
Cloud-assisted Real-time Free Viewpoint Video
Rendering and Streaming System

by
Yijian Wang

B.Eng., Nanjing University of Posts and Telecommunications, 2014

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Applied Science

in the

School of Engineering Science

Faculty of Applied Sciences

Ó Yijian Wang 2017
SIMON FRASER UNIVERSITY

Spring 2017

ii

Approval

Name: Yijian Wang
Degree: Master of Applied Science
Title: Cloud-assisted Real-time Free Viewpoint Video

Rendering and Streaming System
Examining Committee: Chair: Paul Ho

Professor

Jie Liang
Senior Supervisor
Professor

Jiangchuan Liu
Supervisor
Professor

Ivan Bajic
Internal Examiner
Associate Professor
School of Engineering Science

Date Defended/Approved: March 27, 2017

iii

Abstract

Free Viewpoint Video (FVV) is an emerging type of video which allows user to choose

viewpoint freely in three-dimensional scenes. Depth-image-based Rendering (DIBR) is a

common method to generate FVV using both texture and depth information. However,

FVV rendering is more time-consuming than the original video since it has higher

computational complexity. In order to make FVV rendering in real-time, a cloud-assisted

system is proposed, which leverages cloud and distributed computing. In addition, we use

multithread programming to take full advantage of cloud resources. As a result, by

deploying our system on the WestGrid cluster, the FVV generation speed can be over 30

fps. Furthermore, to achieve the optimal trade-off between economic cost and user

experience, we formulate and build mathematical models for the cloud-based FVV

rendering and streaming system. Based on that, dynamic resource allocation algorithms

are designed, which can provide the optimal resource allocation scheme according to

users’ requests. The performance of the system is demonstrated by various experiments.

To the best of our knowledge, this is the first cloud-assisted real-time FVV rendering and

streaming system.

Keywords: Free Viewpoint Video; cloud computing; multithread processing; dynamic
resource allocation; optimization algorithm

iv

Acknowledgements

First of all, I would like to thank my supervisor Dr. Jie Liang for his guidance and patience

when I wrote my thesis in very limited time. He gave me a lot of inspirations and

suggestions on this thesis during my master study.

I would also like to express my sincere thanks to Dr. Paul Ho, Dr. Jiangchuan Liu and Dr.

Ivan Bajic for being my committee member and reviewing my thesis. Your suggestions

are very precious and helpful to me.

I am also very grateful to my manager Sharon Om in SAP, who gave me much support

and understanding to help me finish my thesis while working in SAP. I learned a lot from

her on time management as well as coding skills.

Last but not least, I would like to acknowledge my friends in SFU and colleagues in SAP,

who gave me additional help and advices to make my thesis and code better. I would also

like to thank my parents who care about my life and health in China. I cannot make today’s

achievements without their love.

v

Table of Contents

Approval .. ii	
Abstract ... iii	
Acknowledgements .. iv	
Table of Contents .. v	
List of Tables .. vii	
List of Figures .. viii	
List of Acronyms ... ix	

Chapter 1.	 Introduction ... 1	
1.1.	 Thesis Structure ... 3	
1.2.	 Contributions .. 3	

Chapter 2.	 Background ... 5	
2.1.	 Free Viewpoint Video Rendering .. 5	
2.2.	 Multimedia Cloud Computing ... 8	
2.3.	 Multithread Processing ... 11	
2.4.	 Summary .. 13	

Chapter 3.	 Cloud-assisted Free Viewpoint Video Rendering and
Streaming Achitecture .. 15	

3.1.	 System Architecture ... 15	
3.1.1.	 Video Capture ... 16	
3.1.2.	 Cloud Processing .. 17	
3.1.3.	 Client Interaction ... 20	

3.2.	 Real-time solution ... 23	
3.2.1.	 Dynamic Resource Allocation Scheme ... 23	
3.2.2.	 Multithread Processing Strategy ... 28	

3.3.	 Summary .. 30	

Chapter 4.	 Mathmatical Modeling and Algorithm Design 31	
4.1.	 Basic Assumptions and Strategy .. 31	
4.2.	 Cost and User Experience Model ... 35	

4.2.1.	 Cost Model .. 35	
4.2.2.	 User Experience Model ... 36	
4.2.3.	 Objective Function ... 39	

4.3.	 Prediction Method and Resource allocation ... 42	
4.3.1.	 Short-term Prediction and Resources Reallocation 42	
4.3.2.	 Long-term Prediction and Resource Provision 44	

4.4.	 Algorithm Design .. 46	
4.5.	 Summary .. 50	

vi

Chapter 5.	 Implementation and Experimental Results 51	
5.1.	 System Implementation .. 51	

5.1.1.	 Free Viewpoint Video Synthesis .. 51	
5.1.2.	 Video Coding ... 52	
5.1.3.	 Multithreading Libraries ... 53	
5.1.4.	 Video Streamer Development ... 54	
5.1.5.	 Cloud Deployment ... 55	

5.2.	 Experimental Results .. 56	
5.2.1.	 Video Quality ... 56	
5.2.2.	 Generation Speed ... 57	
5.2.3.	 Users’ Requests .. 59	
5.2.4.	 Short-term Resources Reallocation .. 62	
5.2.5.	 Long-term Resources Provision .. 64	

Chapter 6.	 Conclusion and Future Work ... 68	

References ...69	

vii

List of Tables

Table 3.1	 Example of Request Content ... 21	
Table 4.1	 Short-term resources reallocation algorithm (basic version) 47	
Table 4.2	 Short-term resources reallocation algorithm (with highlights

solution) ... 48	
Table 4.3	 Long-term resources provision algorithm 49	
Table 5.1	 Relationship between bit rate and PSNR 56	
Table 5.2	 Relationship between threads and generation speed 58	
Table 5.3	 Relationship between bit rate and generation speed 59	
Table 5.4	 Testing parameters in Equation 4.27 ... 63	
Table 5.5	 Initialized VMs among viewpoints .. 63	
Table 5.6	 Reallocated VMs among viewpoints .. 64	
Table 5.7	 Provisioned VMs among viewpoints .. 66	

viii

List of Figures

Figure 1.1.	 Fundamental concept of multimedia cloud computing [3] 2	
Figure 2.1	 A typical set up to capture Free Viewpoint Video [12] 6	
Figure 2.2	 Regular video frame and the according depth image 7	
Figure 2.3	 Cloud-based FVV rendering for mobile phone [20] 10	
Figure 2.4	 A process with two threads of execution, running on a single

processor [25] .. 11	
Figure 2.5	 Memory space used by threads and processes [26] 12	
Figure 2.6	 Single process with single thread and single process with three

threads [28] .. 13	
Figure 3.1	 Architecture of Cloud-assisted FVV Rendering and Streaming

System ... 16	
Figure 3.2	 Example of Capture Cameras Alignment 17	
Figure 3.3	 Architecture of the Cloud-side Processing System 19	
Figure 3.4	 Interaction between Cloud-side and Client-side 22	
Figure 3.5	 Distribution of Users and Allocation of Provisioned Resources ... 24	
Figure 3.6	 Reallocation of Resources among Viewpoints 26	
Figure 3.7	 Dynamic Resource Allocation for the Highlight Viewpoint 27	
Figure 3.8	 Multithread Processing Workflow ... 29	
Figure 4.1	 Timeline of one renting cycle ... 33	
Figure 4.2	 Resources provision starting from the lower bound 46	
Figure 4.3	 Resources provision starting from the state of previous renting

cycle ... 46	
Figure 5.1	 Bit rate and PSNR curve .. 57	
Figure 5.2	 Number of threads and generation speed curve 58	
Figure 5.3	 Distribution of users’ requests among viewpoints 60	
Figure 5.4	 Users’ requests within one renting cycle 61	
Figure 5.5	 Distribution of users’ requests within one renting cycle 61	
Figure 5.6	 Distribution of users’ requests with highlight in one renting cycle 62	
Figure 5.7	 Comparison of dynamic and static resource allocation 64	
Figure 5.8	 Total number of users’ requests in two renting cycles 65	
Figure 5.9	 Distribution of users’ requests with highlight in one renting

cycles ... 65	
Figure 5.10	 Comparison of the optimal solution and 𝑵 ± 𝟏 cases 66

ix

List of Acronyms

API Application Programming Interface

ARIMA Autoregressive integrated moving average

ARMA Autoregressive moving average

DIBR Depth-image-based Rendering

FPS Frames Per Second

FVV Free Viewpoint Video

GoP Group of Pictures

MPEG Moving Pictures Experts Group

MPI Message Passing Interface

OpenCV Open Source Computer Vision

OpenMP Open Multi-Processing

Pthreads POSIX Threads

VM Virtual Machine

VSRS View Synthesis Reference Software

1

Chapter 1.

Introduction

Since television was invented in the late 19th century and early 20th century, a

great number of significant video technologies have been developed and applied to this

area. From black-and-white to color, from mechanical to electronic and digital, television

is giving viewers better contents and watching experience. However, these contents are

still restricted to two-dimensional scenes and the viewers can only watch them from one

single viewpoint. The way people enjoy television and visual media has not been changed

in the last decades until the innovation of Free viewpoint television (FTV) and Free

viewpoint video (FVV) technology.

Free viewpoint television is a system for viewing free viewpoint video, which allows

the user to interactively control the viewpoint and watch virtual video contents from any

3D position. There is a very similar technology in computer-simulated video is known as

virtual reality (VR) [1]. But there is still small difference between VR and FVV. With VR,

the viewer can watch the whole surrounding 3D world from one point where the camera

is set up. However, with FVV, the view can switch to different viewpoints to watch a same

object from different positions and angles within the 3D scene. Hence, VR is mostly used

in the immersion video games while FVV is widely applied in sports and concerts

broadcasting.

As a new active area in computer graphics, FVV is drawing great attention from

both users and researchers. It not only introduces unprecedented watching experience to

users, but also makes researchers to face challenges from a whole new level. In order to

generate FVV, multiple cameras need to be set in different viewpoints, and a particular

algorithm and system is designed to synthesize the desired virtual view. The users

apparently do not want much delay from this rendering process. Thus, generating FVV in

2

real-time or nearly real-time is our goal, which requires necessary hardware support to

achieve. Considering different users may watch FVV on various devices with different

hardware and most of them do not have enough computing power to render FVV in real-

time, cloud computing comes to the rescue.

Cloud computing is an emerging computing technology based on Internet that

provides various computing and storage service to computers and other devices on

demand [2]. By using cloud computing, the users can take advantage of the resources in

the cloud no matter what devices they are currently using. As result, even a mobile device

user can obtain powerful CPU and GPU to watch FVV in real-time on their devices.

However, the user or the FVV provider needs to pay for the cost to leverage such cloud

resources. And in fact, better FVV watching experience usually requires more powerful

and expensive hardware. Therefore, the trade-off between user experience and cost

becomes one of our major concerns in this thesis.

Figure 1.1. Fundamental concept of multimedia cloud computing [3]

To achieve the optimal trade-off, a FVV rendering and streaming system along

with an algorithm is developed in this thesis. It is aimed to achieve the best Quality of

Experience (QoE) by using as little resource as possible. In detail, this issue can be divided

into two sub-problems:

1. How to reduce the amount of resources that need to be provisioned

2. How to fully utilize the resources we currently have

3

To solve these two problems, mathematical modeling, algorithm design and

implementation techniques are involved and introduced in each separate section.

To integrate the real-time FVV rendering and cloud computing, there is an

implementation technique called multithreading processing. With this technique, we can

take full advantage of the hardware resources provided by cloud to speed up our FVV

rendering process. Pthread, OpenMP, MPI are typical libraries to support multithreading

programming. Through this way, we can develop a complete cloud-assisted real-time FVV

rendering system, where hardware, software and algorithm work closely and efficiently.

1.1. Thesis Structure

Chapter 2 begins with the background and fundamental knowledge of FVV

rendering and cloud computing. Then it explains how these techniques can be combined

together to achieve our real-time FVV rendering system; Chapter 3 focuses on the

architecture design of our cloud-assisted FVV rendering and streaming system. It presents

each module with details and describes how we allocate cloud resources and divide the

processing tasks; In Chapter 4, we formulate the problem and build mathematical models

for precise analysis. Based on the objective function which quantifies the trade-off

between economic cost and user experience, we propose an algorithm to figure out the

optimal solution; In Chapter 5, the implementaion details of our cloud-assisted FVV

rendering and streaming system are presented. Then we test our system in a practical

environment with certain settings on parameters to verify its performance. Chapter 6

concludes this thesis and proposes serval ideas of future work.

1.2. Contributions

Firstly, we design a system based on the cloud and distributed computing that can

dynamically allocate cloud resources to realize real-time FVV synthesizing and streaming;

4

Secondly, we develop a demo using C++ multithread programming and Qt based

on the VSRS, OpenCV, FFmpeg, Pthread/OpenMP/MPI and NGINX, which can produce

H.264 encoded FVV stream in real-time;

Thirdly, we configure and test the demo on the WestGrid cluster, where the

generation speed can be over 30 fps. Also, the dynamic resource allocation algorithms in

our system are verified to achieve the optimal trade-off between economic cost and user

experience. To the best of our knowledge, this is the first cloud-assisted real-time FVV

rendering and streaming system.

5

Chapter 2.

Background

In this chapter, we first introduce fundamental background of rendering free

viewpoint video (FVV) and describe the technique that we use in this thesis. Then we give

an overview of cloud computing and explain how it can be applied to multimedia

processing, especially to the FVV rendering. After that, we demonstrate the basics in

multithreading technology and describe how it can help with real-time tasks. Finally, we

present our conclusion and the initial plan based on these backgrounds.

2.1. Free Viewpoint Video Rendering

Traditional video is recorded from a single fixed viewpoint, which confines the

viewer to a flat two-dimensional image on the display. Free viewpoint video (FVV) breaks

this restriction by providing three-dimensional watching experience. FVV is usually

synthesised from a set of videos which are captured by multiple real cameras set in

different positions. A typical set up is shown in Figure 2.1. With these original videos, we

can synthesis FVV at virtual viewpoints using computer graphics approach [4]. Up to now,

one of the most widely used methods is called Image-based Rendering (IBR).

FVV synthesized using IBR approach is aimed to solve the problem of generating

novel viewpoints from a limited set of images taken from different positions. In such

schemes, the cameras must be both calibrated and synchronised. In other words, the

positions of the cameras in the scene and their direction and focal length are known, and

each frame is captured at the same instant by each camera [5]. As a process of

synthesizing novel views from camera images, IBR uses Light Field technique [6], which

generates novel views by resampling camera images independent of scene geometry.

Given enough images from different viewpoints, IBR can reconstruct arbitrary views in the

scene. At the very beginning, researchers attempted to use large camera arrays and

narrow baselines, and use interpolation or warping to obtain novel viewpoints. In [7], a

dome of 51 cameras is first used to capture views from multiple positions. And one of the

6

first IBR system is designed in [8]. However, a major issue of IBR gradually shows up, that

is it requires a large quantity of real cameras to record images from many different

viewpoints in order to attain the rendering quality. Then the computer vision algorithm

based on IBR was developed to mitigate this problem. Matusik et al. introduced model

and image based rendering methods based on the visual hull [9]. Rendering approaches

based on image depth maps [10] and 3D scene geometry model [11] can achieve high

quality results with relatively small number of real cameras.

Figure 2.1 A typical set up to capture Free Viewpoint Video [12]

Depth-image-based Rendering (DIBR) is an evolution of regular IBR technology,

which uses depth cameras in addition to ordinary cameras to capture raw videos. Different

from usual RGB color values, the depth cameras can provide depth value for each pixel

[13]. An example is shown in Figure 2.2, (a) is a texture image which is a video frame

7

captured by regular camera, (b) is the corresponding depth map captured by depth

camera. With the depth information, we can generate a 3D model in order to render virtual

views.

(a)

(b)

Figure 2.2 Regular video frame and the according depth image

The most common DIBR method consists of four steps [14]:

8

1. Warping left and right camera views to a virtual view using the depth
images;

2. Processing the projected images to resolve artifacts like ghost
contours;

3. Blending the processed images. For each pixel in the virtual view, it
should be generated from either left or right projected textures;

4. Inpainting the disocclusions in the resulting image.

Through these steps, DIBR can generate high quality virtual view using the texture

and depth images captured by relatively small number of cameras. So, we select it as the

FVV rendering approach in this thesis. However, the speed of IBR and DIBR is highly

depends on the computational power. Image processing is performed on both texture and

depth images. The traditional rendering system can hardly produce FVV frames in real-

time [15]. To speed up this processing and make it real-time or close to real-time, we need

to take advantage of powerful hardware resources. Using cloud computing technique is

one feasible solution to this issue. In this thesis, we integrate it with DIBR to build our

cloud-assisted FVV rendering system.

2.2. Multimedia Cloud Computing

Cloud Computing is a type of parallel and distributed computing technology. A

cloud usually consists of a collection of inter-connected Virtual Machines (VM). These VMs

are dynamically provisioned and provided by the service provider as computing resources

to consumers via the Internet. A combination of VMs makes up a cluster or a grid, then

forms a cloud. Nowadays, more and more market-oriented Clouds are appearing,

including Amazon Elastic Compute Cloud (EC2), Google App Engine, Microsoft Live

Mesh. Through these platforms, the customers can pay to rent cloud resources when they

need, without building and maintaining complex hardware infrastructure [16].

With the development of Web 2.0, multimedia applications and services are all

over the Internet and mobile wireless networks. The high demand of multimedia requires

significant computational power to process the data and stream to the clients. In the

emerging cloud-based multimedia computing framework, the users can store and process

their multimedia data in the cloud in a distributed manner. Generally, a media cloud is

9

equipped with a large number of high performance hard disks, CPUs and GPUs. Under

the control of the resource allocator and load balancer, these resources are dynamically

provided to the Media Service Providers (MSP). The MSPs can leverage the cloud to

serve users with online storage, multimedia streaming, etc. For the mobile users, this

media cloud can dramatically alleviate the burden of computation on the client-side and

help with saving the battery of their devices [3]. With cloud computing, some high-

computational-cost multimedia applications and services like FVV can be even completely

conducted in the cloud, which breaks the traditional hardware limitations. Even mobile

users without strong CPU and GPU support can watch FVV on their devices.

With cloud computing, we can also speed up the usual image and video

processing. The major idea is to distribute the processing tasks in a cluster for parallel

computing. However, it is not a new concept. A MapReduce based data processing

paradigm on large clusters is introduced in [17], which uses a Map and Reduce function

to automatically parallelize the computation across large-scale clusters of machines. In

[18], a Split and Merge architecture is developed to perform video encoding on cloud. The

basic idea is to split the original video file into several chunks based on key frames. Then

it perfroms encoding on each chunk in parallel to reduce the time cost. Finally all encoded

chunks are merged into one output video file.

As a particular type of video, free viewpoint video can also leverage the cloud

computing technology to process frames in parallel in the cluster to reduce the time of

rendering. In this thesis, we will demonstrate how we implement a FVV rendering

application on a cloud cluster in the following chapters. Besides the time consumption,

Quality of Service (QoS) is another important issue in cloud computing. Since a cloud can

be used by various users to run a large number tasks at the same time, we need an

efficient way to provision the resources and schedule the tasks. Otherwise, some of the

users may experience long response time, which causes relatively low QoS. To solve this

issue, the queuing model has been widely used. In [19], an approach to optimize the

resource allocation on multimedia cloud is developed based on queuing model. It models

the service process at multimedia cloud data center as three queuing systems and uses

mathmatical way to get the optimized solution to minimize the mean response time and

the resource cost. For FVV rendering, a framework for mobile devices is introduced in

10

[20]. Figure 2.3 illustrates its concept. Each time when user send out a view request, the

cloud will render the view and sent the stream back to user. To minimize the interaction

delay, the client will perfrom local rendering as well. Then the authors used convex

optimization to determine the optimal job balance betwwn cloud and client. In addition, the

concept of cloud-assisted view synthesis was introduced in [21] and [22], but neither of

them implemented in the system.

Figure 2.3 Cloud-based FVV rendering for mobile phone [20]

The ultimate goal of reducing the response time is to make it real-time, which is

possible to achieve by leveraging the power of cloud computing. Theoretically, we can

split the task to multiple small enough sub-tasks, which can be finished in real-time.

However, this method may need many resources in cloud and the cost would be relatively

high. Focusing on real-time tasks, resources with different speeds and costs are

addressed in [23] and an optimal solution is provided to minimize the economic cost and

meet all the deallines of the tasks. The introduction of multimedia cloud gives us an

overview of cloud computing and how it can be applied to FVV rendering. But there is still

a detailed technique in the implementation of speeding up a task using cloud, that is

multithread processing.

Mobile phoneMobile phone

Cloud

Current view stream

Current view request

Rendering and rate
allocations

11

2.3. Multithread Processing

In computer science, a thread is the smallest unit of sequence of programmed

instructions that can be managed independently by the operating system [24]. There is

another similar concept called process. A process is also an unit of program which can be

performed by system individually. But in fact, these two concepts are different in many

aspects. Generally, a thread is a component of a process in most cases, which is depicted

in Figure 2.5.

Figure 2.4 A process with two threads of execution, running on a single

processor [25]

A process may contain multiple threads which can be executed concurrently,

separately and mutually exclusively in time. These threads have shared resources

including memory, while different processes use separate resources in the system, which

is shown in Figure 2.6. A thread is also called as a lightweight process. It provides a way

to improve program running performance through parallel computing. This approach is

named as multithread processing.

12

Figure 2.5 Memory space used by threads and processes [26]

In computer programming, single threading is the processing of one command at

a time. The opposite of single threading is multithreading. It allows a process to have

multiple threads which can be run independently. Systems with only a single processor

generally implement multithreading by time slicing. The multithreads can be switched in

the processor very quickly, which makes it looks like all threads are running concurrently.

Nowadays, with the rapid growth of hardware technology, more and more computers are

equipped with a multi-core processor or multiple processors, which means we have

multiple processor units to run multithreads program. With this kind of processor, each

thread can be executed on each core of the processor. As result, a multithread task can

be performed in parallel to reduce the running time. In addition, now most of processors

have ability of hyper-threading, which is technology to make a single physical CPU

perform as two logic CPUs to the operating system [27].

With this hardware support, the program can be faster and more efficient. For

example, considering two scenarios illustrated in Figure 2.7, the same single process can

be run with single thread on one processor while it can also be run with three threads on

three processors. Since multithreads can share most resources in the process, each one

of them can access and process part of the task and reduce the time cost to one third of

the original. Although multithreading may introduce more initialization and resource

Process

Process

Thread

Thread

Memory space Memory spaceMemory space

Process

13

allocation time as each thread need to be assigned with register, counter and stack

separately, it still can save a lot of time when running a large number of tasks. What we

need to do is migrate the programs into multithreading way and compile them with

hardware support. This concept perfectly matches with multimedia cloud computing, since

by leveraging cloud we can use multiple processors for our tasks. Then we can take

advantage of them to make our multithreading program. Finally, with cloud computing and

multithreading technique, our tasks can be run much faster, even close to real-time.

Figure 2.6 Single process with single thread and single process with three

threads [28]

2.4. Summary

The current DIBR system has the ability to generate good quality FVV using

relatively few cameras. Nevertheless, the processing speed highly relies on the hardware

and it can hardly produce FVV in real-time. With the development of Internet, cloud

computing becomes an important and reliable approach for specific users to resolve

hardware limitations. The users can leverage the massive resources in a cloud to support

their local tasks. However, using cloud resources is not free. To reduce the economic cost,

Register Counter Stack

Code

Single thread

Register

Counter

Stack

Register

Counter

Stack

Register

Counter

StackData Files

Data Files

Code

First thread Third threadSecond thread

14

it is necessary to design an efficient and smart system to allocate the resources and

schedule the tasks. Meanwhile, the FVV rendering program should take full advantage of

the recourses provisioned from cloud. Multithread processing is an essential technique.

Since nowadays most of computers and virtual machines are equipped with multi-core

processors and multiple virtual CPUs, there is a big potential in the hardware. To release

this power, we need to make our current software to be multithreading. Theoretically, the

running time can be reduced by multiple times if the program can be run on multiple

threads. Hence, it is a feasible method to make current FVV rendering system to perform

in real-time on cloud.

To achieve this goal, we need to perform the following steps:

1. Optimizing the current DIBR software and changing it from traditional
single thread processing to multithreads processing;

2. Developing a new multithreading FVV rendering system and migrating
it from local to the cloud;

3. Designing a resource allocation algorithm for this system to minimize
the economic cost but still maintain a high QoE and finish the tasks in
real-time;

4. Implementing the whole system in code based on the support of
certain open source libraries and tools.

This thesis will cover these steps in the next several chapters and present the

experimental results at the end. To the best of our knowledge, there has never been a

completely built real-time FVV rendering system which is assisted by cloud computing.

Although some of the concepts and the technology used in this thesis may not be very

novel, it is still a pioneering attempt to integrate them together. This is exactly the

motivation to produce this thesis.

15

Chapter 3.

Cloud-assisted Free Viewpoint Video Rendering and
Streaming Achitecture

In this chapter, we first introduce the whole architecture of our cloud-assisted FVV

rendering and streaming system. Then the three major parts which are video capture,

cloud processing and client interaction are described with details. After that, we

demonstrate our solution to render FVV in real-time on the cloud. It covers the allocation

scheme of cloud resources from the macroscopic and the division of processing tasks on

multiple processors from the microscopic. Finally, we conclude and present the summary

of this chapter.

3.1. System Architecture

The architecture of our cloud-assisted FVV rendering and streaming system is

depicted in Figure 3.1. It consists of three major components, which are the capture side,

cloud side and client side. Usually the raw texture views and depth maps are captured by

multiple cameras set in the view scene. After that, these raw data are compressed and

encoded before sending to the multimedia cloud through the Internet. The cloud has two

kinds of core recourses. One is the storage resources, which are used for saving the

original received data and maintaining the generated FVV data. The other one is

computational resources, which are applied to processing the received data. In general,

the cloud side first decodes the received data. Then the novel virtual viewpoint videos are

synthesized based on the texture views and depth maps of neighboring views. Afterwards,

these virtual videos are compressed and encoded again in order to send to the clients. At

client side, there are possibly many different devices, such as desktop, laptop, TV and

mobile devices. These clients can send out the request of specific viewpoints to the cloud.

Then the cloud will send back the generated video steams to them. Here we should note

that the request and response are asynchronous, since the requests received by cloud

will be dealt with based on the queue model and it may take some time to generate the

FVV on demand. In fact, there are some cases that the cloud will perform synthesis on

16

certain viewpoints even without any request and the output FVV will not be delivered to

clients immediately. For example, when the cloud has some idle recourses, it will perform

synthesis in advance on certain viewpoints and the generated video will be kept in cloud

for a period of time to prepare for the delivery. When clients request for these viewpoints,

the videos will be sent without the generating delay. Through this strategy, we can take

the full advantage of cloud resources and achieve high Quality of Experience.

Figure 3.1 Architecture of Cloud-assisted FVV Rendering and Streaming

System

3.1.1. Video Capture

The setup of capture cameras depends on the application scenarios. They can be

aligned or circled for applications, such as concert, football game, etc. To achieve high

quality FVV, there can be a large number of cameras which are not only set up in the two-

dimensional space, but also the three-dimensional space. These cameras should be close

to each other to avoid potential defects. Theoretically, two cameras are enough to

generate a novel virtual view which is usually at the midpoint between them. Figure 3.2

illustrates a simple alignment of capture cameras. Suppose these cameras are set on a

Viewpoint 1Viewpoint 1

Viewpoint 2Viewpoint 2

Viewpoint nViewpoint n

Texture view & depth map

Viewpoint 3Viewpoint 3

Texture view & depth map

Texture view & depth map

Texture view & depth map

Multimedia Cloud

TVTV

DesktopDesktop

LaptopLaptop

Mobile PhoneMobile Phone

Storage ResourcesStorage Resources

Computational Resources

Request on Viewpoints

Request on Viewpoints

Request on Viewpoints

Request on Viewpoints
Video Steam on Viewpoints

Video Steam on Viewpoints

Video Steam on Viewpoints

Video Steam on Viewpoints

17

line which represent viewpoints 1 to n, the virtual viewpoints can be between each two of

them. Every adjacent two cameras provide the left view and the right view in order to

synthesize the virtual view. This synthesis is based on the texture view and depth map

captured by the left and right cameras. An additional set of parameters which reflects the

settings of cameras is also required by this synthesis. This alignment model is the basic

cameras setup in the following chapters as well.

Figure 3.2 Example of Capture Cameras Alignment

To send the captured video to the cloud immediately, especially for the live video

capturing and streaming, we can leverage certain real-time streaming protocol, such as

Real-Time Messaging Protocol (RTMP). It allows the capture-side to deliver the videos

with low latency as live video stream to the cloud-side.

3.1.2. Cloud Processing

Cloud processing is a core part in our cloud-assisted FVV rendering and streaming

system. It receives captured video from the capture camera side and simultaneously

outputs FVV stream based on the user request from the client side. This module does not

only contain data processing, but also the data analysis and decision making. The whole

architecture is shown in Figure 3.3.

As demonstrated in section 3.1.1, the original viewpoint videos are sent to the

cloud after encoding and compression through the Internet. When these videos are

Viewpoint 1Viewpoint 1 Viewpoint 2Viewpoint 2 Viewpoint 3Viewpoint 3 Viewpoint nViewpoint n

Virtual Viewpoint 1Virtual Viewpoint 1 Virtual Viewpoint 2Virtual Viewpoint 2

Left View

Left ViewRi
gh

t V
iew

Ri
gh

t V
iew

Virtual Viewpoint n-1Virtual Viewpoint n-1

18

received by the cloud, it first uses the corresponding decoder to obtain the video data

which includes both texture views and depth maps. Then the raw data is forwarded to the

FVV synthesis module, which can generate novel virtual viewpoint using the captured

texture and depth information. However, the output FVV is not applicable to storage and

streaming since it is not compressed and does not have suitable video container to match

the client-side devices. Hence, we encode it using specific codec in order to stream to the

users. As described above, sometimes the generated FVV will not be steamed

immediately, so it will be saved in the cloud-side storage and prepare for steaming on

demand. The video streamer will handle the video container, since there are different

requirements on container for various client-side devices. Based on the need, the encoded

FVV will be encapsulated into corresponding container and steamed to the user. In

addition, we should note that there is a multithreading coordinator working closely with this

FVV generating process in order to speed it up to real-time. It receives the information

including the provision of hardware resources from resources allocator, such as the

number and the specification of vCPUs. This information determines how the

multithreading can be coordinated, including multithread decoding and encoding,

multithread FVV synthesis. It can also respond with the time cost of processing to the

resources allocator in order to adjust and improve the overall performance.

To timely provide the multithreading coordinator with correct information, there are

several other controlling modules which are resources allocator, task manager and

predictive analyzer. These modules are working together for the decision making and data

analysis. Here the core module is the task manager which is the entry point of user request

from client-side. It gathers the video steam request on specific viewpoints every certain

period of time. On one hand, the task manager is provided with the analytic results on the

historical data, which is very useful to determine if it should add or reduce the cloud

recourses to match the trend of the quantity of user requests in the future. On the other

hand, it stores the collected requests into the predictive analyzer for the data analysis.

19

Figure 3.3 Architecture of the Cloud-side Processing System

The predictive analyzer basically performs two different kinds of prediction. The

first one is short-term prediction which reflects the immediate fluctuation in user requests.

It can be used to arrange the tasks among cloud recourses in the next serval time periods.

However, in some situations, the user requests fluctuate frequently in short period of time,

the prediction result is not reliable if we only depend on the short-term prediction. Also,

considering adding or reducing cloud resources cannot be taken into effect immediately

and renting resources usually charges on a long time [29], we introduce long-term

prediction along with the short-term prediction. It relies on the historical data in a long time

and can offer more convincing prediction on long-term trend. Based on the long-term

prediction, we can determine to add or reduce cloud resources in the next renting period,

which helps a lot to save cost and improve the user experience.

All the data analysis results including the short-term and long-term prediction are

sent to the task and forwarded to resources allocator. Based on the results, the resources

allocator can modify the resources arrangement among different tasks in the short period

Decoder

FVV
Synsthesis

Encoder

Multithreading
Coordinator

Resources Allocator

Task Manager

Predictive Analyzer

Captured Video

Storage Video Steamer

User Requst

FVV Stream

Data Path

Control Path

Client Side

Capture Side

20

of time. It can also change the recourse renting scheme in a long time. All these status

and provision information will be provided to the multithreading coordinator so that it can

arrange proper hardware for every FVV synthesis process. The multithreading coordinator

responses with the performance results in return to the resource allocator. These results

will also be forwarded to other control modules to make sure the processing is real-time.

Thanks to the shared memory and message passing inside the cloud cluster, these

modules in the cloud-side can work closely to each other. To take full advantage of the

cloud resources and minimize the cost and time delay, we need an efficient algorithm and

prediction methods to be applied in the control modules. Also, the implementation of the

cloud-side FVV rendering is another key to maintain the whole process real-time. All the

details of algorithms, methods and implementation techniques will be introduced in the

following chapters.

3.1.3. Client Interaction

On the client side, the user can send out FVV requests on viewpoints to the cloud

and receive the generated FVV from it. Usually, the request contains at least viewpoint

information that indicates which view stream should be synthesised. In addition, based on

various client devices and network conditions, it allows user to select the video resolution

and quality. In general, the FVV with high resolution and quality will take longer time for

the processing and need higher speed network transmission. For the non-live video, the

user may also select the specific sequences to watch within a FVV. Then the cloud does

not need to process on the whole FVV, but only parts of it. Furthermore, the specifications

of users’ devices are sent along with the request. It includes information on the video

codec and container which are supported by the client-side devices, which can help the

cloud-side to choose proper video processing format. For the request transmission format,

JavaScript Object Notation (JSON) and Extensible Markup Language (XML) are widely

used nowadays. All the request information can be wrapped into these formats in order to

be transmitted to the cloud. An example of request information is given in table 3.1.

On most of the current video websites, user can watch video streams on the

website and web-based applications. Both these websites and applications are in the

21

front-end, they will gather users’ requests and send them to the back-end. The

communication between font-end and back-end is based on network protocol. For

example, Hypertext Transfer Protocol (HTTP) and Real-Time Messaging Protocol (RTMP)

are two famous protocols which are used for live video steaming. Apple implemented

HTTP-based media streaming communications protocol called HTTP Live Steaming (HLS)

for their products, including QuickTime, Safari, OS X, and iOS. It resembles MPEG-DASH

and divides the overall stream into a sequence of small HTTP-based downloadable video

files. Each of these video files contains short chunk of video stream which is in the format

of MPEG transport stream (MPEG-TS). While they are played seamlessly, the users will

feel like watching live video stream [30]. The RTMP is another option for the live video

streaming which is owned by Adobe. It is based on Transmission Control Protocol (TCP)

and can maintain persistent connections and low-latency communication. Flash Video

(FLV) is the required video container while Advanced Audio Coding (AAC) and

H.264/MPEG-4 AVC can be the corresponding audio and video encoding format [31].

Table 3.1 Example of Request Content

Objects in Request Example Values
Request Viewpoint Viewpoint 2

Video Quality 720p, 30fps
Video Sequence From time 1:15

Video Codec H.264
Audio Codec AAC

Container FLV

22

Figure 3.4 Interaction between Cloud-side and Client-side

The overall interaction between client-side and cloud-side is depicted in Figure 3.4.

The users’ requests are formatted in JSON or XML and sent to the cloud. As described

above, the FVVs are saved in the storage resources in the cloud. When they received

users’ request, the corresponding FVV sequences will be delivered to the streamer and

sent back to users as response. These sequences are formatted as users request and

transmitted through the network with HTTP or RTMP. After retrieving the FVVs from the

cloud, the client-side only needs to decode them and can watch them as normal video

streams.

FVV StorageFVV Storage

Vi
de

o
St

re
am

 in
 F

LV
 o

r M
PE

G-
TS

Re
qu

es
t i

n
JS

O
N

 o
r X

M
L

HTTP or RTMP

23

3.2. Real-time solution

Real-time FVV rendering and streaming is another key point in our system design.

We introduce cloud computing and multithread computing to FVV generation in order to

make it real-time. Based on the architecture proposed in the previous section, there are

several modules taking charge of resource allocation and tasks management. In this

section, we give detailed scheme and strategy to describe the logic which is used in these

modules. Firstly, we describe how the resources are allocated among different viewpoints

rendering. Secondly, we explain how these resources are applied to multithreading FVV

generation. The ultimate goal is to make the whole FVV rendering process be able to

complete in real-time.

3.2.1. Dynamic Resource Allocation Scheme

According to different cloud service providers, the cloud resources can be rented

in different schemes. The most common one is to rent the resources in advance as

provision. The quantity of provisioned resources depends on the number of viewpoints

and the users, since every unit of cloud resources has limited processors, storage space

and streaming bandwidth. Generally, these resources are represented as Virtual

Machines (VM) in the cloud. Since cloud is a distributed system with resources at different

locations. To reduce the delay, we want to use the VMs that close to the users. In addition,

each VM has limited throughput which determines the number of requests it can handle

simultaneously. Therefore, generally a viewpoint with more users will need more

resources in the entire cloud system. On the client-side, the distribution of users’ requests

is usually not even among different viewpoints. For example, supposing a concert or a

football game is streamed using FVV, most users will choose to watch through the

viewpoints in the center, that is why the ticket price in these areas are often higher than

the others. Based on the distribution of users, the cloud recourse should be provisioned

specifically. In this thesis, we ignore the actual locations of users and group all VMs

together. The number of VMs to provision is our focus.

In the ideal situation, all the viewpoints can be assigned with enough VMs to render

and stream FVV. So, we can refer to the prediction results from the historical data to

24

determine the quantity of VMs needed as provision. The allocation of resources may be

similar to Figure 3.5. Here we only consider the virtual viewpoints which need to be

synthesized in the cloud. In Figure 3.5, we assume that the users are Gaussian distributed

among the six example virtual viewpoints. Correspondingly, the provisioned cloud

resources are distributed same as the users in order to achieve the optimal performance

and generate FVV in real-time. By this allocation, the users can be served by the VMs

effectively if the users distribution remains unchanged.

Figure 3.5 Distribution of Users and Allocation of Provisioned Resources

文本 文本 文本 文本 文本 文本

文本文本文本文本文本文本

Distribution of Users

Virtual Viewpoint 1Virtual Viewpoint 1 Virtual Viewpoint 2Virtual Viewpoint 2 Virtual Viewpoint 3Virtual Viewpoint 3 Virtual Viewpoint 4Virtual Viewpoint 4 Virtual Viewpoint 5Virtual Viewpoint 5 Virtual Viewpoint 6Virtual Viewpoint 6

Allocation of Resources

25

However, the allocation in Figure 3.5 can hardly remain as the optimal solution

throughout the entire FVV streaming process. Firstly, the distribution of users usually

keeps changing when the focus of the scenario varies. For example, when there is

particular highlight happening in a football game, like penalty or goal, most of users will

switch to the viewpoints close to there. It may cause the VMs serving that parts of

viewpoints overloaded in a short period of time and the real-time streaming is stuck for a

while. Secondly, even though the static resource allocation scheme can achieve the best

rendering and streaming performance, it may not be the optimal real-time solution when

we take economic cost into consideration. To reduce the cost, we cannot guarantee all

the viewpoints have enough provisioned cloud resources at the beginning. But we can re-

allocate them dynamically later if some of them finish their tasks before deadline. So here

in this thesis, we propose a dynamic resource allocation scheme.

The first motivation to design our dynamic resource allocation scheme is to reduce

the economic cost. In fact, we do not need to provision every viewpoint with sufficient VMs

at the beginning, which means we can allocate less VMs for the viewpoints that are not

popular as expected. For those viewpoints lack of provisioned VMs, our resource allocator

can switch VMs from other viewpoints to them, if they can finish their tasks before the

deadline. Before this reallocation happens, the users watching the viewpoints without

enough VMs may experience longer delay and queuing time. And the length of this delay

depends on how long the VMs on other viewpoints can finish the assigned tasks. This

dynamic resources reallocation scheme can be illustrated in Figure 3.6. For example,

assuming the virtual viewpoint 1 and 6 do not have provisioned VMs at the beginning of

FVV streaming and the VMs provisioned for virtual viewpoint 3 and 4 are sufficient to finish

tasks earlier than deadline, so we can reallocate them to other viewpoints, such as the

virtual viewpoint 1 and 6. The Figure 3.6 is just an example, since actually all the VMs in

virtual viewpoint 3 and 4 can be switched to other different viewpoints if their tasks are

done, not only one part of them. Through this scheme, we can reduce the economic cost

even though some of the users may experience streaming delay. However, we consider

this delay as acceptable result, since it only happens on the least popular viewpoints, like

the viewpoint 1 and 6 in Figure 3.6, which can minimize the defects on user experience.

In addition, the overall optimal solution not only considers the user experience, but also

the economic cost. There is a trade-off between these two. The optimal solution should

26

minimize the cost and maintain the overall user experience as high as possible at the

same time. And the overall user experience mostly relies on the central viewpoints. We

will give the mathematical model on this issue in the next chapter in order to demonstrate

the optimal solution more precisely.

Figure 3.6 Reallocation of Resources among Viewpoints

According to our dynamic reallocation of resources, someone may ask if the VMs

can be switched from sufficient points to insufficient points, why we do not provision them

in the way as we reallocate at the beginning. The first reason is in some cases, there are

Distribution of Users

Virtual Viewpoint 1Virtual Viewpoint 1 Virtual Viewpoint 2Virtual Viewpoint 2 Virtual Viewpoint 3Virtual Viewpoint 3 Virtual Viewpoint 4Virtual Viewpoint 4 Virtual Viewpoint 5Virtual Viewpoint 5 Virtual Viewpoint 6Virtual Viewpoint 6

Reallocation of Resources

Delay Delay

27

not enough VMs in total, we have to suffice the central viewpoints first, then support the

other viewpoints. The second reason is the prediction cannot be always right. In some

situations, some viewpoints may have over sufficient VMs while the others lack of VMs. In

addition, there are some incidents like highlights unexpected during the streaming process.

In particular, when highlight comes, most users will switch to specific viewpoints even they

are not popular in the most of time. This kind of situations can be illustrated as Figure 3.7.

Figure 3.7 Dynamic Resource Allocation for the Highlight Viewpoint

In Figure 3.7, we suppose there is a highlight viewpoint which is virtual viewpoint

2. Since it is an unexpected situation, the provisioned VMs in viewpoint 2 are not sufficient

Distribution of Users

Virtual Viewpoint 1Virtual Viewpoint 1 Virtual Viewpoint 2Virtual Viewpoint 2 Virtual Viewpoint 3Virtual Viewpoint 3 Virtual Viewpoint 4Virtual Viewpoint 4 Virtual Viewpoint 5Virtual Viewpoint 5 Virtual Viewpoint 6Virtual Viewpoint 6

Reallocation of Resources

28

as users switch from other viewpoints. Accordingly, the VMs should also be moved to the

highlight viewpoints to support from the other viewpoints. We can see the VMs are

reallocated from virtual viewpoints 3, 4 and 5 to virtual viewpoints 1 and 2. Even the nearby

viewpoint 1 can also have a sudden overload during this period of time. By this dynamic

resource allocation scheme, we can maintain the relatively high quality of experience for

most of users and deal with the possible incidents which result in overload on specific

viewpoints.

Dynamic resource allocation is one of the key points in our real-time FVV rendering

and streaming system. It can make the resources be used in the right place in a dynamic

way. By this scheme, it is possible to reduce the economic cost without reducing much

user experience at the same time. In addition, for each viewpoint provisioned with

resources, we can apply our multithread processing strategy in order to further improve

the performance and efficiency.

3.2.2. Multithread Processing Strategy

When a viewpoint is provisioned with cloud resources, it has the ability to produce

FVV stream to the users. To speed up the production process and take full advantage of

the resources, we introduce multithread processing strategy. The key idea in the strategy

is split and merge. In this split and merge process, the most important point it to determine

proper separation points.

In our multithread FVV synthesis process, we first decode the input video which is

in texture and depth respectively. According to the DIBR, the processing is performed

horizontally in frame. Thus, we can split a frame into several horizontal slices. Since the

multiple threads within one process use the shared memory, these slices can be

processed on multiple threads concurrently and the number of slices in a frame should

match the number of available threads. After the FVV synthesis is done, we merge the

slices back into complete frames and then encode them to the output FVV. Since the view

synthesis is much more time consuming than the video coding, we only parallelize view

synthesis in our system. When all frames are synthesised, we encode them together as

traditional video at the end. The whole multithread processing workflow is illustrated in

29

Figure 3.8. The implementation of this multithread processing strategy will be introduced

with details in Chapter 5.

Figure 3.8 Multithread Processing Workflow

Frame 1 Frame 2 Frame n

Thread 1

Thread 2

Thread m
Video Sequence

Fame 1 Frame 2 Fame n

Video Sequence

Slice 1
Slice 2

Slice m
Frame

(Before processing)

Split

Slice 1
Slice 2

Slice m

Frame
(After processing)

M
erge

Multithread FVV
Synthesis

Input video

Decode

Output video

Encode

30

3.3. Summary

We introduce the architecture of our cloud-assisted FVV rendering and streaming

system in this chapter. In the architecture, the capture side, cloud-side and client-side are

integrated together through the Internet. As the core component, the cloud takes charge

of receiving captured video, generating FVV, listening to users’ requests and streaming

FVV to users. To implement these functionalities, we design several modules for different

purposes. For the control modules in the system, we design the dynamic resource

allocation scheme and multithread processing strategy. These are the two key points in

the whole system, since they determine how the resources are allocated and how the

resources are used to generate FVV efficiently. However, in this chapter, we only describe

the general logic. In order to achieve the optimal trade-off between economic cost and

user experience, we still need precise modeling, calculation and algorithm. All these

remaining concerns will be deal with in Chapter 4.

31

Chapter 4.

Mathmatical Modeling and Algorithm Design

In this chapter, the dynamic resouces allocation scheme and the multithread

processing strategy are formulated in a mathmatical model for the precise calculation and

result analysis. Based on the formulation and modelling, we introduce the objective

function to quantify the trade-off between economic cost and user experience. In order to

achieve the optimal solution, we propose a reliable algorithm which can be run in our

system to make decisions. All the contents in this chapter focus on rendering and

streaming live FVV in real-time by leveraging cloud resources. Before introducing the

model and algorithm, we first describe the scenario and basic assumptions to narrow down

the problem.

4.1. Basic Assumptions and Strategy

Nowadays, live video is becoming more and more popular. People can watch the

video stream shortly after it is captured. To achieve the low latency live streaming, the

video processing needs to be done in real-time. For the ordinary video, even the computer

with common hardware can finish encoding and streaming in a very short time. However,

since generating FVV requires processing of both texture and depth views, it is much more

complicated and time consuming. Unlike non-live FVV which can be rendered in advance,

the live FVV must be generated in real-time. Therefore, although it is challenging to realize,

live FVV streaming is still a very practical scenario to use our real-time FVV rendering and

streaming system. To support the real-time FVV synthesis, we integrate the rendering and

streaming system with cloud computing. Here we give the basic assumptions based on

this scenario.

First we narrow down the scope of this thesis to the cloud-side by making certain

assumptions on capture side and client-side. Specifically, we assume the captured live

videos are already sent to or cached in the cloud. So, the system can read the original

views immediately. The number of available virtual viewpoints is 𝑚 and all the viewpoints

32

can be denoted as 𝑉&, 𝑉(,⋯ , 𝑉* . For the client, the users’ requests are collected by the

cloud every period of time and the number of users’ requests for the viewpoint 𝑖 during

time slot 𝑡. is 𝑀01,23	, where 𝑉5 ∈ 𝑉&, 𝑉(,⋯ , 𝑉* . The users’ requests are held in a queue

until collected by cloud at the beginning of every time slot 𝑡. .

For the cloud-side, the unit of resources is VM. We suppose that each VM has the

ability to render FVV in real-time. But even if it is real-time, there is still a generating speed

which depends on the quality of video, that is 𝐺𝑒(𝐵𝑟), where 𝐵𝑟 is the bit rate of video

indicating the quality. In addition, each VM has the upper bound of its serving bandwidth

𝐵𝑑 , which will somehow determine the downloading speed of video streams and the

maximum number of users it can serve at the same time. Due to the bottleneck of the

input/output (IO) mechanism of VM, each VM can only run one task at a time. Therefore,

we need to allocate VMs among all the viewpoints and each one of them can generate

FVV for a specific viewpoint before it is reallocated. In addition, because of the bandwidth

𝐵𝑑 and acceptable downloading speed 𝐷𝑙@, 𝐷𝑙A of users, we can derive the number of

the users which a VM can serve, that is

 𝑆𝑒@, 𝑆𝑒A = DE
FGH

, DE
FGI
	 (4.1)

where 𝑆𝑒@, 𝑆𝑒A represents the lower bound and the upper bound of the number of users

that a VM can serve. Within this range, a VM can provide all the users with acceptable

downloading speed which determines the transmission delay.

 In the cloud, the resources are reallocated as scheduled every 𝑡J unit of time. For

the reallocation, the system analyzes the trend and distribution of the users’ requests

within last several 𝑡. time slots and then determines the updated reallocation scheme,

including the number of VMs for each viewpoint in the next 𝑡J units of time, that is 𝑁01,2L	.

Since reallocating all the resources takes certain time, we do not want this operation to

happen too frequently. Thus, we assume that is 𝑡J ≫ 𝑡.. However, in order to take full

advantage of the cloud resources, we reallocate the VM immediately when it finishes tasks

before the deadline within 𝑡J. Specifically, when a VM is done with the current jobs but

does not hit the end of 𝑡J, it will fire an event to notify the listener in the control modules.

Then the control modules will reassign it to other viewpoints where we need more VMs to

33

support. Once a VM is launched, the unit of its running time is the renting cycle 𝑇. It means

that a VM will run at least 𝑇 units of time because shutting it down before that is

meaningless since the rental has already been charged at the beginning of the renting

cycle. Usually the renting cycle of VM is relatively long, like 30 or 60 minutes. Therefore,

we cannot immediately modify the existing renting plan until current renting cycle ends.

When a VM finishes its current renting cycle, the system control can decide to shut it down

or extend its renting period. Based on the workload situation of the previous renting cycle,

we can also choose to launch more new VMs to serve users if the existing VMs are not

sufficient.

Figure 4.1 Timeline of one renting cycle

Basically, our dynamic resource allocation scheme can be divided into two parts,

which are short-term and long-term control. For short-term control, it reallocates the

current VMs at scheduled timing to take full advantage of their power. Although it does not

shut VM down or launch new VMs, it has the ability to deal with the sudden overload on

any specific viewpoints. For example, when there is highlight viewpoints and the

distribution of users changes dramatically in a short period of time, the short-term control

will force the reallocation without waiting to the scheduled timing. To determine if there is

a significant overload on viewpoints which needs to force the reallocation immediately, we

sort the users’ requests at 𝑡. when the cloud collects user requests, like

𝑀0O,23	 < 	𝑀0Q,23	 < 	𝑀0R,23	 < 	𝑀0S,23	 < 𝑀0T,23	

ttu tc T

End of queuing time:
Cloud-side collects

users’ requests from
client-side

End of short-term
control period:

reallocate current VMs

End of renting cycle
(long-term control period):

shut down VM, launch new VM
or extend current renting period

34

where 𝑉U represents the major viewpoint. If the order changes at 𝑡.V into

𝑀0O,23V	
< 	𝑀0R,23V	

< 	𝑀0T,23V	
< 	𝑀0S,23V	

< 𝑀0Q,23V	

where 𝑉W represents the highlight viewpoint, the short-term control should reallocate the

VMs immediately otherwise the 𝑉W may experience significant overload. In summary, we

allocate the VMs according to the order of the number of users’ requests on each

viewpoint. If the order changes at 𝑡. , the system can reallocate the VMs immediately

without waiting until the next 𝑡J.

For long-term control, it can modify the resources provision plan by maintaining

the total number of VMs in the system. In particular, it can turn off a VM, extend its renting

period or add more VMs to the system. The timeline and corresponding events within one

renting cycle are illustrated in Figure 4.1. While Figure 4.1 is explicitly showing the

relationship between short-term and long-term control, the scale among 𝑡., 𝑡J and 𝑇 can

varies much in the real world according to different charging schemes by the cloud service

providers.

To make the right decision, the long-term control need consider three possible

situations:

1. The current VMs are under sufficient to serve the users in the next
renting cycle;

2. The current VMs are over sufficient to serve the users in the next
renting cycle;

3. The current VMs are just sufficient to serve the users in the next
renting cycle.

As a VM has the limitation on the number of users that it can serve at the same time, we

can determine if the current VMs are enough to serve the users in the next renting cycle.

In the situation 1, the number of users exceeds the maximum which a VM can

serve, that is

 𝑀01,XV	5 > 𝑆𝑒A ∙ 	 𝑁01,X	5 (4.2)

35

where 𝑇 is the current renting cycle and 	𝑇[is the next renting cycle. Thus, we need to add

more VMs in the next renting cycle; The situation 2 is the opposite of situation 1, that is

 𝑀01,XV	5 < 𝑆𝑒@ ∙ 	 𝑁01,X	5 (4.3)

In this situation, we can shut down some VMs to save the economic cost in the next renting

cycle.

The situation 3 means that the serving capability of current VMs and the number

of users are balanced, that is

 𝑀01,XV	5 ∈ 𝑆𝑒@, 𝑆𝑒A ∙ 	 𝑁01,X	5 (4.4)

In this situation, adding more VMs will speed up the downloading but also increase the

cost, while shutting down VMs will slow down the downloading but also reduce the cost.

Besides, the system can also choose to extend the renting period of current VMs without

increasing or decreasing the amount of VMs. Therefore, a decision should be made to

optimize the trade-off, which depends on our economic cost and user experience models

in the next section. And the decision making will be explained in detail in the section of

algorithm design.

4.2. Cost and User Experience Model

In order to provide the optimal solution to the trade-off between economic cost and

user experience, this section gives two models respectively and then defines the objective

function to describe our ultimate goal.

4.2.1. Cost Model

The cloud resources are charged by the cloud service provider under certain

scheme. And the charging scheme varies based on different kinds of VM with various

hardware. To simplify this problem, we assume that we only rent one kind of VM which

can generate FVV in real-time and this kind of VM is charged 𝑃 dollars for a renting cycle

36

𝑇. In addition, every viewpoint has its own economic value and it is usually different from

each other, since the more popular and center viewpoint will charge more on the users.

Thus, we represent it as 𝑄01		for each viewpoint 𝑉5 . Assuming we only charge the users if

they can watch the viewpoint without waiting time, so for each viewpoint we define a binary

flag 𝐾	01, whose detailed definition is given in the next section as part of user experience

model. Therefore, total cost 𝐶2`2aG within one renting cycle is given by

 𝐶2`2aG = 𝑁01		5 ∙ 𝑃 − 𝐾	01 ∙ 𝑀01	5 ∙ 𝑄01	 (4.5)

4.2.2. User Experience Model

Unlike the economic cost model which is only affected by the price 𝑃 of VM, the

user experience model takes more aspects into consideration, such as FVV quality, FVV

generating delay, transmission delay and waiting time. Basically, these aspects can be

summarized into two categories, which are the FVV quality and the delay time until the

users can watch the request FVV on their local devices.

For the FVV quality, we use Peak signal-to-noise ratio (PSNR) as measure.

Basically, the PSNR is proportional to the bit rate 𝐵𝑟 of FVV but the detailed relationship

is complicated. In the chapter 5, we can roughly describe it based on the experimental

results. Here, we use a function to represent the FVV quality 𝑄, that is

 𝑄 = 𝑃𝑆𝑁𝑅 𝐵𝑟 (4.6)

For the delay, we can formulate each part respectively. Firstly, although there is

an assumption that the VM we rent can generate FVV in real-time, the generating speed

can still be slightly different when using different bit rate setting. In order to maintain the

real-time FVV generation and the user experience, the bit rate must be limited within an

acceptable range, that is 𝐵𝑟 ∈ 𝐵𝑟@, 𝐵𝑟A . Supposing the users watch FVV for 𝑡 time, the

total generating time 𝐷de should be

 𝐷de =
fg∙2

de Dh
 (4.7)

37

where 𝑃𝑏 also represents the playback rate of client-side.

Secondly, when the users are watching FVV rendered and streamed from the

cloud, they need to download the streams, which will cause the transmission delay. The

downloading speed depends on the bandwidth on both cloud-side and client-side.

Generally, the users are assigned with certain network bandwidth from the network

provider. Even though the cloud may provide larger bandwidth for the users, the

downloading speed is still limited to an upper bound 𝐷𝑙A. However, in some cases, the

cloud cannot provide each user with the enough bandwidth to achieve the maximal

downloading speed due to the large number of users’ requests at the same time. Hence,

although the users have sufficient bandwidth, the downloading speed is reduced.

However, to maintain the real-time rendering and streaming experience, there is a lower

bound of required downloading speed, that is 𝐷𝑙@ . Therefore, we can derive the

formulation of the transmission delay on a specific viewpoint 𝑉5,

 𝐷Xh =
DE∙jk1
lk1

m&
∙ 𝑃𝑏 ∙ 𝑡 (4.8)

Thirdly, as described in our dynamic resource allocation scheme, some viewpoints

may not have provisioned VMs at the beginning. The users watching on these viewpoints

have to wait for the other VMs finishing their tasks. There is an upper bound for the waiting

time, because if the users wait for too long, the VMs will not have enough time to support

them after being switched from other viewpoints. Thus, we can derive the condition on the

waiting time 𝐷na,

𝐷na = 𝐷de

𝑇 − 𝐷na ∙ 𝐺𝑒 𝐵𝑟 ≥ 𝑃𝑏 ∙ 𝑡 (4.9)

where 𝑇 represents the total time before the deadline. Considering equation 4.7, we can

conclude the condition as

 𝐷na = 𝐷de ≤
X
(
 (4.10)

38

which means the generating time cannot exceed half of the total time. Therefore, when

we make provision for next renting cycle, if the 𝐷de >
X
(
, we must add more VMs to the

system, otherwise the FVV generation on certain viewpoints will miss the deadline. For

each viewpoint, the derived waiting time is

 𝐷na = 𝐾	01 ∙ 𝐷de (4.11)

where 𝐷de ≤
X
(
 and 𝐾	01 indicates if the viewpoint has provisioned VMs. Assuming 𝐾	01

indicates the viewpoints with sufficient provisioned VMs, it can be defined as

 𝐾	01 =
1, 𝑖𝑓	

l	k1
j	k1

> 𝑆𝑒A

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.12)

where

Here we make an assumption that a VM can be reallocated once within one timeslot.

Hence, we have

 𝐾	015 ≥ &
(
∙ 𝑚 (4.13)

where 𝑚 is the total number of viewpoints.

Finally, in order to obtain the overall formulation of user experience, we consider the

number of users 𝑀01,2 on each viewpoint and use 𝑡 to represent a timeslot. Thus, the

overall average user experience (QoE) is

 𝑄𝑜𝐸ayehaze = 𝛼 ∙ 𝑃𝑆𝑁𝑅 𝐵𝑟 − 𝑡m& 𝛽 ∙ 𝐷de − 𝛾 ∙ 𝐷Xh − 𝛿 ∙ 𝐷na (4.13)

that is,

 𝑄𝑜𝐸ayehaze = 𝛼 ∙ 𝑃𝑆𝑁𝑅 𝐵𝑟 − 𝛽 ∙ fg
de Dh

− 𝛾 ∙
lk1∙

��∙�k1
�k1

�O

1 ∙fg

lk11
− 𝛿 ∙

&m�	k1 ∙ lk1∙1
��

�� ��
lk11

39

 (4.14)

where the conditions are

 𝐵𝑟 ∈ 𝐵𝑟@, 𝐵𝑟A (4.15)

 fg
de Dh

≤ &
(
 (4.16)

 𝐾	015 ≥ &
(
∙ 𝑚 (4.13)

DE∙jk1
lk1

∈ 𝐷𝑙@, 𝐷𝑙A	 (4.17)

if
DE∙jk1
lk1

> 𝐷𝑙A, then shut VMs down; if
DE∙jk1
lk1

< 𝐷𝑙@, then launch more VMs. To further

determine the number of VMs we need to shut down or launch, we need to integrate the

QoE formulation to the economic cost formula to obtain the ultimate objective function.

4.2.3. Objective Function

In order to achieve the optimal resource allocation, the objective function should

take both economic cost and user experience into consideration. To indicate the overall

trade-off, the basic idea of objective function is to calculate the weighted average on these

two factors, that is

 𝑆 = 𝜆 ∙ 𝐶 + 1 − 𝜆 ∙ 𝑄𝑜𝐸 (4.18)

where 𝑆 represents the score of the trade-off, 𝐶 is the cost. However, the cost and QoE

are in the different scales, we need to normalize them first to obtain the correct score.

For the cost, it is usually bounded by the budgets, that is 𝐶 ∈ 𝐶@, 𝐶A . Thus, the

normalized cost 𝐶j should be

 𝐶j = 1 − �
�Hm�I

= 1 −
&/X∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
 (4.19)

40

where we use 𝑃/𝑇 to represent the cost of a VM per time unit. Since it is better to have

lower cost, the 𝐶j should be inverse proportional to the actual cost.

For the QoE, there are four internal factors which are PSNR, generation delay,

transmission delay and the waiting time. To simplify the representation of the normalized

score, we replace generation delay and transmission delay with generation speed and

transmission speed respectively. As a matter of fact, the bit rate 𝐵𝑟 of FVV is limited to

𝐵𝑟@, 𝐵𝑟A , so the normalized PSNR is

 𝑃𝑆𝑁𝑅j 𝐵𝑟 = f�j� Dh mf�j� DhI
f�j� DhH mf�j� DhI

 (4.20)

Similarly, we can derive the normalized generation speed

 𝑆dej = de Dh mde DhI
de DhH mde DhI

 (4.21)

and the normalized transmission speed

 𝑆Xhj =

��∙�k11
�k11

mFGI

FGHmFGI
 (4.22)

where 𝐷𝑙A, 𝐷𝑙@ represent the range of possible transmission speed.

For the waiting time, the normalized score is also inverse proportional to the actual waiting

time. In addition, based on the inference above, we can derive the range of the possible

waiting time, that is

 𝐷na ∈ 0,
lk1∙

��
�� ��

�/R
1

lk11
 (4.23)

where 𝑚/2 means that at most half of the viewpoints has no provisioned VMs and 𝑃𝑏 is a

known parameter indicating the playback rate on client-side. In the most ideal case, the

waiting time is zero as all the viewpoints are provisioned with VMs. Thus, the normalized

waiting time is

41

 𝐷na
j = 1 −

O��	k1 ∙ �k1∙1
��

�� ��
�k11

�k1∙
��

�� ��

�
R
1

�k11

= 1 −
&m�	k1 ∙ lk11

lk1

�
R
1

 (4.24)

To sum up, the normalized overall QoE is

 𝑄𝑜𝐸j = 𝛼 ∙ 𝑃𝑆𝑁𝑅j 𝐵𝑟 + 𝛽 ∙ 𝑆dej + 𝛾 ∙ 𝑆Xhj + 𝛿 ∙ 𝐷na
j (4.25)

That is,

 𝑄𝑜𝐸j = 𝛼 ∙ f�j� Dh mf�j� DhI
f�j� DhH mf�j� DhI

+ 𝛽 ∙ de Dh mde DhI
de DhH mde DhI

+ 𝛾 ∙

��∙�k11
�k11

mFGI

FGHmFGI
+ 𝛿 ∙ 1 −

&m�	k1 ∙ lk11

lk1

�
R
1

 (4.26)

Finally, we can obtain the overall trade-off formulation

𝑆 = 𝜆 ∙ 1 −
&/X∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
+ 1 − 𝜆 ∙ 𝛼 ∙ f�j� Dh mf�j� DhI

f�j� DhH mf�j� DhI
+ 𝛽 ∙

de Dh mde DhI
de DhH mde DhI

+ 𝛾 ∙

��∙�k11
�k11

mFGI

FGHmFGI
+ 𝛿 ∙ 1 −

&m�	k1 ∙ lk11

lk1

�
R
1

 (4.27)

where 𝑃, 𝑇 , 	𝐶A , 	𝐶@ , 	𝐵𝑟 , 	𝐵𝑟A , 	𝐵𝑟@ , 	𝐵𝑑 , 	𝑚 are all parameters, 𝑄01 , 𝑁01 , 𝑀01 and 𝐾01 are

variables and 𝛼 + 𝛽 + 𝛾 + 𝛿 = 1.

Thus, our objective function is

 max
�k1,jk1,lk1,�k1

𝑆 𝑄01, 𝑁01		5 , 𝑀01, 𝐾01 (4.28)

42

 𝑠. 𝑡.
lk1
jk1

∈ 𝑆𝑒@, 𝑆𝑒A 	𝑎𝑛𝑑 𝐾	015 ≥ *
(

where we can see that this optimization problem can be simplified into two basic sub-

problems:

 1. How many VMs should be rented according to the number of users;

2. How to allocate these VMs among all the viewpoints.

And the condition is the workload of a VM should be within the acceptable range. To solve

these sub-problems, we will design an algorithm in the following sections.

4.3. Prediction Method and Resource allocation

According to our dynamic resource allocation scheme, the decision-making needs

to depend on the estimation of users’ requests in the next time slot. Hence, the accuracy

of prediction method will determine the correctness of resource allocation. In this section,

we present our prediction method first and then explain how the prediction results will

affect our resource provision plan in the next time slot.

4.3.1. Short-term Prediction and Resources Reallocation

As design of our system, every 𝑡. time the cloud-side collects the users’ requests

from client-side. Meanwhile, it can also obtain the distribution of users’ requests on

viewpoints, that is 𝑀01,23. At 𝑡J time, the scheduled resources reallocation happens and

the system makes the resources provision plan for the next time slot. Supposing 𝑡J ≫ 𝑡.,

we can get a time series of users’ requests on each viewpoint based on the previous time

slots, that is

 𝑀01,23O
, 𝑀01,23R

, ⋯ ,𝑀01,23� (4.29)

where 𝑡.� = 𝑡J and 𝑉5 ∈ 𝑉&, 𝑉(,⋯ , 𝑉* . In order to estimate the users’ requests on each

viewpoint in the next time slot 𝑀01,23��O
, we can leverage the usual prediction methods of

time series, such as Autoregressive moving average (ARMA) and Autoregressive

43

integrated moving average (ARIMA). Since the prediction method is not our focus in this

thesis, we just apply certain existing reliable method to our system. In Chapter 5, we will

present the specific time series prediction method we use in the implementation of our

system.

 By leverage the time series prediction method, we can get the predicted number

of users’ requests on each viewpoint 𝑀01,23��O
. Based on this result, the short-term control

will reallocate the VMs to each viewpoint. According to equation 4.27, the level of 𝑆 only

relies on the value of viewpoints and waiting time which is the last term, since the total

number of VMs 𝑁01,23��O		5 will not be changed and users’ requests on each viewpoint

𝑀01,23��O
is known. Thus, the distribution of VMs 𝐾01 and the value of viewpoints 𝑄01	 are

the factors which can affect the ultimate trade-off in the objective function.

According to the normalized waiting time, we can derive the simplified objective

function

 max
�k1,�k1

𝑆[= 𝜆 ∙ 1 −
O
�∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
+ 1 − 𝜆 ∙ 𝛿 ∙ 1 −

&m�	k1 ∙ lk11

lk1

�
R
1

 (4.30)

 s. 𝑡.
lk1
jk1

∈ 𝑆𝑒@, 𝑆𝑒A 	𝑎𝑛𝑑 𝐾	015 ≤ *
(

where the possible maximum waiting time 𝑀01

�
R
5 is determined by 𝑀01. The maximum

waiting time happens when half of the viewpoints has no provisioned VMs and this half

consists of the viewpoints with lower users’ requests. Then, to maximize 𝐷na
j , 1 − 𝐾	01 ∙

𝑀015 should be minimized. Hence, when the control system reallocates VMs, it should

assign VMs to the viewpoints with most users’ requests first and satisfy the condition 	
lk1
jk1

∈

𝑆𝑒@, 𝑆𝑒A . Since the magnitude of
lk1
jk1

 does not contribute to the ultimate objective, we

can keep
lk1
jk1

= 𝑆𝑒@ during the reallocation process in order to avoid assigning over

sufficient VMs on specific viewpoints. Once the viewpoint 𝑉5	with the most users’ requests

44

has number of provisioned VMs 𝑁01 =
lk1
�eH

, the system switches to the viewpoint with the

second most users’ requests, and so on. Through this greedy VMs reallocation strategy,

we can finally achieve the optimal 𝐾	01 and the maximum of the ultimate objective.

Based on the inference above, we can conclude that in order to achieve the optimal

trade-off between economic cost and user experience, the priority on each viewpoint to

obtain provisioned VMs should follow the order of number of users’ requests. Last but not

least, this short-term resources reallocation can be forced to run within a time slot when

the order of number of users’ requests changes. Since the short-term time slot is relatively

short, the order of number of users’ requests is usually stable during one time slot except

when highlights appear suddenly in the video. By detecting the order of number of users’

requests and activating the short-term resource reallocation accordingly, our dynamic

resource allocation scheme is able to deal with the highlight viewpoints and relieve the

influence from the fluctuation of the users’ requests at the same time.

4.3.2. Long-term Prediction and Resource Provision

While the short-term predication happens at 𝑡J to achieve the optimal resource

reallocation scheme, the long-term prediction is triggered at the end of renting cycle 𝑇 in

order to decide if the number of VMs should be increased, decreased or maintained the

same.

Similar to the short-term prediction, the long-term prediction is based on not only

the distribution of users’ requests, but also the total number of it, that is

 𝑀01,2LO5 , 𝑀01,2LR5 , ⋯ , 𝑀01,2L�5 (4.31)

where 𝑡J� = 𝑇 and 𝑉5 ∈ 𝑉&, 𝑉(,⋯ , 𝑉* . Here we use the historical data on 𝑡J within the

previous renting cycle as the reference points to build the time series and assume the total

number of users’ requests cannot vary significantly within one renting cycle. By leveraging

the time series prediction methods, we can obtain the predicted total number of users’

requests within next renting cycle in addition to the distribution.

45

At the end of every renting cycle, the control system is able to change the total

number of VMs. However, the lower bound of the total number is determined by the service

capability of VMs and the number of users’ requests. Thus, the starting point of total

number of VMs is

 𝑁01,XV5 ≥
lk1,�

V

�eH

�
R
5 (4.32)

where 𝑇[represents the next renting cycle. Starting from this point, we can achieve the

optimal solution by greedy approach. According to the objective function, the cost,

transmission speed and waiting time will be affected by the number of VMs. Thus, we can

derive the simplified objective function

max
�k1, jk1	1 ,lk1,�k1

𝜆 ∙ 1 −
O
�∙ jk1		1 ∙fm �	k1∙lk1	1 ∙�k1	

�Hm�I
+ 1 − 𝜆 ∙ 𝛾 ∙

��∙�k11
�k11

mFGI

FGHmFGI
+ 𝛿 ∙

1 −
&m�	k1 ∙ lk11

lk1

�
R
1

 (4.33)

 s. 𝑡.
lk1
jk1

∈ 𝑆𝑒@, 𝑆𝑒A 	𝑎𝑛𝑑 𝐾	015 ≥ *
(

Specifically, in order to achieve the optimal result, we can keep trying to add one VM at a

time to the system and allocate it according to the scheme with priority described in the

previous section. After adding this VM, if the objective result is increased, we keep it and

repeat the adding process; if the objective result is not increased, we add more than one

VMs to the system to make sure reducing the number of viewpoints without provisioned

VMs. Then if the objective result is still not increased, we discard these VMs and the

number of VMs in the previous state is the optimal result. This greedy approach is

illustrated in Figure 4.2. The solid line happens if the objective result increases, while the

dashed line means falling back to the previous state if the objective result is not increased.

46

Figure 4.2 Resources provision starting from the lower bound

The above resources provision approach is suitable for the initial provision, since

it can generate the optimal result from the lower bound. Considering the total number of

users’ requests between renting cycles usually changes little, the greedy approach can

also start from the state of previous renting cycle. Accordingly, at the starting point, there

are more options, which are removing VMs and maintaining the same number of VMs.

Similarly, we can keep trying to remove the VMs but in the reversed priority order

described in the previous section. If either adding or removing VMs cannot increase the

objective result, the optimal solution is to keep the same number of VMs. Figure 4.3

depicts this approach.

Figure 4.3 Resources provision starting from the state of previous renting

cycle

4.4. Algorithm Design

Based on the previous sections, we can conclude the short-term resource

reallocation algorithm and the long-term resource provision algorithm in Table 4.1, Table

4.2 and Table 4.2 respectively. The short-term resource reallocation algorithm has two

versions. The first one only runs at the scheduled checkpoints (𝑡 = 𝑡J) to reduce the overall

computation consumption. The second one runs every time when the cloud-side collects

the users’ requests (𝑡 = 𝑡.). It has better ability to deal with the fluctuation caused by

0 +VM +2VM +3VM +nVM
Starting

point

0 +VM +2VM +3VM +nVM
Starting

point

-2VM -VM-3VM-nVM

47

highlight viewpoints but introduces more computation consumption. These two versions

can be selected according to different scenarios.

Table 4.1 Short-term resources reallocation algorithm (basic version)

 Input:
 The prediction of users’ requests in the next time slot 𝑀01 and the total number of VMs 𝑁.
 Output:
 The optimal VMs reallocation scheme 𝑁01 in the next time slot.
1 while (true)
2 if 𝑡 = 𝑡J , then
3 sort 𝑀01 in descending order on viewpoint 𝑉5 , that is 𝑀01

∗;
4 foreach 𝑀01 ∈ 𝑀01

∗
5 while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒A ∙ 𝑁01
6 assign one VM to 𝑉5 , that is 𝑁01 + 1;
7 end

8 end
9 if 𝑁015 < 𝑁, then
10 foreach 𝑀01 ∈ 𝑀01

∗
11 while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒@ ∙ 𝑁01
12 assign one VM to 𝑉5 , that is 𝑁01 + 1;
13 end
14 end
15 end
16 return the optimal reallocation scheme 𝑁01 ;
17 end

48

Table 4.2 Short-term resources reallocation algorithm (with highlights
solution)

 Input:
 The order of number of users’ requests in the previous time slot 𝑀01

[∗, the prediction of users’
requests in the next time slot 𝑀01 and the total number of VMs 𝑁.

 Output:
 The optimal VMs reallocation scheme 𝑁01 in the next time slot.
1 while (𝑡 = 𝑡.)
2 sort 𝑀01 in descending order on viewpoint 𝑉5 , that is 𝑀01

∗;
3 if 𝑀01

∗
≠ 𝑀01

[∗, then
4 foreach 𝑀01 ∈ 𝑀01

∗
5 while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒A ∙ 𝑁01
6 assign one VM to 𝑉5 , that is 𝑁01 + 1;
7 end
8 end

9 if 𝑁015 < 𝑁, then
10 foreach 𝑀01 ∈ 𝑀01

∗
11 while 𝑁015 < 𝑁 AND 𝑀01 > 𝑆𝑒@ ∙ 𝑁01
12 assign one VM to 𝑉5 , that is 𝑁01 + 1;
13 end
14 end
15 end
16 return the optimal reallocation scheme 𝑁01 ;
17 end

49

Table 4.3 Long-term resources provision algorithm

 Input:
 The prediction of users’ requests in the next time slot 𝑀01 and the allocation of VMs in previous

time slot 𝑁01
[.

 Output:
 The optimal VMs provision scheme 𝑁01 	in the next time slot.
1 while (true)
2 if 𝑡 = 𝑇, then
3 choose one of the following:
 ADD: sort 𝑀01 in descending order on viewpoint 𝑉5 , that is 𝑀01

∗;
 REDUCE: sort 𝑀01 in ascending order on viewpoint 𝑉5 , that is 𝑀01

∗;
4 foreach 𝑀01 ∈ 𝑀01

∗
5 choose the one corresponding to the last choice:
 ADD: add one VM to 𝑉5 , that is 𝑁01 + 1, calculate the objective result 𝑆;

 REDUCE: reduce one VM on 𝑉5 , that is 𝑁01 − 1, calculate the objective result 𝑆;
6 if 𝑆 is increased, then
7 repeat the step ADD/REDUCE;
8 else
9 choose the one corresponding to the last choice:
 ADD MORE: add VMs to 𝑉5 , such that 𝑁01 ≥

lk1
�eH

, calculate 𝑆;

 REDUCE MORE: reduce VMs on 𝑉5 , such that 𝑁01 = 0, calculate 𝑆;
10 if 𝑆 is still not increased AND only one of AND/REDUCE has been processed, then
11 switch ADD to REDUCE / REDUCE to ADD and repeat the process;
12 else
13 return the current provision scheme 𝑁01 	as the optimal solution;
14 end
15 end
16 end
17 end
18 end

50

4.5. Summary

Based on the dynamic resource allocation scheme, we develop mathmatical

models in the chapter in order to calculate and analyse the trade-off between economic

cost and user experience precisely. We use the normalized formulations to represent each

factor which contributes to the overall trade-off and simplify the practical issue into a

optimization problem. Through the greedy approach, we design algorithms to deal with

short-term resources reallocation and long-term resouces provsion and develop the

optimal solutions. With these algorithms, we can build our cloud-assisted FVV rendering

and streaming system into practical software and test its performance in the next chapter.

51

Chapter 5.

Implementation and Experimental Results

In this chapter, we first introduce the implementation details of our cloud-assisted

FVV rendering and streaming system, including the FVV synthesis software, video coding

software, multithreading libraries, streamer development and cloud deployment. After that,

we present typical experimental results generated from the prototype system and give out

performance analysis based on that.

5.1. System Implementation

5.1.1. Free Viewpoint Video Synthesis

To generate FVV from the original views, we leverage a software module named

view synthesis reference software (VSRS) [15]. The VSRS is an reference software for

the 3D Video and FTV project of the 3D Video Coding Team of the ISO/IEC Moving

Pictures Experts Group (MPEG). It was developed by Nagoya University, Thomson Inc.,

Zhejiang University, GIST, NTT, and TUT/Nokia in the course of development of the

ISO/IEC JTC1/SC29 WG 11 (MPEG) 3D Video.

The VSRS provides us with C++ source code which can synthesize two original

views into a novel virtual view based on the texture and depth information. In addition, a

configuration file and a set of camera parameters are required to complete the FVV

processing. Furthermore, the VSRS needs the Open Source Computer Vision (OpenCV)

as a dependency in order to compile the source code and apply the functionalities. The

VSRS supports both Windows and Linux. Here we use the Linux version in our

implementation.

As an reference purposed software module, one of the major defects of the VSRS

is its performance. Specifically, the VSRS performs video processing on both the texture

and depth views. Since its processing unit is frame, the VSRS uses a loop to go through

all the frames in the original views and write out synthesized frames one by one.

52

Apparently, this loop can be optimized on the system with multi-core processors using

multithread programming technique. The sequence of frames can be divided into serval

parts in order to be processed on multiple threads simultaneously. Another way is to split

one frame into multiple horizontal slices, since the VSRS processes both texture and

depth views horizontally. In our system implementation, we synthesize FVV in the latter

way. To complete the implementation, we need to rewrite certain Application Programming

Interfaces (API) of the VSRS. The details will be provided in the following sections.

5.1.2. Video Coding

Video coding is an important and necessary part in our system implementation,

which can compress and encapsulate the raw video data into “streamable” video files.

Nowadays, there are various video coding formats, such as H.264, HEVC. Here we

choose H.264 as the codec used in our implementation. Video content encoded using a

particular video coding format is normally inside a multimedia container format like AVI,

MP4 and FLV. As such, the user normally doesn't have a H.264 file, but instead has a .mp4

video file, which is an MP4 container containing H.264-encoded video [32]. According to

different video streaming protocols, there are correspondingly required video containers.

For example, the RTMP requires FLV as the video container. Therefore, we need to apply

specific video codec and container to the raw video data before streaming it over the

internet. FFmpeg is such a software we leverage to complete this process.

As a free software project, FFmpeg provides libraries and programs for handling

multimedia data. It includes an audio/video codec library, an audio/video container mux

and demux library, and the FFmpeg command line program for transcoding multimedia

files [33]. In order to integrate FFmpeg with our FVV synthesis software module, we use

the FFmpeg libraries rather than the command line program in our implementation. The

FFmpeg libraries have a large number of APIs to help with recording, converting and

streaming audio and video. Through these APIs, we can also customize the settings of

video codec including the bit rate, width/height, GoP size and Frames Per Second (FPS).

Thus, in our experiments, we can easily compare the performance and results with

different settings. In addition, on the cloud-side, we assume that the captured videos are

already decoded and stored as YUV files. So, we can use the FVV synthesis module to

53

produce the videos on the novel virtual viewpoints and apply FFmpeg to encode them with

suitable codec and container in order to stream them to the client-side.

5.1.3. Multithreading Libraries

Real-time is another focus in our system implementation. As the original VSRS

has relatively low processing speed, it can hardly complete the tasks in real-time. Thanks

to the multithread programming technique, it is possible to speed up the VSRS on the

cloud with powerful computation resources. To take advantage of the cloud resources, we

need to leverage multithreading libraries, such as POSIX Threads (Pthreads), Open Multi-

Processing (OpenMP) and Message Passing Interface (MPI).

In shared memory multi-processor architectures, threads can be used to

implement parallelism. Historically, hardware vendors have implemented their own

proprietary versions of threads, making portability a concern for software developers. For

UNIX systems, a standardized C language threads programming interface has been

specified by the IEEE POSIX 1003.1c standard. Implementations that adhere to this

standard are referred to as Pthreads [34]. As Pthreads is well supported in the UNIX

systems like Linux and Mac OS, we use it to develop our multithread program on the VM

running Linux. In addition, since the Pthreads is a light weight and low level multithreading

library, it has high efficiency on the threads communication and data exchange as well as

many sophisticated functionalities, including the mutex and condition variables. However,

as a result, the Pthreads requires more programming effort in the implementation when

compared to other tools.

OpenMP is an API that supports multi-platform shared memory multiprocessing

programming in C, C++, and Fortran on most platforms, processor architectures and

operating systems, including Solaris, AIX, HP-UX, Linux, Mac OS, and Windows. It

consists of a set of compiler directives, library routines, and environment variables that

influence run-time behavior [35]. Compared to the Pthreads, OpenMP is more advanced

and easily to use. It can quickly turn a single thread program into multithreading through

a few statements in the code, especially for the loops in the program. Nevertheless,

OpenMP only well supports to the loop-level parallelism and does not have complex

54

functionalities as the Pthreads. It has a limitation on the application scenario, which

requires precise and complete threads control.

MPI is a standardized and portable message-passing system designed by a group

of researchers from academia and industry to function on a wide variety of parallel

computing architectures. The standard defines the syntax and semantics of a core of

library routines useful to a wide range of users writing portable message-passing

programs in C, C++, and Fortran [36]. As a communication protocol for parallel

programming, MPI's goals are high performance, scalability, and portability. Unlike the

Pthreads and OpenMP, MPI can not only support shared memory system, but also the

distributed system, which means MPI is not limited to the parallelism among multiple

threads, but also the multiple distributed processes. Basically, MPI is a parallel computing

approach based on both process and thread. It makes MPI very useful on the cloud cluster

with distributed resource nodes, since the task can be divided into several processes to

be performed on the multiple distributed nodes. Inside each process, we can use the

Pthreads and OpenMP to make it multithreading to accelerate it further. Therefore, the

combination of Pthreads, OpenMP and MPI should be the optimal solution to the real-time

task on the cloud cluster with distributed nodes.

5.1.4. Video Streamer Development

The streamer is the last module in the cloud-side FVV rendering and streaming

system. Basically, it handles the generated FVV and makes it into video stream in order

to be delivered to the client-side. NGINX is a popular open-source and high-performance

web server software which can be used to develop video streaming server. It was created

by Igor Sysoev in 2002 and runs on various platforms, including Linux and Mac OS [37].

In addition, one of the major features of NGINX is that it supports the FLV and MP4

streaming. Thus, NGINX is an ideal software that we can apply to build our video streamer.

To complete the implementation of the streamer, we also need a module to support

RTMP/HLS live streaming, that is NGINX-RTMP-Module [38]. This module is open-

sourced on Github [39] and widely used in live streaming server development. By

leveraging the NGINX-RTMP-Module, our cloud-side can receive the captured video

stream from cameras through RTMP and stream out the generated FVV to the client-side

55

through HLS. The users on the client-side can easily watch the live video stream using

VLC [40] or the browsers with HLS support, like Safari. This module also provides

elaborated streaming settings through the configuration file. So, we can customize the

HLS fragments, playlist length to achieve the optimal watching experience for the users.

5.1.5. Cloud Deployment

After implementing all the modules in the FVV rendering and streaming system,

the last step is to deploy them on a real cloud. In this thesis, we choose WestGrid as our

cloud service provider. WestGrid is a government-funded infrastructure program started

in 2003, mainly in western Canada, that provides institutional research faculty and

students access to high performance computing and distributed data storage, using a

combination of grid, networking, and collaboration tools [41]. WestGrid consists of several

cloud clusters such as Breezy, Grex, Jasper which are located in the major universities in

western Canada. Each cluster has different kinds and large scale of cloud resources which

are set up as nodes. For example, Jasper [42] is a cloud cluster located in University of

Alberta which has an aggregate 400 nodes with totally 4160 cores and 8320 GB memory.

In the most of these nodes, there are 12 cores and 24 GB memory. It means that our

application can be deployed on one node with at least 12 processing threads by using

Pthreads and OpenMP. WestGrid also supports MPI for the large scale distributed

computing. Thus, by leverage MPI combined with Pthreads and OpenMP, we can take full

advantage of the power of cluster. To run our tasks on the cluster, WestGrid requires to

submit a Batch Job Script to the cluster which can specify the amount of processors and

memory needed. Then the submitted job will be placed into a queue waiting to be

processed. Unlike Amazon Web Service (AWS), WestGrid does not allow us to rent and

occupy individual resources like VMs or instances by personal applications, since it is

research purposed and shared with many other users. But it is enough for us to test our

system and collect experimental results. If the system needs to be deployed as a personal

application and kept online throughout the day, AWS is a better choice with complete

charge system on various instances with all kinds of hardware we need.

56

5.2. Experimental Results

5.2.1. Video Quality

As discussed in the previous chapter, the video quality is quantified as 𝑃𝑆𝑁𝑅 𝐵𝑟

which is determined by the bit rate of the synthesized FVV. In our experiment, we use a

test video named “Balloon” along with the VSRS. Specifically, there are left and right views

with both texture and depth information in resolution of 1024*768 which is shown in Figure

2.2. Through the VSRS we can synthesize the two original views and generate a novel

virtual view in the middle. First, we compare the virtual view to the actual view captured at

the same viewpoint by the real camera and both are not encoded. The result PSNR is

37.45, which means our generated FVV does not have the same quality as the actual view

but it is still acceptable. Furthermore, we encode the generated FVV using different bit

rate settings and compare them to the original FVV without encoding in order to figure out

the relationship between PSNR and bit rate, that is 𝑃𝑆𝑁𝑅 𝐵𝑟 . The PSNR calculation is

done through a Matlab plug-in called YUV-PSNR which can compute the PSNR between

two YUV files. The final results are shown in Table 5.1 and Figure 5.1. According to the

results, we can see that the PSNR is increased dramatically as bit rate increases. In the

following experiments, we can derive the 𝑃𝑆𝑁𝑅 𝐵𝑟 by referring to Table 5.1 and Figure

5.1.

Table 5.1 Relationship between bit rate and PSNR

Bit rate (bps) PSNR (dB)
10M 45.04
5M 43.91
3M 43.00
2M 42.12

1.5M 41.37
1M 40.01

800K 39.31
700K 38.79

57

Figure 5.1 Bit rate and PSNR curve

5.2.2. Generation Speed

The FVV generation speed is another factor in our objective function which

depends on the bit rate. To determine the relationship between them, we similarly

performed experiments on the WestGrid cluster. Our testing environment is one node of

Grex cluster [43] of Westgrid, which has 24 CPUs in total with shared memory. First, we

investigate on the relationship between the number of processing threads and the number

of vCPUs in order to determine the optimal ratio. The results are given in Table 5.2 and

Figure 5.2.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Bitrate (x103 bps)

38

39

40

41

42

43

44

45

46

PS
N

R
 (d

B)

58

Table 5.2 Relationship between threads and generation speed

Threads Generation speed (fps)
1 2.77
2 5.23
6 14.21

12 20.63
24 27.57
48 30.58
72 31.32
96 31.98

Note. Test on a cluster node with 24 CPUs and the bit rate is set to be 1Mbps. The generation includes
FVV synthesis and H.264 encoding.

Figure 5.2 Number of threads and generation speed curve

From the results, we can conclude that the speed increases dramatically when the

number of threads is less than the number of CPUs. However, after the number of threads

reaches the double of CPUs, there is no significant improvement on the generation speed.

It is because creating threads costs time and system resources. When the number of

threads exceeds the double of CPUs, the time spent on initializing and switching threads

0 10 20 30 40 50 60 70 80 90 100
Number of threads

0

5

10

15

20

25

30

35

G
en

er
at

io
n

sp
ee

d
(fp

s)

59

on cores becomes large enough to offset the acceleration of multithread processing. In

the worst case, it might even delay the whole process. Therefore, the number of threads

is usually set to be the double of the CPUs. Finally, when there are sufficient threads and

CPUs, the generation speed can be over 30 fps which is enough for real-time streaming.

It means that our optimization through multithread processing technique improves the

speed of VSRS significantly from 2.77 fps to 30.58 fps and meet the requirement of real-

time. To further investigate the relationship between the bit rate and generation speed, we

figure out the speed with different bit rates in Table 5.3.

Table 5.3 Relationship between bit rate and generation speed

Bit rate (bps) Generation speed (fps)
10M 29.41
5M 30.06
3M 30.33
2M 30.39

1.5M 30.51
1M 30.58

800K 30.61
700K 30.67

Note. Test on a cluster node with 24 CPUs and the number of threads is set to be 48. The generation
includes FVV synthesis and H.264 encoding.

According to the result, we can see the higher bit rate may slightly slow down the

generation process but does not make much difference on the overall generation speed.

Even the lowest speed is over 29 fps which is still almost real-time (30 fps), which means

that most of time cost is on FVV rendering, not the H.264 encoding. We can roughly

estimate 𝐺𝑒 𝐵𝑟 in our objective function based on the experimental results.

5.2.3. Users’ Requests

The dynamic resource allocation algorithms proposed in the previous chapter all

depend on the prediction of the distribution and number of users’ requests in the future

time slots. Since the prediction methods is not our focus in this thesis, we assume that the

prediction results equal to the actual value in our experiment. Although the prediction

accuracy is impossible to be 100% in real cases, the assumption is acceptable in the

60

experiment to test our algorithms on resource allocation according to users’ requests. In

addition, we suppose the users’ requests follow Gaussain Distribution and total number of

them at each 𝑡. follows Poisson Distribution. The distribution and number of users’

requests are assumed to be stable within one time slot 𝑡. since 𝑡. is usually very small in

most cases. Here we set 𝑡. = 3 seconds, 𝑡J = 60 seconds, renting cycle 𝑇 = 15 minutes

and the number of viewpoints is 10 in the testing experiments. The distribution of users’

requests among viewpoints is depicted in Figure 5.3. We set the central viewpoints as

major viewpoints with higher distribution of users’ requests. For the total number of users’

requests at each 𝑡. , we use Matlab to generate random numbers from the Poisson

distribution with mean parameter lambda which is set to be 2000. The fluctuation of users’

requests within one renting cycle 𝑇 is shown in Figure 5.4.

Figure 5.3 Distribution of users’ requests among viewpoints

When integrating the total number of users’ requests with its distribution, we can

depict the distribution of users’ requests on both time and space using a heat map, like

Figure 5.5. As we have the simulation of users’ requests, we can test the performance of

our dynamic resource allocation algorithms and compare them to the normal static

allocation scheme.

1 2 3 4 5 6 7 8 9 10
Viewpoint

0

5

10

15

20

25

D
is

tri
bu

tio
n

of
 u

se
rs

' r
eq

ue
st

s
(%

)

61

Figure 5.4 Users’ requests within one renting cycle

Figure 5.5 Distribution of users’ requests within one renting cycle

0 50 100 150 200 250 300
Number of time slots

1850

1900

1950

2000

2050

2100

2150

To
ta

l n
um

be
r o

f u
se

rs
' r

eq
ue

st
s

50 100 150 200 250 300
Time slots

1

2

3

4

5

6

7

8

9

10

U
se

rs
' r

eq
ue

st
s

am
on

g
vi

ew
po

io
in

ts

50

100

150

200

250

300

350

400

62

5.2.4. Short-term Resources Reallocation

In order to test our short-term resources reallocation algorithm, we need the

prediction of users’ requests and the total number of VMs. For the prediction of users’

requests, we use the simulation method which is described in the previous section and

add a highlight period to compare the dynamic resources reallocation algorithm with the

static one. Hence, the distribution of users’ requests within one renting cycle can looks

like Figure 5.6. Normally, the users’ requests should concentrate on the central viewpoints

like viewpoint 5, 6, 7 in Figure 5.6. However, sometimes highlight incidence will change

the focus of users. For example, in the latter time slots, the users’ concentration moves to

viewpoint 2, 3, 4 from 5, 6, 7. Therefore, the resources should be reallocated accordingly

through our short-time dynamic resources reallocation algorithm.

Figure 5.6 Distribution of users’ requests with highlight in one renting cycle

Before testing the performance of algorithm, we first present the setting of testing

parameters in table 5.4. Since we assume that the total number of VM cannot be changed

within one renting cycle, we initialize the number of VMs among viewpoints in Table 5.5.

According to the distribution of users’ requests, if 	𝑉5 < 𝑆𝑒@, we do not provision it with

VMs; otherwise, we provision the viewpoints with sufficient VMs.

50 100 150 200 250 300
Time slots

1

2

3

4

5

6

7

8

9

10

U
se

rs
' r

eq
ue

st
s

am
on

g
vi

ew
po

io
in

ts

50

100

150

200

250

300

350

400

450

63

Table 5.4 Testing parameters in Equation 4.27

Parameter Test value
𝑆𝑒@, 𝑆𝑒A 100, 200
𝑃/𝑇 20

𝑄01	/𝑇	in the first half time slots 1,2,4,6,8,10,8,6,4,2 /100 from 𝑉&to 𝑉&¤
𝑄01	/𝑇	in the second half time slots 6,8,10,8,6,4,2,1,1,1 /100 from 𝑉&to 𝑉&¤

𝐶@, 𝐶A 50, 250
𝜆 0.5

𝛼, 𝛽, 𝛾, 𝛿 1,1,1,1
𝑃𝑆𝑁𝑅 𝐵𝑟 , 𝑃𝑆𝑁𝑅 𝐵𝑟@ , 𝑃𝑆𝑁𝑅 𝐵𝑟A 40,38,42

𝐺𝑒 𝐵𝑟 , 𝐺𝑒 𝐵𝑟@ , 𝐺𝑒 𝐵𝑟A 30.5,30.4,30.6
𝐵𝑑 100Mbps

𝐷𝑙@, 𝐷𝑙A 0.5Mbps,1Mbps

Table 5.5 Initialized VMs among viewpoints

Viewpoint 	𝑽𝒊 1 2 3 4 5 6 7 8 9 10
Number of VMs 𝑵𝑽𝒊	 0 0 1 2 3 3 3 2 1 0

𝑲	𝑽𝒊 0 0 1 1 1 1 1 1 1 0

Afterwards, in order to determine the performance, we calculate the objective value

𝑆 which indicates the overall trade-off between economic cost and user experience. At the

middle point of time slot, the order of number of users’ requests changes. So, our short-

term resources reallocation algorithm is triggered. Table 5.6 shows the VMs distribution

after reallocation. We also compare the performance of our dynamic resource allocation

algorithm with static resource allocation in Figure 5.7. From Figure 5.7, we can see that

when the highlight changes the focus of users among viewpoints at the middle of time

slots, the objective value of static resource allocation drops over 20% while dynamic

resource allocation only drops 5%, which means our algorithm has good performance

dealing with the turbulence of distribution of users’ requests.

64

Table 5.6 Reallocated VMs among viewpoints

Viewpoint 	𝑽𝒊 1 2 3 4 5 6 7 8 9 10
Number of VMs 𝑵𝑽𝒊	 2 3 3 3 2 1 1 0 0 0

𝑲	𝑽𝒊 1 1 1 1 1 1 1 0 0 0

Figure 5.7 Comparison of dynamic and static resource allocation

5.2.5. Long-term Resources Provision

For our long-term resources provision algorithm, we can test it using the similar

method in the previous section. Now we assume that the total number of users increases

after the first renting cycle ends but the distribution remains the same. The trend of total

number of users is illustrated in Figure 5.8 and Figure 5.9.

0 50 100 150 200 250 300
Number of time slots

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

O
bj

ec
t v

al
ue

Static resources allocation
Dynamic resources allocation

65

Figure 5.8 Total number of users’ requests in two renting cycles

Figure 5.9 Distribution of users’ requests with highlight in one renting cycles

0 100 200 300 400 500 600
Number of time slots

1500

2000

2500

3000

3500

4000

4500

To
ta

l n
um

be
r o

f u
se

rs
' r

eq
ue

st
s

100 200 300 400 500 600
Time slots

1

2

3

4

5

6

7

8

9

10

U
se

rs
" r

eq
ue

st
s

am
on

g
vi

ew
po

in
ts

100

200

300

400

500

600

700

800

66

At the end of a renting cycle, our long-term dynamic resources provision algorithm

can help with determining how many VMs should be rented in the next following renting

cycle. Supposing the VMs allocation in the previous renting cycle (time slot 0 to 299) is

the same as shown in Table 5.5, our algorithm can figure out the optimal VMs provision in

the next renting cycle (time slot 300 to 599) according to the increased total number of

users’ requests. The optimal results output from the algorithm are listed in Table 5.7. In

addition, in Figure 5.10, we compare the optimal solution with another two cases which

have one more VM and one less VM respectively.

Table 5.7 Provisioned VMs among viewpoints

Viewpoint 	𝑽𝒊 1 2 3 4 5 6 7 8 9 10
Number of VMs 𝑵𝑽𝒊	 0 0 0 3 4 5 4 3 0 0

𝑲	𝑽𝒊 0 0 0 1 1 1 1 1 0 0

Figure 5.10 Comparison of the optimal solution and 𝑵 ± 𝟏 cases

From Figure 5.10, we can conclude that our dynamic resources provision algorithm

generates the optimal solution. If we add one more VM, it will increase the economic cost

and result in lower objective value. Similarly, if we remove one more VM, it will cause the

0 100 200 300 400 500 600
Number of time slots

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

O
bj

ec
t v

al
ue

Optimal
N+1
N-1

67

streaming on one viewpoint to be shut down and result in lower objective value as well. In

fact, we make basic assumption in the previous chapter that is to guarantee at least half

of the viewpoints provisioned with VMs in order to avoid streaming on any viewpoint being

closed due to lack of resources.

68

Chapter 6.

Conclusion and Future Work

In this thesis, we first introduce fundamental background of FVV rendering and

describe the major techniques that we can leverage. Then we give an overview of cloud

computing and explain how it can be applied to the real-time FVV rendering and streaming.

Based on that, we design the whole architecture of our cloud-assisted FVV rendering and

streaming system. For the three major parts in our system, which are video capture, cloud

processing and client interaction, we describe them with details. After that, we

demonstrate our approach to make FVV rendering real-time in the cloud. Both the

resource allocation and task division are dealt with in Chapter 3.

Secondly, in Chapter 4 and 5, we formulate the dynamic resouces allocation

scheme into mathmatical models. Base on the formulation and modelling, we propose the

objective function to quantify the trade-off between economic cost and user experience.

In order to ahcieve the optimal solution, we design algorithms to deal with both shor-time

resouces reallocation and long-term resouces provision. After that, in Chapter 5, we use

C++ multithread programming and Qt based on the VSRS, OpenCV, FFmpeg,

Pthread/OpenMP/MPI and NGINX to complete implementation of our system. Then we

deploy it on the WestGrid cluster to test with practical scenarios. Finally, our system is

verified to be able to produce FVV stream in real-time and the trade-off between cost and

use experience is optimal through our dynamic resource allocation algorithms.

This thesis presents an approach to make FVV rendering in real-time. However, it

is based an assumption that is the network is ideal for all the users. In fact, according to

various users’ devices, the network condition can be very different. Thus, in the future

work, we can take network into consideration and use variable rate codec for FVV

encoding. Another future work focus can be on the cloud resources, since there are many

different charging schemes on different cloud instances. In this thesis, we assume to use

the identical type of instance. In the future, we can consider applying multiple types of

resources in the system to achieve even better allocation scheme.

69

References

[1] Wikipedia. [Online]. https://en.wikipedia.org/wiki/Free_viewpoint_television

[2] Wikipedia. [Online]. https://en.wikipedia.org/wiki/Cloud_computing

[3] C. Luo, J. Wang and S. Li W. Zhu, "Multimedia Cloud Computing," IEEE Signal
Processing Magazine, vol. 28, no. 3, pp. 59-69, May 2011.

[4] J. Starck, J. Kilner, and A. Hilton, "A Free-viewpoint video renderer," Journal Of
Graphics, GPU, And Game Tools, vol. 14, no. 3, 2009.

[5] M. Volino, J. Guillemaut, S. Fenney, and A. Hilton J. Imber, "Free-viewpoint video
rendering for mobile devices," in the 6th International Conference on
Computer Vision / Computer Graphics Collaboration Techniques and
Applications (MIRAGE '13), vol. Article 11, New York, NY, USA, 2013.

[6] M. Levoy and P. Hanrahan, "Light field rendering," in ACM Conference on
Computer Graphics (SIG- GRAPH’96), New Orleans, USA, 1996, pp. 31-42.

[7] P.W. Rander, and P.J. Narayanan T. Kanade, "Virtualized Reality: Constructing
Virtual Worlds from Real Scenes," IEEE Multimedia 4(1), pp. 34-47, 1997.

[8] S. E. Chen and L. Williams, "View interpolation for image synthesis," in the 20th
annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’93, 1993, pp. 279-288.

[9] C. Buehler, R. Raskar, S. Gortler, and L. McMillan W. Matusik, "Image-based
visual hulls," in ACM SIGGRAPH, 2000, pp. 369–374.

[10] R. Grzeszczuk, R. Szeliski, and M. Cohen S. Gortler, "The lumigraph," in ACM
Conference on Computer Graphics (SIGGRAPH’96), New Orleans, USA,
1996, pp. 43-54.

70

[11] D. Azuma, K. Aldinger, B. Curless, T. Duchamp, D. Salesin, and W. Stuetzle D.
Wood, "Surface light fields for 3D photography," in ACM Conference on
Computer Graphics (SIGGRAPH-2000), New Orleans, USA, 2000, pp. 287–
296.

[12] F. Ryan. Free Viewpoint Television. [Online].
http://ryansresearchproject.blogspot.ca/2010/03/free-viewpoint-
television.html

[13] T. Popa, C. Zach, C. Gotsman, M. Gross C. Kuster, "FreeCam: A Hybrid Camera
System for Interactive Free-Viewpoint Video," in Vision, Modeling, and
Visualization (VMV), Berlin, Germany, 2011, pp. 17-24.

[14] L. Do, P.H.N. de With S. Zinger, "Free-viewpoint depth image based rendering,"
Visual Communication and Image Representation, vol. 21, no. 5-6, pp. 533-
541, July 2010.

[15] Krzysztof Wegner, Olgierd Stankiewicz, Masayuki Tanimoto, Marek Domanski,
"Enhanced View SynthesisReference Software (VSRS) for Free-viewpoint
Television," ISO/IEC JTC1/SC29/WG11 MPEG2013/M31520, October
2013.

[16] R. Buyya, C. S. Yeo, and S. Venugopal, "Market-oriented cloud computing: Vision,
hype, and reality for delivering it services as computing utilities," in High
Performance Computing and Communications, 10th IEEE International
Conference, 2008, pp. 5-13.

[17] and S. Ghemawat J. Dean, "MapReduce: simplified data processing on large
clusters ," in Communications of the ACM , 2008, pp. 107-113.

[18] R. Pereira, M. Azambuja, K. Breitman and M. Endler, "An Architecture for
Distributed High Performance Video Processing in the Cloud," in IEEE 3rd
International Conference on Cloud Computing, Miami, FL, 2010, pp. 482-
489.

[19] X. Nan, Y. He and L. Guan, "Optimal resource allocation for multimedia cloud
based on queuing model," in IEEE 13th International Workshop on
Multimedia Signal Processing, Hangzhou, 2011, pp. 1-6.

71

[20] D. Miao, W. Zhu, C. Luo, and C. W. Chen, "Resource allocation for cloud-based
free viewpoint video rendering for mobile phones," in the 19th ACM
international conference on Multimedia (MM '11), New York, NY, USA,
2011, pp. 1237-1240.

[21] M. Zhao, X. Gong, J. Liang, J. Guo, W. Wang,X. Que, and S. Cheng, "A Cloud-
assisted DASH-based Scalable Interactive Multiview Video Streaming
Framework," in 31st Picture Coding Symposium, Cairns, Australia, 2015,
pp. 221-226.

[22] L. Toni, G. Cheung, P. Frossard, "In-Network View Synthesis for Interactive
Multiview Video Systems," IEEE Transactions on Multimedia, vol. 18, no. 5,
pp. 852-864, 2016.

[23] K. Kumar, J. Feng, Y. Nimmagadda and Y. H. Lu, "Resource Allocation for Real-
Time Tasks Using Cloud Computing," in 20th International Conference on
Computer Communications and Networks (ICCCN), Maui, HI, 2011, pp. 1-7.

[24] Wikipedia. [Online].
https://en.wikipedia.org/wiki/Thread_(computing)#Multithreading

[25] By I, Cburnett, CC BY-SA 3.0,.
https://commons.wikimedia.org/w/index.php?curid=2233446.

[26] [Online]. http://www.perl.com/pub/2002/09/04/threads.html

[27] Howtogeek. [Online]. http://www.howtogeek.com/194756/cpu-basics-multiple-cpus-
cores-and-hyper-threading-explained/

[28] Tutorialspoint. [Online].
https://www.tutorialspoint.com/operating_system/os_multi_threading.htm

[29] Amazon EC2 Pricing. [Online]. https://aws.amazon.com/ec2/pricing/?nc1=h_ls

[30] Wikipeida. [Online]. https://en.wikipedia.org/wiki/HTTP_Live_Streaming

[31] Wikipedia. [Online]. https://en.wikipedia.org/wiki/Real-Time_Messaging_Protocol

72

[32] Wikipedia. [Online]. https://en.wikipedia.org/wiki/Video_coding_format

[33] Wikipedia. [Online]. https://en.wikipedia.org/wiki/FFmpeg

[34] Blaise Barney, Lawrence Livermore National Laboratory. POSIX Threads
Programming. [Online]. https://computing.llnl.gov/tutorials/pthreads/

[35] Wikipedia. [Online]. https://en.wikipedia.org/wiki/OpenMP

[36] Wikipedia. [Online]. https://en.wikipedia.org/wiki/Message_Passing_Interface

[37] Wikipedia. [Online]. https://en.wikipedia.org/wiki/Nginx

[38] Github. [Online]. https://github.com/arut/nginx-rtmp-module#nginx-rtmp-module

[39] Github. [Online]. https://github.com/

[40] VLC Media Player. [Online]. http://www.videolan.org/vlc/index.html

[41] Wikipedia. [Online]. https://en.wikipedia.org/wiki/WestGrid

[42] WestGrid, Jasper. [Online]. https://www.westgrid.ca/support/systems/Jasper

[43] WestGrid, Grex. [Online]. https://www.westgrid.ca/support/systems/Grex

[44] Steaming Learning Center. [Online].
http://www.streaminglearningcenter.com/articles/producing-h264-video-for-
flash-an-overview.html?page=4

