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Abstract 

Free Viewpoint Video (FVV) is an emerging type of video which allows user to choose 

viewpoint freely in three-dimensional scenes. Depth-image-based Rendering (DIBR) is a 

common method to generate FVV using both texture and depth information. However, 

FVV rendering is more time-consuming than the original video since it has higher 

computational complexity. In order to make FVV rendering in real-time, a cloud-assisted 

system is proposed, which leverages cloud and distributed computing. In addition, we use 

multithread programming to take full advantage of cloud resources. As a result, by 

deploying our system on the WestGrid cluster, the FVV generation speed can be over 30 

fps. Furthermore, to achieve the optimal trade-off between economic cost and user 

experience, we formulate and build mathematical models for the cloud-based FVV 

rendering and streaming system. Based on that, dynamic resource allocation algorithms 

are designed, which can provide the optimal resource allocation scheme according to 

users’ requests. The performance of the system is demonstrated by various experiments. 

To the best of our knowledge, this is the first cloud-assisted real-time FVV rendering and 

streaming system. 

Keywords:  Free Viewpoint Video; cloud computing; multithread processing; dynamic 
resource allocation; optimization algorithm 
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Chapter 1.  
 
Introduction 

Since television was invented in the late 19th century and early 20th century, a 

great number of significant video technologies have been developed and applied to this 

area. From black-and-white to color, from mechanical to electronic and digital, television 

is giving viewers better contents and watching experience. However, these contents are 

still restricted to two-dimensional scenes and the viewers can only watch them from one 

single viewpoint. The way people enjoy television and visual media has not been changed 

in the last decades until the innovation of Free viewpoint television (FTV) and Free 

viewpoint video (FVV) technology. 

Free viewpoint television is a system for viewing free viewpoint video, which allows 

the user to interactively control the viewpoint and watch virtual video contents from any 

3D position. There is a very similar technology in computer-simulated video is known as 

virtual reality (VR) [1]. But there is still small difference between VR and FVV. With VR, 

the viewer can watch the whole surrounding 3D world from one point where the camera 

is set up. However, with FVV, the view can switch to different viewpoints to watch a same 

object from different positions and angles within the 3D scene. Hence, VR is mostly used 

in the immersion video games while FVV is widely applied in sports and concerts 

broadcasting. 

As a new active area in computer graphics, FVV is drawing great attention from 

both users and researchers. It not only introduces unprecedented watching experience to 

users, but also makes researchers to face challenges from a whole new level. In order to 

generate FVV, multiple cameras need to be set in different viewpoints, and a particular 

algorithm and system is designed to synthesize the desired virtual view. The users 

apparently do not want much delay from this rendering process. Thus, generating FVV in 
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real-time or nearly real-time is our goal, which requires necessary hardware support to 

achieve. Considering different users may watch FVV on various devices with different 

hardware and most of them do not have enough computing power to render FVV in real-

time, cloud computing comes to the rescue. 

Cloud computing is an emerging computing technology based on Internet that 

provides various computing and storage service to computers and other devices on 

demand [2]. By using cloud computing, the users can take advantage of the resources in 

the cloud no matter what devices they are currently using. As result, even a mobile device 

user can obtain powerful CPU and GPU to watch FVV in real-time on their devices. 

However, the user or the FVV provider needs to pay for the cost to leverage such cloud 

resources. And in fact, better FVV watching experience usually requires more powerful 

and expensive hardware. Therefore, the trade-off between user experience and cost 

becomes one of our major concerns in this thesis.  

 
Figure 1.1. Fundamental concept of multimedia cloud computing [3] 

To achieve the optimal trade-off, a FVV rendering and streaming system along 

with an algorithm is developed in this thesis. It is aimed to achieve the best Quality of 

Experience (QoE) by using as little resource as possible. In detail, this issue can be divided 

into two sub-problems: 

1. How to reduce the amount of resources that need to be provisioned 

2. How to fully utilize the resources we currently have 
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To solve these two problems, mathematical modeling, algorithm design and 

implementation techniques are involved and introduced in each separate section. 

To integrate the real-time FVV rendering and cloud computing, there is an 

implementation technique called multithreading processing. With this technique, we can 

take full advantage of the hardware resources provided by cloud to speed up our FVV 

rendering process. Pthread, OpenMP, MPI are typical libraries to support multithreading 

programming. Through this way, we can develop a complete cloud-assisted real-time FVV 

rendering system, where hardware, software and algorithm work closely and efficiently. 

1.1. Thesis Structure 

Chapter 2 begins with the background and fundamental knowledge of FVV 

rendering and cloud computing. Then it explains how these techniques can be combined 

together to achieve our real-time FVV rendering system; Chapter 3 focuses on the 

architecture design of our cloud-assisted FVV rendering and streaming system. It presents 

each module with details and describes how we allocate cloud resources and divide the 

processing tasks; In Chapter 4, we formulate the problem and build mathematical models 

for precise analysis. Based on the objective function which quantifies the trade-off 

between economic cost and user experience, we propose an algorithm to figure out the 

optimal solution; In Chapter 5, the implementaion details of our cloud-assisted FVV 

rendering and streaming system are presented. Then we test our system in a practical 

environment with certain settings on parameters to verify its performance. Chapter 6 

concludes this thesis and proposes serval ideas of future work. 

1.2. Contributions 

Firstly, we design a system based on the cloud and distributed computing that can 

dynamically allocate cloud resources to realize real-time FVV synthesizing and streaming; 
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Secondly, we develop a demo using C++ multithread programming and Qt based 

on the VSRS, OpenCV, FFmpeg, Pthread/OpenMP/MPI and NGINX, which can produce 

H.264 encoded FVV stream in real-time; 

Thirdly, we configure and test the demo on the WestGrid cluster, where the 

generation speed can be over 30 fps. Also, the dynamic resource allocation algorithms in 

our system are verified to achieve the optimal trade-off between economic cost and user 

experience. To the best of our knowledge, this is the first cloud-assisted real-time FVV 

rendering and streaming system. 
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Chapter 2.  
 
Background 

In this chapter, we first introduce fundamental background of rendering free 

viewpoint video (FVV) and describe the technique that we use in this thesis. Then we give 

an overview of cloud computing and explain how it can be applied to multimedia 

processing, especially to the FVV rendering. After that, we demonstrate the basics in 

multithreading technology and describe how it can help with real-time tasks. Finally, we 

present our conclusion and the initial plan based on these backgrounds. 

2.1. Free Viewpoint Video Rendering 

Traditional video is recorded from a single fixed viewpoint, which confines the 

viewer to a flat two-dimensional image on the display. Free viewpoint video (FVV) breaks 

this restriction by providing three-dimensional watching experience. FVV is usually 

synthesised from a set of videos which are captured by multiple real cameras set in 

different positions. A typical set up is shown in Figure 2.1. With these original videos, we 

can synthesis FVV at virtual viewpoints using computer graphics approach [4]. Up to now, 

one of the most widely used methods is called Image-based Rendering (IBR). 

FVV synthesized using IBR approach is aimed to solve the problem of generating 

novel viewpoints from a limited set of images taken from different positions. In such 

schemes, the cameras must be both calibrated and synchronised. In other words, the 

positions of the cameras in the scene and their direction and focal length are known, and 

each frame is captured at the same instant by each camera [5]. As a process of 

synthesizing novel views from camera images, IBR uses Light Field technique [6], which 

generates novel views by resampling camera images independent of scene geometry. 

Given enough images from different viewpoints, IBR can reconstruct arbitrary views in the 

scene. At the very beginning, researchers attempted to use large camera arrays and 

narrow baselines, and use interpolation or warping to obtain novel viewpoints. In [7], a 

dome of 51 cameras is first used to capture views from multiple positions. And one of the 



 

6 

first IBR system is designed in [8]. However, a major issue of IBR gradually shows up, that 

is it requires a large quantity of real cameras to record images from many different 

viewpoints in order to attain the rendering quality. Then the computer vision algorithm 

based on IBR was developed to mitigate this problem. Matusik et al. introduced model 

and image based rendering methods based on the visual hull [9]. Rendering approaches 

based on image depth maps [10] and 3D scene geometry model [11] can achieve high 

quality results with relatively small number of real cameras. 

 
Figure 2.1 A typical set up to capture Free Viewpoint Video [12] 

Depth-image-based Rendering (DIBR) is an evolution of regular IBR technology, 

which uses depth cameras in addition to ordinary cameras to capture raw videos. Different 

from usual RGB color values, the depth cameras can provide depth value for each pixel 

[13]. An example is shown in Figure 2.2, (a) is a texture image which is a video frame 
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captured by regular camera, (b) is the corresponding depth map captured by depth 

camera. With the depth information, we can generate a 3D model in order to render virtual 

views. 

 
(a) 

 
(b) 

Figure 2.2 Regular video frame and the according depth image 

The most common DIBR method consists of four steps [14]: 
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1.  Warping left and right camera views to a virtual view using the depth 
images; 

2.  Processing the projected images to resolve artifacts like ghost 
contours; 

3.  Blending the processed images. For each pixel in the virtual view, it 
should be generated from either left or right projected textures; 

4.  Inpainting the disocclusions in the resulting image. 

Through these steps, DIBR can generate high quality virtual view using the texture 

and depth images captured by relatively small number of cameras. So, we select it as the 

FVV rendering approach in this thesis. However, the speed of IBR and DIBR is highly 

depends on the computational power. Image processing is performed on both texture and 

depth images. The traditional rendering system can hardly produce FVV frames in real-

time [15]. To speed up this processing and make it real-time or close to real-time, we need 

to take advantage of powerful hardware resources. Using cloud computing technique is 

one feasible solution to this issue. In this thesis, we integrate it with DIBR to build our 

cloud-assisted FVV rendering system. 

2.2. Multimedia Cloud Computing 

Cloud Computing is a type of parallel and distributed computing technology. A 

cloud usually consists of a collection of inter-connected Virtual Machines (VM). These VMs 

are dynamically provisioned and provided by the service provider as computing resources 

to consumers via the Internet. A combination of VMs makes up a cluster or a grid, then 

forms a cloud. Nowadays, more and more market-oriented Clouds are appearing, 

including Amazon Elastic Compute Cloud (EC2), Google App Engine, Microsoft Live 

Mesh. Through these platforms, the customers can pay to rent cloud resources when they 

need, without building and maintaining complex hardware infrastructure [16]. 

With the development of Web 2.0, multimedia applications and services are all 

over the Internet and mobile wireless networks. The high demand of multimedia requires 

significant computational power to process the data and stream to the clients. In the 

emerging cloud-based multimedia computing framework, the users can store and process 

their multimedia data in the cloud in a distributed manner. Generally, a media cloud is 
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equipped with a large number of high performance hard disks, CPUs and GPUs. Under 

the control of the resource allocator and load balancer, these resources are dynamically 

provided to the Media Service Providers (MSP). The MSPs can leverage the cloud to 

serve users with online storage, multimedia streaming, etc. For the mobile users, this 

media cloud can dramatically alleviate the burden of computation on the client-side and 

help with saving the battery of their devices [3]. With cloud computing, some high-

computational-cost multimedia applications and services like FVV can be even completely 

conducted in the cloud, which breaks the traditional hardware limitations. Even mobile 

users without strong CPU and GPU support can watch FVV on their devices. 

With cloud computing, we can also speed up the usual image and video 

processing. The major idea is to distribute the processing tasks in a cluster for parallel 

computing. However, it is not a new concept. A MapReduce based data processing 

paradigm on large clusters is introduced in [17], which uses a Map and Reduce function 

to automatically parallelize the computation across large-scale clusters of machines. In 

[18], a Split and Merge architecture is developed to perform video encoding on cloud. The 

basic idea is to split the original video file into several chunks based on key frames. Then 

it perfroms encoding on each chunk in parallel to reduce the time cost. Finally all encoded 

chunks are merged into one output video file. 

As a particular type of video, free viewpoint video can also leverage the cloud 

computing technology to process frames in parallel in the cluster to reduce the time of 

rendering. In this thesis, we will demonstrate how we implement a FVV rendering 

application on a cloud cluster in the following chapters. Besides the time consumption, 

Quality of Service (QoS) is another important issue in cloud computing. Since a cloud can 

be used by various users to run a large number tasks at the same time, we need an 

efficient way to provision the resources and schedule the tasks. Otherwise, some of the 

users may experience long response time, which causes relatively low QoS. To solve this 

issue, the queuing model has been widely used. In [19], an approach to optimize the 

resource allocation on multimedia cloud is developed based on queuing model. It models 

the service process at multimedia cloud data center as three queuing systems and uses 

mathmatical way to get the optimized solution to minimize the mean response time and 

the resource cost. For FVV rendering, a framework for mobile devices is introduced in 
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[20].  Figure 2.3 illustrates its concept. Each time when user send out a view request, the 

cloud will render the view and sent the stream back to user. To minimize the interaction 

delay, the client will perfrom local rendering as well. Then the authors used convex 

optimization to determine the optimal job balance betwwn cloud and client. In addition, the 

concept of cloud-assisted view synthesis was introduced in [21] and [22], but neither of 

them implemented in the system. 

 
Figure 2.3 Cloud-based FVV rendering for mobile phone [20] 

The ultimate goal of reducing the response time is to make it real-time, which is 

possible to achieve by leveraging the power of cloud computing. Theoretically, we can 

split the task to multiple small enough sub-tasks, which can be finished in real-time. 

However, this method may need many resources in cloud and the cost would be relatively 

high. Focusing on real-time tasks, resources with different speeds and costs are 

addressed in [23] and an optimal solution is provided to minimize the economic cost and 

meet all the deallines of the tasks. The introduction of multimedia cloud gives us an 

overview of cloud computing and how it can be applied to FVV rendering. But there is still 

a detailed technique in the implementation of speeding up a task using cloud, that is 

multithread processing. 

Mobile phoneMobile phone

Cloud

Current view stream

Current view request

Rendering and rate 
allocations
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2.3. Multithread Processing 

In computer science, a thread is the smallest unit of sequence of programmed 

instructions that can be managed independently by the operating system [24]. There is 

another similar concept called process. A process is also an unit of program which can be 

performed by system individually. But in fact, these two concepts are different in many 

aspects. Generally, a thread is a component of a process in most cases, which is depicted 

in Figure 2.5.  

 
Figure 2.4 A process with two threads of execution, running on a single 

processor [25] 

A process may contain multiple threads which can be executed concurrently, 

separately and mutually exclusively in time. These threads have shared resources 

including memory, while different processes use separate resources in the system, which 

is shown in Figure 2.6. A thread is also called as a lightweight process. It provides a way 

to improve program running performance through parallel computing. This approach is 

named as multithread processing. 
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Figure 2.5 Memory space used by threads and processes [26] 

In computer programming, single threading is the processing of one command at 

a time. The opposite of single threading is multithreading. It allows a process to have 

multiple threads which can be run independently. Systems with only a single processor 

generally implement multithreading by time slicing. The multithreads can be switched in 

the processor very quickly, which makes it looks like all threads are running concurrently.  

Nowadays, with the rapid growth of hardware technology, more and more computers are 

equipped with a multi-core processor or multiple processors, which means we have 

multiple processor units to run multithreads program. With this kind of processor, each 

thread can be executed on each core of the processor. As result, a multithread task can 

be performed in parallel to reduce the running time. In addition, now most of processors 

have ability of hyper-threading, which is technology to make a single physical CPU 

perform as two logic CPUs to the operating system [27].  

With this hardware support, the program can be faster and more efficient. For 

example, considering two scenarios illustrated in Figure 2.7, the same single process can 

be run with single thread on one processor while it can also be run with three threads on 

three processors. Since multithreads can share most resources in the process, each one 

of them can access and process part of the task and reduce the time cost to one third of 

the original. Although multithreading may introduce more initialization and resource 

Process

Process

Thread

Thread

Memory space Memory spaceMemory space

Process
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allocation time as each thread need to be assigned with register, counter and stack 

separately, it still can save a lot of time when running a large number of tasks. What we 

need to do is migrate the programs into multithreading way and compile them with 

hardware support. This concept perfectly matches with multimedia cloud computing, since 

by leveraging cloud we can use multiple processors for our tasks. Then we can take 

advantage of them to make our multithreading program. Finally, with cloud computing and 

multithreading technique, our tasks can be run much faster, even close to real-time. 

 
Figure 2.6 Single process with single thread and single process with three 

threads [28] 

2.4. Summary 

The current DIBR system has the ability to generate good quality FVV using 

relatively few cameras. Nevertheless, the processing speed highly relies on the hardware 

and it can hardly produce FVV in real-time. With the development of Internet, cloud 

computing becomes an important and reliable approach for specific users to resolve 

hardware limitations. The users can leverage the massive resources in a cloud to support 

their local tasks. However, using cloud resources is not free. To reduce the economic cost, 

Register Counter Stack

Code

Single thread

Register

Counter

Stack

Register

Counter

Stack

Register

Counter

StackData Files

Data Files

Code

First thread Third threadSecond thread
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it is necessary to design an efficient and smart system to allocate the resources and 

schedule the tasks. Meanwhile, the FVV rendering program should take full advantage of 

the recourses provisioned from cloud. Multithread processing is an essential technique. 

Since nowadays most of computers and virtual machines are equipped with multi-core 

processors and multiple virtual CPUs, there is a big potential in the hardware. To release 

this power, we need to make our current software to be multithreading. Theoretically, the 

running time can be reduced by multiple times if the program can be run on multiple 

threads. Hence, it is a feasible method to make current FVV rendering system to perform 

in real-time on cloud. 

To achieve this goal, we need to perform the following steps: 

1.  Optimizing the current DIBR software and changing it from traditional 
single thread processing to multithreads processing; 

2.  Developing a new multithreading FVV rendering system and migrating 
it from local to the cloud; 

3.  Designing a resource allocation algorithm for this system to minimize 
the economic cost but still maintain a high QoE and finish the tasks in 
real-time; 

4.  Implementing the whole system in code based on the support of 
certain open source libraries and tools. 

This thesis will cover these steps in the next several chapters and present the 

experimental results at the end. To the best of our knowledge, there has never been a 

completely built real-time FVV rendering system which is assisted by cloud computing. 

Although some of the concepts and the technology used in this thesis may not be very 

novel, it is still a pioneering attempt to integrate them together. This is exactly the 

motivation to produce this thesis.  
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Chapter 3.  
 
Cloud-assisted Free Viewpoint Video Rendering and 
Streaming Achitecture 

In this chapter, we first introduce the whole architecture of our cloud-assisted FVV 

rendering and streaming system. Then the three major parts which are video capture, 

cloud processing and client interaction are described with details. After that, we 

demonstrate our solution to render FVV in real-time on the cloud. It covers the allocation 

scheme of cloud resources from the macroscopic and the division of processing tasks on 

multiple processors from the microscopic. Finally, we conclude and present the summary 

of this chapter. 

3.1. System Architecture 

The architecture of our cloud-assisted FVV rendering and streaming system is 

depicted in Figure 3.1. It consists of three major components, which are the capture side, 

cloud side and client side. Usually the raw texture views and depth maps are captured by 

multiple cameras set in the view scene. After that, these raw data are compressed and 

encoded before sending to the multimedia cloud through the Internet. The cloud has two 

kinds of core recourses. One is the storage resources, which are used for saving the 

original received data and maintaining the generated FVV data. The other one is 

computational resources, which are applied to processing the received data. In general, 

the cloud side first decodes the received data. Then the novel virtual viewpoint videos are 

synthesized based on the texture views and depth maps of neighboring views. Afterwards, 

these virtual videos are compressed and encoded again in order to send to the clients. At 

client side, there are possibly many different devices, such as desktop, laptop, TV and 

mobile devices. These clients can send out the request of specific viewpoints to the cloud. 

Then the cloud will send back the generated video steams to them. Here we should note 

that the request and response are asynchronous, since the requests received by cloud 

will be dealt with based on the queue model and it may take some time to generate the 

FVV on demand. In fact, there are some cases that the cloud will perform synthesis on 
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certain viewpoints even without any request and the output FVV will not be delivered to 

clients immediately. For example, when the cloud has some idle recourses, it will perform 

synthesis in advance on certain viewpoints and the generated video will be kept in cloud 

for a period of time to prepare for the delivery. When clients request for these viewpoints, 

the videos will be sent without the generating delay. Through this strategy, we can take 

the full advantage of cloud resources and achieve high Quality of Experience.  

 
Figure 3.1 Architecture of Cloud-assisted FVV Rendering and Streaming 

System 

3.1.1. Video Capture 

The setup of capture cameras depends on the application scenarios. They can be 

aligned or circled for applications, such as concert, football game, etc. To achieve high 

quality FVV, there can be a large number of cameras which are not only set up in the two-

dimensional space, but also the three-dimensional space. These cameras should be close 

to each other to avoid potential defects. Theoretically, two cameras are enough to 

generate a novel virtual view which is usually at the midpoint between them. Figure 3.2 

illustrates a simple alignment of capture cameras. Suppose these cameras are set on a 
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line which represent viewpoints 1 to n, the virtual viewpoints can be between each two of 

them. Every adjacent two cameras provide the left view and the right view in order to 

synthesize the virtual view. This synthesis is based on the texture view and depth map 

captured by the left and right cameras. An additional set of parameters which reflects the 

settings of cameras is also required by this synthesis. This alignment model is the basic 

cameras setup in the following chapters as well. 

 
Figure 3.2 Example of Capture Cameras Alignment 

To send the captured video to the cloud immediately, especially for the live video 

capturing and streaming, we can leverage certain real-time streaming protocol, such as 

Real-Time Messaging Protocol (RTMP). It allows the capture-side to deliver the videos 

with low latency as live video stream to the cloud-side. 

3.1.2. Cloud Processing 

Cloud processing is a core part in our cloud-assisted FVV rendering and streaming 

system. It receives captured video from the capture camera side and simultaneously 

outputs FVV stream based on the user request from the client side. This module does not 

only contain data processing, but also the data analysis and decision making. The whole 

architecture is shown in Figure 3.3. 
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received by the cloud, it first uses the corresponding decoder to obtain the video data 

which includes both texture views and depth maps. Then the raw data is forwarded to the 

FVV synthesis module, which can generate novel virtual viewpoint using the captured 

texture and depth information. However, the output FVV is not applicable to storage and 

streaming since it is not compressed and does not have suitable video container to match 

the client-side devices. Hence, we encode it using specific codec in order to stream to the 

users. As described above, sometimes the generated FVV will not be steamed 

immediately, so it will be saved in the cloud-side storage and prepare for steaming on 

demand. The video streamer will handle the video container, since there are different 

requirements on container for various client-side devices. Based on the need, the encoded 

FVV will be encapsulated into corresponding container and steamed to the user. In 

addition, we should note that there is a multithreading coordinator working closely with this 

FVV generating process in order to speed it up to real-time. It receives the information 

including the provision of hardware resources from resources allocator, such as the 

number and the specification of vCPUs. This information determines how the 

multithreading can be coordinated, including multithread decoding and encoding, 

multithread FVV synthesis. It can also respond with the time cost of processing to the 

resources allocator in order to adjust and improve the overall performance. 

To timely provide the multithreading coordinator with correct information, there are 

several other controlling modules which are resources allocator, task manager and 

predictive analyzer. These modules are working together for the decision making and data 

analysis. Here the core module is the task manager which is the entry point of user request 

from client-side. It gathers the video steam request on specific viewpoints every certain 

period of time. On one hand, the task manager is provided with the analytic results on the 

historical data, which is very useful to determine if it should add or reduce the cloud 

recourses to match the trend of the quantity of user requests in the future. On the other 

hand, it stores the collected requests into the predictive analyzer for the data analysis. 
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Figure 3.3 Architecture of the Cloud-side Processing System 

The predictive analyzer basically performs two different kinds of prediction. The 

first one is short-term prediction which reflects the immediate fluctuation in user requests. 

It can be used to arrange the tasks among cloud recourses in the next serval time periods. 

However, in some situations, the user requests fluctuate frequently in short period of time, 

the prediction result is not reliable if we only depend on the short-term prediction. Also, 

considering adding or reducing cloud resources cannot be taken into effect immediately 

and renting resources usually charges on a long time [29], we introduce long-term 

prediction along with the short-term prediction. It relies on the historical data in a long time 
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which helps a lot to save cost and improve the user experience. 
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of time. It can also change the recourse renting scheme in a long time. All these status 

and provision information will be provided to the multithreading coordinator so that it can 

arrange proper hardware for every FVV synthesis process. The multithreading coordinator 

responses with the performance results in return to the resource allocator. These results 

will also be forwarded to other control modules to make sure the processing is real-time. 

Thanks to the shared memory and message passing inside the cloud cluster, these 

modules in the cloud-side can work closely to each other. To take full advantage of the 

cloud resources and minimize the cost and time delay, we need an efficient algorithm and 

prediction methods to be applied in the control modules. Also, the implementation of the 

cloud-side FVV rendering is another key to maintain the whole process real-time. All the 

details of algorithms, methods and implementation techniques will be introduced in the 

following chapters. 

3.1.3. Client Interaction 

On the client side, the user can send out FVV requests on viewpoints to the cloud 

and receive the generated FVV from it. Usually, the request contains at least viewpoint 

information that indicates which view stream should be synthesised. In addition, based on 

various client devices and network conditions, it allows user to select the video resolution 

and quality. In general, the FVV with high resolution and quality will take longer time for 

the processing and need higher speed network transmission. For the non-live video, the 

user may also select the specific sequences to watch within a FVV. Then the cloud does 

not need to process on the whole FVV, but only parts of it. Furthermore, the specifications 

of users’ devices are sent along with the request. It includes information on the video 

codec and container which are supported by the client-side devices, which can help the 

cloud-side to choose proper video processing format. For the request transmission format, 

JavaScript Object Notation (JSON) and Extensible Markup Language (XML) are widely 

used nowadays. All the request information can be wrapped into these formats in order to 

be transmitted to the cloud. An example of request information is given in table 3.1. 

On most of the current video websites, user can watch video streams on the 

website and web-based applications. Both these websites and applications are in the 
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front-end, they will gather users’ requests and send them to the back-end. The 

communication between font-end and back-end is based on network protocol. For 

example, Hypertext Transfer Protocol (HTTP) and Real-Time Messaging Protocol (RTMP) 

are two famous protocols which are used for live video steaming. Apple implemented 

HTTP-based media streaming communications protocol called HTTP Live Steaming (HLS) 

for their products, including QuickTime, Safari, OS X, and iOS. It resembles MPEG-DASH 

and divides the overall stream into a sequence of small HTTP-based downloadable video 

files. Each of these video files contains short chunk of video stream which is in the format 

of MPEG transport stream (MPEG-TS). While they are played seamlessly, the users will 

feel like watching live video stream [30].  The RTMP is another option for the live video 

streaming which is owned by Adobe. It is based on Transmission Control Protocol (TCP) 

and can maintain persistent connections and low-latency communication. Flash Video 

(FLV) is the required video container while Advanced Audio Coding (AAC) and 

H.264/MPEG-4 AVC can be the corresponding audio and video encoding format [31].  

Table 3.1 Example of Request Content 

Objects in Request Example Values 
Request Viewpoint Viewpoint 2 

Video Quality 720p, 30fps 
Video Sequence From time 1:15 

Video Codec H.264 
Audio Codec AAC 

Container FLV 
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Figure 3.4 Interaction between Cloud-side and Client-side 

The overall interaction between client-side and cloud-side is depicted in Figure 3.4. 

The users’ requests are formatted in JSON or XML and sent to the cloud. As described 

above, the FVVs are saved in the storage resources in the cloud. When they received 

users’ request, the corresponding FVV sequences will be delivered to the streamer and 

sent back to users as response. These sequences are formatted as users request and 

transmitted through the network with HTTP or RTMP. After retrieving the FVVs from the 

cloud, the client-side only needs to decode them and can watch them as normal video 

streams. 
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3.2. Real-time solution 

Real-time FVV rendering and streaming is another key point in our system design. 

We introduce cloud computing and multithread computing to FVV generation in order to 

make it real-time. Based on the architecture proposed in the previous section, there are 

several modules taking charge of resource allocation and tasks management. In this 

section, we give detailed scheme and strategy to describe the logic which is used in these 

modules. Firstly, we describe how the resources are allocated among different viewpoints 

rendering. Secondly, we explain how these resources are applied to multithreading FVV 

generation. The ultimate goal is to make the whole FVV rendering process be able to 

complete in real-time. 

3.2.1. Dynamic Resource Allocation Scheme  

According to different cloud service providers, the cloud resources can be rented 

in different schemes. The most common one is to rent the resources in advance as 

provision. The quantity of provisioned resources depends on the number of viewpoints 

and the users, since every unit of cloud resources has limited processors, storage space 

and streaming bandwidth. Generally, these resources are represented as Virtual 

Machines (VM) in the cloud. Since cloud is a distributed system with resources at different 

locations. To reduce the delay, we want to use the VMs that close to the users. In addition, 

each VM has limited throughput which determines the number of requests it can handle 

simultaneously. Therefore, generally a viewpoint with more users will need more 

resources in the entire cloud system. On the client-side, the distribution of users’ requests 

is usually not even among different viewpoints. For example, supposing a concert or a 

football game is streamed using FVV, most users will choose to watch through the 

viewpoints in the center, that is why the ticket price in these areas are often higher than 

the others. Based on the distribution of users, the cloud recourse should be provisioned 

specifically. In this thesis, we ignore the actual locations of users and group all VMs 

together. The number of VMs to provision is our focus. 

In the ideal situation, all the viewpoints can be assigned with enough VMs to render 

and stream FVV. So, we can refer to the prediction results from the historical data to 



 

24 

determine the quantity of VMs needed as provision. The allocation of resources may be 

similar to Figure 3.5. Here we only consider the virtual viewpoints which need to be 

synthesized in the cloud. In Figure 3.5, we assume that the users are Gaussian distributed 

among the six example virtual viewpoints. Correspondingly, the provisioned cloud 

resources are distributed same as the users in order to achieve the optimal performance 

and generate FVV in real-time. By this allocation, the users can be served by the VMs 

effectively if the users distribution remains unchanged.  

 
Figure 3.5 Distribution of Users and Allocation of Provisioned Resources 
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However, the allocation in Figure 3.5 can hardly remain as the optimal solution 

throughout the entire FVV streaming process. Firstly, the distribution of users usually 

keeps changing when the focus of the scenario varies. For example, when there is 

particular highlight happening in a football game, like penalty or goal, most of users will 

switch to the viewpoints close to there. It may cause the VMs serving that parts of 

viewpoints overloaded in a short period of time and the real-time streaming is stuck for a 

while. Secondly, even though the static resource allocation scheme can achieve the best 

rendering and streaming performance, it may not be the optimal real-time solution when 

we take economic cost into consideration. To reduce the cost, we cannot guarantee all 

the viewpoints have enough provisioned cloud resources at the beginning. But we can re-

allocate them dynamically later if some of them finish their tasks before deadline. So here 

in this thesis, we propose a dynamic resource allocation scheme. 

The first motivation to design our dynamic resource allocation scheme is to reduce 

the economic cost. In fact, we do not need to provision every viewpoint with sufficient VMs 

at the beginning, which means we can allocate less VMs for the viewpoints that are not 

popular as expected. For those viewpoints lack of provisioned VMs, our resource allocator 

can switch VMs from other viewpoints to them, if they can finish their tasks before the 

deadline. Before this reallocation happens, the users watching the viewpoints without 

enough VMs may experience longer delay and queuing time. And the length of this delay 

depends on how long the VMs on other viewpoints can finish the assigned tasks. This 

dynamic resources reallocation scheme can be illustrated in Figure 3.6. For example, 

assuming the virtual viewpoint 1 and 6 do not have provisioned VMs at the beginning of 

FVV streaming and the VMs provisioned for virtual viewpoint 3 and 4 are sufficient to finish 

tasks earlier than deadline, so we can reallocate them to other viewpoints, such as the 

virtual viewpoint 1 and 6. The Figure 3.6 is just an example, since actually all the VMs in 

virtual viewpoint 3 and 4 can be switched to other different viewpoints if their tasks are 

done, not only one part of them. Through this scheme, we can reduce the economic cost 

even though some of the users may experience streaming delay. However, we consider 

this delay as acceptable result, since it only happens on the least popular viewpoints, like 

the viewpoint 1 and 6 in Figure 3.6, which can minimize the defects on user experience. 

In addition, the overall optimal solution not only considers the user experience, but also 

the economic cost. There is a trade-off between these two. The optimal solution should 
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minimize the cost and maintain the overall user experience as high as possible at the 

same time. And the overall user experience mostly relies on the central viewpoints. We 

will give the mathematical model on this issue in the next chapter in order to demonstrate 

the optimal solution more precisely. 

 
Figure 3.6 Reallocation of Resources among Viewpoints 
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not enough VMs in total, we have to suffice the central viewpoints first, then support the 

other viewpoints. The second reason is the prediction cannot be always right. In some 

situations, some viewpoints may have over sufficient VMs while the others lack of VMs. In 

addition, there are some incidents like highlights unexpected during the streaming process. 

In particular, when highlight comes, most users will switch to specific viewpoints even they 

are not popular in the most of time. This kind of situations can be illustrated as Figure 3.7. 

 
Figure 3.7 Dynamic Resource Allocation for the Highlight Viewpoint  
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as users switch from other viewpoints. Accordingly, the VMs should also be moved to the 

highlight viewpoints to support from the other viewpoints. We can see the VMs are 

reallocated from virtual viewpoints 3, 4 and 5 to virtual viewpoints 1 and 2. Even the nearby 

viewpoint 1 can also have a sudden overload during this period of time. By this dynamic 

resource allocation scheme, we can maintain the relatively high quality of experience for 

most of users and deal with the possible incidents which result in overload on specific 

viewpoints. 

Dynamic resource allocation is one of the key points in our real-time FVV rendering 

and streaming system. It can make the resources be used in the right place in a dynamic 

way. By this scheme, it is possible to reduce the economic cost without reducing much 

user experience at the same time. In addition, for each viewpoint provisioned with 

resources, we can apply our multithread processing strategy in order to further improve 

the performance and efficiency. 

3.2.2. Multithread Processing Strategy 

When a viewpoint is provisioned with cloud resources, it has the ability to produce 

FVV stream to the users. To speed up the production process and take full advantage of 

the resources, we introduce multithread processing strategy. The key idea in the strategy 

is split and merge. In this split and merge process, the most important point it to determine 

proper separation points.  

In our multithread FVV synthesis process, we first decode the input video which is 

in texture and depth respectively. According to the DIBR, the processing is performed 

horizontally in frame. Thus, we can split a frame into several horizontal slices. Since the 

multiple threads within one process use the shared memory, these slices can be 

processed on multiple threads concurrently and the number of slices in a frame should 

match the number of available threads. After the FVV synthesis is done, we merge the 

slices back into complete frames and then encode them to the output FVV. Since the view 

synthesis is much more time consuming than the video coding, we only parallelize view 

synthesis in our system. When all frames are synthesised, we encode them together as 

traditional video at the end. The whole multithread processing workflow is illustrated in 
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Figure 3.8. The implementation of this multithread processing strategy will be introduced 

with details in Chapter 5.  

 
Figure 3.8 Multithread Processing Workflow 
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3.3. Summary 

We introduce the architecture of our cloud-assisted FVV rendering and streaming 

system in this chapter. In the architecture, the capture side, cloud-side and client-side are 

integrated together through the Internet. As the core component, the cloud takes charge 

of receiving captured video, generating FVV, listening to users’ requests and streaming 

FVV to users. To implement these functionalities, we design several modules for different 

purposes. For the control modules in the system, we design the dynamic resource 

allocation scheme and multithread processing strategy. These are the two key points in 

the whole system, since they determine how the resources are allocated and how the 

resources are used to generate FVV efficiently. However, in this chapter, we only describe 

the general logic. In order to achieve the optimal trade-off between economic cost and 

user experience, we still need precise modeling, calculation and algorithm. All these 

remaining concerns will be deal with in Chapter 4. 
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Chapter 4.  
 
Mathmatical Modeling and Algorithm Design 

In this chapter, the dynamic resouces allocation scheme and the multithread 

processing strategy are formulated in a mathmatical model for the precise calculation and 

result analysis. Based on the formulation and modelling, we introduce the objective 

function to quantify the trade-off between economic cost and user experience. In order to 

achieve the optimal solution, we propose a reliable algorithm which can be run in our 

system to make decisions. All the contents in this chapter focus on rendering and 

streaming live FVV in real-time by leveraging cloud resources. Before introducing the 

model and algorithm, we first describe the scenario and basic assumptions to narrow down 

the problem. 

4.1. Basic Assumptions and Strategy 

Nowadays, live video is becoming more and more popular. People can watch the 

video stream shortly after it is captured. To achieve the low latency live streaming, the 

video processing needs to be done in real-time. For the ordinary video, even the computer 

with common hardware can finish encoding and streaming in a very short time. However, 

since generating FVV requires processing of both texture and depth views, it is much more 

complicated and time consuming. Unlike non-live FVV which can be rendered in advance, 

the live FVV must be generated in real-time. Therefore, although it is challenging to realize, 

live FVV streaming is still a very practical scenario to use our real-time FVV rendering and 

streaming system. To support the real-time FVV synthesis, we integrate the rendering and 

streaming system with cloud computing. Here we give the basic assumptions based on 

this scenario.  

First we narrow down the scope of this thesis to the cloud-side by making certain 

assumptions on capture side and client-side. Specifically, we assume the captured live 

videos are already sent to or cached in the cloud. So, the system can read the original 

views immediately. The number of available virtual viewpoints is 𝑚 and all the viewpoints 
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can be denoted as 𝑉&, 𝑉(,⋯ , 𝑉* . For the client, the users’ requests are collected by the 

cloud every period of time and the number of users’ requests for the viewpoint 𝑖 during 

time slot 𝑡. is 𝑀01,23	, where 𝑉5 ∈ 𝑉&, 𝑉(,⋯ , 𝑉* . The users’ requests are held in a queue 

until collected by cloud at the beginning of every time slot 𝑡. .  

For the cloud-side, the unit of resources is VM. We suppose that each VM has the 

ability to render FVV in real-time. But even if it is real-time, there is still a generating speed 

which depends on the quality of video, that is 𝐺𝑒(𝐵𝑟), where 𝐵𝑟 is the bit rate of video 

indicating the quality. In addition, each VM has the upper bound of its serving bandwidth 

𝐵𝑑 , which will somehow determine the downloading speed of video streams and the 

maximum number of users it can serve at the same time. Due to the bottleneck of the 

input/output (IO) mechanism of VM, each VM can only run one task at a time. Therefore, 

we need to allocate VMs among all the viewpoints and each one of them can generate 

FVV for a specific viewpoint before it is reallocated. In addition, because of the bandwidth 

𝐵𝑑 and acceptable downloading speed 𝐷𝑙@, 𝐷𝑙A  of users, we can derive the number of 

the users which a VM can serve, that is 

 𝑆𝑒@, 𝑆𝑒A = DE
FGH

, DE
FGI
	  (4.1) 

where 𝑆𝑒@, 𝑆𝑒A represents the lower bound and the upper bound of the number of users 

that a VM can serve. Within this range, a VM can provide all the users with acceptable 

downloading speed which determines the transmission delay. 

 In the cloud, the resources are reallocated as scheduled every 𝑡J unit of time. For 

the reallocation, the system analyzes the trend and distribution of the users’ requests 

within last several 𝑡. time slots and then determines the updated reallocation scheme, 

including the number of VMs for each viewpoint in the next 𝑡J units of time, that is 𝑁01,2L	. 

Since reallocating all the resources takes certain time, we do not want this operation to 

happen too frequently. Thus, we assume  that is 𝑡J ≫ 𝑡.. However, in order to take full 

advantage of the cloud resources, we reallocate the VM immediately when it finishes tasks 

before the deadline within  𝑡J. Specifically, when a VM is done with the current jobs but 

does not hit the end of 𝑡J, it will fire an event to notify the listener in the control modules. 

Then the control modules will reassign it to other viewpoints where we need more VMs to 
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support. Once a VM is launched, the unit of its running time is the renting cycle 𝑇. It means 

that a VM will run at least 𝑇  units of time because shutting it down before that is 

meaningless since the rental has already been charged at the beginning of the renting 

cycle. Usually the renting cycle of VM is relatively long, like 30 or 60 minutes. Therefore, 

we cannot immediately modify the existing renting plan until current renting cycle ends. 

When a VM finishes its current renting cycle, the system control can decide to shut it down 

or extend its renting period. Based on the workload situation of the previous renting cycle, 

we can also choose to launch more new VMs to serve users if the existing VMs are not 

sufficient.  

 
Figure 4.1 Timeline of one renting cycle 
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where 𝑉U represents the major viewpoint. If the order changes at 𝑡.V into  

𝑀0O,23V	
< 	𝑀0R,23V	

< 	𝑀0T,23V	
< 	𝑀0S,23V	

< 𝑀0Q,23V	
 

where 𝑉W represents the highlight viewpoint, the short-term control should reallocate the 

VMs immediately otherwise the 𝑉W may experience significant overload. In summary, we 

allocate the VMs according to the order of the number of users’ requests on each 

viewpoint. If the order changes at 𝑡. , the system can reallocate the VMs immediately 

without waiting until the next 𝑡J. 

For long-term control, it can modify the resources provision plan by maintaining 

the total number of VMs in the system. In particular, it can turn off a VM, extend its renting 

period or add more VMs to the system. The timeline and corresponding events within one 

renting cycle are illustrated in Figure 4.1. While Figure 4.1 is explicitly showing the 

relationship between short-term and long-term control, the scale among 𝑡., 𝑡J and 𝑇 can 

varies much in the real world according to different charging schemes by the cloud service 

providers. 

To make the right decision, the long-term control need consider three possible 

situations: 

1.  The current VMs are under sufficient to serve the users in the next 
renting cycle; 

2.  The current VMs are over sufficient to serve the users in the next 
renting cycle; 

3.  The current VMs are just sufficient to serve the users in the next 
renting cycle. 

As a VM has the limitation on the number of users that it can serve at the same time, we 

can determine if the current VMs are enough to serve the users in the next renting cycle. 

In the situation 1, the number of users exceeds the maximum which a VM can 

serve, that is  

 𝑀01,XV	5 > 𝑆𝑒A ∙ 	 𝑁01,X	5  (4.2) 
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where 𝑇 is the current renting cycle and 	𝑇[ is the next renting cycle. Thus, we need to add 

more VMs in the next renting cycle; The situation 2 is the opposite of situation 1, that is 

 𝑀01,XV	5 < 𝑆𝑒@ ∙ 	 𝑁01,X	5  (4.3) 

In this situation, we can shut down some VMs to save the economic cost in the next renting 

cycle. 

The situation 3 means that the serving capability of current VMs and the number 

of users are balanced, that is  

 𝑀01,XV	5 ∈ 𝑆𝑒@, 𝑆𝑒A ∙ 	 𝑁01,X	5  (4.4) 

In this situation, adding more VMs will speed up the downloading but also increase the 

cost, while shutting down VMs will slow down the downloading but also reduce the cost. 

Besides, the system can also choose to extend the renting period of current VMs without 

increasing or decreasing the amount of VMs. Therefore, a decision should be made to 

optimize the trade-off, which depends on our economic cost and user experience models 

in the next section. And the decision making will be explained in detail in the section of 

algorithm design. 

4.2. Cost and User Experience Model 

In order to provide the optimal solution to the trade-off between economic cost and 

user experience, this section gives two models respectively and then defines the objective 

function to describe our ultimate goal. 

4.2.1. Cost Model 

The cloud resources are charged by the cloud service provider under certain 

scheme. And the charging scheme varies based on different kinds of VM with various 

hardware. To simplify this problem, we assume that we only rent one kind of VM which 

can generate FVV in real-time and this kind of VM is charged 𝑃 dollars for a renting cycle 
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𝑇. In addition, every viewpoint has its own economic value and it is usually different from 

each other, since the more popular and center viewpoint will charge more on the users. 

Thus, we represent it as 𝑄01		for each viewpoint 𝑉5 . Assuming we only charge the users if 

they can watch the viewpoint without waiting time, so for each viewpoint we define a binary 

flag 𝐾	01, whose detailed definition is given in the next section as part of user experience 

model. Therefore, total cost 𝐶2`2aG within one renting cycle is given by 

 𝐶2`2aG = 𝑁01		5 ∙ 𝑃 − 𝐾	01 ∙ 𝑀01	5 ∙ 𝑄01	 (4.5) 

4.2.2. User Experience Model 

Unlike the economic cost model which is only affected by the price 𝑃 of VM, the 

user experience model takes more aspects into consideration, such as FVV quality, FVV 

generating delay, transmission delay and waiting time. Basically, these aspects can be 

summarized into two categories, which are the FVV quality and the delay time until the 

users can watch the request FVV on their local devices. 

For the FVV quality, we use Peak signal-to-noise ratio (PSNR) as measure. 

Basically, the PSNR is proportional to the bit rate 𝐵𝑟 of FVV but the detailed relationship 

is complicated. In the chapter 5, we can roughly describe it based on the experimental 

results. Here, we use a function to represent the FVV quality 𝑄, that is 

 𝑄 = 𝑃𝑆𝑁𝑅 𝐵𝑟  (4.6) 

For the delay, we can formulate each part respectively. Firstly, although there is 

an assumption that the VM we rent can generate FVV in real-time, the generating speed 

can still be slightly different when using different bit rate setting. In order to maintain the 

real-time FVV generation and the user experience, the bit rate must be limited within an 

acceptable range, that is 𝐵𝑟 ∈ 𝐵𝑟@, 𝐵𝑟A . Supposing the users watch FVV for 𝑡 time, the 

total generating time 𝐷de should be  

 𝐷de =
fg∙2

de Dh
 (4.7) 
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where 𝑃𝑏 also represents the playback rate of client-side. 

Secondly, when the users are watching FVV rendered and streamed from the 

cloud, they need to download the streams, which will cause the transmission delay. The 

downloading speed depends on the bandwidth on both cloud-side and client-side. 

Generally, the users are assigned with certain network bandwidth from the network 

provider. Even though the cloud may provide larger bandwidth for the users, the 

downloading speed is still limited to an upper bound 𝐷𝑙A. However, in some cases, the 

cloud cannot provide each user with the enough bandwidth to achieve the maximal 

downloading speed due to the large number of users’ requests at the same time. Hence, 

although the users have sufficient bandwidth, the downloading speed is reduced. 

However, to maintain the real-time rendering and streaming experience, there is a lower 

bound of required downloading speed, that is 𝐷𝑙@ . Therefore, we can derive the 

formulation of the transmission delay on a specific viewpoint 𝑉5, 

 𝐷Xh =
DE∙jk1
lk1

m&
∙ 𝑃𝑏 ∙ 𝑡 (4.8) 

Thirdly, as described in our dynamic resource allocation scheme, some viewpoints 

may not have provisioned VMs at the beginning. The users watching on these viewpoints 

have to wait for the other VMs finishing their tasks. There is an upper bound for the waiting 

time, because if the users wait for too long, the VMs will not have enough time to support 

them after being switched from other viewpoints. Thus, we can derive the condition on the 

waiting time 𝐷na, 

 
𝐷na = 𝐷de

𝑇 − 𝐷na ∙ 𝐺𝑒 𝐵𝑟 ≥ 𝑃𝑏 ∙ 𝑡 (4.9) 

where 𝑇 represents the total time before the deadline. Considering equation 4.7, we can 

conclude the condition as  

  𝐷na = 𝐷de ≤
X
(
 (4.10) 
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which means the generating time cannot exceed half of the total time. Therefore, when 

we make provision for next renting cycle, if the 𝐷de >
X
(
, we must add more VMs to the 

system, otherwise the FVV generation on certain viewpoints will miss the deadline. For 

each viewpoint, the derived waiting time is 

 𝐷na = 𝐾	01 ∙ 𝐷de (4.11) 

where 𝐷de ≤
X
(
 and 𝐾	01  indicates if the viewpoint has provisioned VMs. Assuming 𝐾	01 

indicates the viewpoints with sufficient provisioned VMs, it can be defined as  

 𝐾	01 =
1, 𝑖𝑓	

l	k1
j	k1

> 𝑆𝑒A

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.12) 

where  

Here we make an assumption that a VM can be reallocated once within one timeslot. 

Hence, we have  

 𝐾	015 ≥ &
(
∙ 𝑚 (4.13) 

where 𝑚 is the total number of viewpoints. 

Finally, in order to obtain the overall formulation of user experience, we consider the 

number of users 𝑀01,2  on each viewpoint and use 𝑡 to represent a timeslot. Thus, the 

overall average user experience (QoE) is 

 𝑄𝑜𝐸ayehaze = 𝛼 ∙ 𝑃𝑆𝑁𝑅 𝐵𝑟 − 𝑡m& 𝛽 ∙ 𝐷de − 𝛾 ∙ 𝐷Xh − 𝛿 ∙ 𝐷na  (4.13) 

that is,   

 𝑄𝑜𝐸ayehaze = 𝛼 ∙ 𝑃𝑆𝑁𝑅 𝐵𝑟 − 𝛽 ∙ fg
de Dh

− 𝛾 ∙
lk1∙

��∙�k1
�k1

�O

1 ∙fg

lk11
− 𝛿 ∙

&m�	k1 ∙ lk1∙1
��

�� ��
lk11
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  (4.14) 

where the conditions are 

 𝐵𝑟 ∈ 𝐵𝑟@, 𝐵𝑟A  (4.15) 

 fg
de Dh

≤ &
(
 (4.16) 

 𝐾	015 ≥ &
(
∙ 𝑚 (4.13) 

 
DE∙jk1
lk1

∈ 𝐷𝑙@, 𝐷𝑙A	  (4.17) 

if 
DE∙jk1
lk1

> 𝐷𝑙A, then shut VMs down; if 
DE∙jk1
lk1

< 𝐷𝑙@, then launch more VMs. To further 

determine the number of VMs we need to shut down or launch, we need to integrate the 

QoE formulation to the economic cost formula to obtain the ultimate objective function. 

4.2.3. Objective Function 

In order to achieve the optimal resource allocation, the objective function should 

take both economic cost and user experience into consideration. To indicate the overall 

trade-off, the basic idea of objective function is to calculate the weighted average on these 

two factors, that is 

 𝑆 = 𝜆 ∙ 𝐶 + 1 − 𝜆 ∙ 𝑄𝑜𝐸 (4.18) 

where 𝑆 represents the score of the trade-off, 𝐶 is the cost. However, the cost and QoE 

are in the different scales, we need to normalize them first to obtain the correct score. 

For the cost, it is usually bounded by the budgets, that is 𝐶 ∈ 𝐶@, 𝐶A . Thus, the 

normalized cost 𝐶j should be 

 𝐶j = 1 − �
�Hm�I

= 1 −
&/X∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
 (4.19) 
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where we use 𝑃/𝑇 to represent the cost of a VM per time unit. Since it is better to have 

lower cost, the 𝐶j should be inverse proportional to the actual cost. 

For the QoE, there are four internal factors which are PSNR, generation delay, 

transmission delay and the waiting time. To simplify the representation of the normalized 

score, we replace generation delay and transmission delay with generation speed and 

transmission speed respectively. As a matter of fact, the bit rate 𝐵𝑟 of FVV is limited to 

𝐵𝑟@, 𝐵𝑟A , so the normalized PSNR is 

 𝑃𝑆𝑁𝑅j 𝐵𝑟 = f�j� Dh mf�j� DhI
f�j� DhH mf�j� DhI

 (4.20) 

Similarly, we can derive the normalized generation speed 

 𝑆dej = de Dh mde DhI
de DhH mde DhI

 (4.21) 

and the normalized transmission speed 

 𝑆Xhj =

��∙�k11
�k11

mFGI

FGHmFGI
 (4.22) 

where 𝐷𝑙A, 𝐷𝑙@ represent the range of possible transmission speed. 

For the waiting time, the normalized score is also inverse proportional to the actual waiting 

time. In addition, based on the inference above, we can derive the range of the possible 

waiting time, that is 

 𝐷na ∈ 0,
lk1∙

��
�� ��

�/R
1

lk11
 (4.23) 

where 𝑚/2 means that at most half of the viewpoints has no provisioned VMs and 𝑃𝑏 is a 

known parameter indicating the playback rate on client-side. In the most ideal case, the 

waiting time is zero as all the viewpoints are provisioned with VMs. Thus, the normalized 

waiting time is 
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 𝐷na
j = 1 −

O��	k1 ∙ �k1∙1
��

�� ��
�k11

�k1∙
��

�� ��

�
R
1

�k11

= 1 −
&m�	k1 ∙ lk11

lk1

�
R
1

 (4.24) 

To sum up, the normalized overall QoE is 

 𝑄𝑜𝐸j = 𝛼 ∙ 𝑃𝑆𝑁𝑅j 𝐵𝑟 + 𝛽 ∙ 𝑆dej + 𝛾 ∙ 𝑆Xhj + 𝛿 ∙ 𝐷na
j  (4.25) 

That is, 

 𝑄𝑜𝐸j = 𝛼 ∙ f�j� Dh mf�j� DhI
f�j� DhH mf�j� DhI

+ 𝛽 ∙ de Dh mde DhI
de DhH mde DhI

+ 𝛾 ∙

��∙�k11
�k11

mFGI

FGHmFGI
+ 𝛿 ∙ 1 −

&m�	k1 ∙ lk11

lk1

�
R
1

 

  (4.26)

  

Finally, we can obtain the overall trade-off formulation 

𝑆 = 𝜆 ∙ 1 −
&/X∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
+ 1 − 𝜆 ∙ 𝛼 ∙ f�j� Dh mf�j� DhI

f�j� DhH mf�j� DhI
+ 𝛽 ∙

de Dh mde DhI
de DhH mde DhI

+ 𝛾 ∙

��∙�k11
�k11

mFGI

FGHmFGI
+ 𝛿 ∙ 1 −

&m�	k1 ∙ lk11

lk1

�
R
1

 (4.27) 

where 𝑃, 𝑇 , 	𝐶A , 	𝐶@ , 	𝐵𝑟 , 	𝐵𝑟A , 	𝐵𝑟@ , 	𝐵𝑑 , 	𝑚  are all parameters, 𝑄01 , 𝑁01 , 𝑀01  and 𝐾01  are 

variables and 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1. 

Thus, our objective function is  

 max
�k1,jk1,lk1,�k1

𝑆 𝑄01, 𝑁01		5 , 𝑀01, 𝐾01  (4.28) 
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 𝑠. 𝑡.
lk1
jk1

∈ 𝑆𝑒@, 𝑆𝑒A 	𝑎𝑛𝑑 𝐾	015 ≥ *
(

  

where we can see that this optimization problem can be simplified into two basic sub-

problems: 

 1.  How many VMs should be rented according to the number of users; 

2.  How to allocate these VMs among all the viewpoints. 

And the condition is the workload of a VM should be within the acceptable range. To solve 

these sub-problems, we will design an algorithm in the following sections. 

4.3. Prediction Method and Resource allocation 

According to our dynamic resource allocation scheme, the decision-making needs 

to depend on the estimation of users’ requests in the next time slot. Hence, the accuracy 

of prediction method will determine the correctness of resource allocation. In this section, 

we present our prediction method first and then explain how the prediction results will 

affect our resource provision plan in the next time slot. 

4.3.1. Short-term Prediction and Resources Reallocation 

As design of our system, every 𝑡. time the cloud-side collects the users’ requests 

from client-side. Meanwhile, it can also obtain the distribution of users’ requests on 

viewpoints, that is 𝑀01,23. At 𝑡J time, the scheduled resources reallocation happens and 

the system makes the resources provision plan for the next time slot. Supposing 𝑡J ≫ 𝑡., 

we can get a time series of users’ requests on each viewpoint based on the previous time 

slots, that is 

 𝑀01,23O
, 𝑀01,23R

, ⋯ ,𝑀01,23�  (4.29) 

where 𝑡.� = 𝑡J and 𝑉5 ∈ 𝑉&, 𝑉(,⋯ , 𝑉* . In order to estimate the users’ requests on each 

viewpoint in the next time slot 𝑀01,23��O
, we can leverage the usual prediction methods of 

time series, such as Autoregressive moving average (ARMA) and Autoregressive 
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integrated moving average (ARIMA). Since the prediction method is not our focus in this 

thesis, we just apply certain existing reliable method to our system. In Chapter 5, we will 

present the specific time series prediction method we use in the implementation of our 

system.  

 By leverage the time series prediction method, we can get the predicted number 

of users’ requests on each viewpoint 𝑀01,23��O
. Based on this result, the short-term control 

will reallocate the VMs to each viewpoint. According to equation 4.27, the level of 𝑆 only 

relies on the value of viewpoints and waiting time which is the last term, since the total 

number of VMs 𝑁01,23��O		5 will not be changed and users’ requests on each viewpoint 

𝑀01,23��O
is known. Thus, the distribution of VMs 𝐾01 and the value of viewpoints 𝑄01	 are 

the factors which can affect the ultimate trade-off in the objective function.  

According to the normalized waiting time, we can derive the simplified objective 

function 

 max
�k1,�k1

𝑆[ = 𝜆 ∙ 1 −
O
�∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
+ 1 − 𝜆 ∙ 𝛿 ∙ 1 −

&m�	k1 ∙ lk11

lk1

�
R
1

 (4.30) 

 s. 𝑡.
lk1
jk1

∈ 𝑆𝑒@, 𝑆𝑒A 	𝑎𝑛𝑑 𝐾	015 ≤ *
(

  

where the possible maximum waiting time 𝑀01

�
R
5  is determined by 𝑀01. The maximum 

waiting time happens when half of the viewpoints has no provisioned VMs and this half 

consists of the viewpoints with lower users’ requests. Then, to maximize 𝐷na
j ,  1 − 𝐾	01 ∙

𝑀015  should be minimized. Hence, when the control system reallocates VMs, it should 

assign VMs to the viewpoints with most users’ requests first and satisfy the condition 	
lk1
jk1

∈

𝑆𝑒@, 𝑆𝑒A . Since the magnitude of  
lk1
jk1

 does not contribute to the ultimate objective, we 

can keep 
lk1
jk1

= 𝑆𝑒@  during the reallocation process in order to avoid assigning over 

sufficient VMs on specific viewpoints. Once the viewpoint 𝑉5	with the most users’ requests 
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has number of provisioned VMs 𝑁01 =
lk1
�eH

, the system switches to the viewpoint with the 

second most users’ requests, and so on. Through this greedy VMs reallocation strategy, 

we can finally achieve the optimal 𝐾	01 and the maximum of the ultimate objective. 

Based on the inference above, we can conclude that in order to achieve the optimal 

trade-off between economic cost and user experience, the priority on each viewpoint to 

obtain provisioned VMs should follow the order of number of users’ requests. Last but not 

least, this short-term resources reallocation can be forced to run within a time slot when 

the order of number of users’ requests changes. Since the short-term time slot is relatively 

short, the order of number of users’ requests is usually stable during one time slot except 

when highlights appear suddenly in the video. By detecting the order of number of users’ 

requests and activating the short-term resource reallocation accordingly, our dynamic 

resource allocation scheme is able to deal with the highlight viewpoints and relieve the 

influence from the fluctuation of the users’ requests at the same time.  

4.3.2. Long-term Prediction and Resource Provision 

While the short-term predication happens at 𝑡J  to achieve the optimal resource 

reallocation scheme, the long-term prediction is triggered at the end of renting cycle 𝑇 in 

order to decide if the number of VMs should be increased, decreased or maintained the 

same. 

Similar to the short-term prediction, the long-term prediction is based on not only 

the distribution of users’ requests, but also the total number of it, that is 

 𝑀01,2LO5 , 𝑀01,2LR5 , ⋯ , 𝑀01,2L�5  (4.31) 

where 𝑡J� = 𝑇 and 𝑉5 ∈ 𝑉&, 𝑉(,⋯ , 𝑉* . Here we use the historical data on 𝑡J within the 

previous renting cycle as the reference points to build the time series and assume the total 

number of users’ requests cannot vary significantly within one renting cycle. By leveraging 

the time series prediction methods, we can obtain the predicted total number of users’ 

requests within next renting cycle in addition to the distribution. 
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At the end of every renting cycle, the control system is able to change the total 

number of VMs. However, the lower bound of the total number is determined by the service 

capability of VMs and the number of users’ requests. Thus, the starting point of total 

number of VMs is  

 𝑁01,XV5 ≥
lk1,�

V

�eH

�
R
5  (4.32) 

where 𝑇[ represents the next renting cycle. Starting from this point, we can achieve the 

optimal solution by greedy approach. According to the objective function, the cost, 

transmission speed and waiting time will be affected by the number of VMs.  Thus, we can 

derive the simplified objective function 

max
�k1, jk1	1 ,lk1,�k1

𝜆 ∙ 1 −
O
�∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
+ 1 − 𝜆 ∙ 𝛾 ∙

��∙�k11
�k11

mFGI

FGHmFGI
+ 𝛿 ∙

1 −
&m�	k1 ∙ lk11

lk1

�
R
1

  (4.33) 

 s. 𝑡.
lk1
jk1

∈ 𝑆𝑒@, 𝑆𝑒A 	𝑎𝑛𝑑 𝐾	015 ≥ *
(

  

Specifically, in order to achieve the optimal result, we can keep trying to add one VM at a 

time to the system and allocate it according to the scheme with priority described in the 

previous section. After adding this VM, if the objective result is increased, we keep it and 

repeat the adding process; if the objective result is not increased, we add more than one 

VMs to the system to make sure reducing the number of viewpoints without provisioned 

VMs. Then if the objective result is still not increased, we discard these VMs and the 

number of VMs in the previous state is the optimal result. This greedy approach is 

illustrated in Figure 4.2. The solid line happens if the objective result increases, while the 

dashed line means falling back to the previous state if the objective result is not increased. 
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Figure 4.2 Resources provision starting from the lower bound  

The above resources provision approach is suitable for the initial provision, since 

it can generate the optimal result from the lower bound. Considering the total number of 

users’ requests between renting cycles usually changes little, the greedy approach can 

also start from the state of previous renting cycle. Accordingly, at the starting point, there 

are more options, which are removing VMs and maintaining the same number of VMs. 

Similarly, we can keep trying to remove the VMs but in the reversed priority order 

described in the previous section. If either adding or removing VMs cannot increase the 

objective result, the optimal solution is to keep the same number of VMs. Figure 4.3 

depicts this approach. 

 

 
Figure 4.3 Resources provision starting from the state of previous renting 

cycle 

4.4. Algorithm Design 

Based on the previous sections, we can conclude the short-term resource 

reallocation algorithm and the long-term resource provision algorithm in Table 4.1, Table 

4.2 and Table 4.2 respectively. The short-term resource reallocation algorithm has two 

versions. The first one only runs at the scheduled checkpoints (𝑡 = 𝑡J) to reduce the overall 

computation consumption. The second one runs every time when the cloud-side collects 

the users’ requests (𝑡 = 𝑡.). It has better ability to deal with the fluctuation caused by 

0 +VM +2VM +3VM +nVM
Starting 

point

0 +VM +2VM +3VM +nVM
Starting 

point

-2VM -VM-3VM-nVM
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highlight viewpoints but introduces more computation consumption. These two versions 

can be selected according to different scenarios.  

Table 4.1 Short-term resources reallocation algorithm (basic version) 

 Input: 
 The prediction of users’ requests in the next time slot 𝑀01  and the total number of VMs 𝑁. 
 Output: 
 The optimal VMs reallocation scheme 𝑁01  in the next time slot. 
1 while (true) 
2     if 𝑡 = 𝑡J , then 
3         sort 𝑀01  in descending order on viewpoint 𝑉5 , that is 𝑀01

∗;  
4         foreach 𝑀01 ∈ 𝑀01

∗ 
5             while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒A ∙ 𝑁01  
6                 assign one VM to 𝑉5 , that is 𝑁01 + 1; 
7             end 

8         end 
9         if  𝑁015 < 𝑁, then 
10            foreach 𝑀01 ∈ 𝑀01

∗ 
11                while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒@ ∙ 𝑁01  
12                    assign one VM to 𝑉5 , that is 𝑁01 + 1; 
13                 end 
14             end 
15         end 
16     return the optimal reallocation scheme 𝑁01 ; 
17     end    
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Table 4.2 Short-term resources reallocation algorithm (with highlights 
solution) 

 Input: 
 The order of number of users’ requests in the previous time slot 𝑀01

[ ∗, the prediction of users’ 
requests in the next time slot 𝑀01  and the total number of VMs 𝑁. 

 Output: 
 The optimal VMs reallocation scheme 𝑁01  in the next time slot. 
1 while (𝑡 = 𝑡.) 
2     sort 𝑀01  in descending order on viewpoint 𝑉5 , that is 𝑀01

∗; 
3     if 𝑀01

∗
≠ 𝑀01

[ ∗, then 
4         foreach 𝑀01 ∈ 𝑀01

∗ 
5             while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒A ∙ 𝑁01  
6                 assign one VM to 𝑉5 , that is 𝑁01 + 1; 
7             end 
8         end 

9         if  𝑁015 < 𝑁, then 
10            foreach 𝑀01 ∈ 𝑀01

∗ 
11                while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒@ ∙ 𝑁01  
12                    assign one VM to 𝑉5 , that is 𝑁01 + 1; 
13                 end 
14             end 
15         end 
16     return the optimal reallocation scheme 𝑁01 ; 
17  end    
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Table 4.3 Long-term resources provision algorithm 

 Input: 
 The prediction of users’ requests in the next time slot 𝑀01  and the allocation of VMs in previous 

time slot 𝑁01
[. 

 Output: 
 The optimal VMs provision scheme 𝑁01 	in the next time slot. 
1 while (true) 
2     if 𝑡 = 𝑇, then  
3         choose one of the following: 
         ADD: sort 𝑀01  in descending order on viewpoint 𝑉5 , that is 𝑀01

∗;  
         REDUCE: sort 𝑀01  in ascending order on viewpoint 𝑉5 , that is 𝑀01

∗; 
4         foreach 𝑀01 ∈ 𝑀01

∗ 
5             choose the one corresponding to the last choice: 
             ADD: add one VM to 𝑉5 , that is 𝑁01 + 1, calculate the objective result 𝑆; 

            REDUCE: reduce one VM on 𝑉5 , that is 𝑁01 − 1, calculate the objective result 𝑆; 
6             if 𝑆 is increased, then 
7                 repeat the step ADD/REDUCE; 
8             else  
9                 choose the one corresponding to the last choice: 
                 ADD MORE: add VMs to 𝑉5 , such that 𝑁01 ≥

lk1
�eH

, calculate 𝑆; 

                REDUCE MORE: reduce VMs on 𝑉5 , such that 𝑁01 = 0, calculate 𝑆; 
10                 if 𝑆 is still not increased AND only one of AND/REDUCE has been processed, then 
11                     switch ADD to REDUCE / REDUCE to ADD and repeat the process; 
12                 else 
13                      return the current provision scheme 𝑁01 	as the optimal solution; 
14                 end 
15             end 
16         end 
17     end    
18 end 
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4.5. Summary 

Based on the dynamic resource allocation scheme, we develop mathmatical 

models in the chapter in order to calculate and analyse the trade-off between economic 

cost and user experience precisely. We use the normalized formulations to represent each 

factor which contributes to the overall trade-off and simplify the practical issue into a 

optimization problem. Through the greedy approach, we design algorithms to deal with 

short-term resources reallocation and long-term resouces provsion and develop the 

optimal solutions. With these algorithms, we can build our cloud-assisted FVV rendering 

and streaming system into practical software and test its performance in the next chapter.  
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Chapter 5.  
 
Implementation and Experimental Results 

In this chapter, we first introduce the implementation details of our cloud-assisted 

FVV rendering and streaming system, including the FVV synthesis software, video coding 

software, multithreading libraries, streamer development and cloud deployment. After that, 

we present typical experimental results generated from the prototype system and give out 

performance analysis based on that.  

5.1. System Implementation 

5.1.1. Free Viewpoint Video Synthesis  

To generate FVV from the original views, we leverage a software module named 

view synthesis reference software (VSRS) [15]. The VSRS is an reference software for 

the 3D Video and FTV project of the 3D Video Coding Team of the ISO/IEC Moving 

Pictures Experts Group (MPEG). It was developed by Nagoya University, Thomson Inc., 

Zhejiang University, GIST, NTT, and TUT/Nokia in the course of development of the 

ISO/IEC JTC1/SC29 WG 11 (MPEG) 3D Video.   

The VSRS provides us with C++ source code which can synthesize two original 

views into a novel virtual view based on the texture and depth information. In addition, a 

configuration file and a set of camera parameters are required to complete the FVV 

processing. Furthermore, the VSRS needs the Open Source Computer Vision (OpenCV) 

as a dependency in order to compile the source code and apply the functionalities. The 

VSRS supports both Windows and Linux. Here we use the Linux version in our 

implementation. 

As an reference purposed software module, one of the major defects of the VSRS 

is its performance. Specifically, the VSRS performs video processing on both the texture 

and depth views. Since its processing unit is frame, the VSRS uses a loop to go through 

all the frames in the original views and write out synthesized frames one by one. 
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Apparently, this loop can be optimized on the system with multi-core processors using 

multithread programming technique. The sequence of frames can be divided into serval 

parts in order to be processed on multiple threads simultaneously. Another way is to split 

one frame into multiple horizontal slices, since the VSRS processes both texture and 

depth views horizontally. In our system implementation, we synthesize FVV in the latter 

way. To complete the implementation, we need to rewrite certain Application Programming 

Interfaces (API) of the VSRS. The details will be provided in the following sections. 

5.1.2. Video Coding 

Video coding is an important and necessary part in our system implementation, 

which can compress and encapsulate the raw video data into “streamable” video files. 

Nowadays, there are various video coding formats, such as H.264, HEVC. Here we 

choose H.264 as the codec used in our implementation. Video content encoded using a 

particular video coding format is normally inside a multimedia container format like AVI, 

MP4 and FLV. As such, the user normally doesn't have a H.264 file, but instead has a .mp4 

video file, which is an MP4 container containing H.264-encoded video [32]. According to 

different video streaming protocols, there are correspondingly required video containers. 

For example, the RTMP requires FLV as the video container. Therefore, we need to apply 

specific video codec and container to the raw video data before streaming it over the 

internet. FFmpeg is such a software we leverage to complete this process. 

As a free software project, FFmpeg provides libraries and programs for handling 

multimedia data. It includes an audio/video codec library, an audio/video container mux 

and demux library, and the FFmpeg command line program for transcoding multimedia 

files [33]. In order to integrate FFmpeg with our FVV synthesis software module, we use 

the FFmpeg libraries rather than the command line program in our implementation. The 

FFmpeg libraries have a large number of APIs to help with recording, converting and 

streaming audio and video. Through these APIs, we can also customize the settings of 

video codec including the bit rate, width/height, GoP size and Frames Per Second (FPS). 

Thus, in our experiments, we can easily compare the performance and results with 

different settings. In addition, on the cloud-side, we assume that the captured videos are 

already decoded and stored as YUV files. So, we can use the FVV synthesis module to 
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produce the videos on the novel virtual viewpoints and apply FFmpeg to encode them with 

suitable codec and container in order to stream them to the client-side.  

5.1.3. Multithreading Libraries 

Real-time is another focus in our system implementation. As the original VSRS 

has relatively low processing speed, it can hardly complete the tasks in real-time. Thanks 

to the multithread programming technique, it is possible to speed up the VSRS on the 

cloud with powerful computation resources. To take advantage of the cloud resources, we 

need to leverage multithreading libraries, such as POSIX Threads (Pthreads), Open Multi-

Processing (OpenMP) and Message Passing Interface (MPI). 

In shared memory multi-processor architectures, threads can be used to 

implement parallelism. Historically, hardware vendors have implemented their own 

proprietary versions of threads, making portability a concern for software developers. For 

UNIX systems, a standardized C language threads programming interface has been 

specified by the IEEE POSIX 1003.1c standard. Implementations that adhere to this 

standard are referred to as Pthreads [34]. As Pthreads is well supported in the UNIX 

systems like Linux and Mac OS, we use it to develop our multithread program on the VM 

running Linux. In addition, since the Pthreads is a light weight and low level multithreading 

library, it has high efficiency on the threads communication and data exchange as well as 

many sophisticated functionalities, including the mutex and condition variables. However, 

as a result, the Pthreads requires more programming effort in the implementation when 

compared to other tools.  

OpenMP is an API that supports multi-platform shared memory multiprocessing 

programming in C, C++, and Fortran on most platforms, processor architectures and 

operating systems, including Solaris, AIX, HP-UX, Linux, Mac OS, and Windows. It 

consists of a set of compiler directives, library routines, and environment variables that 

influence run-time behavior [35]. Compared to the Pthreads, OpenMP is more advanced 

and easily to use. It can quickly turn a single thread program into multithreading through 

a few statements in the code, especially for the loops in the program. Nevertheless, 

OpenMP only well supports to the loop-level parallelism and does not have complex 
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functionalities as the Pthreads. It has a limitation on the application scenario, which 

requires precise and complete threads control. 

MPI is a standardized and portable message-passing system designed by a group 

of researchers from academia and industry to function on a wide variety of parallel 

computing architectures. The standard defines the syntax and semantics of a core of 

library routines useful to a wide range of users writing portable message-passing 

programs in C, C++, and Fortran [36]. As a communication protocol for parallel 

programming, MPI's goals are high performance, scalability, and portability. Unlike the 

Pthreads and OpenMP, MPI can not only support shared memory system, but also the 

distributed system, which means MPI is not limited to the parallelism among multiple 

threads, but also the multiple distributed processes. Basically, MPI is a parallel computing 

approach based on both process and thread. It makes MPI very useful on the cloud cluster 

with distributed resource nodes, since the task can be divided into several processes to 

be performed on the multiple distributed nodes. Inside each process, we can use the 

Pthreads and OpenMP to make it multithreading to accelerate it further. Therefore, the 

combination of Pthreads, OpenMP and MPI should be the optimal solution to the real-time 

task on the cloud cluster with distributed nodes. 

5.1.4. Video Streamer Development 

The streamer is the last module in the cloud-side FVV rendering and streaming 

system. Basically, it handles the generated FVV and makes it into video stream in order 

to be delivered to the client-side. NGINX is a popular open-source and high-performance 

web server software which can be used to develop video streaming server. It was created 

by Igor Sysoev in 2002 and runs on various platforms, including Linux and Mac OS [37]. 

In addition, one of the major features of NGINX is that it supports the FLV and MP4 

streaming. Thus, NGINX is an ideal software that we can apply to build our video streamer. 

To complete the implementation of the streamer, we also need a module to support 

RTMP/HLS live streaming, that is NGINX-RTMP-Module [38]. This module is open-

sourced on Github [39] and widely used in live streaming server development. By 

leveraging the NGINX-RTMP-Module, our cloud-side can receive the captured video 

stream from cameras through RTMP and stream out the generated FVV to the client-side 
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through HLS. The users on the client-side can easily watch the live video stream using 

VLC [40] or the browsers with HLS support, like Safari. This module also provides 

elaborated streaming settings through the configuration file. So, we can customize the 

HLS fragments, playlist length to achieve the optimal watching experience for the users. 

5.1.5. Cloud Deployment 

After implementing all the modules in the FVV rendering and streaming system, 

the last step is to deploy them on a real cloud. In this thesis, we choose WestGrid as our 

cloud service provider. WestGrid is a government-funded infrastructure program started 

in 2003, mainly in western Canada, that provides institutional research faculty and 

students access to high performance computing and distributed data storage, using a 

combination of grid, networking, and collaboration tools [41]. WestGrid consists of several 

cloud clusters such as Breezy, Grex, Jasper which are located in the major universities in 

western Canada. Each cluster has different kinds and large scale of cloud resources which 

are set up as nodes. For example, Jasper [42] is a cloud cluster located in University of 

Alberta which has an aggregate 400 nodes with totally 4160 cores and 8320 GB memory. 

In the most of these nodes, there are 12 cores and 24 GB memory. It means that our 

application can be deployed on one node with at least 12 processing threads by using 

Pthreads and OpenMP. WestGrid also supports MPI for the large scale distributed 

computing. Thus, by leverage MPI combined with Pthreads and OpenMP, we can take full 

advantage of the power of cluster. To run our tasks on the cluster, WestGrid requires to 

submit a Batch Job Script to the cluster which can specify the amount of processors and 

memory needed. Then the submitted job will be placed into a queue waiting to be 

processed. Unlike Amazon Web Service (AWS), WestGrid does not allow us to rent and 

occupy individual resources like VMs or instances by personal applications, since it is 

research purposed and shared with many other users. But it is enough for us to test our 

system and collect experimental results. If the system needs to be deployed as a personal 

application and kept online throughout the day, AWS is a better choice with complete 

charge system on various instances with all kinds of hardware we need. 
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5.2. Experimental Results 

5.2.1. Video Quality 

As discussed in the previous chapter, the video quality is quantified as 𝑃𝑆𝑁𝑅 𝐵𝑟  

which is determined by the bit rate of the synthesized FVV. In our experiment, we use a 

test video named “Balloon” along with the VSRS. Specifically, there are left and right views 

with both texture and depth information in resolution of 1024*768 which is shown in Figure 

2.2. Through the VSRS we can synthesize the two original views and generate a novel 

virtual view in the middle. First, we compare the virtual view to the actual view captured at 

the same viewpoint by the real camera and both are not encoded. The result PSNR is 

37.45, which means our generated FVV does not have the same quality as the actual view 

but it is still acceptable. Furthermore, we encode the generated FVV using different bit 

rate settings and compare them to the original FVV without encoding in order to figure out 

the relationship between PSNR and bit rate, that is 𝑃𝑆𝑁𝑅 𝐵𝑟 . The PSNR calculation is 

done through a Matlab plug-in called YUV-PSNR which can compute the PSNR between 

two YUV files. The final results are shown in Table 5.1 and Figure 5.1. According to the 

results, we can see that the PSNR is increased dramatically as bit rate increases. In the 

following experiments, we can derive the 𝑃𝑆𝑁𝑅 𝐵𝑟  by referring to Table 5.1 and Figure 

5.1. 

Table 5.1 Relationship between bit rate and PSNR 

Bit rate (bps) PSNR (dB) 
10M 45.04 
5M 43.91 
3M 43.00 
2M 42.12 

1.5M 41.37 
1M 40.01 

800K 39.31 
700K 38.79 
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Figure 5.1 Bit rate and PSNR curve 

 

5.2.2. Generation Speed 

The FVV generation speed is another factor in our objective function which 

depends on the bit rate. To determine the relationship between them, we similarly 

performed experiments on the WestGrid cluster. Our testing environment is one node of 

Grex cluster [43] of Westgrid, which has 24 CPUs in total with shared memory. First, we 

investigate on the relationship between the number of processing threads and the number 

of vCPUs in order to determine the optimal ratio. The results are given in Table 5.2 and 

Figure 5.2. 

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Bitrate (x103 bps)

38

39

40

41

42

43

44

45

46

PS
N

R
 (d

B)



 

58 

Table 5.2 Relationship between threads and generation speed 

Threads Generation speed (fps) 
1 2.77 
2 5.23 
6 14.21 

12 20.63 
24 27.57 
48 30.58 
72 31.32 
96 31.98 

Note.  Test on a cluster node with 24 CPUs and the bit rate is set to be 1Mbps. The generation includes 
FVV synthesis and H.264 encoding. 

 
Figure 5.2 Number of threads and generation speed curve 
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on cores becomes large enough to offset the acceleration of multithread processing. In 

the worst case, it might even delay the whole process. Therefore, the number of threads 

is usually set to be the double of the CPUs. Finally, when there are sufficient threads and 

CPUs, the generation speed can be over 30 fps which is enough for real-time streaming. 

It means that our optimization through multithread processing technique improves the 

speed of VSRS significantly from 2.77 fps to 30.58 fps and meet the requirement of real-

time. To further investigate the relationship between the bit rate and generation speed, we 

figure out the speed with different bit rates in Table 5.3. 

Table 5.3 Relationship between bit rate and generation speed 

Bit rate (bps) Generation speed (fps) 
10M 29.41 
5M 30.06 
3M 30.33 
2M 30.39 

1.5M 30.51 
1M 30.58 

800K 30.61 
700K 30.67 

Note.  Test on a cluster node with 24 CPUs and the number of threads is set to be 48. The generation 
includes FVV synthesis and H.264 encoding. 

According to the result, we can see the higher bit rate may slightly slow down the 

generation process but does not make much difference on the overall generation speed. 

Even the lowest speed is over 29 fps which is still almost real-time (30 fps), which means 

that most of time cost is on FVV rendering, not the H.264 encoding. We can roughly 

estimate 𝐺𝑒 𝐵𝑟  in our objective function based on the experimental results. 

5.2.3. Users’ Requests 

The dynamic resource allocation algorithms proposed in the previous chapter all 

depend on the prediction of the distribution and number of users’ requests in the future 

time slots. Since the prediction methods is not our focus in this thesis, we assume that the 

prediction results equal to the actual value in our experiment. Although the prediction 

accuracy is impossible to be 100% in real cases, the assumption is acceptable in the 
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experiment to test our algorithms on resource allocation according to users’ requests. In 

addition, we suppose the users’ requests follow Gaussain Distribution and total number of 

them at each 𝑡.  follows Poisson Distribution. The distribution and number of users’ 

requests are assumed to be stable within one time slot 𝑡. since 𝑡. is usually very small in 

most cases. Here we set 𝑡. = 3 seconds, 𝑡J = 60 seconds, renting cycle 𝑇 = 15 minutes 

and the number of viewpoints is 10 in the testing experiments. The distribution of users’ 

requests among viewpoints is depicted in Figure 5.3. We set the central viewpoints as 

major viewpoints with higher distribution of users’ requests. For the total number of users’ 

requests at each 𝑡. , we use Matlab to generate random numbers from the Poisson 

distribution with mean parameter lambda which is set to be 2000. The fluctuation of users’ 

requests within one renting cycle 𝑇 is shown in Figure 5.4. 

 
Figure 5.3 Distribution of users’ requests among viewpoints 
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Figure 5.4 Users’ requests within one renting cycle 
 

 
Figure 5.5 Distribution of users’ requests within one renting cycle 
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5.2.4. Short-term Resources Reallocation 

In order to test our short-term resources reallocation algorithm, we need the 

prediction of users’ requests and the total number of VMs. For the prediction of users’ 

requests, we use the simulation method which is described in the previous section and 

add a highlight period to compare the dynamic resources reallocation algorithm with the 

static one. Hence, the distribution of users’ requests within one renting cycle can looks 

like Figure 5.6. Normally, the users’ requests should concentrate on the central viewpoints 

like viewpoint 5, 6, 7 in Figure 5.6. However, sometimes highlight incidence will change 

the focus of users. For example, in the latter time slots, the users’ concentration moves to 

viewpoint 2, 3, 4 from 5, 6, 7. Therefore, the resources should be reallocated accordingly 

through our short-time dynamic resources reallocation algorithm. 

 
Figure 5.6 Distribution of users’ requests with highlight in one renting cycle  
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Table 5.4 Testing parameters in Equation 4.27 

Parameter Test value 
𝑆𝑒@, 𝑆𝑒A 100, 200 
𝑃/𝑇 20 

𝑄01	/𝑇	in the first half time slots 1,2,4,6,8,10,8,6,4,2 /100 from 𝑉&to 𝑉&¤ 
𝑄01	/𝑇	in the second half time slots 6,8,10,8,6,4,2,1,1,1 /100 from 𝑉&to 𝑉&¤ 

𝐶@, 𝐶A 50, 250 
𝜆 0.5 

𝛼, 𝛽, 𝛾, 𝛿 1,1,1,1 
𝑃𝑆𝑁𝑅 𝐵𝑟 , 𝑃𝑆𝑁𝑅 𝐵𝑟@ , 𝑃𝑆𝑁𝑅 𝐵𝑟A  40,38,42 

𝐺𝑒 𝐵𝑟 , 𝐺𝑒 𝐵𝑟@ , 𝐺𝑒 𝐵𝑟A  30.5,30.4,30.6 
𝐵𝑑 100Mbps 

𝐷𝑙@, 𝐷𝑙A 0.5Mbps,1Mbps 

 

Table 5.5 Initialized VMs among viewpoints   

Viewpoint 	𝑽𝒊 1 2 3 4 5 6 7 8 9 10 
Number of VMs 𝑵𝑽𝒊	 0 0 1 2 3 3 3 2 1 0 

𝑲	𝑽𝒊  0 0 1 1 1 1 1 1 1 0 

Afterwards, in order to determine the performance, we calculate the objective value 

𝑆 which indicates the overall trade-off between economic cost and user experience. At the 

middle point of time slot, the order of number of users’ requests changes. So, our short-

term resources reallocation algorithm is triggered. Table 5.6 shows the VMs distribution 

after reallocation. We also compare the performance of our dynamic resource allocation 

algorithm with static resource allocation in Figure 5.7. From Figure 5.7, we can see that 

when the highlight changes the focus of users among viewpoints at the middle of time 

slots, the objective value of static resource allocation drops over 20% while dynamic 

resource allocation only drops 5%, which means our algorithm has good performance 

dealing with the turbulence of distribution of users’ requests. 
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Table 5.6 Reallocated VMs among viewpoints 

Viewpoint 	𝑽𝒊 1 2 3 4 5 6 7 8 9 10 
Number of VMs 𝑵𝑽𝒊	 2 3 3 3 2 1 1 0 0 0 

𝑲	𝑽𝒊  1 1 1 1 1 1 1 0 0 0 

 

 
Figure 5.7 Comparison of dynamic and static resource allocation 

 

5.2.5. Long-term Resources Provision 

For our long-term resources provision algorithm, we can test it using the similar 

method in the previous section. Now we assume that the total number of users increases 
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number of users is illustrated in Figure 5.8 and Figure 5.9. 
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Figure 5.8 Total number of users’ requests in two renting cycles 

 
Figure 5.9 Distribution of users’ requests with highlight in one renting cycles 
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At the end of a renting cycle, our long-term dynamic resources provision algorithm 

can help with determining how many VMs should be rented in the next following renting 

cycle. Supposing the VMs allocation in the previous renting cycle (time slot 0 to 299) is 

the same as shown in Table 5.5, our algorithm can figure out the optimal VMs provision in 

the next renting cycle (time slot 300 to 599) according to the increased total number of 

users’ requests. The optimal results output from the algorithm are listed in Table 5.7. In 

addition, in Figure 5.10, we compare the optimal solution with another two cases which 

have one more VM and one less VM respectively. 

Table 5.7 Provisioned VMs among viewpoints 

Viewpoint 	𝑽𝒊 1 2 3 4 5 6 7 8 9 10 
Number of VMs 𝑵𝑽𝒊	 0 0 0 3 4 5 4 3 0 0 

𝑲	𝑽𝒊  0 0 0 1 1 1 1 1 0 0 
 

 
Figure 5.10 Comparison of the optimal solution and 𝑵 ± 𝟏 cases 
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streaming on one viewpoint to be shut down and result in lower objective value as well. In 

fact, we make basic assumption in the previous chapter that is to guarantee at least half 

of the viewpoints provisioned with VMs in order to avoid streaming on any viewpoint being 

closed due to lack of resources.  
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Chapter 6.  
 
Conclusion and Future Work 

In this thesis, we first introduce fundamental background of FVV rendering and 

describe the major techniques that we can leverage. Then we give an overview of cloud 

computing and explain how it can be applied to the real-time FVV rendering and streaming. 

Based on that, we design the whole architecture of our cloud-assisted FVV rendering and 

streaming system. For the three major parts in our system, which are video capture, cloud 

processing and client interaction, we describe them with details. After that, we 

demonstrate our approach to make FVV rendering real-time in the cloud. Both the 

resource allocation and task division are dealt with in Chapter 3. 

Secondly, in Chapter 4 and 5, we formulate the dynamic resouces allocation 

scheme into mathmatical models. Base on the formulation and modelling, we propose the 

objective function to quantify the trade-off between economic cost and user experience. 

In order to ahcieve the optimal solution, we design algorithms to deal with both shor-time 

resouces reallocation and long-term resouces provision. After that, in Chapter 5, we use 

C++ multithread programming and Qt based on the VSRS, OpenCV, FFmpeg, 

Pthread/OpenMP/MPI and NGINX to complete implementation of our system. Then we 

deploy it on the WestGrid cluster to test with practical scenarios. Finally, our system is 

verified to be able to produce FVV stream in real-time and the trade-off between cost and 

use experience is optimal through our dynamic resource allocation algorithms. 

This thesis presents an approach to make FVV rendering in real-time. However, it 

is based an assumption that is the network is ideal for all the users. In fact, according to 

various users’ devices, the network condition can be very different. Thus, in the future 

work, we can take network into consideration and use variable rate codec for FVV 

encoding. Another future work focus can be on the cloud resources, since there are many 

different charging schemes on different cloud instances. In this thesis, we assume to use 

the identical type of instance. In the future, we can consider applying multiple types of 

resources in the system to achieve even better allocation scheme. 
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