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Abstract

The problem of inferring the light color for a scene is called Illuminant Estimation. This
step forms the first task in many workflows in the larger task of discounting the effect of the
color of the illuminant, which is called Color Constancy. Illuminant Estimation is typically
used as a pre-processing step in many computer vision tasks. In this thesis, we tackle
this problem for both RGB and multispectral images. First, for RGB images we extend
a moments based method in several ways: firstly by replacing the standard expectation
value, the mean, considering moments that are based on a Minkowski p-norm; and then
secondly by going over to a float value for the parameter p and carrying out a nonlinear
optimization on this parameter; and finally by considering a different expectation value,
generated by using the geometric mean. We show that these strategies can drive down the
median and maximum error of illuminant estimates. And then for multispectral images, we
formulate a multiple-illuminants estimation problem as a Conditional Random Field (CRF)
optimization task over local estimations. We then improve local illuminant estimation by
incorporating spatial information in each local patch.

Keywords: Color Constancy, Corrected Moments, Illuminant Estimation, Multispectral
Images, Multiple Illuminants
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Chapter 1

Introduction

1.1 RGB Illuminant Estimation

Colors in images result from the combination of illuminant, surface reflection, and camera
sensors plus the effects of the imaging and display pipeline [43]. In general, the human
visual system is capable of filtering out the effects of the illuminant source when observing
a scene – a psychophysical phenomenon denoted color constancy (CC). In many computer
vision or image processing problems, researchers have often made use of some variety of CC
as a pre-processing step to either generate data that is relatively invariant to the illuminant,
or on the other hand to ensure that the captured color of the scene changes appropriately
for different illuminant conditions. The computer science goal in the color constancy task
is to estimate the illuminant, or at least the chromaticity – color without magnitude. We
illustrated the general problem for color constancy in Fig.1.1.

Remarkably, the recent Corrected Moments illuminant estimation due to Finlayson [20]
was reported to do overall best in terms of illuminant accuracy, and moreover produces
results that reduce the maximum error in estimation. The latter property is important and
desired: a camera manufacturer wishes to generate no images at all that produce strange
colors, in any situation. The objective we aim at, here, falls within the scenario of a camera
company (or smartphone producer) providing a CC algorithm with their equipment. In this
sense, a training phase would be acceptable since the resulting algorithm adheres only to
a single camera – the images we consider are not "unsourced" in the sense that come from
the web or other unknown source: instead, they come from a known camera.

In this thesis we re-examine Finlayson’s Corrected Moments method [20] with a view to
simple extensions which we find further improve the illuminant estimates delivered by the
method. These simple extensions do not greatly affect the good time- and space-complexity
of the method, yet yield better results, surpassing some of the best results to date.

Here we extend the Corrected-Moments approach in three ways. Specifically, we begin
by incorporating Minkowski-norm moments into Corrected-Moments illuminant estimation.
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Then we show how to incorporate the Zeta-Image [17] approach to illuminant estimation
within the Corrected-Moments method. Finally we devise a float-parameter optimization
scheme to deliver the best performance for each dataset situation.

1.2 Multispectral Image Illuminant Estimation

Similar to RGB image, spectral distributions in hyperspectral images result from the prod-
uct of the illuminant spectra, surface reflection, and the effects of camera sensors’ band
sensitivities. Separating illuminant and reflectance signals from an observed hyper-spectral
image has been a longstanding problem in computer vision [14, 16, 26].

In general, two main streams have been used in solving this problem. The first is the
use of hyper-spectral image statistics information to estimate illuminant and then sepa-
rate reflectance information from the image. Another stream is to separate illuminant
and reflectance directly from the observed hyper-spectral signal. This process is under-
constrained, since the goal consists of twice the number variables as observations. A typical

Figure 1.1: Taken from wikipedia https://en.wikipedia.org/wiki/Color_balance, the left
half shows the photo as it came from the digital camera. The right half shows the photo
adjusted to make a gray surface neutral in the same light.
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way to resolve this issue is by introducing a low dimensional subspace for reflectance or
illuminant or both. Remarkably, [53] addresses a more general scenario where surface re-
flectance is assumed to fall into a low dimensional subspace while no constraint is placed
on illuminant. In this way, the recovered illuminant would contain much more information
compared to single RGB estimation.

In [53], the separation problem is modelled as a low-rank matrix factorization, with
disentangled illuminant and reflectance found by solving a small convex quadratic program.
Their method is robust even when the scene is under general, non-smooth, illuminant.
However, it failed if their exist dominant shadows or multiple illuminants in the scene.

In this thesis, we improved Zheng’s method [53] with incorporating spatial informa-
tion into optimization step. Moreover, we introduce a CRF (Conditional Random Field)
model over the results of separations from method [53] to handle scenes containing multiple
illuminants or dominant shadows.
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Chapter 2

Related Work

2.1 Gray-World and Gray-Edge

In experiments and tables of results below, note that we obtain results comparable to the
best to date, state-of-the-art methods. However, in fact the method in [20] is based on
very simple algorithms, so we begin the discussion with these. The simplest illuminant
estimation algorithm is the Gray-World algorithm [11], which assumes that the average
reflectance in a scene is achromatic. Thus the illuminant color may be estimated by simply
taking the global average over pixel values. More specifically, in each color channel k = 1..3,
the gray-world estimate of light color is given by E(Rk), where E(·) is expectation value
and Rk is RGB color. That is, Gray-World states that E(Rk) = 1

N

∑N
k=1Rk, with N being

the number of pixels. Intuitively, Gray-World will obviously fail if a scene is insufficiently
colourful. For example, an image of a gold coin that takes up most of the pixels will generate
a very poor illuminant estimate; and if we move the white point to R = G = B = 1, or
use a more careful white-point camera balance (e.g., [36]) then our image will likely end up
containing a coin that looks gray rather than gold. See Fig.2.1

(a) Correct Balanced (b) Gray World Recovered

Figure 2.1: Taken from [54],this example shows the limits of gray world assumption. Once
the image contains little color variance, then the algorithm result will be biased
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A more recent but almost as simple algorithm is the Gray-Edge method, which as-
serts that the average of reflectance differences in a scene is achromatic [28]. With this
assumption, the illuminant color is estimated by computing the average color derivative in
the image, E(||∇Rk||), where ∇ is the gradient field pair {∂/∂x, ∂/∂y}. The Gray-Edge
assumption originated from the empirical observation that the color derivative probability
distribution for images forms a relatively regular, ellipsoid-like shape, with the long axis
coinciding with the illuminant color [28]. The expectation value for the kth color channel
is then estimated by

ĉk =

√√√√ N∑
i=1

∣∣∣∣∣∂Rik∂x

∣∣∣∣∣
2

+
∣∣∣∣∣∂Rik∂y

∣∣∣∣∣
2

, k = 1..3 (2.1)

with ĉk denoting the estimate of the illuminant color.

Figure 2.2: Taken from [28], three acquisitions of the same scene under different light
sources. On the bottom line the color derivative distributions are shown, where the axes
are the opponent color derivatives and the surfaces indicate derivative values with equal
occurrence and darker surfaces indicating a more dense distribution. Note the shift of the
orientation of the distribution of the derivatives with the changing of the light source.

Based on the Gray-World and Gray-Edge approaches, many extensions have been pro-
posed. The Shades-of-Gray algorithm [21] was the first to propose using a Minkowski norm
to replace the averaging step in the Gray-World method. With integer exponent p, the
Minkowski or p-norm is p

√∑N
i=1 |Rk|p . Similarly, applying the Minkowski norm to the

Gray-Edge method substantially improves illuminant estimation performance [21]. This

5



estimate is as follows:

ĉk = p

√√√√ N∑
i=1

∣∣∣∣∣∂Rik∂x

∣∣∣∣∣
p

+
∣∣∣∣∣∂Rik∂y

∣∣∣∣∣
p

, k = 1..3 (2.2)

Note that these methods are based on moments of the pixel values or of the gradient fields.

2.2 Extensions

Starting from the Gray-Edge method, it was also found that first blurring the image with
a Gaussian smoothing filter could aid performance. And as another extension, considering
higher-order derivatives of order n could sometimes help as well. So, replacing the partial
derivatives with Gaussian derivatives denoted δσ, Gray-Edge becomes

ĉk = p

√√√√ N∑
i=1
|
δnσR

i
k

δσxn
|p + |δ

n
σR

i
k

δσyn
|p (2.3)

where σ indicates the standard deviation in a Gaussian derivative and n is the order of
derivative.

Ref.[5] presents a useful review of various CC algorithms, some of which are quite com-
plex. In eq. (2.3) the order n determines whether the method is Gray-World, with n = 0
(i.e., using RGB pixel values, not gradient fields), or Gray-Edge, with n ≥ 1; p denotes
the Minkowski norm; and σ is the parameter of Gaussian filter parameter for smoothing
the original image; smoothing tends to improve results since it removes noise. The original
Gray-World has n = 0 and p = 1; when n = 0 and p → ∞ the algorithm is equivalent to
the so-called Max-RGB approach, with illuminant estimate given by the maximum value
in each of R, G, and B; and when n = 0 and 0 < p < ∞ it is Shades of Gray[21]. An
advantage of all the color constancy approaches based on eq. (2.3) is that they are of low
computational complexity both in space and in time [28]. Moreover, these approaches do
not require any training stage. However, the latter point may arguably be a disadvantage,
from the point of view of a manufacturer willing to calibrate a particular camera for best
estimates.1

2.3 Learning-Based Methods

First attempt is using neural networks [12] to train a model for predicting the chromaticity
values of the illuminant with the input of binarized chromaticity histogram of the image.
Though this approach may deliver good performance when trained properly, while it suffer
from limited dataset when it was first introduced. Other similar approaches applied linear

1Saturated pixels are omitted for all these methods.
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regression[3, 2, 1] or support vector regression [52, 23] to the same type of feature input.
And all these methods could be generalized as in Fig.2.3

Figure 2.3: Taken from [40], this is the general process for most learning based algorithms.
Firstly, the feature or corse estimation was extracted, then it learns the weights to fuse the
feature and coarse estimation. During the test phase, the learned weights was applied to
the process and outputs the final estimation. These weights can either be specified to be
hard (one illuminants was selected) or soft (a weighted average of estimates).

Recently, more well designed learning based methods improved the performance a lot.
The Examplar-Based [31] method treats an image as a composition of surfaces, and learned
a representation model for training surfaces. During the testing phase, the method is finding
K-nearest neighbour models and use these models to estimate the illuminant. Fig.2.4.

Ref [7] applied ideas from object detection and structured prediction to color constancy
problem with the observation that scaling the color channel of the image will induce the
translation in the log-chromaticity histogram of that image. And they formalized the color
constancy problem into a discriminative learning problem. Fig.2.5

Deep learning shows amazing improvement in computer vision tasks, like image classifi-
cation [34, 15, 50, 33], object detection [46, 30, 24, 48], and segmentation [27, 18] etc. Many
attentions are paid to use deep learning to aid color constancy problem. Bianco et at. [9]
trained a network based on AlexNet, they are using image patches as input and predict
the local illuminant through the network. Doing so, they could have more data to train
the network and reduce the computation for single estimation. Lou et al. address the data
limits issue by first training the network using Imagenet dataset as training set, since this
dataset doesn’t contain the ground truth for the illuminant, [55] used gray world method
to compute the illuminant. In this way, the trained network adapted well to illuminant
estimation task and overcome the data limits problem. Finally they just fine-tuned the
trained network to each test dataset domain. Oh et al [40] approach the color constancy
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problem as a classification problem. And the classification scores were used to compute the
final estimation of the illuminant. Detailed processes could be find in Fig.2.6

2.4 Illuminant and Reflectance Spectra Separation

Multispectral illuminant estimation, or illuminant and reflectance spectra separation (IRSS)
can be summarized into two categories, either separating a single hyper-spectral image into
illuminant and reflectance image, or with an eye to the colour constancy task of estimating
illuminant for RGB images.

Classically, for this signal separation task, Ho et al. [26] first made use of the low
dimension model for both illuminant and reflectance. To improve accuracy of the separation,
Chang et al. [14] enforced more constraints on illuminant and reflectance. In the work [16],
Drew and Finlayson successfully improved the bilinear computation’s efficiency by moving
to logarithmic space.

The color constancy problem mostly consists of estimating the illuminant, or at least
the chromaticity of the light in the observed scene. In [45], Robles-Kelly et al. generalized
the assumptions and methods in colour constancy specifically for the IRSS problem. In
principle, many colour constancy methods, such as [11, 35, 44], could be carried out in a
multispectral domain, provided their underlying assumptions were still satisfied.

Figure 2.4: Taken from [31], it first queries the K nearest neighbours for each surface in the
image, then the illuminant was estimated based on all the neighbouring models.

8



2.5 Conditional Random Field

Using a CRF model to incorporate the spatial information in a scene has been widely used
in several works. Lu and Drew [37] applied a Markov Random Field (MRF) for shadow and
non-shadow region separation. Their method first generated an illuminant invariant image
by using a model guided by the assumption of Planckian illuminant. They formulated a
pairwise potential which allowed them to label shadows smoothly. In [8], Beigpour and
Riess et al. fused multiple physical and statistical based colour constancy methods into a
CRF model which produced pixel-wise labels for shadows. However, their method relied
on many complex colour constancy methods to generate accurate estimations for the CRF
model, and this is time consuming process.

Figure 2.5: Taken from [7], these images are the same except for “tints” the scaling of red and
blue. The bottom line is their log-chrominance histograms (with an axis overlaid for easier
visualization, horizontal = u, vertical = v). Tinting an image affects the image’s histogram
only by a translation in log-chrominance space. This observation enables their convolutional
approach to color correction, in which the algorithm learns to localize a histogram in this
2D space.

9



Figure 2.6: Taken from [40] a. In training stage, illuminants are clustered into K classes.
b. The network was trained to predict the correct class of the illuminant. c. During in test
phase, firstly the network predict each class’s score, then weighted average for each class
was used as the final estimation

10



Chapter 3

Illuminant Estimation for RGB
images

3.1 Corrected Moments

To date, most recently the most successful descendant of the methods above is that in [20].
The method in [20] derives from Eq. (2.1), using either moments of RGB or moments
of first derivatives of RGB. In that work it was found, remarkably, that by incorporating
simple but fundamental corrections to the above moments-based approaches, i.e. the Gray-
World and the original Gray-Edge methods, illuminant estimation performance bested state-
of-art approaches involving a great deal of computation and even feature extraction (see
[13, 20, 21, 29, 5, 31]).

In this thesis we mean to extend the Corrected-Moments approach, in several ways,
and thus improve the performance even more. Our first extension is to replace a standard
expectation value mean by instead using a Minkowski p-norm. Moreover we go over to a
float value for the parameter p by carrying out a nonlinear optimization on this parameter.
Secondly, we also consider a different expectation value generated by using the geometric
mean, as in [17]. And thirdly, we also replace the corrected moments method use of gradient
data as in Eq. (2.1) by instead using a Minkowski p-norm. We show that these strategies
can drive down the median and maximum error of illuminant estimates.

3.1.1 Polynomial Regression

The Corrected-Moments method can be understood as a variant of polynomial regression.
Here we briefly recapitulate the method [20], pointing out its simple but innovative use
of fundamental observations to arrive at an excellently performing algorithm. Firstly, in
obtaining estimates ĉk of the illuminant color in our Eq. (2.1) and in Eq. (2.2), we cannot
expect to recover the absolute intensity of the light. This is due to the fact that the light
and surface interact multiplicatively in forming the color signal spectrum which enters the
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camera. E.g., a pink light on white walls looks like a white light on pink walls – modulo
calculations of the inter-reflections at the corners, which arguably may help the human
visual system disambiguate the situation [10]. So in our calculations of ĉk, we should always
convert to estimates of the chromaticity of the light source, not its absolute strength; i.e., we
form chromaticity – color without magnitude. Hence in [20], the author explicitly separates
the estimates of chromaticity and of intensity (the latter consisting of light-strength times
the particular albedo at the current pixel).

Let us first consider ordinary least squares polynomial regression. Recall that our sce-
nario is that of a camera manufacturer developing a method of recovering the lighting
chromaticity in any image; therefore we can assume we have available a training set of
RGB images, plus ground truth for the illuminant chromaticity triple as well, perhaps by
imaging a color target or white patch in each image (and then masking off the white patch
for training and estimation). Our training-set regression should supply us with regression
coefficients aj which will allow us to recover an estimate of illuminant chromaticity from any
new image in a testing set (for this same camera). Here we shall make use of the standard,
L1-norm based 3-vector chromaticity ck = Rk/

∑3
j=1Rj , k = 1..3. Our training set consists

of n images plus n ground-truth chromaticity triples c. For any estimate of light color that
we derive, ĉk, we agree to always go to chromaticity ĉk/

∑3
j=1 ĉj to judge our accuracy.

Let the degree of the polynomial be d, with the independent data being expectation
values over polynomials for the entire image. For example, for d = 2 (i.e., up to 2nd degree
monomials in R,G,B), we take independent values to be E(R2), E(G2), E(B2), E(RG), E(RB),
E(GB) (all monomials of degree 2) as well as E(R), E(G), E(B) (all of degree 1) and also
an offset term 1 of degree 0. Let us call these 10 image descriptors a 1× 10 row-vector m.
For dependent variables we take the ground truth 1× 3 row-vector c. Suppose there are n
images plus n ground truth chromaticity vectors. Then standard Least Squares (LS) based
polynomial regression groups all training-set image descriptors into an n × 10 matrix M
and correct chromaticities into an n × 3 matrix C, with the sought regression coefficients
aj then delivered by the minimization

min
A
||MA−C||2 (3.1)

where matrix A is the 10× 3 collection of regression coefficients aj .

3.1.2 Corrected Polynomial Regression

Now, in the first place, in keeping with our goal of not trying to map illuminant intensities
we should not consider, and thus remove, the constant (offset) term from Eq.(3.1), leaving a
dimension-9 problem. Moreover, that term changes the black point of the camera and we do
not wish to do that. Now, in a main innovative insight [25] it was also recognized that if we
do not wish to model intensity, then we should make our regression coefficients invariant to
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the actual (multiplicative) level of intensity of the light. To do so, roots of degree d should
be applied to the moments listed above, thus keeping the units of light unchanged no matter
what the light level is. That is, instead of E(RG), we should use

√
E(RG) , etc. In [25],

this insight was utilized in the color correction problem – mapping RGB to tristimulus
values XYZ. In [20] this same insight was further applied to the illuminant estimation
problem. Note that the number of expectation values used is still 9 in the d = 2 case,
because

√
E(R2) 6= E(

√
R2). Thus our set of corrected moments is {E(R), E(G), E(B),√

E(R2),
√
E(G2),

√
E(B2),

√
E(RG),

√
E(RB),

√
E(GB)}. Similarly, root-monomials of

degree 3 would be 3
√
E(RGB), etc.

The second main innovative insight that completes the corrected-moment method [20]
is explicitly taking into account the fact that we have only chromaticity values to regress
upon, not intensities. Suppose an overall albedo times light-intensity scalar is kj , for each
of the j = 1..n images. Then remembering that the right-hand-side n×3 matrix C consists
of chromaticities, i.e., color without magnitude, in [20] the author sets up an optimization

min
K,A
||KMA−C||2 (3.2)

where K is a diagonal array of j = 1..n constants kj ; here, for d = 2 for example, K is
n× n, M is n× 9, A is 9× 3, and C is n× 3. A solution is given iteratively by solving for
coefficient matrix A and then for constant vector k = diag(K) [20] (here using the d = 2,
i.e. 9-component variant for illustration):

Algorithm: Corrected Moments
Initialize K = In×n, the unit matrix;
for MAXITN iterations do

A = (KM)+C where + is the Moore-Penrose
pseudo-inverse: size is 9× 3;

for j = 1..n images do
m = row j of M, size is 1× 9;
c = row j of C, size is 1× 3;
kj = c(mA)+, a scalar.;

end
end
The work in [20] applies the above algorithm to RGB image data R, or alternatively

to gradient data ∇R, and for degree up to d = 3 (i.e., 19 moments); that work carries
out experiments using 3-fold cross validation, dividing any data set into thirds, randomly
assigning image-index values in j = 1..n and taking 2/3 of the data as training and 1/3 as
testing images. Empirically, the advantages of the method in [20] are two-fold: a reduction
in illuminant estimate error is observed, and also a reduction in the maximum error – the
latter is important because manufacturers desire no perceptible outlier cases.
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In [20], the author used RGB moments as well as higher order RGB moments. These
moments can be summarized as follows:

muvw =
[∑N

i=1R
u
i G

v
iB

w
i

N

]1/d

u+ v + w = d; u, v, w ≥ 0 (3.3)

Here R,G,B is used as a shorthand for either RGB pixel value themselves or Gaussian first
(in [20]) derivatives of the image, with monomials muvw denoting the moments, with a
total of 3, 9, 19, 34 moments when the polynomial degree is d = 1, 2, 3, 4. The moments in
(3.3) scale with intensity. And this “intensity scaling” property is important for correcting
illuminant estimation [20]: with this property, calculated chromaticities will be independent
of intensity – and this is not the case for standard polynomial regression.

Now let us consider extensions of this method: here we make use of sets of chromaticity
data, along with color RGB data as well as gradient data ∇R; we introduce use of the
p-norm into corrected moments; and as well make use of a geometric mean instead of a
sum-of-squares method that minimizes the mean. In an innovative step, we also show how
the Minkowski p-norm values can be shifted into the float domain and optimized for any
camera/dataset situation.

3.2 Corrected Moments with p-Norm

Here we extend the basic corrected moments method (5) by utilizing a Minkowski p-norm
in place of the averaging norm E(·). Again, let the maximum polynomial degree be d:
typically, we might use values d ∈ 1..4. Now incorporating the Minkowski norm in our
illuminant estimate, we produce moments as follows: for the linear, d=1 moments we use

(mk)(d=1) = ( 1
N

n∑
i=1

(Rik)p)1/p, k = 1..3 (3.4)

i.e., a 3-vector of p-norm moments, k = 1..3 for R,G,B, formed by summing over all pixels
i = 1..n. The degree d of each monomial is d = 1, i.e., R, G, or B entering the p-norm as
linear terms that are then formed into a p-norm.

For the remaining moments, formed from monomials in R,G,B of up to degree d which
is higher than 1, we use a sum over degree j = 2..d. So e.g. for j = 2 we need p-norm
expectation values made from monomials of degree 2, i.e., from products R2, G2, B2, RG,
RB, GB, for a total dimension of moments D = 6. In keeping with the idea above of
making the moments scale linearly with intensity, the expectation values would still require
a square root applied.

For degree j = 3 we need p-norm expectation values for monomials RGB, R2G, R2B,
R3, G2R, G2B, G3, B2R, B2G, B3, for a total dimension of moments D = 10; and the
expectation values would still require a cube root applied.
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In general, for degree of monomial j the dimension D is D =(3+j−1) Cj . That is, for
cases j = 2, 3, 4 the number of monomials is D = 6, 10, 15. Altogether, if we want moments
up to degree D = 3, say, then we collect three degree-1 monomials, six degree-2 monomials,
and ten degree-3 monomials for a total dimension of moments equal to 19. For d = 4 we
have j = 1..4 meaning a total of 3 + 6 + 10 + 15 = 34 moments.

We can state this concept succinctly as follows:
Moments of up to Degree d:
for j = 2..d // if monomial degree is d = 2, 3, 4 then number of moments D is

(3+d−1)Cd = 6,10,15 etc.
do
indSets = unique combinations of RGB indices 1,2,3 to polynomial degree j ;
for q = 1 : D do

(mk)(j,q) = ( 1
N

∑n
i=1 prod(Rik(indSets(row q))p)1/j)1/p;

// k = 1..3 ;
// prod = product across columns of indSets

end
end

3.3 Optimization of p-Norm

In the above, Minkowski parameter p is fixed. Recalling that we mean to carry out the
best estimation for a particular camera only, we can optimize over p. We used Matlab’s
fmincon function, setting variable p as the only varying parameter and median error as
our optimization goal. We randomized the image-index value for both training and testing
sets, using three-fold cross validation. Unusually, however, for this optimization schema we
kept the training set and testing sets’ index vectors fixed. Though of course this might
cause over-fitting for the particular index settings, we found that the optimal value of p
was actually very close to re-randomizing image indexes in each iteration. Using a fixed
randomization greatly reduced the time for finding an optimal parameter p (we checked on
fully randomized training and test sets, of course).

3.4 Corrected Moments with Geometric Mean

In [17] it was argued that, based on fundamental physical principles regarding matte and
specular contributions to pixel color, an excellent estimate of illuminant color could be
determined by calculating the geometric mean (or ‘Geo-Mean’ for short), in each color
channel. Here we therefore replace the ordinary, summation-based moments, in use so far,
with such multiplicative-based moments.
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Similar to eq. (3.3), our geometric mean moments may be summarized in the following
equation:

muvw =

( N∏
i=1

Rui G
v
iB

w
i

)1/N1/d

u+ v + w = d u, v, w ≥ 0 (3.5)

Here muvw now denotes the new moments. When we set d = 1, muvw is simply the
illuminant color triple. Note that in [17], the authors proposed using only the top 10%
brightest pixels because only near-specular pixels obey their observed planar constraint
rule used to determine the illuminant. Hence, in this paper we also borrow this idea of
using only the top-10% brightest pixels to compute the moments.1 When we set d = 2, 3 ,
we end up with 9 and 19 moments.

By inspection, the computed moments scale with intensity; again, this “intensity scaling"
property is important for correcting illuminant estimation [20].

1If the pixel was saturated, it was not used. Also it was assumed to be linear image.

16



Chapter 4

Illuminant Estimation for
Multispectral Images

4.1 Rank Matrix Factorization

Here we briefly recapitulate the method [53], pointing out its innovative part that arrives
at an excellent method. Firstly, for a pixel at spectral band i in a hyper-spectral image, its
value di is proportional to the product of the illuminant li and surface reflectance ri; that
is,

di = liri, 1 ≤ i ≤ m, (4.1)

Here, m denotes the number of spectral bands (which is 57 in all our experiments), and a
vector accounting for camera gains has been omitted. As well, spectral sensitivity has been
pre-corrected to be unity for all spectral bands i = 1..m.

For a hyper-spectral image with n pixels under spatially uniform illuminant, the intensity
dij of the j-th pixel for the i-th spectral band is

dij = lirij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, (4.2)

In matrix form this reads
d11 · · · d1n
... . . . ...

dm1 · · · dmn


︸ ︷︷ ︸

Dm×n

=


l1

. . .
lm


︸ ︷︷ ︸

Lm×m


r11 · · · r1n
... . . . ...
rm1 · · · rmn


︸ ︷︷ ︸

Rm×n

(4.3)

The above system is under-constrained, since the observation matrix D has mn constraints
but with m(n+ 1) variables in the diagonal illuminant matrix L and the reflectance matrix
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R taken together. In order to solve this equation, more constraints must be added to
illuminant and reflectance.

Reflectance spectra can easily be shown to usually lie in a low dimensional linear sub-
space. Therefore, eq. (4.2) could be written in the form

Dm×n = Lm×mRm×n = Lm×mBm×sCs×n, (4.4)

where B and C denote the spectral bases and coefficients respectively, and s is the subspace
dimensionality. In addition to the above physically meaningful factorization, it could also
be factorized using partial singular value decomposition (SVD) as follows

Dm×n = Um×sSs×sV
T
n×s = UQQ−1SV T = (UQ)(Q−1SV T ), (4.5)

Here, Q is an arbitrary s× s invertible matrix. Comparing eqs. (4.4) with (4.5), the IRSS
problem comes down finding a proper matrix Q such that

UQ = LB (4.6)

Recall that B is the reflectance basis matrix learned via principal component analysis of a
spectra dataset [39, 32]. So based on eq. (4.6), the illuminant spectrum L can be solved for
by minimizing the following equation:

min
L,Q
||UQ− LB||2F , s.t. li ≥ max

j
dij , lz ≤ max

i,j
dij (4.7)

in which li ≥ max
j
dij , 1 ≤ j ≤ n, 1 ≤ i ≤ m form constraints that each illuminant factor

should be greater than or equal to its corresponding observed signal, given eq. (4.2), since
the reflectance r should be less than or equal to one. And lz ≤ max

i,j
dij where z is the

row index of the maximum value max
i,j

dij : it restricts the illuminant’s absolute scale. Since
eq. (4.7) is a simple convex quadratic program (QP), L and Q can be solved for by iteratively
updating L and Q.

After obtaining L, the accuracy of separation can be further improved by minimizing
the following cost functions on the original low rank model equation, eq. (4.4):

min
L,C
||D − LBC||2F ,

s.t. 0 ≤ (BC)ij ≤ 1, li ≥ max dij
j

, lz ≤ max dij
i,j

(4.8)

After optimizing this equation, the illuminant L is well resolved and reflectance spectra
values R are equal to BC.
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4.2 Improved Local Estimation

The previous work [53] can be understood as incorporating surface reflectance basis coher-
ence into the separation problem; in other words, the low dimension property for surface
reflectance helps to separate illuminant and reflectance. Here, we are trying to implement
the method [53] for individual patches in an image. We found in fact that separation accu-
racy for different patches varies a good deal. When the patch contains many colours, the
separation of illuminant and reflectance is reasonable good; but when colour diversity is
small accuracy is diminished. This observation is consistent with the experiments in [53],
in which separation accuracy increases with more colours.

After carefully reexamining the method [53], we understood that this problem is caused
by eq. (4.5). In that equation, D is decomposed into U, S, V via SVD. So U is heavily
dependent on D and could be noisy if D only contains small variation. For example we
typically assume the reflectance subspace dimension s is 8 (chosen as the good tradeoff
between expressive power and noise resistance), while on a small patch D could be well
modelled only using only a 3-dimensional subspace; then U is noisy for the 5-D orthogonal
subspace from SVD factorization.1

Once the decomposed U is noisy, the next eqs. (4.7), (4.8) would result in very poor
separation. In order to resolve this issue of poor separation on local patches, we propose
incorporating local spatial information into the final optimization eq. (4.8). Our novel
suggestion is to change eq. (4.8) in the following way:

min
l,C
||D − LBC||2F + λ||CG||2F ,

s.t. 0 ≤ (BC)ij ≤ 1, li ≥ max dij
j

, lz ≤ max dij
i,j

(4.9)

CG =


c11 · · · c1n
... . . . ...
cm1 · · · cmn


︸ ︷︷ ︸

Cm×n


...

...
...

...
· · · gn_l gn_u gn_r gn_b · · ·

...
...

...
...


︸ ︷︷ ︸

Gn×4n

Here G is a n × 4n sparse matrix; g is a n-by-1 column vector such as [· · · , 1,−1, · · · ]T ;
λ is an empirical parameter which we chose as 0.05 in all our experiments. Thus CG
represents the difference between the patch n and its neighbouring patch (left, up, right or
bottom patch). Of course, here we considered the fact that border patches will not have all
four neighbouring patches, and we set these differences to zero. By adding the latter loss
term in equation (4.9), we are forcing the local patches to change smoothly. Hence we can
alleviate the influence of a noisy U . In Table 4.1, we show a Peak Signal to Noise Ratio

1we assumed the reflectance dimension to be s; we did not add any constraint on illuminants.
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(PSNR) comparison between our method and method [53]. The PSNR is computed from
the separated reflectance image and the ground truth original reflectance image.

Table 4.1: 32-by-32 patches’ illumination and reflectance separation performance compari-
son between our method with [53], here is the reflectance estimation error

Experiments PSNR RMS
Original[53] 24.832 0.0573
Improvedλ=0.05 26.476 0.0474

4.3 Local Illuminant Search

The main idea of our method is to divide images into patches, compute local estimations
for each patch, and then unify patches into different illuminated regions using CRF. The
CRF incorporates spatial information. In this way, we deal with shadow and non-shadow
regions separately. Then finally, we run again the local estimation method on regions to
get a global estimation for different regions. This pipeline allows us to incorporate spatial
information into the segmentation for different illuminated regions.

In order to test our algorithm, we synthesized test images by multiplying reflectance
image with daylight illumination. The reflectance image data comes from dataset [51],
which contains 22 multispectral reflectance images. We chose the bands from 420nm to
700nm and interpolated at an interval of 5nm.

For the illumination, we synthesized spectra using Judd’s spectral power distribution
(SPD) function S(λ) = S0(λ) + M1S1(λ) + M2S2(λ) to generate 56 daylight illumina-
tions ranging from colour temperature 4000k to 25000k (4000:100:8500, 9000:500:10000,
11000:1000:15000, 20000, 25000).2 All daylight bands are the same for the multispectral
reflectance image data, again ranging from 420nm to 700 with a interval of 5nm. There are
in total 57 bands for each spectrum.

Crucially, as our method is aimed at estimating multiple illuminations in one image, we
illuminated the image using two different illuminations, as depicted in Fig. (5.2b).

The first consideration for our method is to divide an image into patches. There are
many options to partition images for this purpose. The most straightforward method is to
uniformly divide each image into fixed-size patches. Another method is to use the super-
pixels segmentation method, which tends to segment at object boundaries and significant
illumination changes. According to [19, 41, 4], these two methods result in almost the same
accuracy much of the time. Hence, here we chose to use the uniform division method. One
other reason for this choice is that the local estimation method [53] performs better when

2This will make the illuminants to be in 3 dimension space.
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there are more colour variations. And uniform dividing provides more diverse colour in each
patch and we expect this to persist upon segmentation.

After dividing image into patches, we used the method described in sec.4.2 to estimate
illuminations for each patch. Here we add a small modification to this method. Instead
of first factorizing the observed image using eq. (4.5), and then solving for illumination L
using eq. (4.7), and finally optimizing illumination L and reflectance R via eq. (4.9). Here
we simply loop through the possible illuminations from 4000k to 25000k, and find C for
each illumination that will minimize eq. (4.9). The illumination that has the minimum
loss for eq. (4.9) is chosen as the estimated illumination for that patch. Fig. (5.2d) is the
local estimation result for Fig. (5.2a), and we are showing the illuminations’ indexes in
Fig. (5.2d).

4.4 Different Illuminant Regions Segmentation via CRF

As can be seen from Fig. (5.2d), there seems to be a pattern to partition left and right
part. While if simply use a threshold (e.g. 30 in our experiment) to classify the Fig. (5.2d)
illumination map, we will obtain the result in Fig. (5.2e). Though Fig. (5.2d) looks like it
contains two parts, the partition map is very coarse. The reason in this scene is that if we
only use the threshold to control partition then actually we only use the local information
for this task. And as we already seen, the local estimation could be very noisy when a patch
contains little colour information. Next, we consider using global spatial information for
our task.

In addition to assigning each patch label (illumination 1, illumination 2) based on the
estimated illumination, the labels should vary smoothly in the same illuminated region,
while changes should appear at boundaries for different illuminated regions. The fact that
a patch’s label depends on the labels of its neighbouring patches allows us to model this
optimizing problem as a CRF. The CRF based segmentation model is defined by mean-
ingful spatial relationship between patches. We classify into regions and then re-run the
optimization algorithm on different regions again.

Here, the CRF model formulation is similar to other segmentation tasks. Here, we only
consider the first order random field, which means only the neighbouring edges between
patches are considered. Again, we denotes the multispectral image patches set as P , the
edges set as N , and each patch takes a label lp from L = {1, 2}, with {1, 2} denoting
illumination 1 and illumination 2.

Now we use the graph cut model in the Undirected Graphical Models (UGM) toolbox
[47] to formulate our CRF problem, and solve for the best labels for each patch. In order to
fit our model into UGM toolbox formulation, we wrote the equation in the following form:

Potential(l) =
∑
p∈P

Up(lp) +
∑

(p,q)∈N
B(lp, lq), (4.10)
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where Up denotes the unary potentials to assign patch p to illumination 1 or illumination 2;
larger values of U denote higher confidence that p belongs to that illumination. And B(lp, lq)
denotes the binary potentials for assigning patch p and q to individual illumination (they
could be the same or not). This binary potential represents the confidence with which we
believe p and q should be assigned the same label or not.

In our method, we did not see a clear cue to indicate the likelihood for assigning each
patch to illumination 1 or 2. So we assign equal potentials to Up = expwconstant (wconstant =
0.015 in our experiment), and therefore we actually do not use the first term in the eq. (4.10).

Now the task is to find the graph cut model for illumination 1 and illumination 2 that
maximizes the potential in eq. (4.10). The binary potential function B(lp, lq) is defined as:

B(lp, lq) =

1 if lp 6= lq

expw1+w2∗(|Idxp−Idxq |/K) if lp ≡ lq
(4.11)

where K = max
{p,q}∈N

(|Idxp − Idxq|) and Idxp, Idxq are the estimated illumination indexes

from method sec. (4.3). Intuitively, when p and q are illuminated in the same region, B
should be larger when assigning lp ≡ lq than for lp 6= lq. In general, if neighbouring patches’
local estimation results are similar, then they would have high probability to be illuminated
in the same region, and thus we should assign high potentials to B(lp, lq) for labeling them
the same, and vice versa.

Throughout our experiments, we chose w1 = 2.8 and w2 = −1.9. And this model
satisfied our analysis above very well, since when Idxp and Idxq are similar, then the
potential for B is larger when their labels are the same. Also when Idxp and Idxq are
different, B is larger when their labels are different.

Finally finding the best labels is finding maximum potentials for eq. (4.10) in this model.
Here, the reader is referred the the toolbox [47] for more details about UGM modelling for
the graph-cut algorithm. Using the graph-cut decoding algorithm from [47], we segmented
the image into different illuminated regions, as shown in Fig. (5.2f).

After obtaining different illuminated regions, we re-run the illumination and reflectance
separation algorithm on each different region to get the final result.
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Chapter 5

Experiments

5.1 RGB Domain Experiments

As in [20], we used image color and color-gradient information to calculate moments. How-
ever, different from [20], we applied our proposed p-Norm and Geo-Mean moments method
to color-image and -edge fields. Here we use p-Norm(color) to denote using a p-Norm
moments calculation for the original image, and use p-Norm(edge) to denote applying a
p-Norm moments calculation to the gradient-pair image. Similarly, Geo-Mean(color) and
Geo-Mean(edge) denote applying a Geo-Mean moments calculation to color image and color-
image edges respectively.

We evaluated our proposed approach on four standard color constancy datasets of real
images. For all datasets, we ran 10 runs of three-fold cross validation to train and test
our approach. The first dataset used is the re-processed “Gehler” color constancy dataset
(described by Lynch et al. in [38]), and denoted here as the Lynch-ColorChecker dataset.
This is a re-processed version of an original dataset due to Gehler et al. [42]. The Lynch-
ColorChecker dataset contains 482 of these images, which are those taken by a Canon 5D
SLR camera; the ground truth illumination is measured from a Macbeth ColorChecker
placed in the scene (the Macbeth ColorChecker must be masked off during testing).

In order to compare with other state-of-art algorithms, we also evaluate our methods on
the Shi and Funt [49] reprocessed version of the Gehler dataset, which has been commonly
used. Two versions of the Shi-Funt reprocessed Gehler dataset have appeared, starting with
the 568 images in [49]. These consist of 86 images from a Canon 1D camera and 482 images
taken by Canon 5D camera. We use the widely-used original dataset of all 568 images taken
as a whole. We refer to this data as the Shi-Funt-Gehler dataset.
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Table 5.1: Performance on the reprocessed [38] Color Checker Dataset [42]. Here we use
angular error [22] to represent the performance for each method. Asterisk denotes our
reproduced result of method [20]

Method Mean Median Tri-Mean Min 95%
3 Moments* 4.30 3.26 3.57 0.20 10.7
9 Moments* 3.11 2.33 2.49 0.11 8.23
19 Moments* 2.99 2.14 2.29 0.10 8.27
3 Edges* 3.19 2.19 2.44 0.09 8.62
9 Edges* 3.01 2.03 2.25 0.12 7.98
19 Edges* 3.20 2.10 2.32 0.10 8.52
3 Geo(color) 3.45 2.74 2.90 0.15 8.63
9 Geo(color) 2.69 2.03 2.22 0.11 6.79
19 Geo(color) 2.58 1.84 2.03 0.13 6.85
3 p-Norm(color)p=0.25 3.41 2.72 2.87 0.14 8.58
9 p-Norm(color)p=0.25 2.59 1.84 2.04 0.10 7.11
19 p-Norm(color)p=0.25 2.51 1.75 1.95 0.10 6.86
3 Geo(edge) 3.49 2.58 2.83 0.11 9.45
9 Geo(edge) 2.92 2.02 2.21 0.08 7.85
19 Geo(edge) 2.70 1.88 2.06 0.14 7.34
3 p-Norm(edge)p=0.25 3.33 2.48 2.70 0.13 9.03
9 p-Norm(edge)p=0.25 2.76 2.07 2.22 0.10 7.45
19 p-Norm(edge)p=0.25 2.87 2.01 2.19 0.10 7.73

Another widely used dataset is the “GrayBall” dataset, so called because the ground
truth illumination is measured from an inset physical matte-surface ball in a set of videos.
Here we used the 10 images per clip (150 images) compiled by Van der Weijer et al. [28].1

The last dataset used is the “SFU Object Dataset” [6], consisting of 321 images of 31
objects under up to 11 different illumination conditions. For all data we carried out the
same cross validation process.

In Figure 5.1 we visualize color difference between color-corrected images and ground
truth. We display images from [49, 38, 6]. The first column is entirely black since it is error
from the ground-truth image: darker indicates smaller color difference.

We can form an approximated CIELAB ∆E error image by taking the original image to a
standard color space by multiplying by the inverse of a diagonal 3×3 matrix consisting of the
ground-truth chromaticity; and similarly we can divide the same image by the approximate,
recovered illuminant chromaticity. Then assuming the images are in the standard sRGB
color space, first we remove gamma-correction if indeed images were gamma corrected:
now we are in linear sRGB color space. Then, in the sRGB standard, a 3 × 3 matrix
transform is defined from linear sRGB to CIE tristimulus XYZ color space. Setting the
whitepoint to D65, these triples can then be taken to CIELAB coordinates by the standard

1Grayball dataset was taken using NTSC, the data is assumed to be sRGB image. Other datasets are
supplied in linear form with no gamma correction applied.

24



Table 5.2: Performance on the reprocessed [49] Color Checker Dataset [42]. Here we use
angular error [22] to represent the performance for each method. Asterisk denotes our
reproduced result of method [20]

Method Mean Median Trimean Min 95%
GrayWorld[21] 6.4 6.3 11.3
Shades of Gray[21] 4.9 4 11.9
GrayEdge[28] 5.1 4.4 11
Gamut Mapping[5] 4.2 2.3 14.1
Spatio-Spectral Statistics[13] 3.4 2.6 9.52
Natural Image Statistics[5] 4.2 3.1 11.7
Exemplar-Based[31] 3.1 2.3
3 Moments[20] 4.0 3.3 8.9
9 Moments[20] 3.6 2.8 9.1
19 Moments[20] 3.5 2.6 8.6
3 Edges[20] 3.0 2.2 7.2
9 Edges[20] 2.9 2.1 7.1
19 Edges[20] 2.8 2.0 6.9
Moments* 4.48 3.76 4.02 0.19 10.0
9 Moments* 3.81 3.02 3.18 0.17 9.66
19 Moments* 3.61 2.73 2.91 0.13 9.67
3 Edges* 2.97 2.35 2.49 0.09 7.72
9 Edges* 3.32 2.33 2.50 0.12 8.60
19 Edges* 3.35 2.15 2.37 0.10 8.86
3 Geo(color) 4.63 3.96 4.14 0.26 10.4
9 Geo(color) 3.49 2.62 2.78 0.16 9.32
19 Geo(color) 3.41 2.25 2.46 0.09 9.77
3 p-Norm(color)p=0.25 4.60 3.96 4.14 0.20 10.2
9 p-Norm(color)p=0.25 3.42 2.59 2.80 0.15 9.26
19 p-Norm(color)p=0.25 3.54 2.34 2.58 0.10 10.1
3 Geo(edge) 3.41 2.88 2.96 0.11 8.57
9 Geo(edge) 3.19 2.24 2.48 0.14 8.60
19 Geo(edge) 2.8 1.95 2.12 0.13 7.82
3 p-Norm(edge)p=0.25 3.08 2.54 2.64 0.12 7.54
9 p-Norm(edge)p=0.25 2.78 2.07 2.25 0.12 7.18
19 p-Norm(edge)p=0.25 2.79 2.01 2.19 0.12 7.62

nonlinear transform. These steps take us to images that are approximately in a perceptually
uniform color space, where ∆Ea∗,b∗ forms a sensible image-sized indicator of perceptual color
difference. As can be seen in the figure, our proposed four moments have smaller error than
[20] on the datasets [49, 38]. And on [6], our p-Norm moments are always the best.

Our results appear in Tables 5.1, 5.2, 5.3 and 5.4 for the 4 datasets. As well as citing
results for past papers, we also re-implemented the Corrected-Moments method [20] so as to
run tests on all the datasets (shown with an asterisk). Our re-implementation found similar
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Table 5.3: Performance on the GrayBall dataset, followed [28] pre-processing steps. Asterisk
denotes our reproduced result of method [20]

Method Mean Median Tri-Mean Min 95%
GrayWorld[28] 7.3
GrayEdge [28] 4.1
Constrained Minkowski[21] 3.81
3 Edges[20] 3.8
9 Edges [20] 3.3
3 Moments* 4.82 4.07 4.28 0.25 11.4
9 Moments* 3.83 2.94 3.17 0.23 10.0
19 Moments* 4.49 3.26 3.45 0.36 12.8
3 Edges* 5.03 4.21 4.32 0.28 13.4
9 Edges* 4.64 3.38 3.68 0.26 13.5
19 Edges* 5.70 3.79 4.15 0.40 16.7
3 Geo(color) 4.77 3.94 4.18 0.22 11.6
9 Geo(color) 4.11 3.09 3.36 0.37 11.1
19 Geo(color) 4.73 3.19 3.45 0.40 12.9
3 p-Norm(color)p=0.5 4.88 4.18 4.36 0.28 11.3
9 p-Norm(color)p=0.5 3.84 2.89 3.12 0.23 10.3
19 p-Norm(color)p=0.5 4.68 3.19 3.44 0.37 13.6
3 Geo(edge) 5.96 4.97 5.24 0.44 14.2
9 Geo(edge) 5.55 3.91 4.21 0.27 14.8
19 Geo(edge) 5.86 3.91 4.32 0.43 17.9
3 p-Norm(edge)p=1 5.03 4.21 4.32 0.28 13.4
9 p-Norm(edge)p=1 4.64 3.38 3.68 0.26 13.5
19 p-Norm(edge)p=1 5.70 3.79 4.15 0.40 16.7

results to the reported results in [20], with slight differences due to different parameters for
image-size reduction and smoothing.

For optimized parameters, we found that our proposed methods always perform better
than our re-implementation of Corrected-Moments, simply by extending the the definition
for calculating moments. We speculate that any values poorer than reported in [20] are
most likely due to the image shrinking and smoothing processes. Our proposed methods
always outperform [20] on all our tested results when we optimize the image pre-processing
steps.

5.2 Multispectral Domain Experiments

We use the CRF model to partition the image into two differently illuminated regions. Once
the illumination region is partitioned, we again run our illumination and reflectance sepa-
ration method described in sec. 4.3 on each region to find the best illumination candidate.
As we have solved for the illumination for each region, the reflectance can then be solved for
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Table 5.4: Performance on the SFU Object dataset[6]. Asterisk denotes our reproduced
result of method [20]

Method Mean Median Tri-Mean Min 95%
GrayWorld 9.8 7.0
GreyEdge 5.6 3.2
Gamut Mapping 3.6 2.1
3 Edges[20] 4.1 3.6
9 Edges[20] 2.6 2.0
3 Moments* 7.54 5.84 6.10 0.42 19.1
9 Moments* 4.30 3.17 3.48 0.27 11.8
19 Moments* 2.86 2.31 2.43 0.16 7.22
3 Edges* 4.37 3.62 3.76 0.19 11.0
9 Edges* 3.68 3.00 3.09 0.24 9.76
19 Edges* 3.58 2.71 2.90 0.23 10.0
3 Geo(color) 7.05 5.55 5.99 0.39 17.4
9 Geo(color) 6.51 4.97 5.35 0.33 16.5
19 Geo(color) 5.27 3.89 4.26 0.33 13.4
3 p-Norm(color)p=2.75 5.63 4.40 4.64 0.34 14.9
9 p-Norm(color)p=2.75 3.50 2.52 2.75 0.14 10.1
19 p-Norm(color)p=2.75 2.92 1.94 2.17 0.15 8.71
3 Geo(edge) 5.48 4.48 4.69 0.32 13.9
9 Geo(edge) 4.70 3.99 4.20 0.25 10.9
19 Geo(edge) 4.22 3.33 3.53 0.27 10.9
3 p-Norm(edge)p=2.75 4.33 3.50 3.61 0.21 11.9
9 p-Norm(edge)p=2.75 3.36 2.49 2.60 0.25 10.0
19 p-Norm(edge)p=2.75 3.06 2.25 2.47 0.22 7.59

by using the observed image dividing the illumination. In Fig. 5.2, we show the separation
result of [53] and of our method.

As can be seen from Fig. 5.2, method [53] almost get the illumination totally wrong. We
firstly expect the result would be the average of two illuminations, while as the result is only
trying minimizing eq. 4.7, there is no cue for how to balance between these two illuminations.
And from Fig. 5.3, we can see the recovered reflectance differs from the original reflectance
image, as well as there are two obvious region in the image (which supposed to be uniform
like the original reflectance image).

For our method, since we assumed there are two illuminations in the scene, then we
can see the recovered two illuminations in Fig. (5.3e) fits the true illumination quite well.
And more surprisingly, the recovered reflectance image in Fig. (5.3c) looks quite uniform
and close to the original reflectance image. Of course, we note that the wrongly segmented
patches in Fig. (5.2f) are the noisy part in our final recovered reflectance image.
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Ground Truth Original Image Moments Edges Geo p-Norm Geo(edges) p-Norm(edges)

1Figure 5.1: Approximated CIELAB error. We first estimated the illuminants for the image,
then compute the image reflectance by diving the estimated illuminants. For the reflectance,
we first transform it into CIELAB color domain and then calculate the error with the
ground-truth. The Moments and Edges columns are from [20]. The last 4 columns are our
results.
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Figure 5.2: All the displaying image are hyper-spectral images, we convert them to RGB
image for better display. (a) is the original reflectance image, (b) is the reflectance image
illuminated by 4000K daylight on the left half and 8000K daylight on the right half, (c)
is the way we divide image into patches, each patch size is 32-by-32, (d) is showing the
illumination’s index ranging from 1 to 56, (e) is the binary classification result when use
index 30 as threshold to segment the image, (f) is the segmented different illuminated regions
using graph cut based on local estimation

Figure 5.3: (a) is the original reflectance image, (b) is the recovered reflectance image based
on method [17] which assume one illumination in the scene, (c) is the recovered reflectance
using our method, (d) is recovered illumination using method [17], (e) is recovered illumi-
nation using our method
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Chapter 6

Conclusion and Future Work

Our contribution can be summarized into two parts. For RGB illumination estimation,
we extended the corrected moments idea into several new moments domains. Our ideas
originated from success of statistic method for color constancy problem, with the goal to
finetune these neat methods based on the corrected moments idea. We show that these
strategies can drive down the median and maximum error of illumination estimates.

For the multispectral image, from the experiments given, we have demonstrated that
dividing the image into patches helps for multi-illumination estimation, and using a CRF
model greatly alleviates the noise introduced by local estimation. Note that our model
is not restricted to two illuminations conditions. In eq. (4.10), the labels state could be
larger than 2. By simply changing the potential functions eq. (4.11) for more states, our
model could handle more illumination conditions. However, of course this extension would
definitely introduce more noise into the segmentations.

For future work, we could generate better moments that represent well for the illumi-
nation in that scene, or we can even design some un-supervised learned feature to aid the
corrected moments method. Also we can design some deep learning network to do illumi-
nation estimation that follows our observations in this work. Also we could apply CRF
model into multiple RGB illuminants estimation as we performed for multispectral images.
For multispectral data, large dataset is needed. Since right now, there is no multiple il-
luminated multispectral dataset, our work is only based on synthesized image. Also since
the multispectral image always contain a lot of data, there is little works using learning
based algorithm. As learning based algorithm, especially deep learning has demonstrated
big success in other computer vision domain, it might be a future work to use learning based
algorithm for multispectral illumination estimation.
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