degeneracy occurs clearly shows the locations of the green points, two of which
are very close to the actual value of the degenerated eigenvalue. We summarize
all green points nearest to the corresponding degenerated eigenvalues on the
following Tab.(2.6).
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Table 2.6: Locations of the green data points (two nearest to the degenerated ei-
genvalues)

N Re(E)

Level 1 1.42210 3.798097503566341

1.42210 3.769947569720313

Level 2 1.57145 6.931062951894809

1.57145 6.909904226441585

Level 3 1.64860 10.19710564838468

1.64860 10.16647647154904

Level 4 1.69810 13.56278552311201

1.69810 13.50221738682984

Level 5 1.73330 16.98347623074032

1.73330 16.91803839426446

Level 6 1.76000 20.46649448240978

1.76000 20.37974449784742

By the same way, on Fig.(2.28) we obtain the 2nd family of eigenvalues from
the green wedges defined by Fig.(2.1). The most interesting discovery is that
when N is around 4 and E is about 20, the eigenvalue curve starts to go in
vertical direction with horizontal oscillation, whose amplitude is decreasing as
E increases. When this curve oscillates to the left so that N < 4, we use red
color to plot the curve; when oscillates to the right so that N > 4, we use green
color. When E is around 20, the curve is in red color and inbetween 3.97 < N <
4; when E is above 90, the curve is confined within 3.99999999998 < N < 4,
which is on the top of the figure the red part of the curve, whose oscillation
is too small and can be almost ignored. We guess that as E further increases,
the oscillation eventually breaks the limit so that no device is able to detect
such tiny oscillation, which generates an illusion that the energy spectrum at
N = 4 is continuous for high level (similar to the classical regime), rather than
quantized. However, theoretically, when N is exactly equal to 4, no matter how
high the energy E is, the eigenvalues are still quantized and discrete points
whose locations distinguish the red and green part of the eigenvalue curve.

Since this eigenvalue curve has infinite number of degeneracies so we name
it as a “Curve with Infinite Number of Degeneracies” or “CIND”. Within
the pair of the green wedges, how many CINDs are there? Here is our conjec-
ture without solid proof. Numerical result shows that when E is above 180, the
eigenvalue curve for N = 5 becomes another CIND. However, we did not find
such trend for the eigenvalue curve when N = 6, possibly because the entire
region where N ≥ 6 has unbroken PT -symmetry. The broken PT -symmetry
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happen within the three regions where 5 < N < 6, 4 < N < 5 and 3 < N < 4.
We observe that because of the existence of CINDs, PT -symmetry is never bro-
ken when N > 3 and N is an integer. So we conclude that CIND only exists
when N is an integer, and there are two CINDs associated with the pair of the
green wedges.

Figure 2.28: Energy spectrum of the 2nd family from the pair of the green wedges
(The grey curves are WKB approximation)
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Before going further, we introduce the concept of open mouth. Most eigen-
value curves have a standard shape similar to Fig.(2.29), where we call the
empty region between two adjacent and connected levels as an “open mouth”.
The head of an open mouth is the location of the degeneracy. As N increases,
only two cases are observed: one is that the open mouth tilts upward for in-
creasing N , and the other one is shown on Fig.(2.29) in which the open mouth
initially tilts downward but eventually tilts upward if N is large enough. Par-
ticularly, for the green wedges N has to be around or larger than 6 for that part
of the open mouth tilts upward. If the head of the open mouth is located far
less than N = 6, then the tendency to initially tilt downward is more pronoun-
ced. This is especially obvious for those low-lying states as shown on Fig.(2.29)
where the head of the open mouth is located at the region where N < 4 and far
less than 6.

Why does the vertically straight line around N = 6 differentiate the be-
havior of the open mouth? This is because the location of the PT -symmetric
wedges governs the behavior of the open mouth. Fig.(3.10) shows that the two
turning points x2 and x5 within the green wedges are joined by an anti-Stokes
line segment, which is right on the real axis and by its definition implies that
the integral

´ x5
x2
dx
√
E − V (x) is real. When N < 6, Fig.(2.1) shows that the
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pair of the two green wedges moves above the real axis so that the anti-Stokes
line segment is no longer on the real axis but crosses the cut on the positive-
imaginary axis. Except for integer N , the PT -symmetry is broken when N < 6
for the green wedges, and this movement may cause the open mouth to tilt
downward. When N > 6, Fig.(2.1) shows that the pair of the green wedges
moves below the real axis and towards the negative-imaginary axis. Conse-
quently, the open mouth tilts upward for N > 6. In summary, whether the
anti-Stokes line segment joining the two PT -symmetric wedges is above, below
or on the real axis determines which direction the open mouth tilts in. This
also implies that the open mouths of eigenvalue curves from the pink wedges
(See Fig.(2.30)) will eventually tilt upward as N > 10.

Figure 2.29: A single eigenvalue curve from the pair of the green wedges
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Figure 2.30: Energy spectrum of the 3rd family from the pair of the pink wedges
(The grey curves are WKB approximation)
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On Fig.(2.30) we plot the 3rd family of eigenvalues for the pair of the pink
wedges defined by Fig.(2.1). There are four CINDs, where CINDs for N = 8 and
N = 9 happen in much higher level. The region where N ≥ 10 has unbroken
PT -symmetry, whereas broken PT -symmetry happens within the region N <
10 except for integer N . As the previous case of the 2nd family, the amplitude
of horizontal oscillation for CIND decreases as E increases. Taking the CIND
for N = 6 as an example, the part of the CIND where N < 6 is plotted in black
color and N > 6 in pink color. Within the region around E = 15 and N = 6, the
black part of the CIND is confined within 5.87 < N < 6; whereas for the region
where E > 90, the CIND (in black color again) is within 5.9999998 < N < 6.

On Fig.(2.30), we magnify the most interesting region, where two levels fail
to connect and form a degeneracy around E = 80 because they are too close
to the integer N = 7, where PT -symmetry is never broken. Consequently, the
curve from the lower level merges with the curve from the even lower level;
whereas the curve from the upper level form a CIND for N = 7. This kind
of behavior is somewhat similar to the cohesion of liquid, where similar or
identical particles tend to cling to one another if the distance between them
is small enough. For example, two water droplets act like magnets if they are
close to each other.
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Figure 2.31: Four energy spectra of the first four families from four pairs of PT -
symmetric (orange, green, pink, yellow) wedges
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By including real eigenvalues from the four PT -symmetric wedges (the orange,
green, pink and yellow wedges), we plot the first four families of energy spectra
altogether shown on Fig.(2.31). An interesting feature is immediately spotted.
All open mouths from the 1st family from the orange wedges tilt upward, while
the open mouths from the 3rd family from the pink wedges tilt downward, and
the 4th family tilts downward even more. This is because that all heads of open
mouths from the 1st family including the low-lying states are quite near to the
vertically straight line N = 2 where differentiates the regions with broken and
unbroken PT -symmetry for the 1st family, while heads of open mouths from
the 4th family are quite far away from N = 14 which differentiates the regions
with broken and unbroken PT -symmetry for the 4th family.

Now let’s talk about another interesting feature. At exactly N = 4, the
eigenvalues from the 1st and 2nd family are equal, which means that rather
than two families, there is only one family of eigenvalues at N = 4. Similarly,
at exactly N = 6, the eigenvalues from the 1st and 3rd family are equal, which
means that rather than three families, there are only two families of eigenva-
lues at N = 6. The most interesting part is at exactly N = 8 that not only
the eigenvalues from the 1st and 4th family are equal, but the 2nd and 3rd fa-
mily are also equal, which means that rather than four families, there are only
two families of eigenvalues at N = 8. Do we expect this feature? Yes, because
of symmetry. When N = 4, Fig.(2.1) shows that orange and green wedges are
symmetric with respect to the real axis. When N = 6, the orange and pink wed-
ges are symmetric with respect to the real axis while the pair of green wedges
lies right on the real axis. When N = 8, not only the orange and yellow wedges
but also the green and pink wedges are symmetric with respect to the real axis.
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This symmetry reduces the number of families of eigenvalues at even N except
when N = 2. The moment when N is an odd integer, a new PT -symmetric wed-
ges are born from the positive-imaginary axis and consequently, a new family
of spectrum is born.

2.3.4.1 Conclusion

Due to the existence of multiple PT -symmetric Stokes wedges if N is large
enough, in this Subsec.(2.3.4), we have plotted and discussed the first four fa-
milies of real energy spectrum associated with the HamiltonianH = p2− (ix)N .
Since this work is original and no previous study has ever shown this result
before, we are eager to compare our result to any future study.
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Chapter 3

WKB Approximation

3.1 Introduction of the current chapter
This chapter is organized in the following way. In Sec.(3.2), we derive the result
for the leading order WKB approximation. In Sec.(3.3), some subtle aspects of
analytic continuation are discussed based on the primary work by Bender and
Turbiner[30]. Complex WKB method or phase integral method is introduced
and discussed in Sec.(3.4).

3.2 The leading order conventional WKB approx-
imation

This section contains some works from papers[56] and [10].
Now we find turning points by equating E and the potential from (2.1)

E = − (ix)N

=⇒ x = (−E)
1/N e−i(

π
2 )

=⇒ x = E
1/Nei(

π
N
−π

2 )ei
2jπ
N

=⇒ x = E
1/Nei(

2−N
2N

+ 2j
N )π for j = 0,±1,±2 · · · (3.1)

Note that the expression from (3.1) may overestimate the total number of prin-
cipal turning points, because it takes account of turning points from all bran-
ches. For example, (3.1) suggests 7 turning points for N = 3.5, however, only 4
turning points on the principal branch (See Fig.(3.11)).

Let’s write the turning points {xi} from principal branch in terms of x± such
that

x− = E
1/Neiβ (3.2)

x+ = E
1/Neiγ (3.3)

where β 6= γ due to different values from j. By the leading order WKB approx-
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imation,

x+ˆ

x−

dx
√
E − V (x) =

(
n+

1

2

)
π (3.4)

We deform the contour path into integration with ray path from x+ to 0 and
from 0 to x−, and obtain

(
n+

1

2

)
π =

x+ˆ

x−

dx

√
E + (ix)N =

E
1/Neiγˆ

0

dx

√
E + (ix)N +

0ˆ

E1/Neiβ

dx

√
E + (ix)N

(3.5)
By using the substitution y = ix

iE1/Neiγ
and w = ix

iE1/Neiβ
, the two complex contour

integrations become two real integrations along real axis

(
n+

1

2

)
π =

1ˆ

0

[
E +

(
iE

1/Neiγy
)N] 1

2
E

1/Neiγdy+

0ˆ

1

[
E +

(
iE

1/Neiβw
)N] 1

2
E

1/Neiβdw

(3.6)
Since y and w are dummy variables, we obtain

(
n+

1

2

)
π =

1ˆ

0

[
E +

(
iE

1/Neiγy
)N] 1

2
E

1/Neiγdy−
1ˆ

0

[
E +

(
iE

1/Neiβy
)N] 1

2
E

1/Neiβdy

(3.7)
Note that from (3.1) (

ieiγ
)N

=
[
iei(

2−N
2N

+
2j1
N )π

]N
= ei

πN
2 ei(

2−N
2N

+
2j1
N )π

= ei(π+2πj1)

= −1 (3.8)

=
(
ieiβ
)N

Hence (
n+

1

2

)
π =

1ˆ

0

E
1
2

(
1− yN

) 1
2 E

1/Neiγdy −
1ˆ

0

E
1
2

(
1− yN

) 1
2 E

1/Neiβdy

= E
N+2
2N

(
eiγ − eiβ

) 1ˆ

0

√
1− yNdy (3.9)

which yields

E
N+2
2N =

(
n+ 1

2

)
π

(eiγ − eiβ)
´ 1

0

√
1− yNdy

(3.10)
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Since
´ 1
0

√
1− yNdy yields real value for y ∈ C, E

N+2
2N can be real if

Im
(
eiγ − eiβ

)
= 0 (3.11)

So

Im [(cos γ − cos β) + i (sin γ − sin β)] = 0

=⇒ sin γ − sin β = 0

which implies that
β = π − γ (3.12)

Substituting (3.12) into (3.2) and (3.3) gives

x− = E
1/Nei(π−γ) (3.13)

x+ = E
1/Neiγ (3.14)

Therefore the turning points x− and x+ must be symmetrical with respect to
the imaginary axis to have real eigenvalue E. By using (3.12) and

1ˆ

0

√
1− yNdy =

√
πΓ
(
1 + 1

N

)
2Γ
(
3
2

+ 1
N

) for Re (N) > 0 (3.15)

we obtain the leading order approximation for the eigenvalue En

En ∼

[(
n+ 1

2

)√
πΓ
(
3
2

+ 1
N

)
cos γΓ

(
1 + 1

N

) ] 2N
N+2

for n→∞ (3.16)

Suppose that we have two families of real spectra generated from different
Stokes wedges, then these two families of real spectra must be associated with
different pairs of turning points. Assume that one pair of turning points is as-
sociated with γ1 and the other is associated with γ2, then by (3.16) we have[56]

En (γ2)

En (γ1)
∼
[

cos (γ1)

cos (γ2)

] 2N
N+2

for n→∞ (3.17)

So if we find two families of real spectra, then their values must approximately
obey the relationship (3.17). We have already numerically verified this for N =
5 on Tab.(2.5).

If we choose the pair of turning points within the orange wedges shown on
Fig.(2.2), then

x− = E
1/Neiπ(

3
2
− 1
N ) x+ = E

1/Neiπ(
1
N
− 1

2) (3.18)

with β =
(
3
2
− 1

N

)
π and γ =

(
1
N
− 1

2

)
π such that

eiγ − eiβ = 2 sin
π

N
(3.19)
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and therefore

En ∼

[(
n+ 1

2

)√
πΓ
(
3
2

+ 1
N

)
sin
(
π
N

)
Γ
(
1 + 1

N

) ] 2N
N+2

for n→∞ (3.20)

By observing Fig.(2.27), Fig.(2.28) and Fig.(2.30), the leading order WKB
from (3.16) is a pretty good approximation in those regions with unbroken PT -
symmetry, including integer N associated with CIND. In those regions with
broken PT -symmetry, WKB is still good approximation if the eigenvalue cur-
ves are not near to the degeneracies and the ground-level-region of integer N ,
which does not associate with CIND but the pair of wedges is born at.

In summary, the WKB approximation may fail wherever the PT -symmetry
is broken. The reason why it fails can be subtler than the reason provided by
the paper[10, p.3], where it says that when N < 2, the path along which the
integral

´ x+
x−

dx
√
E − V (x) is real is in the upper-half x plane so that it cros-

ses the cut on the positive imaginary axis and thus is not a continuous path
joining the turning points. This reason is only true if the pair of the orange
wedges is chosen. On Fig.(2.26), if we approximate the eigenvalue within the
green wedges when N = 5, Tab.(2.5) and Fig.(2.28) show that the WKB ap-
proximation by (3.16) is still pretty good approximation. But Fig.(3.6) shows
that the two turning points x2 and x4 within the green wedges are joined by an
anti-Stokes line segment, which crosses the positive imaginary axis and by its
definition implies that the integral

´ x4
x2
dx
√
E − V (x) is real. So the argument

provided by the paper[10, p.3] only works for non-integer N . For any integer N
associated with a CIND, the PT -symmetry is not really broken for the chosen
wedges.

So it follows that the WKB approximation is valid even if N is fractional or
irrational as long as N > 2 if the orange pair of wedges is chosen. Here, we
show a paradox for fractional N . By (3.1), (3.2) and (3.3), it looks like

γ =

(
2−N

2N
+

2j1
N

)
π (3.21)

β =

(
2−N

2N
+

2j2
N

)
π (3.22)

where j1 and j2 are integers and j1 6= j2 so that γ 6= β. By the condition (3.12),
we obtain

β = π − γ =⇒
(

2−N
2N

+
2j2
N

)
π = π −

(
2−N

2N
+

2j1
N

)
π (3.23)

and solving for j1 and j2 yields

j1 + j2 = N − 1 (3.24)

When N is fractional, (3.24) no longer holds, since j1 and j2 are integers. The-
refore, (3.24) suggests that when N is fractional, we may never find any pair
of turning points which are symmetric with respect to the imaginary axis, and
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consequently Im
(
eiγ − eiβ

)
6= 0, and (3.10) will not yield real eigenvalue. Ho-

wever, as shown Fig.(2.27), real eigenvalues for fractional N are already found.
How do we solve this paradox? As we mentioned in the beginning of Sec.(3.2),
only turning points from the principal branch should be considered. For fracti-
onal N , the number of principal turning points is ceiling (N), which holds to be
true even if N is irrational. For example when N = π the number of principal
turning points is 4. The condition (3.24) is always satisfied if we modify it to be

j1 + j2 = ceiling (N)− 1 (3.25)

The correct way to use WKB to approximate the eigenvalue for fractional N
is to analytically continue the solution from integer N to non-integer N . This
allows us to directly substitute fractional value of N into (3.16) to obtain ap-
proximated eigenvalues. So the analytic continuation extends the validity of
the conventional WKB approximation on real axis for N = 2 into the complex
plane for N > 2.

3.3 The subtlety of analytic continuation
Analytic continuation is a mathematical and subtle concept. In this section, we
will illustrate some subtle aspects based on the paper[30]. All credits in this
section go to Bender and Turbiner.

Consider the following eigenvalue problem[30] for x ∈ R

− d2ψ (x)

dx2
+

1

4
a2x2ψ (x) = Eψ (x) (3.26)

with a > 0 and the usual boundary condition ψ (x) → 0 as x → ±∞. The
eigenfunction associated with the ground level is known to be exactly

ψ− (x) = exp

(
−1

4
ax2
)

E0 =
1

2
a (3.27)

Now, what happens if the parameter a from (3.26) is replaced by −a? Well,
apparently, the eigenvalue problem from (3.26) remains the same since a2 =
(−a)2 , however, the solution is changed - it is an entirely new eigenvalue pro-
blem!

− d2ψ (x)

dx2
+

1

4
(−a)2 x2ψ (x) = Eψ (x) (3.28)

has solution for ground state

ψ+ (x) = exp

(
1

4
ax2
)

E0 = −1

2
a (3.29)

which is a surprise! Replacing a with −a gives the “same” eigenvalue problem,
but two different solutions! Why? The simple answer is that the boundary
condition has changed.

Before we dig into the detail, let’s extend this eigenvalue problem into the
complex plane of x. In this case, we denote x by z and z ∈ C. We first look at
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the locations of Stokes wedges as |z| → ∞. For (3.26) there are two solutions
associated with the ground level.

ψ+ (z) = exp

(
1

4
az2
)

ψ− (z) = exp

(
−1

4
az2
)

(3.30)

We let z = reiθ, then by (2.26) we have Stokes lines at

Im

[
1

4
az2 −

(
−1

4
az2
)]

= 0

=⇒ Im

[
1

2
ar2ei2θ

]
= 0

=⇒ sin (2θ) = 0

which gives two solutions for the locations of Stokes lines

θ+ =
π

2
θ− = 0 (3.31)

By (2.32), we have anti-Stokes lines at

Re

[
1

4
az2 −

(
−1

4
az2
)]

= 0

=⇒ Re

[
1

2
ar2ei2θ

]
= 0

=⇒ cos (2θ) = 0

which gives two solutions for the locations of anti-Stokes lines

θs = ±π
4

(3.32)

Thus we have the following Fig.(3.1) to illustrate the asymptotic behaviors of
ψ± (z) as |z| → ∞.
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Figure 3.1: [30]The asymptotic behaviors of ψ± (z) as |z| → ∞

lim
|𝑧|→∞
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For the original eigenvalue problem from (3.26), we pick up ψ− (z) = exp
(
−1

4
az2
)

as the solution for it satisfies the boundary condition. Now, let’s observe how
the analytic continuation on a affects the solution. We let

a = ρeiα =

{
ρ when α = 0

−ρ when α = π
(3.33)

When α = 0,
arg [ψ− (z)] = −1

4
az2 = −1

4
ρ
(
reiθ
)2 (3.34)

When α rotates counter-clockwisely from 0 to π, arg [ψ− (z)] = −1
4
az2 also rota-

tes. Specifically, when α = π,

arg [ψ− (z)] = −1

4

(
ρeiπ

)
z2 = −1

4
ρ
(
zei

π/2
)2

= −1

4
ρ
(
reiθei

π/2
)2

(3.35)

When θ = −π
2

+ θ′, we have

arg [ψ− (z)] = −1

4
ρ
(
reiθ

′
)2

(3.36)

The expressions from (3.34) and (3.36) are the same except that when α rotates
counter-clockwisely from 0 to π, the argument of ψ− (z) rotates clockwisely from
0 to −π

2
. Consequently, the orange Stokes wedges rotate clockwisely as shown

on Fig.(3.2).
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Figure 3.2: [30]The orange Stokes wedges rotate clockwisely when α rotates
counter-clockwisely
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After α rotates to π, the eigenvalue problem has the same equation

− d2ψ (z)

dz2
+

1

4
(−a)2 z2ψ (z) = Eψ (z) (3.37)

but with the new boundary condition ψ (z) → 0 as z → ±i∞. We can solve this
new problem by rotating this problem onto the real axis through transforming
the complex value z into real value x by the following substitution

z = ix (3.38)

where x ∈ R so that

=⇒ − d

dx

[
dψ (z)

dx

dx

dz

]
dx

dz
− 1

4
(−a)2 x2ψ (x) = Eψ (x)

=⇒ − d

dx

[
dψ (x)

dx

1

i

]
1

i
− 1

4
(−a)2 x2ψ (x) = Eψ (x)

=⇒ d2ψ (x)

dx2
− 1

4
(−a)2 x2ψ (x) = Eψ (x)

=⇒ −d
2ψ (x)

dx2
+

1

4
(−a)2 x2ψ (x) = −Eψ (x) (3.39)

with boundary condition ψ (x)→ 0 as x→ ±∞. We observe that the eigenvalue
problem from (3.39) is the same as the eigenvalue problem from (3.26) except
that the sign of E is flipped. So based on the solution (3.27), the solution for
this eigenvalue problem is

ψ− (x) = exp

(
−1

4
ax2
)

E0 = −1

2
a (3.40)
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which is the same as the solution (3.27) but with the negative eigenvalue.

• Replacing awith−a gives the eigenvalue problem−d2ψ(x)
dx2

+1
4

(−a)2 x2ψ (x) =
Eψ (x) with boundary condition ψ (x)→ 0 as x→ ±∞

• Analytic continuation on a from 0 to π gives the eigenvalue problem−d2ψ(x)
dx2

+
1
4

(−a)2 x2ψ (x) = −Eψ (x) with boundary condition ψ (x)→ 0 as x→ ±∞.

If comparing the solutions from (3.29) and (3.40), we realize that replacing
a with −a is not the same as the analytic continuation where we let a ro-
tates from 0 to π. Because replacing a with −a is an entirely new and in-
dependent eigenvalue problem, in which the solution suddenly changes from
ψ− (x) = exp

(
−1

4
ax2
)

to ψ+ (x) = exp
(
1
4
ax2
)
, so that the only possible solution

lies within the green wedges from Fig.(3.1), and Fig.(3.2) has nothing to do with
this eigenvalue problem! Therefore, we can not simply replace a with −a in the
eigenvalue problem and expect to have the correct analytic continuation. This
demonstrates a subtle point of analytic continuation.

3.4 Phase Integral Method
On a paper[9] by Bender et al., a technique called complex WKB method, also
known as phase integral method(PIM), is used to approximate the eigenvalue
E for the following PT -symmetric Hamiltonian

H = p2 + x4 + iAx (3.41)

whose degeneracies of E are caused by the growing influence from two pu-
rely imaginary turning points as the real coefficient A grows larger and larger.
The reason they prefer PIM to conventional WKB is because that in general,
the conventional WKB approximation only consider two turning points. When
more than two turning points are generated1, PIM may give more accurate re-
sults, including degeneracies and low-lying energy levels. Here, we are very
curious on what happen if we apply PIM to our potential V = − (ix)N . So let’s
see how it works by following their way.

3.4.1 Stokes diagram
This Subsec.(3.4.1) contains the work by White[61].

For the following 1D Schrodinger equation,

− d2ψ (x)

dx2
+ V (x)ψ (x) = Eψ (x) (3.42)

the leading order WKB approximation gives two asymptotic solutions as |x| →
∞

ψ± (x) ∼ 1

Q (x)
1/4

exp

±i xˆ

x0

[Q (t)]
1/2 dt

 where Q (x) = E − V (x) (3.43)

1When N ≥ 3 in our case, more than two turning points exist.
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where x0 is a turning point, and x is a complex variable. To be consistent with
our previous definition, we define Stokes line as the solution of the following
equation

Re


xˆ

x0

[Q (t)]
1/2 dt

 = 0 (3.44)

and anti-Stokes line as the solution of the following equation

Im


xˆ

x0

[Q (t)]
1/2 dt

 = 0 (3.45)

Generally, the integral
´ x
x0

[Q (t)]
1/2 dt contains imaginary part, so that the solu-

tion from (3.43) contains real exponential. If this real exponential is growing,
then we say that the solution is dominant; Otherwise we say that the solution
is subdominant for decaying exponential.

An infinitesimal anti-Stokes line[61, p.75] dx emanated from any non-
turning point xp along

√
Q (x)dx which is real can be approximated2 by solving√
Q (x)dx ≈

√
Q (xp)dx = ±C (3.46)

where C is real. So

dx = C [Q (xp)]
− 1

2 ei(kπ) = ±C [Q (xp)]
− 1

2 k = 0, 1 (3.47)

where the sign ± implies two local anti-Stokes lines emanated from xp in di-
rections opposite to each other.

We have to be more careful if dx is emanated from any turning point x0
where

√
Q (x0) is zero or a pole. First we introduce a notion about the order

of turning point. A turning point x0 of Q (x) is said to be simple or of the
first order if it satisfies[41, p.7] Q (x0) = 0 but dQ(x)

dx

∣∣∣
x=x0

6= 0. It follows that

a double turning point x0 or a turning point x0 of the second order of Q (x)

satisfies Q (x0) = dQ(x)
dx

∣∣∣
x=x0

= 0 but d2Q(x)
dx2

∣∣∣
x=x0

6= 0. By using this definition, we
can generalize a turning point up to the nth order. For an infinitesimal anti-
Stokes line segment dx = (x− x0) emanated from a simple turning point x0, we
write for the first order approximation Q (x) ≈ dQ(x)

dx

∣∣∣
x=x0

(x− x0), and require√
Q (x)dx to be real such that

√
Q (x)dx ≈

√
dQ (x)

dx

∣∣∣∣
x=x0

dxdx =
√
Q′ (x0)dx

3
2 = ±C (3.48)

which yields
dx = C [Q′ (x0)]

− 1
3 ei(

2kπ
3 ) k = 0, 1, 2 (3.49)

2Here, we assume that
√
Q (xp) is finite, non-zero and well-behaved.
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which implies three anti-Stokes lines emanated from the simple turning point
x0. For an infinitesimal anti-Stokes line segment dx = (x− x0)2 emanated from
a double turning point x0, we write for the first order approximation Q (x) ≈
Q′ (x0) (x− x0) such that√

Q (x)dx ≈
√
Q′ (x0) dx

1
2dx =

√
Q′ (x0)dx

5
4 = ±C (3.50)

which yields
dx = C [Q′ (x0)]

− 2
5 ei(

4kπ
5 ) k = 0, 1, 2, 3 (3.51)

So four anti-Stokes lines are emanated from the double turning point x0. Simi-
larly, for an infinitesimal anti-Stokes line segment dx = (x− x0)−1 emanated
from a simple pole x0, we have√

Q (x)dx ≈
√
Q′ (x0) dx−1dx =

√
Q′ (x0)dx

1
2 = ±C (3.52)

which yields
dx = C [Q′ (x0)]

−1
ei(2kπ) = C [Q′ (x0)]

−1 (3.53)

which only has one anti-Stokes line emanated from the simple pole x0. We can
set C = 1 for convenience.

Stokes lines can be approximated by the similar way. Armed with these
tools, for

Q (x) = E + (ix)N (3.54)

Fig.(3.3), Fig.(3.4), Fig.(3.5), etc. are generated and called Stokes diagram,
where the anti-Stokes lines are generated by (3.49) and the anti-Stokes flows
by (3.47) so that anti-Stokes lines always go in the same direction of the anti-
Stokes flows whereas Stokes lines are always perpendicular to the anti-Stokes
flows.

3.4.2 Connection formula
Similar to Feynman’s rules, PIM has rules[58, 61], also known as connection
formulas:

1. By analytically continuing local WKB solutions, when cross an anti-Stokes
line, the solutions exchange dominance, so that a dominant solution beco-
mes subdominant, and vice versa.

2. When cross a Stokes line, the coefficient of the dominant term remains
unchanged. However, the coefficient of the subdominant solution is chan-
ged by an amount proportional to the coefficient of the dominant term,
that is,

new sub. coefficient = old sub. coefficient+T×old dom. coefficient (3.55)

where T is called a Stokes multiplier whose value depends on the nature
of the turning point where the Stokes line originates. In the counter-
clockwise direction, for a Stokes line emanated from a simple turning
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point the value of the Stokes multiplier T ≈ i for the first order approxi-
mation; For a Stokes line from a double zero, T ≈

√
2i for the first order

approximation; For a Stokes line from a turning point of the nth order,
then[61, p.83] T ≈ 2i cos

(
π

2+n

)
for the first order approximation. For

clockwisely[61, p.78] crossing the Stokes line emanated from a turning
point of order n, T ≈ −2i cos

(
π

2+n

)
for the first order approximation,

3. The rules given in 1. and 2. refer to a WKB solution defined in terms of
a particular turning point when cross a Stokes/anti-Stokes line emanated
from that turning point. If it is intended to continue a solution across
a line emanated from a different turning point, the WKB solution must
first be rewritten in terms of this new zero. To connect solutions defined
in terms of different turning points, say x1 and x2, use

exp

±i xˆ

x1

[Q (t)]
1/2 dt

 = exp

±i x2ˆ

x1

[Q (t)]
1/2 dt

 exp

±i xˆ

x2

[Q (t)]
1/2 dt


(3.56)

To simplify our notation, we write (3.56) as{
[x1, x] = [x1, x2] [x2, x]

[x, x1] = [x, x2] [x2, x1]

where [x, x1] ≡ − [x1, x] ≡ exp
(
−i
´ x
x1

[Q (t)]
1/2 dt

)
.

4. When cross a cut in the counter-clockwise direction, the cut originating
from a turning point of the first order, we changed the solution by{

[x1, x] −→ −i [x, x1]

[x, x1] −→ −i [x1, x]
(3.57)

If it is in the clockwise direction, we changed the solution by{
[x1, x] −→ i [x, x1]

[x, x1] −→ i [x1, x]
(3.58)

The location of branch cut can be determined by the Stokes flows, which
suddenly flow in opposite direction when the branch cut is crossed.
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3.4.3 When N = 1

Figure 3.3: Stokes diagram for N = 1 and E = 1, where the yellow points are the
turning points, the green dot-lines are Stokes lines and the orange
dot-lines are anti-Stokes lines
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For Q (x) = E + (ix)N with N = 1, the turning point x1 is of the first order,
so there are three Stokes lines and three anti-Stokes lines emanated from x1
as shown on Fig.(3.3). The boundary condition is ψ (x) → 0 as |x| → ∞ which
suggests that we start with a subdominant WKB solution [x, x1]s from (3.43)
and counter-clockwisely continue this solution from the region 1 to the region
4. By connection formulas, we have

1. [x, x1]s
2. [x, x1]d
3. [x, x1]d + i [x1, x]s
4. [x, x1]s + i [x1, x]d

If we clockwisely continue this solution from the region 1 to the region 4, then3

1. [x, x1]s
6. [x, x1]s
5. i [x1, x]d
4. [x, x1]s + i [x1, x]d

3Note that when cross the region 6 into the region 5, the solution is changed due to the
anti-Stokes line and the branch cut.
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We see that independent from the direction of analytic continuation, we
reach the same asymptotic solution in the region 4, which is as |x| → ∞

ψ (x) ∼ [x, x1]s + i [x1, x]d (3.59)

where we have suppressed the factor 1

Q(x)
1/4 within (3.43). Now, by the boundary

condition, we require the coefficient of the dominant solution [x1, x]d to be zero
so that the eigenvalue quantization condition is

i = 0 (3.60)

which is impossible. Therefore, this leading order approximation suggests that
we do not have real eigenvalue solution. This looks consistent with our nume-
rical result (Refer to Sec.(2.3.4)), where the real eigenvalue curve (the orange
curve on Fig.(2.27)) of the ground level approaches to N = 1 and is arbitrarily
close to it , but never actually reaches it.

3.4.4 When N = 2

Figure 3.4: Stokes diagram for N = 2 and E = 1, where the yellow points are the
turning points, the green dot-lines are Stokes lines and the orange
dot-lines are anti-Stokes lines
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Let’s set N = 2 and start with a subdominant WKB solution, which is [x, x1]s,
and counter-clockwisely continue this solution from the region 1 to the region
7. With B ≡ [x1, x2] and B−1 ≡ [x2, x1] and by connection formulas,
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1. [x, x1]s
2. −i [x1, x]s
3. −i [x1, x]d
4. [x, x1]s − i [x1, x]d = B−1 [x, x2]s − iB [x2, x]d
5. (B−1 +B) [x, x2]s − iB [x2, x]d
6. (B−1 +B) [x, x2]d − iB [x2, x]s
7. −i (B−1 +B) [x2, x]d +B−1 [x, x2]s

If we clockwisely continue this solution from the region 1 to the region 7, then
1. [x, x1]s
10. [x, x1]d
9. [x, x1]d − i [x1, x]s = B−1 [x, x2]d − iB [x2, x]s
8. B−1 [x, x2]d − i (B +B−1) [x2, x]s
7. −i (B−1 +B) [x2, x]d +B−1 [x, x2]s
Again, independent from the direction of analytic continuation, we reach

the same asymptotic solution in the region 7. This is expected, since the two
turning points are connected by an anti-Stokes line segment. Now, by the boun-
dary condition, we require the coefficient of the dominant solution [x2, x]d to be
zero so that the eigenvalue quantization condition is

B−1 +B = 0

[x2, x1] + [x1, x2] = 0

exp

−i x2ˆ

x1

[Q (t)]
1/2 dt

+ exp

i x2ˆ

x1

[Q (t)]
1/2 dt

 = 0

exp [−i (u+ iv)] + exp [i (u+ iv)] = 0

exp (−iu) + exp (iu) = 0

cosu = 0

cos


x2ˆ

x1

[Q (t)]
1/2 dt

 = 0 (3.61)

where u ≡ Re
{´ x2

x1
[Q (t)]

1/2 dt
}

, v ≡ Im
{´ x2

x1
[Q (t)]

1/2 dt
}

and u, v ∈ R. From
Fig.(3.4), the turning points x1 and x2 are joined by an anti-Stokes line segment,
that is why v = 0 and

´ x2
x1

[Q (t)]
1/2 dt is purely real. Consequently we obtain the

final form (3.61) of quantization which, as we expected, is the same form (3.4)
obtained by the conventional WKB method.
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3.4.5 When N = 3

Figure 3.5: Stokes diagram for N = 3 and E = 1, where the yellow points are the
turning points, the green dot-lines are Stokes lines and the orange
dot-lines are anti-Stokes lines
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Before we try to find the eigenvalue quantization condition for N = 3, a com-
mon mistake we want to emphasize here. For instance, take x = ir with r ∈ R,
then √

Q =

√
E + (ix)3 =

√
E + (i · ir)3 =

√
E − r3 (3.62)

so √
Q ∼ ir

3
2 as r → +∞ (3.63)

and
ei
´ √

Qdr ∼ ei
´
ir

3
2 dr = e−

2
5
r
5
2 =⇒ dominant or subdominant (3.64)

Hence, as x → +i · ∞, a Stokes line should be draw above the turning point x2
along the positive imaginary axis, rather than the anti-Stokes line shown on
Fig.(3.5). However, for the turning point x2 = i when E = 1, let’s set r = 5 so
that x = 5i, then we evaluate the following integralˆ 5i

i

√
Q (x)dx =

ˆ 5i

i

√
1 + (ix)3dx ≈ −21.3508 (3.65)

such that
ei
´ 5i
i

√
Q(x)dx = e−21.3508i =⇒ oscillatory (3.66)
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Hence, as x → +i · ∞, an anti-Stokes line should be draw above the turning
point x2 along the positive imaginary axis. How do we solve this paradox? The
answer is that ei

´ √
Qdr within (3.64) is a mistake and should be replaced by

ei
´ √

Qdx, where dx = idr so that dx is complex.
For N = 3, unlike the previous cases for N = 1 and N = 2, if we counter-

clockwisely and then clockwisely continue a solution from region 1 to 10, we
will not get the same asymptotic solution. This is because[40][6, p.286] the
turning point x2 on Fig.(3.5) is not connected by any anti-Stokes line segment
to the turning points x1 and x3. To continue our story, we assume that ana-
lytic continuation in counter-clockwise and clockwise sense will give the same
asymptotic solution. The mathematical validity of this assumption is ignored
here.

Let’s start with a subdominant WKB solution, which is [x, x1]s, and counter-
clockwisely continue this solution from the region 1 to the region 10. Let
B ≡ [x1, x2], B−1 ≡ [x2, x1], C ≡ [x2, x3] and C−1 ≡ [x3, x2]. Then by connection
formulas,

1. [x, x1]s
2. [x, x1]s
3. −i [x1, x]s
4. −i [x1, x]d
5. [x, x1]s − i [x1, x]d = B−1 [x, x2]s − iB [x2, x]d
6. (B−1 +B) [x, x2]s − iB [x2, x]d = (B−1 +B)C−1 [x, x3]s − iBC [x3, x]d
7. [(B−1 +B)C−1 +BC] [x, x3]s − iBC [x3, x]d
8. [(B−1 +B)C−1 +BC] [x, x3]d − iBC [x3, x]s
9. −i [(B−1 +B)C−1 +BC] [x3, x]d −BC [x, x3]s
10. −i [(B−1 +B)C−1 +BC] [x3, x]d + (B−1 +B)C−1 [x, x3]s
Now, by the boundary condition, we require the coefficient of the dominant

solution [x3, x]d to be zero so that the eigenvalue quantization condition is(
B−1 +B

)
C−1 +BC = 0

[[x2, x1] + [x1, x2]] [x3, x2] + [x1, x2] [x2, x3] = 0[
eiw(x2,x1) + e−iw(x2,x1)

]
eiw(x3,x2) + eiw(x1,x2)eiw(x2,x3) = 0 (3.67)

where w (x1, x2) ≡
{´ x2

x1
[Q (t)]

1/2 dt
}

. Let u, v ∈ R, u ≡ Re
{´ x2

x1
[Q (t)]

1/2 dt
}

and

v ≡ Im
{´ x2

x1
[Q (t)]

1/2 dt
}

. By PT -symmetry, we have

w (x1, x2) = [w (x2, x3)]
∗ = u+ iv (3.68)

Then (3.67) becomes[
ei(−u−iv) + e−i(−u−iv)

]
ei(−u+iv) + ei(u+iv)ei(u−iv) = 0

e−2v + e−2iu + e2iu = 0

cos (2u) +
1

2
e−2v = 0 (3.69)

which is the final form of eigenvalue quantization condition for N = 3. Note
that this form is exactly the same form from the paper[9].
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We can evaluate the integral I ≡ w (x1, x2) by

x2ˆ

x1

dx

√
E + (ix)N =

E
1/N (cos γ+i sinα)ˆ

E1/Neiγ

dx

√
E + (ix)N +

E
1/Neiαˆ

E1/N (cos γ+i sinα)

dx

√
E + (ix)N

(3.70)
By using the substitution y = ix

iE1/Neiγ
and w = ix

iE1/Neiα
and by (3.8)

I =

cos γ+i sinα

eiγˆ

1

[
E +

(
iE

1/Neiγy
)N] 1

2
E

1/Neiγdy +

1ˆ
cos γ+i sinα

eiα

[
E +

(
iE

1/Neiαw
)N] 1

2
E

1/Neiαdw

= E
N+2
2N

eiγ
cos γ+i sinα

eiγˆ

1

√
1− yNdy − eiα

cos γ+i sinα

eiαˆ

1

√
1− yNdy


When N = 3, γ = 7π

6
and α = π

2
. By numerical integration,

I ≈ (0.728598 + 1.26196i)E
5
6 (3.71)

Plug this into (3.69) such that

cos
(

2× 0.728598E
5
6

)
+

1

2
e−2×1.26196E

5
6 ≈ 0 (3.72)

By solving for E, we obtain the following Tab.(3.1), where the results from the
WKB solution is obtained by (3.20).

Table 3.1: Eigenvalues E for N = 3 obtained by the three methods

Numerical WKB PIM

E0 1.156267071988113 1.0942695005 1.1203933861

E1 4.109228752809652 4.0894961192 4.0893475488

E2 7.562273854978828 7.5489804375 7.5489811503

E3 11.31442182019580 11.3042549230 11.3042549195

E4 15.29155375039253 15.2832355296 15.2832355293

The quantization condition from (3.69) is different from (3.4) obtained by
the conventional WKB method since it contains an additional exponential term
1
2
e−2v. From Fig.(3.5), we see that this additional exponential term is caused by

the influence from the turning point x2 whose Stokes line intercepts our path
of analytic continuation. In the ground level with low energy, this exponen-
tial term becomes a significant correction to the eigenvalue E0 obtained by the
WKB on Tab.(3.1). As energy increases, the exponential term vanishes so quick
that the results from PIM and WKB are almost the same.
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3.4.6 When N = 5

Figure 3.6: Stokes diagram for N = 5 and E = 1, where the yellow points are the
turning points, the green dot-lines are Stokes lines and the orange
dot-lines are anti-Stokes lines
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Table 3.2: Eigenvalues E for N = 5 obtained by the three methods

Numerical WKB PIM

E0 1.908264578170778 1.7712447154 1.7775754610

E1 8.587220836207222 8.5090359785 8.5090353301

E2 17.71080901173115 17.6525375971 17.6525375969

E3 28.59510331173597 28.5470661784 28.5470661781

E4 40.91889089052085 40.8772953023 40.8772953019

Based on Fig.(3.6), the final form of eigenvalue quantization condition forN = 5
is the same form as (3.69). Actually, for all odd N and N > 1, the final form
of the quantization condition is unchanged, since the Stokes lines from other
PT -symmetric pairs of turning points do not affect the bottom region.

cos
(

2× 0.526374E
7
10

)
+

1

2
e−2×1.62001E

7
10 ≈ 0 (3.73)
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By solving for E, we obtain Tab.(3.2).
Based on the result from Tab.(3.1), we expect that the correction to the

ground level E0 could be significant as well for the case N = 5. However, as
Tab.(3.2) shows, the correction happens only on the 3rd decimal place. This
implies that the additional exponential term is sensitive to the value of N as
well. As N increases or energy level increases, the PT -symmetric pair of two
turning points in the chosen wedges become more and more dominant, and the
influence caused by other turning points are more and more subdominant.

3.4.7 Question, observation and future work
By following the PIM introduced by the paper[9], there are many unanswered
questions. We present those questions here and leave them as our future work.
We believe that solving any one of these questions, which are related to each
other, could make breakthrough in understanding PT -symmetry.

3.4.7.1 Question 1: apply PIM on the pair of the green wedges for
N = 5

Figure 3.7: Stokes diagram for N = 5 and E = 1, where the yellow points are the
turning points, the green dot-lines are Stokes lines and the orange
dot-lines are anti-Stokes lines
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As shown on Fig.(2.26) and Fig.(2.28), for N = 5, within the pair of the green
wedges we have another family of spectrum. Then, this naturally leads to the
question how we apply PIM to estimate the eigenvalues within the pair of the
green wedges. Shall we analytically continue our subdominant WKB solution
along the path shown on Fig.(3.7) from region 1 to region 14? However, we have
found that along this path with the given connection formulas, the quantization
condition will look like (

D +D−1
)
F +D−1F−1 = 0 (3.74)

where D ≡ [x1, x3], D−1 ≡ [x3, x1] F ≡ [x3, x5] and F−1 ≡ [x5, x3]. This condi-
tion will not yield wanted eigenvalues consistent with our numerical and WKB
approximation.

3.4.7.2 Question 2: mathematical validity for our assumption

In Sec.(3.4.5), for N = 3 we assumed that the analytic continuation in the
counter-clockwise and clockwise direction would give the same asymptotic so-
lution, even if in fact they did not. There are papers[9, 58, 6] who made the
same assumption. However, we want to see how to mathematically justify this
assumption.

3.4.7.3 Question 3: degenerate Stokes lines

If two turning points are connected by a Stokes line segment, then that Stokes
line is degenerate. When N > 2 and N is even, we have degenerate Stokes
lines. For example, Fig.(3.8) shows that when N = 4, turning points x1 and x2
are connected by a Stokes line, and x3 and x4 are connected by another Stokes
line. Fig.(3.10) shows that the case for N = 6 contains two degenerate Stokes
lines as well.
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Figure 3.8: Stokes diagram for N = 4 and E = 1, where the green dot-lines are
Stokes lines and the orange dot-lines are anti-Stokes lines
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Figure 3.9: Stokes diagram forN = 3.9 andN = 4.1 when E = 1, where the yellow
points are the principal turning points, the green dot-lines are Stokes
lines and the orange dot-lines are anti-Stokes lines
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The central question is, of course, how we apply PIM if such degenerate
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Stokes lines are there. If the degeneracy is ignored, then the case for any even
N would be no more different than the case for N = 2 as we did in (3.61) where
the results from PIM and conventional WKB method are the same. Taking
account of the degeneracy means taking account of the influence caused by
other turning points.

Fig.(3.9) shows a sudden change of the behavior of degenerate Stokes lines
when N is slightly less or greater than 4. When N = 3.9, the two Stokes lines in
the downward direction emanated from x2 and x3 almost coincide with the two
downward Stokes lines emanated from x1 and x4. However, when N = 4.1, the
two downward Stokes lines from x2 and x3 suddenly change their directions
after crossing x1 and x4, and coincide with the Stokes lines on the left of x1
and the right of x4, respectively. This sudden change is thought to be due to
the existence of branch cuts associated with x1 and x4. Perhaps by slightly
perturbing the value of N , we may know how to apply PIM for the case of
degenerate Stokes line. However, this small perturbation inevitably leads us to
study cases for fractional N , which is both difficult and new as we will discuss
in Sec.(3.4.7.5).

Figure 3.10: Stokes diagram for N = 6 and E = 1, where the yellow points are the
turning points, the green dot-lines are Stokes lines and the orange
dot-lines are anti-Stokes lines

-2.4

-2

-1.6

-1.2

-0.8

-0.4

 0

 0.4

 0.8

 1.2

 1.6

 2

 2.4

-2.4 -2 -1.6 -1.2 -0.8 -0.4  0  0.4  0.8  1.2  1.6  2  2.4

IM
(x
)

RE(x)

Anti-Stokes flow
Anti-Stokes

Stokes
Branch cut

1 2 3 4 5 6 7

x1

x3

x2 x5

x4

x6

81



CHAPTER 3. WKB APPROXIMATION

3.4.7.4 Question 4: Stokes diagram of the higher order

All our Stokes diagrams are generated based on the method from Sec.(3.4.1)
so that locations of all Stokes lines and anti-Stokes lines are approximated by
the leading order terms within Taylor series. However, it’s possible that these
locations may change if we consider the higher order terms, and consequently
Stokes geometrical structure may be different from the leading order approxi-
mation.

3.4.7.5 Fractional N and broken PT -symmetry

Figure 3.11: Stokes diagram for N = 1.5 and N = 3.5 when E = 1, where the yel-
low points are the principal turning points, two Stokes lines cross at
point C, the green dot-lines are Stokes lines and the orange dot-lines
are anti-Stokes lines. Also, note that the anti-Stokes flows suddenly
change direction after crossing the positive imaginary axis.
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Since dQ(x)/dx = N(ix)N/x, by the definition, any principal turning points for fracti-
onal N are simple or of the first order. As Fig.(3.11) shows, one prominent fe-
ature for fractional N and ceiling (N) = even number is that two Stokes lines
on the north part of diagram cross each other at the point C on the positive
imaginary axis and subsequently vanish. This is a surprise! Because what
mathematicians[5, p.1][41, p.26] said was:

“In the case of second order equations such a phenomenon of vanishing of a
Stokes curve never happens”.

“It is clear that such crossing does not appear in the study of equations of the
second order.”
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Well, they are wrong, at least on the principal Riemann sheet. It does hap-
pen! The exact locations for these crossing points C for various value of N are
found on Tab.(3.3), where we observe that as N increases, the crossing point
C moves toward the origin, and the ratio between any two adjacent crossing
points is approaching to 1.

We observe that the anti-Stokes flows who cross the positive imaginary axis
suddenly change their direction. Along the north direction, farther away from
the anti-Stoke line segment connecting the two turning points (e.g. x1 and x2
for N = 1.5 or x2 and x3 for N = 3.5), this sudden change becomes more abrupt.
However, along the south direction and below that anti-Stokes line segment,
the Stokes flows behave quite smooth. The sudden change near the positive
imaginary axis may be the reason for fractional N why we did not obtain the
same eigenvalue along the path which crosses the cut (e.g. cross cut CD on
Fig.(2.25) and Tab.(2.3)).

Here, we make a short list about what we observe for the potential V (x) =
− (ix)N where N ∈ R.

1. For N > 3, whenever N is an non-integer, there exists at least one pair of
Stokes wedges where PT -symmetry is broken.

2. For N > 1, whenever N is an non-integer and ceiling (N) = even number,
there are two and only two Stokes lines crossing each other and then di-
sappear on the principal Riemann sheet. These two Stokes lines emanate,
respectively, from a pair of symmetric and principal turning points.

3. For N > 1, whenever N is an non-integer and ceiling (N) = odd number
(See Fig.(3.12)), then no Stokes lines are crossed or disappeared on the
principal Riemann sheet.

Table 3.3: Locations of a few crossing points C for various N , with error less than
10−12

N Crossing point C

1.5 1.6897993907261i

3.5 1.3638073305613i

5.5 1.2390039888469i

7.5 1.1773332445002i

9.5 1.1408269069328i
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Figure 3.12: Stokes diagram for N = 2.5 and N = 3 when E = 1, where the
yellow points are the principal turning points, the green dot-lines
are Stokes lines and the orange dot-lines are anti-Stokes lines
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Due to the same number of Stokes and anti-Stokes lines, the quantization
condition for N = 2.5 is no more different than the quantization condition for
N = 2. Why does the quantization condition for N = 2 obtained by PIM give
exact eigenvalues, but not exact eigenvalues for N = 2.5? Well, let’s look at
Fig.(3.12) and observe how the Stokes diagram for N = 2.5 transforms to N = 3
- before the new turning point is born on the positive imaginary axis, the anti-
Stokes flows for N = 2.5 are already influenced by the birth because they sud-
denly change direction when cross the positive imaginary axis, and this sudden
change becomes more abrupt when x → i · ∞. Meanwhile, the pair of Stokes
line on the north of the diagram of N = 2.5 emanated from x1 and x2 becomes
farther apart as if they are opening an empty space for the birth of the new
turning point. All in all, this shows that the quantization condition for any
non-integer N and ceiling (N) = odd number is influenced by the pre-birth of
the new turning point on the positive imaginary axis. Because of the pre-birth,
the new turning point is invisible. This naturally arises a question: does the
visible Stokes geometrical structure describe the quantization condition com-
pletely or not? Quite obvious, the answer is no. The invisible Stokes structure
must be on the non-principal Riemann sheets or caused by virtural turning
point.

3.4.7.6 Virtual turning point

This subsection contains primary work from their book[41, chapter 1] by Honda
et al..
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The following equation with a large-magnitude-parameter4 η,

P̂ψ ≡
(
d3

dx3
+ 3η2

d

dx
+ 2ixη3

)
ψ = 0 (3.75)

is called BNR equation after Berk, Nevins and Roberts discovered[31] it in
1982. This equation has simple turning points at x = ±1 who satisfy the follo-
wing characteristic polynomial

σ ≡ ξ3 + 3η2ξ + 2ixη3 = 0 (3.76)

or
ζ3 + 3ζ + 2ix = 0 (3.77)

where ζ ≡ ξ
η

and σ (ξ, η, x, y) is called characteristic symbol. Note that (3.76)
does not contain the variable y, so where does this y come from? This y is obtai-
ned by Borel transformation[41, p.4]. The Borel transformed BNR operator
from (3.75) is

P̂B ≡
∂3

∂x3
+ 3

∂

∂x

∂2

∂y2
+ 2ix

∂3

∂y3
(3.78)

Since by (3.76) σ is free from y, it may be helpful to simplify some future calcu-
lation to determine bicharacteristic curve.

The definition[41, p.21] of turning point for higher order ODE is: If at
x = x0 the characteristic polynomial has multiple roots ζn (x0) where integer
n ≥ 2, then the point x = x0 is a turning point. Moreover, if there is any
degenerate root, say

ζj (x0) = ζk (x0) j 6= k (3.79)

then that turning point is said to have type (j, k). When x = +1, (3.77) becomes

(ζ + i)2 (ζ − 2i) = 0 (3.80)

whose roots are a simple root ζ1 = 2i and a degenerated root ζ2,3 = −i. When
x = −1, (3.77) becomes

(ζ − i)2 (ζ + 2i) = 0 (3.81)

whose roots are a degenerated root ζ1,2 = i and a simple root ζ3 = −2i. Hence,
we have verified that x = +1 is a turning points with type (2, 3) and x = −1 is
another turning points with type (1, 2) for the BNR equation.

4η can be a complex number with large modulus.
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Figure 3.13: [41, p.26]Solid lines are Stokes lines for the BNR equation and they
cross at points C1 and C2. The red thick-dash lines are branch cuts.

The paper[31] shows that there exists an invisible turning point called “virtual
turning point” whose location is determined by self-intersection point[41,
p.30] of a bicharacteristic curve (B-curve) which is defined as a parame-
tric curve {x (t) , y (t) ; ξ (t) , η (t)} in the cotangent bundle T ∗C2

(x,y) and satisfy
the following Hamilton-Jacob equation.

dx
dt

= ∂σ
∂ξ

dy
dt

= ∂σ
∂η

dξ
dt

= −∂σ
∂x

dη
dt

= −∂σ
∂y

σ (x, ξ, η) = 0

(3.82)

where C2
(x,y) ≡ {(x, y) |x, y ∈ C}, t ∈ R, ξ ≡ ∂

∂x
and η ≡ ∂

∂y
.

If P̂B is in some simple form, for example, say P̂ ′B ≡ ∂2

∂x2
− x ∂2

∂y2
, then σ′ ≡

ξ2 − xη2 and we may easily solve the corresponding Hamilton-Jacob equation
by setting η = 1 due to −∂σ

∂y
= 0. So dx

dt
= 2ξ, dy

dt
= −2x and its B-curve is found

to be 
x (t) = t2

y (t) = −2
3
t3

ξ (t) = t

η (t) = 1

(3.83)

However, for the BNR operator P̂B from (3.78), due to the difficulty of solving
the Hamilton-Jacob equation, it is not easy to obtain its B-curve shown in the
following form: 

x (t) = −4
(
t+ 1

2

) (
t2 + t− 1

2

)
y (t) = −6i (t+ 1)2 t2

ξ (t) = −2it− i
η (t) = 1

(3.84)
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which is plotted on Fig.(3.14). When t = −1, we obtain a singular point5 x (t) =
−1 and y (t) = 0; When t = 0, we obtain another singular point x (t) = 1 and
y (t) = 0. The turning points x = ±1 are the x-components of singular points
from the B-curve projected on the base manifold C2

(x,y). When t = 0.366 or
t = −1.366, we have a self-intersection point x = 0 and y = −3

2
i, which is

another type of singular point. The x-component of this self-intersection point
is the wanted virtual turning point.

Figure 3.14: [41, p.32]Bicharacteristic curve (the blue curve on this figure) for
BNR equation. The two singular points from B-curve projected on
the x-plane are the turning points x = ±1; Whereas the x-component
of the self-intersection point, which is x = 0, is the virtual turning
point. (Only Im (y) is plotted here, since Re (y) = 0 by (3.84). So is
Im (x).)

Figure 3.15: [41, p.32]Complete Stokes lines for BNR equation. Solid lines are
active Stokes lines, the blue dash line segment are inert Stokes lines,
and red thick-dash lines are branch cuts.

5A singular point of a parametric curve is the place where the curve appears to be non-
smooth for the embedding parameter. Singular point may contain several different types. One
common type is cusp.
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There are only two new Stokes lines, both along the vertical axis, emanated
from the virtual turning point x = 0 and shown on Fig.(3.15). The property of
these new Stokes lines depends on whether the crossing points C1 and C2 are
ordered or non-ordered. If they are ordered, then these new Stokes lines be-
come inert or vanished before hitting the crossing points, which means that the
new Stokes lines do not influence the global WKB solution by analytic conti-
nuation. After hitting or going through the crossing points, they become active
and influential. We don’t want to spend anymore time to further explain what
it means by ordered or non-ordered crossing point, because right now we are
facing a critical question: For fractional N , does the potential V (x) = − (ix)N

for Schrodinger equation contain any virtual turning point or not?
The Borel transformed differential operator P̂S for 1D Schrodinger equation(

d2

dx2
− ηQ (x)

)
ψ (x, η) = 0 (3.85)

must be
P̂S ≡

∂2

∂x2
−Q (x)

∂2

∂y2
(3.86)

with the characteristic symbol σS

σS ≡ ξ2 −Q (x) η2 = ζ2 −Q (x) (3.87)

and with the characteristic polynomial ζ2 −Q (x) = 0, who only has two roots6

ζ1 (x) =
√
Q (x) ζ2 (x) = −

√
Q (x) (3.88)

The fact that the number of roots are less than three creates a critical problem
to find any virtual point. Why? Let’s first write down the definition[41, p.33] of
virtual turning point.

Let x1 be a simple turning point with type (j, k) of the following ODE

P̂ψ =

(
dm

dxm
+ ηq1 (x)

dm−1

dxm−1
+ · · ·+ ηmqm (x)

)
ψ (x, η) = 0 (3.89)

where qi (x) is a polynomial. Let x2 be a simple turning point with type (k, l)
of the same ODE. Suppose that one Stokes line from x1 and another Stokes
line from x2 cross each other at a point C. For any point x∗ who satisfies the
following relation with distinct integers j, k, l

ˆ x∗

x1

ζj (x) dx =

ˆ x2

x1

ζk (x) dx+

ˆ x∗

x2

ζl (x) dx (3.90)

then we say that the point x∗ is a virtual turning point of the ODE and the
new Stokes line emanated from x∗ with type (j, l) passes through the crossing
point C.

6We know that the definition of turning point for the second order Schrodinger equation is
different from the definition for higher order ODE, since we say that x = x0 is a turning point
whenever Q (x0) = 0 for Schrodinger equation.
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This definition with its subsequent claim can be mathematically proved,
but we omit the proof here. The relation (3.90) requires at least three roots
to work. However, we only have two roots (3.88) for the second order ODE.
Therefore, this definition must have to change if there exists a virtual turning
point in Schrodinger equation. Since those mathematicians had already made
mistakes on the vanished Stokes lines and crossing point for the second order
ODE, it is not impossible that the definition of virtual turning point extends to
accommodate our case.

By (3.87), (3.82) and setting η = 1,

dy

dx
=

∂σ
∂η

∂σ
∂ξ

= −Q (x)

ξ
(3.91)

Since σ (x, ξ, η) = 0 from (3.82), so by (3.87) ξ = ±
√
Q (x) and by (3.91) we have(

dy

dx

)2

= Q (x) (3.92)

Therefore, the B-curve for any Schrodinger equation must satisfy

y = ±
ˆ x

x0

√
Q (x)dx (3.93)

where x0 is a turning point and Q (x) = E − V (x). The expression of (3.93) is
almost the same as the definition of Stoke line from (3.44). This means that
the Stokes and anti-Stokes lines are parts of B-curve for Schrodinger equation.

A question arose from (3.93) is that whether the B-curve defined by (3.93)
contains any singular point (e.g. self-intersection point) other than ordinary
turning points. Since such hyperdimensional B-curve contains four coordinates
[Re (x) , Im (x) ,Re (y) , Im (y)], it is hard to visualize its complete geometry, so we
leave this work for mathematician.

3.5 Conclusion of the current chapter
The conventional WKB may fail whenever the PT -symmetry is broken. From
Fig.(2.28), due to the existence of CINDs for integer N , we further conclude
that the conventional WKB may fail only for non-integer N if that non-integer
N is located in the region with broken PT -symmetry. The reason why it fails
may be due to the sudden change of directions of anti-Stokes flows around the
positive imaginary axis (See Fig.(3.11) as examples). More rigorous study for
the validity of conventional WKB method is needed.

By applying the phase integral method, we found that eigenvalue E, espe-
cially for the ground level, is influenced by more than two turning points if
N > 2. It also can be influenced by invisible Stokes structure, which may be
caused by non-principal turning points or virtual turning points.
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Chapter 4

A Brief Survey of PT -symmetric
Classical Mechanics

4.1 Introduction of the current chapter
This chapter contains the work by Bender et al.[8, 22, 17] and original work.

In this chapter, we will study the classical trajectories associated with the
complex oscillator in Sec.(4.2) and complex pendulum in Sec.(4.3). Since po-
sitive energy is interested in quantum mechanics, we will mainly focus on
the positive energy in classical mechanics. For the complex oscillator, “energy
quantization” and “chaotic trajectory” are linked to the branch cut and com-
plex energy. For the complex pendulum, the relationship between “classical
tunneling” and complex energy will be explored.

4.2 Classical complex oscillator

4.2.1 For N ≥ 2 and N is an integer
Let’s set the particle’s mass m = 1. The Hamilton’s equations for

H =
1

2
p2 − (ix)N (4.1)

are

ṗ = −∂H
∂x

=
N (ix)N

x
= iN (ix)N−1 ẋ =

∂H
∂p

= p (4.2)

so that the particle has total energy

E =
p2

2
+ V (x) =

(ẋ)2

2
− (ix)N 6= (ẋ) (ẋ)

2
− (ix)N (4.3)

where (ẋ)2 can be complex but (ẋ) (ẋ) is purely real. If we set E = (ẋ)(ẋ)
2
− (ix)N

instead, then E can never be real for some value of N .
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By solving ẋ from the equation E = (ẋ)2

2
− (ix)N , we obtain

ẋ =
dx

dt
=
√

2 [E − V (x)] (4.4)

then
dt =

dx√
2 [E − V (x)]

(4.5)

t2 − t1 =

ˆ x2

x1

dx√
2 [E − V (x)]

(4.6)

So the period T is

T =

˛
C

dx√
2 [E − V (x)]

(4.7)

Complex analysis allows us to deform a given orbit into a simpler orbit with
exactly the same period. This simplest orbit can be the one connecting two
turning points and oscillates between them rather than encircling them, so
that we can deform the orbit into a pair of two rays. For the elementary case of
orbits that enclose only two principal turning points, the formula for the period
T of the closed orbit can be evaluated in the following way:

T = 2

x+ˆ

x−

dx√
2
[
E + (ix)N

] = 2


E

1/Neiγˆ

0

dx√
2
[
E + (ix)N

] +

0ˆ

E1/Neiβ

dx√
2
[
E + (ix)N

]


where (3.2) and (3.3) are used. By using the substitution y = ix

iE1/Neiγ
and

w = ix

iE1/Neiβ
, the two complex contour integrations become two real integrations

along real axis

T = 2


1ˆ

0

E1/Neiγ√
2
[
E + (iE1/Neiγy)

N
]dy +

0ˆ

1

E1/Neiβ√
2
[
E + (iE1/Neiβw)

N
]dw

 (4.8)

Since y and w are dummy variables, we obtain

T = 2


1ˆ

0

E1/Neiγ√
2
[
E + (iE1/Neiγy)

N
]dy −

1ˆ

0

E1/Neiβ√
2
[
E + (iE1/Neiβy)

N
]dy

 (4.9)
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Since (ieiγ)
N

= −1 =
(
ieiβ
)N , hence

T = 2


1ˆ

0

E1/Neiγ√
2 [E − E (yN)]

dy −
1ˆ

0

E1/Neiβ√
2 [E − E (yN)]

dy


= 2


1ˆ

0

E(2−N)/2N
(
eiγ − eiβ

)√
2 [1− (yN)]

dy


= 2

E
2−N
2N

√
2

(
eiγ − eiβ

) 1ˆ

0

1√
1− (yN)

dy


= 2

{
E

2−N
2N

√
2

(
eiγ − eiβ

)√
π

Γ
(
1 + 1

N

)
Γ
(
1
2

+ 1
N

)}

= 2E
2−N
2N

(√
2π sin

π

N

) Γ
(
1 + 1

N

)
Γ
(
1
2

+ 1
N

) (4.10)

where we assume the 0th pair of PT -symmetric turning points within the pair
of orange wedges is involved so that (3.19) is used to derive the last step. In
general, for the kth pair of turning points within the kth pair of PT -symmetric
Stokes wedges, we have the period

T =
(

2
√

2πE
2−N
2N

)
cos

[(
2−N

2N
+

2k

N

)
π

]
Γ
(
1 + 1

N

)
Γ
(
1
2

+ 1
N

) k = 0, 1, 2, 3 · · · (4.11)

In order to make the total initial energy E0 = 1, by (4.3) we set the initial
momentum p0 as a function of the initial position x0

p0 =

√
2
[
(ix0)

N + 1
]

(4.12)

By using Gauss-Legendre Integrator to solve (4.2), Fig.(4.1) shows several tra-
jectories with various initial positions x0 with N = 2 and total initial energy
E0 = 1. All those trajectories form closed orbit with the same period T =
4.4428829381 which agrees with our corresponding numerical approximation.
When the initial position x0 starts right on one of the turning points, say,
x0 = x2, the orbit is deformed into a straight line segment oscillating between
the two turning points with the same period.

Fig.(4.2) shows the real and imaginary part of energy E versus time t for a
chosen orbit with initial position x0 = −0.1i. The real energy is maintained to
be 1 and the imaginary energy is extremely small. The particle moves in the
clockwise direction. The vertical blue dot lines on the figure indicate the exact
time when the particle crosses the imaginary axis. On those regions where
Im (E) and the vertical blue dot lines are intersected, the behavior of Im (E) is
dramatically changed and becomes smaller. The reason to cause this behavior
is unknown.
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Figure 4.1: Classical trajectories when N = 2 and E0 = 1, where by (4.10) all
orbits have the same period T = 4.4428829381. Particles move cloc-
kwisely in all orbits.
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Figure 4.2: Energy E versus time t for N = 2 with period T = 4.4428829381. The
vertical blue dot lines indicate the time when the particle crosses the
imaginary axis.
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Figure 4.3: Classical trajectories when N = 5 and E0 = 1
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Table 4.1: When N = 5 and E0 = 1, the period T is obtained by analytical and
numerical method (with numerical integration step dt = 0.001)

Initial position x0 Analytical T Numerical T

Orbit 1 On the turning point x1

2.0843368815

2.084

Orbit 2 −i 2.084

Orbit 3 −3i 2.084

Orbit 4 −2− 2i 2.084

Orbit 5 On the turning point x4

3.3725279183

3.372

Orbit 6 1 + 0.3i 3.373

Orbit 7 −1.5 3.372

Orbit 8 −3 + 0.5i 3.373

Orbit 9 i 0.6440955184 0.644

Fig.(4.3) shows several orbits with various initial positions x0 when N = 5.
If we pick up an initial position x0 near to the pair of turning points x1 and x5,
then a closed orbit is formed to enclose these two turning points. If x0 is chosen
to be near to the pair of turning points x2 and x4, then the closed orbit encloses
those two turning points instead. If x0 is chosen to be right on the turning
point, for example, x0 = x4, the orbit is deformed to be a curve segment which
oscillates between the turning points x2 and x4. By (4.11), Tab.(4.1) shows that
all orbits enclosing x1 and x5 have the same period T = 2.0843368815; All orbits
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enclosing x2 and x4 have the same period T = 3.3725279183. All those analytical
results are confirmed by our numerical results.

The imaginary part of the energy E for N = 5 for the chosen orbit shown on
Fig.(4.4) does have some weird behavior1 as time t grows, even if it is tiny. It
wiggles more violently whenever cross the negative imaginary axis. However,
the amplitude of the wiggle does not grow with time and still be tiny, which
may be why all orbits are stable.

Figure 4.4: Energy E versus time t for N = 5 with period T = 2.0843368815. The
vertical blue dot lines indicate the time when the particle crosses the
imaginary axis.
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If x0 = x3 = E1/Nei
π
2 = i, then it does not form a closed orbit, instead, the

particle goes from x3 to complex infinity i · ∞ by taking finite amount of time,
which can be evaluated by

T =

i·∞ˆ

i

dx√
2
[
E + (ix)N

] (4.13)

1Im (E) for all other orbits for N = 5 have the similar behavior.
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By the substitution y = ix

iE1/Nei
π
2

and N = 5

T =

∞̂

1

E1/Nei
π
2√

2
[
E +

(
iE1/Nei

π
2 y
)N]dy

=

∞̂

1

E1/5ei
π
2

E1/2
√

2 [1− (y5)]
dy

= i
E(2−5)/10

√
2

∞̂

1

1√
1− (y5)

dy

= 0.6440955184 (4.14)

which is also consistent with our numerical result (See Tab.(4.1)). Taking finite
amount of time to reach a complex infinity means that during a short time its
energy grows unbounded. However, surprisingly, this short time is extremely
short - all the sudden the energy grows unbounded, which is confirmed when
we look at the numerical result on its energy where both Re (E) and Im (E)
suddenly grow to be huge values around T = 0.642.

The time T = 0.6440955184 for the particle to escape to the complex infi-
nity is a “weird” value, since we so far can not find the relation between this
value and other periods or orbits shown on Tab.(4.1). What do we mean by
that? Consider the case for N = 3. If the initial position2 starts right on the
turning point x2 (See Fig.(4.5)), by (4.13) it takes finite amount 1.7173153422 of
time to escape to the complex infinity. This value is just the half of its period
(TN=3 = 3.434630684), which is the time for the particle to travel in the orbit 2
starting from −6i (See Fig.(4.5)) and reach the imaginary axis for its first time.
Fig.(4.6) shows the energy of the particle in the orbit 1, which suddenly grows
around 1.7142. The energy’s behavior for N = 5 to escape to complex infinity is
very similar to this, except that the time 0.6440955184 is not the half of any its
periods shown on Tab.(4.1).

2ForN = 3, if the initial position is chosen[8, p. 25] on the imaginary axis above x = x2, then
two cases can happen: First, the trajectory diverges to i · ∞; Second, the particle is attracted
by and comes back to the turning point x2, then turn around and diverges to i · ∞.
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Figure 4.5: Classical trajectories when N = 3 and E0 = 1. The green curve shows
the half of the orbit 2.
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Figure 4.6: Energy E versus time t for N = 3. The vertical blue dot line indicates
the time of the half period of the orbit 2 from Fig.(4.5).
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4.2.2 For N ≥ 2 and N is fractional
How about the case when N is fractional? Fig.(4.7) shows several trajectories
with N = 2.5 on a single Riemann sheet except the orbit3 7. The turning points
x2, x3 and x5 are not on the principal branch so that they are marked in cyan
color rather than yellow. If the initial position x0 is chosen quite near to the
principal turning points, then the orbit only encloses x1 and x4 such that the
period of the orbit can be analytically calculated by (4.10), which are consistent
with our numerical approximation (See Tab.(4.2)). These orbits (orbits 1, 2, 3)
are closed on all Riemann sheets. Fig.(4.8) shows the behavior of energy for
this type of orbits is very similar to the case when N = 5 shown on Fig.(4.4).

However, when an orbit encloses any non-principal turning point, the orbit
is closed only on a single Riemann sheet - when it crosses the cut on the imagi-
nary axis, the orbit become unstable (See Fig.(4.9)). The periods of these orbits
are dependent on the initial position x0 (See Tab.(4.2)) and are harder to cal-
culate analytically since more than two turning points are involved. Here we
omit4 how to analytically calculate these periods. If we start the initial position
x0 right on the turning point x2, the orbit is not stable on any sheet. Its chaotic
behavior is very similar to what we see on Fig.(4.9).

Figure 4.7: Classical trajectories when N = 2.5 and E0 = 1. We did not find any
orbit which only encloses non-principal turning points.
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3On Fig.(4.7) the orbit 7 in dash-curve which starts right on the turning point x2 is not on a
single Riemann sheet since it crosses the cut on the positive imaginary axis twice.

4You may find some useful discussion from [8, p.30]. However, that may not work for the
orbit which is closed only on a single sheet.
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Figure 4.8: Energy E versus time t for N = 2.5 with period T = 3.9586963635. The
vertical blue dot lines indicate the time when the particle crosses the
imaginary axis.
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Table 4.2: When N = 2.5 and E0 = 1, the period T is obtained by analytical and
numerical method (with numerical integration step dt = 0.001)

Initial position x0 Analytical T Numerical T

Orbit 1 On the turning point x4
3.9586963635

3.959

Orbit 2 −0.2i 3.958

Orbit 3 On the turning point x5 3.958

Orbit 4 0.2 + 0.4i
Unknown

3.813

Orbit 5 0.5i 3.940

Orbit 6 i 3.792

Orbit 7 On the turning point x2 N/A N/A

Fig.(4.9) shows what happens if we let the orbit 6 cross the cut on the po-
sitive imaginary axis. The unstable and chaotic trajectory may be caused by
the influence from other non-principal turning points. Here, we want to emp-
hasize that the trajectory never[8, p.29] intersects itself. The apparent self-
intersections on Fig.(4.9) is an illusion since we put multiple Riemann sheets
altogether on top to each other. Also, we have no rigorously mathematical proof
to justify if the trajectory is truly chaotic or not - the claim that the trajectory
is chaotic is purely based on our numerical observation.
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Figure 4.9: A classical trajectory when N = 2.5, E0 = 1 and x0 = i
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Figure 4.10: EnergyE versus time t forN = 2.5 with initial period T0 = 3.792. The
vertical blue dot lines indicate the time when the particle crosses the
imaginary axis.
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Figure 4.11: Energy E versus longer time t for N = 2.5 with initial period T0 =
3.792
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Surprisingly, these chaotic orbits all have “quantized energy” - energy
starts to jump into a different level whenever the trajectory crosses the cut on
the positive imaginary axis. After crossing the cut, the energy starts to jump
again whenever crosses the imaginary axis, including the negative imaginary
axis. One case the orbit 6 for N = 2.5 as an example is shown on Fig.(4.10),
where both Re (E) and Im (E) are quantized, and the jumps from Im (E) are
much more violent. Fig.(4.11) shows for longer time the pattern of the energy,
whose Im (E) are bounded approximately between +2 and−2. Since both Re (E)
and Im (E) do not grow substantially as t increases, that is why the orbit 6
does not diverge to complex infinity as t increases. We do not know why the
energy jumps whenever crosses the cut. The behavior of Im (E) on Fig.(4.11)
is bounded and looks like a sinusoidal pattern. If we increase the number
of integration steps by decreasing dt, say dt = 0.0001, this sinusoidal pattern
remains unchanged. However, we do not know the reason why this pattern is
formed and can not predict how much the energy jumps.

4.2.3 For N < 2

For N < 2, we pick up the cases N = 1.8, N = 1.6 and N = 1.3 to study.
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Figure 4.12: Classical trajectories when N = 1.8 and N = 1.6 and E0 = 1
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Figure 4.13: Energy E versus time t for N = 1.6 the blue trajectory on Fig.(4.12)
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Most initial positions x0 we tried for N = 1.8 do not generate closed orbits.
For example, on Fig.(4.12), the green trajectory starts right on one of the non-
principal turning points and is not a closed orbit. The grey trajectory starts
right on one of the principal turning points and is not a closed orbit either.
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It does not go to complex infinity as time increases. Instead, it behaves cha-
otic and forms a quite narrow band which becomes a thicker grey band (See
Fig.(4.12)) in the case for N = 1.6.

When the initial position x0 is chosen right on the positive imaginary axis,
say, x0 = i, an orbit for N = 1.8 can form but is closed only on a single Riemann
sheet. Its period is dependent on the initial position. For x0 = i, its period
can only be calculated numerically to be 4.604. When it crosses the cut on
the positive imaginary axis, the orbit behaves chaotic (See the red curve on
Fig.(4.12)). If we further decrease N = 1.8 to be N = 1.6, with the same initial
position x0 = i, the trajectory is not closed on any sheet (See the blue curve on
Fig.(4.12)).

Even through all those orbits are not stable, however, all orbits for N = 1.8
and N = 1.6 do not eventually diverge to complex infinity, since their energies
do not grow substantially (See Fig.(4.13)). The imaginary part of energy is
bounded and form a sinusoidal pattern again as time grows. Again, we do not
know how this sinusoidal pattern is formed.

Figure 4.14: Classical trajectories when N = 1.3 and E0 = 1
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Figure 4.15: Energy E versus time t for N = 1.3
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For N = 1.3, all trajectories with various initial positions are divergent to
i · ∞ (See Fig.(4.14)), because Fig.(4.15) shows that the imaginary part of the
energy E grows exponentially. Therefore, we conclude that the increment of
Im (E) determine how stable the system is.

4.2.4 Summarize what we found in this section
• When N ≥ 2 and N is an integer, except a few trajectories go to complex

infinity within finite amount of time, most trajectories form orbits closed
on any Riemann sheet. The periods of these orbits can be analytically cal-
culated and dependent on which pair of turning points its orbit encloses.

• When N ≥ 2 and N is fractional, some trajectories form orbits closed on
any Riemann sheet, whose period can be analytically calculated. Some
other trajectories form orbits closed on only one Riemann sheet, and are
eventually chaotic if Im (E) is bounded, or divergent to complex infinity if
Im (E) is not bounded. Furthermore, the quantization process of energy
with respect to time t starts whenever a trajectory crosses the cut on the
positive imaginary axis.

• When 1 < N < 2, trajectories are not stable - they are either chaotic if
Im (E) is bounded or divergent to complex infinity if Im (E) is not boun-
ded. As N → 1, the trajectory becomes more unstable and more likely
divergent to complex infinity. As same as the last case, energy appears to
be quantized whenever a trajectory crosses the cut on the positive imagi-
nary axis.
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4.3 Simple complex pendulum

4.3.1 Classical tunneling

Figure 4.16: A simple pendulum

For a simple pendulum[22]

x = L sin θ y = −L cos θ (4.15)

So its Hamiltonian is
H =

1

2
mL2θ̇2 −mgL cos θ (4.16)

Set m = 1, L = 1 and replace θ by x, we obtain

H =
1

2
p2 − g cosx 6= 1

2
(pp)− g cosx (4.17)

which satisfies H−
(
P̂ T̂
)
H
(
P̂ T̂
)

= 0. Therefore, H is PT -symmetric but non-
Hermitian for p ∈ C and x ∈ C. The Hamilton’s equations are

ṗ = −∂H
∂x

= −g sinx ẋ =
∂H
∂p

= p (4.18)

with total energy

E =
p2

2
+ V (x) =

(ẋ)2

2
− g cosx (4.19)

The turning points for |E| ≤ 1 are

E = −g cosx

=⇒ x∗ = arccos

(
−E
g

)
(4.20)
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To make the initial energy E0 = 0, we set (4.19) to be zero so that

ẋ0 = p0 =
√

2g cosx0 (4.21)

For simplicity we set g = 1. By (4.20) the turning points for E0 = 0 are

x∗ =
π

2
+ nπ n ∈ Z (4.22)

which are displayed on Fig.(4.17) along with orbits starting in various initial
positions.

Figure 4.17: Classical trajectories for complex pendulum with E0 = 0 and period
T = 7.4162987092. All particles in closed orbits move in clockwise
direction.
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Fig.(4.17) shows that except that the particles with initial positions starting
from nπ escape to complex infinity, all other trajectories are stable orbits with
the same period

T =

˛

c

d x√
2 [E − V (x)]

=

˛

c

d x√
2 [E + cos (x)]

= 2

ˆ x+

x−

d x√
2 [E + cos (x)]

(4.23)

= 2

ˆ π
2

−π
2

d x√
2 cos (x)

= 7.4162987092
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which is consistent with our numerical approximation T ≈ 7.416. The hori-
zontal line segments appeared on Fig.(4.17) correspond to the real trajectories,
where particles swing between two turning points. All particles with stable or-
bits are well-behaved in that they stay in the same regions and swing around
the same pairs of turning points forever.

Figure 4.18: Energy E versus time t with E0 = 0 for particle to escape to the
complex infinity, starting from x0 = π shown on Fig.(4.17). The cor-
responding setup is shown on Fig.(4.19). Note that when x0 = π, the
pendulum still tries to form an elliptic orbit, but the radius of this
orbit becomes infinite long. To maintain the constant period T , the
speed of the pendulum becomes infinite as well. This causes unsta-
ble numerical result for infinite speed, and therefore the numerical
energy blows up when speed becomes huge.
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Figure 4.19: The initial position of the pendulum with E0 = 0 is chosen to be
x0 = θ0 = π, which is inside the dynamically inaccessible region be-
cause V > 0 and E0 < V in this region. In this setup, the pendulum
is in an unstable equilibrium position. Intuitively, the pendulum
should stay at this position forever if E0 = 0. However, this is not
true in this case, because (4.21) implies that for the chosen E0 and
x0, the velocity of the pendulum is non-zero, but equal to an purely
imaginary number

√
2i, and that is why the pendulum starts to move

along the vertical direction in the complex plane of x.

If the initial position x0 is chosen to be right on +π as an example shown
on Fig.(4.19) (dynamically inaccessible region), then the time for the particle to
escape to the complex infinity is

T =

ˆ π−i·∞

π

d x√
2 cos (x)

= 1.8540746800 (4.24)

which is also consistent with our numerical approximation T ≈ 1.854, when its
energy suddenly increases (See Fig.(4.18)). Note that T ≈ 1.854 is the quarter
of the pendulum’s period, during which the orbit from Fig.(4.20) crosses the
negative imaginary axis for its first time. The energy for this ordinary orbit is
very similar to Fig.(4.4), whose energy wiggles relatively more intense whene-
ver crosses imaginary axis.
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Figure 4.20: Energy E versus time t with E0 = 0 for one of orbits shown on
Fig.(4.17). The vertical blue dot lines indicate the time when the
particle crosses the imaginary axis.
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Now let’s set E0 = 1
2

by using ẋ0 = p0 =
√

2 cosx0 + 1. By (4.20) the turning
points for E0 = 1

2
are

x∗ = arccos

(
−1

2

)
=

2

3
π + 2nπ or

4

3
π + 2nπ n ∈ Z (4.25)

which are shown on Fig.(4.21) along with orbits starting in various initial po-
sitions. Since in the current case the initial energy E0 is real and positive, we
do not see much difference between Fig.(4.17) and Fig.(4.21), except that the
position of the turning points are changed a little bit and for Re (x) > 0, the
direction of escaping to complex infinity is reversed.
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Figure 4.21: Classical trajectories for complex pendulum with E0 = 1
2 and period

T = 8.6260625694. All particles in closed orbits move in counter-
clockwise direction.
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Figure 4.22: A classical trajectory for complex pendulum with E0 =
1
2 i and x0 = 0
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What will happen if E0 = 1
2
i? By (4.20) the turning points for E0 = 1

2
i are

x∗ = arccos

(
−1

2
i

)
=
π

2
+ nπ + i (−1)n sinh−1

(
1

2

)
n ∈ Z (4.26)

110



CHAPTER 4. PT-SYMMETRIC CLASSICAL MECHANICS

where sinh−1
(
1
2

)
= 0.4812118251. If still use (4.23) to evaluate the period, then

T =

ˆ π
2
+i·sinh−1( 1

2)

−π
2
−i·sinh−1( 1

2)

d x√
2
[
1
2

+ cos (x)
] = 7.2104248983 + 0.7781143655i (4.27)

a complex period is obtained. So far, we consider such complex period as phy-
sically unachievable.

By choosing the initial position x0 at the origin, Fig.(4.22) shows a single
trajectory, which is not a closed orbit and after a while, the particle is no lon-
ger confined within the same region and attracted by adjacent pair of turning
points. Since this classical behavior resembles quantum tunneling, we call it
as “classical tunneling”, which is caused by allowing the particle to possess
complex or purely imaginary energy and the ability to travel in the complex
plane instead of real axis. The energy for this trajectory is well-behaved since,
numerically, Re (E) stays at 0 and Im (E) at 1

2
i all the time with any wiggle.

This implies that during the given time the trajectory might have not crossed
any branch cut, so that the trajectory on Fig.(4.22) is still on a single Riemann
sheet, on which the trajectory never intersects itself.

Figure 4.23: A classical trajectory for complex pendulum with E0 = 0.5 + 0.1i and
x0 = 0
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However, it’s more instructive to add a little imaginary energy into a real-
energy-system and observe its behavior. Let’s set E0 = 0.5 + 0.1i so that the
energy of the particle is dominated by real energy which is five times of its
imaginary part. By (4.20) the turning points for E0 = 0.5 + 0.1i are

x∗ = arccos (−0.5− 0.1i) =
π

2
+ nπ + (−1)n sin−1 (0.5 + 0.1i) n ∈ Z (4.28)
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where sin−1 (0.5 + 0.1i) = 0.5198083869 + 0.1149653221i. As Fig.(4.23) shows, all
turning points are no longer on the real axis, instead, they tilt a little bit so that
each pair of turning points is asymmetric with respect to any vertical line. Such
asymmetry causes the particle with initial position at the origin to leave5 the
real axis and form non-closed orbit. Eventually, the particle - again - is able
to do the “classical tunneling”. We find that the larger amount of imaginary
energy it possesses, the shorter time the particle needs to finish tunneling and
the more unstable the orbit is.

Figure 4.24: Well-behaved energy E versus time t with E0 = 0.5 + 0.1i and x0 = 0
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4.3.2 A deterministic model to explain why large object
can not tunnel

In our real life, why can’t a large object tunnel? Well, based on our study of the
complex pendulum, we make the following conjecture:

A large object consists of many small particles. All of these small particles
have different and complex energies, which enable them to tunnel. The real
part of all these energies is non-negative, however the imaginary part of all
these energies can be positive, zero or negative. The energy of the large object
is the sum of all those particles’ energies, so that the real part of the energy of
the large object is much larger in magnitude than its imaginary part because
the positive imaginary parts of particles’ energies are statistically canceled by
the negative imaginary parts. Most likely, after cancellation the large object
only has a tiny amount of imaginary energy, so tiny that the large object may
be unable to finish tunneling during the life time of universe.

5If there was no such asymmetry, the particle with initial position at the origin would still
be confined on the real axis and oscillate between a pair of turning points forever.
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Chapter 5

Conclusion

The energy spectra for the eigenfunction ψ (x) from the PT -symmetric Hamil-
tonian H = p2 − (ix)N were studied in detail by numerically solving the corre-
sponding Schrodinger equation within the complex plane of x with boundary
condition ψ (x) → 0 and ψ′ (x) → 0 as |x| → ∞. The WKB method and phase
integral method are used to further understand the relation among the broken
and unbroken PT -symmetry and non-integer N . In the end, we briefly explore
the classical aspect of the Hamiltonian by solving the corresponding Hamilton’s
equations. We believe that our study provides an interesting, comprehensive
and clear introduction about PT -symmetry and differential equation in com-
plex plane to physics graduate students and professors.
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Appendix

Fortran Code for Gauss-Legendre Integrator

Algorithm 1 The 8th order implicit Gauss-Legendre integrator (GLI)

subroutine gl8 ( y , dt )
integer , parameter : : s = 4 ! order of integrator i s 2∗s
integer , parameter : : n = 4 ! number of dynamical variables
real y (n ) , g (n , s ) , dt ; integer i , k

! Butcher tableau for 10th order Gauss−Legendre method
real , parameter : : a ( s , s ) = reshape ( ( / &

0.869637112843634643432659873054998518Q−1,
−0.266041800849987933133851304769531093Q−1, &

0.126274626894047245150568805746180936Q−1,
−0.355514968579568315691098184956958860Q−2, &

0.188118117499868071650685545087171160Q0,
0.163036288715636535656734012694500148Q0, &

−0.278804286024708952241511064189974107Q−1,
0.673550059453815551539866908570375889Q−2, &

0.167191921974188773171133305525295945Q0,
0.353953006033743966537619131807997707Q0, &

0.163036288715636535656734012694500148Q0,
−0.141906949311411429641535704761714564Q−1, &

0.177482572254522611843442956460569292Q0,
0.313445114741868346798411144814382203Q0, &

0.352676757516271864626853155865953406Q0,
0.869637112843634643432659873054998518Q−1 / ) , ( / s , s / ) )

real , parameter : : b ( s ) = ( / &
0.173927422568726928686531974610999704Q0,

0.326072577431273071313468025389000296Q0, &
0.326072577431273071313468025389000296Q0,

0.173927422568726928686531974610999704Q0 / )
! i t e ra te t r i a l steps

g = 0 . 0 ;
do k = 1 ,16

g = matmul ( g , a )
do i = 1 , s

c a l l eva l f ( y + g ( : , i )∗ dt , g ( : , i ) )
end do

end do
! update the solut ion

y = y + matmul ( g , b )∗ dt
end subroutine gl8
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