
FPGA to the Cloud

By

Moundji Kazi-Tani, P.Eng.

B. Eng. (Electrical), Concordia University, 2006

Project Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Engineering

In the

School of Engineering Science

Faculty of Applied Science

© Moundji Kazi-Tani

SIMON FRASER UNIVERSITY

Spring 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

ii

Approval

Name: Moundji Kazi-Tani, P.Eng.

Degree: Master of Engineering

Title: FPGA to the Cloud

Examining Committee: Chair: Dr. Ash M. Parameswaran, P.Eng.
Professor

 Dr. Craig Scratchley, P.Eng.
Senior Supervisor
Senior Lecturer

 Victor Gusev Lesau
Industry Supervisor
Electrical Engineer
CEO, CuePath Innovation

Date Presented/Approved:

March 29, 2017

iii

Abstract

FPGAs are enabling more applications to be put to the market at a fraction of the cost of

ASICs and with a much faster deployment rate. However, the wide range of FPGA

brands and types currently available on the market; could overwhelm first time users

when choosing a suitable FPGA for a given application. Furthermore, intermediate-to-

advanced FPGA users may desire to evaluate some new FPGAs before committing to a

purchase. FPGA to the Cloud is a web application that allows users to interact with

FPGA evaluation kits remotely on a try-before-you-buy or pay-per-use model. The end

user would access a web site where the web application is hosted. The end user would

select an FPGA evaluation board from a list, and would be given direct remote access to

said FPGA board; with programming tools. The user could use available sample FPGA

design files, or upload user-created FPGA design files; for testing and evaluation. The

project-prototype is based on the ZedBoard which uses Xilinx’s Zynq-7000 FPGA. The

web application was developed using Laravel’s PHP framework.

Keywords: Web Application; Web Design; FPGA Application; PHP; Frameworks;

Web Hosting

iv

Dedication

To Bill

v

Acknowledgements

This project would not have been possible without the support of many people. I

would like to thank Victor Gusev Lesau without whom the project would not have started

nor finished!

I would like to thank the examining committee members for dedicating their time

and energy in reviewing the project.

As well, I wish to express my gratitude to the late Dr. William A. Gruver for his

thoughtful guidance. His wisdom and inspiration made a significant impact on the people

around him.

Furthermore, I would like to thank my family for their never-ending support and

patience.

vi

Table of Contents

Approval .. ii
Abstract .. iii
Dedication .. iv
Acknowledgements ... v
Table of Contents ... vi
List of Tables .. ix
List of Figures.. x
List of Acronyms ... xi

Chapter 1. Introduction .. 1
1.1. Motivation .. 1
1.2. Application Summary ... 2
1.3. Academic Objectives ... 3

Chapter 2. Project Overview .. 4
2.1. Organization .. 4
2.2. FPGA Development ... 4
2.3. Web Application... 5

Chapter 3. System Architecture .. 7
3.1. The Hardware Server .. 8
3.2. The Web Application ... 8
3.3. The End User .. 9

Chapter 4. System Design Choices ... 10
4.1. FPGA Evaluation Board Selection - ZedBoard .. 10
4.2. Hardware Server OS - Ubuntu ... 11

4.2.1. Virtual Machine Software – VMware .. 12
4.3. Web Cam .. 12
4.4. Web Scripting Language Selection - PHP ... 13

4.4.1. Frameworks - Laravel .. 13
4.4.2. IDE Tools - Homestead ... 14

4.5. Web Hosting Services - AWS .. 14
4.6. Software Version Control System and Online Repository – BitBucket 15
4.7. Web Based Terminal Emulator – Shell in a Box .. 15

Chapter 5. System Implementation: FPGA Board Component 17
5.1. ZedBoard Setup and Configuration ... 17
5.2. LED Binary Counter on the ZedBoard Using the Zynq-7000 FPGA 18

5.2.1. Step 1: Creating a New Project in Vivado .. 18
5.2.2. Step 2: Creating a Block Design .. 20
5.2.3. Step 3: Writing the Software Application .. 28
5.2.4. Step 4: Programming the ZedBoard and Running the C Application 32

vii

5.3. Other FPGA Designs ... 33

Chapter 6. System Implementation: Web Application ... 34
6.1. Tree View of the Web Application .. 34
6.2. Model-View-Controller Code Structure .. 36

6.2.1. The Models .. 36
6.2.2. The Controllers .. 37
6.2.3. The View ... 38

6.3. Services .. 40

Chapter 7. Website Layout .. 42
7.1. Landing Page .. 42

7.1.1. Top Menu and Image Slider ... 42
7.1.2. Server and FPGA Boards Selection Menu ... 43
7.1.3. Server and FPGA Scheduling Tool .. 44

7.2. Remote Server Page ... 45
7.2.1. File Manager and Program Tool .. 46

Chapter 8. Conclusion ... 49
8.1. FPGA Applications Development: What Was Learned .. 49
8.2. Web Application: What Was Learned .. 50
8.3. Known Bugs .. 50
8.4. Future Work ... 51

References ... 55

Appendix A. VMware Workstation Player and Ubuntu 14.04.2 Virtual Machine
Installation Guide .. 57

Appendix B. Hardware Server Configuration Guide.. 68

Appendix C. Open SSH Installation on the Hardware Server 71

Appendix D. Motion (Webcam Stream) Installation on the Hardware Server 72

Appendix E. C-Kermit (Serial Terminal) Installation on the Hardware Server 73

Appendix F. Git Installation on the Hardware Server .. 74

Appendix G. Shell in a Box Installation on the Hardware Server 75

Appendix H. Network Ports Configuration ... 76

Appendix I. Xilinx Vivado Design Suite Installation Guide 77

Appendix J. USB Serial (COM) Port Properties ... 87

Appendix K. Vivado Zynq-7000 FPGA Design Guide A: LED Binary Counter 88

viii

Appendix L. Vivado Zynq-7000 FPGA Design Guide B: LED Scanner Light 113

Appendix M. Vivado Zynq-7000 FPGA Design Guide C: LED – UART IO 115

Appendix N. Vivado Zynq-7000 FPGA Design Guide D: Peripherals Tests 117

Appendix O. Vivado Zynq-7000 FPGA Design Guide E: Memory Tests 120

Appendix P. Vivado Zynq-7000 FPGA Design Guide F: Zynq DRAM Tests 123

ix

List of Tables

Table 1 ZedBoard Boot Mode Jumper Settings ... 17

x

List of Figures

Figure 1 Top Level Architecture .. 7
Figure 2 The ZedBoard Featuring the Xilinx Zynq-7000 .. 11
Figure 3 ZedBoard Boot Mode Jumper Settings - Option 1 ... 18
Figure 4 Project Name and Location in Vivado .. 19
Figure 5 Board Selection in Vivado ... 20
Figure 6 Create Block Design in Vivado .. 21
Figure 7 Add IP in Vivado .. 22
Figure 8 Add Zynq7 Processing System IP in Vivado .. 23
Figure 9 Run Block Automation in Vivado ... 23
Figure 10 Added AXI GPIO IP in Vivado ... 24
Figure 11 Connect the AXI GPIO IP to the Board LED 8 Bits in Vivado 24
Figure 12 Regenerate Layout (I.E. Refresh) in Vivado .. 25
Figure 13 Create HDL Wrapper in Vivado ... 26
Figure 14 Generate Bitstream ... 27
Figure 15 Export Hardware And Bitstream in Vivado ... 28
Figure 16 Create a New Board Support Package in SDK .. 29
Figure 17 Create an Application Project in SDK .. 30
Figure 18 Select Hello World Template in SDK ... 30
Figure 19 LED Binary Counter C code in SDK .. 32
Figure 20 Program FPGA in SDK .. 32
Figure 21 Running the C Application on the Hardware in SDK 33
Figure 22 The Web Application’s Structure Main Overview ... 35
Figure 23 Models, Controllers, and Helpers Source Code Tree 37
Figure 24 The View Source Code Tree ... 40
Figure 25 Landing Page with Image Slider and Top Menu .. 42
Figure 26 Top Menu as Seen by Logged-In Users .. 43
Figure 27 Server and FPGA Board Selection Menu .. 43
Figure 28 Server and FPGA Board - Administrative Settings ... 44
Figure 29 Server and FPGA Board Scheduling Tool ... 45
Figure 30 Remote Server Page: Conneciton to Remote FPGA Hardware Server 46
Figure 31 File Manager and Program Tool .. 47
Figure 32 Program Tool: Programming Progress .. 48

xi

List of Acronyms

AI Artificial Intelligence

ASIC Application Specific Integrated Circuit

AWS Amazon Web Service

CLI Command Line Interface

CPLD Complex Programmable Logic Device

CPU Central Processing Unit

DB Database

EC2 Elastic Cloud Computing

FPGA Field-Programmable Gate Array

GP General Purpose

GPIO General Purpose Input/Output

GPU Graphics Processing Unit

IC Integrated Circuit

IDE Integrated Development Environment

IP Intellectual Property; Internet Protocol

ISO International Standard Organization

JS JavaScript

LED Light-Emitting Diode

MVC Model-View-Controller

OS Operating System

PL Programmable Logic

PLD Programmable Logic Device

PS Processor System

SDK Software Development Kit

SFU Simon Fraser University

SSH Secure Shell

TOS Terms of Service

UART Universal Asynchronous Receiver/Transmitter

UI User Interface

URI Universal Resource Identifier

URL Universal Resource Locator

URN Universal Resource Name

xii

VCS Version Control System

WWW World Wide Web

1

Chapter 1. Introduction

1.1. Motivation

FPGA usage has been on the rise over the last ten years. And such increase is

projected to continue over the next ten years. The FPGA market size was valued at USD

5.27 billion in 2014, and it is expected to reach USD 14 billion by 2024 [1] - [2]. The

telecom sector, which accounts for 33% of the current FPGA market share is seeing

continued growth [1]. And as more ICs are making their way into the average vehicle,

the automotive industry is another target for FPGA vendors; at 17% of the current FPGA

market share [1].

Furthermore, FPGAs are becoming the flavor of choice (over CPUs and GPUs)

for future AI services and applications. FPGAs run faster than software, consume less

power than CPUs or GPUs, and could be reprogrammed. Intel1 estimates that FPGAs

will run 30% of data center servers by the year 2020 [3]. In neural networks; FPGAs are

currently aimed at inferencing (evaluating already trained neural networks) for

applications such as image recognition, speech recognition, and language translation

[4].

With numerous FPGA manufacturers around, and several types of FPGA

evaluation kits available, selecting the right FPGA for a given application could be a

daunting task to a student, a starting hobbyist or even a seasoned engineer. Even

advanced FPGA users have to rely mostly on the manufacturers’ specifications before

committing to an FPGA selection.

To help users make the appropriate FPGA selection; there is: FPGA to the

Cloud. FPGA to the cloud is a project-prototype that allows users from anywhere on the

web, to gain remote-access to several types of FPGA development kits on a try-before-

you-buy model, pay-per-use, subscription or other models.

1 Intel acquired FPGA maker Altera in 2015 [9]

2

1.2. Application Summary

The purpose of this project-prototype is to provide would-be users with an online

web application to access FPGA-based evaluation boards remotely:

• To learn basic fundamentals about FPGA design and programming

• To test their own FPGA designs

• To try different types or brands of FPGA development kits

Users could explore various designs, types, or brands of FPGAs without the

need of purchasing any particular FPGA evaluation board, nor worrying about the

upfront relative high cost of such a purchase.

Example of applications:

• Students wanting to learn/apply FPGA-design basics, but are on a limited

budget and can't afford the relative high cost of FPGA evaluation board kits

• Users may want to test or try different FPGA evaluation kits before deciding

on a specific brand or model to commit to

• Academic institutions: no need for large lab space. Just a small room with

servers and a selection of FPGA boards. Students can access these boards

remotely through a web application from the classroom or anywhere else

• Third party vendors could offer such a platform on a try-before-you-buy model

• Application engineers or technical sales engineers could demo the system’s

functionality to a customer without having to carry around the complete

system as well as heavy and bulky test equipment

• Open source users or independent developers who are not willing to

purchase a specific FPGA evaluation kit, but rather rent-per-use

• Developers who need to test their code on multiple embedded systems; after

each software build, would not need to have such systems setup locally

3

1.3. Academic Objectives

Through this project the student (under the supervision of the industry

supervisor) was required to learn, design, develop, test and debug all aspects of the

project, which covered the following elements:

• Learn the fundamentals of FPGA design

• Create several basic FPGA designs

• Learn current web development and design methodologies, languages, tools,

and the use of online hosting services

• Learn and use version control software tools

4

Chapter 2. Project Overview

2.1. Organization

The overall project tasks were divided into two major components:

• FPGA development: All aspects related to the FPGA hardware and software;

including FPGA design tools and programming bitstream files, as well as

Server and OS configurations

• Web application: All aspects related to the web development, design and

interface; both front end and back end

2.2. FPGA Development

The first step of the project was to pick an FPGA evaluation platform; for the

purpose of building the proof of concept around it. The ZedBoard Development Board

(by Digilent) using the Zynq-7000 ARM/FPGA SoC (by Xilinx) was chosen (More details

in section 4.1).

The ZedBoard along with the Xilinx Vivado software suite were used to develop

from scratch several basic FPGA-based designs to allow the integration of the hardware

component (FPGA setup) with the software component of the project (web application).

Several basic FPGA designs were created such as:

• Blinking LEDs

• UART user input mapped to LEDs

• Peripherals Tests

• Memory Tests

• DRAM Tests

These demo-designs help in three ways:

5

• Provide the web developer with some simple FPGA designs to develop and

test the web application component of the project

• Provide the end user whom would be accessing a given FPGA setup online

remotely; some sample FPGA files to get familiar with how the web

application works

• Use of such sample FPGA design file during the demo of this project

2.3. Web Application

The second main component of the project is the web application. This is the

larger portion of the project as it sets up the required platform for providing web access

to a given FPGA evaluation board kit.

The web application component covers all that is web related, from web design

to web development, to web hosting, etc.…

The website (hosting and providing this service) offers the following

functionalities:

• User account creation and login

• User and administrative level access to user and website settings

• Menu selection: choosing the type of the desired FPGA board (to connect to)

• Booking/calendar application to reserve time slots for a given FPGA board

• Live web cam stream showing the FPGA board the user is connected to (to

monitor any visual outputs, if applicable)

• File manager: to upload and program the FPGA; with user-created files (or to

load sample demo files available on the server)

• Power cycle access to reboot the FPGA board remotely

• Terminal access to the server, for a more advanced level of control

6

• UART console to provide input/output access to the FPGA (if applicable)

7

Chapter 3. System Architecture

The architecture of this project-prototype could be split into three major

components:

1. The hardware server (I.E. the FPGA evaluation board server). This includes

the FPGA evaluation board in question

2. The Cloud, which hosts the web application and manages all access and

interaction between the hardware server and the end user. As well as user-

access management

3. The end user, whom uses the web application through the Cloud to access

an FPGA evaluation board remotely

Figure 1 Top Level Architecture

8

3.1. The Hardware Server

The hardware server consists of two main sub-components:

1. A server. Or any PC-based machine

2. An FPGA evaluation board

Other dependent components:

• All required OS, software and configurations to ensure the server’s network

accessibility and functionality

• All required software tools, drivers and cables to connect the FPGA

evaluation board to the server

3.2. The Web Application

This is the main component of the project. The web application is the center point

where it would allow online users to interact with various FPGA evaluation boards

remotely, without the need for a direct physical access to said FPGA boards. The web

application accomplishes the following:

• Front end access point to the FPGA evaluation boards:

o Access management to sample demo FPGA design files

o Demo files synchronization with soft updates (users have the option to

update or not)

o Users’ ability to upload their own FPGA bitstream files

o Remote FPGA programming utility

o Remote power-cycle of the FPGA board

• FPGA boards schedule, availability and booking management

• User account profile creation as well as email and password management

9

• Webcam access to remote FPGA evaluation boards

• File management system for users’ online directories and hosting space

directories

• CLI access to remote servers; for advances users

• Servers and FPGA boards inventory, usage availability and online/offline

status management database

• Hosting and website administrative management

3.3. The End User

The simplicity of the web application is that all that the end user needs is a web

browser with web access. The web application is available online through a website. The

end users do not need to install any software tools, or plugins to use the web application.

It’s as simple as accessing a web page, creating an account (for first time users),

selecting an FPGA board type, and the end user can start programming their bitstream

files immediately into a remote FPGA board. All this, while visually seeing the FPGA

board they are working with through a live webcam stream.

The end user is presented with a web page that follows the accustomed visual

format and functionality of common websites. The web page includes a registration and

a login function, an FPGA board type selection, as well as a file manager that handles

selecting sample FPGA bitsream files, or user-defined FPGA design files that could be

uploaded.

10

Chapter 4. System Design Choices

4.1. FPGA Evaluation Board Selection - ZedBoard

The objective of the project is to allow remote access through the cloud to a

variety of FPGA development kits or evaluation boards. However, to provide a proof of

concept of the project-prototype only one or two FPGA boards would be required.

After examining several FPGA boards and having budgetary constraints, we

have selected the ZedBoard Development Board (by Digilent) using the Zynq-7000

ARM/FPGA SoC (by Xilinx). The ZedBoard is able to accommodate a wide range of

applications, with features such as:

• Xilinx Zynq-7000 AP SoC XC7Z020-CLG484

• Dual-core ARM Cortex™-A9

• 512 MB DDR3

• 256 MB Quad-SPI Flash

• 4 GB SD card

• Onboard USB-JTAG Programming

• 10/100/1000 Ethernet

• USB OTG 2.0 and USB-UART

• Analog Devices ADAU1761 SigmaDSP® Stereo, Low Power, 96 kHz, 24-Bit

Audio Codec

• Analog Devices ADV7511 High Performance 225 MHz HDMI Transmitter

(1080p HDMI, 8-bit VGA, 128x32 OLED)

• PS & PL I/O expansion (FMC, Pmod, XADC)

11

Furthermore, the ZedBoard online community is a very large and active one. This

was a crucial resource that was freely available to the project developer; to learn basic

FPGA design fundamentals from scratch, as well as to learn how to use the Xilinx design

suite tools Vivado and SDK.

Figure 2 The ZedBoard Featuring the Xilinx Zynq-7000

4.2. Hardware Server OS - Ubuntu

The hardware server OS; which the FPGA boards would be connected to;

needed to satisfy a few conditions:

• Be supported by FPGA board vendors. That is the OS is supported by the

IDEs, design tools, drivers, etc…

• Be compatible with online hosting services

12

• Be supported by virtual machine software tools (See section 4.2.1)

• Be easily available and widely supported

The final choice was made to use Ubuntu 14.04.2 LTS as the hardware servers’

OS.

4.2.1. Virtual Machine Software – VMware

For development purposes and to keep costs down, a decision was made to not

purchase a server, or a PC-based machine, but rather to use a virtual machine setup

that would run Ubuntu 14.04.2 LTS. A virtual machine setup would provide the benefit of

portability and a very flexible bring up. The choice was made to use VMware

Workstation Player2 virtual machine solutions. Alternatively, one could also use Orcale’s

VM VirtualBox.

4.3. Web Cam

When a user has established a connection with a remote server; to interact with

an FPGA evaluation board, the web application would launch a live streaming feed that

would show the user the FPGA board they are interacting with. For example, if the user

uploads and programs the FPGA with a bitstream file that say makes the LEDs on the

FPGA board blink in a particular pattern, the user would then be able to see the LEDs

blink live on the web cam live feed.

To serve this purpose, simple off the shelf web cams are used and connected to

each hardware server with an FPGA board. The web cam software would be running on

the remote hardware server (locally in the hardware server). Linux’s Motion is an open

source software that would be used to manage the web cam feed.

2 VMware Workstation Player is available for free only for non-commercial, non-production
environments.

13

4.4. Web Scripting Language Selection - PHP

To manage remote access to an FPGA evaluation board, a web application

needed to be developed from the ground up to provide such a service. Having very

minimal knowledge in current web development design tools and scripting languages;

picking a scripting language for the development of the web application was no easy

task. Current popular web scripting languages and programming languages were looked

at, such as: PHP, Ruby, JavaScript and Python. Online resources and having active

online communities would be an important element for self-learning a new scripting

language.

After looking at the most fundamental back-end functionalities of our web

application; PHP seemed to offer a more suitable range of libraries that would make our

back-end development smoother. And while it wasn’t obvious at the time, PHP would

ultimately be a good choice for the front-end as well.

Initially, the overall scope of the web application was heavily underestimated!

With no understanding of current web applications’ complexities, the path taken into

developing the web application for this project would have been a more suitable

approach during the late 90s, with plain and static websites! Initial scripting was done in

PHP, using a direct approach. That is; if a given functionality was needed, the coding

was done from scratch to achieve that specific purpose. However, as the web

application grew, and the development started to shift to the front-end, it became clear

that such an outdated methodology would not be enough. The complexity rose, but the

web application development method could not keep up! Scalability and expandability

needed to be taken into consideration.

4.4.1. Frameworks - Laravel

Frameworks vary based on what one is trying to achieve. Having already

invested time in PHP, naturally, PHP-based frameworks were looked at first. There are

PHP frameworks which can handle things like database abstraction, passwords’

authentication, sending email, and interacting with the web server. Such frameworks

would be very suitable to our project-prototype. The selection was made to use Laravel;

a PHP-based framework.

14

Frameworks are like libraries that try to add another layer that sits on top of a

given programming language to provide efficiency, reusability and most importantly a

level of standardisation to the code. At first, frameworks may seem pointless as it is

much easier to just build something from scratch using the base language. But it would

soon become apparent in a large application or multi-team environments that it is very

important that some level of code standardisation is adhered to. Without a framework,

larger projects will often bloat and head down paths of no return where scalability and

flexibility can no longer be achieved. The code would become difficult to comprehend

and would have numerous dependencies where modifying something could do who

knows what! Frameworks try to abstract a lot of low level logic and methodologies, and

provide a modular way of programming, keeping things nice and separated, allowing the

developer to focus on the intended objective of the application rather than the low level

technical details.

At first, the concept was difficult to grasp. Using Laravel seemed to be an overkill

with our early back-end web application functionalities. However, as the project

progressed towards the front-end aspect of the web application; such as: Menus, UI,

user profile creation, password encryption, storage and authentication, DB management,

the overhead that comes with the framework was put to good use.

4.4.2. IDE Tools - Homestead

One great advantage of using Laravel is that it comes with its own IDE.

Homestead is the official, pre-packaged Vagrant "box" that provides the developers with

a development environment without requiring one to install PHP, a virtual machine, a

web server, or any other server software on one’s local machine. Homestead is an all-in-

one Laravel PHP IDE. This allows for development and testing of the web application on

a local machine then do the testing in a local virtual machine setup, before pushing the

code changes to the hosting website.

4.5. Web Hosting Services - AWS

While the web application is developed and tested in a local virtual machine

setup, the application must be mirrored to an online hosting service to be accessible

from the World Wide Web. Several online hosting services were looked at with the

15

following two elements in mind: a cost-effective solution and a hosting server that was

Linux-based to be able to run our web application. Amazon Web Services were selected

with their EC2 solution. It offered a 12 month free tier solution and a pay-as-you-go

afterwards.

AWS’ solution offers 750 hours of Amazon EC2 Linux or RHEL or SLES t2.micro

instance usage (1 GiB of memory and 32-bit and 64-bit platform support) [5].

Another web hosting application which was considered is Heroku. However, after

initial research, it was discovered that Heroku didn’t support some libraries required for

our web application. Also, with Heroku it would not possible to SSH into the hosting

server to debug issues or do custom installations and configurations.

4.6. Software Version Control System and Online
Repository – BitBucket

As with any software based project, there would be a need to keep track of code

changes, to have the ability to roll back, and to easily deploy the source code amongst

multiple users and/or platforms. Again, keeping costs down, several free version

software tracking tools were looked at. Privacy was another element. The project source

code was to not be made publicly available during the development stage.

The choice was made to use BitBucket by Atlassian, which uses GIT as the

version control system.

4.7. Web Based Terminal Emulator – Shell in a Box

One part of the web application is to provide a CLI utility which would provide

direct yet limited access to the remote server of which the user is connected to; for their

FPGA board interaction. While the web application does provide the UI required to

program the FPGA with a set of bitstream files, terminal access to the hardware server

in question could be of great benefit to advanced users, who have the know-how to

make configuration changes on the fly while they are testing their own FPGA design

files.

16

To allow such terminal access through the web, several web based terminal

emulators where looked at. The selection came down to two options: Shell in a Box and

AjaxTerm. The most sought out feature was that the terminal emulator would not require

the end user to install any plugins to be used.

Both AjaxTerm and Shell in a Box allow access to a remote server using an

emulated terminal in a JavaScript-enabled web browser. Shell in a Box is written in C;

AjaxTerm is written in Python. AjaxTerm works slightly differently from Shell in a Box.

While Shell in a Box runs a full terminal emulator written in JavaScript on the browser,

AjaxTerm does terminal emulation on the server side and send lower-level screen

updates to the browser.

Both tools were tested. Ultimately, Shell in a Box was selected. During testing,

Shell in a Box provided a much smoother terminal interaction with minimal lag. Another

advantage to having chosen Shell in a Box is that it has some unofficial forks over at

GitHub which have come handy to fix some bugs specific to the web application.

17

Chapter 5. System Implementation: FPGA Board
Component

5.1. ZedBoard Setup and Configuration

The ZedBoard purchased came with all the necessary software tools and

licenses needed. Installation of such tools is simple and straightforward. Consult

Appendix I; for more details about Xilinx’s Vivado Design Suite software installation.

The first step into setting up the ZedBoard was to follow the ZedBoard Getting

Started Guide [6]. This would ensure that a given PC or server meets the minimum

requirements to communicate with a ZedBoard, and that all drivers are functional at a

minimal level.

The next step was to go through the ZedBoard Hardware User’s Guide and the

Configuration and Booting Guide [7] - [8]. These two guides help the user get familiar

with the various components and peripherals available, along with various booting and

configuration options on the ZedBoard, which would depend on the application at hand.

For our application use case; either option shown in Table 1 would work.

Table 1 ZedBoard Boot Mode Jumper Settings

Jumper Option 1 Option 2
JP7 GND GND
JP8 GND GND
JP9 GND 3V3

JP10 GND 3V3
JP11 GND GND

The three guides mentioned above are the basic required reading before

venturing into the first FPGA design: LED Binary Counter.

18

Figure 3 ZedBoard Boot Mode Jumper Settings - Option 1

5.2. LED Binary Counter on the ZedBoard Using the Zynq-
7000 FPGA

A few basic Zynq-based FPGA designs were created to provide some sample

designs for development, as well as for demonstration purposes. That is, while

developing the web application to remotely access the FPGA board in question, there

was a need to have at least two FPGA sample designs available; to verify that

commands such as programming the bitstream files into the FPGA is indeed working

remotely through the web application. The first such of sample FPGA design files is a

simple LED binary counter.

Sections 5.2.1 through 5.2.4 describe the process of creating the hardware and

the software application to run a simple LED binary counter application on the FPGA

board.

5.2.1. Step 1: Creating a New Project in Vivado

1. Launch the Vivado IDE and select Create New Project

2. Enter a project name of your choice in the Project Name field and choose a

Project Location, and click Next

19

Figure 4 Project Name and Location in Vivado

3. Select RTL Project option in the Project Type form, and click Next

4. In the Add Sources window, select VHDL as the Target Language and

Simulator Language. Click Next

5. There won’t be a need to add files, IPs or constraints so click Next

6. In the Default Part windows, click the Boards icon and choose ZedBoard

Zynq Evaluation and Development Kit, and click Next then Finish

20

Figure 5 Board Selection in Vivado

5.2.2. Step 2: Creating a Block Design

To control the LEDs from the PS, one needs to create a block design and add a

Zynq SOC block to it, then add an AXI GPIO IP core which would be used by the Zynq

SOC to control the LEDs.

1. In the Flow Navigator expand the IP Integrator and click Create Block Design.

A Create Design window will pop up, keep the same name design_1 and click

OK

21

Figure 6 Create Block Design in Vivado

2. After the Diagram window opens, click on the Add IP icon from the left panel

of the Diagram page to add IP blocks. Alternatively, one could right-click on

any empty area in the Diagram section and choose Add IP

22

Figure 7 Add IP in Vivado

3. In the search bar type Zynq, and choose (double-click) ZYNQ7 Processor

System, this will add a Zynq Processing System IP(the ARM Cortex A9

processor)

23

Figure 8 Add Zynq7 Processing System IP in Vivado

4. Click on Run Block Automation. This would configure the Zynq IP according

to the default settings per the selected board (The ZedBoard). This is called

Design Assistance, and it appears whenever there is a possibility that Vivado

could automate some design steps. Keep the default settings and click OK

Figure 9 Run Block Automation in Vivado

24

5. Again click on the Add IP icon and this time; in the search bar type GPIO, and

choose the AXI GPIO. The AXI GPIO IP should appear in the Diagram

Figure 10 Added AXI GPIO IP in Vivado

6. Double click on the AXI GPIO IP, under Board Interface choose leds 8bits

and click OK

Figure 11 Connect the AXI GPIO IP to the Board LED 8 Bits in Vivado

25

7. Now the design assistance will again show the option to run Connection

Automation, Click on it and choose All Automation then click ok. Here, one is

accepting the suggestion of connecting the AXI GPIO IP to the Zynq. Vivado

will add 2 IPs, these IPs are the processor system reset and AXI interconnect

a. The processor system reset provides the reset signals to all

peripherals and interconnects in the PL side of the Zynq according to

reset signal given from the Zynq PS

b. The AXI interconnect is responsible for creating an interface between

the Zynq PS master interface GP port and the AXI GPIO IP

8. Click on the Regenerate Layout icon to rearrange the blocks. This is purely a

visual rearrangement to fit the window/screen

Figure 12 Regenerate Layout (I.E. Refresh) in Vivado

9. In the Design window, click on the Sources tab, right-click on the design_1

block design under Design Sources folder and choose create HDL wrapper,

this options creates a top level VHDL file for the block design which can be

used to generate the bitstream file

26

Figure 13 Create HDL Wrapper in Vivado

10. Keep the default setting Let Vivado manage wrapper and auto-update and

click OK

c. Note: Click on the Address Editor, one shall find the processing

system connected to the AXI GPIO IP, with an automatically given

offset address. This address will be used by the Zynq processor to

communicate with the AXI GPIO IP which is connected to the LEDs.

In our example the offset address is 0x41200000

11. In the Flow Navigator, under Program and Debug click on Generate

Bitstream. Alternatively, from the top menu Flow Generate Bitstream.

During this step the tool creates a bit file for programming the PL of the Zynq.

Accept to save the project

27

Figure 14 Generate Bitstream

12. Click Yes to No Implementation Results Available. This would synthesize the

design. Depending on the PC’s available resources and specs, the process

should take a few minutes, potentially longer on slower PCs

13. Bit Generation Complete message should pop up, close/cancel it then go to

File Export Export Hardware. Check the Include bitstream and click ok.

This exports the hardware files generated to the SDK

28

Figure 15 Export Hardware And Bitstream in Vivado

5.2.3. Step 3: Writing the Software Application

During this step one would export the hardware files to the SDK to create a C

project for controlling the LEDs from the Zynq PS.

1. In Vivado go to File Launch SDK, then click OK. The SDK will open and in

the Project Explorer window one could see the exported hardware files. In the

SDK go to Files New board support package then click finish. This

creates a board support package with all the necessary functions for driving

the hardware that was designed in Vivado; in the previous steps

29

Figure 16 Create a New Board Support Package in SDK

2. The Board Support Package Settings window would pop up, keep all default

settings and click Finish then OK

3. Create an application project by going to File New Application Project.

Enter a name in the project name field and under the Board Support Package

choose Use existing then click Next

30

Figure 17 Create an Application Project in SDK

4. Choose Hello World from the Available Templates then click Finish

Figure 18 Select Hello World Template in SDK

31

5. In the Project Explorer left panel, expand the src folder under the project_1

folder and double click on Helloworld.c. The source code will be visible in the

main window. Replace the code within it with the following code:

1. #include <stdio.h>
2. #include "platform.h"
3. #include "Xil_io.h"
4. // delay function
5. void delay()
6. {
7. int i;
8. for(i=0;i<20000000;i++);
9. }
10. int main()
11. {
12. init_platform();
13. unsigned char counter=0;
14. // infinite loop
15. while(1)
16. {
17. // write to address 0x41200000(offset address

of the AXI GPIO:8 LEDs) the value of counter
18. Xil_Out32(0x41200000,counter);
19. // increment counter
20. counter++;
21. //delay
22. delay();
23. }
24.
25. cleanup_platform();
26. return 0;
27. }

32

Figure 19 LED Binary Counter C code in SDK

5.2.4. Step 4: Programming the ZedBoard and Running the C
Application

1. In the SDK click on the program FPGA icon then click program; to program

the Zynq PL with the bitstream

Figure 20 Program FPGA in SDK

2. Right-click on the project_1 folder in the Project Explorer panel then go to

Run As 4 Launch on Hardware (GBD). The application should run on the

board and the LEDs should show the binary values of the counter

33

Figure 21 Running the C Application on the Hardware in SDK

5.3. Other FPGA Designs

Full instructions with complete diagrams for the LED Binary Counter as well as

the remaining FPGA designs that were developed and tested to be used as a demo for

the project-prototype could be found in Appendices D through H.

34

Chapter 6. System Implementation: Web
Application

6.1. Tree View of the Web Application

As mentioned previously, the web application manages the front end (end user

interface and interaction) as well as the back end (Interaction with the remote hardware

server and the FPGA board in question).

The folder structure view shown in Figure 22 provides the main overview of the

web application source code structure:

• ../app: The web application top level core code definition. This is similar to

class definitions

• ../config: All the web application’s configuration settings are stored in this

folder. Example: remote connection database settings

• ../public: Contains the index.php (I.E. the homepage, or pointer to the

homepage) which is the entry point for all requests entering the web

application

• ../public/assets: JavaScript, CSS and images used throughout the web

application

• ../public/filemanager: Source code for the File Manager plugin as well as

storage location for user uploaded content

• ../serversD: Contains daemon source code for the hardware servers’ online

availability status check utility

• ../storage: Contains event logs, cache, sessions, etc…

• ../composer.json: Dependency file manager. Composer will manage the

dependencies required on a project by project basis. This means that

Composer will pull in all the required libraries, dependencies and manage

them all in one place

35

Figure 22 The Web Application’s Structure Main Overview

36

6.2. Model-View-Controller Code Structure

Model View Controller is a software architecture that separates the application

logic from the rest of the user interface. This is achieved by separating the application

into three parts: the model, the view, and the controller.

The model manages essential behaviors and data of the application. It can

respond to requests for information, respond to instructions to change the state of its

information, or notify observers in event-driven systems when information changes. This

could be a database. It is the data and data-management aspect of the application.

The controller receives user input and makes calls to model objects and the view

to perform appropriate actions.

The view is the user interface element of the application. It'll render data from the

model into a form that is suitable for the user interface.

All in all, these three components work together to create the three basic

components of MVC.

6.2.1. The Models

Figure 23 shows the models used in our web application:

• ../app/Http/Models/Auth_model.php: DB model for user authentication

• ../app/Http/Models/Homes.php: DB model for server and web application

settings

• ../app/Http/Models/Users.php: DB model for user settings

• ../app/Http/Reservation.php: DB model for FPGA board online booking

• ../app/Http/Server.php: DB model for amount of servers available and their

online/offline status. Our project-porotype has only 1-2 virtual servers.

However, the web application supports as many servers as could be needed

37

• ../app/Http/Tab.php: DB model for tabs open in the web based emulated

terminal (CLI access to the remote server through Shell in a Box)

• ../app/Http/User.php: Additional DB model for user passwords

Figure 23 Models, Controllers, and Helpers Source Code Tree

6.2.2. The Controllers

In our web application Laravel’s controllers are used to perform all page-based

actions or user-based actions. Page-based actions are actions such as loading a frame

38

or refreshing text displayed on the web page. User-based actions are actions such user-

login, user-registration, reset password request, etc.…

The folder structure in Figure 23 shows the two main controllers used in the web

application:

• . ../app/Http/Controllers/HomeController.php: This is the controller for all the

web application’s actions. It contains all the code specific to the web

application’s actions

• ../app/Http/Controllers/UserController.php: This is the controller for all the

user’s actions. It contains all the code related to the user’s actions

6.2.3. The View

The third component of the MVC structure is the view. In essence, this is what

the user sees on any given website. It’s the user interface; the web page.

Figure 24 shows the various UI (I.E. web pages) that the end user could interact

with on the web application.

• ../app/resources/views/admin/admin_blade.php: Administrative settings page.

Accessible only by users given administrative privileges

• ../app/resources/views/admin/rserver.blade.php: The remote hardware server

page. This is the workshop web page! That is, the interactive web page that

allows the connected user to interact with a remote FPGA evaluation board

• ../app/resources/views/admin/admin_menu.blade.php: Web site navigation

menu for administrative users

• ../app/resources/views/admin/guest_menu.blade.php: Web site navigation

menu for standard users

• ../app/resources/views/admin/footer.blade.php: Footer content of any given

web page

39

• ../app/resources/views/admin/header.blade.php: Header content of any given

web page

• ../app/resources/views/admin/changePassword.blade.php: Change user’s

password form web page

• ../app/resources/views/admin/login.blade.php: User login web page

• ../app/resources/views/admin/profile.blade.php: User profile (I.E. Dashboard)

web page

• ../app/resources/views/admin/register.blade.php: User registration web page

• ../app/resources/views/admin/home.blade.php: The main landing web page

(I.E. the homepage of the web site)

40

Figure 24 The View Source Code Tree

6.3. Services

The advantages of using a framework such as Laravel is that it come pre-

packaged with commonly used services such as authentication, file management, mail

management, etc… One such type of services is Helpers.

41

Helpers are commonly used “tools” in programming such as path functions (set

path, find path, etc…) or string manipulation (change string to lower case, upper case,

camel case, etc…) or array functions (array set, sort, delete, etc…).

Laravel includes a variety of "helper" PHP functions. Many of these functions are

used by the framework itself; however, the developer is free to use them, or create

custom helper functions.

Figure 23 shows the helpers folder within the source code tree.

42

Chapter 7. Website Layout

For the purpose of this project-prototype; the web application is hosted on

Amazon Web Services. The following section showcases various screenshots of the

web application website as seen by the end user. As well as highlighting the various

features of the web application

7.1. Landing Page

The landing page is the main page of the web application. It contains an side-

scrolling image slider, a top menu to navigate to various sections of the website, the

server selection menu, the scheduling tool as well as the typical, contact us, and about

us sections.

7.1.1. Top Menu and Image Slider

Figure 25 shows the top section of the landing view, which includes the image

slider and the top menu; as seen by non-logged-in users.

Figure 25 Landing Page with Image Slider and Top Menu

Figure 26 shows the top menu as seen by logged users. Note that the ADMIN

option is only visible to users with administrative privileges.

43

Figure 26 Top Menu as Seen by Logged-In Users

7.1.2. Server and FPGA Boards Selection Menu

Figure 27 shows the server and FPGA board type selection menu. The user can

navigate through the board tabs by clicking the desired board. Each board type (selected

tab) would show a list of servers (buttons). A red button means that the server in

question is offline. A yellow button means that the server is online, but is currently being

used any another user. A green button means that the server is online and is available

for use.

Figure 27 Server and FPGA Board Selection Menu

The webmaster (a user with administrative privileges) could add, remove, or

make a given server accessible in the settings page shown in Figure 28.

44

Figure 28 Server and FPGA Board - Administrative Settings

7.1.3. Server and FPGA Scheduling Tool

Users could make their selection of an FPGA board type and a server. The

scheduling tool would then display a two-week window of 24 hour time slots. The user

then could see if a given board or server is free or already reserved by another user. The

user could make their selection to reserve some hours, and click on a reserve button to

finalize the reservation. The user could also see their own time slots that were booked in

a prior session. The scheduling tool contains a rolling 14-day window, with 24 hour slots

per day.

45

Figure 29 Server and FPGA Board Scheduling Tool

7.2. Remote Server Page

Once the user is granted access to an online and available remote server, the

user is redirected to the remote server page. In this page, users are remotely connected

to a hardware server, where the FPGA board is connected. Through the server page,

users interact with the FPGA platform: Load FPGA demo files, upload user-created

FPGA design files, program FPGA design files into the FPGA in question, enable/disable

the webcam stream, and the ability to power-cycle (hard reset) the FPGA board. Users

also have access to a web-based terminal emulator. This gives them full access to their

directory space within the remote hardware server.

46

Figure 30 Remote Server Page: Conneciton to Remote FPGA Hardware Server

7.2.1. File Manager and Program Tool

In the remote server page, users have access to the File Manager tool (shown in

Figure 31). The tool allows the users to:

• Browse existing demo FPGA files (bitstream and elf files)

• Upload user-created FPGA files (bitstream and elf files)

• Create, remove folders and files

• Program the FPGA with selected FPGA files (bitstream and elf files)

47

Figure 31 File Manager and Program Tool

Once the user select the desired FPGA files to be programmed (Figure 31), the

Program tool would run a shell script on the remote hardware server; of which the FPGA

board is connected to. The shell executes the programming on the remote server (using

pre-install FPGA programming tools). The messages displayed during the programing

process are streamed back on the web application; to allow users to follow the

programming progress (Figure 32).

48

Figure 32 Program Tool: Programming Progress

49

Chapter 8. Conclusion

Despite the rise of FPGA applications in recent years, access to FPGA

evaluation boards is mainly still limited to professional environments and engineering

classes within academic institutions. Such limited access is attributed mostly to cost and

to the large variety of FPGA selection that could overwhelm would be users. The

project’s purpose was to develop a working proof of concept; of an engineering web

application that would put more FPGA evaluation boards in the virtual hands of users.

The idea in principle is to allow users, through a web application, to connect

remotely to FPGA evaluation boards, where they could upload their own bitstream files

to test their own FPGA design files; on a user-selected matching FPGA evaluation

board. The web application would offer a live web cam stream showing the FPGA board

that the user is interacting with remotely, a file manager utility that allows the user to

upload and store their own FPGA design files, a program-the-FPGA web tool, a web-

based terminal for advanced users, as well as a power-cycle tool to perform hard resets

on the FPGA.

The project’s two core objectives were:

• Learn some basic and practical FPGA design methodologies to create

basic FPGA applications to use as samples to demonstrate the project-

prototype in a real world scenario

• Develop a web application using current web development and design

methodologies

8.1. FPGA Applications Development: What Was Learned

To create some basic demo sample files, basic FPGA design methodologies had

to be learned first. This was achieved by following several online tutorials and guides

provided by Xilinx:

• Usage and setup of the hardware FPGA evaluation board kit (ZedBoard with

Zynq-7000)

50

• Usage of Xilinx FPGA software design suite: Vivado. From basic FPGA

designs (using PL and PS) to synthesis, and generating bitstreams

• The use of Xilinx’s SDK to create application software that would run on a

given FPGA hardware design (bitstreams)

• Interfaced various input, output and other peripherals with the FPGA (OLED,

LED, UART, RAM, etc.)

8.2. Web Application: What Was Learned

In order to complete the web application a significant effort was made to learn a

wide range of web development tools, as this is the largest component of the project:

• Web development with PHP

• Used frameworks such as Laravel; for web development

• Used Amazon Web Services (AWS) and used one of their products (EC2) to

host the web application

• Used online repositories (BitBucket) and version software tracking tools (GIT)

• Created various web applications that serve several key functions such as:

FPGA board time reservation, user account creation, email confirmation, user

access management, remote server access and management, and servers’

online/offline status checks

• Used MySQL to manages databases that store user and server info

8.3. Known Bugs

Despite extensive testing and validation of the web application, no software is

ever 100% bug-free! There is one known bug within the web application. The bug is

related to the web application’s reservation/scheduling tool.

51

The scheduling tool allows the user to reserve some time slots for future use. For

example, the user may reserve FPGA board A on server B from 11 AM to 3PM on a

specified date within a two-week window.

The bug is such that if the user attempts to make a reservation that would take

place between 4PM and 12AM on the same day, while the local time of the user is

making this reservation is between 4PM and 12AM; the scheduling app will mark the

reservation date as day +1. This is assumed to be a case of Pacific Standard Time being

8 hours behind GMT. However, all web hosting servers, software and variables used

have been verified to be all in sync. After several unsuccessful attempts to resolve this

bug, it was decided to suspend all subsequent efforts to find a resolution as future work.

8.4. Future Work

While the completed project-prototype did serve its purpose to showcase the web

application in a real world usage scenario, some work could be done to enhance the

web application.

• In the current website layout of the web application, when the user launches

the file manager tool (to program the FPGA or to upload user-created

content), the file manager pop-up would obstruct the view of the webcam

stream. Both the webcam view frame and the file manager pop-up are static

and cannot be moved or resized by the end user. The web application layout

should be updated to re-arrange the layout to not have the file manager

obstruct the webcam stream view. Effort estimate to add such a feature is

small

• When a user uses the reserve/scheduling tool within the web application to

book an FPGA board for future use; the user would get a confirmation email

of all future bookings made by the user. The reserved time slots are also

visible in the user’s online dashboard; within the web application. An

enhancement would be to add a calendar event, of reserved time slots

emailed to the user. Thus the user would have a calendar event reminder on

their PC, laptop, tablet, or smartphone. Effort estimate to add such a feature

is small

52

• Address the time zone scheduling bug highlighted in section 7.3

• Currently the UART output (if applicable) from the FPGA becomes visible

only when the end user activates the UART tab within the web application.

Thus, the user would not be able to view past UART events, like boot-up

details (if applicable) and such. An enhancement to the web application could

be inspired by Apple’s MacOS X Console tool. That is the UART output of the

FPGA could be buffered into a file, at all times. Thus when the user activates

the UART tab within the web application, the user would see the current

UART output, and would have the ability to scroll up within the window to

view past events, piped from the UART buffered file. Effort estimate to add

such a feature is small to medium

• To develop and test this project-prototype, the choice was made to use the

ZedBoard with Xilinx’s Zynq-7000 FPGA. While the web application is FPGA

and board independent, the web application’s program-the-FPGA function

uses a shell script on the remote hardware server that is currently specific

only to Xilinx’s Vivado suite. That is, any other Xilinx FPGA type supported by

Vivado would work in this web application without the need for any

modification to the hardware server nor to the web application. However, if

the user chooses to use an FPGA from another vendor, then the appropriate

software and license must be installed on the hardware server, as well as

creating a specific shell script to program the FPGA. In such a case, the web

application would remotely execute the appropriate program-the-FPGA shell

script; matching the FPGA type. Effort estimate to add such a feature is small

to medium

• Currently, the remote servers are setup to support only one FPGA board

connection at any given time. This is inefficient. A single server, in theory

could have multiple FPGA boards connected to it. However, some software

would need to be developed to allow the web application to distinguish and

route the correct web traffic to the intended FPGA board target, within the

same hardware server. Alternatively, one could run several virtual machines

per server, where each virtual machine would be linked to one FPGA board

53

only. Thus, a single physical server would appear as several logical units.

Effort estimate to add such a feature is medium

• The current web application was mainly developed and tested using popular

web browsers Firefox and Chrome. Some additional work would be needed

to support Microsoft’s Internet Explorer. Effort estimate to add such a feature

is medium to large

• In the appendices, a series of guides are provided showing how to configure

the FPGA hardware servers, along with the basic required software

installations. Such server configuration is necessary to allow for a successful

interaction between the hardware server and the web application. Ideally, this

process should be automated by the creation of an install package. Effort

estimate to add such a feature is small to medium

• The current project-prototype uses Linux as the OS for the hardware server

(server connected to the FPGA board). If the user choses to use a Windows-

based server, some elements of the web application as well as the hardware

server implementation would need to be revisited. Effort estimate to add such

a feature is large

• Some FPGA evaluation boards have an on-board audio line out, as well as a

video output; for advanced FPGA applications. It would be greatly beneficial

to have such AV outputs connected to the hardware server, and streamed

onto the web application; in a manner similar to the current webcam stream

view of the FPGA board. Effort estimate to stream the audio line out is

medium. However, the effort to stream the video out is large. And, it would

require the addition of a video capture card to the hardware server

• Currently the web application has two levels of user privileges: Administrative

users (example: the webmaster or IT) and regular users (the targeted end

user on the web). Users with administrative privileges would be able to add,

remove, and update the number of boards or servers that could be made

accessible to the web application. They could also manage the scheduling

tool such as limiting the number of hours a given user can reserve a given

FPGA board, per day, or week. As well as online/offline server status checks

54

timeout limits, etc.... A third user privilege category being proposed is on a

group level. That is, if the application is being used by company A, then they

would have their own internal administrative users that would have a group-

level privilege. This group level would sit a step below admin-level users.

Effort estimate to add such a feature is small

• The web application has several tools to allow the user to interact and

program an FPGA board remotely. While all the tools are accessible to all

users, some tools are more tailored for extended debugging and testing, such

as the web terminal emulator that offers CLI access to the remote hardware

server. Another testing tool that could be added is to allow the user to interact

with their software application that would be running on the FPGA, from the

terminal. That is in addition of the current demo files that are included in the

web application, another demo that could be added to allow the user to enter

a command from a CLI (similar to the application shown in Appendix M) to

interact with the IOs on the FPGA board such as the LEDs. Or even run a

bunch of wrapper scripts that would display messages on the OLED. Effort

estimate to add such a feature is small to medium

55

References

[1] Grand View Research, "Global FPGA Market Size To Reach USD 14.2 Billion By

2024," Grand View Research, December 2016. [Online]. Available:

http://www.grandviewresearch.com/press-release/global-fpga-market. [Accessed

13 February 2017].

[2] Global Market Insights, "FPGA Market Size By Application," Global Market Insights,

February 2016. [Online]. Available: https://www.gminsights.com/industry-

analysis/field-programmable-gate-array-fpga-market-size. [Accessed 13 February

2017].

[3] B. Darrow, "The First Chip From Intel’s Altera Buy Will Be out in 2016," 18

November 2015. [Online]. Available: http://fortune.com/2015/11/18/intel-xeon-fpga-

chips/. [Accessed 11 March 2017].

[4] R. Miller, "Intel Unveils FPGA to Accelerate Neural Networks," 15 November 2016.

[Online]. Available: http://datacenterfrontier.com/intel-unveils-fpga-to-accelerate-ai-

neural-networks/. [Accessed 11 March 2017].

[5] Amazon Web Services, "Amazon Elastic Compute Cloud," Amazon Web Services,

[Online]. Available: https://aws.amazon.com/ec2/. [Accessed 13 February 2017].

[6] Avnet Electronics Marketing, "ZedBoard Getting Started Guide," 30 January 2014.

[Online]. Available: http://zedboard.org/sites/default/files/documentations/GS-AES-

Z7EV-7Z020-G-V7.pdf. [Accessed 28 September 2014].

[7] Avnet Electronics Marketing, "ZedBoard Hardware User’s Guide," 27 January

2014. [Online]. Available:

http://zedboard.org/sites/default/files/documentations/ZedBoard_HW_UG_v2_2.pdf

. [Accessed 16 February 2017].

[8] Avnet Electronics Marketing, "Configuration and Booting Guide," 17 August 2012.

[Online]. Available:

56

https://forums.xilinx.com/xlnx/attachments/xlnx/ELINUX/8461/1/ZedBoard_boot_gui

de_IDS14_1_v1_1.pdf. [Accessed 9 November 2014].

[9] B. Darrow, "Official At Last: Intel Completes $16.7 Billion Buy of Altera," 28

December 2015. [Online]. Available: http://fortune.com/2015/12/28/intel-completes-

altera-acquisition/. [Accessed 11 March 2017].

57

Appendix A. VMware Workstation Player and Ubuntu
14.04.2 Virtual Machine Installation Guide

To set up an Ubuntu (Linux) virtual machine in a Windows OS, first, one needs to

download the Ubuntu ISO image and the VMware Workstation Player. The following

guide uses:

• Ubuntu 14.04.2 LTS

• VMware Workstation Player 12.1.1

Second, one would start by installing the VMware Player. Then, one would create

a new virtual machine using the VMware Player software. Installing VMware Workstation

Player is simple and straightforward. Run the installation executable and follow the

install prompts; typical of any Windows-based software install. Once complete, and if

prompted, reboot the PC.

To create an Ubuntu virtual machine with VMware Player in a Windows 7

environment, perform the following steps:

1. Launch VMware Workstation 12 Player

2. On the right side, click Create a New Virtual Machine

58

Figure A1 Create a New Vitrual Machine

3. Select Installer disc image file (ISO) and Browse to the location of the ubuntu-

14.04.2-desktop-amd64.iso, then click Next

59

Figure A2 Select the Ubuntu 14.04.2 LTS ISO Image

4. Create the user profile

60

Figure A3 Create a User Profile

5. Provide a name to the virtual machine, or accept the default. It’s

recommended that you give more details in the name rather than just a

generic name, create a name that would specify Ubuntu’s version, 32 or 64

bits, the date installed, etc… As one could create several virtual machines,

detailed names would allow for easier identification. Choose a different

location to store the virtual machine disk file(s), or accept the default location

61

Figure A4 Provide a Name and Location to the Virtual Machine

6. Specify the disk capacity to 40G, or more. Note that it’s not straightforward to

change the disk size of the virtual image at a later time. Furthermore, if one

sets up the disk image to be too large that goes unused, then again it is

wasted space and not straightforward to reduce it

7. Depending on the host OS, and whether the virtual machine image would be

copied to other locations, storing the virtual disk as a single file might be a

better or worse option than splitting the virtual disk into multiple files. If one

doesn’t know what to do, use the default setting

62

Figure A5 Specify Disk Capacity

8. One could customize the Hardware now or later. Hardware customizations

allows the user to allocate more or less resources to the virtual machine. One

could start with the default settings, and adjust as needed at a later time.

Click Finish

a. Recommendation for hardware customization to improve the

performance of the virtual machine if needed: Increase the memory

allocated, increase the number of processors allocated, and set the

network adapter to Bridged and check Replicate physical network

connection state

63

Figure A6 Memory Allocation

64

Figure A7 Processors Allocation

65

Figure A8 Network Adapter Configuration

9. The install process of Ubuntu should start at this point and would take around

10-15 minutes, depending on the PC resources available. Once the

installation is complete, the user could login immediately to the Ubuntu virtual

machine

66

Figure A9 Login Page of the Ubuntu 14.04.2 OS as a Virtual Machine

10. To run a given virtual machine at a later time, simply launch VMware

Workstation 12 Player, and select the virtual machine to be powered-on from

the left side, the click Play virtual machine

67

Figure A10 Play Virtual Machine from VMware Workstation 12 Player

This completes the VMware Workstation Player and Ubuntu Virtual Machine

installation.

68

Appendix B. Hardware Server Configuration Guide

The hardware server’s OS where the FPGA evaluation board is connected to, (in

this case the virtual machine running Ubuntu 14.04.2 LTS) needs to be configured to

allow for remote network access (by opening required ports for SSH, Shell in a Box and

the webcam stream), and to allow for full interaction with the web application such as

creating user-defined directories, creating user-defined files, and to program the FPGA

with bitstream files. Also, in order for the web application to communicate securely over

SSH with AWS’s hosting server, a copy of the public key is created on the hardware

server.

The configuration is done by running a shell script. This shell script must be run

on every newly configured server (Running Linux). Copy and paste the following shell

script into the server to be run on:

#! /bin/bash
exec 2>/var/log/init_errors.log || { echo 'LOG PERMISSIONS FAIL'
; exit 1; }

#create user
if ! id -u usercreator >/dev/null 2>&1; then
 useradd -d /home/usercreator -s /bin/bash -p $(echo
e485a60ce2a0457653daa7c84265c688 | openssl passwd -1 -stdin)
usercreator
fi

#create user home directory
if [! -d "/home/usercreator"]; then
 mkdir /home/usercreator
 chown usercreator:usercreator /home/usercreator
 chmod 755 /home/usercreator
fi

#set sudo permissions for exec useradd without password
echo 'usercreator ALL=NOPASSWD: ALL' >> /etc/sudoers

#create home directories for users what will be created
if [! -d "/home/userhomes"]; then
 mkdir /home/userhomes/
 chown usercreator:usercreator /home/userhomes
 chmod 755 /home/userhomes
fi

#create directory to store SSH keys
if [! -d "/home/usercreator/.ssh"]; then
 mkdir /home/usercreator/.ssh
 chown usercreator:usercreator /home/usercreator/.ssh

69

 chmod 700 /home/usercreator/.ssh
fi

#create file to store SSH public keys
touch /home/usercreator/.ssh/authorized_keys
chown usercreator:usercreator
/home/usercreator/.ssh/authorized_keys
chmod 700 /home/usercreator/.ssh/authorized_keys

#create config file for motion web cam software
if [! -d "/home/usercreator/.motion"]; then
 mkdir /home/usercreator/.motion
fi

> /home/usercreator/.motion/motion.conf
echo 'webcam_port 80' >> /home/usercreator/.motion/motion.conf
echo 'webcam_localhost off' >>
/home/usercreator/.motion/motion.conf
echo 'webcam_maxrate 100' >>
/home/usercreator/.motion/motion.conf
echo 'output_normal off' >> /home/usercreator/.motion/motion.conf
echo 'auto_brightness on' >>
/home/usercreator/.motion/motion.conf
echo 'height 480' >> /home/usercreator/.motion/motion.conf
echo 'width 640' >> /home/usercreator/.motion/motion.conf
echo 'webcam_quality 100' >>
/home/usercreator/.motion/motion.conf
echo 'switchfilter on' >> /home/usercreator/.motion/motion.conf

chown -R usercreator:usercreator /home/usercreator/.motion
chmod 755 -R /home/usercreator/.motion

#create script to start motion
> /home/usercreator/start_mot.sh
echo '#! /bin/bash' >> /home/usercreator/start_mot.sh
echo 'if ! id -u "$1" >/dev/null 2>&1; then' >>
/home/usercreator/start_mot.sh
echo 'sudo useradd -d /home/userhomes/$1 -s /bin/bash -p $(echo
$2 | openssl passwd -1 -stdin) $1' >>
/home/usercreator/start_mot.sh
echo 'fi' >> /home/usercreator/start_mot.sh
echo 'sudo usermod -a -G dialout $1' >>
/home/usercreator/start_mot.sh
echo 'if [! -d "/home/userhomes/$1"]; then' >>
/home/usercreator/start_mot.sh
echo 'sudo mkdir /home/userhomes/$1' >>
/home/usercreator/start_mot.sh
echo 'sudo cp /root/.bashrc /home/userhomes/$1' >>
/home/usercreator/start_mot.sh
echo 'sudo chown -R $1:$1 /home/userhomes/$1' >>
/home/usercreator/start_mot.sh
echo 'sudo chmod -R 755 /home/userhomes/$1' >>
/home/usercreator/start_mot.sh
echo 'fi' >> /home/usercreator/start_mot.sh
echo 'if ! pgrep "motion" > /dev/null; then' >>
/home/usercreator/start_mot.sh

70

echo 'sudo nohup motion > /dev/null 2> /dev/null < /dev/null &'
>> /home/usercreator/start_mot.sh
echo 'fi' >> /home/usercreator/start_mot.sh
echo 'exit' >> /home/usercreator/start_mot.sh

#create script to stop motion
> /home/usercreator/stop_mot.sh
echo '#! /bin/bash' >> /home/usercreator/stop_mot.sh
echo 'sudo pkill motion' >> /home/usercreator/stop_mot.sh

chmod +x /home/usercreator/start_mot.sh
chmod +x /home/usercreator/stop_mot.sh

#put public RSA key to file
echo 'ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQDXWjhpwdywnHiEyhmEfg+cE1cf5abfN8QX2
ghv5rSDtnoVFF2HAqhgl4WuleeOdGSu4bx9iFWgtQFEvz0bP41aWdi4rdEPPYfH8l
yuUe9f69pfMK9MtOf3FzYQy+icPVRnaNYe1qLtt2OK9obI+XCdQlJGdRopVhs6pYg
JjCjwd24WIHdPT9/h0ec4eDvRqlgk4bZBYOdVCkCul6d+dl73vySjw6z59xONWI6m
fA7kZMfAO1Oz8drLP6p3R6LMQjmTM2Aq13Jbp6FhdH59lecYC20iIPziDgLJi0zqz
YIKcwtcDfYiIuXdKHp5ax/t0Ecd8nz2n/XmPnvaR7HyjSdr webdev@ip-172-31-
45-129' >> /home/usercreator/.ssh/authorized_keys

#check log
if [-s /var/log/init_errors.log]; then
echo 'Error. see log at /var/log/init_errors.log'
fi

Save the file, and execute the shell script.

This completes the configuration required for the hardware server.

71

Appendix C. Open SSH Installation on the Hardware
Server

The web application needs remote access to the hardware servers to interact

with the FPGA evaluation boards remotely. SSH is used within the web application to

establish a secure remote connection. To install Open SSH on the hardware server do

the following:

1. Open a terminal

2. Run: apt-get install openssh-server

3. Open a text editor. Example: gedit /etc/ssh/sshd_config

4. Update the following variable

a. Port 50000

5. Run: service ssh restart

Note that sudo privileges may be needed to perform such an install.

72

Appendix D. Motion (Webcam Stream) Installation on
the Hardware Server

The web application makes use of a webcam connected to the hardware server,

which streams a top view of the FPGA evaluation board. This allows the end user to see

any visual changes; specific their FPGA application such as: blinking LEDs, or

messages shown on the OLED. The choice was made to use Motion, which is a Linux-

based webcam stream software. To install Motion on the hardware server do the

following:

1. Open a terminal

2. Run: apt-get install motion

Note that sudo privileges may be needed to perform such an install.

73

Appendix E. C-Kermit (Serial Terminal) Installation
on the Hardware Server

The web application allows the end user to access the UART port of the FPGA

through the serial ports of the hardware server. To allow for such an interaction on the

serial communication channel between the FPGA’s UART port and the hardware

server’s serial port, a software acting as a terminal point should be installed. The choice

was made to use C-Kermit; due to its advanced features. To install C-Kermit do the

following:

1. Open a terminal

2. sudo apt-get install ckermit

3. sudo apt-get remove modemmanager

4. sudo usermod -a -G dialout $USER

Note that sudo privileges may be needed to perform such an install. Please see

Appendix J for COM port settings.

74

Appendix F. Git Installation on the Hardware Server

Having the source code developed for this project available on an online

repository; it is necessary to install a version control software to be able to clone such

source code into the Hardware Server (running Ubuntu OS), or any other Linux-based

machine. The choice was made to use Git. To install Git do the following:

1. Open a terminal

2. Run: apt-get install git

Note that sudo privileges may be needed to perform such an install.

75

Appendix G. Shell in a Box Installation on the
Hardware Server

The web application uses Shell in a Box as the web-based terminal emulator

which provides the look and feel of a native shell. The terminal window is presented as a

frame within the web application’s web page. The terminal is available for advanced user

who want to do on the fly edits, or want to run additional FPGA programming

commands.

To install Shell in a Box on an Ubuntu machine, first the user needs to install the

dependencies, clone the source files from the git repository, install the package, and

finally edit a configuration file. Open a terminal in Ubuntu then run the following

commands:

1. apt-get install git libssl-dev libpam0g-dev zlib1g-dev dh-autoreconf

2. git clone https://github.com/shellinabox/shellinabox.git && cd shellinabox

3. dpkg-buildpackage –b

4. cd ../

5. dpkg -i shellinabox_{ver}_{arch}.deb

6. Open a text editor. Example: gedit /etc/default/shellinabox

7. Update the following variables:

a. SHELLINABOX_PORT=88

b. SHELLINABOX_ARGS="--no-beep --disable-ssl --messages-origin '*'"

8. service shellinabox restart

Note that sudo privileges may be needed to perform such an install.

76

Appendix H. Network Ports Configuration

In order for the web application to be able to interact with the hardware servers

remotely through the web; some network ports on the local network relative to the

hardware server must be enabled and forwarded properly. That is in a given LAN, where

hardware server A is connected to; the router/switch that is managing the LAN in

question must have port forwarding enabled and have the appropriate specific traffic

forwared to hardware server A. The web application uses four different ports. The

following ports must be enabled and forwarded to the local IP number matching the

hardware server in question:

1. SSH (secure remote shell connection): port 50000

2. Shell in a Box (web terminal emulator): port 88

3. Motion (webcam): port 80

4. Remote power cycle (Hard FPGA board reset): port 8080

77

Appendix I. Xilinx Vivado Design Suite Installation
Guide

This guide demonstrates the steps required to install the Xilinx Vivado Design

Suite on Windows 7 and Ubuntu 14.04.2. The install procedure is almost the same for

both Windows and Ubuntu operating systems. For Windows, the user needs only to run

the installer, and follow the prompts. However, for Ubuntu, there are a few extra steps

required. For this reason, the guide would describe the installation process for Vivado

under the Ubuntu OS.

1. In Ubuntu, open a terminal and find the directory that contains the

uncompressed Vivado installation package.

a. Example:

./home/username/Downloads/Xilinx_Vivado_SDK_2015.3_0929_1/

2. Change the installation package directory and its subdirectories’ permissions

to full allow full read/write access

a. Example (sudo may be required): chmod –R 777

../home/username/Downlaods/Xilinx_Vivado_SDK_2015.3_0929_1/

b. Verify that all files within the target directories have had their

permissions changed as intended

3. Navigate into the install package directory and run the installer using sudo.

This would run the installer and the GUI installation process would start

a. Example: sudo ./xsetup

78

FIgure I1 Xilinx’s Vivado Installer

4. Click Next. Select I Agree to all three TOS and click Next

79

FIgure I2 Accept License Agreememnts in Vivado Installer

5. Select the edition to be installed. This would be dependent on the acquired

license

80

FIgure I3 Vivado Editon Selection

6. Ensure that under Design Tools: Vivado Design Suite and Software

Development Kit are selected. This is a must! DocNav is basically the

software documentation/help, and it should be selected as well. Under

Devices, the user should make the selection dependent on the type of FPGA

they would be using. For this project, a Zynq-7000 FPGA was used. It doesn’t

hurt to select all. However, that would also depend on the acquired license

and on space available

a. Note that while installing Vivado under Linux, the cable drivers would

not be installed automatically as is the case with the Windows

installer. Xilinx’s user guide UG973 (found online) provides the steps

required, which are shown towards the end of this section

81

FIgure I4 Design Tools and Device Support Selection in Vivado Installer

7. Select Acquire or Manage a License Key to be guided through the license

management steps; after the installation is complete

8. Keep the default installation directory and click Next

82

FIgure I5 Installation Directory in Vivado Installer

FIgure I6 Create Installation Directory Prompt in Vivado Installer

9. Review the Installation Summary, then click Install

83

FIgure I7 Installation Summary Review in Vivado Installer

10. The installation should take anywhere between 15-20 minutes

84

FIgure I8 Vivado Installation Progress

FIgure I9 Vivado Installation Complete

11. Once the installation is complete, the UI would prompt the user for the licence

management. If the license is yet to be obtained, select Obtain License and

follow the GUI as well as the instructions that came with the license voucher.

If the license was already obtained from other sources, or the user is

performing a re-install then select Load License and browse to the license file

85

FIgure I10 Vivado License Manager – Obtain License

86

FIgure I11 Vivado License Manager – Load License

12. To install the Xilinx cable drivers on Linux (cable drivers are automatically

installed during the Vivado suite installation process under Windows),

assuming the user has installed Vivado version 2015.3 at the default

directory, open a terminal and execute the following commands:

a. cd

/opt/Xilinx/Vivado/2015.3/data/xicom/cable_drivers/lin64/install_script/i

nstall_drivers

b. sudo ./install_drivers

c. reboot

This completes the Vivado suite installation.

87

Appendix J. USB Serial (COM) Port Properties

To access the UART of a given FPGA evaluation board, first connect the USB

cable to the UART port on the FPGA board and the other end to a USB port on the

hardware server. Open a UART terminal window (such as Tera Term), and create a

serial port connection based on the port number attributed to the ZedBoard, with the

following settings: 115200, 8, none, 1, none.

Figure J1 Zynq-7000 FPGA UART Serial Port Setup

The settings shown above are also applicable for use with C-Kermit; (installation

details show in Appendix E)

88

Appendix K. Vivado Zynq-7000 FPGA Design Guide
A: LED Binary Counter

This is a full step-by-step guide that shows how to create an FPGA design of a

simple LED binary counter application using the ZedBoard which uses Xilinx’s Zynq-

7000 series FPGA. All the Vivado design guides shown in the appendices assume that

the user has gone through the basic guides for the ZedBoard mentioned in section 5.1.

1. Launch the Vivado IDE and select Create New Project

FIgure K1 Create a New Project in Vivado

2. Enter a project name of your choice in the Project Name field and choose a

Project Location, and click Next

89

FIgure K2 Specify the Project Name and Location in Vivado

3. Select RTL Project option in the Project Type form, and click Next

90

FIgure K3 Set RTL as the Project Type in Vivado

4. In the Add Sources window, select VHDL as the Target Language and

Simulator Language. Click Next

91

FIgure K4 Set the Target and Simulator Language to VHDL in Vivado

5. There won’t be a need to add files, IPs or constraints so click Next three

times

6. In the Default Part windows, click the Boards icon and choose ZedBoard

Zynq Evaluation and Development Kit, and click Next then Finish

92

FIgure K5 Select Boards: ZedBoard Zynq in Vivado

7. In the Flow Navigator expand the IP Integrator and click Create Block Design.

A Create Design window will pop up, keep the same name

FIgure K6 In the Flow Navigator: Create Block Design in Vivado

93

FIgure K7 Keep the Default Design Name in Vivado

8. After the Diagram window opens, click on the Add IP icon from the left panel

of the Diagram page to add IP blocks. Alternatively, one could right-click on

any empty area in the Diagram section and choose Add IP

FIgure K8 Add IP in Vivado

94

9. In the search bar type Zynq, and choose (double-click) ZYNQ7 Processor

System, this will add a Zynq Processing System IP(the ARM Cortex A9

processor)

FIgure K9 Select Zynq7 Processing System IP in Vivado

10. Click on Run Block Automation. This would configure the Zynq IP according

to the default settings per the selected board (The ZedBoard). This is called

Design Assistance, and it appears whenever there is a possibility that Vivado

could automate some design steps. Keep the default settings and click OK

95

FIgure K10 Run Block Automation in Vivado

11. Again click on the Add IP icon and this time; in the search bar type GPIO, and

choose the AXI GPIO. The AXI GPIO IP should appear in the Diagram

FIgure K11 Add AXI GPIO IP in Vivado

96

FIgure K12 Double-Click the AXI GPIO for Further Configuration in Vivado

12. Double click on the AXI GPIO IP, under Board Interface choose leds 8bits

and click OK

FIgure K13 Set the Board Interface for GPIO to LEDs 8Bits in Vivado

13. Now the design assistance will again show the option to run Connection

Automation, Click on it and choose All Automation then click ok. Here, one is

97

accepting the suggestion of connecting the AXI GPIO IP to the Zynq. Vivado

will add 2 IPs, these IPs are the processor system reset and AXI interconnect

a. The processor system reset provides the reset signals to all

peripherals and interconnects in the PL side of the Zynq according to

reset signal given from the Zynq PS

b. The AXI interconnect is responsible for creating an interface between

the Zynq PS master interface GP port and the AXI GPIO IP

FIgure K14 Run Connection Automation in Vivado

14. Click on the Regenerate Layout icon to rearrange the blocks. This is purely a

visual rearrangement to fit the window/screen

98

FIgure K15 Regenerate Layout in Vivado

15. In the Design window, click on the Sources tab, right-click on the design_1

block design under Design Sources folder and choose create HDL wrapper,

this options creates a top level VHDL file for the block design which can be

used to generate the bitstream file

FIgure K16 Create HDL Wrapper in Vivado

16. Keep the default setting Let Vivado manage wrapper and auto-update and

click OK

c. Note: Click on the Address Editor, one shall find the processing

system connected to the AXI GPIO IP, with an automatically given

99

offset address. This address will be used by the Zynq processor to

communicate with the AXI GPIO IP which is connected to the LEDs.

In our example the offset address is 0x41200000

FIgure K17 Allow Vivado to Manage the Wrapper and Auto-Update

17. In the Flow Navigator, under Program and Debug click on Generate

Bitstream. Alternatively, from the top menu Flow Generate Bitstream.

During this step the tool creates a bit file for programming the PL of the Zynq.

Accept to save the project

100

FIgure K18 Generate the Bitstream in Vivado

18. Click Yes to No Implementation Results Available. This would synthesize the

design. Depending on the PC’s available resources and specs, the process

should take a few minutes, potentially longer on slower PCs

FIgure K19 Allow Vivado to Launch Synthesis and Implementation

101

19. Bit Generation Complete message should pop up, close/cancel it then go to

File Export Export Hardware. Check the Include bitstream and click ok.

This exports the hardware files generated to the SDK

FIgure K20 Bitstream Generation Successful in Vivado

FIgure K21 Export the Hardware Design to the SDK from Vivado

102

FIgure K22 Include the Bitstream in the Export from Vivado

20. In Vivado go to File Launch SDK, then click OK. The SDK will open and in

the Project Explorer window one could see the exported hardware files. In the

SDK go to Files New board support package then click finish. This

creates a board support package with all the necessary functions for driving

the hardware that was designed in Vivado; in the previous steps

103

FIgure K23 Launch SDK from Vivado

FIgure K24 Use Default Location When Launching SDK from Vivado

104

FIgure K25 Create a New Board Support Pacakge in SDK

21. The Board Support Package Settings window would pop up, keep all default

settings and click Finish then OK

105

FIgure K26 Use Default Board Support Package Settings in SDK

106

FIgure K27 Use Default Board Support Package Standalone Settings in SDK

22. Create an application project by going to File New Application Project.

Enter a name in the project name field and under the Board Support Package

choose Use existing then click Next

107

FIgure K28 Create a New Application Project in SDK

23. Choose Hello World from the Available Templates then click Finish

108

FIgure K29 Select the Hello World Template in SDK

24. In the Project Explorer left panel, expand the src folder under the project_1

folder and double click on Helloworld.c. The source code will be visible in the

main window. Replace the code within it with the following code:

1. #include <stdio.h>
2. #include "platform.h"
3. #include "Xil_io.h"

109

4. // delay function
5. void delay()
6. {
7. int i;
8. for(i=0;i<20000000;i++);
9. }
10. int main()
11. {
12. init_platform();
13. unsigned char counter=0;
14. // infinite loop
15. while(1)
16. {
17. // write to address 0x41200000(offset address

of the AXI GPIO:8 LEDs) the value of counter
18. Xil_Out32(0x41200000,counter);
19. // increment counter
20. counter++;
21. //delay
22. delay();
23. }
24.
25. cleanup_platform();
26. return 0;
27. }

FIgure K30 Edit the Hello World Source Code

110

25. In the SDK click on the program FPGA icon then click program; to program

the Zynq PL with the bitstream

FIgure K31 Program the FPGA in SDK

FIgure K32 Keep Default Program Settings in SDK

111

FIgure K33 Programming Progress Bar in SDK

26. Right-click on the project_1 folder in the Project Explorer panel then go to

Run As 4 Launch on Hardware (GBD). The application should run on the

board and the LEDs should show the binary values of the counter

112

FIgure K34 Launch the Application SW on the Hardware in SDK

This completes the design and software application of the LED binary counter.

113

Appendix L. Vivado Zynq-7000 FPGA Design Guide
B: LED Scanner Light

This guide covers a variant of an LED software application that is used on the

Zynq-7000 FPGA. While testing the web application, it was important to have at least

two FPGA applications that are visually distinct, in order for the project developer to see

that indeed the FPGA programming was successful, beyond the success messages on

the terminal. For this purpose, the application developed in Appendix K is slightly

modified to obtain a different visual output from the LEDs; on the FPGA evaluation

boards.

1. Follow the guide in Appendix K all the way to and including step 24. However,

in this case use the following source code:

1. #include <stdio.h>
2. #include "platform.h"
3. #include "Xil_io.h"
4.
5. // delay function
6. void delay()
7. {
8. int i;
9. for(i=0;i<8000000;i++);
10. }
11.
12. int main()
13. {
14. init_platform();
15. int bit=1;
16. int i;
17.
18. // clear screen and display demo name on uart
19. printf("%c[2J",27);
20. printf("\n\r\n\rLED KNIGHT RIDER EFFECT: 8

LEDs\n\r");
21.
22. // infinite loop
23. while(1)
24. {
25. // write value to LEDs, then shift bit to the

left, then Loop 8 times
26. for (i=0; i<7; i++) {
27. Xil_Out32(0x41200000,bit);
28. printf(" ");
29. fflush(stdout);
30. bit<<=1;
31. delay();
32. }

114

33.
34. // write value to LEDs, then shift bit to the

right, then Loop 8 times
35. for (i=0; i<7; i++) {
36. Xil_Out32(0x41200000,bit);
37. printf("\b");
38. fflush(stdout);
39. bit>>=1;
40. delay();
41. }
42. }
43.
44. cleanup_platform();
45. return 0;
46. }

2. Then follow the guide in Appendix K from step 25 onwards

This completes the design and software application of the LED scanner light.

115

Appendix M. Vivado Zynq-7000 FPGA Design Guide
C: LED – UART IO

This guide covers another variant of the LED software application that is used on

the Zynq-7000 FPGA. However, in this software application, the UART was added to the

application to allow for an IO user interaction. Once the FPGA evaluation board’s UART

is accessible through the serial port terminal, the user could press any key on the

keyboard/terminal, and the ASCII value of the key stroke would be shown as binary on

the FPGA boards’ LEDs, as well as on the UART terminal. For this purpose, the

application developed in Appendix K is slightly modified to obtain a different visual output

from the LEDs; on the FPGA evaluation boards.

1. Follow the guide in Appendix K all the way to and including step 24. However,

in this case use the following source code:

1. #include <stdio.h>
2. #include "platform.h"
3. #include "xil_io.h"
4. #include "xparameters.h"
5. #include "xuartps_hw.h"
6.
7. int main()
8. {
9. init_platform();
10.
11. int keyPress;
12.
13. // clear screen and display demo name on uart
14. xil_printf("%c[2J",27);
15. xil_printf("\n\rUART INPUT ASCII ON LEDS");
16. xil_printf("\n\rPress any key on the keyboard to

see its ASCII binary value on the LEDs\n\r");
17.
18. while(1)
19. {
20. // read the byte from UART
21. keyPress = XUartPs_RecvByte(0xE0001000);
22.
23. // display keyboard key value in hex/dec on uart
24. xil_printf("ASCII value --> Dec: %03d\t\tHex:

0x%02x\n\r",keyPress,keyPress);
25.
26. // send ASCII value to LEDs
27. Xil_Out32(0x41200000 ,keyPress);
28. }
29.
30. cleanup_platform();

116

31.
32. return 0;
33. }

2. Then follow the guide in Appendix K from step 25 onwards

3. Open a serial terminal as shown in Appendix J

This completes the design and software application of the LED – UART IO.

117

Appendix N. Vivado Zynq-7000 FPGA Design Guide
D: Peripherals Tests

While three FPGA designs and applications were sufficient for the development,

testing and potential demonstration of the project-prototype, a few more designs were

added to learn a bit more about basic FPGA applications. In this section, the main FPGA

hardware design described in Appendix K would be reused, but with a new software

application: peripherals testing. That is, the FPGA would run a self-test to check if all

connected peripherals are working. Such as the LEDs, the GPIOs, and interrupts. The

results of the test would be displayed on the UART.

1. Follow the guide in Appendix K all the way to and including step 22

2. Choose Peripherals Tests from the Available Templates then click Finish

118

Figure N1 Select the Peripherals Tests Template in SDK

3. In the SDK click on the program FPGA icon then click program; to program

the Zynq PL with the bitstream. Note that if the user has not power-cycled or

reset the FPGA, there is no need to reprogram the FPGA as we would be

using the same hardware. Though, it doesn’t hurt to reprogram

4. Open a serial terminal as shown in Appendix J

119

5. In the SDK, on the left side panel, right-click on the project folder Periph_Test

in the Project Explorer panel then go to Run As 4 Launch on Hardware

(GBD). The application should run, and the peripheral tests and results

should be displayed on the UART terminal

Figure N3 UART Output of the Zynq-7000 FPGA Peripherals Tests

This completes the design and software application of the peripherals tests.

120

Appendix O. Vivado Zynq-7000 FPGA Design Guide
E: Memory Tests

Continuing in building basic FPGA applications to be run on the ZedBoard, the

next application is to run memory tests which tests Memory Regions present in the

hardware.

1. Follow the guide in Appendix K all the way to and including step 22

2. Choose Memory Tests from the Available Templates then click Finish

121

Figure O1 Select the Memory Tests Template in SDK

3. Open a UART terminal as shown in Appendix J

4. In the SDK, on the left side panel, right-click on the project folder Mem_Test

in the Project Explorer panel then go to Run As 4 Launch on Hardware

(GBD). The application should run, and the peripheral tests and results

should be displayed on the UART terminal

122

Figure O2 UART Output of the Zynq-7000 FPGA Memory Tests

This completes the design and software application of the memory test.

123

Appendix P. Vivado Zynq-7000 FPGA Design Guide
F: Zynq DRAM Tests

The fifth FPGA sample application runs out of OCM and performs memory tests

and read/write eye measurements on Zynq DRAM. The test is interactive and would

perform:

• Memory test

• Read eye measurement

• Write eye measurement

1. Follow the guide in Appendix K all the way to and including step 22

2. Choose Zynq DRAM Tests from the Available Templates then click Finish

124

Figure P1 Select the Zynq DRAM Tests Template in SDK

3. Open a UART terminal as shown in Appendix J

4. In the SDK, on the left side panel, right-click on the project folder

ZynqDRAM_Test in the Project Explorer panel then go to Run As 4

Launch on Hardware (GBD). The application should run, and the peripheral

tests and results should be displayed on the UART terminal

125

Figure P2 Interactive UART Menu of the Zynq DRAM Tests

The memory test has the following options, which could be used by using the

keyboard as input.

Table P1 Zynq DRAM Memory Test Options

Option Test Start Address Test Length
‘s’ (“short”) 0x100000 1MB

‘1’ 0x100000 32MB
‘2’ 0x100000 64MB
‘3’ 0x100000 128MB
‘4’ 0x100000 255MB
‘5’ 0x100000 511MB
‘6’ 0x100000 1023MB

Each memory test consists of 15 sub-tests using different data patterns. In each

sub-test, the entire range is first written sequentially, and then read and compared

against the expected value. The 15 patterns are:

126

Table P2 Zynq DRAM Sub Memory Tests

Sub-test Description
0 Incrementing pattern, unique value per memory location (data = address)
1 All 0
2 All 0xffffffff
3 All 0xAAAAAAAA
4 All 0x55555555
5 Alternating 0x00000000 and 0xFFFFFFFF
6 Alternating 0xFFFFFFFF and 0x00000000
7 Alternating 0x55555555 and 0xAAAAAAAA
8 Alternating 0xAAAAAAAA and 0x55555555
9 Aggressor pattern identical on all 8 bits

10 Aggressor pattern with one bit inverted, x8 times (1 per bit)
11-14 Pseudo random patterns with different seeds

Additional tests available are the read data eye test and the write date eye test. It

is left to the reader as an exercise to experiment with them. Other menu options are

described in Table H2.

Table P3 Zynq DRAM Memory Test Options
Options Name Description

‘f’ Fast Toggle ‘fast’ mode on/off. In fast mode, the memory test used during eye
measurements uses less sub-tests and therefore runs about twice as fast,

at the cost of being slightly more optimistic. By default ‘fast’ is on.
‘c’ Center Toggle ‘center’ mode on/off. When enabled, the write eye measurement

result is immediately programmed into the DDR controller.
‘e’ Eye test size Vary the size of the memory test used at each step of a read/write eye

measurement functions. The default value is 1MB, resulting in fastest speed
at the cost of producing slightly optimistic results. Hitting this key repeatedly
varies the test size circularly between the values 1, 2, 4, 8, 16, 32MB. Note

that using the value 4 will quadruple the test run time.
‘v’ Verbose Toggle verbose mode on/off. If on and errors occur during a memory test,

the first 10 errors in each sub-test are printed.
‘z’ D-Cache

Enable/Disable
Toggle D-cache – enable/disable.

This completes the design and software application of Zynq DRAM tests.

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Application Summary
	1.3. Academic Objectives

	Chapter 2. Project Overview
	2.1. Organization
	2.2. FPGA Development
	2.3. Web Application

	Chapter 3. System Architecture
	3.1. The Hardware Server
	3.2. The Web Application
	3.3. The End User

	Chapter 4. System Design Choices
	4.1. FPGA Evaluation Board Selection - ZedBoard
	4.2. Hardware Server OS - Ubuntu
	4.2.1. Virtual Machine Software – VMware

	4.3. Web Cam
	4.4. Web Scripting Language Selection - PHP
	4.4.1. Frameworks - Laravel
	4.4.2. IDE Tools - Homestead

	4.5. Web Hosting Services - AWS
	4.6. Software Version Control System and Online Repository – BitBucket
	4.7. Web Based Terminal Emulator – Shell in a Box

	Chapter 5. System Implementation: FPGA Board Component
	5.1. ZedBoard Setup and Configuration
	5.2. LED Binary Counter on the ZedBoard Using the Zynq-7000 FPGA
	5.2.1. Step 1: Creating a New Project in Vivado
	5.2.2. Step 2: Creating a Block Design
	5.2.3. Step 3: Writing the Software Application
	5.2.4. Step 4: Programming the ZedBoard and Running the C Application

	5.3. Other FPGA Designs

	Chapter 6. System Implementation: Web Application
	6.1. Tree View of the Web Application
	6.2. Model-View-Controller Code Structure
	6.2.1. The Models
	6.2.2. The Controllers
	6.2.3. The View

	6.3. Services

	Chapter 7. Website Layout
	7.1. Landing Page
	7.1.1. Top Menu and Image Slider
	7.1.2. Server and FPGA Boards Selection Menu
	7.1.3. Server and FPGA Scheduling Tool

	7.2. Remote Server Page
	7.2.1. File Manager and Program Tool

	Chapter 8. Conclusion
	8.1. FPGA Applications Development: What Was Learned
	8.2. Web Application: What Was Learned
	8.3. Known Bugs
	8.4. Future Work

	References
	Appendix A. VMware Workstation Player and Ubuntu 14.04.2 Virtual Machine Installation Guide
	Appendix B. Hardware Server Configuration Guide
	Appendix C. Open SSH Installation on the Hardware Server
	Appendix D. Motion (Webcam Stream) Installation on the Hardware Server
	Appendix E. C-Kermit (Serial Terminal) Installation on the Hardware Server
	Appendix F. Git Installation on the Hardware Server
	Appendix G. Shell in a Box Installation on the Hardware Server
	Appendix H. Network Ports Configuration
	Appendix I. Xilinx Vivado Design Suite Installation Guide
	Appendix J. USB Serial (COM) Port Properties
	Appendix K. Vivado Zynq-7000 FPGA Design Guide A: LED Binary Counter
	Appendix L. Vivado Zynq-7000 FPGA Design Guide B: LED Scanner Light
	Appendix M. Vivado Zynq-7000 FPGA Design Guide C: LED – UART IO
	Appendix N. Vivado Zynq-7000 FPGA Design Guide D: Peripherals Tests
	Appendix O. Vivado Zynq-7000 FPGA Design Guide E: Memory Tests
	Appendix P. Vivado Zynq-7000 FPGA Design Guide F: Zynq DRAM Tests

