FPGA to the Cloud

By
Moundji Kazi-Tani, P.Eng.

B. Eng. (Electrical), Concordia University, 2006

Project Submitted in Partial Fulfilment of the
Requirements for the Degree of
Master of Engineering

In the
School of Engineering Science

Faculty of Applied Science

© Moundji Kazi-Tani
SIMON FRASER UNIVERSITY
Spring 2017

Copyright in this work rests with the author. Please ensure that any reproduction
or re-use is done in accordance with the relevant national copyright legislation.

Approval

Name: Moundji Kazi-Tani, P.Eng.

Degree: Master of Engineering

Title: FPGA to the Cloud

Examining Committee: Chair: Dr. Ash M. Parameswaran, P.Eng.
Professor

Dr. Craig Scratchley, P.Eng.
Senior Supervisor
Senior Lecturer

Victor Gusev Lesau
Industry Supervisor
Electrical Engineer

CEO, CuePath Innovation

Date Presented/Approved: March 29, 2017

Abstract

FPGAs are enabling more applications to be put to the market at a fraction of the cost of
ASICs and with a much faster deployment rate. However, the wide range of FPGA
brands and types currently available on the market; could overwhelm first time users
when choosing a suitable FPGA for a given application. Furthermore, intermediate-to-
advanced FPGA users may desire to evaluate some new FPGAs before committing to a
purchase. FPGA to the Cloud is a web application that allows users to interact with
FPGA evaluation kits remotely on a try-before-you-buy or pay-per-use model. The end
user would access a web site where the web application is hosted. The end user would
select an FPGA evaluation board from a list, and would be given direct remote access to
said FPGA board; with programming tools. The user could use available sample FPGA
design files, or upload user-created FPGA design files; for testing and evaluation. The
project-prototype is based on the ZedBoard which uses Xilinx's Zyng-7000 FPGA. The

web application was developed using Laravel's PHP framework.

Keywords: Web Application; Web Design; FPGA Application; PHP; Frameworks;
Web Hosting

7o Bill

Acknowledgements

This project would not have been possible without the support of many people. |
would like to thank Victor Gusev Lesau without whom the project would not have started

nor finished!

I would like to thank the examining committee members for dedicating their time

and energy in reviewing the project.

As well, I wish to express my gratitude to the late Dr. William A. Gruver for his
thoughtful guidance. His wisdom and inspiration made a significant impact on the people

around him.

Furthermore, | would like to thank my family for their never-ending support and

patience.

Table of Contents

Y o] o1 (0 1Y | RSP ii
F Y 0] = o SRR PPPPPPPPPPPPRPPPPPRN iii
D<o [o= 11T] o H PSP PP P PP PP PPPPPPPPRPR iv
F o (L0111l [T [=T g =T £ v
TaADIE OF CONIENTS ...t e e e e e e e e e e e e e aaaeas Vi
LISt Of TADIES ...ttt iX
IS o) o U =23 X
IS o) o4 0])Y/ 0 Xi
Chapter 1. INtrodUCTION c.oooeiii e e e e 1
1.1, MOUVALION ..ottt e e e eeesaeaaeaneannannee 1
1.2, ApPliCation SUMMAIY......ccouiiiiiii e e e e et e e e e e e e eaata e s e eaaeeannnes 2
1.3, ACAdemiC ODJECLVEScoieiiiiiiii e e e e e e e e e s e e e e eaaaanes 3
Chapter 2. ProjECT OVEIVIEWuuiiiiiiiiiiiiiiiiiiiietiieeeeaeeebieesesesebseeeeebeaeeeeeebseeesesneaesennee 4
N B @ o - o117 11T o 4
2.2, FPGA DEVEIOPMENL.....coiiiiiii e et e e e e e e e s e e e e e e aaraa s 4
P2 T VA A=t o I Y o] o] o= 11T o 5
Chapter 3. SyStem ArChITECTUIEiiiiiiiiiiiiiiie e 7
3.1, The HArAWAre SEIVELueeiii ettt e e e e e e e e e e eeeaan s 8
3.2, The Web APPHCALIONo.ueee e e e e 8
G0 T I o T =t T I U L= T 9
Chapter 4. System DeSigN ChOICES..........uiiiiiiiiiiiiiiiiiiiiiiiiiee i 10
4.1. FPGA Evaluation Board Selection - ZedBoardc.ceiiiieeiiiiiiiiiiiieeeeeeeeeiene, 10
4.2. Hardware Server OS - UDUNTU.......uuiiiieiie e 11

4.2.1. Virtual Machine Software — VIMWArEccevviieiiiiiiiiiiiiiiiiiieiiiinineeeeeeennnnnns 12
T YV = T - T o USRS 12
4.4. Web Scripting Language Selection - PHP ..., 13

4.4.1. FramewWorks - LAraVel...........ooueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeaeeeseeeesenneeneeennnnnnnes 13

4.4.2. IDE TOOIS - HOMESLEAUcevvviiiiiiiiiiiiiiiiiiiiieiiiieieeteieeeeeeeeeeeeeeseeeeeenneennennnnnes 14
4.5, Web HOStING ServiCes - AWS ... e e e 14
4.6. Software Version Control System and Online Repository — BitBucket 15
4.7. Web Based Terminal Emulator — Shell in @ BOXcccooiiiiiiiiiiiiiiiieieeeeeeeeeenn 15
Chapter 5. System Implementation: FPGA Board Componentccccceeeeeeenne. 17
5.1. ZedBoard Setup and Configurationoouuuiiiii i 17
5.2. LED Binary Counter on the ZedBoard Using the Zyng-7000 FPGA 18

5.2.1. Step 1: Creating a New Project in Vivadoccooiiiiiiiiiiiiiiiieeeeeeeeeiien 18

5.2.2. Step 2: Creating a BIOCK DeSIgNceevuuiiiiiieeiieeeie e 20

5.2.3. Step 3: Writing the Software Application.............cccoeiiiieiiiiiiiii e, 28

5.2.4. Step 4: Programming the ZedBoard and Running the C Application............ 32

vi

5.3, Other FPGA DESIGNSccviiiiiiiieeiei et e e e e s e e e e e e e eae e s e e eaaeeananes 33

Chapter 6. System Implementation: Web Applicationcccccoooeiiiiiiiiiiiiin e, 34
6.1. Tree View of the Web AppliCationccooeeiiiieiiiiiii e 34
6.2. Model-View-Controller Code StrUCIUIEuuuuviiiiiiiriiiiiiiiiiiiiiiiiiieiieeeeeneeeean. 36
6.2.1. TRE MOUEIS... .o 36
6.2.2. The CONMIOIEIS .. .o 37
B.2.3. TRE VIBW .. 38
5.3, SEBIVICES ..etetiiiiiitiittttttiiittteebebbbb bbb s 40
Chapter 7. WeDSIite LAYOULoiii i e e e e e e e e e eananes 42
4% T - T o To [T Vo = Vo = 42
7.1.1. Top Menu and IMage SHAEr..........ccovvviiiiiiiie e 42
7.1.2. Server and FPGA Boards Selection Menu...........cccccoeeiiiiiiiiiiee 43
7.1.3. Server and FPGA Scheduling TOOI.........cccooiiiiiiiiiiiiii e 44
7.2. REMOIE SEIVEI PaAQe ... iiiiiiii ittt e e a et a e e ab e e aenes 45
7.2.1. File Manager and Program TOOIcoeiiiiiiiiiiiiiiii e 46
Chapter 8. CONCIUSIONiiiiiiiiiiiiiiiiii i 49
8.1. FPGA Applications Development: What Was Learnedcovvvvvvieniieeeneenns 49
8.2. Web Application: What Was Learneduueuueurumurimmmiimniiiiiiiiieiniininneienennnens 50
8.3, KNOWN BUGS ..t 50
R B T (| (=YL o] £ TR PPRTRR 51
R O BN CES . i et e e aeas 55

Appendix A. VMware Workstation Player and Ubuntu 14.04.2 Virtual Machine

INSLAIAtiION GUIAE .ccoiiieieeee e 57
Appendix B. Hardware Server Configuration GUIde.........cccccoeiiiiiiniiieiiiiieeeeeeeeeennn 68
Appendix C. Open SSH Installation on the Hardware Server...........cccccoeeeeeieennnnen 71
Appendix D. Motion (Webcam Stream) Installation on the Hardware Server 72
Appendix E. C-Kermit (Serial Terminal) Installation on the Hardware Server73
Appendix F. Git Installation on the Hardware Server..........cccooooeoiiiienieineeeeeeeeeeennn 74
Appendix G. Shell in a Box Installation on the Hardware Server.......................... 75
Appendix H. Network Ports Configurationcccooooooooioieonnineeeeeeeeeeeeeeeeee e 76
Appendix I. Xilinx Vivado Design Suite Installation Guide.................cceevvviiinnnnnn. 77
Appendix J. USB Serial (COM) Port Propertiescoouuooiiieeeiiiiiieeeeeeeeeiie e 87
Appendix K. Vivado Zyng-7000 FPGA Design Guide A: LED Binary Counter.....88

Vii

Appendix L.

Appendix M.
Appendix N.
Appendix O.

Appendix P.

Vivado Zynq-7000 FPGA Design Guide B: LED Scanner Light113
Vivado Zyng-7000 FPGA Design Guide C: LED — UART IO 115
Vivado Zynqg-7000 FPGA Design Guide D: Peripherals Tests........ 117
Vivado Zynq-7000 FPGA Design Guide E: Memory Tests 120

Vivado Zynq-7000 FPGA Design Guide F: Zynqg DRAM Tests 123

viii

List of Tables

Table 1 ZedBoard Boot Mode Jumper Settings

List of Figures

Figure 1 Top Level ArChiteCUreeoiii i 7
Figure 2 The ZedBoard Featuring the Xilinx Zyng-7000cccovvviiiiiiieeeeeieieee e, 11
Figure 3 ZedBoard Boot Mode Jumper Settings - Option 1cooovviiiiiiiiiiiiieee, 18
Figure 4 Project Name and Location in Vivado...............couuiiiiiiiciiiicii e 19
Figure 5 Board Selection in VIVAAOccoiiiiiiiiiiii e 20
Figure 6 Create Block Design in VIVadoccoooiiiiiiiiiiiiiiieeeee 21
Figure 7 Add [P in VIVAAO........ccoiiieice e e et 22
Figure 8 Add Zynq7 Processing System IP in Vivado............cccoovviiiii 23
Figure 9 Run Block Automation in VIVadO ... 23
Figure 10 Added AXI GPIO IP iN VIVAAOccvviiiiiii e 24
Figure 11 Connect the AXI GPIO IP to the Board LED 8 Bits in Vivado......................... 24
Figure 12 Regenerate Layout (I.E. Refresh) in Vivadoccooooeeviiiiiiii e, 25
Figure 13 Create HDL Wrapper in VIVadoccoiiieiiiiiiiiic e 26
Figure 14 Generate BIlSIrEaIMcooiiiiiiiii e 27
Figure 15 Export Hardware And Bitstream in Vivado...........cccoooeevviiiiiiiiie e, 28
Figure 16 Create a New Board Support Package in SDK...........cooooiiiiiiii, 29
Figure 17 Create an Application Project in SDK ... 30
Figure 18 Select Hello World Template in SDKcccoiviiiiiiiiiececce e 30
Figure 19 LED Binary Counter C code in SDK ... 32
Figure 20 Program FPGA iN SDK........cooiiiiiiiiii e 32
Figure 21 Running the C Application on the Hardware in SDK..........ccccccooviieiiiiiiiinnnnn. 33
Figure 22 The Web Application’s Structure Main OVEIVIEWcoooeeiieiiiiiiiiiieeeeeeee. 35
Figure 23 Models, Controllers, and Helpers Source Code Tree........cccccceeeeeeeeeviiiiinnnnnnn. 37
Figure 24 The View Source Code TrEEcciiiiiiiiiiii e 40
Figure 25 Landing Page with Image Slider and Top Menu ..., 42
Figure 26 Top Menu as Seen by Logged-In USErSiviiiiiiiiiiiiiiiii e 43
Figure 27 Server and FPGA Board Selection Menu ... 43
Figure 28 Server and FPGA Board - Administrative Settings.............cccooeveeiieiieiee. 44
Figure 29 Server and FPGA Board Scheduling Toolcccooviiiiiiiiiii e, 45
Figure 30 Remote Server Page: Conneciton to Remote FPGA Hardware Server.......... 46
Figure 31 File Manager and Program TOOIccooiiiiiiiiiiiiiii e 47
Figure 32 Program Tool: Programming Progresscoeuuuviiiiiieeeeeiiiiiie e eeeeeie e 48

List of Acronyms

LED
MVC
0S
PL
PLD
PS
SDK
SFU
SSH
TOS
UART
ul
URI
URL
URN

Artificial Intelligence

Application Specific Integrated Circuit
Amazon Web Service

Command Line Interface

Complex Programmable Logic Device
Central Processing Unit

Database

Elastic Cloud Computing
Field-Programmable Gate Array
General Purpose

General Purpose Input/Output
Graphics Processing Unit

Integrated Circuit

Integrated Development Environment
Intellectual Property; Internet Protocol
International Standard Organization
JavaScript

Light-Emitting Diode
Model-View-Controller

Operating System

Programmable Logic

Programmable Logic Device
Processor System

Software Development Kit

Simon Fraser University

Secure Shell

Terms of Service

Universal Asynchronous Receiver/Transmitter

User Interface

Universal Resource Identifier
Universal Resource Locator
Universal Resource Name

Xi

VCS Version Control System
WWw World Wide Web

Xii

Chapter 1. Introduction

1.1. Motivation

FPGA usage has been on the rise over the last ten years. And such increase is
projected to continue over the next ten years. The FPGA market size was valued at USD
5.27 billion in 2014, and it is expected to reach USD 14 billion by 2024 [1] - [2]. The
telecom sector, which accounts for 33% of the current FPGA market share is seeing
continued growth [1]. And as more ICs are making their way into the average vehicle,
the automotive industry is another target for FPGA vendors; at 17% of the current FPGA

market share [1].

Furthermore, FPGAs are becoming the flavor of choice (over CPUs and GPUSs)
for future Al services and applications. FPGAs run faster than software, consume less
power than CPUs or GPUs, and could be reprogrammed. Intel* estimates that FPGAs
will run 30% of data center servers by the year 2020 [3]. In neural networks; FPGAs are
currently aimed at inferencing (evaluating already trained neural networks) for

applications such as image recognition, speech recognition, and language translation

[4].

With numerous FPGA manufacturers around, and several types of FPGA
evaluation kits available, selecting the right FPGA for a given application could be a
daunting task to a student, a starting hobbyist or even a seasoned engineer. Even
advanced FPGA users have to rely mostly on the manufacturers’ specifications before

committing to an FPGA selection.

To help users make the appropriate FPGA selection; there is: FPGA to the
Cloud. FPGA to the cloud is a project-prototype that allows users from anywhere on the
web, to gain remote-access to several types of FPGA development kits on a try-before-

you-buy model, pay-per-use, subscription or other models.

1 Intel acquired FPGA maker Altera in 2015 [9]

1.2. Application Summary

The purpose of this project-prototype is to provide would-be users with an online

web application to access FPGA-based evaluation boards remotely:

To learn basic fundamentals about FPGA design and programming

To test their own FPGA designs

To try different types or brands of FPGA development kits

Users could explore various designs, types, or brands of FPGAs without the

need of purchasing any particular FPGA evaluation board, nor worrying about the

upfront relative high cost of such a purchase.

Example of applications:

Students wanting to learn/apply FPGA-design basics, but are on a limited

budget and can't afford the relative high cost of FPGA evaluation board kits

Users may want to test or try different FPGA evaluation kits before deciding

on a specific brand or model to commit to

Academic institutions: no need for large lab space. Just a small room with
servers and a selection of FPGA boards. Students can access these boards

remotely through a web application from the classroom or anywhere else

Third party vendors could offer such a platform on a try-before-you-buy model

Application engineers or technical sales engineers could demo the system’s
functionality to a customer without having to carry around the complete

system as well as heavy and bulky test equipment

Open source users or independent developers who are not willing to

purchase a specific FPGA evaluation kit, but rather rent-per-use

Developers who need to test their code on multiple embedded systems; after

each software build, would not need to have such systems setup locally

1.3. Academic Objectives

Through this project the student (under the supervision of the industry
supervisor) was required to learn, design, develop, test and debug all aspects of the

project, which covered the following elements:
e Learn the fundamentals of FPGA design
o Create several basic FPGA designs

e Learn current web development and design methodologies, languages, tools,

and the use of online hosting services

e Learn and use version control software tools

Chapter 2. Project Overview

2.1. Organization
The overall project tasks were divided into two major components:

o FPGA development: All aspects related to the FPGA hardware and software;
including FPGA design tools and programming bitstream files, as well as

Server and OS configurations

e Web application: All aspects related to the web development, design and

interface; both front end and back end

2.2. FPGA Development

The first step of the project was to pick an FPGA evaluation platform; for the
purpose of building the proof of concept around it. The ZedBoard Development Board
(by Digilent) using the Zyng-7000 ARM/FPGA SoC (by Xilinx) was chosen (More details

in section 4.1).

The ZedBoard along with the Xilinx Vivado software suite were used to develop
from scratch several basic FPGA-based designs to allow the integration of the hardware
component (FPGA setup) with the software component of the project (web application).

Several basic FPGA designs were created such as:
e Blinking LEDs
e UART user input mapped to LEDs
e Peripherals Tests
e Memory Tests
e DRAM Tests

These demo-designs help in three ways:

Provide the web developer with some simple FPGA designs to develop and

test the web application component of the project

Provide the end user whom would be accessing a given FPGA setup online
remotely; some sample FPGA files to get familiar with how the web

application works

Use of such sample FPGA design file during the demo of this project

2.3. Web Application

The second main component of the project is the web application. This is the

larger portion of the project as it sets up the required platform for providing web access

to a given FPGA evaluation board kit.

The web application component covers all that is web related, from web design

to web development, to web hosting, etc....

The website (hosting and providing this service) offers the following

functionalities:

User account creation and login

User and administrative level access to user and website settings

Menu selection: choosing the type of the desired FPGA board (to connect to)
Booking/calendar application to reserve time slots for a given FPGA board

Live web cam stream showing the FPGA board the user is connected to (to

monitor any visual outputs, if applicable)

File manager: to upload and program the FPGA; with user-created files (or to

load sample demo files available on the server)
Power cycle access to reboot the FPGA board remotely

Terminal access to the server, for a more advanced level of control

o UART console to provide input/output access to the FPGA (if applicable)

Chapter 3. System Architecture

The architecture of this project-prototype could be split into three major

components:

1. The hardware server (I.E. the FPGA evaluation board server). This includes
the FPGA evaluation board in question

2. The Cloud, which hosts the web application and manages all access and
interaction between the hardware server and the end user. As well as user-
access management

3. The end user, whom uses the web application through the Cloud to access
an FPGA evaluation board remotely

-

| - FPGA |
: EVALUATION
e BOARD |
-

| i | i

:
e o 9

@ e
@
| | END USER .
Bﬁ‘::insiﬁ
| | ®
@
| . | EN‘f;"IIE.IsiER
BROWSER
| @
| @
- @
B

END USER
WEB
BROWSER

Figure 1 Top Level Architecture

3.1.

3.2.

The Hardware Server

The hardware server consists of two main sub-components:
1. A server. Or any PC-based machine

2. An FPGA evaluation board

Other dependent components:

e Allrequired OS, software and configurations to ensure the server’s network

accessibility and functionality

o All required software tools, drivers and cables to connect the FPGA

evaluation board to the server

The Web Application

This is the main component of the project. The web application is the center point

where it would allow online users to interact with various FPGA evaluation boards

remotely, without the need for a direct physical access to said FPGA boards. The web

application accomplishes the following:

e Front end access point to the FPGA evaluation boards:
0 Access management to sample demo FPGA design files

o Demo files synchronization with soft updates (users have the option to

update or not)
0 Users’ ability to upload their own FPGA bitstream files
0 Remote FPGA programming utility
0 Remote power-cycle of the FPGA board
e FPGA boards schedule, availability and booking management

e User account profile creation as well as email and password management

¢ Webcam access to remote FPGA evaluation boards

¢ File management system for users’ online directories and hosting space

directories
e CLI access to remote servers; for advances users

e Servers and FPGA boards inventory, usage availability and online/offline
status management database

e Hosting and website administrative management

3.3. The End User

The simplicity of the web application is that all that the end user needs is a web
browser with web access. The web application is available online through a website. The
end users do not need to install any software tools, or plugins to use the web application.
It's as simple as accessing a web page, creating an account (for first time users),
selecting an FPGA board type, and the end user can start programming their bitstream
files immediately into a remote FPGA board. All this, while visually seeing the FPGA

board they are working with through a live webcam stream.

The end user is presented with a web page that follows the accustomed visual
format and functionality of common websites. The web page includes a registration and
a login function, an FPGA board type selection, as well as a file manager that handles
selecting sample FPGA bitsream files, or user-defined FPGA design files that could be

uploaded.

Chapter 4. System Design Choices

4.1. FPGA Evaluation Board Selection - ZedBoard

The objective of the project is to allow remote access through the cloud to a
variety of FPGA development kits or evaluation boards. However, to provide a proof of

concept of the project-prototype only one or two FPGA boards would be required.

After examining several FPGA boards and having budgetary constraints, we
have selected the ZedBoard Development Board (by Digilent) using the Zyng-7000
ARM/FPGA SoC (by Xilinx). The ZedBoard is able to accommodate a wide range of

applications, with features such as:

Xilinx Zyng-7000 AP SoC XC7Z020-CLG484

e Dual-core ARM Cortex™-A9

e 512 MB DDR3

e 256 MB Quad-SPI Flash

e 4GB SD card

e Onboard USB-JTAG Programming

e 10/100/1000 Ethernet

e USB OTG 2.0 and USB-UART

¢ Analog Devices ADAU1761 SigmaDSP® Stereo, Low Power, 96 kHz, 24-Bit
Audio Codec

¢ Analog Devices ADV7511 High Performance 225 MHz HDMI Transmitter
(1080p HDMI, 8-bit VGA, 128x32 OLED)

e PS & PL I/O expansion (FMC, Pmod, XADC)

10

Furthermore, the ZedBoard online community is a very large and active one. This
was a crucial resource that was freely available to the project developer; to learn basic
FPGA design fundamentals from scratch, as well as to learn how to use the Xilinx design

suite tools Vivado and SDK.

Figure 2 The ZedBoard Featuring the Xilinx Zyng-7000

4.2. Hardware Server OS - Ubuntu

The hardware server OS; which the FPGA boards would be connected to;

needed to satisfy a few conditions:

o Be supported by FPGA board vendors. That is the OS is supported by the

IDEs, design tools, drivers, etc...

¢ Be compatible with online hosting services

11

e Be supported by virtual machine software tools (See section 4.2.1)
¢ Be easily available and widely supported

The final choice was made to use Ubuntu 14.04.2 LTS as the hardware servers’
OsS.

4.2.1. Virtual Machine Software — VMware

For development purposes and to keep costs down, a decision was made to not
purchase a server, or a PC-based machine, but rather to use a virtual machine setup
that would run Ubuntu 14.04.2 LTS. A virtual machine setup would provide the benefit of
portability and a very flexible bring up. The choice was made to use VMware
Workstation Player? virtual machine solutions. Alternatively, one could also use Orcale’s
VM VirtualBox.

4.3. Web Cam

When a user has established a connection with a remote server; to interact with
an FPGA evaluation board, the web application would launch a live streaming feed that
would show the user the FPGA board they are interacting with. For example, if the user
uploads and programs the FPGA with a bitstream file that say makes the LEDs on the
FPGA board blink in a particular pattern, the user would then be able to see the LEDs

blink live on the web cam live feed.

To serve this purpose, simple off the shelf web cams are used and connected to
each hardware server with an FPGA board. The web cam software would be running on
the remote hardware server (locally in the hardware server). Linux’s Motion is an open

source software that would be used to manage the web cam feed.

2 VMware Workstation Player is available for free only for non-commercial, non-production
environments.

12

4.4. Web Scripting Language Selection - PHP

To manage remote access to an FPGA evaluation board, a web application
needed to be developed from the ground up to provide such a service. Having very
minimal knowledge in current web development design tools and scripting languages;
picking a scripting language for the development of the web application was no easy
task. Current popular web scripting languages and programming languages were looked
at, such as: PHP, Ruby, JavaScript and Python. Online resources and having active
online communities would be an important element for self-learning a new scripting

language.

After looking at the most fundamental back-end functionalities of our web
application; PHP seemed to offer a more suitable range of libraries that would make our
back-end development smoother. And while it wasn't obvious at the time, PHP would

ultimately be a good choice for the front-end as well.

Initially, the overall scope of the web application was heavily underestimated!
With no understanding of current web applications’ complexities, the path taken into
developing the web application for this project would have been a more suitable
approach during the late 90s, with plain and static websites! Initial scripting was done in
PHP, using a direct approach. That is; if a given functionality was needed, the coding
was done from scratch to achieve that specific purpose. However, as the web
application grew, and the development started to shift to the front-end, it became clear
that such an outdated methodology would not be enough. The complexity rose, but the
web application development method could not keep up! Scalability and expandability
needed to be taken into consideration.

4.4.1. Frameworks - Laravel

Frameworks vary based on what one is trying to achieve. Having already
invested time in PHP, naturally, PHP-based frameworks were looked at first. There are
PHP frameworks which can handle things like database abstraction, passwords’
authentication, sending email, and interacting with the web server. Such frameworks
would be very suitable to our project-prototype. The selection was made to use Laravel;

a PHP-based framework.

13

Frameworks are like libraries that try to add another layer that sits on top of a
given programming language to provide efficiency, reusability and most importantly a
level of standardisation to the code. At first, frameworks may seem pointless as it is
much easier to just build something from scratch using the base language. But it would
soon become apparent in a large application or multi-team environments that it is very
important that some level of code standardisation is adhered to. Without a framework,
larger projects will often bloat and head down paths of no return where scalability and
flexibility can no longer be achieved. The code would become difficult to comprehend
and would have numerous dependencies where modifying something could do who
knows what! Frameworks try to abstract a lot of low level logic and methodologies, and
provide a modular way of programming, keeping things nice and separated, allowing the
developer to focus on the intended objective of the application rather than the low level

technical details.

At first, the concept was difficult to grasp. Using Laravel seemed to be an overkill
with our early back-end web application functionalities. However, as the project
progressed towards the front-end aspect of the web application; such as: Menus, UlI,
user profile creation, password encryption, storage and authentication, DB management,
the overhead that comes with the framework was put to good use.

4.4.2. IDE Tools - Homestead

One great advantage of using Laravel is that it comes with its own IDE.
Homestead is the official, pre-packaged Vagrant "box" that provides the developers with
a development environment without requiring one to install PHP, a virtual machine, a
web server, or any other server software on one’s local machine. Homestead is an all-in-
one Laravel PHP IDE. This allows for development and testing of the web application on
a local machine then do the testing in a local virtual machine setup, before pushing the

code changes to the hosting website.

4.5. Web Hosting Services - AWS

While the web application is developed and tested in a local virtual machine
setup, the application must be mirrored to an online hosting service to be accessible

from the World Wide Web. Several online hosting services were looked at with the

14

following two elements in mind: a cost-effective solution and a hosting server that was
Linux-based to be able to run our web application. Amazon Web Services were selected
with their EC2 solution. It offered a 12 month free tier solution and a pay-as-you-go

afterwards.

AWS'’ solution offers 750 hours of Amazon EC2 Linux or RHEL or SLES t2.micro
instance usage (1 GiB of memory and 32-bit and 64-bit platform support) [5].

Another web hosting application which was considered is Heroku. However, after
initial research, it was discovered that Heroku didn’t support some libraries required for
our web application. Also, with Heroku it would not possible to SSH into the hosting

server to debug issues or do custom installations and configurations.

4.6. Software Version Control System and Online
Repository — BitBucket

As with any software based project, there would be a need to keep track of code
changes, to have the ability to roll back, and to easily deploy the source code amongst
multiple users and/or platforms. Again, keeping costs down, several free version
software tracking tools were looked at. Privacy was another element. The project source

code was to not be made publicly available during the development stage.

The choice was made to use BitBucket by Atlassian, which uses GIT as the

version control system.

4.7. Web Based Terminal Emulator — Shell in a Box

One part of the web application is to provide a CLI utility which would provide
direct yet limited access to the remote server of which the user is connected to; for their
FPGA board interaction. While the web application does provide the Ul required to
program the FPGA with a set of bitstream files, terminal access to the hardware server
in question could be of great benefit to advanced users, who have the know-how to
make configuration changes on the fly while they are testing their own FPGA design

files.

15

To allow such terminal access through the web, several web based terminal
emulators where looked at. The selection came down to two options: Shell in a Box and
AjaxTerm. The most sought out feature was that the terminal emulator would not require

the end user to install any plugins to be used.

Both AjaxTerm and Shell in a Box allow access to a remote server using an
emulated terminal in a JavaScript-enabled web browser. Shell in a Box is written in C;
AjaxTerm is written in Python. AjaxTerm works slightly differently from Shell in a Box.
While Shell in a Box runs a full terminal emulator written in JavaScript on the browser,
AjaxTerm does terminal emulation on the server side and send lower-level screen

updates to the browser.

Both tools were tested. Ultimately, Shell in a Box was selected. During testing,
Shell in a Box provided a much smoother terminal interaction with minimal lag. Another
advantage to having chosen Shell in a Box is that it has some unofficial forks over at

GitHub which have come handy to fix some bugs specific to the web application.

16

Chapter 5. System Implementation: FPGA Board
Component

5.1. ZedBoard Setup and Configuration

The ZedBoard purchased came with all the necessary software tools and
licenses needed. Installation of such tools is simple and straightforward. Consult

Appendix I; for more details about Xilinx’s Vivado Design Suite software installation.

The first step into setting up the ZedBoard was to follow the ZedBoard Getting
Started Guide [6]. This would ensure that a given PC or server meets the minimum
requirements to communicate with a ZedBoard, and that all drivers are functional at a

minimal level.

The next step was to go through the ZedBoard Hardware User’s Guide and the
Configuration and Booting Guide [7] - [8]. These two guides help the user get familiar
with the various components and peripherals available, along with various booting and
configuration options on the ZedBoard, which would depend on the application at hand.

For our application use case; either option shown in Table 1 would work.

Table 1 ZedBoard Boot Mode Jumper Settings

Jumper Option 1 Option 2
JP7 GND GND
JP8 GND GND
JP9 GND 3V3
JP10 GND 3Vv3
JP11 GND GND

The three guides mentioned above are the basic required reading before
venturing into the first FPGA design: LED Binary Counter.

17

Figure 3 ZedBoard Boot Mode Jumper Settings - Option 1

5.2. LED Binary Counter on the ZedBoard Using the Zyng-
7000 FPGA

A few basic Zyng-based FPGA designs were created to provide some sample
designs for development, as well as for demonstration purposes. That is, while
developing the web application to remotely access the FPGA board in question, there
was a need to have at least two FPGA sample designs available; to verify that
commands such as programming the bitstream files into the FPGA is indeed working
remotely through the web application. The first such of sample FPGA design files is a

simple LED binary counter.

Sections 5.2.1 through 5.2.4 describe the process of creating the hardware and
the software application to run a simple LED binary counter application on the FPGA

board.

5.2.1. Step 1: Creating a New Project in Vivado
1. Launch the Vivado IDE and select Create New Project

2. Enter a project name of your choice in the Project Name field and choose a

Project Location, and click Next

18

¢ MNew Project ﬁ

Project Hame
Enter a name for your project and specify a directory where the project data files will be stored. ‘

Project name: project_1
Project location: | C:f E]
[¥] Create project subdirectary

Project will be created at: C:/project_1

[< Back “ Mext > ¢ Finish Cancel

|8

Figure 4 Project Name and Location in Vivado

3. Select RTL Project option in the Project Type form, and click Next

4. Inthe Add Sources window, select VHDL as the Target Language and

Simulator Language. Click Next
5. There won't be a need to add files, IPs or constraints so click Next

6. In the Default Part windows, click the Boards icon and choose ZedBoard

Zyng Evaluation and Development Kit, and click Next then Finish

19

-

New Project

A

Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ‘

Select: & Parts |'H Boardsll

4 Filter
Vendor: All -
Display Mame: | Al -
Board Rev: Latest -
Rezet All Filters
Search: |l -

: ; z 5 Blodk
Display Mame Wendor Board Rev Part 1O Pin Count File Version RAMs
" ZedBoard Zynq Evaluaton and DevelopmentKit —[em.avnetcom |4 |1 xc7a020dgo4-1
B ZYNQ-7 ZC702 Evaluation Board xilima. com 1.0 % xcT2020dg4984-1 484 1.2 140
B 7YNQ-7 ZC706 Evaluation Board wilims¢. com 1.1 1§ xcT2045ffg900-2 900 1.2 545

=

< Back][MNext = FEinish

Figure 5 Board Selection in Vivado

5.2.2. Step 2: Creating a Block Design

To control the LEDs from the PS, one needs to create a block design and add a

Zynqg SOC block to it, then add an AXI GPIO IP core which would be used by the Zynq
SOC to control the LEDs.

1. Inthe Flow Navigator expand the IP Integrator and click Create Block Design.

A Create Design window will pop up, keep the same hame design_1 and click
OK

20

Flow Mavigator &

e el —]
b S —

.-l Project Manager
@. Project Settings
O"Jf]_? Add Sources
:.;3 Language Templates
1F 1P Catalog

4 TP Integrator
,ﬁ}’j Create Block Design
-1 c
§¥ Open Block Design

&) Generate Block Design

4 Simulation
% Simulation Settings
@ Run Simulation

Figure 6 Create Block Design in Vivado

2. After the Diagram window opens, click on the Add IP icon from the left panel
of the Diagram page to add IP blocks. Alternatively, one could right-click on

any empty area in the Diagram section and choose Add IP

21

=

BeREd

[Add 1P|

Figure 7 Add IP in Vivado

3. Inthe search bar type Zyng, and choose (double-click) ZYNQ7 Processor
System, this will add a Zynq Processing System IP(the ARM Cortex A9

processor)

22

I= Diagram X |

+[] 4 design_1

Search: | O z‘ynq[| (2 matches)

{F ZYNQ7 Processing System BFM

EMTER to select, ESC to cancel, Ctrl+J for IP detzils

BCREQRSGIHAGDHELA

Figure 8 Add Zynq7 Processing System IP in Vivado

4. Click on Run Block Automation. This would configure the Zynq IP according
to the default settings per the selected board (The ZedBoard). This is called
Design Assistance, and it appears whenever there is a possibility that Vivado

could automate some design steps. Keep the default settings and click OK

J’En Diagram X i& Address Editor X]

3] 4, design_1
Q:. [3 Designer Assistance available. Run Block Automation

processing_system7_0

DDR 4
-~ FIXED_104-

M_AXI_GPO_ACLK M_AXI_GPOp
T ZYNQY e
FCLK_RESETO_N

ZYNQ7 Processing System

Qe iHLPOO®|IER

Figure 9 Run Block Automation in Vivado

23

5. Again click on the Add IP icon and this time; in the search bar type GPIO, and
choose the AXI GPIO. The AXI GPIO IP should appear in the Diagram

- Diagram X | [Address Editor X |
3] design_1

| [@ Designer Assistance availsble. fun Connection Automation

processing_system7_0

DDR &
FIXED_104-

DDR
FIXED_IO
USBIND_O-

M_AXT_GPO f3i

M_AXT_GPO_ACLK ZYNQ‘ TTCO_WAVED_OUT

fdaQE e iHLOOR|E L

ZYNQ7? Processing System

al

Figure 10 Added AXI GPIO IP in Vivado

6. Double click on the AXI GPIO IP, under Board Interface choose leds 8bits
and click OK

[ﬂ Re-customize IP v h [ﬂ‘

AXI GPIO (2.0) '

ﬁ Documentation ||} IP Location

[7] Show disabled ports Component Name design_1_axi_gpio_0_0
Board | IF Configuration |

Assodiate IP interface with board interface

1P Interface Board Interface
GPIO leds 8bits -3
GPIO2 Custom b

Clear Board Parameters

s_awi_aresetn

[Enable Interrupt

Figure 11 Connect the AXI GPIO IP to the Board LED 8 Bits in Vivado

24

7. Now the design assistance will again show the option to run Connection
Automation, Click on it and choose All Automation then click ok. Here, one is
accepting the suggestion of connecting the AXI GPIO IP to the Zyng. Vivado

will add 2 IPs, these IPs are the processor system reset and AXI interconnect

a. The processor system reset provides the reset signals to all
peripherals and interconnects in the PL side of the Zynq according to

reset signal given from the Zynq PS

b. The AXI interconnect is responsible for creating an interface between
the Zynq PS master interface GP port and the AXI GPIO IP

8. Click on the Regenerate Layout icon to rearrange the blocks. This is purely a

visual rearrangement to fit the window/screen

%o Diagram X [AddressEditor X
F[] & design_1 »

&

a
B
[processing_system?7_0_axi_periph
WS 1|2 500_AXI
= rst_processing_system7_0_100M .
“‘ lowest_syne_dk mh,r@e['"'- ESETN[0:0] E—E | axi_gpio_0]
- ext_reset_in bus_struct_reset[0:0] jm S00_ACLK D%D MOO_AXT 45 [il RS _Ax
- & |
= —aux_reset_in peripheral_reset[0:0] m —e=SO0_ARESETN[D:0] 4 s_axi_aclk GPIO 4= ||—D leds_8hits
i_fjk =mb_debug sys rst irterconnect_aresetn[0:0] MOO_ACLK s axi_aresetn
B =dcm_locked peripheral_aresetn[0:0] MOO_ARESETN[0:0]
4 _] AXI GPIO
. Processor System Reset - =
AXI Interconnect
FE 4 processing_system7_0 e
g DDR - |} y DDR
o FIxED 104 ||| > FIXED_IO
alFegenee o] S
T - M_AXI_GPD< [
M_AXI_GPO_ACLK TTCO_WAVED_OUT &
ZYNQ TTCO_WAVEL_OUT
TTCO_WAVE2_OUT
FCLK_CLKO

ZYNQ/ Processing System
Figure 12 Regenerate Layout (l.E. Refresh) in Vivado

9. In the Design window, click on the Sources tab, right-click on the design_1
block design under Design Sources folder and choose create HDL wrapper,
this options creates a top level VHDL file for the block design which can be

used to generate the bitstream file

25

E= Oiagram x| B Address Edior 3¢

*] ddesgn_l v
a
processing_system?_0_axi_periph
@
: — | 4500 a0
__rstprocesding, systam?7.0_100M H——hax =
= —=slowest_syme_dk mb_reet i —] [I axi_gpio_t
= —at_pesat_n bass_striact_pesetf 0] . —S0ACK T § T 00 A] f |ee e5_]
. e et in poriphersl_neses{1:0] ——550_ARISETH B _d_nclk 6010 - (fl——f 3, bedz, Bbits
. * =imby_debug sys il interconned,_mesetn{0:0] I3 —M00_ACLK. vs_am_anesetn
B Remave Fie from Project... Delete s - borked peripheral 1 - ARESETH
5 " | PO
ey . eIYOCEmOr Tystem Reset ————rerrrr————
Disaitie e Al Minus processing_system? 0 AX] [mterconne
Meararchy Update » f = =

F
Mierarchy | 5] 8 Sources | Refresh erarchy ® 2 one
A T j [FIXED 10 FIXED_IO
J & USBIND, O
‘Source Fie Propert e
: —. ¥
- B —=1_AX]GPO_ACLK ZYNO TTC0_ WAVED OUT =
4 desgn_Lbd Sl b, TTCD, WAVEL OUT -
Ech Corntrasnts Sets... TTCO_WAVEZ OUTf
e Bt Sdan Stz LK e
T
Lok asseciate ELF Fies., FOLK_RESETO_N
Ack Sources... et
L _ Fesort 1P Stans

Figure 13 Create HDL Wrapper in Vivado

10. Keep the default setting Let Vivado manage wrapper and auto-update and
click OK

c. Note: Click on the Address Editor, one shall find the processing
system connected to the AXI GPIO IP, with an automatically given
offset address. This address will be used by the Zynqg processor to
communicate with the AXI GPIO IP which is connected to the LEDs.
In our example the offset address is 0x41200000

11. In the Flow Navigator, under Program and Debug click on Generate
Bitstream. Alternatively, from the top menu Flow - Generate Bitstream.

During this step the tool creates a bit file for programming the PL of the Zyng.
Accept to save the project

26

File Edit | Flow | Tools Window Layout WView Help

[M| Project Manager
3,8 o XA
, IP Integrator
Create Block Design

Open Block Design k

Flow Mavigd

o R e
b, e —

| - design_1*

¥ ¥ | B |
4 Project] & Simulation Settings...

Fources (1)

ﬁ_ Run Simulation 3 p
esign_1_wrap

d{fl' Open Static Simulation. .. Jints

) Elaboration Settings... pn Sources (1

¥

iy

(A

it b
gz E* Open Elaborated Design Bk

g

{5

-2

Mew Elaborated Design. ..
4 TP Inte|

Synthesis Settings...
,L'i}: Run Synthesis F11
'12} .
& Implementation Settings. ..
4 Simulatig [+ Run Implementation
] b
m
@ Open Hardware Manager
4 RTL Ana {fi Bitstream Settings...

%) Generate Bitstream

=¥ Create Runs... ,
G lopen S e <es | H Design

IF Sources | Libr

Figure 14 Generate Bitstream

12. Click Yes to No Implementation Results Available. This would synthesize the
design. Depending on the PC’s available resources and specs, the process

should take a few minutes, potentially longer on slower PCs

13. Bit Generation Complete message should pop up, close/cancel it then go to
File > Export - Export Hardware. Check the Include bitstream and click ok.

This exports the hardware files generated to the SDK

27

¢ Export Hardware &J

Export hardware platform for software development
tools,

[¥] Include bitstream

Export to: | 60 <Local to Project= -

[oK | I Cancel

a-

\

Figure 15 Export Hardware And Bitstream in Vivado

5.2.3. Step 3: Writing the Software Application

During this step one would export the hardware files to the SDK to create a C
project for controlling the LEDs from the Zynq PS.

1. InVivado go to File > Launch SDK, then click OK. The SDK will open and in
the Project Explorer window one could see the exported hardware files. In the
SDK go to Files > New - board support package then click finish. This
creates a board support package with all the necessary functions for driving

the hardware that was designed in Vivado; in the previous steps

Edit Source Refactor Mavigate Search Project XilinkTools Run Window Help

Mew Alt+5Shift+MN » | @l Application Project ", = 4 v [- - — o | .
Open File... F sPM Project
Close Chrle W i Board Support Package
el Chbsiaw | O | Project.. er_hw_platform_0 Hardware Platform Specification

ose i+ Shift+
S Ctrles &% Source Folder

ij. Folder 52020
Ctrl+Shift+5 ¢ SourceFile iwado 20153
Rt h HeaderFile ed Feb 1519:33:01 2017
* Filefrom Template
Move... @ Class [essor ps7_cortexa®_0
Rename... T 0=f8£01000 OxfSf0LEEE
Refresh | CHRthes SN b 0220002000 0xe000attE
Convert Line Delimiters To) ps7_scutimer 0 Oxf3£00600 OxfS£00611
psi_sler 0 0=£8000000 Oxf3000££1

Print... Ctrl+P psT_scuwdt 0 O0xf8£00620 O=f23£006f1

i ps7_12cachec 0 OzfBE02000 D=f8£02££¢
s s Workspace X ps7_scuc 0 OxfBENOODD OxfBEONDEC
Restart ps7_gspi_linear 0 0xfc000000 Oxfcffffff
1 = ps7_pmu_0 0=xfB8893000 O=f8833fff
mport...

ps7_afi_l O=£3009000 0=f8009££f
Export... ps7_afi 0 O=£3008000 D=f8008££f
ps7_gspi 0 0xe0004000 Oxe000dfff

G E

Properties Alt+Enter
ps7_usb 0 0xe0002000 Oxe0002£f1
1 system.hdf [design_1_wrapper_hw_pla...] psi_afi_3 O=f300b000 Dx{fS00bEff
psi_afi_2 O=f3800a000 Dxf800afif
i psi_globaltimer 0 O=f3£00200 Oxf8£002£4
P deee - MefONATANA eefONN3EEE

28

Figure 16 Create a New Board Support Package in SDK

2. The Board Support Package Settings window would pop up, keep all default
settings and click Finish then OK

3. Create an application project by going to File > New > Application Project.

Enter a name in the project name field and under the Board Support Package
choose Use existing then click Next

@ Mew Project I. = éj

Application Project

Create a managed make application project. @

Project name: project_1

Uzce default location
Ch\project_1\project_1.sdk\project_1 Browse...

default

05 Platform: ’standalone v]

Target Hardware

Hardware Platform: ’design_l_wrapper_hw_platform_ﬂ v] ’Ngw]
Processarn ’ psf _cortexad 0 -]
Target Software
Language: @ C O Ces

32-bit

Board Support Package: () Create New

@ Use existing | standalone_bsp_0 -

@j < Back Mext =] | Finish | ’ Cancel

29

Figure 17 Create an Application Project in SDK

4. Choose Hello World from the Available Templates then click Finish

rm Mew Project

Create one of the available templates to generate a fully-functioning
application project.

Available Termplates:

BEI™"
Templates #_f

Zyng MP FSBL |Let's say 'Hello World' in C.
Empty Application

OpenAMP echo-test

fyng DRAM tests

Zyng FSEL

Ailkernel POSIK Threads Demo

SREC SPI Bootloader

Peripheral Tests

FreeRTOS Helle World

SREC Bootloader

OpenAMP matrix multiplication Derno

| | wIP Echo Server

'
Mernory Tests

ZyngMP PMU Firrnware

OpenAMP RPC Demo

Chrystone

|| | RSA Authentication App

@ Net> | [Enish][Cancel

Figure 18 Select Hello World Template in SDK

30

5. In the Project Explorer left panel, expand the src folder under the project_1
folder and double click on Helloworld.c. The source code will be visible in the

main window. Replace the code within it with the following code:

1. #include <stdio.h>

2. #include "platform_h"

3. #include "Xil _io.h"

4. // delay function

5. void delay(Q)

6. {

7. int i;

8. for(i=0;i< ;i+t);

9. }

10. int main()

11. {

12. init_platform();

13. unsigned char counter=0;

14. // infinite loop

15. while(1)

16. {

17. // write to address 0x41200000(offset address
of the AXI GP10:8 LEDs) the value of counter

18. Xil_Out32(,counter);

19. // increment counter

20. counter++;

21. //delay

22. delay(Q);

23. }

24.

25. cleanup_platform(Q);

26. return O;

27. }

31

G- H-0-Q@-w @HI-FENE-F e~

3 ||l5E system.hdf IHp, system.mss [£] *helloworld.c &2

#include <stdic.h:>
#include "platform.h™
#include "Xil_io.h™
// delay function

“woid delay()

int i;
for(i=0;i<2p000000;1i++);
h

= int main()

init_platform();
unsigned char counter=@;
// infinite loop
while(1)
[/ write to address @x412e@008(offset address of the AXI GPIO:8 LEDs) the value of counter
Xil Out32(@x41286608,counter);
f/ increment counter
counter++;
//delay
delay();

cleanup_platform();
return @;

Figure 19 LED Binary Counter C code in SDK

5.2.4. Step 4: Programming the ZedBoard and Running the C
Application

1. Inthe SDK click on the program FPGA icon then click program; to program
the Zynq PL with the bitstream

Mavigate Search Project Xil
v &2 EEE
Program FPGA [: 1

tlatfarm (]

Figure 20 Program FPGA in SDK

2. Right-click on the project_1 folder in the Project Explorer panel then go to
Run As - 4 Launch on Hardware (GBD). The application should run on the

board and the LEDs should show the binary values of the counter

32

LE| ps/_INIT.C e a;

[€ psT_init.h for(i=9;i<20000000;i++);
Q P Mew » = int main()
=l ps I
c;'ﬁ _5)‘ - ini‘t'_platform()i
LT P — e e
> ! In iZ Copy Ctrl+C ?hlle(l)
> @ Ds Paste Chrl+V /4 write to address @x412e
‘S5 x v e e
> [Source [;qunter++,’
s [g) Move... 5o ny
delay();
g % Rename... F2 }
> (Ml standg gig Import... cleanup_platform();
¢ Bxport.. ; return 8;
Build Project
Clean Project
&] Refresh F5
Close Project
Close Unrelated Projects
Build Configurations 3
Make Targets 3
Index 4
Show in Remote Systems view
Profiling Tools »
Convert To...
Profile As | [
ﬁ.Target Co. Debug As 4 | Jees =] |_—E_\ Prublems:\/‘"_-?,-Tasks.- El Console 33. El Prop
> [= Hard Run As v | 1. 1 Llaunch on Hardware (System Debugger) |
> & Linux Compare With » [2 Start Performance Analysis
Lo Restore frem Local History... .?::F 3 Launch on Hardware (Systermn Debugger on QEMU)
E: et Bt i GiD:B 4 Launch on Hardware (GDE)
@i Change Referenced BSP [€] 5Llocal C/C++ Application
E Generate Linker Script Run Configurations...
C/C++ Build Settings
%}' Run C/C++ Code Analysis
Team 3 -
gﬂoject_l Properties Alt+Enter

Figure 21 Running the C Application on the Hardware in SDK

5.3. Other FPGA Designs

Full instructions with complete diagrams for the LED Binary Counter as well as
the remaining FPGA designs that were developed and tested to be used as a demo for

the project-prototype could be found in Appendices D through H.

33

Chapter 6. System Implementation: Web
Application

6.1. Tree View of the Web Application

As mentioned previously, the web application manages the front end (end user

interface and interaction) as well as the back end (Interaction with the remote hardware

server and the FPGA board in question).

The folder structure view shown in Figure 22 provides the main overview of the

web application source code structure:

..Japp: The web application top level core code definition. This is similar to

class definitions

../config: All the web application’s configuration settings are stored in this

folder. Example: remote connection database settings

../public: Contains the index.php (I.E. the homepage, or pointer to the
homepage) which is the entry point for all requests entering the web

application

../public/assets: JavaScript, CSS and images used throughout the web

application

../public/filemanager: Source code for the File Manager plugin as well as

storage location for user uploaded content

..IserversD: Contains daemon source code for the hardware servers’ online

availability status check utility
../storage: Contains event logs, cache, sessions, etc...

../composer.json: Dependency file manager. Composer will manage the
dependencies required on a project by project basis. This means that
Composer will pull in all the required libraries, dependencies and manage

them all in one place

34

app
b bootstrap

v

b config
ke databaze
v public

4 gssets

filernanager
w -Ntaccess

= favicon.ico

oo index.php
= robots.bd
ahn test.php
P FESOUTCES
ke cerversD
b storage
> tests
B wvendor
= .env

.gitattributes

Jgitignore

Jeermirc

np artisan

2 check_servers_status

5o COMpPOSEr.json

composer.lock
asa gulpfilejs

id_rsa

= package.json
[l phpspec.yml
.‘:’ phpunitxml
= Procfile

wo readme.md

ohp SEMVErphp

= uart_connect.sh

Figure 22 The Web Application’s Structure Main Overview

35

6.2. Model-View-Controller Code Structure

Model View Controller is a software architecture that separates the application
logic from the rest of the user interface. This is achieved by separating the application

into three parts: the model, the view, and the controller.

The model manages essential behaviors and data of the application. It can
respond to requests for information, respond to instructions to change the state of its
information, or notify observers in event-driven systems when information changes. This

could be a database. It is the data and data-management aspect of the application.

The controller receives user input and makes calls to model objects and the view

to perform appropriate actions.

The view is the user interface element of the application. It'll render data from the

model into a form that is suitable for the user interface.

All'in all, these three components work together to create the three basic

components of MVC.

6.2.1. The Models
Figure 23 shows the models used in our web application:

o ../app/Http/Models/Auth_model.php: DB model for user authentication

..Japp/Http/Models/Homes.php: DB model for server and web application

settings

../app/Http/Models/Users.php: DB model for user settings

..Japp/Http/Reservation.php: DB model for FPGA board online booking

..Japp/Http/Server.php: DB model for amount of servers available and their
online/offline status. Our project-porotype has only 1-2 virtual servers.

However, the web application supports as many servers as could be needed

36

e ../app/Http/Tab.php: DB model for tabs open in the web based emulated

terminal (CLI access to the remote server through Shell in a Box)

o ../app/Http/User.php: Additional DB model for user passwords

ec2-zedservers ;
B2 Project - (X - A
app
Conscole
Events
Exceptions
Helpers
Http
Controllers
Auth
€l Controller.php
© HemeCentroller.php
C UserController.php
Middleware
Models
< Auth_model.php
C Homes.php
< Users.php
Fequests
C Kernelphp
ahn Foutes.php
lobs
Listeners

Providers

(]

Reservation.php

g

Server.php
Tab.php
User.php

(]

g

Figure 23 Models, Controllers, and Helpers Source Code Tree
6.2.2. The Controllers

In our web application Laravel’s controllers are used to perform all page-based

actions or user-based actions. Page-based actions are actions such as loading a frame

37

or refreshing text displayed on the web page. User-based actions are actions such user-

login, user-registration, reset password request, etc....

The folder structure in Figure 23 shows the two main controllers used in the web
application:

e . ../app/Http/Controllers’fHomeController.php: This is the controller for all the
web application’s actions. It contains all the code specific to the web

application’s actions

o _/app/Http/Controllers/UserController.php: This is the controller for all the

user’s actions. It contains all the code related to the user’s actions

6.2.3. The View

The third component of the MVC structure is the view. In essence, this is what

the user sees on any given website. It's the user interface; the web page.

Figure 24 shows the various Ul (I.E. web pages) that the end user could interact

with on the web application.

o ../appl/resources/views/admin/admin_blade.php: Administrative settings page.

Accessible only by users given administrative privileges

o _/appl/resources/views/admin/rserver.blade.php: The remote hardware server
page. This is the workshop web page! That is, the interactive web page that

allows the connected user to interact with a remote FPGA evaluation board

o _/app/resources/views/admin/admin_menu.blade.php: Web site navigation

menu for administrative users

e ../app/resources/views/admin/guest_menu.blade.php: Web site navigation

menu for standard users

e ../app/resources/views/admin/footer.blade.php: Footer content of any given
web page

38

..Japp/resources/views/admin/header.blade.php: Header content of any given

web page

..Japp/resources/views/admin/changePassword.blade.php: Change user’'s

password form web page
../lapp/resources/views/admin/login.blade.php: User login web page

..Japp/resources/views/admin/profile.blade.php: User profile (I.E. Dashboard)
web page

..Japp/resources/views/admin/register.blade.php: User registration web page

..Japp/resources/views/admin/home.blade.php: The main landing web page

(I.E. the homepage of the web site)

39

app
bootstrap
config
database
public
FESOUTCEs
assets
lang
views
admin
admin.blade.php
durmnmy_page.blade.php
reserv.blade.php
rserver.blade.php
Errors
menu
admin_mnenu.blade.php
guest_menu.blade.php
ternplate
default.blade.php
footer.blade.php
header.blade.php
user
changePassword.blade.php
legin.blade.php
profile.blade.php
register.blade.php
userapp
home.blade.php

vendar

welcome.blade.php

Figure 24 The View Source Code Tree

6.3. Services

The advantages of using a framework such as Laravel is that it come pre-
packaged with commonly used services such as authentication, file management, mail

management, etc... One such type of services is Helpers.

40

Helpers are commonly used “tools” in programming such as path functions (set
path, find path, etc...) or string manipulation (change string to lower case, upper case,

camel case, etc...) or array functions (array set, sort, delete, etc...).

Laravel includes a variety of "helper" PHP functions. Many of these functions are
used by the framework itself; however, the developer is free to use them, or create

custom helper functions.

Figure 23 shows the helpers folder within the source code tree.

41

Chapter 7. Website Layout

For the purpose of this project-prototype; the web application is hosted on
Amazon Web Services. The following section showcases various screenshots of the
web application website as seen by the end user. As well as highlighting the various

features of the web application

7.1. Landing Page

The landing page is the main page of the web application. It contains an side-
scrolling image slider, a top menu to navigate to various sections of the website, the
server selection menu, the scheduling tool as well as the typical, contact us, and about

us sections.

7.1.1. Top Menu and Image Slider

Figure 25 shows the top section of the landing view, which includes the image

slider and the top menu; as seen by non-logged-in users.

ZedServers

Reserve Your FPGA
Board Now,
and Start Testing in
Minutes!

Figure 25 Landing Page with Image Slider and Top Menu

Figure 26 shows the top menu as seen by logged users. Note that the ADMIN

option is only visible to users with administrative privileges.

42

Hella john

ZedServers HOME SERVERS DASHEOARD ADMIN LOGOUT CONTACT ABOUT US

Figure 26 Top Menu as Seen by Logged-In Users

7.1.2. Server and FPGA Boards Selection Menu

Figure 27 shows the server and FPGA board type selection menu. The user can
navigate through the board tabs by clicking the desired board. Each board type (selected
tab) would show a list of servers (buttons). A red button means that the server in
question is offline. A yellow button means that the server is online, but is currently being
used any another user. A green button means that the server is online and is available

for use.

Services

Please Choose your Server

ZEDBOARD | ARTIX SPARTAN

Figure 27 Server and FPGA Board Selection Menu

The webmaster (a user with administrative privileges) could add, remove, or

make a given server accessible in the settings page shown in Figure 28.

43

ZED BOARD

Enter IP Address Enable

0.0.00 =
1111 =

2222 =

3333 =

Figure 28 Server and FPGA Board - Administrative Settings

7.1.3. Server and FPGA Scheduling Tool

Users could make their selection of an FPGA board type and a server. The
scheduling tool would then display a two-week window of 24 hour time slots. The user
then could see if a given board or server is free or already reserved by another user. The
user could make their selection to reserve some hours, and click on a reserve button to
finalize the reservation. The user could also see their own time slots that were booked in
a prior session. The scheduling tool contains a rolling 14-day window, with 24 hour slots

per day.

44

Hello john

ZedServers HOME SERVERS DASHBOARD ADMIN LOGOUT CONTACT ABOUTUS

ZED BOARD ARTIX SPARTAN

Schedule for Server 1

Sun Mar Mon Mar Tue Mar Wed Mar Thu Mar Fri Mar Sat Mar Sun Mar Mon Mar Tue Mar Wed Mar Thu Mar Fri Mar

19 20 21 22 23 24 25 26 27 28 29 30 31
00:00 john free free free free free free free free free free free
01:00 john free free free free free free free free free free free
02:00 john reserved free selected free free free free free free free free
03:00 john reserved free selected free free free free free free free free
04:00 free reserved free free free free free free free free free free
05:00 free reserved free selected free free free free free free free free
06:00 free free free selected free free free free free free free free
07:00 free free free free free free free free free free free free
08:00 free free free free free free free free free free free free

Figure 29 Server and FPGA Board Scheduling Tool

7.2. Remote Server Page

Once the user is granted access to an online and available remote server, the
user is redirected to the remote server page. In this page, users are remotely connected
to a hardware server, where the FPGA board is connected. Through the server page,
users interact with the FPGA platform: Load FPGA demao files, upload user-created
FPGA design files, program FPGA design files into the FPGA in question, enable/disable
the webcam stream, and the ability to power-cycle (hard reset) the FPGA board. Users
also have access to a web-based terminal emulator. This gives them full access to their

directory space within the remote hardware server.

45

HOME SERVERS

ZedServers

Program

TERMINAL UART

TAB1 +

DASHBOARD

Hello john

LOGOUT

ADMIN CONTACT ABOUT US

* Documentation: https://help.ubuntu.com/

27 packages can be updated.
26 updates are security updates.

New release '16.84.2 LTS' available.

Run 'do-release-upgrade' to upgrade to it.

WARNING: Security updates for your current Hardware Enablement Stack
lended on 2016-88-04:
* http://wiki.ubuntu.com/1404_HWE_EOL

There is a graphics stack installed on this system. An upgrade to a
configuration supported for the full lifetime of the LTS will become

in the Dash.

[john@ubuntu:~% D

available on 2816-87-21 and can be installed by running 'update-manager'

n

Figure 30 Remote Server Page: Conneciton to Remote FPGA Hardware Server

7.2.1. File Manager and Program Tool

In the remote server page, users have access to the File Manager tool (shown in

Figure 31). The tool allows the users to:

e Browse existing demo FPGA files (bitstream and elf files)

e Upload user-created FPGA files (bitstream and elf files)

e Create, remove folders and files

¢ Program the FPGA with selected FPGA files (bitstream and elf files)

46

Upload Manager

Current folder: /samples/demos/dema_01/ & New folder

BF samples
& demos
B programsh
B programtc
. ps7_init tcl
& demo_01
B demo_oibit ¥
B demo_oterr %}\
. led_countername
B demo_02
B demo_03
e demo_01.bit |
B demo 05 Maodified 12 Mar 2017 22:01
B demo_06 i
B demo_07
B demo_08
B demo_09

() Parentfolder & Download o Rename [Delete 13 Replacefile

Figure 31 File Manager and Program Tool

Once the user select the desired FPGA files to be programmed (Figure 31), the
Program tool would run a shell script on the remote hardware server; of which the FPGA
board is connected to. The shell executes the programming on the remote server (using
pre-install FPGA programming tools). The messages displayed during the programing
process are streamed back on the web application; to allow users to follow the

programming progress (Figure 32).

47

Program running!

**EE¥x XMD v2015.3 (64-bit)
***¥* oW Build 1368829 on Mon Sep 28 20:86:3%2 MDT 2015
** Copyright 1986-2015 Xilinx, Inc. All Rights Reserved.

Waiting for Bootrom to re-enable DAP after reset
System reset successfully

Configuring Device 2 (xc7z@820) with Bitstream -- /home/userhomes/john/samples/demos/demo_81/demo_@1.bit
e[l S £ s e e BRI 8@..

Figure 32 Program Tool: Programming Progress

48

Chapter 8. Conclusion

Despite the rise of FPGA applications in recent years, access to FPGA
evaluation boards is mainly still limited to professional environments and engineering
classes within academic institutions. Such limited access is attributed mostly to cost and
to the large variety of FPGA selection that could overwhelm would be users. The
project’s purpose was to develop a working proof of concept; of an engineering web

application that would put more FPGA evaluation boards in the virtual hands of users.

The idea in principle is to allow users, through a web application, to connect
remotely to FPGA evaluation boards, where they could upload their own bitstream files
to test their own FPGA design files; on a user-selected matching FPGA evaluation
board. The web application would offer a live web cam stream showing the FPGA board
that the user is interacting with remotely, a file manager utility that allows the user to
upload and store their own FPGA design files, a program-the-FPGA web tool, a web-
based terminal for advanced users, as well as a power-cycle tool to perform hard resets
on the FPGA.

The project’s two core objectives were:

e Learn some basic and practical FPGA design methodologies to create
basic FPGA applications to use as samples to demonstrate the project-

prototype in a real world scenario

o Develop a web application using current web development and design

methodologies

8.1. FPGA Applications Development: What Was Learned

To create some basic demo sample files, basic FPGA design methodologies had
to be learned first. This was achieved by following several online tutorials and guides

provided by Xilinx:

e Usage and setup of the hardware FPGA evaluation board kit (ZedBoard with
Zynq-7000)

49

Usage of Xilinx FPGA software design suite: Vivado. From basic FPGA

designs (using PL and PS) to synthesis, and generating bitstreams

The use of Xilinx's SDK to create application software that would run on a

given FPGA hardware design (bitstreams)

Interfaced various input, output and other peripherals with the FPGA (OLED,
LED, UART, RAM, etc.)

8.2. Web Application: What Was Learned

In order to complete the web application a significant effort was made to learn a

wide range of web development tools, as this is the largest component of the project:

8.3.

Web development with PHP
Used frameworks such as Laravel; for web development

Used Amazon Web Services (AWS) and used one of their products (EC2) to

host the web application
Used online repositories (BitBucket) and version software tracking tools (GIT)

Created various web applications that serve several key functions such as:
FPGA board time reservation, user account creation, email confirmation, user
access management, remote server access and management, and servers’

online/offline status checks

Used MySQL to manages databases that store user and server info

Known Bugs

Despite extensive testing and validation of the web application, no software is

ever 100% bug-free! There is one known bug within the web application. The bug is

related to the web application’s reservation/scheduling tool.

50

The scheduling tool allows the user to reserve some time slots for future use. For
example, the user may reserve FPGA board A on server B from 11 AM to 3PM on a

specified date within a two-week window.

The bug is such that if the user attempts to make a reservation that would take
place between 4PM and 12AM on the same day, while the local time of the user is
making this reservation is between 4PM and 12AM; the scheduling app will mark the
reservation date as day +1. This is assumed to be a case of Pacific Standard Time being
8 hours behind GMT. However, all web hosting servers, software and variables used
have been verified to be all in sync. After several unsuccessful attempts to resolve this

bug, it was decided to suspend all subsequent efforts to find a resolution as future work.

8.4. Future Work

While the completed project-prototype did serve its purpose to showcase the web
application in a real world usage scenario, some work could be done to enhance the

web application.

¢ In the current website layout of the web application, when the user launches
the file manager tool (to program the FPGA or to upload user-created
content), the file manager pop-up would obstruct the view of the webcam
stream. Both the webcam view frame and the file manager pop-up are static
and cannot be moved or resized by the end user. The web application layout
should be updated to re-arrange the layout to not have the file manager
obstruct the webcam stream view. Effort estimate to add such a feature is

small

o When a user uses the reserve/scheduling tool within the web application to
book an FPGA board for future use; the user would get a confirmation email
of all future bookings made by the user. The reserved time slots are also
visible in the user’s online dashboard; within the web application. An
enhancement would be to add a calendar event, of reserved time slots
emailed to the user. Thus the user would have a calendar event reminder on
their PC, laptop, tablet, or smartphone. Effort estimate to add such a feature

is small

51

Address the time zone scheduling bug highlighted in section 7.3

Currently the UART output (if applicable) from the FPGA becomes visible
only when the end user activates the UART tab within the web application.
Thus, the user would not be able to view past UART events, like boot-up
details (if applicable) and such. An enhancement to the web application could
be inspired by Apple’s MacOS X Console tool. That is the UART output of the
FPGA could be buffered into a file, at all times. Thus when the user activates
the UART tab within the web application, the user would see the current
UART output, and would have the ability to scroll up within the window to
view past events, piped from the UART buffered file. Effort estimate to add

such a feature is small to medium

To develop and test this project-prototype, the choice was made to use the
ZedBoard with Xilinx’'s Zyng-7000 FPGA. While the web application is FPGA
and board independent, the web application’s program-the-FPGA function
uses a shell script on the remote hardware server that is currently specific
only to Xilinx’s Vivado suite. That is, any other Xilinx FPGA type supported by
Vivado would work in this web application without the need for any
modification to the hardware server nor to the web application. However, if
the user chooses to use an FPGA from another vendor, then the appropriate
software and license must be installed on the hardware server, as well as
creating a specific shell script to program the FPGA. In such a case, the web
application would remotely execute the appropriate program-the-FPGA shell
script; matching the FPGA type. Effort estimate to add such a feature is small

to medium

Currently, the remote servers are setup to support only one FPGA board
connection at any given time. This is inefficient. A single server, in theory
could have multiple FPGA boards connected to it. However, some software
would need to be developed to allow the web application to distinguish and
route the correct web traffic to the intended FPGA board target, within the
same hardware server. Alternatively, one could run several virtual machines

per server, where each virtual machine would be linked to one FPGA board

52

only. Thus, a single physical server would appear as several logical units.

Effort estimate to add such a feature is medium

The current web application was mainly developed and tested using popular
web browsers Firefox and Chrome. Some additional work would be needed
to support Microsoft’'s Internet Explorer. Effort estimate to add such a feature

is medium to large

In the appendices, a series of guides are provided showing how to configure
the FPGA hardware servers, along with the basic required software
installations. Such server configuration is necessary to allow for a successful
interaction between the hardware server and the web application. Ideally, this
process should be automated by the creation of an install package. Effort

estimate to add such a feature is small to medium

The current project-prototype uses Linux as the OS for the hardware server

(server connected to the FPGA board). If the user choses to use a Windows-
based server, some elements of the web application as well as the hardware
server implementation would need to be revisited. Effort estimate to add such

a feature is large

Some FPGA evaluation boards have an on-board audio line out, as well as a
video output; for advanced FPGA applications. It would be greatly beneficial
to have such AV outputs connected to the hardware server, and streamed
onto the web application; in a manner similar to the current webcam stream
view of the FPGA board. Effort estimate to stream the audio line out is
medium. However, the effort to stream the video out is large. And, it would

require the addition of a video capture card to the hardware server

Currently the web application has two levels of user privileges: Administrative
users (example: the webmaster or IT) and regular users (the targeted end
user on the web). Users with administrative privileges would be able to add,
remove, and update the number of boards or servers that could be made
accessible to the web application. They could also manage the scheduling
tool such as limiting the number of hours a given user can reserve a given

FPGA board, per day, or week. As well as online/offline server status checks

53

timeout limits, etc.... A third user privilege category being proposed is on a
group level. That is, if the application is being used by company A, then they
would have their own internal administrative users that would have a group-
level privilege. This group level would sit a step below admin-level users.

Effort estimate to add such a feature is small

The web application has several tools to allow the user to interact and
program an FPGA board remotely. While all the tools are accessible to all
users, some tools are more tailored for extended debugging and testing, such
as the web terminal emulator that offers CLI access to the remote hardware
server. Another testing tool that could be added is to allow the user to interact
with their software application that would be running on the FPGA, from the
terminal. That is in addition of the current demo files that are included in the
web application, another demo that could be added to allow the user to enter
a command from a CLI (similar to the application shown in Appendix M) to
interact with the 10s on the FPGA board such as the LEDs. Or even run a
bunch of wrapper scripts that would display messages on the OLED. Effort

estimate to add such a feature is small to medium

54

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Grand View Research, "Global FPGA Market Size To Reach USD 14.2 Billion By
2024," Grand View Research, December 2016. [Online]. Available:
http://lwww.grandviewresearch.com/press-release/global-fpga-market. [Accessed
13 February 2017].

Global Market Insights, "FPGA Market Size By Application,” Global Market Insights,
February 2016. [Online]. Available: https://www.gminsights.com/industry-
analysis/field-programmable-gate-array-fpga-market-size. [Accessed 13 February
2017].

B. Darrow, "The First Chip From Intel's Altera Buy Will Be out in 2016," 18
November 2015. [Online]. Available: http://fortune.com/2015/11/18/intel-xeon-fpga-
chips/. [Accessed 11 March 2017].

R. Miller, "Intel Unveils FPGA to Accelerate Neural Networks," 15 November 2016.
[Online]. Available: http://datacenterfrontier.com/intel-unveils-fpga-to-accelerate-ai-

neural-networks/. [Accessed 11 March 2017].

Amazon Web Services, "Amazon Elastic Compute Cloud," Amazon Web Services,

[Online]. Available: https://aws.amazon.com/ec2/. [Accessed 13 February 2017].

Avnet Electronics Marketing, "ZedBoard Getting Started Guide," 30 January 2014.
[Online]. Available: http://zedboard.org/sites/default/files/documentations/GS-AES-
ZTEV-7Z020-G-V7.pdf. [Accessed 28 September 2014].

Avnet Electronics Marketing, "ZedBoard Hardware User’'s Guide," 27 January
2014. [Online]. Available:
http://zedboard.org/sites/default/files/documentations/ZedBoard HW_UG_v2_2.pdf
. [Accessed 16 February 2017].

Avnet Electronics Marketing, "Configuration and Booting Guide," 17 August 2012.

[Online]. Available:

55

https://forums.xilinx.com/xInx/attachments/xInx/ELINUX/8461/1/ZedBoard_boot_gui
de_IDS14 1 v1 1 .pdf. [Accessed 9 November 2014].

[9] B. Darrow, "Official At Last: Intel Completes $16.7 Billion Buy of Altera," 28
December 2015. [Online]. Available: http://fortune.com/2015/12/28/intel-completes-
altera-acquisition/. [Accessed 11 March 2017].

56

Appendix A. VMware Workstation Player and Ubuntu
14.04.2 Virtual Machine Installation Guide

To set up an Ubuntu (Linux) virtual machine in a Windows OS, first, one needs to
download the Ubuntu ISO image and the VMware Workstation Player. The following

guide uses:
e Ubuntu 14.04.2 LTS
e VMware Workstation Player 12.1.1

Second, one would start by installing the VMware Player. Then, one would create
a new virtual machine using the VMware Player software. Installing VMware Workstation
Player is simple and straightforward. Run the installation executable and follow the
install prompts; typical of any Windows-based software install. Once complete, and if
prompted, reboot the PC.

To create an Ubuntu virtual machine with VMware Player in a Windows 7

environment, perform the following steps:
1. Launch VMware Workstation 12 Player

2. On the right side, click Create a New Virtual Machine

57

r — — -— — —— — ™
L VMware Workstation 12 Player (Non-commercial use only) E@g

Blayer = | - -

Welcome to VMware
Workstation 12 Player

T
= Create a new virtual machine, which will then be added to

] Create a New Virtual Machine
II cﬁ
= \'b' the top of your library.

Open an existing virtual machine, which will then be added
to the top of your library.

‘\E Open a Virtual Machine

y I Upgrade to VMware Workstation Pro

Get advanced features such as snapshots, virtual network.
management, and mare.

Help
k. & 4 View online help.

e This product is not licensed and is authorized for non-
i # commerdal use only. For commerdal use, purchase a
license. Buy now.

Figure Al Create a New Vitrual Machine

3. Select Installer disc image file (ISO) and Browse to the location of the ubuntu-
14.04.2-desktop-amd64.iso, then click Next

58

—
T ee—
MNew Virtual Machine Wizard “ » lg}

Welcome to the New Virtual Machine Wizard

A virtual machine is like a physical computer; it needs an operating
gystem. How will you install the guest operating system?

Install from:
() Installer disc:

&3 DVD RW Drive (D:)

@ Installer disc image file (iso):

ubuntu-14.04, 2-desktop-amda4.iso - Browse. .. N

,jrj buntu 64-hit 14.04. 2 detected.
This operating system will use Easy Install. (What's this?)

(") I willinstall the operating system later,
The virtual machine will be created with a blank hard disk.

= Back [Mext = J[Cancel

Figure A2 Select the Ubuntu 14.04.2 LTS ISO Image

4. Create the user profile

59

Mew Virtual Machine Wizard “ A] 4@_@

Easy Install Information
This is used to install Ubuntu 64-hit,

Personalize Linux

Full name:

User name:
Password:

Confirm:

[< Back]| Mext = |[Cancel

Figure A3 Create a User Profile

5. Provide a name to the virtual machine, or accept the default. It's
recommended that you give more details in the name rather than just a
generic hame, create a name that would specify Ubuntu’s version, 32 or 64
bits, the date installed, etc... As one could create several virtual machines,
detailed names would allow for easier identification. Choose a different

location to store the virtual machine disk file(s), or accept the default location

60

New Virtual Machine Wizard | [T =

Hame the Virtual Machine
What name would you like to use for this virtual machine?

Virtual machine name;

Location:

Browse...

[< Back]| Mext = |l Cancel

Figure A4 Provide a Name and Location to the Virtual Machine

6. Specify the disk capacity to 40G, or more. Note that it's not straightforward to
change the disk size of the virtual image at a later time. Furthermore, if one
sets up the disk image to be too large that goes unused, then again it is

wasted space and not straightforward to reduce it

7. Depending on the host OS, and whether the virtual machine image would be
copied to other locations, storing the virtual disk as a single file might be a
better or worse option than splitting the virtual disk into multiple files. If one

doesn’'t know what to do, use the default setting

61

Mew Virtual Machine Wizard “ 1 u&‘_ﬁ

specify Disk Capacity
How large do you want this disk to be?

The virtual machine's hard disk is stored as one or more files on the host
computer's physical disk. These file(s) start small and become larger as you
add applications, files, and data to your virtual machine.

-

Maximum disk size (GE): b

Recommended size for Ubuntu 64-bit; 20 GB

(7 Store virtual disk as a single file
i@ Split virtual disk into multiple files ‘

Splitting the disk makes it easier to move the virtual machine to another
computer but may reduce performance with very large disks.

[= Back]| Mext = |[Cancel

Figure A5 Specify Disk Capacity

8. One could customize the Hardware now or later. Hardware customizations
allows the user to allocate more or less resources to the virtual machine. One
could start with the default settings, and adjust as heeded at a later time.
Click Finish

a. Recommendation for hardware customization to improve the
performance of the virtual machine if needed: Increase the memory
allocated, increase the number of processors allocated, and set the
network adapter to Bridged and check Replicate physical network

connection state

62

r e —— ™~
Hardware g

: Memary
Device Summary
r Specify the amount of memary allocated to this virtual
MOy 1GB machine, The memory size must be a multiple of 4 MB,
[Processors i)
"“JMew CD/OVD (... Using file E:\doxsfu\ENSCESTaw... Memory for this virtual machine: 1024 =
ElNetwork Adapter Bridged (Automatic) :
USE Controller Present &4 GE
lt_",' Sgund Card Auto detect 1ae
%Prlnter Present et
.=]D|5play Auto detect zGE 4 E Maximum recommended memary
4GB (Memory swapping may
san occur beyond this size.) i
1on -Ga q P08
S Recommended memary
256 MB
1024 MB
128 MB
& ME [Guest 05 recommended minimurm f
el 512 ME
15 MB
EMBE
4 MB
jr_.l The virtual machine will use up to 768 MB of this memary
for graphics memory. You can change this amount in the
Display settings page.
@5:1:1. 2 | Remove
i- Close I [Help

Figure A6 Memory Allocation

63

-

Hardware
Device Summary AN
B i e _
“JNew CD/OVD (... Using file E:'dox\sfulENSCS9T\sw. .. Virtuglization engine

ENetwork Adapter Bridged (Automatic)

USE Controller Present
lﬂ_‘i‘ Sound Card Auto detect
@Printer Present
[pisplay Auto detect
'@aﬂd. 2 | Remove

Preferred mode: [Autornatic "]

[7| Disable acceleration for binary translation
[irtualize Intel ¥T-%/EPT or AMD-V/RVI
[] virtualize CPU performance counters

(Cose J[reb |

Figure A7 Processors Allocation

64

r B
Hardware E

Device Summary B R
C ted
I W Memory 1GB vl
[d Processars 1 Connect at power on
“yNew CD/OVD (... Using file E:\dox\sfu\ENSCB9\aw... .
W Metwork Adapter Bridged (Automatic) Network connection
USE Contraller Present (@ Bridged: Connected directly to the physical network
@3' Sound Card Auto detect Replicate physical network connection state
@Printer Present -
| Displary Auto detect | % Configure Adapters

() MAT: Used to share the host's IP address
() Host-only: A private network shared with the host
() Custom: Spedific virtual netwark
WMnetd
() LAM segment:

LAN Segments. ..] [Adganced...

['@'add...][Remove

[Close] [Help

Figure A8 Network Adapter Configuration

9. The install process of Ubuntu should start at this point and would take around
10-15 minutes, depending on the PC resources available. Once the
installation is complete, the user could login immediately to the Ubuntu virtual

machine

65

%3 Ubuntu 64-bit - VMware Workstation 12 Player (Non-commercial use only) Elﬂlﬂ

ot e —— . s o

Player v | I - oo TT [Zh « | [E
o . B) 1000Pm %

Guest Session

ubuntu® 14.04 LTS

Figure A9 Login Page of the Ubuntu 14.04.2 OS as a Virtual Machine

10. To run a given virtual machine at a later time, simply launch VMware
Workstation 12 Player, and select the virtual machine to be powered-on from

the left side, the click Play virtual machine

66

%ﬂ WMware Workstation 12 Player (Non-commercial use cnly)

Player » | P - i

/ﬁ:‘ Home

[‘ET.. Ubuntu 64-bit

Ubuntu 64-bit

State: Powered Off
0S: Ubuntu 64-bit
Version: Workstation 12.0 virtual machine
RAM: 2 GB

P Flay virtual machine

|‘!_'5_f-_]1f Edit virtual machine settings

Figure A10 Play Virtual Machine from VMware Workstation 12 Player

This completes the VMware Workstation Player and Ubuntu Virtual Machine

installation.

67

Appendix B. Hardware Server Configuration Guide

The hardware server's OS where the FPGA evaluation board is connected to, (in
this case the virtual machine running Ubuntu 14.04.2 LTS) needs to be configured to
allow for remote network access (by opening required ports for SSH, Shell in a Box and
the webcam stream), and to allow for full interaction with the web application such as
creating user-defined directories, creating user-defined files, and to program the FPGA
with bitstream files. Also, in order for the web application to communicate securely over
SSH with AWS’s hosting server, a copy of the public key is created on the hardware

server.

The configuration is done by running a shell script. This shell script must be run
on every newly configured server (Running Linux). Copy and paste the following shell

script into the server to be run on:

#1 /bin/bash
exec 2>/var/log/init_errors.log || { echo "LOG PERMISSIONS FAIL*
; exit 1; }

#create user
if ! id -u usercreator >/dev/null 2>&1; then

useradd -d /home/usercreator -s /bin/bash -p $(echo
e485a60ce2a0457653daa7c84265c688 | openssl passwd -1 -stdin)
usercreator
fi

#create user home directory

if [! -d "/home/usercreator™ 7]; then
mkdir /home/usercreator
chown usercreator:usercreator /home/usercreator
chmod 755 /home/usercreator

fi

#set sudo permissions for exec useradd without password
echo “usercreator ALL=NOPASSWD: ALL" >> /etc/sudoers

#create home directories for users what will be created
if [! -d "/home/userhomes™]; then

mkdir /home/userhomes/

chown usercreator:usercreator /home/userhomes

chmod 755 /home/userhomes
fi

#create directory to store SSH keys
if [! -d "/home/usercreator/.ssh™]; then
mkdir /home/usercreator/.ssh
chown usercreator:usercreator /home/usercreator/.ssh

68

chmod 700 /home/usercreator/.ssh
Fi

#create file to store SSH public keys

touch /home/usercreator/.ssh/authorized_keys
chown usercreator:usercreator
/home/usercreator/.ssh/authorized_keys

chmod 700 /home/usercreator/.ssh/authorized_keys

#create config file for motion web cam software

if [! -d "/home/usercreator/._.motion™]; then
mkdir /home/usercreator/._motion

fi

> /home/usercreator/ .motion/motion.conf

echo "webcam port 80" >> /home/usercreator/.motion/motion.conf
echo "webcam localhost off" >>
/home/usercreator/.motion/motion.conf

echo "webcam maxrate 100% >>

/home/usercreator/ .motion/motion.conf

echo "output normal off" >> /home/usercreator/.motion/motion.conf
echo "auto_brightness on® >>
/home/usercreator/.motion/motion.conf

echo "height 480" >> /home/usercreator/.motion/motion.conf

echo “"width 640" >> /home/usercreator/.motion/motion.conf

echo "webcam_quality 100" >>

/home/usercreator/ .motion/motion.conf

echo “switchfilter on® >> /home/usercreator/.motion/motion.conf

chown -R usercreator:usercreator /home/usercreator/.motion
chmod 755 -R /home/usercreator/.motion

#create script to start motion

> /home/usercreator/start_mot.sh

echo "#! /bin/bash® >> /home/usercreator/start_mot.sh
echo "if ! id -u "$1" >/dev/null 2>&1; then® >>
/home/usercreator/start_mot.sh

echo "sudo useradd -d /home/userhomes/$1 -s /bin/bash -p $(echo
$2 | openssl passwd -1 -stdin) $1° >>
/home/usercreator/start_mot.sh

echo "fi" >> /home/usercreator/start_mot.sh

echo "sudo usermod -a -G dialout $1° >>
/home/usercreator/start_mot.sh

echo "if [! -d ""/home/userhomes/$1"™]; then® >>
/home/usercreator/start_mot.sh

echo "sudo mkdir /home/userhomes/$1" >>
/home/usercreator/start_mot.sh

echo "sudo cp /root/.bashrc /home/userhomes/$1" >>
/home/usercreator/start_mot.sh

echo "sudo chown -R $1:$1 /home/userhomes/$1" >>
/home/usercreator/start_mot.sh

echo "sudo chmod -R 755 /home/userhomes/$1" >>
/home/usercreator/start_mot.sh

echo "fi" >> /home/usercreator/start _mot.sh

echo "if ! pgrep "motion” > /dev/null; then®" >>
/home/usercreator/start_mot.sh

69

echo "sudo nohup motion > /dev/null 2> /dev/null < /dev/null &-°
>> /home/usercreator/start_mot.sh

echo "fi" >> /home/usercreator/start_mot.sh

echo "exit" >> /home/usercreator/start _mot.sh

#create script to stop motion

> /home/usercreator/stop_mot.sh

echo "#! /bin/bash® >> /home/usercreator/stop_mot.sh

echo “sudo pkill motion® >> /home/usercreator/stop_mot.sh

chmod +x /home/usercreator/start_mot.sh
chmod +x /home/usercreator/stop_mot.sh

#put public RSA key to file

echo "ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQDXWjhpwdywnHiEyhmEfg+cElct5abTN8QX2
ghv5rSDtnoVFF2HAghg 14WuleeOdGSu4bx9 i1 FWgtQFEvzObP4laWwdi4rdEPPYTHSI
yuUe9f69pTMKOMtOF3FzYQy+icPVRnaNYelgL tt20K9ob 1+XCdQ1JGdRopVhs6pYg
JjCjwd24WIHAPT9/hOec4eDvRqglgk4bzBYOdVCKkCul 6d+d 1 73vySjw6z59xONW I 6m
TA7TKkZMTA010z8drLP6p3R6LMQJmTM2Aq13Jbp6FhdH591ecYC20i1 IPziDgLJi10zqgz
Y 1KcwtcDFY 1 luXdKHp5ax/tOEcd8nz2n/XmPnvaR7Hy jSdr webdev@ip-172-31-
45-129" >> /home/usercreator/.ssh/authorized_keys

#check log

if [-s /var/log/init_errors.log]; then

echo "Error. see log at /var/log/init_errors.log”
fi

Save the file, and execute the shell script.

This completes the configuration required for the hardware server.

70

Appendix C. Open SSH Installation on the Hardware
Server

The web application needs remote access to the hardware servers to interact
with the FPGA evaluation boards remotely. SSH is used within the web application to
establish a secure remote connection. To install Open SSH on the hardware server do

the following:
1. Open aterminal
2. Run: apt-get install openssh-server
3. Open atext editor. Example: gedit /etc/ssh/sshd_config
4. Update the following variable
a. Port 50000
5. Run: service ssh restart

Note that sudo privileges may be needed to perform such an install.

71

Appendix D. Motion (Webcam Stream) Installation on
the Hardware Server

The web application makes use of a webcam connected to the hardware server,
which streams a top view of the FPGA evaluation board. This allows the end user to see
any visual changes; specific their FPGA application such as: blinking LEDs, or
messages shown on the OLED. The choice was made to use Motion, which is a Linux-

based webcam stream software. To install Motion on the hardware server do the

following:
1. Open aterminal
2. Run: apt-get install motion

Note that sudo privileges may be needed to perform such an install.

72

Appendix E. C-Kermit (Serial Terminal) Installation
on the Hardware Server

The web application allows the end user to access the UART port of the FPGA
through the serial ports of the hardware server. To allow for such an interaction on the
serial communication channel between the FPGA’s UART port and the hardware
server’s serial port, a software acting as a terminal point should be installed. The choice
was made to use C-Kermit; due to its advanced features. To install C-Kermit do the

following:

=

Open a terminal

n

sudo apt-get install ckermit

w

sudo apt-get remove modemmanager
4. sudo usermod -a -G dialout $USER

Note that sudo privileges may be needed to perform such an install. Please see

Appendix J for COM port settings.

73

Appendix F. Git Installation on the Hardware Server

Having the source code developed for this project available on an online
repository; it is necessary to install a version control software to be able to clone such
source code into the Hardware Server (running Ubuntu OS), or any other Linux-based

machine. The choice was made to use Git. To install Git do the following:
1. Open aterminal
2. Run: apt-get install git

Note that sudo privileges may be needed to perform such an install.

74

Appendix G. Shell in a Box Installation on the
Hardware Server

The web application uses Shell in a Box as the web-based terminal emulator
which provides the look and feel of a native shell. The terminal window is presented as a
frame within the web application’s web page. The terminal is available for advanced user
who want to do on the fly edits, or want to run additional FPGA programming

commands.

To install Shell in a Box on an Ubuntu machine, first the user needs to install the
dependencies, clone the source files from the git repository, install the package, and
finally edit a configuration file. Open a terminal in Ubuntu then run the following

commands:
1. apt-get install git libssl-dev libpam0g-dev zlib1g-dev dh-autoreconf
2. git clone https://github.com/shellinabox/shellinabox.git && cd shellinabox
3. dpkg-buildpackage —b
4. cd./
5. dpkg -i shellinabox_{ver} {arch}.deb
6. Open a text editor. Example: gedit /etc/default/shellinabox
7. Update the following variables:
a. SHELLINABOX_ PORT=88
b. SHELLINABOX_ARGS="--no-beep --disable-ss| --messages-origin *"
8. service shellinabox restart

Note that sudo privileges may be needed to perform such an install.

75

Appendix H. Network Ports Configuration

In order for the web application to be able to interact with the hardware servers
remotely through the web; some network ports on the local network relative to the
hardware server must be enabled and forwarded properly. That is in a given LAN, where
hardware server A is connected to; the router/switch that is managing the LAN in
guestion must have port forwarding enabled and have the appropriate specific traffic
forwared to hardware server A. The web application uses four different ports. The
following ports must be enabled and forwarded to the local IP number matching the

hardware server in question:
1. SSH (secure remote shell connection): port 50000
2. Shellin a Box (web terminal emulator): port 88
3. Motion (webcam): port 80

4. Remote power cycle (Hard FPGA board reset): port 8080

76

Appendix I. Xilinx Vivado Design Suite Installation
Guide

This guide demonstrates the steps required to install the Xilinx Vivado Design
Suite on Windows 7 and Ubuntu 14.04.2. The install procedure is almost the same for
both Windows and Ubuntu operating systems. For Windows, the user needs only to run
the installer, and follow the prompts. However, for Ubuntu, there are a few extra steps
required. For this reason, the guide would describe the installation process for Vivado
under the Ubuntu OS.

1. In Ubuntu, open a terminal and find the directory that contains the

uncompressed Vivado installation package.

a. Example:
Jhome/username/Downloads/Xilinx_Vivado SDK_2015.3 0929 1/

2. Change the installation package directory and its subdirectories’ permissions

to full allow full read/write access

a. Example (sudo may be required): chmod —R 777
../home/username/Downlaods/Xilinx_Vivado SDK_2015.3 0929 1/

b. Verify that all files within the target directories have had their

permissions changed as intended

3. Navigate into the install package directory and run the installer using sudo.
This would run the installer and the GUI installation process would start

a. Example: sudo ./xsetup

77

Vivado 2015.3 Installer - Welcome

Welcome

VIVADO!

We are glad you've chosen Xilink as your platform development partner. This program can install the Vivado
Design Environment, Software Development Kit and Documentation Navigator.

Supported operating systems for Vivado 2015.3 are:

- Windows 7 SPl: 64-bit

- Windows 8.1: 64-bit

- Red Hat Enterprise Linux 6.5-6
- Red Hat Enterprise Linux 7.0-7.
Cent0S Linux 7.1: 64-bit

- SUSE Enterprise Linux 12.0: 64-bit

Lbuntu Linux 14.04.2 LTS: 64-bit - Additional library installation required

Mote: 32-bit machine support is now only available through LabTools and HW Server standalone product
installers

To reduce installation time, we recommend that you disable any anti-virus software before continuing.

XILINX

ALL PROGRAMMABLE=

Copyright @ 19862017 Kilinx, Inc. All rights reserved. Preferances || - Back || N || Cancel |

Flgure 11 Xilinx’s Vivado Installer

4. Click Next. Select | Agree to all three TOS and click Next

78

Vivado 2015.3 Installer - Accept License Agreements

Accept License Agreements XILINX

Please read the following terms and conditions and indicate that you agree by checking the I Agree checkboxes. ALL PROGRAMMABILEx

Xilinx Inc. End User License Agreement

By checking "I AGREE" below, or OTHERWISE ACCESSING, DOWNLOADING, INSTALLING or USING THE SOFTWARE, YOU AGREE on
behalf of licensee to be bound by the agreement, which can be viewed by clicking here.

[w] I Agree

WebTalk Terms And Conditions

By checking "I AGREE" below, I also confirm that I have read Section 13 of the terms and conditions abowve concerning WebTalk and
have been afforded the opportunity to read the WebTalk FAQ posted at httpu/fwnanvxilink.com/webtalk. T understand that I am able
to disable WebTalk later if certain criteria described in Section 13(c) apply. If they don't apply. I can disable WebTalk by uninstalling the
Software or using the Software on a machine not connected to the internet. If I fail to satisfy the applicable criteria orif I fail to take
the applicable steps to prevent such transmission of information, I agree to allow Xilinx to collect the information described in Section
13(a) for the purposes described in Section 13(k).

I Agree

Third Party Software End User License Agreement

By checking "1 AGREE" below, or OTHERWISE ACCESSING, DOWMNLOADING, INSTALLING or USING THE SOFTWARE, YOU AGREE on
behalf of licensee to be bound by the agreement, which can be viewed by clicking here.

IAgree

Copyright @ 1986-2017 Xilinx, Inc. All rights reserved. | = Back | | MNext = | | Cancel |

Flgure 12 Accept License Agreememnts in Vivado Installer

5. Select the edition to be installed. This would be dependent on the acquired

license

79

Vivado 2015.3 Installer - Select Edition to Install

select Edition to Install XILINX

Select an edition to continue installation. You will be able to customize the contentin the next page. ALL FROGRAMMABLE-

2 Vivado WebPACK

Vivado WebPACK is the no cost, device limited version of Vivado Design Edition.

) Vivado Design Edition

Vivado Design Edition includes Vivado Design Suite with complete device support, cable drivers and Documentation Navigator. Users
can optionally add Software Development Kit to this installation.

® Vivado System Edition

Vivado Systemn Edition is a superset of Vivado Design Edition with the addition of Vivado High-Level Synthesis and System Generator for
DSP. Users can optionally add Software Development Kit to this installation.

) Documentation Navigator (Standalone)

Xilinx Documentation Mavigator (DocMav) provides access to Xilinx technical documentation both on the Web and on the Desktop. This
is a standalone installation without Vivado Design Suite.

Copyright © 1986-2017 Xilinx, Inc. All rights reserved. | < Back | | Next = | | Cancel |

Flgure 13 Vivado Editon Selection

6. Ensure that under Design Tools: Vivado Design Suite and Software
Development Kit are selected. This is a must! DocNav is basically the
software documentation/help, and it should be selected as well. Under
Devices, the user should make the selection dependent on the type of FPGA
they would be using. For this project, a Zyng-7000 FPGA was used. It doesn’t
hurt to select all. However, that would also depend on the acquired license

and on space available

a. Note that while installing Vivado under Linux, the cable drivers would
not be installed automatically as is the case with the Windows
installer. Xilinx’s user guide UG973 (found online) provides the steps

required, which are shown towards the end of this section

80

Vivado 2015.3 Installer - Vivado System Edition
Vivado System Edition

Customize your installation by (de)selecting items in the tree below. Moving cursor over selections below provide XI LI NX

ALL FROGRAMMABLE.

additional information.

Vivado Systemn Edition is a superset of Vivado Design Edition with the addition of Vivado High-Level Synthesis and System Generator for DSP.
Users can optionally add Software Development Kit to this installation.

% 9% Design Tools
o Vivado Design Suite
Software Development Kit
DocMav
o 9 Devices
¢ [@ SoCs
Zyng-7000
[] ZyngUltraScale+ MPSoC
o= [] 7Series
o [] UltraScale
o= [] UltraScale+
9 Installation Options
MNOTE: Cable Drivers are not installed on Linux. Please follow the instructions in UG973 to install Linux cable drivers
Acquire or Manage a License Key
Enable WebTalk for Vivado to send usage statistics to Xilinx (always enabled for WebPACK license)
Enable WebTalk for SDK to send usage statistics to Xilinx

OO=EO

Download Size: NA Reset to Defaults
Disk Space Required: 14.45 GB

Copyright @ 1986-2017 Xilinx, Inc. All rights reserved.

| < Back || Mext = || Cancel |

Flgure 14 Design Tools and Device Support Selection in Vivado Installer

7. Select Acquire or Manage a License Key to be guided through the license

management steps; after the installation is complete

8. Keep the default installation directory and click Next

81

Vivado 2015.3 Installer - Select Destination Directory

Select Destination Directory XILINX

Choose installation options such as location and shortcuts. ALL FROGRAMMABLE.
Installation Options Select shortcut and file association options
Select the installation directory Create program group entries
JoptXiling | D |Xi|in>< Design Tools

Installation location(s) Create desktop shortcuts

foptAilink/vivados2015.3
foptAilinkAvivado_HL5/2015.3
FfoptXilink/SDK/2015.3
foptXilink/DocMav

Disk Space Required
Download Size: A
Disk Space Required: 14.45 GB
Disk Space Available: 24.76 GB

Copyright @ 1986-2017 Xilinx, Inc. All rights reserved. | = Back | | MNext = | | Cancel |

Flgure 15 Installation Directory in Vivado Installer

The specified directory fopt/Xilinx does not

")

Jopt/Xilinx does not exist, do you want to create it?

es [

Flgure 16 Create Installation Directory Prompt in Vivado Installer

9. Review the Installation Summary, then click Install

82

Vivado 2015.3 Installer - Installation Summary

Installation Summary

VIVADO' Edition: Vivado System Edition

Devices

* 50Cs (Zyng-7000)

Design Tools

* Vivado Design Suite (Vivado, System Generator for DSP, Vivado High Level Synthesis)
* Software Development Kit

* DocNav

Installation Options

* Acquire or Manage a License Key

Installation location
* JoptXilinxkvivados2015.3
® JoptXilink/Vivado_HLS/2015.3
* Jopt/Xilinx/SDK/2015.3
® JoptXilink/DocMav

Disk Space Required

* Download Size: A
® Disk Space Required: 14.45 GB

XILINX

ALL PROGRAMMABLE=

Copyright @ 1986-2017 Xilinx, Inc. All rights reserved. | Preferences | | < Back | | Install | | Cancel |

Flgure 17 Installation Summary Review in Vivado Installer

10. The installation should take anywhere between 15-20 minutes

83

Vivado 2015.3 Installer - Installation Progress

Installation Progress XILINX

ALL PROGRAMMABLE.

Installing files, 1% completed.

[

U ItraSCALEm’

[Architecture

The Industry’s Highest Capacity
Device with 4.4M Logic Cells

www.xilinx.com/ultrascale

Copyright © 1986-2017 Xilinx, Inc. Al rights reserved. | = Back | | Install | | Cancel |

Flgure 18 Vivado Installation Progress

Xilinx Software Inskall

@ Installation completed successfully.
To add devices or tools to this installation, use the "Add Design Tools or Devices" option
from the Help Menu within Vivado or the Program group entry in the Start Menu.

0K

Flgure 19 Vivado Installation Complete

11. Once the installation is complete, the Ul would prompt the user for the licence
management. If the license is yet to be obtained, select Obtain License and
follow the GUI as well as the instructions that came with the license voucher.
If the license was already obtained from other sources, or the user is
performing a re-install then select Load License and browse to the license file

84

: Vivado License Manager 2015.3

File Help

VIVADO! Lonee wianecer

& XILINX

ALL PROGRAMMASLE.

4 Get License

£¥ Set Pro

3. Obtain Lcense]

A, Load License

4 Manage License

#, Manage License Search Paths

View License Status
Borrow/Restore License Seat

Return License to Xilinx

4 \fiew System Information

(@D view Host Information

Obtain License
Select one of the following options
() Start Now! 30 Day Trial (No Bitstream)
) Get Free SDK, Vivado WebPACK or Vivado/HLS Evaluation licenses
() Get Free Petalinux, ISE WebPACK or IP Licensas
® Get My Full or Purchased License

Connect Now || Save Link As...

Description of the above selected option

Get all full or purchased licenses and start using the Xilinx tools. You will be taken to the Xilinx website where,
if you have full or purchased licenses, you will see an account drop-down menu. Inthe appropriate license
account, you can generate a license for all Xilink software and IP you have purchased.

If your machine is not currently connected to the internet, use the 'Save Link As..." button to save the license
request URL to a HTML file. You can then use the URL in the HTML file to access the licensing site at a later
time or on a machine that is connected to the internet.

After the license is generated, Vivado License Manager will automatically try to download and install it for
you. However, if your license is a certificate-based, please cancel out and use the license file sent to your
e-mail. Once you have saved this file to your machine, click on the Load License selection to copy your .lic file

to a default location.

Flgure 110 Vivado License Manager — Obtain License

85

o Vivado License Manager 2015.3

N ; £ XL
VlVADO License Manager

Load License

4 Get License
¥ Set Proxy
I, obtain License
0. [Load License]
4 Manage License
[#) Manage License Search Paths
View License Status

Borrow/Restore License Seat i

Return License to Xilinx i LORY
4 \fiew System Information 2
@ Vview Host Information “ Activation Based Licenses

Certificate Based Licenses
Click the 'Copy License' button to copy a certificate-based license (lic file) into the local .Xilinx directory.

Xilinx applications automatically detect valid, node-locked licenses (*lic) residing in the local Xilinx
directory.

Click the 'Activate License' button to load a response XML file into VLM to activate your machine for Xilinx
tools and IP.

Activate License...

Flgure I11 Vivado License Manager — Load License

12. To install the Xilinx cable drivers on Linux (cable drivers are automatically
installed during the Vivado suite installation process under Windows),
assuming the user has installed Vivado version 2015.3 at the default

directory, open a terminal and execute the following commands:

a. cd

lopt/Xilinx/Vivado/2015.3/data/xicom/cable_drivers/lin64/install_script/i
nstall_drivers

b. sudo ./install _drivers
c. reboot

This completes the Vivado suite installation.

86

Appendix J. USB Serial (COM) Port Properties

To access the UART of a given FPGA evaluation board, first connect the USB
cable to the UART port on the FPGA board and the other end to a USB port on the
hardware server. Open a UART terminal window (such as Tera Term), and create a
serial port connection based on the port number attributed to the ZedBoard, with the

following settings: 115200, 8, none, 1, none.

Tera Term: Senal port i}

Port: COM3 -

Baud rate:; 115200 -

Data: g bit

Parity:

Stop:

Elow control:

Transmit delay

0 msecichar msecfline

Figure J1 Zyng-7000 FPGA UART Serial Port Setup

The settings shown above are also applicable for use with C-Kermit; (installation

details show in Appendix E)

87

Appendix K. Vivado Zyng-7000 FPGA Design Guide
A: LED Binary Counter

This is a full step-by-step guide that shows how to create an FPGA design of a
simple LED binary counter application using the ZedBoard which uses Xilinx’s Zyng-
7000 series FPGA. All the Vivado design guides shown in the appendices assume that

the user has gone through the basic guides for the ZedBoard mentioned in section 5.1.

1. Launch the Vivado IDE and select Create New Project

i Tosk ke b

e — Ty

< : =
i Y #
e & 0

Flgure K1 Create a New Project in Vivado

2. Enter a project name of your choice in the Project Name field and choose a

Project Location, and click Next

88

r' New Project ﬁ-‘

Project Hame
Enter a name for your project and specify a directory where the project data files will be stored. ‘

Project name: project_1
Project location: | C:f E]
Create project subdirectory

Project will be created at: C:fproject_1

[< Back]| Mext > Finish

@

Cancel

Flgure K2 Specify the Project Name and Location in Vivado

3. Select RTL Project option in the Project Type form, and click Next

89

.

/

New Project Iﬁ-‘

Project Type

Specify the type of project to create. ‘

@ RILProject

You will be able to add sources, create block designs in IP Integrator, generate IF, run RTL analysis, synthesis, implementation, design
planning and analysis.

[Do not specify sources at this time

= Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and implementation.

Do not spedify sources at this time

= Lf0 Planning Project

Do not specify design sources, You will be able to view part/package resources,

= Imported Project

Create a Vivado project from a Synplify, XST or ISE Project File,

= Example Project

Create a new Vivado project from a predefined template.

Flgure K3 Set RTL as the Project Type in Vivado

4. Inthe Add Sources window, select VHDL as the Target Language and

Simulator Language. Click Next

90

.

MNew Project &J-‘

Add Sources

Specify HDL and netlist files, or directories containing HOL and netlist files, to add to your project. Create a new source file on
disk and add it to your project. You can also add and create sources later.

== | +

Use Add Files, Add Directories or

reate File buttons below

=

AddFiles || AddDirectories || CreateFie

Scan and add RTL indude files into project
Copy sources into project
Add sources from subdirectories

Targetlanguage: |VHDL + | Simulator language: |VHDL +

[< Back]| Mext > ¢ Finish

Flgure K4 Set the Target and Simulator Language to VHDL in Vivado

5. There won't be a need to add files, IPs or constraints so click Next three
times

6. In the Default Part windows, click the Boards icon and choose ZedBoard

Zyng Evaluation and Development Kit, and click Next then Finish

91

F n ™
¢ New Project ﬁ
Default Part
Choose a default Xilinx part or board for your project, This can be changed later, '
Select: @ Parts | @ Boards
4 Filter
Vendor: all 4
Display Mame: | Al -
Board Rev: Latest -
Reset All Filters
Search: |- -
d ; ? 3 Blodk
Display Name Vendor Board Rev Part IfO Pin Count File Version RAMs
" ZedBoard Zynq Evaation and Deveopment Kt lem.avnet.com[d | xc7z020dgd6+-L
B 7¥YNQ-7 ZC702 Evaluation Board wilinx. com 1.0 & xc72020d0484-1 484 1.2 140
B z¥YNgQ-7 ZC706 Evaluation Board wilinx. com i i xc72045ffgo00-2 900 iz 545
4 T 3 @
e (o] e

Flgure K5 Select Boards: ZedBoard Zyng in Vivado

7. Inthe Flow Navigator expand the IP Integrator and click Create Block Design.

A Create Design window will pop up, keep the same name

Flow Mavigator < |

A=

4 Project Manager
ﬁ Project Settings
Ei-'j Add Sources
n? Language Templates
{F 1P catalog

4 TP Integrator
;ﬁ Create Block Design
ﬁﬁ’ Open Block Design
& Generate Block Design

4 Simulation
ﬁ Simulation Settings
@ Run Simulation

Flgure K6 In the Flow Navigator: Create Block Design in Vivado

92

¢ Create Block Design . ﬁ

Please specify name of block design.

Design name: design_1
Directory: & <Local to Project> -
Specify source set: —1 Design Sources ¥

[oK | [Cancel

Flgure K7 Keep the Default Design Name in Vivado

8. After the Diagram window opens, click on the Add IP icon from the left panel
of the Diagram page to add IP blocks. Alternatively, one could right-click on

any empty area in the Diagram section and choose Add IP

‘2o Diagram X |
#[] s design_1

[]
’+

TaAE,

-

) 4k M@ O

L

.

cRaed

e
+

Flgure K8 Add IP in Vivado

93

9. In the search bar type Zyng, and choose (double-click) ZYNQ7 Processor
System, this will add a Zyng Processing System IP(the ARM Cortex A9

processor)

'“E-n.l}iagri-im x ._
#[] & design_1

22

Search: | O} 2ynq| (2 matches)

. 3

ﬂ: ZYNQ7 Processing System BFM

Pt Tl

EMTER ta select, ESC to cancel, Ctrl+3 for IP detzils

el

L

Flgure K9 Select Zynq7 Processing System IP in Vivado

10. Click on Run Block Automation. This would configure the Zynq IP according
to the default settings per the selected board (The ZedBoard). This is called
Design Assistance, and it appears whenever there is a possibility that Vivado

could automate some design steps. Keep the default settings and click OK

94

J o Diagram X I& Address Editor X
3] & design_1
(E E Designer Assistance available. Run Block Automation

processing_system7_0

DDR 4
-~ FIXED_104-

M_AXI_GPO N:LKZY M_AXI_GPOk
T NQ ROk CL:}; [
FCLK_RESETO_N

ZYNQ7 Processing System

Qe iHRPO O m|ER

Flgure K10 Run Block Automation in Vivado

11. Again click on the Add IP icon and this time; in the search bar type GPIO, and
choose the AXI GPIO. The AXI GPIO IP should appear in the Diagram

JE‘“ Diagram X]ﬂ Address Editor x]
#[] & design_1 »

Search: | 1~ gpio : {1 match)

EMTER. to select, ESC to cancel, Ctrl+3 for IP details

CREIBFGIEHLPOGOHERR

s
"

Flgure K11 Add AXI GPIO IP in Vivado

95

%o Diagram X [Address Editor X
3] b design_1
s [Designer Assistance available. Run Connection Automation

processing_system7_0

DDR -
FIXED_104-
USBIND_0+-

DDR
FIXED_IO
e M_AXI_GPO fif
M_AXI_GPO_ACLK TTCO_WAVED_OUT
e ZYNO TTCO_WAVEL OUT,
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_N

EHQE AR BHL,ELE|LR

ZYNQY Processing System

¥

Flgure K12 Double-Click the AXI GPIO for Further Configuration in Vivado

12. Double click on the AXI GPIO IP, under Board Interface choose leds 8bits
and click OK

[ﬂ__} Re-customize IP v h I.ér

AXI GPIO (2.0) '

ﬁﬁ Documentation |- TP Location

E| Shaw disabled ports Component Name design_1_axi_gpio_0_0
“"Board | TP Configuration |

Assodiate IP interface with board interface

1P Interface Board Interface
GPIO leds 8bits -]
GPIOZ Custom -

Clear Board Parameters

[] Enable Interrupt

Flgure K13 Set the Board Interface for GPIO to LEDs 8Bits in Vivado

13. Now the design assistance will again show the option to run Connection

Automation, Click on it and choose All Automation then click ok. Here, one is

96

accepting the suggestion of connecting the AXI GPIO IP to the Zyng. Vivado

will add 2 IPs, these IPs are the processor system reset and AXI interconnect

a. The processor system reset provides the reset signals to all
peripherals and interconnects in the PL side of the Zynq according to

reset signal given from the Zynqg PS

b. The AXI interconnect is responsible for creating an interface between
the Zynq PS master interface GP port and the AXI GPIO IP

Zc Diagram x| [Address Editor X
3] 4, design_1

Qr La Designer Assistance available. Fun

o
&

e

W processing_system7_0

aQ

; DOR - || DDR

= FIXED_10+ ||p====f) FIXED_IO
USBIND_0<-

= M_AXI_GPO<
M_AXI_GPO_ACLK TTCO_WAVED_OUT|
T ZYNQ TTCO_WAVEL OUT,
TTCO_WAVE2_OUT|

FCLK_CLKD

FCLK_RESETO N

ZYNQ7 Processi ng S'.;";LDM

CRLA X RR =

Flgure K14 Run Connection Automation in Vivado

14. Click on the Regenerate Layout icon to rearrange the blocks. This is purely a

visual rearrangement to fit the window/screen

97

RN G BHLOI®FELR

o [Regenerate Layout

| &= Diagram x | [AddressEdtor x|

5] s design_t b

rst_processing_system?_0_100M

slowest_sync_dk mb_reset
ext_reset_in bus_struct_reset[0:0]
=—aux_reset in peripheral_reset[0:0]

processing_system?7_0_axi_periph

o+
£<-500_AX1

ACLK

axi_gpio_0

TN[0:0] | Lwd |
| ACLK D%D MOO_AXT 4 [

_ARESETNO:0] [g

mb_debug_sys_rst interconnect_aresetn[0:0]

MOO_ACLK

—dem_locked [0:0]

Processor System Reset
processing_system7_0

MO0_ARESETN[0:0]

AXI Interconnect

M_AXL_GPO_ACLK ZYNO‘ TTCO_WAVED_OUTH

DDR o ||}

FIXED 104 ||

usBIND_04- ||
M_AXL GPOH |

E ; FIXED_IO

TTCO_WAVEL OUTf-
TTCO_WAVE2_OUT/m

FCLK_CLKO
FCLK_RESETO_Ng—1

ZYNQ7 Processing System

Flgure K15 Regenerate Layout in Vivado

15. In the Design window, click on the Sources tab, right-click on the design_1

block design under Design Sources folder and choose create HDL wrapper,

this options creates a top level VHDL file for the block design which can be

used to generate the bitstream file

Black Design - deson_| *

Sy

Qe

2 i

iy ——— |

#-5 Consraints
Srmiatin o
F-iasm_1 1]

Mierarchy | 5 54
£ Sources

i Sourceede Broceres...

% Gpenrie
Crente L Veragre...
View Instarfiston Templste

Carrate Cutiut Prodcte..

Riese Cutput Froducts. .

% Remave Fie from Project...

D Fie
Heerarchy Lpcane

& Sources | Refresh terarchy
P ey

‘Source Fle Fropert] ¥+

= [l
i, dewgn_Lbd
Locatior:
Troe

Pert:

et s
Ech Corntrasnts Sets...
it Smudaon Setx...
aaociate ELF Firs..,

M Sources...

© Recort TP Steas

- E= Oiagram x| B Address Edior 3¢
+] b deson 3 v

[
aneg

processing_system?_0_axi_periph

L system?T_0_100M = i
| dk b i e BN axi_gpio_0
—feat_peset_in b stract_peset{:0] e —S00_ACLK :1§t‘.mm o lesaa
e et in periphec_neet0:0] —— 500 ARESETH Py Bl adk GPIO [l beds. Bits
TR b debuig % rst intestonnect, =0 ALK <s_an_aresctn
Delete —etm Jockesd peripheral 1 M00_ARESETH —.-l.—.—.—
¢ L L [i
Processor System Resst S ———
procesing_system?_0

i
2B ER S BHALD AR

T.m PO ZYNO.‘ Trco, waves outhe

o0R 4 T ooR
FIXED FLEEDR 10
USEIND. 0

L

TTCO_WAVED OUT -

TTC0_WAVEZ OUT
FLLKE_CLR0

FOLK_RESETO NE—]

Flgure K16 Create HDL Wrapper in Vivado

16. Keep the default setting Let Vivado manage wrapper and auto-update and
click OK

c. Note: Click on the Address Editor, one shall find the processing

system connected to the AXI GPIO IP, with an automatically given

98

offset address. This address will be used by the Zynqg processor to
communicate with the AXI GPIO IP which is connected to the LEDs.
In our example the offset address is 0x41200000

¢ Create HDL Wrapper lﬁ

You can either add or copy the HOL wrapper file to the project. Use copy option if yvou would
like to modify this file.

Options
(7 Copy generated wrapper to allow user edits

i@ Let Vivado manage wrapper and auto-update

Eook I Cancel

Flgure K17 Allow Vivado to Manage the Wrapper and Auto-Update

17. In the Flow Navigator, under Program and Debug click on Generate
Bitstream. Alternatively, from the top menu Flow - Generate Bitstream.
During this step the tool creates a bit file for programming the PL of the Zynq.

Accept to save the project

99

File Edit | Flow | Tools Window Layout WView

Help

Project Manager

=, 8
Flow Mavigd

(Ol i
Al H

IP Integrator
Create Blodk Design
Open Block Design

7,

4 Projech Simulation Settings. ..
Run Simulation

Open Static Simulation. ..
Elabnraﬁnn Settings...
Open Elaborated Design
Mew Elaborated Design. ..
Synthesis Settings...
Run Synthesis

Implementation Settings...
4 Simulatig

VO ERBTOOOTE S

Run Implementation

Open Hardware Manager
Bitstream Settings...
Generate Bitstream

Create Runs...

F11

% T

| - design_1*

B o | B |
Rources (1)
esign_1_wrap
_|i|'|tS

on Sources (1]
11(1)

IF Sources | Libr

TresTr T

Ll

Flgure K18 Generate the Bitstream in Vivado

Jes | Ed Design

18. Click Yes to No Implementation Results Available. This would synthesize the
design. Depending on the PC’s available resources and specs, the process

should take a few minutes, potentially longer on slower PCs

r |
Mo Implementation Results Available w

3

There are no implementation results available. OK to launch synthesis and implementation?
¥ 'Generate Bitstream' will automatically start when synthesis and implementation completes.

[] Don't show this dialog again

Flgure K19 Allow Vivado to Launch Synthesis and Implementation

100

19. Bit Generation Complete message should pop up, close/cancel it then go to
File > Export > Export Hardware. Check the Include bitstream and click ok.

This exports the hardware files generated to the SDK

l" ™
Bitstream Generation Completed Iﬁ

I Bitstream Generation successfully completed.

i@ Open Implemented Design
(™) Miew Reports

(71 Open Hardware Manager

[] Don't show this dialog again M

Ok] [Cancel

Flgure K20 Bitstream Generation Successful in Vivado

Fie | Edt Fow Tools Window Layout View Help

New Project... P ¥ H | T @ SoefutL:
Open Project...

bk Design - design_1

rees
Open Example Project... =
g

Save Project As...

Wirite Project Td.... (i) 2 design_1_wrapper - STRUCTUR
| Constraints
= Simulation Sources (1)

Close Project 2 sim_1 (1)

Archive Project...

] Ctrl+S
Close Block Design

Open Checkpoint...

New IP Location...

Open [P Location...

New File...
Open Fie... Cl+0 | i
+ |erarchy | IP Sources | Libraries | Compile Or
Open [P-XACT File... £ Sources | I Design | i Signals | @
Ik Properties
@ Add Sources... AltrA | ‘ZQ [y
Open Source File... CtreN Ly gpio 0
Export L7 Expart»jamware.
Launch SDK Export Block Design. .
Open Log File %i Export Bitstream File...
Open Journal File Export Simulation. ..
& Print... Ctrl+P
Exit

Flgure K21 Export the Hardware Design to the SDK from Vivado

101

¢ Export Hardware I&

Export hardware platform for software development
tools,

[] Indude bitstream

Export to: | 60 <Local to Project= -

[oK |I Cancel I

S e

Flgure K22 Include the Bitstream in the Export from Vivado

20. In Vivado go to File = Launch SDK, then click OK. The SDK will open and in
the Project Explorer window one could see the exported hardware files. In the
SDK go to Files > New > board support package then click finish. This
creates a board support package with all the necessary functions for driving

the hardware that was designed in Vivado; in the previous steps

102

File | Edit Flow Tools Window Layout Wiew Help
New Project... » Eﬁi ﬁ g
0 Project... e
R sck Design - des
Open Recent Project CS
& o ; lrces
Open Example Project... o :
=l e o
: = = | g
Save Project As...
: ; {=7 Design Source
Write Project Tdl... [@ design
Archive Project... 1) Constraints
{2 Simulation Sot
Close Project
B Save Block Design Ctrl+5

Close Block Desian

Open Checkpoint...

nen Reécant Ch o
MNew IP Location...
Open IP Location...
Open Regent IP Loca 3
New File...
Open File... Cirl+0
Open Recent File » |erarchy | TP Sol
Open IP-XACT File... £ Sources |
el ik Properties
@ Add Sources... Alt+A | mp @ L}
Open Source File... Ctrl+N Lo
Export 3
[Launch SDK iame: | axi
Open Log File Brent name: desi
Open Journal File
& Print... Ctrl+P
Exit
Flgure K23 Launch SDK from Vivado
- M
4 Launch SDK | 23|
o i
Launch software development toal. ‘
Exported location: | B0 <Local to Project> =
| i
Workspace: | B0 <Local to Project: - i
I
: : L
I Ok | Cancel
|
i

Flgure K24 Use Default Location When Launching SDK from Vivado

103

Edit Source Refactor Mavigate Search Project XilinkTools Run Window Help

New Alt+Shift+N » & Application Project ® & 5 - - - - - | o
Open File... E SPM Project
Close Chrle W lili Board Support Package T "
e Bt 9 Project... er_hw_platform_0 Hardware Platform Specification

ose rl+ Shift+
Save Ctrl+S D:,’ Source Folder
. (% Folder 020

oS
Save Al CliteShificy || M1 | Sourcebile ivado 2015.3
Reviert ki HeaderFile ed Feb 15 19:33:01 2017
' Filefrom Template
Move... @ Class [essor ps7_cortexa®_0
Rename... T 0=f8£01000 OxfBf01E£f
Refresh F | e SN b 0220002000 0xe000atEE
Coriot e DeliiteeTo . pe7_scutimer 0 DxfBEODE00 DxfBE0061E
psi_sler 0 0=£8000000 Oxf23000££%

Print... Ctrl+P psT_scuwdt 0 0xf0£00620 O=f8£006fE

z ps7_|2cachec 0 Oxf8£02000 OxfBf02£F1
Switch Workspace v psT_scuc 0 D=fBENNOND Oxf&E000fc
Restart ps7_gspi_linear 0 0=fc000000 Oxfoffffff
1 = ps7_pmu_0 0x£8893000 0=£8893£{f
mport...

ps7_afi 1 O=£3009000 0xf8009££f
Dpoit ps7_afi 0 0x£8008000 0xf8008££%
ps7_gspi 0 0=e0004000 Oxe000dfff
ps7_usb_0 0=e0002000 Oxe0002£ff
1 system.hdf [design_1_wrapper_hw_pla...] psi_afi_3 O=f300b000 0xfS00bEff

psi_afi_2 Oxf300a000 0xf800afif
ps7_globaltimer 0 Oxf3£00200 0xf2£002£f

7 . - N £0NNANNN M £0NN2£££

L.

Properties Alt+Enter

Exit

Flgure K25 Create a New Board Support Pacakge in SDK

21. The Board Support Package Settings window would pop up, keep all default
settings and click Finish then OK

104

l
(o]

-
m MNew Board Support Package Project

Xilinx Board Support Package Project
Create a Board Support Package,

Project name: standalone_bsp_0
Use default location
Location: CI‘.\FlrcjECt_ll".FIFDjI':Ct_l.E;jk\\EtEﬂ;jﬁll:lﬂE_EIEP_D | Browse...

] Choose file systerm: | default

Hardware Platform: [design_l_wrapper_hw_platfurm_ﬂ v] ’Ngwl

| cru: | ps7_cortexad_0 -

Compiler 32-bit

! m |Star1da|one 15 a simple, low-level software layer. It provides access to basic processor
N freertos821 _xilinx features such as caches, interrupts and exceptions as well as the basic features of a

|hosted environment, such as standard input and output, profiling, abort and exit.

Ll ® E Finish i [Cancel

Flgure K26 Use Default Board Support Package Settings in SDK

105

Board Support Package Setting

Board Support Package Settings
Control various settings of your Board Support Package.

Overvi
“ RN standalone_bsp_0
standalone
4 drivers 0SType: standalone
psitcortenadl 05 Version: 5.2 =

Target Hardware

Processor:

Supported Libraries

ps7_cortexad_0

Standalone is a simple, low-level software layer. It provides access to basic processor features such as
caches, interrupts and exceptions as well as the basic features of a hosted environment, such as standard
input and cutput, profiling, abort and exit.

Hardware Specification: C:\project_1\project_1.sdk\design_1_wrapper_hw_platform_0\system.hdf

Check the box next to the libraries you want included in your Board Support Package You can configure the library in the navigator on the left.

i

Name
[lwipl4l
[slffs
[xilflash
[st
[xilmfs
[] xilopenamp
[=ilpm
[xlrsa
[xilsecure
[ilskey

Version
12
3a
41
53
20
1.0
1.0
1
10
3.0

Description
hwiP TCP/IP Stack library: hwIP v1.4.1
Generic Fat File System Library

Kilinx Flash library for Intel/AMD CFI compliant paral...

Kilinx In-systern and Serial Flash Library
Kilinx Memaory File System

Kilinx openamp Library

Power Management API Library for ZyngMP
Kilinx R5A Library

Kilinx Secure Library

Xilinx Secure Key Library

@

OK } [Cancel

Flgure K27 Use Default Board Support Package Standalone Settings in SDK

22. Create an application project by going to File > New > Application Project.

Enter a name in the project name field and under the Board Support Package

choose Use existing then click Next

106

|File | Edit S5Source Refactor Mavigate Search Project Xilinx Tools

Run Window Help

Mew

Open File...

Close
Close All

Save

Save As...
Sawve All
Revert
Move...
Rename...

Refresh

Convert Line Delimiters To
Print...

Switch Workspace
Restart

Import...

C. [

Export...
Properties

1 system.mss [standalone_bsp_0]
2 system.hdf [design_1_wrapper_hw_pla...]

Exit

Alt+Shift+M »

Ctrl+W

Ctrl+Shift+W

Ctrl+5

Ctrl+ Shift+ 5

F2

F5

Ctrl+P

Alt+Enter

Application Project
5PM Project

Board Support Package
Project... |

Source Folder

Folder

=k 1

Source File
Header File B
File from Ternplate

Class
)

Other... Ctrl+M

Flgure K28 Create a New Application Project in SDK

T p—

Board Support Package
Mame: stanc

Yersion; 5.2

Description: Stanc
envir

Documentation: stan:

Peripheral Drivers

Drivers present in the B
axi_gpio_0

ps?_afi 0

psf_afi 1

ps/_afi_2

ps/_afi_3

23. Choose Hello World from the Available Templates then click Finish

107

B

-
w Mew Project =

=]
Templates =
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Zyng MP FSBL Let's say 'Hello World' in C,
Ernpty Application

OpenAMP echo-test

fyng DRAM tests

fynq FSBL

Hilkernel POSIX Threads Demo

SREC SPI Bootloader

Peripheral Tests

FreeRTOS Hello World

SREC Bootloader

OpenAMP matrix multiplication Dernc

i | wIP Echo Server

'
Mernory Tests

ZyngMP PMU Firrnware

OpendMP RPC Demo

Dhrystone

| | RSA Authentication App

@ Next > | Finish | ’ Cancel

Flgure K29 Select the Hello World Template in SDK

24. In the Project Explorer left panel, expand the src folder under the project_1
folder and double click on Helloworld.c. The source code will be visible in the
main window. Replace the code within it with the following code:

1. #include <stdio.h>
2. #include "platform_h"
3. #include "Xil_io.h"

108

4. // delay function
5. void delay(Q)

6. {

7. int i;

8. for(i=0;i<20000000;i++);

9.

10. int main()

11. {

12. init_platformQ);

13. unsigned char counter=0;

14. // infinite loop

15. while(1)

16. {

17. // write to address 0x41200000(offset address
of the AXI GP10:8 LEDs) the value of counter

18. Xil_0Out32(0x41200000,counter);

19. // increment counter

20. counter++;

21. //delay

22. delay(Q);

23. }

24

25. cleanup_platformQ);

26. return O;

27. }

G -0 -Q-% ®SF-DEEDE -5 -oer o]
| system.hdf |[m;| system.mss I@*helloworld.c Eﬂl

| Lu

#include <stdic.h:

#include "platform.h™

#include "Xil_ioc.h™

// delay function
—woid delay()

{

int i;
for(i=0;1i<20000000;1++);
1

=~ dint main()

init_platform();

unsigned char counter=@;

// infinite loop

while(1}

1
[/ write to address @x41208000(offset address of the AXI GPIO:8 LEDs) the value of counter
Xil Out32(8x412886088,counter);
// increment counter
counter++;
//delay
delay();

h

cleanup_platform();
return @;

Flgure K30 Edit the Hello World Source Code

109

25. In the SDK click on the program FPGA icon then click program; to program
the Zynq PL with the bitstream

Mavigate Search Project Xil
~m & 220 EEE
Program FF'GAE 1

atform 0

Flgure K31 Program the FPGA in SDK

rm Program FPGA @1

Program FPGA
Specify the bitstrearm and the ELF files that reside in BRAM memeory

Hardware Configuration

Hardware Platform: [design_1_wrapper_hw_platform_0 -]

Connection: [Local v] ’ Mew]

Device: Auto Detect

Bitstream: design_1_wrapper.bit ’ Search...] ’ Browse., l

il [T] Partial Bitstream

BIARASARAT Fil e Search... | | Browse.,

Software Configuration

Processor ELF/MEM File to Initialize in Block RAM
1 | 1] [»
@) : Program | ’ Cancel

Flgure K32 Keep Default Program Settings in SDK

110

F .
B Progress Information I. 5} ﬁ,l

Configure FPGA with bitstrearm: Chproj...per_hw_platform_0hdesign_1_wrapper.bit

68% 2ZMB 1.7MB/s TRITETA

Cancel Details ==

Flgure K33 Programming Progress Bar in SDK

26. Right-click on the project_1 folder in the Project Explorer panel then go to
Run As - 4 Launch on Hardware (GBD). The application should run on the

board and the LEDs should show the binary values of the counter

111

LE] ps/_inim.c
[€ psT_init.h

@ ps

MNew 3

Go Inte

Open in New Window

b il In iZ Copy Ctrl+C
> @& De Paste Ctrl+V
4/ M Delet Delet
N elete elete
b @ Source 3
b [g Move...
b % Rename... F2
b (M standz gug Import.
gy Export..
Build Project
Clean Project
&] Refresh F5

Close Project
Close Unrelated Projects

Build Configurations 3
Make Targets 3
Index 4

Show in Remote Systems view

Profiling Tools »

Convert To...

Profile As 4

;-& Target Cof Debug As »
[= Hard Run As 3
b & Linux Compare With 3

I EmMU
e Restore frem Local History...

Create Boot Image
Change Referenced BSP
Generate Linker Script
C/C++ Build Settings

Run C/C++ Code Analysis

Team b

% 5D

=5 project_1 Properties Alt+Enter

= int

imL L;
for(i=0;i<20000000;i++);

main()

init_platform();

unsigned char counter=a8;

// infinite loop

while(1)

{
// write to address @x4126
¥il_Out32(ex41266088, count:
/{ increment counter
counter++;
//fdelay
delay();

}

cleanup_platform();
return 8;

4
S]||E_u, Problemsié‘;Tasks[E Console &3 l El Prop

1. 1Launch on Hardware (System Debugger) |

A 2 Start Performance Analysis

.?::F 3 Launch on Hardware (Systermn Debugger on QEMU)

£ 4 Launch on Hardware (GDE)

G0E

]

5 Local C/C++ Application

Run Cenfigurations...

Flgure K34 Launch the Application SW on the Hardware in SDK

This completes the design and software application of the LED binary counter.

112

Appendix L. Vivado Zyng-7000 FPGA Design Guide
B: LED Scanner Light

This guide covers a variant of an LED software application that is used on the

Zyng-7000 FPGA. While testing the web application, it was important to have at least

two FPGA applications that are visually distinct, in order for the project developer to see

that indeed the FPGA programming was successful, beyond the success messages on

the terminal. For this purpose, the application developed in Appendix K is slightly

modified to obtain a different visual output from the LEDs; on the FPGA evaluation

boards.

1. Follow the guide in Appendix K all the way to and including step 24. However,

in this case use the following source code:

OCoO~NOOA~WNPE

#include <stdio.h>

}

int i1;
for(i=0;i< ;i+4);

- #include "platform.h"
. #include "Xil_io.h"

. // delay function
- void delay(Q)
{

int main()

{

init_platform(Q);

int bit=1;

int i;

// clear screen and display demo name on uart

printf(%c[2J7,27);
printfC"\n\r\n\rLED KNIGHT RIDER EFFECT: 8

LEDs\n\r'");

// infinite loop
while(1)

{
// write value to LEDs, then shift bit to the

left, then Loop 8 times

for (i=0; i<7; i++) {
Xil_0ut32(,bit);
printf(" ");
fflush(stdout);
bit<<= ;
delay(Q);

113

33.
34.

35.
36.
37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.

// write value to LEDs,

right, then Loop 8 times
for (i=0; i<7; i++) {

}

}

Xil_Out32(
printf(C"\b™");
fflush(stdout);
bit>>=1;
delay(Q);

cleanup_platform();

return

then shift bit to the

,bit);

2. Then follow the guide in Appendix K from step 25 onwards

This completes the design and software application of the LED scanner light.

114

Appendix M. Vivado Zyng-7000 FPGA Design Guide
C: LED - UART IO

This guide covers another variant of the LED software application that is used on

the Zyng-7000 FPGA. However, in this software application, the UART was added to the

application to allow for an 10 user interaction. Once the FPGA evaluation board’s UART

is accessible through the serial port terminal, the user could press any key on the

keyboard/terminal, and the ASCII value of the key stroke would be shown as binary on

the FPGA boards’ LEDs, as well as on the UART terminal. For this purpose, the

application developed in Appendix K is slightly modified to obtain a different visual output

from the LEDs; on the FPGA evaluation boards.

1. Follow the guide in Appendix K all the way to and including step 24. However,

in this case use the following source code:

1. #include <stdio.h>

2. #include "platform_h"

3. #include "xil_io.h"

4. #include "xparameters.h"

5. #include "xuartps_hw.h"

6.

7. int mainQ)

8. {

9. init_platform();

10.

11. int keyPress;

12.

13. // clear screen and display demo name on uart

14. xil_printf("%c[23",27);

15. Xil_printF(C'\n\rUART INPUT ASCII ON LEDS™);

16. xil_printF(C"\n\rPress any key on the keyboard to
see its ASCII binary value on the LEDs\n\r'");

17.

18. while(1)

19. {

20. // read the byte from UART

21. keyPress = XUartPs_RecvByte();

22.

23. // display keyboard key value in hex/dec on uart

24. xil_printf(ASCIl value --> Dec: %03d\t\tHex:
Ox%02x\n\r'",keyPress, keyPress);

25.

26. // send ASCII value to LEDs

27. Xil_0out32(,keyPress);

28. }

29.

30. cleanup_platform();

115

31.

32. return O;

33. }
2. Then follow the guide in Appendix K from step 25 onwards
3. Open a serial terminal as shown in Appendix J

This completes the design and software application of the LED — UART IO.

116

Appendix N. Vivado Zynqg-7000 FPGA Design Guide
D: Peripherals Tests

While three FPGA designs and applications were sufficient for the development,
testing and potential demonstration of the project-prototype, a few more designs were
added to learn a bit more about basic FPGA applications. In this section, the main FPGA
hardware design described in Appendix K would be reused, but with a new software
application: peripherals testing. That is, the FPGA would run a self-test to check if all
connected peripherals are working. Such as the LEDs, the GPIOs, and interrupts. The

results of the test would be displayed on the UART.
1. Follow the guide in Appendix K all the way to and including step 22

2. Choose Peripherals Tests from the Available Templates then click Finish

117

Fw Mew Project =] O

Templates =
Create one of the available templates to generate a fully-functioning)
application project.

Available Templates:

Zyng MP FSBL Simple test routines for all peripherals in »
Ernpty Application the hardware.

OpenAMP echo-test

fyng DRAM tests

fynq FSBL

Hilkernel POSIX Threads Demo

SREC SPI Bootloader

Peripheral Tests

FreeRTOS Hello World

SREC Bootloader

OpenAMP matrix multiplication Dernc
lwIP Echo Server

Helle World

Mernory Tests

ZyngMP PMU Firrnware

OpendMP RPC Demo

Dhrystone

R5A Authentication App

@j Mext = Finish] ’ Cancel

Figure N1 Select the Peripherals Tests Template in SDK

3. Inthe SDK click on the program FPGA icon then click program; to program
the Zynqg PL with the bitstream. Note that if the user has not power-cycled or
reset the FPGA, there is no need to reprogram the FPGA as we would be

using the same hardware. Though, it doesn’t hurt to reprogram

4. Open a serial terminal as shown in Appendix J

118

5. Inthe SDK, on the left side panel, right-click on the project folder Periph_Test
in the Project Explorer panel then go to Run As - 4 Launch on Hardware
(GBD). The application should run, and the peripheral tests and results
should be displayed on the UART terminal

1 COMS3 - Tera Term VT =ET=

File Edit Setup Control Window Help

---Entering main---

Running ScuGicSelfTestExample() for ps7_scugic_@...
ScuGicSelfTestExample PASSEB
ScuGic Interrupt Setup PASSED

Running GEioInputExam le() for axi_gpio_l...
GpiolnputExample PASSED. Read data:©xB

Running DcfgSelfTestExample() for ps7_dev_cfg_@...
[efoSelf lestbxample PASSED

Running XDmaPs_Example_lH_Intr() for ps7_dma_s...
Test round

“DmaPs_Example_lW_Intr PASSED

Running Interrupt Test for ps7_ethernet_8. ..
EmacPsDmal ntrExample PASSED

Running QspiSelfTestExample() for ps7_gspi_0...
QspiPsSelfTestExample PASEED

Running GpioQutputExample() for axi_gpio_8...
GpioQutputExample PASSED.

Running ScuTimerPolledExamBle() for ps7_scutimer_@...
ScuTimerPolledExample PASSE

Running Interrupt Test for ps7_scutimer_8...
ScuTimerIntrExample PASSED

Running Interrupt Test for ps7_scuwdt_@...
Sculldt IntrExample PASSED

Running Interrupt Test for ps7_ttc_B...
TtelntrExample PASSED
---Exiting main---

Figure N3 UART Output of the Zyng-7000 FPGA Peripherals Tests

This completes the design and software application of the peripherals tests.

119

Appendix O. Vivado Zyng-7000 FPGA Design Guide
E: Memory Tests

Continuing in building basic FPGA applications to be run on the ZedBoard, the
next application is to run memory tests which tests Memory Regions present in the
hardware.

1. Follow the guide in Appendix K all the way to and including step 22

2. Choose Memory Tests from the Available Templates then click Finish

120

rw Mew Project

Templates

Create one of the available templates to generate a fully-functioning

application project.

Available Templates:

Zyng MP FSBL

Ernpty Application

OpenAMP echo-test

fyng DRAM tests

fynq FSBL

Hilkernel POSIX Threads Demo
SREC SPI Bootloader
Peripheral Tests

FreeRTOS Hello World

SREC Bootloader

OpenAMP matrix multiplication Dernc
lwIP Echo Server

Helle World

ZyngMP PMU Firrnware
OpendMP RPC Demo
Dhrystone

R5A Authentication App

This application tests Memory Regions -

present in the hardware,

@ Next > S

|| Cancel

"

— —

Figure O1 Select the Memory Tests Template in SDK

3. Open a UART terminal as shown in Appendix J

4.

In the SDK, on the left side panel, right-click on the project folder Mem_Test

in the Project Explorer panel then go to Run As - 4 Launch on Hardware

(GBD). The application should run, and the peripheral tests and results

should be displayed on the UART terminal

121

4 COM3 - Tera Term VT

E=E=")

File Edit Setup Control Window Help

NOTE: This application runs
Testing memory region:
Memoré Controller:

ase Address:

S :

32-bit test (OxAAAASSSS):
-bit test (@xAASS):

8-bit test (@xAS5):

Testing memory region:
Memoré Controller:
ase Address:

Size:

32-bit test (BxAAAASSS5S):
-bit test (@xAASS):

8-bit test (@xAS):

--Starting Memory Test Application--

--Memory Test Application Complete--

with D-Cache disabled.
ps/_ddr_©

ps/_ddr

POx 0D 100000

Px 1f f 0000 bytes
PASSED!

PASSED!

PASSED!

ps7/_ram_1
ps/_ram
Oxf ¥ f f 20RO
Px0P0f e bytes
PASSED!

PASSED
PASSED!

Figure O2 UART Output of the Zyng-7000 FPGA Memory Tests

This completes the design and software application of the memory test.

122

Appendix P. Vivado Zyng-7000 FPGA Design Guide
F: Zyng DRAM Tests

The fifth FPGA sample application runs out of OCM and performs memory tests
and read/write eye measurements on Zyng DRAM. The test is interactive and would
perform:

. Memory test

Read eye measurement

Write eye measurement

1. Follow the guide in Appendix K all the way to and including step 22

n

Choose Zyng DRAM Tests from the Available Templates then click Finish

123

F ™
w Mew Project [=5 g

Templates =
Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

Zyng MP FSBL This application runs ocut of OCM and -
Ernpty Application performs memery tests and read/write
OpenAMP echo-test eye measurements on Zyng DRAM. For
M more information about the test, refer to
Zyng FSBL ZYNGQ_DRAM_DIAGMNOSTICS_TEST.docx,
Hilkernel POSIX Threads Demo in the src directory of the application

SREC SPI Bootloader
Peripheral Tests
FreeRTOS Hello World
SREC Bootloader
OpenAMP matrix multiplication Dernc
lwIP Echo Server

Helle World

Mernory Tests

ZyngMP PMU Firrnware
OpendMP RPC Demo
Dhrystone

R5A Authentication App

@j Mext = Finizh] ’ Cancel

Figure P1 Select the Zynqg DRAM Tests Template in SDK
3. Open a UART terminal as shown in Appendix J
4. Inthe SDK, on the left side panel, right-click on the project folder
ZyngDRAM_Test in the Project Explorer panel then go to Run As - 4

Launch on Hardware (GBD). The application should run, and the peripheral

tests and results should be displayed on the UART terminal

124

Select one of the options below:
Memory Test
Bus Width = 32, XADC Temperature = 52.60804

's' - Test 1IMB length from address @xlessas
1' - Test 32MB length from s @xleaees
2' - Test 64MB length from address éxlesass
'3' - Test 128MB length from address @x188e88
4' - Test 255ME length from address @x188006
5' - Test 511MB length from address exleaees
6' - Test 1823MB length from address @xleeses
i## Read Data Eye Measurement Test

'r' - Measure Read Data Eye
i Write Data Eye Measurement Test
'i' - Measure Write Data Eye

Other options for Write Eye Data Test:
'f' - Fast Mode: Toggles Fast mode - ON/OFF
'c' - Centre Mode: Toggles Centre mode - ON/OFF
'e' - Vary the size of memory test for Read/Write Eye Measurement tests
Data Cache Enable / Disable Option:
'z" - D-Cache Enable / Disable
i Other options
'v' - Verbose Mode ON/OFF

Option Selected :

Figure P2 Interactive UART Menu of the Zynq DRAM Tests

The memory test has the following options, which could be used by using the

keyboard as input.

Table P1 Zyng DRAM Memory Test Options

Option | Test Start Address | Test Length

's’ (“short”) 0x100000 1MB
‘v 0x100000 32MB
2 0x100000 64MB
3 0x100000 128MB
4 0x100000 255MB
5 0x100000 511MB
‘6’ 0x100000 1023MB

Each memory test consists of 15 sub-tests using different data patterns. In each
sub-test, the entire range is first written sequentially, and then read and compared

against the expected value. The 15 patterns are:

125

Table P2 Zynqg DRAM Sub Memory Tests

Sub-test Description

Incrementing pattern, unigue value per memory location (data = address)

AllO

All Oxfffffft

All OXAAAAAAAA

All 0x55555555

Alternating 0x00000000 and OxFFFFFFFF

Alternating OxFFFFFFFF and 0x00000000

Alternating 0x55555555 and OxAAAAAAAA

Alternating OXAAAAAAAA and 0x55555555

Aggressor pattern identical on all 8 bits

Slo|o|vlo|jv|s|w v —|o

Aggressor pattern with one bit inverted, x8 times (1 per bit)

11-14 Pseudo random patterns with different seeds

Additional tests available are the read data eye test and the write date eye test. It
is left to the reader as an exercise to experiment with them. Other menu options are
described in Table H2.

Table P3 Zyng DRAM Memory Test Options

Options Name Description
i Fast Toggle ‘fast’ mode on/off. In fast mode, the memory test used during eye
measurements uses less sub-tests and therefore runs about twice as fast,
at the cost of being slightly more optimistic. By default 'fast’ is on.

‘¢’ Center Toggle ‘center’ mode on/off. When enabled, the write eye measurement

result is immediately programmed into the DDR controller.

‘e’ Eye test size Vary the size of the memory test used at each step of a read/write eye
measurement functions. The default value is 1MB, resulting in fastest speed
at the cost of producing slightly optimistic results. Hitting this key repeatedly
varies the test size circularly between the values 1, 2, 4, 8, 16, 32MB. Note

that using the value 4 will quadruple the test run time.

v Verbose Toggle verbose mode on/off. If on and errors occur during a memory test,

the first 10 errors in each sub-test are printed.

ya D-Cache Toggle D-cache — enable/disable.

Enable/Disable

This completes the design and software application of Zyng DRAM tests.

126

	Approval
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Application Summary
	1.3. Academic Objectives

	Chapter 2. Project Overview
	2.1. Organization
	2.2. FPGA Development
	2.3. Web Application

	Chapter 3. System Architecture
	3.1. The Hardware Server
	3.2. The Web Application
	3.3. The End User

	Chapter 4. System Design Choices
	4.1. FPGA Evaluation Board Selection - ZedBoard
	4.2. Hardware Server OS - Ubuntu
	4.2.1. Virtual Machine Software – VMware

	4.3. Web Cam
	4.4. Web Scripting Language Selection - PHP
	4.4.1. Frameworks - Laravel
	4.4.2. IDE Tools - Homestead

	4.5. Web Hosting Services - AWS
	4.6. Software Version Control System and Online Repository – BitBucket
	4.7. Web Based Terminal Emulator – Shell in a Box

	Chapter 5. System Implementation: FPGA Board Component
	5.1. ZedBoard Setup and Configuration
	5.2. LED Binary Counter on the ZedBoard Using the Zynq-7000 FPGA
	5.2.1. Step 1: Creating a New Project in Vivado
	5.2.2. Step 2: Creating a Block Design
	5.2.3. Step 3: Writing the Software Application
	5.2.4. Step 4: Programming the ZedBoard and Running the C Application

	5.3. Other FPGA Designs

	Chapter 6. System Implementation: Web Application
	6.1. Tree View of the Web Application
	6.2. Model-View-Controller Code Structure
	6.2.1. The Models
	6.2.2. The Controllers
	6.2.3. The View

	6.3. Services

	Chapter 7. Website Layout
	7.1. Landing Page
	7.1.1. Top Menu and Image Slider
	7.1.2. Server and FPGA Boards Selection Menu
	7.1.3. Server and FPGA Scheduling Tool

	7.2. Remote Server Page
	7.2.1. File Manager and Program Tool

	Chapter 8. Conclusion
	8.1. FPGA Applications Development: What Was Learned
	8.2. Web Application: What Was Learned
	8.3. Known Bugs
	8.4. Future Work

	References
	Appendix A. VMware Workstation Player and Ubuntu 14.04.2 Virtual Machine Installation Guide
	Appendix B. Hardware Server Configuration Guide
	Appendix C. Open SSH Installation on the Hardware Server
	Appendix D. Motion (Webcam Stream) Installation on the Hardware Server
	Appendix E. C-Kermit (Serial Terminal) Installation on the Hardware Server
	Appendix F. Git Installation on the Hardware Server
	Appendix G. Shell in a Box Installation on the Hardware Server
	Appendix H. Network Ports Configuration
	Appendix I. Xilinx Vivado Design Suite Installation Guide
	Appendix J. USB Serial (COM) Port Properties
	Appendix K. Vivado Zynq-7000 FPGA Design Guide A: LED Binary Counter
	Appendix L. Vivado Zynq-7000 FPGA Design Guide B: LED Scanner Light
	Appendix M. Vivado Zynq-7000 FPGA Design Guide C: LED – UART IO
	Appendix N. Vivado Zynq-7000 FPGA Design Guide D: Peripherals Tests
	Appendix O. Vivado Zynq-7000 FPGA Design Guide E: Memory Tests
	Appendix P. Vivado Zynq-7000 FPGA Design Guide F: Zynq DRAM Tests

