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Abstract 

Intelligent Tutoring Systems (ITSs) are computer programs that dynamically model 

learners’ psychological states to provide individualized instruction. ITSs have been developed for 

diverse subjects to help learners to acquire domain-specific, cognitive and metacognitive 

knowledge at all educational levels. In this thesis, I report on two studies conducted to examine 

the current state of the ITS field. The first study is a meta-analysis conducted on research that 

compared the outcomes from students learning from ITSs to those learning from non-ITS learning 

environments. It examines 107 studies, published prior to 2013, with a total of 14,321 participants. 

The results show that ITSs outperform teacher-led, large-group instruction (g = .42), non-ITS 

computer-based instruction (g = .57), and textbooks or workbooks (g = .35). However, no 

statistically significant difference was detected between learning from ITS and learning from 

individualized human tutoring (g = -.11) or small-group instruction (g = .05). The second study 

evaluates research on the relative effectiveness of Bayesian networks in constructing student 

models in ITSs, which involves 143 studies published between 1992 and 2014. The study 

explores how Bayesian network was adopted to support the development of student models, 

relative to its strengths and weaknesses in investigating learning constructs and their 

contributions to the effectiveness of BN student modeling. A number of implications are drawn 

with respect to the application of BN in ITS design. Both reviews provide evidence that ITSs are 

relatively effective tools for learning. Furthermore, ITS researchers are invited to reconsider three 

fundamental research questions that have been examined since the emergence of ITSs and how 

they contribute to and constrain advances in effective ITS design in light of developments in 

artificial intelligence research. Finally, recommendations for future research directions are 

provided to researchers in the ITS community.  

 

 

Keywords:  intelligent tutoring systems; student model; Bayesian network; effect size; meta-
analysis; 
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Chapter 1.  
 
Introduction and Background  

1.1. Introduction 

One-to-one instruction has long been promoted as a more effective approach than 

classroom teaching (Desmarais & Baker, 2012). Influenced by research on Artificial Intelligence 

(AI), Intelligent Tutoring Systems (ITSs) emerged in the 1970s as a more adaptive and 

individualized paradigm for computer-based instruction than its predecessors (Martin, 1999). 

Research on ITSs is interdisciplinary, spanning artificial intelligence, cognitive science, 

psychology, learning science and instructional technology. The field draws implications from 

multiple disciplines that creates both “challenge” and “richness” in its landscape (Nkambou, 

Bourdeau, & Mizoguchi, 2010, p.5). Over the past few decades, ITSs have been widely integrated 

into a large number of subject domains to support various learning activities from basic reading 

to comprehensive hands-on training such as PHP language programming (Weragama & Reye, 

2013), managing the equipment in a thermal power plant (Hernandez-Leal, Sucar, Gonzalez, 

Morales, & Ibarguengoytia, 2011), and job interview training (Anderson, et al., 2013).   

Given the rapidly growing number of students who seek online resources to satisfy their 

own learning agenda or professional training, it is widely hoped that learning environments can 

become more responsive and intelligently adapted to individual needs (Ciloglugil & Inceoglu, 

2010). Since they first appeared in the 1970s, ITSs have been viewed as “one of the most 

promising approaches to deliver individualized instruction” (Ahuja, & Sille, 2013, p.40). By 

maintaining a robust cognitive model of the learner, ITSs are able to dynamically assess the 

learner’s knowledge and calibrate tutorial strategies to facilitate meaningful learning (Everson, 

1995). An ITS is designed to play a tutoring role by understanding what students learn, how they 

perform over time, and offering timely intervention to assist them. Like many prior technologies, 

the wide adoption of ITSs has great potential to enrich “the learning opportunities of students” and 

provide them a wider field for “intellectual exploration” (Duchastel, & Imbeau, 1988, p.104).  
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Researchers in the ITS community have worked extensively on exploring how to make the 

intelligent tutor “more flexible, autonomous and adaptive to the needs of each student” (Conati, 

2009). Nevertheless, building an ITS is a non-trivial task. It requires enormous efforts and human 

resources to develop and successfully implement inferential and analytical capabilities derived 

from artificial intelligence techniques. Moreover, for accurate modeling of student cognition, an 

ITS requires more than just a model of the student’s knowledge structure and the capacity to 

make diagnostic assessment of the student’s knowledge. The challenge of building a student 

model to precisely and fully capture learners’ characteristics demands a strong theoretical 

foundation in the ITS field (Desmarais & Baker, 2012).  

Although a few meta-analyses of research on the effects of ITSs have already quantified 

how well these systems promote learning, a clear picture of how and why ITSs are effective has 

yet to emerge. In particular, each analysis had its own research agenda, focusing on a single 

subpopulation, subject area, or a narrow set of moderating variables. Furthermore, as the ITS 

field spans a number of distinct disciplines, great variation exists in the relatively extensive 

research literature regarding definitions, terminology, intellectual frameworks and conceptual 

interpretations of research findings. To understand the current research state in the ITS field, in 

this dissertation, I investigated the overall effectiveness of ITSs in assisting students to achieve 

their learning goals and explored variables that moderated these effects on student learning at a 

fine grained level. Specifically, I conducted two reviews. One is a meta-analysis that compares 

the outcomes of students’ learning from ITSs to the outcomes of students learning in non-ITS 

environments. Unlike previous reviews, it includes research across subject domains and all 

educational levels. By synthesizing 104 effect sizes extracted from a large range of empirical 

studies, I investigated the moderating variables that affect learning. In addition, I discussed how 

the findings of this research enrich the theoretical foundation of the field and draw implications for 

ITS research. I also conducted a second review that examined 143 research studies in which a 

Bayesian network was used for student modeling. By aggregating the data collected on various 

moderator variables in response to the study’s seven research questions, I identified a set of 

constructs tracked in student models and that supported pedagogical strategies. This forms the 

basis for drawing implications to advance the field’s understanding of ITS design.   
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1.2. Background 

When Pressey’s teaching machine first appeared in 1926, educators’ understanding of 

how technology could be used for teaching began to expand (Pacella, 2014). Although this very 

first machine was mechanically inelastic, offering only a set of fixed questions and answers, it was 

designed with attention to pedagogical strategies and learning theories (Shute & Psotka, 1996). 

A new pedagogy, programmed instruction, emerged in 1954 when B. F. Skinner built the teaching 

machine and presented it at a conference on practical applications of behavioral science 

(Benjamin, 1988). Programmed instruction is an instructional methodology centered on Skinner’s 

principle of stimulus control and reinforcement to shape behavior (Skinner, 1954). Instruction 

follows a linear logical sequence and decomposes content into well-defined small curriculum 

units (Gagné, 1965). Learning is supported through a systematic, reinforcing approach in which 

students can advance incrementally, receive immediate feedback to their responses, and be 

rewarded in a self-paced manner (Skinner, 1968).  

Computer-assisted instruction (CAI) is a type of instruction that uses computers to deliver 

course content. Its roots lie in behaviorism, stimulus-response associations, and psychometric 

traditions (Edwards, 1970). Extending programmed instruction to present interactive text, CAI 

programs gradually evolved to support more sophisticated learning tasks using a combination of 

texts, graphics, sound, and videos as well as enhanced user interactions in all areas of the 

curriculum (Ward, 2002). CAI has been widely adopted to facilitate students’ self-paced learning, 

supplement classroom activities and assist in measuring learning (Ramani & Patadia, 2013).  

With the advent of cheaper and more powerful personal computers, CAI gained popularity 

and evolved in a wide array of instructional techniques. These progressed developmentally from 

linear CAI to branching CAI to more mature CAI, and then gradually transitioned to Intelligent 

Tutoring Systems (ITSs) as the need for individualized instruction expanded (Wenger, 1987). In 

this chapter, I briefly review CAI’s development history, impact on instructional technology, and 

its evolution into ITSs.  
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1.2.1. Computer-Aided Instruction (CAI) Systems  

Computer-aided Instruction (CAI) systems began in 1950s. It is a type of instruction that 

utilizes computers to assist individual learners in educational practice (Anderson, 1986). Also 

known as computer-assisted instruction, CAI is viewed to be rooted in Pressey’s multiple-choice 

machine and the punchboard device presented at the meeting of American Psychological 

Association in 1925. CAI allowed a learner to work on a question and receive immediate feedback 

about its correctness, and it also tracked all the learner’s attempts (Mann, 2009).  

B.F. Skinner (1959), sometimes called the father of programmed instruction, invented a 

teaching machine in mid-1950s based on the principle of operant conditioning (Saettler, 1990, p. 

296). As Skinner described, operant conditioning is a method that facilitates learning through a 

pattern of reinforcement. This theory “provided the scientific basis of programmed instruction” 

(McDonald, Yanchar, & Osguthorpe, 2005, p. 85). Stemming from the science of behaviorism, 

learning was seen to result from “an immediate and systematized reinforcement” that rewarded 

correct responses in a “stimulus-response-feedback” flow until “a prescribed level of proficiency 

is reached” (Anderson, 1986, p. 164).  

Early CAI programs were based on linearly programmed content. Students followed a 

step-by-step path, traversing learning mathematics content that was divided into small units of 

information called a frame. If the answer to a problem was correct, a new frame advanced the 

student to the next question or topic was presented. Students could not progress until a correct 

answer was offered.  Such an approach allows the student to progress according to how he/she 

works on individual questions and makes it possible for more advanced students to progress at a 

faster pace (Anderson, 1986). With its potential, programmed instruction soon became a 

buzzword in education and sparked lots of interest as reflected in research on a number of CAI 

initiatives which explored its efficacy in supporting learners by using a fundamentally learner-

centered approach (McDonald, et al., 2005). Those early CAI initiatives were considered to be 

the antecedent of modern CAI programs (Ward, 2002).  

A more advanced form of programmed instruction was originated by N. Crowder in 1959. 

He designed a CAI program that trained US Air Force members to troubleshoot problems in 

electronic equipment. His system implemented a branching approach in which a correct answer 

or a new instruction was selectively presented according to the previously given response 

(Sackney & Mergel, 2007). Different from Skinner’s view of focusing only on reinforcing correct 
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behaviors, Crowder (1959) argued that a student should not only learn from correct answers but 

also from mistakes. He believed that doing this would promote learning through cognitive 

reasoning (Owen & Aworuwa, 2005). Therefore, in his form of branching programming, errors are 

anticipated by the system and students’ erroneous responses are placed on a remedial learning 

path (Lockee, Moore, & Burton, 2004). Although the errors were not based on “any sort of analysis 

of the error patterns or procedural bugs”, Crowder’s approach was “the first use of errors in a 

tutorial system” (Lockee, et al., 2004, p.547). Branching programming saved a large amount of 

instructional time compared to linear programs, although no significant differences on the 

effectiveness of learning were found between linear and branching CAI programs (Larson, Burton, 

& Moore, 2008).  

Since the 1960s, with its great flexibility to deliver courses and potential to alleviate 

challenges in instructing an increasing number of students, many CAI systems have been 

developed in the past few decades and applied across a broad spectrum of subject domains (e.g., 

arithmetic, chemistry, medical health, computer programming) spanning educational levels from 

elementary to higher education (Anderson & Skwarecki, 1986; Grimes, 1977; Kulik, Kulik, & 

Bangert-Drowns, 1985; Poole,1995; Ramani & Patadia, 2013; Ranade, 2006). Compared to early 

CAI systems, modern CAI systems can present interactive materials using graphics, text, audio 

and video to foster more engaging learning experiences. Moreover, the advent of more powerful 

and affordable personal computers further promoted adoption of CAI in classrooms (Arnold, 

1997). The proliferation of CAI systems signifies it has grown from “an add-on” to “a learn-from 

technology” (Mann, 2009, p. 7). 

Computer-based learning can enhance students’ mastery of content (Rosenberg,  Grad, 

& Matear, 2003). With the “emphasis on active learning, enrichment of collaborative learning, 

encouragement of greater student independency”, CAI provides a novel way to deliver a large 

number of interactive opportunities for learning and engage students as active participants to 

achieve better learning outcomes (Basturk, 2005, p. 170). With high user interactivity and 

engagement of the past few decades, CAI technology has been recognized as an effective 

instructional method that can support teaching endeavors and improve students’ overall academic 

results (Ranade, 2006; Wang & Wong, 2008). It has profoundly reshaped the relationship among 

students, teachers and computers as well as how students learn.  

Despite CAI’s positive influence on student learning, CAI systems were often criticized for 

the lack of individualized instruction. Although students work individually with a computer, since 

http://www.pubpdf.com/search/author/Harold+Rosenberg
http://www.pubpdf.com/search/author/Helen+A+Grad
http://www.pubpdf.com/search/author/David+W+Matear
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early CAI systems are not designed to collect information about individual students and 

programmed to flexibly adapt instruction, it was impossible to offer authentic tailored feedback to 

support individualized instruction (Nwana, 1990). To address this need, since the beginning of 

1960s, CAI systems have gradually evolved into “intelligent” CAI systems with the capability of 

handling individualized differences among learners.       

1.2.2. Emergence of Intelligent Tutoring Systems 

As discussed above, efforts to develop an “Intelligent Computer-aided Instruction System 

(ICAI)” began in 1960s and continued in the 1970s (Nkambou, Bourdeau, & Mizoguchi, 2010). At 

that time, AI technology “was in full bloom” and being applied in both computer and cognitive 

science. At the same time, CAI had matured as an instructional technology that was striving to 

overcome its limitations to support a larger number of students (Nkambou, Bourdeau, & 

Mizoguchi, 2010, p. 2). With Bloom’s report of the 2-sigma effect on individual tutoring (1984), the 

situation proved favourable for developing intelligent tutoring systems through a multidisciplinary 

approach that combined both domains (Carbonell, 1970; Nwana, 1990). 

While CAI was rooted in Skinner’s behaviorist theory, ICAI systems diverged. They shifted 

from a “logic focus” to a knowledge-based system that “could make intelligent decisions based on 

prior knowledge” (Salman, 2013, p. 157). ICAI was designed to simulate a human tutor by 

adaptively responding to students’ individual needs with effective tutoring strategies (Anderson & 

Skwarecki,1986). Salgado-Zapata (1989) used the two words “adaptive” and “dynamic” to 

delineate the key characteristics of ICAI. According to him, the ability to adapt to students’ 

changing tutorial needs was the core attribute distinguishing ICAI from traditional CAI. Being 

adaptive to students’ evolving knowledge meant the system has to be dynamic enough to support 

various kinds of adaptive activities, eliciting useful information about changes in students’ 

knowledge over time (Vassileva, 1990). ICAI was considered to be a promising instructional tool 

that could spontaneously generate adaptive instruction, mimicking one-on-one human tutoring.     

For historical reasons, research on intelligent computer-assisted programs was initially 

referred to by the term ICAI. This was gradually replaced by ITS when Sleeman and Brown (1982) 

proposed the term Intelligent Tutoring Systems (ITSs), describing these systems as representing 

a new generation of computer-based instruction that emphasized learning by doing and 

representation of learners’ knowledge. The term student modeling also was introduced to 

describe the goal of ITSs to support an abstract representation of student knowledge 
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(Hategekimana, 2008). In 1988, the first ITS conference was held. It offered a venue to “share 

and consolidate ideas” and stimulate research funding dedicated to work on ITSs (Nkambou, et 

al., 2010, p. 2). Since then, with the integration of artificial intelligence (AI) techniques into 

education, there has been an enormous growth in the field of ITSs spanning “a large spectrum of 

incremental developments” (Ahuja & Sille, 2013, p. 39).  

The period of the 1970s to 1990 witnessed the first generation of ITS development 

(Nkambou et al., 2010). During this period, a series of ITS systems were built involving methods 

of Socratic tutoring, buggy libraries, genetic graphs, case-based reasoning, natural language 

processing, authoring systems and so on (Ahuja, & Sille, 2013). Among those early ITSs, the 

Cognitive Tutor developed at Carnegie Mellon University in early 1980s (Anderson, Corbett, 

Koedinger, & Pelletier, 1995) has become one of the most widely deployed. The Cognitive Tutor 

is rooted in Anderson’s Adaptive Character of Thought (ACT-R) theory. It builds students’ 

cognitive competency by developing relevant declarative and procedural knowledge in the context 

of use (Anderson, 1993). Students’ progress is tracked in each step with a model tracing 

technique tailored to provide the most appropriate intervention as needed (elaborated in section 

2.2.2). Most of those ITS efforts were designed to imitate a human tutor and effectively 

communicate targeted knowledge to students. In 1990, Self claimed that emulating a human tutor 

as a goal was overly emphasized in the ITS research community and misdirected its development. 

Shute and Psotka (1996) echoed this view suggesting that it was not necessary to expect an ITS 

to communicate with students in the same fashion as human tutors do. Instead, with the support 

of AI techniques, the aim was to develop ITSs to move beyond only duplicating human tutors to 

capture teachers’ underlying reasoning process and multiple facets of students’ learning (Woolf, 

2008). Furthermore, to offer students personalized learning experiences, ITS researchers were 

recommended to consider their field as engineering design grounded on a framework of relevant 

learning theories, methodology and techniques (Nkambou et al., 2010).  

From 1990 to present, the field of ITSs has encompassed a great number of technological 

and research innovations, sparked with great vitality and vibrancy (Ahuja & Sille, 2013). Striving 

to deliver effective adaptive tutorial services to individual students, ITS researchers focused not 

only on modeling students’ learning performances or skills, they also extended the role of the 

student model to integrate a wide range of new constructs including learners’ knowledge about 

how they learn (metacognitive skills), motivation, engagement behaviors and affective states (e.g., 

Arroyo, et al., 2014).     
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As more complex learning environment became available, ITSs could support not only 

learners who study alone, at their own pace, but also facilitate collaborative learning activities for 

small groups of students by modeling group knowledge and learning interaction (Desmarais & 

Baker, 2012). For instance, Comet is an ITS designed to enhance students’ clinical reasoning 

skills as they work in small groups in a problem-based learning (PBL) session (Suebnukarn & 

Haddawy, 2007). Comet actively monitors group activities and could intervene in students’ group 

discussion with specific hints when they became stuck or lost focus in terms of the discussion 

topic.  

Another important trend in the ITSs field contributing to better student modeling was the 

development of educational data mining (EDM) methods and machine learning (ML) in AI. EDM 

is a knowledge discovery process that uncovers novel learning patterns and potentially useful 

information from a large amount of traced student data (Guruler & Istanbullu, 2014). It is 

“concerned with developing methods for exploring the unique types of data that come from 

educational settings, and using those methods to better understand students, and the settings 

which they learn in” (Baker, 2010, p. 324). With EDM methods, it is feasible to build more 

sophisticated student models by exploiting large volumes of data collected across a broad range 

of learner constructs leading to more precise prediction of students’ ongoing state changes 

(Buchheit, Garrett, Lee, & Brahme, 2000). Machine learning techniques make it possible for a 

system to learn from experience, improve and evolve based on large-scale observations (Shapiro, 

1992). ITSs use ML techniques to improve the student model and forge new tutorial strategies to 

more effectively adapt to students (Woofe, 2008). With ML techniques, ITSs are able to reason 

with uncertainty in a context of incomplete learner data to enhance instructional interventions 

(Hämäläinen & Vinni, 2006).  

 

1.3. Structure of this Thesis 

This thesis explores the development of intelligent tutoring systems and extends the work 

of prior meta-analyses of ITS research. It expands understanding of how this field has grown 

since it first emerged. Through a synthesis of years of research findings, this thesis provides 

insights to guide future research in this field. Specifically, it is structured in five chapters as follows: 
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In Chapter 1, I introduce what will be explored in this thesis and build a rationale for 

exploring the development of ITSs as a research field. Then I discuss the historical development 

of ITSs as they evolved from earlier computer-aided instructional systems. Lastly, the structure of 

this thesis is presented with a brief summary of each chapter.  

In Chapter 2, I review literature in the ITS field. I begin by discussing the ITS definition 

used within this thesis. I also examine how four key components of an ITS afford personalized 

student tutoring. Then, I review the five major student modelling techniques widely applied in ITSs 

and discuss their relative strengths and weaknesses in representing students’ learning 

characteristics and in providing help. I review four quantitative reviews that examined the 

effectiveness of ITSs. These four reviews provide an excellent overview of the current state of the 

ITS field regarding effects on student learning as compared to non-ITS learning environments 

and afford useful insights regarding moderator variables explored in research. I point out known 

limitations of meta-analysis that make it difficult to draw a general conclusion. This sets a stage 

for conducting a comprehensive, systematic review of student modeling to further explore the 

landscape of the field and guide future development. I review ITSs modelled using a Bayesian 

network (BN), given its popularity and purported strength to infer student behaviors and identify 

factors that affect student learning. I define what a BN model is and introduce three common types 

of BNs. Lastly, I examine the strengths and limitations of a BN in student modeling.  

In Chapter 3, I report on the procedures and findings of a published meta-analysis that 

examined the overall effectiveness of ITSs involving 107 effect sizes with 14,321 participants (Ma, 

Adesope, Nesbit & Liu, 2014). I first describe criteria for selecting studies and explain the 

strategies for study coding and effect size extraction. Next, I elaborate on the procedure of data 

analysis following standard guideline for meta-analysis and explain interpretations of fixed-effect 

and random-effects models. Then, I report the findings in relation to each of the four research 

questions. Lastly, the results of the meta-analysis are further discussed with reference to the prior 

quantitative reviews. A number of suggestions are offered to inform the design of ITSs. 

To include research studies that would otherwise be excluded by strict selection criteria, I 

further examine 143 ITS studies using a Bayesian Network for student modeling in Chapter 4.  

Firstly, I describe the methodology used to conduct this review. I start with the selection criteria 

and explain the search process used to identify and collect relevant ITS studies using a BN. Next, 

I introduce the coding form and learning constructs used to capture key characteristics in BN 

studies. Then, I explain the process of aggregating data to address the seven research questions 
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and analyze how applying a BN in student modeling facilitates individualized learning. Finally, I 

summarize the results and discuss the implications of this review for the future research work in 

the ITS field. The limitations and constraints of the current review are also reported. 

In Chapter 5, the results of both reviews are summarized with regard to common and 

distinctive features found in each of them. With a large body of literature reviewed and 

synthesized, general implications are derived to understand current trends and recommend 

refinements to existing practices in ITS development. Moreover, ITS researchers are invited to 

reconsider fundamental research questions, upon which ITSs were designed. Then, the 

limitations and constraints of the two reviews are discussed. I conclude by recommending future 

research directions for the ITS community based upon the findings of both reviews.  
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Chapter 2.  
 
Literature Review: Intelligent Tutoring Systems 

2.1. What is an Intelligent Tutoring System? 

Individualized instruction has long been valued in the education community (Stellan & 

Mitrovic, 2006). Bloom (1984) reported a two-sigma effect whereby average students who 

received one-on-one tutoring from expert tutors achieved scores two standard deviations higher 

on standardized tests when compared to peers receiving traditional classroom instruction. This 

result inspired and sparked the interest of the research community to develop an intelligent 

software system that could simulate human tutors and reproduce a similar result on a one-on-one 

basis (Desmarais & Baker, 2012).     

In 1982, Sleeman and Brown coined the term Intelligent Tutoring System. They 

reviewed the research on CAI and made a clear distinction between ITSs and CAI systems 

(Santhi, Priya, & Nandhini, 2013).  CAI systems allow only limited adaptation because of the 

constraints imposed by pre-scripted instructions, feedback and branching. On the other hand, to 

deliver tailored instruction to students, ITSs are systems capable of dynamically maintaining a 

model of student knowledge and updating it as a student progresses.  

Although the term intelligent tutoring system was not explicitly used in the report, 

SCHOLAR is often considered the first ITS (Corbett, Koedinger, & Anderson, 1997). In 1970, 

Carbonell (1970) reported on a computer program, SCHOLAR, built to tutor students on South 

American Geography. SCHOLAR was able to ask students questions and offer feedback to their 

answers using limited mixed-initiative instructional dialogues in which students and the system 

took turns to lead the conversation. What distinguished SCHOLAR from other CAI systems at the 

time was that its architecture domain knowledge was explicitly represented as an independent 

component separate from the natural language interface (Ma et al., 2014). Carbonell (1970) 

explained that such a separation makes it possible to model individual student knowledge based 

on its representation of a particular subject domain, which provides SCHOLAR with the foundation 

needed to diagnose students’ cognitive state of knowledge and offer individualized instruction.  
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Over two decades ago, researchers expressed scepticism about the feasibility of building 

an effective student model to provide personalized instruction (Desmarais, & Baker, 2012). The 

development of artificial intelligence (AI) offered hope to do just that. Since 1980, there has been 

an increasing interest in ITS research and a rise in the number of ITSs. A number of evaluation 

studies were published that compared the effectiveness of ITSs with that of software systems 

which used other instructional approaches. These studies compared systems that provided 

instruction, across a wide range of subject domains, involving learners across all educational 

levels (Ma et al., 2014). The emergence of ITSs significantly changed the landscape of 

educational technology. In the next sections, I elaborate on the definition of an ITS and its key 

components.    

    

 

2.1.1. Definition   

Although the term intelligent tutoring system is widely used in the research literature, 

many research studies still use alternative terms. This variation in terminology could result in 

the neglect of relevant research contributions (Steenbergen-Hu, & Cooper, 2014). As well, 

lack of consensus about a unified definition of ITS may also lower readers receptivity to 

implications arising from this review. It is, therefore, sensible to develop a clear definition for 

ITSs.  

Many efforts were made to distinguish an ITS from other computer-based instructional 

systems based on its capability to generate adapted instruction. In 1982, Sleeman and Brown 

defined ITSs as “adaptive systems which use intelligent technologies to personalize learning 

according to individual characteristics such as knowledge of the subject, mood and emotion” 

(p. 2). Shute and Psotka (1996) asserted that for an ITS, “the most critical element is real-

time cognitive diagnosis (or student modeling) [and] the next most frequently cited feature is 

adaptive remediation” (p. 14). In 1999, Self claimed that “ITSs are computer-based learning 

systems which attempt to adapt to the needs of learners and are therefore the only such 

systems which attempt to ’care’ about learners in that sense” (p.350). More recently, Conati 

(2009, p.2) suggested that “ITS is the interdisciplinary field that investigates how to devise 
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educational systems that provide instruction tailored to the needs of individual learners, as 

many good teachers do”. Similarly, Pacella (2014) also emphasized that, in addition to 

possessing expertise on the subject, an ITS must be able to store student information including 

prior knowledge and progress in addition to conducting meaningful assessment for each step and 

presenting tailored learning materials to students.  

For the sake of this analysis, I adopt the ITS definition excerpted from Ma et al. (2014, p. 

902) to guide the discussion of ITSs throughout this thesis. 

“An ITS is a computer system that for each student: 

1. Performs tutoring functions by (a) presenting information to be learned, (b) asking 

questions or assigning learning tasks, (c) providing feedback or hints, (d) answering 

questions posed by students, or (e) offering prompts to provoke cognitive, 

motivational or metacognitive change 

2. By computing inferences from student responses constructs either a persistent 

multidimensional model of the student’s psychological states (such as subject matter 

knowledge, learning strategies, motivations, or emotions) or locates the student’s 

current psychological state in a multidimensional domain model 

3. Uses the student modeling functions identified in point 2 to adapt one or more of the 

tutoring functions identified in point 1” 

 

2.1.2. Key Components of an ITS 

Although ITSs vary in features of the user interface, subject domains and learning 

variables modelled, some essential architectural components serve the core functionality of 

teaching students by adapting to changes in knowledge. In the first ITS, SCHOLAR, Carbonell 

(1970) implemented three core modules to support individualization: the expert module, the 

learner module and the instruction module. All three modules were connected together to 

generate limited mixed-initiative instructional dialogues to communicate with students.  
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Many early ITSs followed Carbonell’s three-component model (e.g., Polson & Richardson, 

1988). Later on, Dede (1986) extended this model by specifying the user interface as the fourth 

module in an ITS. While a user interface is not really a new module, per se, as any ITS relies on 

it to directly communicate and interact with students and to collect student data to be utilized in 

other modules in the system, recognizing the user interface as a stand-alone component in the 

ITS architecture highlights its importance in supporting a smooth learning experience. It also 

reflects the increasing complexity of user activities found in more advanced ITSs. In addition, with 

the same three modules that Carbonell (1970) proposed, Santhi, Priya and Nandhini (2013) 

defined a fourth module named Control Engine. In the proposed ITS, the control engine provided 

the visualization of the domain model and the student model to analyze various learning 

constructs of learners. Also, Sani and Aris (2014) proposed a similar four-module ITS architecture, 

which enables interaction with students through an interface module and the collection of data 

used for adapting and personalizing instructional assistance.  

Based on the ITS architecture commonly reported in the literature, I summarize the 

following four components that orchestrate the delivery of tailored support to individual students 

(e.g. Ma et al., 2014; Sani, & Aris, 2014; Wenger, 1987), which is depicted in Figure 2.1.1:    

 

1. A domain model  

This model represents all knowledge that the designer intends to be learned by students. 

This includes declarative and/or procedural knowledge such as concepts, logical statements, 

topics, rules, and question banks etc. It is sometimes called the expert domain or expert 

knowledge module in some ITSs.  

A domain model generally contains specific knowledge elicited in great detail from domain 

experts. A knowledge domain serves as a source of learning goals and as a standard to evaluate 

students’ performance and knowledge during learning (Salman, 2013). Consequently, problem 

solutions must be generated in the same context experienced by students so their solution steps 

can be compared to the standard. Also, multiple solution paths and evaluation criteria must also 

be identified in a domain module to allow for evaluating variations in students’ solutions (You, Liu, 

Long, & Pan, 2013)  
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2. A student model 

This model reflects the student’s most current knowledge state. It captures characteristics 

of the student’s learning and dynamically assesses changes in the student’s knowledge as 

instruction proceeds. Relevant aspects of a student’s learning include but are not limited to the 

student’s cognitive knowledge, exam scores, learning preferences, affect, metacognition and 

learning behaviors. It is the core component that enables an ITS to understand a student 

somewhat like a human tutor and to offer adapted instruction accordingly.   

Similar to a domain model, a student model serves, in addition to its representational 

function, as an important source of student information, feeding other components in the ITS 

about how students’ progress and mastery of knowledge compare to the expert domain 

knowledge. In some ITSs, the student model can also infer students’ learning patterns and model 

students’ misconceptions. Through maintaining a library of students’ mistakes and suboptimal 

behaviors, a student model provides a diagnostic source for other ITS components to generate 

pedagogical supports for remediation (Kass, 1989).  

 

3. A tutor model 

A tutor model, also called a pedagogical model in some ITSs, offers tailored instruction 

and prepares suitable learning content for students. It plays a central role in pedagogical 

interventions and is responsible for “moment-by-moment adaptation” (Ohlsson, 1986, p. 293). 

From the data collected in the student model, the tutor model interprets student behaviors and 

synthesizes information about students to determine the pedagogical supports to provide in the 

next moment. In each instructional moment, it addresses the specific “changing cognitive needs 

of the individual learner” and intervenes in students’ activities when necessary (Ohlsson, 1986, p. 

293). Pedagogical actions should be selected to ensure students receive appropriate instructions 

in a timely manner and are progressing on the right track. Because varied pedagogical decisions 

relating to when and how to use learning materials leads to distinctive learning experiences and 

outcomes, choosing suitable content in the appropriate context at the right time requires great 

versatility (Martens & Uhrmacher, 2004). 
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4. A user Interface module  

This module is the “front-end” component of an ITS. It facilitates communications and 

interactions between the system and students. It displays relevant domain information to students 

and collects their input through the interface. It also supports students as they navigate throughout 

the system and allows them to receive instructional responses and feedback generated from the 

tutor model. Depending on the nature of interactions, it enables students to work flexibly at their 

own paces and receive instructions for adapting their learning. As components of an ITS such as 

tutoring model are mediated by the interface to directly communicate to students, a good interface 

design in terms of user friendliness and presentation layout can greatly impact students’ 

acceptance of the system and can potentially influence the effectiveness of an ITS in promoting 

learning outcomes. 

Not all ITSs have all four distinct components and they may vary in level of complexity 

(Conati, 2009). Some models may be packaged in one component in such a way that performs 

the functions but is technically integrated in one module. Nevertheless, tracking students’ 

progress and adapting instruction to their needs are the core features of ITSs that fundamentally 

distinguish them from the other types of CAI systems (Ma et al., 2014).  

Representing a student is not an easy task. Students vary dramatically in their prior 

knowledge, cognitive ability and learning environments. Their knowledge also dynamically 

changes. Therefore, to accommodate individual students with the most appropriate instructions 

at each learning moment requires accurately reflecting the students’ current knowledge state, 

diagnosing the root causes of their errors and offering personalized assistance to those 

experiencing difficulty (Stellan & Mitrovic, 2006). These requirements demand a mechanism to 

systematically maintain and update students’ information – student modeling.  In the next section, 

I discuss a few common student modeling techniques widely used in ITSs.  
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Figure 2.1-1.  A Typical Architecture of an ITS 

 

 

 

2.2. Types of Student Modeling in ITSs  

As previously discussed, the most salient characteristic of an ITS lies in its capability to 

diagnose students’ current state of knowledge on the fly and offer the most suitable instruction to 

support their consequent cognitive development. The diagnosing facility of an ITS is the student 

model. O’Shea and Self (1983) defined the student model as a program that contains specific 

information about the student being taught. This information could range from a simple count of 

how many incorrect answers have been given to some complicated data structure, which purports 

to represent a relevant part of the student's knowledge of the subject. Therefore, a typical student 

model functions to capture the student’s most current state on relevant aspects of learning and 

provides the data needed for the system to tailor instruction towards the student’s learning goals.  

In this section, I review five major student modeling techniques that are most influential 

and widely applied in the research of the ITS community. The origin, development, strengths and 

constraints of the modelling techniques when adapting instruction to students are discussed.   
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2.2.1. Overlay Modeling  

Overlay modeling was initially developed by Stansfield, Carr and Goldstein (1976) for a 

CAI gaming program to coach students on using logic and probability to play the game WUSOR. 

Overlay modeling has since been used in many user modeling systems (Virvou, 2003). This 

student modeling technique structures students’ state of knowledge as a subset of expert 

knowledge (Nwana, 1990). Specifically, a student’s knowledge is represented as “a network of 

tick-marks” that is “laid over the representation of the subject matter to show which part he/she 

has learned” (Ohlsson, 1986, p.297). In this modeling approach, knowledge is structured into 

learning components or elements such as concepts or topics. By representing students’ 

conceptual knowledge independently, the overlay modeling technique facilitates the prediction of 

students’ current state of knowledge by comparing the differences between what the system has 

collected about a particular students’  level of knowledge and the system’s model of the subject 

domain (Chrysafiadi & Virvou, 2015). Depending on the design of ITSs, the mastery of each 

learning element could be determined qualitatively with Boolean values such as learned or not 

learned or quantitatively based on the probability that a student has acquired it (Brusilovsky & 

Millán, 2007). Instruction is accordingly adapted to students’ current level of knowledge. 

With the overlay modeling technique, a student’s knowledge becomes “a progressively 

more complete subset of the expert’s knowledge units” (Ohlsson, 1986, p.297). This technique 

assumes that a novice becomes an expert only when the student has mastered the content 

defined in the expert domain. However, incorrect user behavior or knowledge may not necessarily 

be associated with incomplete knowledge but rather with misconceptions (Nwana, 1990). 

Moreover, expert knowledge is not attained by simply filling in the gaps in student knowledge. 

Rather, it involves a more complicated learning process in which students reflect upon what they 

learn and refine this along the way (Ciloglugil & Inceoglu, 2012). Therefore, overlay modeling is 

often criticized for being too simplistic in its assumptions about students’ knowledge and as being 

unable to respond appropriately to their misconceptions (Ciloglugil & Inceoglu, 2012, p.555). 

In response to this limitation, the bug model aims to capture both students’ correct and 

incorrect/buggy knowledge (Brusilovsky & Millán, 2007). The most widely applied bug model is 
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perturbation modeling, which is used to diagnose students’ incorrect knowledge and erroneous 

steps leading to mistakes, thereby creating a bug library. A bug library consists of a collection of 

incorrect perturbations generalized from the common errors students commit (Chrysafiadi & 

Virvou, 2015). This model allows a set of incorrect perturbations to be associated with individual 

elements of the domain knowledge (Brusilovsky & Millán, 2007). When a student commits an 

error, this error is identified as a perturbation in student knowledge, which is then used to diagnose 

the reason for the error to provide instructions needed to guide the student’s learning. Compared 

to the overlay model, a perturbation model facilitates more effective remediation of students’ 

incorrect knowledge and provides them with individualized guidance.  

 

   

2.2.2. Model Tracing   

Cognitive Tutors refer to a series of intelligent tutoring systems (e.g. Pump Algebra Tutor, 

LISP tutor) developed at Carnegie Mellon University since 1982. Cognitive tutors have been 

widely deployed in hundreds of classrooms at secondary schools, colleges and universities 

(Koedinger, Anderson, Hadley& Mark, 1997). Based upon extensive research on artificial 

intelligence and cognitive science, cognitive tutors are used in a variety of subject domains 

including algebra, geometry, and computer programming to help students develop problem-

solving skills (Koedinger, 2001). Rooted in Anderson’s Adaptive Character of Thought (ACT-R) 

theory (Anderson, 1993), cognitive tutors were implemented with the model tracing (MT) 

technique that keeps track of each step students take in the problem-solving process and offers  

support when  students take unsuccessful courses of action.  

The ACT-R theory provides a description of how human cognition works (Koedinger, 

2001). According to this theory, “human cognition is complex” and complexity is viewed as the 

“complex composition” of “simple knowledge units” acquired through “relatively simple principles” 

(Anderson & Schunn, 2000, p. 2).  In other words, it “arises from an interaction of procedural and 

declarative knowledge” (Anderson, 1996, p. 355).  

The ACT-R theory makes a clear distinction between declarative and procedural 

knowledge (Koedinger et al., 1997). Declarative knowledge refers to factual knowledge that “can 
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be directly accessed including facts, concepts, pictures and stories” (Koedinger & Anderson, 

1998, p.162). ACT-R theory defines declarative knowledge as “a network of small units of primitive 

knowledge called chunks” (Anderson & Schunn, 2000, p. 3), or “knowledge units” (Anderson, 

1996, p.357). Procedural knowledge, on the other hand, consists of “a large number of rule-like 

units called productions” (Anderson & Schunn, 2000, p. 3). It is featured as “goal-oriented and 

mediates problem-solving behavior” (Corbett & Bhatnagar, 1997, p. 245). Essentially, declarative 

knowledge is regarded as the “direct encoding of things in our environment” whereas procedural 

knowledge is the “direct encoding of observed transformations” (Anderson, 1996, p. 364). The 

effectiveness of learning thus relies on the “amount of knowledge encoded and the effective 

deployment of the encoded knowledge” (Anderson, 1996, p. 355).  

Grounded in ACT-R theory, a cognitive skill is defined to consist of both “goal-related 

domain knowledge” and “goal-independent procedural knowledge” (Steenbergen-Hu & Cooper, 

2014, p.331). The acquisition of a cognitive skill is achieved through a process of applying 

respective declarative knowledge in the context of problem-solving activities (Koedinger & 

Anderson, 1998).  When a cognitive skill is mapped to procedural knowledge, it is encoded as a 

series of independent production rules in an “if-then” construct and problem-solving goals 

(Anderson, 1996; Corbett & Bhatnagar, 1997). By matching these rules to the student model, a 

cognitive tutor is able to track the steps of students’ cognitive processing, diagnose their 

misconceptions, and offer appropriate instructions to remediate their knowledge (Fournier-Viger, 

Nkambou & Nguifo, 2010). This process is called model tracing.     

In MT, production rules are “condition-action units which respond to various problem-

solving conditions with specific cognitive actions” (Anderson & Schunn, 2000, p. 3).  Their 

“conditions and actions” are described “in terms of declarative structures” (Anderson, 1996, p. 

356). A typical production rule in a cognitive tutor describes “how to retrieve declarative 

knowledge to solve problems” in an “if-then” format (Anderson, Matessa, & Lebiere, 1997, p. 439). 

It operates by matching “the problems’ goals and current state” and by articulating “new sub-

goals” (Sklavakis, & Refanidis, 2008).   

Anderson (1993) provided an example of a production rule for programming recursion, 

which involves “responding to some goal, retrieving information from declarative memory, and 

possibly taking some action or setting a subgoal” (Anderson, Matessa, & Lebiere, 1997, p. 441). 

This production rule only actualizes when its conditions are “satisfied by the current knowledge in 
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declarative memory” and may lead to “creating new declarative structure” (Anderson, 1996, p. 

356). Anderson’s (1996) production rule follows: 

 

IF the goal is to identify the recursive relationship in a function with a number 
argument   

THEN set as subgoals to 

1. Find the value of the function for some N 

2. Find the value of the function for N- 1 

3. Try to identify the relationship between the two answers. (p. 355) 

 

Thus, for step 1, when N = 5, factorial (5) = 120; for step 2, N-1=4, factorial (4) = 24. With 

all its conditions satisfied, it could lead to a new declarative structure that factorial (N) = factorial 

(N-1) x N. By “the firing of such production rules” in specific problem-solving contexts in MT, 

knowledge acquisition occurs “step by step” in the activation process with regard to the 

deployment of encoded knowledge (Koedinger et al., 1997, p. 441). It involves generating a large 

number of production rules relating to task goals, task states and actions to achieve those goals 

(Koedinger et al., 1997). 

The strength that MT has for student modeling is the large amount of traced performance 

and reasoning data that are captured while students are learning. Thus, MT is sensitive to 

students’ progress, thereby enabling it to provide a wide variety of effective tutoring services. For 

instance, with the dynamic evaluation of a student’s current knowledge state, it has the 

information needed to recommend appropriate steps for further problem-solving and adapting the 

pace of instruction to students’ individual progress. When a weak knowledge area is identified, it 

offers “targeted, high-quality remediation” to fix the knowledge gap according to the growing 

complexity of goal structure for that student’s learning (Kodaganallur, Weitz, & Rosenthal, 2005, 

p.117). MT enables students to learn in the context of problem-solving activities through the 

learning-by-doing paradigm (Koedinger et al., 1997).    

 One well-known limitation of the model tracing technique involves the step-by-step 

tracking of students’ problem-solving behaviors. Thus, it requires a large number of production 
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rules and solution paths to support this effort. Developing just one production rule for a cognitive 

tutor requires 10 hours or more of development, depending on the complexity required (Anderson, 

et al., 1995). Therefore, it is time-consuming and expensive to develop such a cognitive model. 

Furthermore, MT can only be applied to those domains in which tasks related to problem-solving 

strategies or solutions are explicit and clear. For many ill-defined domains such as law, writing or 

language learning, when strategies for solutions cannot be easily defined, it is practically 

impossible to map the domain knowledge to prescribed rules or actions (Fournier-Viger, Nkambou 

& Nguifo, 2010).  

In sum, MT offers a robust student modeling technique to trace performance accurately 

and to identify misconceptions. By representing students’ competency in production sets, it 

situates students in problem-solving contexts where they can master targeted and complex 

cognitive skills (Anderson et al., 1995). 

 

2.2.3. Expectation and Misconception Tailoring (EMT)   

AutoTutor is an ITS that engages students in natural-language dialogues for tutorial 

instruction, and it has been widely applied in many subject domains (e.g. computer literacy, 

physics, behavioral research method, etc.) for over two decades of research development (Wolfe, 

et. al, 2013). Due to the inherent complexities of natural language processing and open-ended 

attributes of human conversations, using tutorial dialogues to exchange ideas has been 

challenging for ITS research. Technical breakthroughs in the fields of computational linguistics, 

informational retrieval, artificial intelligence, and discourse processes have made it feasible to 

capture dialogue patterns regarding domain knowledge, self-explanations, goals, questions, 

arguments and other forms of discursive dialogue during knowledge construction (Graesser, et 

al., 2004).    

AutoTutor was built under the assumption that deep learning occurs when learners 

actively participate in information processing in which they self-explain what they learn and justify 

relevant causal relationships (VanLehn, Jones, & Chi, 1992; Wolfe et al., 2013). Natural language 

dialogues (NLP) can facilitate this process through “some conversational contexts” that involve 

“imprecise verbal content, a low to medium level of user knowledge about a topic, and earnest 

literal replies” (Graesser et al., 2004, p.181). Following what most human tutors do in tutoring, 
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AutoTutor adopted a tutorial NLP that simulates the kind of discursive exchanges between human 

tutors and students when scaffolding learning, namely expectation and misconception tailored 

dialogue (EMT). EMT-based tutors such as AutoTutor encourage students to articulate and 

explain their learning and reasoning when solving particular problems (e.g., Graesser, Person, 

Harter, & the Tutoring Research Group, 2001). EMT-based and human tutors are similar in that 

correct answers are expected for particular questions or appropriate steps are anticipated in a 

procedure; these are called expectations in EMT. Misconceptions are also detected when tutors 

track students’ reasoning in problem-solving activities and are subsequently correct following the 

system feedback received. Typically, an EMT-based tutor has a list of expectations and 

misconceptions for corresponding key questions in the subject domain and coaches students 

through dynamic dialogue exchanges. Both expectations and misconceptions form the domain 

model in EMT tutors and are analogous to MT tutors in that expectations are similar to expert 

knowledge whereas misconceptions are similar to buggy libraries. 

AutoTutor uses an animated conversational agent to deliver dialogues whereas students 

submit responses by using a keyboard (Graesser et al., 2004). Each expectation is associated 

with a set of pumps, hints and prompts, presented in order by AutoTutor, to encourage students 

to elaborate on their answers while advancing conversational moves (Graesser, Olney, Ventura, 

& Jackson, 2005). The agent follows the “pump → hint → prompt → assertion cycle” in scaffolding 

students to complete all expectations (D’Mello, & Graesser, 2012, p.10). While dialoguing with 

students, AutoTutor periodically verifies if an expectation is successfully covered by requiring 

students to articulate the answers. When misconceptions in reasoning are detected, relevant 

instructional supports such as short feedback, corrections, and summaries are presented to help 

the student revisit concepts and correct erroneous statements (Nye, Graesser, & Hu, 2014). If the 

student still fails to answer the question, an assertion with correct information is provided to the 

student and AutoTutor sets an appropriate expectation adapted to the knowledge state of the 

student. This process repeats until all expectations are met and all misconceptions are corrected 

for all requisite problems.  

AutoTutor uses Latent Semantic Analysis (LSA), with its “conceptual pattern-matching 

algorithm”, to evaluate the quality of students’ discursive input as measured by expectations and 

misconceptions (Graesser et al., 2004, p.185). LSA is a statistical mechanism that measures the 

semantic similarity of texts such as words, paragraphs, and essays. Consequently, it is often used 

for pattern recognition, pattern matching, and pattern completion operations (D’Mello, & Graesser, 
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2012; Graesser et al., 2004). In EMT-based tutors, LSA is used to evaluate the probability that an 

approximate semantic match between the students’ responses and the ideal answer has been 

achieved (Graesser et al., 2005; Wolfe et al., 2013). Accordingly, the tutor is able to adapt the 

instruction given to students based on the analysis derived from this comparison (Kopp, Britt, 

Millis, & Graesser, 2012; Wolfe et al., 2013).   

In AutoTutor, the LSA algorithm was used to calculate “the proportion of expectations 

covered, using varying thresholds of cosine values on whether information in the learner essay 

matched each expectation” (Graesser et al., 2004, p.185). Specifically, it defines that each 

Expectation Ei is considered fully learned by a student when “the content of the student’s 

cumulative set of turns meets or exceeds a threshold T in its LSA cosine value (which varies from 

near 0 to 1)”, which means that “Ei is covered if the cosine match between Ei  and the student 

input I (including turns 1 though N) is high enough: cosine (Ei, I) ≥ T” (D’Mello, & Graesser, 2012, 

p. 12).  Similarly, when a student input I matches a misconception M with a match score higher 

than the threshold T, the student is diagnosed with the misconception. To make the model more 

accurate, the LSA settings can be fine-tuned to achieve the best match between input texts and 

expectation texts. 

The quality of interactions between learners and tutors impacts the quantity and quality of 

learners’ responses when answering questions through mixed-initiative dialogues, thereby 

affecting their learning performance (Wolfe et al., 2013).  The EMT framework supports a 

discourse pattern that engages students in deep reasoning and effective knowledge construction 

and makes feasible the measuring of their learning outcomes at a fine-grained level.   

 

2.2.4. Constraint-Based Modeling (CBM)   

Constraint-based modeling (CBM) is another prominent technique for student modeling 

widely used in intelligent tutoring systems (e.g. Mitrovic, Martin& Suraweera, 2007; Mitrovic, 

2012). Since the first CBM tutor SQL-Tutor was developed in 1995, CBM has been extended to 

support not only domain knowledge modeling but also student knowledge modeling, affect, 

metacognitive skills, and collaborative skills (Mitrovic, 2012). Grounded on Ohlsson’s (1994) 

constraint-based modeling and the theory of learning from errors (1996), CBM is fundamentally 

different from the model tracing approach in that it represents knowledge “in the form of 
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constraints”, specifying “abstract features of correct solutions” instead of “generating problem-

solving paths” and “performing tasks in a domain” through a set of pre-defined production rules 

(Mitrovic, Martin, & Suraweera, 2007, p. 38).   

The underlying assumption of CBM is that correct solutions will never violate any 

corresponding principles in a domain (Mitrovic, 2012). In other words, when a specific solution 

does not violate any pre-defined constraints, “it is deemed correct” (Mitrovic, Martin & Suraweera, 

2007, p. 39). Unlike MT, CBM does not attempt to capture the exhaustive correct and incorrect 

actions that students take while learning. Rather, CBM fundamentally focuses on “the domain 

principles that every correct solution must follow” (Mitrovic, 2012, p. 64). Therefore, it is only 

necessary to define a set of constraints when mapping specific solutions to particular domain 

principles and to provide appropriate feedback to students’ whenever their responses violate 

these principles. The sequence of students’ actions that leads to errors is not central to the CBM 

model. Although CBM provides students with remediating feedback, this modeling technique is 

not dependent upon students’ misconceptions. Therefore, the student model based on CBM does 

not “represent” a student’s actions but the “effects” to which his/her actions have led (Mitrovic, 

2012, p. 41). 

 Each constraint consists of three elements: a relevance condition, a satisfaction condition 

and a set of feedback messages (Martin, 1999). It is represented “in an ordered pair (Cr, Cs)” in 

which Cr is the relevance condition and Cs is the satisfaction condition” (Mitrovic, 2010, p. 41). 

Stellan & Mitrovic (2006) defined the general form of a constraint as follows: 

IF the properties Cr hold    

THEN the properties Cs have to hold also (or else something is wrong) (p.8).  

The relevance condition describes the context in which the constraint is applicable. The 

satisfaction condition defines the condition that holds true for a correct solution to satisfy the 

relevance condition (Koedinger & Anderson, 1998). The feedback messages are what the tutor 

provides to students to repair their knowledge when a violation is committed (Martin, 1999). It is 

notable that the two conditions specified in the constraint form have a loose connection with each 

other, only suggesting that if Cr is true, then Cs “ought” to be true (Mitrovic, 2010, p.65). 

In CBM, there are two types of constraints: syntactic and semantic (Martin, 1999). A 

syntactic constraint represents the “syntactic properties of the domain” and examines the syntax 

of students’ queries (Stellan & Mitrovic, 2006, p. 8). A semantic constraint is defined by the domain 
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and used to match the meaning of a student’s solution to the ideal one to evaluate its correctness 

and is generally more complex than a syntactic one, (Martin, 1999; Stellan & Mitrovic, 2006). Each 

constraint is a knowledge unit associated with “a very specific error” (Martin, 1999, p. 31). 

Therefore, constraints afford being “evaluative” and “making [a] judgement” about solutions and 

thus enable the identification of students’ errors. In comparison, production rules describe the 

actions to take when the goals and conditions in the IF clause are met and are thus often regarded 

as being “generative” in nature and unable to explicitly diagnose students’ errors (Mitrovic, 2010, 

p. 65). Sometimes, however, a constraint allows for multiple solutions and, in such cases, it can 

also be used to evaluate alternative solutions, similar to how MT tutors use production rules to 

generate all possible correct solutions (Mitrovic, 2012). 

In the CBM paradigm, constraints are used to define domain knowledge as well as to 

represent students’ knowledge. In a CBM student model, each constraint has three counters that 

record its relevance to students’ answers. Specifically, it includes the number of times the 

constraint is “relevant for the student solution”, the number of times it is “relevant to the ideal 

solution”, and the number of violations students commit (Martin, 1999, p. 32). Such information is 

used to determine the appropriate set of new problems that students should be given in relation 

to their mastery level.  A record of satisfied and violated constraints are stored in the short-term 

student model and used to reflect the cognitive state of the student as he/she progresses in the 

subject over time (Mitrovic, Martin & Suraweera, 2007).   

Compared to several student modeling techniques, including MT, CBM is “computationally 

simple” and only requires “pattern matching” by using constraints to compare students’ solutions 

to pre-defined correct solutions (Mitrovic, Martin & Suraweera, 2007, p. 39). Therefore, CBM is 

particularly useful in domains in which the order of the procedural steps when problem-solving is 

not critical to finding the solution; e.g., database design (Stellan & Mitrovic, 2006). Furthermore, 

CBM is flexible in that students can explore alternative solution paths as long as doing so does 

not violate the prescribed constraints in a given domain. CBM, thus, supports creativity among 

students (Mitrovic, 2010). Since CBM models a knowledge domain with all ideal solutions, “in 

terms of pedagogically significant state”, at an abstract level, it greatly reduces the amount of 

authoring work required to design and implement a CBM tutor (Mitrovic, 2012).  

One well-known limitation of CBM in student modeling is that it focuses primarily on the 

relevance and satisfaction conditions of constraints in a domain and does not “consider it 

important to know how the student arrived at a specific problem state” (Koedinger & Anderson, 
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1998, p.166). Therefore, with insufficient knowledge of students’ procedural steps, CBM-tutors 

are incapable of determining whether a student solves the problem as result of true understanding 

or just by guessing. This limits CBM’s ability to recommend the future steps that learners must 

take (Fournier-Viger, Nkambou & Nguifo, 2010). Nevertheless, CBM has developed, over the 

years, from a theoretical idea to a mature student modeling technique with unique strengths in 

offering adaptive tutoring support to learners in both well- and ill-defined domains and tasks (e.g. 

Suraweera & Mitrovic, 2004). CBM has also been combined with other modeling approaches to 

reach optimal learning outcomes (Mitrovic, 2012). 

 

2.2.5. Bayesian Network Modeling   

Bayesian networks (BNs) have been widely used in many intelligent tutoring systems as 

a powerful student modeling technique. For instance, Conati and Zhao (2004) used a BN to model 

grade 6 and 7 students’ cognitive and affective states as they practice number factorization in the 

educational game Prime Climb. Andes is another intelligent tutoring system that uses a BN. Andes 

was developed to help college students in their homework to improve the learning of physics 

(VanLehn, Lynch & Schulze, 2005). Students’ problem-solving steps were tracked by a static 

Bayesian model, wherein nodes and links represent the extent of students’ mastery. Suebnukarn 

& Haddawy (2007) described a collaborative tutoring system Comet for medical problem-based 

learning (PBL).  Comet also uses a BN and interaction log to model the hint strategies commonly 

used by human tutors in medical PBL to guide students to construct relevant case hypothesis; to 

track respective learning activities; and to develop clinical-reasoning skills (Suebnukarn & 

Haddawy, 2007).   

As opposed to many student modeling techniques, a Bayesian network (BN) is also a 

“graphical and probabilistic modeling framework” that affords “high representative power” in the 

form of a networked  structure, which can “be derived from data” and, thereby, reduce “the need 

for substantial knowledge engineering” (Desmarais & Baker, 2012, p. 16). BNs offer robust 

probabilistic computational power to handle uncertainty surrounding observations made as 

students’ learn and to support the diagnostic analysis of their cognitive states during learning 

(Santhi, Priya, & Nandhini, 2013). A more detailed description of BN student modeling is 

elaborated in section 2.5 of this chapter. 
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2.3. Prior Quantitative Reviews of ITSs         

In this section, I summarize and compare the results of four quantitative, analytical articles 

that have been recently published on ITSs. The reviews of these are organized chronologically in 

terms of publication date. I elaborate upon the primary findings of these reviews to provide insights 

on design science and the domain of ITSs. The effect sizes reported in these reviews were 

calculated and interpreted with regard to the standardized mean difference between groups.  

2.3.1. A Review of the Effectiveness of Tutoring Systems 

VanLehn (2011) conducted a quantitative analysis comparing the effectiveness of human 

tutoring, computer tutoring and no tutoring on STEM subjects. This review covered 95 comparison 

studies, published between 1975 and 2010, and assessed effects across conditions. To explore 

the effectiveness of interaction granularity, VanLehn categorized computer tutoring into three sub-

types: substep-based tutoring, step-based tutoring and answer-based tutoring.  

VanLehn (2011) found that human tutoring, when compared to the no tutoring condition, 

only yields an effect size of 0.79 standard deviation units. This result is surprising because it is 

far from the 2.0 sigma effect reported in the Bloom (1984) studies. After investigating Bloom’s 

studies more closely, VanLehn explained that the observed effect could be attributed to the 

mastery learning expectations that tutors held for their students. After reviewing other studies that 

compared human tutoring to no tutoring, with the highest reported effect size being 0.82, he further 

asserted that the mean effect size of human tutoring on students should be closer to 0.79. In 

reference to the effect size of d = 0.76 in step-based tutoring, VanLehn concluded that ITSs could 

be nearly as effective as human tutors and posited that the effects of ITSs can be increased by 

improving “the [controlling] parameters [of]...its pedagogical decision-making” (p.213). The overall 

effectiveness of all tutoring types range from 0.31 to 0.79.  

VanLehn (2011) also noted that when the interaction granularity in user interface 

decreases, the effect size increases accordingly; e.g., from answer-based tutoring to step-based 

tutoring, the effect size of ITSs increases from 0.31 to 0.75. However, there seems to be an effect 

ceiling to the interaction granularity; when it reaches the “peak” effect, further decreasing it 
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produces little increase in the effect size. This observation appears to be consistent with 

VanLehn’s conclusion that the mean effect size of computer tutoring is close to 0.79.    

In addition, Van Lehn’s review also suggests that human tutoring, substep-based and 

step-based computer tutoring all yield comparable effects of ITSs on student achievements 

because all three types of tutoring support students in bridging their knowledge gaps and in 

scaffolding them toward correcting mistakes on their own (VanLehn, 2011). Therefore, VanLehn 

(2011) recommended that more step-based tutoring systems for STEM courses be developed to 

help students with doing their own homework.   

 

2.3.2. A Review of the Effectiveness of ITSs on K-12 Students 

Steenbergen-Hu and Cooper (2013) conducted a meta-analysis evaluating the 

effectiveness of ITSs in K-12 mathematical learning. This analysis involves 34 empirical studies, 

published between 1997 and 2010. The meta-analysis compared the effectiveness of ITSs with 

studies mainly conducted in traditional classrooms as well as some studies on human tutoring or 

homework practices. The mathematical learning under review includes basic math and algebra 

for a range of students, from elementary to high schools.  

Overall, the researchers concluded that ITSs show no statistically significant effect on K-

12 students when compared to traditional classroom instruction, using a random effects model, 

with a Hedge’s g that ranged from 0.01 to 0.09. For the few studies that compared ITSs with 

human tutoring or homework practices, a small to modest effect, ranging from 0.20 to 0.60, was 

found on the effectiveness of ITSs over these two conditions. Although these results were 

consistent with previous reviews in educational technology, the researchers reported that the 

effect size of ITSs in the current meta-analysis seems to be smaller than those found in other 

reviews. A plausible explanation for the small effect could relate to whether ITSs were used as 

the primary instruction or supplemented with other instructional methods. The researchers 

cautiously concluded that computer technology is more instructionally effective when used as a 

tool to support rather than to replace traditional teaching and practices.   

Several moderator variables were explored to understand the impact of ITSs on student 

achievements over other instructional modes. By analyzing the ITS duration variable, 
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Steenbergen-Hu and Cooper (2013) found out that the influence of ITSs is greater for students 

with less than one school year as compared to those with one school year or more. Steenbergen-

Hu and Cooper concluded that this difference may have resulted from the higher motivation levels 

that students experience when first using a novel ITS and that can “wear off” over time (p. 984). 

It is also possible that the researchers’ difficulty in maintaining close involvement in the daily 

instructional activities, over the duration of the study, may have had an impact on the extent to 

which ITSs were used during learning.  Steenbergen-Hu and Cooper (2013) also found that ITSs 

were found to be less effective for student groups identified as lower performers in comparison 

with general student groups. This finding raises concerns that the use of educational technology 

could potentially widen the learning gap experienced by students who are already disadvantaged 

relative to other students in terms of their performance, aptitude, or background. Similar findings 

have also been reported in other reviews (e.g. Ceci& Papiero, 2005).   

Steenbergen-Hu and Cooper (2013) identified three salient issues in relation to the 

methodology of a study. First, the effectiveness of ITSs is related to the timing of the evaluation 

–student performance was found to be the highest when data were collected before the end of 

the school year. Second, Steenbergen-Hu and Cooper observed that ITSs were reported as more 

effective in relation to course-related outcomes rather than in relation to standardized tests. Third, 

studies with smaller sample sizes reported greater average effect sizes than those with larger 

sample sizes. As suggested by the researchers, these results echo similar findings in previous 

reviews of educational technology, which found that varying methodological features (e.g. 

experiment duration) could potentially impact the “magnitude” of effect sizes of study interventions 

(p. 984). In my view, this study has provided insight on the specific contexts and ways in which 

an ITS can be designed to promotion better learning outcomes.  

 

 

2.3.3. A Review of the Effectiveness of ITSs on College Students 

One year later, Steenbergen-Hu and Cooper (2014) published another meta-analysis on 

the effectiveness of ITSs for college students’ academic learning. This analysis included 39 

empirical studies, published between 1990 and 2011, with 22 different types of ITSs. A variety of 
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subject domains were covered by this study, including physics, statistics, computer science, 

mathematics, business (accounting and economics) in higher education.  

Overall, this meta-analysis revealed that ITSs have a moderate positive effect on college 

students’ achievement, with an effect size that ranges from g = .32 to .37. Although ITSs were 

found to be less effective when compared to human tutors, they produced higher learning 

outcomes than all other types of instructional modes; e.g., traditional classroom instructions, 

textbooks, computer-assisted instructions, lab, etc. The effects of ITSs were found not to be 

significantly distinguishable from other instructional modes on comparison variables such as 

different ITSs, subject domains, duration of ITS treatment, or degrees of use. These results 

confirm findings from previous reviews in that computer-assisted tools were generally more 

effective than traditional instruction in influencing achievement in learning within higher education.  

The researchers also compared these results to findings from the previous meta-analysis 

they had conducted for K-12 students on mathematical learning. Steenbergen-Hu and Cooper 

(2014) suggested that ITSs may have been more effective for the older learners because they 

generally had better prior knowledge and learning skills in a computer-assisted learning 

environment than the younger learners had. Consequently, the older learners may have benefited 

more from having used ITSs than the younger ones.  Thus, in addition to methodological design, 

duration of the intervention, and experimental settings, the grade level of learners is another 

variable that must be considered when investigating ITSs. 

 Based upon an analysis of moderator variables, Steenbergen-Hu and Cooper (2014) 

identified two key findings. One is that the ITS effects were significantly higher in studies 

conducted during the earlier years of schooling than those conducted later. However, the 

researchers cautioned that this result is not conclusive because grouping studies based on time 

is subject to arbitrary or subjective categorizations, thereby potentially leading to variable results. 

The researchers also discussed the relationship among the teacher, pedagogy, and ITSs on 

learning outcomes. Steenbergen-Hu and Cooper found that teachers and teaching pedagogy play 

critical roles in boosting the effectiveness of ITSs in computer-assisted learning environments, 

drawing attention to the need for the future exploration of this research stream.  

 Three areas of exploration for future ITS researchers were identified by Steenbergen-Hu 

and Cooper (2014). Based upon the observed effects of ITSs on learning, the first area is that ITS 

researchers pay more attention to less structured or ill-defined subject domains as studies have 
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mostly been focused on well-defined domains such as computer programming, physics, and 

algebra. Based upon the results of the moderator analysis, the second area involves the 

exploration of how the level of instructor involvement and the relevance of pedagogical activities 

facilitates the effective use of ITSs during learning to maximize the benefits of ITSs, such that 

optimal learning outcomes are achieved. Also, with data supporting the finding that an ITS is a 

good metacognitive tool to support self-regulation, the third area of study recommended by the 

researchers involves research questions that explore how ITSs can scaffold or facilitate the 

development of self-regulatory skills that foster learning.    

 

2.3.4. A Review of ITS in Computer Science Education 

Following the holistic analysis of the effects of ITSs comparing the learning outcomes of 

ITS and non-ITS instruction across all disciplines (Ma et al., 2014), Nesbit et al. (2014) conducted 

another meta-analysis focusing particularly on computer science education, as ITSs have been 

most commonly applied to this subject domain. This analysis covers 22 studies, published 

between 1998 and 2013, involving 1,447 participants. The topics include programming languages 

(C, C++, Java, etc.), computer literacy, database design, software design, and system security.      

The researchers found that, overall, the use of ITSs in computer science education yields 

a moderate, positive effect size, g = .46, with a standard error of the mean .05. To fully understand 

why ITSs are more effective than non-ITS instruction, five key moderators (comparison 

instruction, student modeling, instructional use of the ITS, use of feedback, and misconceptions 

modeling) are identified to explore what may have contributed to the effectiveness of ITSs, at a 

fine-grained level, using a fixed-effects model. For comparison instruction, the result suggests 

that ITSs led to a significantly better learning outcome than two kinds of non-ITS instruction 

including teacher-led, group instruction (g = .67) and non-ITS, computer-based instruction (CBI) 

(g = .89). The researchers suggested that the effectiveness of ITSs over those two instructional 

modes could be associated with the student modeling component in ITS. It is possible that 

personalized instructions and feedback, optimized learning path and task assignments, which are 

supported in the ITS’ student model, may have assisted students in learning content more deeply, 

at a finer level of granularity, and helped them in overcoming learning challenges in a more timely 

fashion than had the non-ITS instructional methods .   
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Based on this review, an insufficient number of studies necessary to conclude that ITSs 

lead to better achievement than one-to-one human tutoring or textbooks/workbooks exists. Still, 

ITSs have been found to greatly outperform other types of instructions, whether delivered as the 

primary instructional method (g = .45) or combined with other instructional activities (g = .55). This 

result indicates that, regardless of whether misconceptions were modeled (g = .41) or not modeled 

(g = .68), ITSs were more effective than the non-ITS modes included in this analysis. No 

statistically significant difference was found between the two effect sizes of misconceptions 

modeling in ITSs.  

For student modeling, using constraint-based ITSs has been found to be more effective 

than non-ITS studies, with a small but statistically significant effect. For other commonly reported 

types of student models such as model tracing and Bayesian network, an insufficient number of 

studies exists to conclude that ITSs are more favorable. To evaluate the influence of the various 

student modeling methods, the researchers recommend that more theoretical work on defining 

and categorizing these heterogeneous methods be done. Among the 22 studies, only one study 

did not provide feedback. Instead, adapted tasks were assigned to students in this study. A non-

significant effect size was found. This result is inconsistent with that reported in Ma et al. (2014), 

who found that ITSs with only adaptive task assignments produced better learning outcomes than 

non-ITS modes. To understand this discrepancy, the researchers recommended that more 

studies be conducted to explore the impact of adaptive task assignments on student performance. 

It was also suggested that more instructional functions could be implemented in ITSs to provide 

more adaptive instruction that support students’ individualized learning experiences.  

Overall, this review provides a great opportunity to tap into the most commonly taught 

subject domain, computer science, in ITS research. The power of ITSs over non-ITS systems on 

student performance was evident as a result of its adapting of tutoring strategies over time, based 

on an analysis of the individual ITS tutoring components. ITS researchers were also urged to work 

on a common framework to understand and evaluate different student modeling techniques and 

to pay more attention to the effects of individual instructional components when conducting future 

ITS studies.  
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2.4. Rationale: the Need for a Comprehensive Review in Student 
Modeling Techniques   

The four quantitative reviews of ITSs evaluate the effectiveness of ITSs over other 

instructional methods and have brought many insights that can be applied to ITS research. They 

covered a wide variety of subject domains and included a large number of students who belong 

to a diversity of age and educational levels. They also examined a number of moderator variables 

and how these contributed to the effectiveness of ITSs and drew conclusions that ITS researchers 

can use to design more useful ITSs in the future. The insights gained from the recommendations 

and suggestions in the analyses in these reviews are valuable and well received.  

In general, a meta-analysis is a statistically powerful means to conduct primary reviews 

on evaluation studies and identify patterns in the study domain. Its strength lies in its being able 

to synthesize all available evidence from multiple independent studies and extract useful 

information to test hypotheses (Greco, Zangrillo, Biondi-Zoccai, & Landoni, 2013). Thus, meta-

analysis provides a rigorous and formal method by which to integrate effect sizes and provides 

results that can be used to derive useful insights from the data.  However, a meta-analysis review 

is limited in its coverage of all literature that is published in a field because included studies must 

meet strict selection criteria. Among the four meta-analysis reviewed, researchers were only able 

to select those empirical studies that included at least one comparison group against which the 

ITS treatment group could be compared. Therefore, these meta-analyses excluded a large 

number of longitudinal empirical studies that evaluated the effectiveness of ITSs through pre- and 

post-tests within the same group of participants. Thus, only a small subset of all ITS evaluation 

studies were reviewed. Furthermore, researchers were often unable to generalize their findings 

because of the limited number of studies included in their analyses. Consequently, these 

researchers needed to interpret their results with caution. For instance, Steenbergen-Hu and 

Cooper (2013) emphasized that the influence of differences in the duration of interventions on the 

differential effectiveness of ITS should be interpreted with caution, given that only 31 independent 

studies were analyzed. Further research is required to confirm the conclusion.  

In addition, three out of the four reviews reported the relative effectiveness of ITSs either 

in a specific subject domain (e.g., computer science in Nesbit, et al., 2014) or a specific student 

group (e.g., college students in Steenbergen-Hu and Cooper, 2013). The other two reviews focus 

on studies comparing ITSs and non-ITS conditions. None of the four analyses pay detailed 

attention to the student model techniques, which is a central concern of ITS research.  
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Considering this gap in the current reviews, I propose that a need exists for a 

comprehensive review of student modeling techniques in the field of ITSs. Bayesian networking 

is a powerful graphical and probabilistic modeling framework, which has been widely used in a 

wide range of applications (Desmarais & Baker, 2012). With its popularity in many ITSs for student 

modeling, BN provides a good starting point for further examining the contributions of student 

modeling methods to the effectiveness of ITSs.  

In the next section, I introduce the origin, formalism, and development for a Bayesian 

network, and discuss its usefulness in handling uncertainty and predicting future events in 

complex domains. Then, I expand the discussion on three specific BN approaches to student 

modeling and their applications in ITS. Furthermore, I present the strengths and limitations of BNs 

in student modeling with the aim of depicting its characteristics to understand its potential in 

supporting future ITS developments. 

 

2.5. Bayesian Network for Student Modeling  

Bayesian networks (BNs), also known as belief networks, are an efficient approach to 

manage uncertainty in artificial intelligence (Santhi, Priya, & Nandhini, 2013). They belong to the 

family of “probabilistic graphical models (GMs)” (Ben-Gal, 2007, p. 307,) and are a “graphical 

description of a probability distribution that permits efficient probability propagation combined 

with a rigorous formalism” (Santhi, Priya, & Nandhini, 2013, p.3).  

The theory of BNs was originally developed from the work of Thomas Bayes, an 18th 

century mathematician and theologian, who published ‘An essay towards solving a problem in the 

doctrine of chances’ in the Philosophical Transactions of the Royal Society of London, 53: 370- 

418;’ in 1764. This essay “contains a special case of Bayes’ Theorem…concerned with 

conditional probabilities” (Holmes& Jain, 2008, p.1). The conditional dependencies of variables in 

BNs are calculated using statistical and computational methods; therefore, BNs are considered 

to have a multidisciplinary origin in areas such as “graph theory, probability theory, computer 

science, and statistics” (Ben-Gal, 2007, p. 307).  
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Since the late 1980s, BNs have been widely applied to user modeling and student 

modeling (Conati, 2010). It is a powerful modeling technique that has been well received in  areas 

such as data mining, machine learning, speech recognition, medical diagnosis, natural language 

processing and so on (Ben-Gal, 2007). BNs are capable of handling uncertainty in knowledge 

representation, reasoning and inferences, and diagnostic and pattern recognition (Ramírez-

Noriega, Juárez-Ramírez& Martínez-Ramírez, 2016).  

Student learning is often considered a source of unreliable information (Ben-Gal, 2007). 

The process of reasoning and diagnosing students’ current level of knowledge and mental state 

involves making inferences based on uncertain observations, behaviors and measurements 

because of the dynamic nature of students’ interaction with resources, instructors and learning 

environments (Chrysafiadi, & Virvou, 2015). The embrace of BNs lies in its capability to handle 

uncertainty in student modeling, “encoding expert knowledge, and performing automatic 

probability update in light of new evidence” (Ting, Khor & Sam, 2012, p. 576).  

In the following sections, I elaborate on the details of a BN to provide background on its 

origin and development. I first introduce the definition of BNs. Following that, I discuss three 

primary types of BNs and their applications in ITS. I then explore the strengths and constraints of 

BNs in student modeling and provide examples of how they are employed to handle uncertainty 

efficiently when addressing real-life problems.   

 

2.5.1. What is Bayesian Network (BN)? 

  A typical BN provides a theoretical framework, based on probability theory, for handling 

uncertainty in artificial intelligence (Santhi, Priya, & Nandhini, 2013). It is a graphical 

representation of a probability distribution over a set of random variables in a given domain 

(Gamboa & Fred, 2002; Holmes& Jain, 2008). The graphical structure of variables in a BN is 

generally called a directed acyclic graph (DAG), which consists of a set of nodes representing 

random variables and a set of directed edges indicating direct dependence among those variables 

(Ben-Gal, 2007). Thus, it combines “graph theory and Bayesian inference” to collect evidence 

and update the current belief in the given network (Nguyen & Do, 2009, p. 42). 
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The DAG structure of a BN is often considered the “qualitative” aspect of a BN model 

whereas the network parameters are generally described as the “quantitative” aspect of it (p.307, 

Ben-Gal, 2009). The parameters are defined as “a set of local distributions combined with a set 

of conditional independence assertions”, representing a joint probability distribution (JPD) (Santhi, 

Priya, & Nandhini, 2013, p.453), with each node’s conditional probability distribution depending 

only on its parents (Ben-Gal, 2009). 

A formal definition of a BN is given below by Conati (2002, p. 282): 

“a Bayesian network is a directed acyclic graph where nodes represent random 

variables and links represent direct dependencies among these variables. If we associate to 

each node Xi in the network a conditional probability table (CPT) that specifies the probability 

distribution of the associated random variable given its immediate parent node’s parents (Xi), 

then the Bayesian network provides a compact representation of the Joint Probability 

Distribution (JPD) over all the variables in the network.” 

P(X1, …,Xn) = Π ni= 1 P (Xi | Parents(Xi)) (1) 

The joint probability P(Xn) is calculated in Formula 1, with the node Xi conditionally 

independent from each other. As Gamboa & Fred (2002, p.453) suggested,  

“The BN structure encodes the assertions of conditional independence as a directed 

acyclic graph such that: (a) each node corresponds to a variable; (b) the parents of the node 

corresponding to Xi are the nodes associated to the variables in Πi. The pair formed by the 

structure (graph) and the collection of local distributions, P(Xi | Πi), for each node in the domain, 

constitutes the Bayesian Network for that domain”. Therefore, a BN can be fully defined by its 

graphical structure and associated variables (Heusch, 2007).  

The structure of a BN can be viewed as a knowledge base, representing the beliefs of 

variables in a system and the relationships between them. When an event occurs in the system, 

BN is able to collect them as evidence, infer probabilities given the changes and the existing 

dependencies among the variables, and propagate beliefs throughout the network (Mihajlovic & 

Petkovic, 2001). The structure of the acyclic graph and semantics of a BN determine that each 

variable/node in the graph is “conditionally independent from its non-descendent given its parents” 

(Ghahramani, 1998, p.169). It ensures that no node can be its own ancestor or descendent. Such 
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an attribute serves to reduce the number of network parameters required to “characterize the JPD 

of the variables” and to provide a more efficient approach to “compute the posterior probabilities 

given the evidence” (Ben-Gal, 2009, p. 307). Although the links between variables in BNs 

represent causal relationships that are unidirectional, the propagation triggered by the reasoning 

process of BNs can be performed in any direction (Ben-Gal, 2009).   

 

 

2.5.2. Types of BNs 

In this section, three primary types of BNs are discussed in detail. For each type, one or 

two examples of how the BN is applied to student modeling in an ITS are given. The strengths 

and constraints of each type of BN are then explored to determine the way a model for future 

event predictions can be optimized.    

 

Static BNs 

A typical BN provides an intuitive way to perform JPD over a set of random variables in a 

directed acyclic graph, wherein links represent the casual relationship between those variables 

(Heusch, 2007).  A static Bayesian network is one type of BN that is characterized by its running 

of probabilistic inference over variables with values that do not evolve over time (Conati, 2010). 

What is changed in a static BN is “the belief over the state of these variables” when new evidence 

of state changes in the existing variables is added (Conati, 2010, p. 283).  

A static BN is one type of graphical model that represents events and objects in the real-

world and defines them as a set of random variables with different states (Mihajlovic & Petkovic, 

2001). The links between those variables are represented in directed edges and reflect the causal 

relationship between the observed evidence represented by those variables (Heusch, 2007). 

Each variable in the BN is associated with a probability function, representing the conditional 

independence defined by “the edges leading into the variable” (Mihajlovic & Petkovic, 2001, p. 4).     
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A noteworthy property of a static BN is that it is generally easier to develop and maintain, 

when compared to other types of BNs, e.g. Dynamic BN, as it generally contains a smaller set of 

parameters and a simpler network structure. Therefore, static BNs are computationally more 

efficient and faster than a DBN. Because of this attribute, a static BN is often used to initiate 

network parameters and to expand over time with the increasing complexity required for dynamic 

processes (Ricks & Mengshoel, 2010). 

In student modeling, this attribute of a static BN is often used as a tool to evaluate students’ 

knowledge (Conati, 2010). For instance, the student model in Andes, an ITS for Newtonian 

physics, was built in a static BN, representing task-specific knowledge and making inferences on 

the probability that mastery has been achieved by a student (Conati, Gertner, & VanLehn, 2002). 

When a student starts working on a specific exercise, all related inferential information for this 

problem is loaded from the pre-defined problem solution graph to the static BN structure including 

its physics rules, relevant solution steps, and tutoring strategies. Based on the last exercise they 

solved and their previous solution steps, students are evaluated on their capability to apply 

specific physics rules and solution elements and the probabilities of the mastery of corresponding 

knowledge (Conati, Gertner, & VanLehn, 2002). 

A static BN is not capable of dealing with temporal information. It requires external 

resources to process time-related information to be encoded into the collected evidence (Ricks & 

Mengshoel, 2010). To overcome this challenge, BNs are extended to deal directly with temporal 

and sequential variables and model dynamic causal influences over time in complex systems. 

 

Dynamic BNs 

As previously discussed, traditional BNs cannot handle temporal information (Hernandez-

leal, et al., 2011). The dynamic Bayesian network (DBN) is a modeling technique used to 

represent dynamic domains with temporal or sequential data (Vlasselaer, Meert, Van Den Broeck, 

& De Raedt, 2016). Since DBN was proposed by Dean and Kanazawa (1989), it has been widely 

applied to represent and make inferences about sequential events in discrete time (Kwon, & Suh, 

2012). As time proceeds, dynamic transitions require effective temporal updates over the network 

in complex domains. A DBN is capable of capturing such “dynamic causal influences between 
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covariates” and supports the changing nature of a dynamic domain as the system evolves over 

time (Song, Kolar, & Xing, 2009, p. 1732).   

Typically, a DBN consists of “a series of time slices” that capture the values and states of 

all variables at a given time (Sucar, 2015, p. 161). For each time slice, it defines “a dependency 

structure” between the variables as the “base network” and repeats this structure for all time slices 

(Sucar, 2015, p. 161). DBN can be viewed as a set of “slices of a static BN over time”, which 

connect with one another via links (Hernandez-leal, et al., 2011, p.39). Specifically, a static BN is 

created for a specific instance. This structure is then repeated over time. The individual static BN 

variables are connected via arcs across different temporal time slices (Ziani & Motamed, 2007). 

One drawback of DBN is that it can grow very complex. It is unnecessary to use it in 

models that require only a few changes in most variables (Hernandez-Leal et al., 2013). 

Moreover, DBN only allows for a fixed number of time intervals between stages; therefore, it is 

not able to handle models requiring varying levels of time granularity (Hernandez-Leal et al., 

2013). In the next section, a temporal node Bayesian network (TNBN) designed to address 

challenges associated with DBN is introduced to explain how it can be used to manage processing 

and reasoning of temporal information with a less complex computational requirement.  

Temporal BNs 

The temporal node Bayesian network is another type of BN that extends the traditional BN 

to build less complex BNs for temporal reasoning in dynamic domains (Arroyo-Figueroa, & Sucar, 

1999). It is an event-based modeling technique and consists of a set of temporal nodes that offers 

a “compact graphical representation” of domains and defines “time intervals in which events can 

occur” (Fiedler, Sucar, & Morales, 2015, p. 578). Unlike DBN, A TNBN represents changes of 

states at different times instead of the changes of state values. It is capable of handling multiple 

levels of “time granularity” and is used to “manage uncertainty and temporal reasoning” 

(Hernandez-Leal et al., 2013, p. 956). Therefore, it is powerful technique to be applied to domains 

to handle uncertainty in measuring data over time, e.g., it has been used for medical diagnosis, 

which involved analyzing “large amounts of longitudinal data” (Orphanou, Stassopoulou, & 

Keravnou, 2014, p. 134).   

In a TNBN, there are two types of events: instantaneous and temporal. An instantaneous 

event is one that has no time delay before it occurs. This means its child event occurs right after 



 

41 

its parent one takes place. A temporal event refers to one that occurs with possible time delays. 

A temporal node models state changes and time duration with a set of temporal intervals as well 

as  “state changes of a variable” (Hernandez-Leal et al., 2013, p. 956), with each node defined 

by an ordered pair of the value of the variable and the time interval regarding the value change 

for that variable (Arroyo-Figueroa, & Sucar, 1999). The intervals can vary in their number and size 

which allows for multiple levels of time granularity. The temporal nodes are connected by edges 

representing the probabilistic causal-temporal relationship between them (Arroyo-Figueroa, & 

Sucar, 1999). In each node, there is no absolute temporal timing reference because its time 

intervals are relative to its parent node. 

Formally, Fiedler, Sucar, and Morales (2015, p. 579) defined a temporal node as follows: 

Definition 1 A temporal node is a random variable defined by a set of states each 

characterized by an ordered pair (λ, τ ) where λ is the value taken by the random 

variable and τ is the temporal interval [ ti – tf ] (ti and tf are the start and end times of the 

interval, respectively) in which the state change occurred. A default state of no change 

that corresponds to the event “not occurring” is also associated to every temporal node. 

There is at most one state change for each temporal node in the temporal range of 

interest. 

 

Definition 2 Let V be a set of instantaneous and temporal nodes, and E a set of edges 

between those nodes. A TNBN is a pair B = (G, θ) where G = (V ,E) is a directed acyclic 

graph (DAG), and θ is a set of conditional probability distributions that quantify the 

network. 

In general, TNBN is an effective probabilistic graphical model that represents “temporal 

relationship between events and their state changes” and predicts the evolution of dynamic 

temporal processes in discrete time.   

 

2.5.3. Strengths of BNs in Student Modeling  

BNs are a remarkably powerful modeling technique for uncertainty management (Ben-

Gal, 2007). In general, BN offers several advantages for modeling reasoning under uncertainty 
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and for inference processing. Conati (2010, p.287) summarized the following strengths a BN 

possesses for student modeling when compared to other modeling techniques:   

• They provide a more compact representation of the joint probability distribution (JPD) 

over the variables of interest. 

 

• Algorithms have been developed that exploit the network’s structure for computing the 

posterior probability of a variable given the available evidence on any other variable in 

the network. While the worst case complexity of probabilistic inference in Bayesian 

networks is still exponential in the number of nodes, in practice it is often possible to 

obtain performances that are suitable for real-world applications. 

 

• The intuitive nature of the graphical representation facilitates knowledge engineering. It 

helps developers focus on identifying and characterizing the dependencies that are 

important to represent in the target domain. Even when dependencies are left out to 

reduce computational complexity, these decisions are easy to track, record and revise 

based on network structure, facilitating an iterative design-and-evaluation approach to 

model construction. 

 

 

• Similarly, the underlying network structure facilitates the process of generating automatic 

explanations of the results of probabilistic inference, making Bayesian networks very 

well suited for applications in which it is important that the user understands the rationale 

underlying the system behavior, as it is often the case for Intelligent Tutoring systems 

(e.g., Zapata-Rivera and Greer, 2004). 

 

• Finally, Bayesian networks lend themselves well to support decision making approaches 

that rely on the sound foundations of decision theory. This means that selection of 

tutorial actions can be formalized as finding the action with maximum expected utility 

given  probability distributions over the outcomes of each possible action and a function 

describing the utility (desirability) of these outcomes (e.g., Murray et al., 2004; Mayo 

&Mitrovic, 2001). 
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In addition, in the form of a network graph, a BN’s nodes “can represent not only random 

variables, but also hypotheses, beliefs, and latent variables” (Ben-Gal, 2007, p. 5). Therefore, it 

is easy for a BN to represent “both causal and probabilistic semantics” in its structure. Given this 

flexibility, nodes can be used to represent a variety of student characteristics including 

“knowledge, misconceptions, emotions, learning styles, motivation, goals” in a student model 

(Chrysafiadi, & Virvou, 2015, p. 9). This attribute makes it possible to integrate both “prior/expert 

knowledge” and observed data “seamlessly …within a single network” (Mayo & Zealand, 2001, 

p. 127).  

Overall, BNs are a powerful modeling technique to explore the “undetermined 

relationships among variables” and describe “these variables upon discovery” (Niedermayer, 

1998, p. 126). 

 

 

2.5.4. Limitations of BNs in Student Modeling  

While BNs powerfully address challenges in the inferential process and in managing 

uncertainty, there are still some inherent difficulties in applying BNs as an approach for student 

modeling. Firstly, it is computationally complex to explore an unknown network in BNs and 

discovering network involves an “NP-hard task” (Murray, 1998, p. 425), which may lead to an 

extremely high computational cost, depending on the number and combinations of variables that 

need to be calculated and inferred (Niedermayer, 1998). For instance, efforts were made to 

simplify the network structure and CPT of Andes, an ITS based on BNs to teach students how to 

solve physical problems, to develop a simpler BN. However, the result of the performance testing 

on simulated students still showed the infeasibility of the modified models because they still 

entailed a high computational inference on the model (Conati, Gertner & VanLehn, 2002). Even 

after optimizing the algorithm, it still created delayed response times on the performance of larger 

networks. Therefore, it is critical to verify, on occasion, whether the probabilistic update in the 

network is empirically acceptable and, thus, feasible in practice (Conati, 2010). 

In addition, the selection of a proper distribution model to describe the data and the setting 

required for network parameters has a notable impact on the efforts needed  to build a BN for 
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student modeling in an ITS (Murray, 1998). Insufficient or inaccurate data, required to set prior 

probabilities of a BN and define the values of network parameters (conditional probabilities), could 

lead to an unreliable network or even distort the entire network, resulting in an unreliable inference 

and incorrect evidence for a probabilistic update (Niedermayer, 1998). In addition to populating 

parameters, when new evidence is observed, it takes effort to implement algorithms to propagate 

probabilities over the network, which increases the knowledge engineering efforts required to 

build an effective student model (Millán, Pérez-de-la-Cruz, & García, 2003). 

Furthermore, network parameters are either updated from nodes and variables or are 

estimated by domain experts. The approach to enriching network parameters from student data 

is preferred over acquiring expert judgement, which could be costly and subject to human errors. 

Although much research on techniques to conduct probability elicitation has been conducted, an 

elicitation process is fairly time-consuming and, thus, sometimes practically infeasible (Conati, 

2010). Also, while many nodes and variables in a BN, developed within the context of student 

modeling, might seem observable, it could be difficult to collect them in practice. For instance, a 

variable such as the emotional state of a student would make defining network parameters 

difficult, especially with a new ITS (Conati, 2010).   

These concerns aside, BNs are still regarded as a remarkably powerful technique to 

support complex inference modeling, causality analysis and statistical induction in a wide range 

of areas (Niedermayer,1998) and, thus, provide insights on considerations for future ITS 

developments on how student modeling adaptations can be optimized. 
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Chapter 3.  
 
Overview of the Effectiveness of ITSs: A Meta-analysis 

Prior ITS reviews show ITSs promote learning and assist students in achieving better 

learning outcomes than other modes of instructions (see Sections 2.3.1-2.3.3). Yet, those 

previous meta-analyses are limited to only the subsets of ITS research that cover selected 

subjects and educational levels.  Having a comprehensive meta-analysis that examines a larger 

number of studies has a greater statistical power to detect the overall mean effect size or the 

effect size at different levels of each moderator variable, when compared to a set of smaller sized 

analyses for the same collection of research studies. By including more evaluation studies in the 

collection pool, a meta-analysis’ results could also be more conclusive. In addition, to compare 

the effect sizes of two or more categories across different studies requires that two or more levels 

of a moderator variable exist in the same meta-analysis. Only in this way can we conclude whether 

differences between levels are statistically significant.  Therefore, to attain a holistic view of effects 

of ITSs on student learning, a comprehensive meta-analysis of ITSs is conducted to compare 

student performances in ITSs to non-ITS learning environments in all subject domains across all 

educational levels.  

In the following sections, I describe the purpose and analysis of a comprehensive meta-

analysis, including: the procedure of selecting a pool of evaluation studies in ITS, conducting 

analyses of moderator variables and examining ITS effects at a fine granular level. This 

comprehensive study was published in Ma et al. (2014). 

 

3.1. Purpose of the Study and Research Questions 

This review incorporates and synthesizes research studies on the relative effectiveness 

of ITSs and examines the respective moderator variables to examine how these contribute to the 

effects of ITSs. Specifically, I address the following research questions: 

 
1. Do students using ITSs have different learning outcomes from students using other 

modes of instruction? 



 

46 

 

2. Do the effects associated with ITSs vary with characteristics of the ITSs? 

3. Do the effects associated with ITSs vary with characteristics of the students, 

outcome assessments, and research setting? 

4. Do the effects associated with ITSs vary with the methodological features of the 

research? 

 

3.2. Method  

3.2.1. Selection Criteria 

 Selection criteria were applied include studies in the meta-analysis if they: 

(a) reported original data; 

(b) assessed learning outcomes after students interacted with software that matched the 

definition of an ITS presented in the introductory section of this review;  

(c) compared learning outcomes from the ITS with outcomes from a non-ITS mode of 

instruction;1 

(d) were publicly available, either online or in library archives; 

(e) reported sufficient data to calculate effect size; and 

(f) reported measurable cognitive outcomes such as recall, transfer, or a mix of both.  

 

 
1 Studies that compared group learning from ITS with a control group that received no instructional 

treatment were retained, but these studies were meta-analyzed separately to provide interpretive 

context for the results of the principal analysis that bore more directly on the research questions. 
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3.2.2. Search, Retrieval, and Selection of Studies 

A comprehensive search for relevant research was conducted in ERIC, PsycINFO, 

Springer Link, and Web of Science. The search returned 26,613 titles using these key terms the 

fields: intellige* tutor*, intellige*, agent, cognit* tutor*, adapt* tutor*, cognit* virtual companion, and 

intellige* coaching system*. The reference sections of review articles on ITSs were manually 

searched for  studies to add to the selection pool (Arnott, Hastings, & Allbritton., 2008; Conati, 

2009; VanLehn, 2011; Wang et al., 2008; Steenbergen-Hu & Cooper, 2013; Steenbergen-Hu & 

Cooper, 2014).  

During initial screening phase, abstracts of articles were read to identify studies that fit 

criteria a, b, c and d. 362 articles were then identified and respective full-text copies were further 

evaluated against all six inclusion criteria. Finally, a total of 107 studies, published prior to 2013, 

were found to match the inclusion criteria with a total of 14,321 participants. These were coded 

following a predefined coding form and coding instructions developed for this meta-analysis. All 

effect sizes were calculated with Hedges’ correction for bias due to small sample sizes (Lipsey & 

Wilson, 2001). 

 

3.2.3. Study Coding and Effect Sizes Extraction 

The coding form includes 44 fixed-choice items and 37 comment items to capture detailed 

information about the studies including: 

•  author, 

• year published,  

• source of the study,  

• research questions,  

• type of ITS,  

• control treatment,  
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• grade level of participants,  

• research settings,  

• duration of the study,  

• reliability reporting, and 

• statistics for computing the effect size of each study.   

For studies that compared the learning outcomes of more than two groups, the coding 

strategy avoided repetitively counting the control group, which can lead to statistical dependence 

among contrasts and inflate the overall weight in the study (Borenstein, Hedges, Higgins & 

Rothstein, 2009; Lipsey & Wilson, 2001). Specifically, when there is more than one control group 

in a study, the control group receiving no instructional treatment is dropped from the main meta-

analysis according to selection criterion c. Other comparison groups are combined by calculating 

their mean weighted by sample size. Likewise, when there is more than one treatment group that 

learns from an ITS in a study, these groups are also combined by calculating their weighted mean.   

 

3.2.4. Data Analysis and Interpretation 

In this meta-analysis, standard guidelines were followed (Adesope & Nesbit, 2012; 

Adesope, Lavin, Thompson, & Ungerleider, 2010; Cooper, Hedges, & Valentine, 2009; Lipsey & 

Wilson, 2001; Nesbit & Adesope, 2006). After all studies were coded, the corresponding 

spreadsheet was imported to IBM® SPSS® Statistics software (version 21) and later to 

Comprehensive Meta-analysis 2.2.048 for further analysis (Borenstein, et al., 2009). The 

Comprehensive Meta-Analysis software was used to generate the unbiased mean effect size 

(Hedges’ g), the standard error of g, 95% lower and upper confidence interval around g, and 

values for the test of heterogeneity including Q, p and I-squared.  

When the confidence intervals span a range above zero, they are interpreted as signifying 

a statistically significant result, favoring learning from ITSs over other instructional modes. 

Moreover, the upper and lower 95% confidence intervals are used to detect between-levels 
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differences among different categories of analyses. Specifically, when the confidence intervals of 

two or more categories are not overlapping, the effect sizes are considered to be statistically 

significantly different from one another.  

In meta-analysis, the observed effect sizes of individual studies are averaged into a mean 

effect size. These are tested for the assumption of homogeneity of effects by the Q statistic to 

determine whether each effect size estimates the same population effect size. When all findings 

are drawn from the same population, Q has an approximate chi-square distribution with k-1 

degrees of freedom, where k is the number of studies that account for a particular subset of 

analysis. When Q exceeds the critical value of the chi-square distribution, (i.e., p < .05), the mean 

effect size declared statistically significantly heterogeneous, which suggests `individual effect 

sizes do not estimate a common population mean (Borenstein, et al., 2009; Lipsey & Wilson, 

2001).  

Primary effect sizes were identified as outliers if standardized scores were extreme, -3.3 

≥ Z ≥ 3.3; p < .001. Two studies were identified as outliners. One yielded an effect size g = 2.25, 

whereas the other produced an effect size g = -1.10. No methodological flaws were identified 

found in either of these studies. Comprehensive Meta-Analysis was run to determine whether a 

homogeneous distribution existed after excluding the two outliers (Hedges & Olkin, 1985). The 

forest plot of all 107 effect sizes was first examined and then the two potential outliers were 

removed one at a time. The recalculated results showed that the removal of potential outliers did 

not improve the fit of the remaining effect sizes to a simple model of homogeneity. As 

recommended by Tabachnick and Fidell (2013), each outlying effect sizes was adjusted toward 

the next nearest effect size in the distribution to g = 1.5 and -.5, respectively.  

In this review, both fixed-effect and random-effect models were calculated in all data 

analyses. A fixed-effect model operates under the assumption that all the studies included in the 

meta-analysis share one true effect size whereas a random-effects model assumes that there is 

more than one true effect and effect sizes could vary from one study to the other (Borenstein et 

al., 2009; Lipsey & Wilson, 2001). Given the diversified research interventions implemented and 

the variability from aggregating across a multiplicity of conditions, a random-effects model is 

usually considered a more accurate model than a fixed-effect model (Borenstein et al., 2009; 

Denson, 2009; Hedges & Vevea, 1998; National Research Council, 1992). Therefore, I report 

detailed results for random-effects model and add summary results for the fixed-effect model. 

This affords comparisons to fixed-effect results reported in previous ITS meta-analyses. 
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Moderator variables and levels showing significant differences under a fixed-effect model are also 

reported to provide additional research insights. Any mean effect size reported without specifying 

the type of model was generated by a random-effects model. 

 

 

3.3. Data Analysis and Results 

As previously discussed, nine studies that involved 784 participants, in which control group 

received no instructional treatment were excluded from the final meta-analysis. Although these 

studies are not directly related to the four research questions, they are examined separately to 

extract potentially useful context for the main analysis. In Table 3.1, the studies produced a 

statistically significant, weighted mean effect size of g = 1.23, under a random-effects model.  

 

Table 3.1.  Characteristics of “No Treatment” Control Studies 

  
    

Effect 
Size 

   95% CI 

Study Domain Grade Student 
Model 

Study 
Setting 

(g) LCI UCI 

Arroyo et al. (2011) Math II PS Other Classroom -0.17 -0.58 0.24 
Beal et al. (2010) (2) Arithmetic and fraction 6 Other Classroom -0.26 -1.07 0.56 
Beal et al. (2010) (3) Arithmetic and fraction 6 Other Classroom 0.71 -0.17 1.59 
Chen (2011) Programming PS Not Reported Laboratory 0.66* 0.33 1.00 
Halpern et al. (2012) 
(1) 

Research methods and 
scientific reasoning 

PS Not Reported Not 
Reported 

9.61* 8.42 10.80 

Halpern et al. (2012) 
(2) 

Research methods and 
scientific reasoning 

PS Not Reported Laboratory 0.69* 0.15 1.23 

Shute et al. (2007) Algebra 12 Other Classroom 0.38* 0.08 0.67 
Wang et al. (2011) 
(1) 

Earth Science 10 Other Laboratory 0.17 -0.81 1.15 

Wang et al. (2011) 
(2) 

Earth Science 10 Other Laboratory 0.06 -0.79 0.90 

* p < .05 
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Figure 3.1 depicts the distribution of effect sizes for the main meta-analysis after adjusting 

for the two outliers. The effect sizes range between -.25 and .75 standard deviations. A positive 

effect size suggests the ITS group performed better than groups who received other modes of 

instruction, whereas a negative effect size indicates the opposite. The overall distribution, in 

Figure 1, shows students in ITS groups outperformed their counterparts in respective control 

groups in a majority of the studies.  

 
Figure 3.3-1. Distribution of 107 effect sizes (M = .43; SD = .40) 

 

Table 3.2 includes all 107 studies that met the inclusion criteria. It presents characteristics 

of each study including the author(s), subject domain, grade level of participants, type of ITS, 

comparison treatment, study setting, the unbiased effect size, Hedges’ g, and 95% lower and 

upper confidence intervals around each unbiased effect size. 
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Table 3.2． Characteristics of Coded Studies and Concomitant Effect Sizes 

Study Domain 
Grade 
Range Type of ITS Control Setting 

Hedges 
g 

95% CI 
Upper Lower 

Abu-Naser (2009) Computer Science PS Other LGHI Classroom 0.55* 0.05 1.05 
Aist et al. (2001) (1) Language & Literacy K-5 Other LGHI Classroom 0.35 -0.21 0.92 
Aist et al. (2001) (2) Language & Literacy K-5 Other LGHI Classroom -0.07 -0.64 0.50 
Albacete & VanLehn (2000) Physics PS Bayesian Network CBI Laboratory 0.62* 0.01 1.22 
Arbuckle (2005) Mathematics & Accounting 9-12 Model Tracing LGHI Classroom 0.64* 0.20 1.07 
Argotte et al. (2011) (1) Mathematics & Accounting PS Other LGHI Classroom 0.44 -0.26 1.15 
Argotte et al. (2011) (2) Physics PS Other LGHI Classroom 0.28 -0.61 1.16 
Argotte et al. (2011) (3) Physics PS Other LGHI Classroom 0.72 -0.44 1.88 

Arnott et al. (2008) 
Humanities & Social 
Science PS Other LGHI Classroom 0.75* 0.39 1.12 

Beal et al. (2010)  Mathematics & Accounting 6-8 Other SGHI Classroom -0.33 -1.09 0.44 
Beal et al. (2007) Mathematics & Accounting 9-12 NR LGHI Classroom 0.44* 0.11 0.76 
Cabalo et al. (2007) Mathematics & Accounting Mixed Model Tracing LGHI Classroom 0.18* 0.00 0.36 
Carnegie Learning (2001) Mathematics & Accounting PS Model Tracing CBI Laboratory 0.11 -0.13 0.36 
Chambers et al. (2008) Language & Literacy K-5 Other LGHI Classroom 0.12 -0.08 0.31 
Chen (2008) Mathematics & Accounting K-5 Other TWS Classroom 0.14 -0.15 0.44 
Chien et al. (2008) Mathematics & Accounting 9-12 Model Tracing CBI Classroom 1.08* 0.56 1.61 
Chin et al. (2010) (1) Biology & Physiology 6-8 NR LGHI Classroom 0.52* 0.00 1.03 
Chin et al. (2010) (2) Biology & Physiology K-5 NR LGHI Classroom 0.22 -0.16 0.61 
Conati & VanLehn (1999) Physics PS Bayesian Network TWS Laboratory 0.15 -0.36 0.67 
Conati & Zhao (2004) Mathematics & Accounting 6-8 Bayesian Network CBI Classroom 0.65 -0.31 1.61 
Corbett (2001) Computer Science PS Model Tracing CBI Laboratory 0.70 -0.17 1.56 
Fossati et al. (2008) Computer Science PS Constraint-Based Model IHI Classroom -0.19 -0.62 0.24 
Fossati et al. (2009) Computer Science PS Constraint-Based Model IHI Classroom -0.16 -0.47 0.16 
Graesser et al. (2003) Physics PS EMT TWS Classroom 0.57 -0.24 1.37 
Graff et al. (2008) Mathematics & Accounting Mixed Other LGHI Classroom 1.19* 0.86 1.52 
Hagerty & Smith (2005) Mathematics & Accounting PS NR LGHI Classroom 0.49* 0.24 0.74 
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Han et al. (2010) Computer Science 9-12 Bayesian Network CBI Classroom 1.08* 0.69 1.46 
Hayes-Roth et al. (2010) Others & Not Reported PS NR TWS Classroom 2.25* 1.21 3.29 
Heffernan (2003) Mathematics & Accounting 9-12 Model Tracing CBI Classroom 0.40 -0.11 0.92 
Hu et al. (2007) (1) Mathematics & Accounting PS NR LGHI Classroom 0.53* 0.15 0.91 
Hu et al. (2007) (2) Mathematics & Accounting PS NR LGHI Classroom 0.22 -0.05 0.50 
Hwang et al. (2008) Mathematics & Accounting 9-12 Other LGHI Classroom 0.69* 0.35 1.02 
Jeremic et al. (2009) Computer Science PS Other LGHI Classroom 0.51 -0.13 1.14 
Johnson et al. (2009) Mathematics & Accounting PS Model Tracing TWS Classroom 0.56* 0.03 1.10 
Kinshuk et al. (2000) (1) Mathematics & Accounting PS Other LGHI Laboratory 0.14 -0.29 0.58 
Kinshuk et al. (2000) (2) Mathematics & Accounting PS Other LGHI Laboratory 0.20 -0.24 0.63 
Kinshuk et al. (2000) (3) Mathematics & Accounting PS Other LGHI Classroom 0.14 -0.30 0.57 
Koedinger (2002) Mathematics & Accounting 6-8 Model Tracing LGHI Classroom 0.53* 0.35 0.72 
Koedinger et al. (1997) Mathematics & Accounting 9-12 Model Tracing TWS Classroom 0.32* 0.07 0.57 
Kozierkiewicz et al. (2011) Others & Not Reported NR Bayesian Network LGHI Laboratory 0.33 -0.02 0.69 
Kumar (2002) Computer Science PS Other TWS Classroom 0.08 -0.40 0.55 
Lane & VanLehn (2005) Computer Science PS Other TWS Classroom 0.04 -0.72 0.79 
Lanzilotti & Roselli (2007) Mathematics & Accounting K-5 Other LGHI Classroom 0.09 -0.51 0.70 
Lesta & Yacef (2002) Mathematics & Accounting PS Other LGHI Classroom 0.43* 0.29 0.57 
McLaren & Isotani (2011) Chemistry 9-12 Model Tracing LGHI Classroom 0.15 -0.24 0.54 
McNamara et al. (2006) (1) Language & Literacy 6-8 Other CBI Classroom 1.32* 0.39 2.26 
McNamara et al. (2006) (2) Language & Literacy 6-8 Other CBI Classroom 1.36* 0.36 2.37 
Mills-Tettey et al. (2010) (1) Language & Literacy K-5 Other LGHI Laboratory -1.10 -1.93 -0.26 
Mills-Tettey et al. (2010) (2) Language & Literacy K-5 Other LGHI Laboratory 0.14 -0.56 0.84 
Mills-Tettey et al. (2010) (3) Language & Literacy K-5 Other LGHI Laboratory 1.11* 0.36 1.86 
Mitrovic (2003) Computer Science PS Constraint-Based Model LGHI Classroom 0.50* 0.15 0.84 
Mitrovic et al. (2009) Mathematics & Accounting PS Constraint-Based Model SGHI Classroom -0.09 -0.96 0.78 
Mitrovic & Ohlsson (1999) Computer Science PS Constraint-Based Model LGHI Laboratory 0.75* 0.17 1.33 
Morgan & Ritter (2002) Mathematics & Accounting 9-12 Model Tracing LGHI Classroom 0.29* 0.10 0.47 
Mostow et al. (2002) (1) Language & Literacy K-5 Other TWS Classroom 0.42 -0.09 0.93 
Mostow et al. (2002) (2) Language & Literacy K-5 Other TWS Classroom 0.28 -0.22 0.79 
Mostow et al. (2002) (3) Language & Literacy K-5 Other TWS Classroom 0.54* 0.02 1.05 
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Pane et al. (2010) Mathematics & Accounting 9-12 Model Tracing LGHI Classroom -0.19 -0.34 -0.04 
Person et al. (2001) Computer Science PS EMT LGHI Laboratory 0.78* 0.15 1.42 
Phillips & Johnson (2011) Mathematics & Accounting PS Model Tracing CBI Classroom 0.32 -0.01 0.65 

Pinkwart et al. (2009) (1) 
Humanities & Social 
Science PS NR TWS Laboratory 0.41 -0.35 1.18 

Pinkwart et al. (2009) (2) 
Humanities & Social 
Science PS NR TWS Classroom -0.11 -0.57 0.35 

Poulsen (2004) Language & Literacy K-5 Other LGHI Laboratory 0.15 -0.50 0.81 
Radwan (1997) Mathematics & Accounting K-5 NR LGHI Laboratory 0.58* 0.03 1.13 
Ramadhan (2000) Computer Science PS Other CBI Laboratory 0.52 -0.42 1.46 
Reif & Scott (1999) Physics PS NR IHI Classroom -0.42 -1.12 0.29 
Ritter et al. (2007) Mathematics & Accounting 9-12 Model Tracing LGHI Classroom 0.30* 0.08 0.51 
Rosé & Bhembe (2003) Physics PS Model Tracing LGHI Laboratory 0.13 -0.52 0.78 
Rowe & Schiavo (1998) Computer Science PS Other LGHI Classroom 0.91* 0.25 1.56 
Schulze et al. (2000) Physics PS Bayesian Network LGHI Classroom 0.23* 0.02 0.44 
Shneyderman (2001) Mathematics & Accounting 9-12 Model Tracing LGHI Classroom 0.30* 0.16 0.44 

Shute & Glasser (1990) 
Humanities & Social 
Science PS NR LGHI Laboratory -0.10 -0.94 0.74 

Smith (2001) Mathematics & Accounting 9-12 Model Tracing LGHI Classroom -0.12 -0.31 0.06 
Stankov et al. (2004) Computer Science PS Other LGHI Classroom 0.71 -0.12 1.54 
Stankov et al. (2008) (1) Computer Science PS Other LGHI Classroom 0.85* 0.40 1.30 
Stankov et al. (2008) (2) Chemistry 6-8 Other LGHI Classroom 0.17 -0.43 0.77 
Stankov et al. (2008) (3) Physics 6-8 Other LGHI Classroom 0.08 -0.35 0.52 

Stankov et al. (2008) (4) 
Humanities & Social 
Science K-5 Other LGHI Classroom 0.54 -0.03 1.10 

Stankov et al. (2008) (5) 
Humanities & Social 
Science K-5 Other LGHI Classroom 1.07* 0.47 1.67 

Stankov et al. (2008) (6) 
Humanities & Social 
Science K-5 Other LGHI Classroom 0.80* 0.16 1.43 

Stankov et al. (2008) (7) Computer Science PS Other LGHI Classroom 1.18* 0.51 1.85 
Stankov et al. (2008) (8) Computer Science PS Other LGHI Classroom 0.36 -0.26 0.98 
Stankov et al. (2008) (9) Mathematics & Accounting 6-8 Other LGHI Classroom 0.28 -0.60 1.17 
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Stankov et al. (2008) (10) Mathematics & Accounting 6-8 Other LGHI Classroom 0.09 -0.79 0.97 
Stankov et al. (2008) (11) Mathematics & Accounting K-5 Other LGHI Classroom 0.31 -0.25 0.87 
Suraweera & Mitrovic (2002) Computer Science PS Constraint-Based Model CBI Laboratory 0.68* 0.17 1.19 
Suraweera & Mitrovic (2004) Computer Science PS Constraint-Based Model CBI Laboratory 0.17 -0.55 0.89 
Tsiriga & Virvou (2004) Language & Literacy Mixed Other CBI Classroom 0.50* 0.11 0.89 
VanLehn et al. (2007) (1) Physics PS EMT SGHI Laboratory -0.24 -0.74 0.26 
VanLehn et al. (2007) (2) Physics PS Other TWS Laboratory 0.70* 0.09 1.31 
VanLehn et al. (2007) (3) Physics PS Other TWS Laboratory 0.20 -0.30 0.69 
VanLehn et al. (2007) (4) Physics PS Other SGHI Laboratory 0.75* 0.22 1.28 
VanLehn et al. (2007) (5) Physics PS Other TWS Laboratory 0.04 -0.26 0.35 
VanLehn et al. (2005) (1) Physics PS Bayesian Network LGHI Classroom 0.78* 0.54 1.03 
VanLehn et al. (2005) (2) Physics PS Bayesian Network LGHI Classroom 0.53* 0.18 0.87 
VanLehn et al. (2005) (3) Physics PS Bayesian Network LGHI Classroom 0.45* 0.11 0.79 
VanLehn et al. (2005) (4) Physics PS Bayesian Network LGHI Classroom 0.65* 0.29 1.02 
VanLehn et al. (2010) (1) Physics PS Model Tracing LGHI Classroom 0.23* 0.02 0.44 
VanLehn et al. (2010) (2) Physics PS Model Tracing LGHI Classroom 0.78* 0.54 1.03 
VanLehn et al. (2010) (3) Physics PS Model Tracing LGHI Classroom 0.53* 0.18 0.87 
VanLehn et al. (2010) (4) Physics PS Model Tracing LGHI Classroom 0.45* 0.11 0.79 
VanLehn et al. (2010) (5) Physics PS Model Tracing LGHI Classroom 0.65* 0.29 1.02 
Veermans, et al. (2000) Physics PS Other CBI Laboratory -0.15 -0.73 0.44 
Wheeler & Regian (1999) Mathematics & Accounting 9-12 NR LGHI Classroom 0.70* 0.46 0.94 
Wijekumar et al. (2012) Language & Literacy K-5 Other LGHI Classroom 0.32 -0.02 0.66 

Wisher et al. (2001) 
Humanities & Social 
Science PS Other LGHI Classroom 1.41* 1.14 1.69 

Woo et al. (2006) Biology & Physiology PS Other TWS Classroom 1.15* 0.56 1.75 
 

Note. PS = postsecondary; EMT = Expectation and Misconception Tailoring; LGHI = Large-Group Human Instruction; SGHI = Small-
Group Human Instruction; IHI = Individual Human Instruction (human tutoring); CBI = Individual Non-ITS Computer-Based 
Instruction; TWS = Individual Textbook or Workbook Studying; NR = Not Reported; * p < .05
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Tables 3.3 through 3.8 present results for the fixed- and random-effects models, including: 

number of participants (N) in each category, number of studies (k), weighted mean effect size 

(g+) and its standard error (SE), 95% confidence interval around the mean, and a test of 

heterogeneity (Q). Each weighted mean effect size was obtained through the weighting of 

independent effect sizes by inverse variances. In the following sections, I elaborate on these 

results, organized by research question.  

 

 

3.3.1. Research Question 1: Do Students Using ITS Have Different 
Learning Outcomes Than Students Using Other Modes of 
Instruction? 

Table 3.3 shows the overall weighted mean of all statistically independent effect sizes. 

Under a fixed-effect model, it shows a moderate statistically significant effect of learning with 

intelligent tutors (g = .36; p <.001) with significant heterogeneity [Q(106) = 390.52, p < .001, I2 = 

.73]. Under a random-effects model, the overall weighted mean effect size is also statistically 

significant and moderate (g = .41; p <.001).  

For the breakdown of the comparison treatment instruction in all studies, the majority of 

studies compared the use of intelligent tutors with large-group human instruction (k = 66). Under 

both the fixed- and random-effects models, the use of ITS yields moderate, statistically significant 

mean effect sizes when compared with large-group human instruction, which included but was 

not limited to: traditional classroom instruction (g = .44), individual computer-based instruction 

(CBI, g = .57) and the individual use of textbooks or workbooks (g = .36). Furthermore, there are 

no statistically significant differences in the mean effect sizes comparing the use of ITS and small-

group human instruction, defined as any form of synchronous instruction in groups of up to 8 

students conducted with the presence of a human tutor.  

Since the between-levels variance was statistically significant under both the fixed- and 

random-effects models (p < .001), post-hoc analyses were conducted to explore the variance. 

The analyses revealed that 66 studies, which compared the use of ITSs to large-group human 

instruction (g = .44), produced similar effect sizes to studies comparing ITSs to individual 
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computer-based instruction (CBI, g = .57) and to individual use of textbooks or workbooks (g = 

.36). However, all of these methods has a statistically significantly higher weighted mean effect 

sizes than studies that compared the use of ITSs to human tutoring. Altogether, these results 

show students who used ITSs learned more than students who used other modes of instruction 

except for small-group and individual human tutoring. 

The statistically significant heterogeneity in the overall result suggests there is unattributed 

variability among the individual effect sizes that comprise the overall result. Therefore, moderator 

analyses were conducted on ITS characteristics, sample characteristics and methodological 

features of the studies to further explore for factors that may contribute to the variability in effect 

sizes. 
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Table 3.3． Overall Effect and Weighted Mean Effect Sizes for Comparison Treatments 

   Effect size 95% CI Test of heterogeneity     
 N k g+ SE Lower Upper QB df p I2 (%)     
Overall: Fixed-Effect Model 14,321 107 0.36* 0.02 0.32 0.39 390.52 106 <.001 0.73     
Overall: Random-Effects Model 14,321 107 0.41* 0.04 0.34 0.48         
               
               
   Random-Effects Model Fixed-Effect Model 

   Effect size 95% CI   Effect size 95% CI   
 N k g+ SE Lower Upper QB p g+ SE Lower Upper QB p 

               
Comparison Instruction       27.54 <.001     27.35 <.001 
Large-group human instruction  11,296 66 0.44* 0.05 0.35 0.53   0.37* 0.02 0.33 0.41   
Small-group human instruction  184 4 0.05 0.28 -0.50 0.61   0.10 0.16 -0.21 0.41   
Individual human instruction                     404 5 -0.11 0.10 -0.31 0.10   -0.11 0.10 -0.31 0.10   
Individual CBI   1,034 15 0.57* 0.11 0.34 0.79   0.47* 0.06 0.34 0.59   
Individual textbook or workbook           1,403 17 0.36* 0.09 0.18 0.53   0.30* 0.06 0.19 0.41   

* p < .05



 

59 

3.3.2. Research Question 2: Do the Effects Associated with ITS Vary with 
Characteristics of the ITS? 

In Table 3.4, the results show how different features and characteristics of ITSs contribute 

to the overall effect of learning with these systems. The effects on learning are examined in 

relation to different characteristics of ITSs including: type of ITSs, the nature of intervention 

provided by the ITS, whether the ITS modeled misconceptions, and the provision of feedback by 

the ITS. Most commonly in these studies, ITSs were the principal means of instruction (k = 35), 

provided feedback to students (k = 86), and modeled student misconceptions (k = 58). Under a 

random-effects model, two types of ITSs, constraint-based modeling and expectation and 

misconception tailoring, did not produce significant effects. However, ITSs with model tracing, 

Bayesian network modeling and other types of student modeling produced statistically significant 

effect sizes. Although ITSs with Bayesian network modeling have a higher weighted mean effect 

size (g = .54) than model tracing (g = .35), constraint-based modeling (g = .24), and expectation 

and misconception tailoring (g = .34), the between-levels difference is not statistically significant 

under a random-effects model.  Conversely, statistically significant differences are detected under 

a fixed-effect model (QB [5] = 36.37, p < .001). Post-hoc analyses show  ITSs that used Bayesian 

network modeling have a statistically significantly higher weighted mean effect size than those 

that use model tracing and constraint-based modeling.  

In this study, I adopted the categories used by Steenberger-Hu and Cooper (2014) and 

coded the instructional roles of ITSs as follows:  

• principal instruction: the ITS is the principal means of instruction;  

• integrated class instruction: the ITS is an integral part of regular classroom 
instruction;  

• separate in-class activities: the ITS is used for separate laboratory or other 
exercises that take place during class time; 

• supplementary after-class instruction and homework: the ITS is used as part of 
out-of-class assignments.  
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Table 3.4． Weighted Mean Effect Sizes for Characteristics of Intelligent Tutoring Systems 

   Random-Effects Model Fixed-Effect Model 

   Effect size 95% CI   Effect size 95% CI   
 N k g+ SE Lower Upper QB p g+ SE Lower Upper QB p 
Type of ITS       4.18 0.52     36.37 <.001 
Model Tracing 5970 21 0.35* 0.07 0.22 0.47   0.25* 0.03 0.20 0.31   
Constraint-Based Modeling 569 7 0.24 0.16 -0.08 0.56   0.20* 0.09 0.03 0.37   
Bayesian Network Modeling 1,417 10 0.54* 0.10 0.35 0.73   0.52* 0.06 0.41 0.63   
Expectation and 
Misconception  Tailoring 142 3 0.34 0.35 -0.35 1.02   0.24 0.18 -0.12 0.59   
Other 4,425 53 0.44* 0.06 0.32 0.56   0.44* 0.03 0.38 0.50   
Not reported 1,798 13 0.40* 0.10 0.20 0.59   0.43* 0.05 0.32 0.54   
               
ITS Intervention       2.41 0.79     32.38 <.001 
Principal instruction  4,505 35 0.37* 0.07 0.23 0.51   0.32* 0.03 0.26 0.38   
Integrated class instruction  4,045 15 0.33* 0.08 0.17 0.49   0.25* 0.03 0.18 0.31   
Separate in-class activities  1,939 24 0.47* 0.10 0.27 0.67   0.53* 0.05 0.43 0.62   
Supplementary after-class instr.           933 8 0.43* 0.11 0.22 0.64   0.36* 0.07 0.23 0.48   
Homework   2,480 15 0.45* 0.07 0.32 0.59   0.46* 0.04 0.38 0.54   
Not reported  419 10 0.48* 0.13 0.23 0.74   0.47* 0.10 0.27 0.66   
               
Feedback Provided?       4.55 0.10     13.53 <.001 
No 1,411 10 0.54* 0.15 0.25 0.83   0.40* 0.05 0.30 0.51   
Yes 11,728 86 0.42* 0.04 0.34 0.50   0.37* 0.02 0.33 0.41   
Not reported 1,182 11 0.21* 0.10 0.02 0.41   0.15* 0.06 0.04 0.27   
               
Model Misconception?       0.02 0.99     5.14 0.08 
No 1,508 21 0.40* 0.07 0.27 0.54   0.39* 0.05 0.29 0.49   
Yes 9,911 58 0.40* 0.05 0.31 0.49   0.33* 0.02 0.29 0.37   
Not reported 2,902 28 0.42* 0.10 0.23 0.61   0.43* 0.04 0.35 0.51   

* p < .05
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Findings reported in Table 3.4 indicate ITSs are effective in all the instructional roles in 

which they were evaluated. Under both fixed- and random-effects models, the use of ITSs is 

associated with statistically significant effect sizes in all categories. The between-levels difference 

is not statistically significant under a random-effects model. However, the between-levels variance 

is statistically significant under a fixed-effect model, (QB [5] = 32.38, p < .001). Post-hoc analyses 

show studies that used ITS for separate, in-class activities and for homework have statistically 

significantly higher weighted mean effect sizes than those that used ITS for other purposes such 

as principal instruction.  

Table 3.4 also shows that, under both fixed and random-effects models, the use of ITSs 

is associated with statistically significant effect sizes. The overlap in confidence intervals indicates 

that effect sizes are not moderated by whether the ITS provides feedback. Also, the use of ITS 

produces moderate, statistically significant effect sizes regardless of whether the ITS modeled 

misconceptions. The between-levels difference was not statistically significant under either the 

fixed and random-effects models. 

 

 

3.3.3. Research Question 3: Do the Effects Associated with ITSs Vary 
with Characteristics of the Students, Outcome Assessments, and 
Research Setting? 

To address the third research question, Tables 3.5, 3.6 and 3.7 show results of moderator 

analyses based on student and study characteristics, outcome assessments and research 

settings respectively. Specifically, Table 3.5 shows the effects of using ITSs across different grade 

levels, subject domains, and levels of prior knowledge. For grade levels, studies are binned 

according to school year in the following categories: 

• elementary school: students from kindergarten through grade 5; 

• middle school: students from grades 6 through 8; 

• high school: students from grades 9 through 12; 
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• postsecondary: students at universities and colleges;  

• mixed grades: three studies spanning grade bands.  

 

In Table 3.5, the result show that the use of ITSs produces moderate statistically significant 

mean effect sizes at all grade levels under both the fixed and random-effects models. The 

between-levels difference is not statistically significant under a random-effects model but 

statistically significant under a fixed-effect model, (QB [5] = 25.74, p < .001). Post-hoc analyses 

reveal that students in middle school and postsecondary levels achieved statistically significantly 

higher weighted mean effect sizes than those who used ITS in elementary and high schools.  

Table 3.5 also shows ITSs produce positive and moderate to large effect sizes across 

different subject domains. Notably, under a random-effects model, the use of ITS produces a 

large effect size in the humanities (g = .63). For domains such as biology and physiology (g =.59), 

computer science (g =.51), physics (g =.38) and mathematics and accounting (g =.35), ITS 

produced moderate effect sizes. For chemistry as well as literacy and language learning, the use 

of ITS produced small and moderate mean effect sizes (g =.16 and g = .34), respectively. The 

between-levels variance is not statistically significant under a random-effects model but is under 

a fixed-effect model (QB [7] = 50.67, p < .001), indicating statistically significant differences across 

subject domains. Post-hoc analyses yield that studies that used ITS in the humanities and social 

sciences have a statistically significantly higher weighted mean effect size than those that used it 

in mathematics and accounting, physics, computer science, language and literacy, and chemistry. 

Table 3.5 also shows that many participants have low prior domain knowledge (k = 32). 

Except for high prior domain knowledge, all other categories of prior domain knowledge are 

associated with statistically significant effect sizes. Specifically, the results suggest that students 

with low and medium prior domain knowledge learned more with ITSs than those with high prior 

domain knowledge. However, the certainty of this interpretation is significantly limited by at least 

three factors: (a) the large number of studies that did not report the prior domain knowledge of 

participants (k = 34); (b) the small number of studies having participants with high prior knowledge 

(k = 2); and (c) the significant heterogeneity of the effect size distributions. 
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Table 3.5． Weighted Mean Effect Sizes for Student and Study Characteristics  

   Random-Effects Model Fixed-Effect Model 

   Effect size 95% CI   Effect size 95% CI   
 N k g+ SE Lower Upper QB p g+ SE Lower Upper QB p 
Grade Levels       2.2 0.82     25.74 <.001 
Elementary school 1,496 19 0.31* 0.08 0.16 0.47   0.26* 0.05 0.16 0.37   
Middle school 810 10 0.41* 0.13 0.15 0.66   0.45* 0.07 0.31 0.59   
High school 4,355 14 0.40* 0.10 0.21 0.59   0.25* 0.03 0.18 0.31   
Postsecondary 6,767 60 0.43* 0.05 0.33 0.53   0.43* 0.03 0.38 0.48   
Mixed grades 771 3 0.61 0.32 -0.02 1.25   0.42* 0.07 0.28 0.57   
Not reported 122 1 0.33 0.18 -0.02 0.69   0.33 0.18 -0.02 0.69   
               
Subject Domains       6.53 0.48     50.67 <.001 
Mathematics & Accounting 8,038 35 0.35* 0.05 0.24 0.45   0.29* 0.02 0.25 0.34   
Physics 2,890 24 0.38* 0.07 0.26 0.51   0.41* 0.04 0.33 0.49   
Computer Science 1,152 19 0.51* 0.11 0.30 0.72   0.46* 0.06 0.34 0.58   
Language & Literacy 1,075 14 0.34* 0.11 0.12 0.56   0.27* 0.06 0.15 0.39   
Chemistry 141 2 0.16 0.17 -0.17 0.48   0.16 0.17 -0.17 0.48   
Biology & Physiology 210 3 0.59* 0.27 0.07 1.11   0.51* 0.14 0.23 0.78   
Humanities & Social Science 671 8 0.63* 0.22 0.20 1.06   0.84* 0.08 0.68 1.01   
Others & Not Reported 144 2 1.23 0.96 -0.65 3.10   0.53 0.17 0.20 0.87   
               
Prior Domain Knowledge       3.45 0.49     11.87 0.02 
Low 5,265 32 0.38* 0.06 0.27 0.49   0.37* 0.03 0.31 0.43   
Medium 1,356 17 0.28* 0.08 0.12 0.45   0.27* 0.06 0.16 0.38   
High 77 2 0.51 0.29 -0.06 1.07   0.53* 0.23 0.07 0.98   
Varied 2,699 22 0.48* 0.12 0.25 0.71   0.27* 0.04 0.19 0.34   
Not reported 4,924 34 0.46* 0.06 0.34 0.58   0.41* 0.03 0.35 0.47   
               

 
* p < .05 
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Table 3.6 reports the mean effect sizes for different outcome assessments, test formats, 

knowledge types and test sources. The learning outcomes are coded as retention, transfer, and 

mixed retention and transfer; test formats are coded as objective format (e.g., multiple choice 

items), short answer, and mixed format (e.g., combinations of multiple choice and short answer). 

Knowledge type is coded as procedural, declarative, and mixed procedural and declarative while 

test source is coded as researcher-developed, standardized or both. Under both the fixed- and 

random-effects models, the use of ITSs is associated with statistically significant mean effect 

sizes, regardless of the learning outcome. The between-levels variance is not statistically 

significant under either model. 

ITSs yield statistically significant effect sizes across all test formats, except for mixed item 

formats. The between-levels variance is not statistically significant under the random-effects 

model but is significant under a fixed-effect model, (QB [4] = 108.17, p < .001). Table 3.6 also 

shows ITSs are effective for learning all types of knowledge. The between-levels variance is not 

statistically significant under a random-effects model but is under a fixed-effect model (QB [3] = 

30.33, p < .001), suggesting there are statistically significant differences between knowledge 

types. Post-hoc analyses reveal studies that used ITSs to promote mixed procedural and 

declarative knowledge produced a statistically significantly higher weighted mean effect size than 

those that used ITS to acquire only procedural or only declarative knowledge. Finally, it also 

shows moderate, statistically significant effect sizes are obtained with all test types under both 

the fixed- and random-effects models. However, the between-levels variance is only statistically 

significant under the fixed-effect model (QB [3] = 14.92, p < .001). Post-hoc analyses show 

researcher-developed tests produced a statistically significantly higher weighted mean effect size 

than standardized tests. 
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Table 3.6． Weighted Mean Effect Sizes for Outcome Constructs, Test Format, Knowledge Type and Measuring Tool 

 
   Random-Effects Model Fixed-Effect Model 

   Effect size 95% CI   Effect size 95% CI   
 N k g+ SE Lower Upper QB p g+ SE Lower Upper QB p 
Outcome Constructs       1.12 0.77     3.56 0.31 
Retention 3,922 33 0.35* 0.07 0.22 0.48   0.35* 0.03 0.28 0.41   
Transfer 1,683 18 0.44* 0.09 0.27 0.62   0.43* 0.05 0.33 0.52   
Mixed retention and transfer 6,371 32 0.43* 0.08 0.28 0.58   0.33* 0.03 0.28 0.38   
Not reported 2,345 24 0.42* 0.06 0.31 0.54   0.39* 0.04 0.30 0.47                  
Test Formats       8.79 0.07     108.17 <.001 
Multiple choice 1,777 18 0.26* 0.05 0.16 0.36   0.26* 0.05 0.16 0.36   
Short answer 1,170 11 0.25* 0.06 0.13 0.36   0.25* 0.06 0.13 0.36   
Mixed items 1,701 10 0.06 0.05 -0.03 0.16   0.06 0.05 -0.03 0.16   
Other 972 10 0.91* 0.07 0.77 1.05   0.91* 0.07 0.77 1.05   
Not reported 8,701 58 0.40* 0.02 0.35 0.44   0.40* 0.02 0.35 0.44   
               
Knowledge Type       1.18 0.76     30.33 <.001 
Procedural 6,143 46 0.39* 0.05 0.28 0.49   0.36* 0.03 0.31 0.42   
Declarative 4,318 31 0.37* 0.07 0.23 0.51   0.26* 0.03 0.20 0.32   
Mixed procedural and declarative       777 6 0.65* 0.29 0.08 1.21   0.70* 0.08 0.55 0.86   
Not reported 3,083 24 0.43* 0.06 0.32 0.54   0.40* 0.04 0.33 0.48   
               
Test Source       0.71 0.87     14.92 <.001 
Researcher developed 7,279 62 0.41* 0.05 0.32 0.50   0.40* 0.02 0.36 0.45   
Standardized 4,597 19 0.42* 0.10 0.21 0.62   0.27* 0.03 0.21 0.33   
Both 1,095 5 0.46* 0.07 0.33 0.59   0.46* 0.07 0.33 0.59   
Not reported 1,350 21 0.38* 0.07 0.24 0.52   0.34* 0.06 0.23 0.45   

* p < .05 
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Table 3.7 shows the results of analyses of contextual moderator variables: the setting 

where the research was conducted (laboratory or classroom), the continents where the study was 

conducted, the treatment duration, and the entire study duration. For research setting, ‘classroom’ 

refers to studies that have learning activities reported as part of an academic course of study or 

conducted in a classroom under the supervision of an instructor. Conversely, when learning 

activities were conducted solely for the purpose of research and learning was not assessed for 

academic credit, the setting is coded as laboratory. Approximate median splits on duration of 

treatment (split at one hour) and duration of study (split at one month) were used to create two 

categories for each of these variables. Table 3.7 shows most of the studies are conducted in the 

classroom (k = 81). Both classroom and laboratory studies produced moderate statistically 

significant effect sizes, under both the fixed and random-effects models. The between-levels 

variance was not statistically significant under the random-effects model but significant under the 

fixed-effect model, showing that classroom-based studies produced a higher weighted mean 

effect size than laboratory studies.  

Table 3.7 shows the effectiveness of ITSs is evident regardless of the region where studies 

are conducted although a majority of the studies are conducted in North America (k = 75). Under 

the random-effects model, the use of ITSs is associated with moderate weighted mean effect 

sizes in North America (g = .38), Europe (g = .51), and Oceania (g = .36). The effect size in Asia 

is larger (g = .67). The between-levels variance is only statistically significant under the fixed-

effect model (QB [3] = 12.80, p = .01). Post-hoc analyses reveal that the weighted mean effect 

size associated with studies conducted in Europe is larger than studies conducted in North 

America. 

Table 3.7, indicates a tendency for higher mean effect sizes to be associated with longer 

treatment and study durations. Results of a random-effects model suggest treatments which are 

less than or equal to one hour in length produce a statistically significant mean effect size (g = 

.30), as do those greater than one hour (g = .39). However, neither the fixed- nor random-effects 

model show statistically significant, between-levels variance. Under the random-effects model, 

studies conducted for a month or less and those conducted for over a month are also associated 

with statistically significant, weighted mean effect sizes (g = .34 and g = .38). These results should 

be interpreted with caution because a large number of studies did not report the treatment and 

study durations. 
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Table 3.7． Weighted Mean Effect Sizes for Contextual Features  

   Random-Effects Model Fixed-Effect Model 

   Effect size 95% CI   Effect size 95% CI   
 N k g+ SE Lower Upper QB p g+ SE Lower Upper QB p 
Setting       3.30 0.07     4.29 0.04 
Laboratory 1,596 26 0.29* 0.07 0.15 0.43   0.26* 0.05 0.16 0.36   
Classroom 12,725 81 0.44* 0.04 0.36 0.52   0.37* 0.02 0.33 0.41   
               
Continent       3.59 0.31     12.80 0.01 
North America 11,065 75 0.38* 0.04 0.29 0.46   0.33* 0.02 0.29 0.37   
Europe 1,083 18 0.51* 0.10 0.32 0.71   0.55* 0.06 0.43 0.67   
Asia 962 6 0.67* 0.20 0.28 1.06   0.42* 0.07 0.29 0.55   
Oceania 1,211 8 0.36* 0.07 0.22 0.51   0.38* 0.06 0.27 0.50   
               
Treatment Duration       1.43 0.49     4.67 0.10 
One hour or less 587 9 0.30 0.16 -0.01 0.62   0.18* 0.09 0.02 0.35   
Greater than one hour 7,589 59 0.39* 0.05 0.30 0.48   0.35* 0.02 0.30 0.40   
Not reported 6,145 39 0.47* 0.07 0.34 0.60   0.38* 0.03 0.33 0.43   
               
Study Duration       3.78 0.15     32.36 <.001 
One month or less 2,044 32 0.34* 0.07 0.22 0.47   0.31* 0.05 0.22 0.40   
Greater than one month 9,577 53 0.38* 0.05 0.29 0.47   0.31* 0.02 0.27 0.35   
Not reported 2,700 22 0.57* 0.10 0.37 0.76   0.57* 0.04 0.49 0.66   

 
* p < .05
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3.3.4. Research Question 4: Do the Effects Associated with ITS Vary with 
the Methodological Features of the Research? 

Table 3.8 show how effect sizes are associated with varied methodological features of 

studies in this meta-analysis. The studies were categorized according to research design, source 

of publication and attrition. Under both fixed- and random-effects models, learning with ITSs was 

associated with moderate, statistically significant effect sizes regardless of research design. The 

between-levels variance was statistically significant only under the fixed-effect model (QB [3] = 

65.68, p < .001). Post-hoc analyses indicate a larger mean effect size is associated with quasi-

experimental designs in which prior differences were not controlled. The interpretation of this 

result should be taken with caution because a high number of studies did not explicitly report 

sufficient details in their research designs.  

Studies published in journals often have higher methodological quality than those 

presented at conferences or as dissertations. In Table 3.8, under a random-effects model, mean 

effect sizes were statistically significant for studies published in journals, conference proceedings, 

as well as technical reports. However, dissertation studies did not yield a statistically significant 

effect size. The between-levels variance was not statistically significant under a random-effects 

model but it was under a fixed-effect model (QB [3] = 19.73, p <.001). Studies published in journals 

had a moderate mean effect size that is statistically significantly different from studies reported in 

conference proceedings and dissertations or theses. Finally, under both the fixed- and random-

effects models, studies without attrition of participants and those with some attrition yielded 

moderate, statistically significant effect sizes.
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Table 3.8． Weighted Mean Effect Sizes for Different Methodological Features  

 

   Random-Effects Model Fixed-Effect Model 

   Effect size 95% CI   Effect size 95% CI   
 N k g+ SE Lower Upper QB p g+ SE Lower Upper QB p 
Random Assignment       7.39 0.06     65.58 <.001 
Yes 5,588 34 0.31* 0.06 0.19 0.43   0.22* 0.03 0.16 0.27   
No -- prior difference  
controlled                                         3,075 23 0.38* 0.07 0.25 0.50   0.35* 0.04 0.27 0.42   
No -- prior difference  
not controlled                                  4,724 34 0.54* 0.06 0.42 0.67   0.55* 0.03 0.49 0.61   
Not reported    934 16 0.37* 0.11 0.15 0.58   0.30* 0.07 0.17 0.43                  
Source       2.36 0.50     19.73 <.001 
Journal 7,171 72 0.44* 0.04 0.36 0.53   0.42* 0.02 0.37 0.47   
Conference proceeding 4,045 23 0.33* 0.08 0.18 0.49   0.29* 0.03 0.23 0.36   
Dissertation/Thesis 1,419 5 0.27 0.15 -0.02 0.57   0.19* 0.05 0.08 0.30   
Technical report 1,686 7 0.46* 0.18 0.11 0.81   0.39* 0.05 0.29 0.49                  
Attrition of Participants       4.08 0.13     30.29 <.001 
None 3,191 36 0.39* 0.07 0.24 0.53   0.26* 0.04 0.19 0.33   
Some 4,075 23 0.29* 0.09 0.11 0.47   0.27* 0.03 0.20 0.33   
Not reported 7,055 48 0.48* 0.04 0.40 0.56   0.46* 0.03 0.41 0.51   
* p < .05
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3.3.5. Are These Results Valid?   

For this meta-analysis, I examined the potential impact of publication bias to 

determine whether results can be considered valid. Publication bias, the “file-drawer” 

effect, is a plausible threat to the validity of meta-analyses due to the fact that statistically 

significant results are more likely to be published and accessible for inclusion in meta-

analyses than non-statistically significant results, which either may not be reported or 

reported in less accessible outlets (Orwin, 1983; Rosenthal, 1979).  In Table 3.8, the 

between-levels variance of source of publication was found to be statistically significant 

under a fixed-effect model. Studies published in journals had a moderate mean effect size 

that is significantly greater than studies in conference proceedings and dissertations or 

theses. Therefore, it is crucial to conduct a further analysis of publication bias to validate 

the findings in this meta-analysis. 

Two statistical tests are computed with Comprehensive Meta-Analysis to examine 

the potential for publication bias. First, a Classic Fail-Safe N test was computed to 

determine the number of null-effect studies needed to raise the p-value associated with 

the average effect above an arbitrary alpha level (set at α = .05). This test result revealed 

that an additional 871 studies would be required to inflate the overall effect reported in this 

meta-analysis. Orwin’s Fail-Safe N, a more stringent publication bias test, revealed that 

656 missing null-effect studies would be required to bring the mean effect size identified 

in this meta-analysis to a trivial level of .05. Both test results show that, with 107 analyzed 

studies, the number of null-effect studies required to invalidate the overall effect size 

reported in this meta-analysis is larger than the 5k + 10 limit suggested by Rosenthal 

(1995). Hence, although there is potential for publication bias in this meta-analysis, the 

results of these two tests suggest publication bias does not pose a significant threat to the 

validity of the findings. 
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3.4. Discussion 

3.4.1. Summary of the Results 

The overall result of this meta-analysis is that ITSs outperform the other modes of 

instruction in evaluation studies. Moderator analyses suggest using ITSs was associated 

with statistically significantly higher achievement outcomes than using each of the other 

modes of instruction except small-group human tutoring and individual human tutoring. 

There was no statistically significant difference in learning outcomes between ITS and 

these two forms of human tutoring. ITSs were also associated with greater achievement 

regardless of whether it was the principal means of instruction, an integral part of 

classroom instruction, a means to support in-class activities such as laboratory exercises, 

supplementary after-class instruction, or as part of assigned homework. In analyzing 18 

other moderator variables related to characteristics of the ITS, students, research setting, 

outcome assessments, and research methods, no statistically significant differences were 

identified among levels of the moderators under a random-effects model. 

 

3.4.2. Comparison with Previous Quantitative Reviews 

In general, these results agree with previous reviews by VanLehn (2011), who 

examined the relative effectiveness of ITS in STEM subjects, and Steenberger-Hu and 

Cooper (2014), who investigated ITS use in all college-level subjects. The mean effect 

size for postsecondary education (g = .43) observed here was only slightly greater than 

the mean effect size (g = .37) reported by Steenberger-Hu and Cooper (2014). However, 

the mean effect sizes in the current meta-analysis for levels of K-12 education all were 

markedly greater than those reported in the meta-analysis of ITS effects in K-12 

mathematics by Steenberger-Hu and Cooper (2013). Steenberger-Hu and Cooper 

reported ITSs showed no statistically significant effect on K-12 students’ achievement 

compared to traditional classroom instruction. This discrepancy may be due to their 

smaller sample of empirical studies and their focus on only mathematical learning 

compared to the broader scope in my meta-analysis. Furthermore, in discussing their 
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finding, Steenberger-Hu and Cooper (2014) speculated “ITS may function better for more 

mature students who have sufficient prior knowledge, self-regulation skills, learning 

motivation, and experiences with computers” (p. 33). The current analysis, which directly 

compared ITS effect sizes at four levels of schooling, yielded no evidence to support that 

hypothesis. 

The comparison of ITS with one-to-one human tutoring in this study produces a 

statistically undetectable mean effect size (g = -.11) similar to effect sizes reported by 

VanLehn (2011) and Steenberger-Hu and Cooper (2014) for human tutoring as a control 

condition. Unlike the previous reviews, small-group human tutoring was treated here as a 

separate category of control condition for which a statistically undetectable mean effect 

size of g = .05 was found under a random-effects model.  

Unlike Steenberger-Hu and Cooper (2014), in this study, the no-treatment control 

conditions were analyzed separately from the main analysis. Whereas the current study 

report g = 1.23 for no-treatment controls, Steenberger-Hu and Cooper found g = .90, and 

VanLehn (2011) found .40 and .76 for differing levels of interaction granularity. Although 

these discrepancies could be cause for concern, the important fact that serves as a reality 

check on the ITS evaluation enterprise is that, in every review, the mean effect sizes for 

no-treatment controls are greater or equal to the largest mean effect sizes for comparisons 

between ITS and an alternate form of instruction. 

 

 

3.4.3. Quality of Reporting 

Based on findings in this meta-analysis, I suggest there is considerable room for 

improvement in how fundamental features of the primary research are reported. Basic 

statistics such as means and standard deviations were not reported in about a third of the 

studies, and the reliability of outcome measures was reported in only a few cases. In many 

studies, reporting was also insufficient for methodological features such as attrition, 

whether participants were randomly assigned to treatments, format and provenance of 
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achievement tests, and duration of treatment. The challenge in raising the quality of 

research reporting in an interdisciplinary field such as ITS can be attributed to the lack of 

shared understanding of methodological standards among researchers and editors, and 

the dissemination of ITS evaluation research across a remarkably eclectic set of journals 

including Issues in Accounting Education, Thinking Skills and Creativity, and Methods of 

Information in Medicine. This challenge, inherent to interdisciplinary research reporting, is 

reflected in the statement of scope and standards of the International Journal of Artificial 

Intelligence in Education, which remarks “if a paper presents a behavioural study of 

students using some system to support claims about improved learning, then it must 

conform to the standards developed in behavioural science” but also that “it is not 

reasonable to expect that authors will meet all the standards of all disciplines outside their 

main focus.” I advocate journal editors specify requirements for reporting research design, 

sample size, attrition, reliability of measures, means and standard deviations for 

quantitative educational research, and also publish articles that inform their readership on 

how contemporary methodological practices such as “the new statistics” (Cumming, 2012) 

relate to their discipline.  

One difficulty I found in synthesizing all studies in this meta-analysis was a lack of 

common terminology for describing and reporting about the design of an ITS as well as 

inconsistent practices in selecting which ITS features should be described in an evaluation 

report. For example, some researchers reported their ITS used model tracing but did not 

indicate whether misconceptions were modeled, whether knowledge tracing was used, or 

whether the ITS adaptively selected problems. Often, the method used for student 

modeling was not described in relation to other ITS, and important features of a system’s 

design and behavior were not reported. I speculate that developing a taxonomy of ITS 

design that could underpin a reporting standard that would accelerate advances in ITS 

research. Certainly, more precise reporting about ITS design that draws from a common 

conceptual framework and terminology would greatly assist meta-analysts in identifying 

specific design features to compare their effects on learning outcomes. 
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3.4.4. Can Evaluation Research Contribute to a Theory of ITS 
Design? 

In this study, each study evaluated a single ITS that consisted of a complex set of 

interrelated features, many of which were no reported by or even known to the primary 

authors. In most cases, the evaluations were performed to investigate whether to deploy 

the ITS or to evaluate a software engineering project holistically. Rarely were the studies 

conceived as research into a theoretical question about the relationship between ITS and 

learning outcomes. Nonetheless, a meta-analysis of evaluation studies can categorize 

primary studies according to theoretically significant features and enable observation of 

relationships between the features and learning outcomes that were not considered in the 

primary work. Although none of the primary studies in this analysis compared a version of 

their ITS that models student misconceptions with another version that did not, I was able 

to code for misconception modeling as a moderator variable and assess its influence on 

effect size. As it turns out, none of the ITS characteristics coded, including type of ITS and 

misconception modeling and feedback, were found to reliably influence effect size under 

a random-effects model (although a fixed-effect model found that one type of ITS, 

Bayesian network modeling, had a significantly greater influence on effect size). It is 

notable that when I reread the studies in which the ITS did not provide response feedback, 

I observed the primary adaptive feature, in each case, was individualized task selection. 

This suggests individualized task selection may offer benefits comparable to the well-

established, positive effects of feedback on learning (Hattie & Timperley, 2007).  

In addition, most research studies reported independent and dependent variables 

but not intervening process variables (i.e., measures observed during the learning 

process) that might help to explain observed effects or lack thereof. Although recent work 

in educational data mining indicates process variables are gaining a more prominent 

position in the study of ITS (Winne & Baker, 2013), such variables are rarely reported in 

empirical evaluations of ITS effectiveness. When a process variable was reported in the 

studies, it was often only meaningful in the context of the particular learning task of the 

study that reported it. As a consequence, when researchers find that ITSs outperform 

other methods of computer-based instruction, there is little researchers can do in a meta-

analysis to account for the effect at the level of computer-student interactions. Similarly, if 

we want to seek an explanation for how Bayesian network modeling might outperform 
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other ITS designs, there are no common, interface-level data that could show whether 

such technical distinctions among the major types of ITSs are manifested across the 

research base in consistent, differentiated patterns of interaction with students. 

  

3.4.5. What Meta-analysis Can Tell Us About ITS  

Despite the great variety of conditions under which ITSs were found more effective 

than other modes of instruction, these results do not support the direct inference that ITS 

should, in any way, replace other modes currently in use. First, in all the studies analyzed 

in this review, there was the rational tendency to evaluate an ITS relative to the goals and 

scope of the project that created it. Because a project’s goals are determined by what 

might feasibly be accomplished by an ITS, the studies have an inbuilt bias toward 

instructional conditions and roles in which ITS could compete favorably with other modes 

of instruction. Another possible source of bias is that the development of an ITS, like any 

major instructional design project, typically involves more detailed attention to learning 

goals, materials and activities than the more typical instructional practices represented by 

the control conditions in the analyzed evaluations. It may be that the significant effect sizes 

are due as much to the kind of intensive instructional planning and analysis that can 

enhance any instructional approach than to the particular features of ITS. 

What the results of this meta-analysis provide is strong evidence that, in some 

situations ITS can successfully complement and substitute for other instructional modes, 

and that these situations exist at all educational levels and in many common academic 

subjects. The results do not support any particular explanations for the effectiveness of 

ITS, but they are consistent with an attribution to the most frequently implemented ITS 

features enabled by student modeling, namely highly individualized task selection, 

prompting and response feedback. That ITSs were found to be relatively effective whether 

or not they model frequent student misconceptions suggests the need for comparative 

research on the conditions under which misconception modeling adds value to 

individualized instruction.  
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This meta-analysis and previous reviews by Steenberger-Hu and Cooper (2013, 

2014) examined evaluation research in which the use of ITSs was compared to a variety 

of other modes of instruction. While reviews of this type are useful in marking general 

progress in the field of ITSs, a more powerful use of meta-analysis to drive those 

capabilities forward may be to review comparisons between ITSs. This strategy would be 

especially informative when analyzing studies that compare two or more versions of the 

same ITS such that each version represents a theoretically informed design variation. 

VanLehn (2011) adopted elements of this strategy to investigate the effects of interaction 

granularity on learning outcomes, and full meta-analyses comparing different versions of 

the same systems could be used to investigate many other potentially effective ITS 

features such as animated pedagogical agents (Baker et al., 2006), misconception 

modeling (Myneni, Narayanan, Rebello, Rouinfar, & Pumtambekar, 2013) and 

metacognitive prompts (Wu & Looi, 2012). I believe such strategic application of meta-

analysis to the end products of ITS research, development, and evaluation can inform and 

advance the design science of ITS.  
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Chapter 4.  
 
Overview of Student Modeling in Bayesian Network 

In Chapter 3, I reported the ITS meta-analysis that investigated the effectiveness 

of ITS compared to non-ITS environments. It is a statistically powerful way to detect the 

overall mean effect size of ITSs compared to other modes of instruction from a 

comprehensive set of research studies. However, to conduct the required statistical 

analysis, studies retained for the meta-analysis have to assess cognitive outcomes, and 

report statistics needed to calculate an effect size. These are strict screening and inclusion 

criteria. As a result, a good number of experimental studies that may bring useful insights 

to the landscape of the ITS field were filtered out.  

To supplement this meta-analysis, I conducted a second meta-analysis to focus 

on studies that fundamentally address issues of student modeling, specifically, a Bayesian 

Network. This is a mature student modeling technique with power to handle uncertainty 

and afford inferences based on uncertain observations, behaviors and measurements 

(Chrysafiadi, & Virvou, 2015).   

4.1. Purpose of the Study and Research Questions 

This review synthesizes research on the relative effectiveness of Bayesian 

networks in constructing student models in intelligent tutoring systems (referred to as “ITS 

BN studies” in all instances), and it addresses the following research questions: 

1. What research questions were investigated in ITS BN studies? 

a. Evaluation of BN student models? 

b. Evaluation of learning outcomes? 

2. What types of BNs have been applied in ITS BN studies? 

3. What are the contextual settings of ITS BN studies (e.g., subject tutored, grade level 

etc.)? 

4. What constructs are modeled in BN student modeling? (e.g., level of knowledge, 

affect, motivation, etc.)?  
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5. What pedagogical approaches are applied in ITS BN studies? 

6. What instructional strategies are applied in ITS BN studies? 

7. What are the characteristics of BN student models? 

4.2. Method 

4.2.1. Selection Criteria 

Studies were eligible for inclusion in the review when they shed light on research 

questions. In particular, studies must have been characterized by the following: 

(a) applied at least one type of BN in student modelling, 

(b) reported sufficient details of how BN student modeling was designed, and 

(c) were made publicly available, online or in library archives. 

 

According to criterion (a), studies that applied either one type of BN or one type 

of BN plus other algorithm(s) were included in the selection pool. However, studies that 

applied BN to areas other than student modeling were excluded.  

For criterion (b), studies were excluded when they reported only very high-level 

design features and, therefore, could not provide sufficient data for extraction, based 

upon a pre-defined coding form that had been developed for this study (See Section 

4.2.3 and Appendix B) . Studies that reported about the BN design for student modeling 

but that did not assess the effectiveness of the BN design or the learning outcomes were 

still included for analysis if they met criterion b.    

 

4.2.2. Search, Retrieval, and Selection of Studies 

A comprehensive search for relevant research was conducted in five major 

bibliographic databases: ERIC, PsycINFO, Springer Link, Science Direct and Web of 

Science. The key term Bayesian network was combined with the following key terms in 

the search: intellige* tutor*, intellige* agent*, cognit* tutor*, adapt* tutor*, cognit* virtual 

companion*, intellige* coaching system*, and pedagog* agent*. In total, the result returned 
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26,547 articles, which were individually screened. Table 4.1 shows results from the search 

using these key terms across the bibliographic databases. 

 

Table 4.1． Summary of Literature Search Parameters 

Search Key Terms Bibliographic Databases # of Documents 
Retrieved 

intellige* tutor*, or intellige* agent*, or ERIC 229  

cognit* tutor*, or adapt* tutor*, or  pedagog* 
agent*, or cognit* virtual companion*, or 

intellige* coaching system* 

PsycINFO  35 
Springer Link  18,817 

Science Direct 7,173  

Web of Science  320 

And  

Bayesian Network Total Hits 
  

26,574 
 

 

 

During the screening phase, the abstracts of the articles were reviewed and 

compared with criteria a and b to exclude irrelevant studies. The 2,182 articles that passed 

the initial screening were retrieved, and full-text copies were further evaluated against all 

three inclusion criteria. During this screening phase, BN studies that were referenced in 

the reviewed articles were manually retrieved and added to the selection pool. Finally, the 

143 studies that met the inclusion criteria were coded using a pre-defined coding form and 

coding instructions, which were developed specifically for this review. These include 

studies published between 1992 and 2014. 

 

4.2.3. Coding Study Characteristics  

The coding form included 32 fixed-choice items and 14 comment items that 

detailed information about the studies. Appendix B lists the complete coding form. Items 
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recorded about each study included: year published, research questions, subject 

domains, type of BN, major student modeling parameters, educational level of 

participants, research settings, duration of the study, type of research study, reliability 

reporting and descriptive statistics reported for the reported quantitative study.  

During the coding process, three categories of BN studies were identified and 

coded. The first category included studies evaluating the learning outcomes of students 

who worked with an ITS, which had been built with a proposed Bayesian student model. 

The effectiveness of the specific BN model under review was considered to be associated 

with students’ performances. The second category of studies generally evaluated the 

capability of the Bayesian student model to accurately predict the current state of students. 

Their approach involved comparing the learning outcomes of a group of students, working 

with the proposed BN model, with another group of students, working with another type of 

student model. The discrepancy between the groups’ respective learning outcomes was 

examined. The third category included studies that provided the design of the Bayesian 

student model but did not perform assessments with real users. Some of these studies 

used simulated students to test the effectiveness of the BN model to perform as predicted.  

In such cases, the simulated students’ prior knowledge was pre-defined and adjusted 

according to the test requirements as were other relevant defining variables. Since all 

parameters about simulated students were manipulated at the will of the researchers, the 

associated learning performances were not considered reflective of the validity needed for 

the purposes of this review. Consequently, these studies were not coded.  

  

4.2.4. Data Analysis and Interpretation 

In this review of Bayesian student modeling, data of relevant learning constructs 

were collected and entered into the coding form. The data were aggregated to identify 

patterns that could provide insights relevant to the seven research questions. In terms of 

Research Question 1, which addresses the research questions explored in the BN studies, 

I investigated the categories of research types reported. I also explored the studies in 

reference to a set of characteristics such as research approach (qualitative or 
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quantitative), research design, data collection instrument, type of publication, learning 

outcome, etc. These characteristics were examined with the intention of providing a 

comprehensive understanding about the nature of the included studies and to provide 

insights on how these studies addressed their respective research questions. Similarly, 

for Research Question 3 about the contextual settings of BN studies, a series of variables 

were explored to examine the contextual factors that could have contributed to a study’s 

results. These include country, subject domain, educational level, type of knowledge, and 

targeted level of student knowledge. For Research Question 4, to understand what 

learning constructs were traced in the Bayesian student model, I listed all the learning 

constructs extracted from the BN studies and then calculated the frequency of each to 

identify the constructs most commonly examined in the existing pool of studies. This 

examination also facilitated my gaining insights on the array of constructs that can be 

tracked and analyzed using BN.  For the Research Questions 2, 5 and 6, specific variables 

were analyzed to understand the types of BNs utilized in all studies and to identify the 

respective pedagogical and instructional strategies adopted to facilitate learning. For the 

last research question, with reference to the insights gained on the six previous questions, 

the characteristics of BN to support student modeling were holistically examined to 

understand the extent to which it predicts student performances.       

 

 

 

4.3. Results 

In this chapter, I present the results of the data analysis conducted on 143 studies, 

retrieved during a search of the literature, from 1992 to 2014. The results are presented 

in relation to this study’s seven research questions organized in the list below: 
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4.3.1. Research Question 1: What research questions were 
investigated in ITS BN studies? 

During this analysis, I examined the kinds of research questions that were 

investigated in ITS BN studies. In addition to research type, I also present data according 

to nine variables associated with research design characteristics to provide further insights 

on Research Question 1.  

 

Research Type 

 In this study, research type refers to the research questions that a particular 

experiment was designed to investigate. Table 4.2 presents three research types used to 

classify BN studies. Design proposal refers to research studies that only provide the 

design of a BN student model with or without the details of the ITS. Instruction assessment 

includes studies which assess specific instructions that guide students during learning in 

BN studies. System assessment refers to studies that design and evaluate the accuracy 

of the Bayesian student model or the ITSs with real users. A BN study evaluated with 

simulated students was not classified in this category because its experimental conditions 

are predefined and manipulated to suit varied testing needs; thus, they are instead 

categorized as a design proposal. Overall, the proportion of studies (50.3%) implemented 

as a system assessment is similar to those (49%) categorized as a design proposal. No 

studies were categorized as instruction assessments.  

Table 4.2． Research Type in BN Studies 

Research Type Number of Studies Percentage 

Design Proposal 71 49.7% 
Instruction Assessment 0   0.0% 
System Assessment 72 50.3% 
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Type of Publications 

Table 4.3 presents the types of publications for the included BN studies.  It 

suggests that conference proceedings (69.9%) account for the highest percentage among 

all ITS research studies, followed by journal articles (22.4%) and book chapters (7%). It is 

worth noting that some studies were published as dissertations as well as one of the three 

aforementioned types of publications. After examining the publications derived from a 

particular study, dissertations were not included in data calculation because later 

publications reported the same findings and were of higher quality. Instead, dissertations 

were added to an archival folder for reference. One research report, summarizing the 

design and development of an adaptive math tutoring prototype, was also included in the 

current analysis (Shute, Graf, & Hansen, 2006).  

 

Table 4.3． Publication Type in BN Studies 

Publication Type  Number of Studies Percentage 
Conference Proceedings 100 69.9% 
Journal Article 32 22.4% 
Book Chapter 10 7.0% 
Dissertation 0 0.0% 
Others-Report 1 0.7% 

 

Qualitative Studies Conducted 

Table 4.4 presents the number of qualitative BN studies. It suggests that, excluding 

studies that were classified as not reported or applicable (49%), most BN studies (50.3%) 

did not adopt a qualitative approach when evaluating the proposed ITS design. Only one 

study (0.7%) was found to use a case study approach when investigating the effect of an 

adaptive collaborative assistant on the improvement of students’ helping behaviors in a 

peer tutoring activity (Walker, Rummel, & Koedinger, 2011). 
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Table 4.4． Number of Qualitative BN Studies 

Qualitative Study Conducted  Number of Studies Percentage 
Yes 1 0.7% 
No 72 50.3% 
Not Reported or Applicable 70 49.0% 

Research Design 

Table 4.5 presents the research design of quantitative BN studies. Excluding 

studies classified as not reported or applicable (57.3%), a majority of studies used quasi-

experimental (14.7%) and experimental research design (11.2%) approaches. Ten studies 

were conducted as within-subject experiments. The remaining 14 studies fall into the 

others category, with the following subcategories: 1) studies that collect and analyze user 

logs or data to evaluate the accuracy of the student model to predict learner 

performance/affects (9 studies); 2) studies that collect users’ self-reports and 

questionnaires regarding their learning experience with the BN ITS (2 studies); 3) a 

combination of both 1) and 2) (3 studies).   

 

Table 4.5． Type of Research Design in BN Studies 

Research Design  Number of Studies Percentage 
Experimental 16 11.2% 
Quasi-experimental 21 14.7% 
Within-subject experiment  10 7.0% 
Others 14 9.8% 
Not Reported or Applicable 82 57.3% 

 
 
 
 

Categories of Learning Outcome 

Table 4.6 presents five common types of learning outcomes used to categorize the 

143 BN studies. Among the five types, verbal information is defined as “declarative 

knowledge” (Gagné & Driscoll, 1988, p. 44). It is the ability to articulate previously learned 
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facts, concepts and procedures (Driscoll, 2000). Intellectual skills refers to the 

understanding of how to execute an action, which is also known as “procedural knowledge” 

(Gagné & Driscoll, 1988, p. 47). Cognitive strategies are the skills with which “learners 

regulate their own internal processes of attending, learning, remembering, and thinking” 

(Gagné, 1985, p. 55). Thinking creatively and problem solving are also part of cognitive 

strategies (Driscoll, 2005). Attitudes are defined as an “acquired internal state that 

influences the choice of personal action” (Gagné & Driscoll, 1988, p. 58). Motor skills 

emphasize smooth and accurate performance involving muscular coordination, which is 

an indication of performance but not a primary educational goal (Gagné & Driscoll, 1988). 

Overall, excluding studies classified as not reported or applicable (28.7%), 

intellectual skill (46.2%) is the most studied skill in ITSs among all BN studies. The second 

most studied skill is verbal information (14%) which includes 22 studies. Seven studies 

(4.9%) targeted both of those skills in ITSs. Nine studies were found to support the 

development of cognitive strategies in ITS, e.g., scientific inquiry skill. In the current 

analysis, no studies were found to develop attitudes or motor skills.   

 

Table 4.6． Categories of Learning Outcome in BN Studies 

Categories of Learning Outcome  Number of Studies Percentage 
Verbal Information  20 14.0% 
Intellectual Skill 66 46.2% 
Cognitive Strategy  9 6.3% 
Attitude  0 0.0% 
Motor Skill 0 0.0% 
Verbal Information + Intellectual Skill 7 4.9% 
Not Reported or Applicable 41 28.7% 

 

 

Positive Experimental Outcome in ITSs 
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To explore the characteristics of ITSs regarding student models,  I not only include 

empirical studies that provide sufficient empirical data and experimental details but also 

literature that reports the design of student models in building an ITS, which is run without  

an experiment to evaluate its accuracy and effectiveness. For the included empirical 

literature, Table 4.7 shows the number of studies that were found to have a positive 

outcome based upon an evaluation of the ITS’ effects. In the current analysis, the phrase 

positive outcome is defined broadly to include not only studies with positive ITS effects in 

empirical evaluation but also to include studies that have reported positive learning 

experiences associated with ITS. For instance, positive experiences were self-reported by 

students, which suggests that they found the learning environment to be enjoyable. 

Excluding studies classified as not reported or applicable (51.7%), a majority of studies 

(41.3%) reported a positive outcome. Only nine studies were found to have no positive 

outcome or no effect, indicating that most studies resulted in some degree of positive 

outcome using BN student modeling in ITSs. One study, which reported a mixed result, 

involved adding eye-tracking data to increase bandwidth in student modeling. The data 

provides support for using an eye-tracker to predict students’ ability to apply self-

explanation skills.     

 

Table 4.7． Positive Experiment Outcome in ITSs in BN Studies 

Positive Outcome in ITS  Number of Studies Percentage 
Positive Outcome 59 41.3% 
No Positive Outcome or No Effect 9 6.3% 
Others - Mixed Results 1 0.7% 
Not Reported or Applicable 74 51.7% 

 

Positive Learning Outcome in ITS Table 4.8 shows the number of studies that 

yielded positive learning outcomes for students when they worked with ITSs. Overall, 

excluding studies classified as not reported or applicable (71.3%), a majority of studies 

(25.2%) reported a positive learning outcome. Only four studies reported no positive 

learning outcome or no effect. One study reported a mixed learning outcome, suggesting 

some students demonstrated significant progress or a certain degree of improvement in 
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their learning while others showed no improvement at all, after working with a math ITS 

on decimal numbers.  

 

Table 4.8． Positive Learning Outcome in BN Studies 

Positive Learning Outcome in ITS  Number of Studies Percentage 
Positive Outcome 36 25.2% 
No Positive Outcome or No Effect 4 2.8% 
Others - Mixed Results 1 0.7% 
Not Reported or Applicable 102 71.3% 

 

Other Dependent Variable 

In addition to student performance, Table 4.9 shows the additional dependent 

variables used during experiments for BN research. Overall, most BN studies do not use 

other dependent variables (94.4%).  

Table 4.9． Other Dependent Variables in BN Studies 

Other Dependent Variable  Number of Studies Percentage 
Others 6 4.2% 
Not Reported or Applicable 137 95.8% 

 

As listed in Table 4.10, only six studies use additional dependent variables in their 

evaluation: 

Table 4.10． Other Dependent Variables in Other Category 

Other Dependent Variable  Number of Studies 
Number of mountains students in 
both groups climbed in the game and 
whether students used help or not 

1 

Students' confidence, confusion and 
effort estimates 1 

The quality of the peer tutor's help 1 
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Frequency of constraint violation  1 
Number of problems attempted in 
each condition 1 

Pupil size, affect and reasoning styles 1 

Independent Variable 

Table 4.11 identifies the independent variables for experiments conducted in BN 

research. Overall, excluding the studies classified as not reported or applicable (65%), a 

majority of studies (32.9%) were found to have use of ITSs as the independent variable. 

Only three studies were found to use other variables as the independent variable in their 

evaluation, as listed in Table 4.12. 

 

Table 4.11． Independent Variables for BN Studies 

Independent Variable  Number of Studies Percentage 
Use the tool/system  47 32.9% 
Others 3 2.1% 
Not Reported or Applicable 93 65.0% 

 

 

 Table 4.12． Independent Variables in Other Category 

Independent Variable Conditions in Other Category  Number of Studies 

Use version 1 or version 2 of the proposed ITS 1 

Use the game-based ITS, or the non-game-based ITS, or 
no ITS 1 

Relevance of computer support and peer tutor’s 
noticing of support 1 

 

Instrument and Procedure 
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Table 4.13 shows the instrument or procedure used in experiments to collect 

additional student data in the BN studies. Overall, excluding the studies classified as not 

reported or applicable (78.3%), 22 studies have used surveys or questionnaires to collect 

students’ attitudes or opinions about how they interact with ITSs during learning. Five 

studies (3.5%) collected students’ self-reports on their experiences working with ITSs.  

One study (0.7%) conducted an in-depth group interview with students of the treatment 

group to collect similar students’ data on their experience with the ITS during learning 

(Han & Lee, 2010).   

 

          Table 4.13． Instruments and Procedures in BN Studies 

Instrument and Procedure  Number of Studies Percentage 
Survey/Questionnaire  22 15.4% 
Test 0 0.0% 
Observation  0 0.0% 
Self-report 6 4.2% 
Others 1 0.7% 
Survey/Questionnaire + others 2 1.4% 
Not Reported or Applicable 112 78.3% 

 

 

4.3.2. Research Question 2: What types of BNs have been applied 
in ITS BN studies? 

This research question explores the types of BNs applied in ITS BN studies. In the 

current analysis, when a study reports the use of BN in the student model without 

specifying a type, it is coded as a general BN in the category of Bayesian Network.  Table 

4.14 reflects that a majority of studies have adopted general BN student modeling (77.6%). 

Twenty-six studies applied dynamic BN in the student model. Two studies (1.4%) applied 

temporal BN and one study (0.7%) used both static and temporal BN. Two studies used 

a customized BN approach. Specifically, BNT-SM and atomic BN were used.  
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          Table 4.14． Types of BN applied to Student Modeling in BN Studies 

Types of BN applied in 
Student Modeling  Number of Studies  Percentage 

Bayesian Network 112 78.3% 

Dynamic Bayesian Network 26 18.2% 

Static + Temporal Bayesian 
Network 1 0.7% 

Temporal Bayesian Network 2 1.4% 

BNT-SM  1 0.7% 

Atomic Bayesian Network 1 0.7% 

 

Knowledge Domain Model Built in BN 

In addition to student models, BN application in knowledge domain models were 

also examined. Table 4.15 shows that, excluding the studies that were classified as not 

reported or applicable (46.2%), a majority of studies did not adopt BN in building their 

knowledge domain (38.5%).   

          Table 4.15． Knowledge Domain Built using BN in BN Studies 

Knowledge Domain 
Built using  BN  Number of Studies Percentage 

Yes 22 15.4% 
No 55 38.5% 
Not reported or 
applicable  66 46.2% 

 

Tutor Model Built using BN 

Table 4.16 presents the number of ITS studies that built their tutoring models using 

BN. Similar to knowledge domain modeling, excluding the studies not reported or 
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applicable (59.4%), a majority of studies did not adopt BN in building their tutoring model 

in ITSs (30.1%).   

 

         Table 4.16． Tutor Model Built by BN in BN Studies 

Tutor Model 
Built using  BN  Number of Studies Percentage 

Yes 15 15.4% 
No 43 38.5% 
Not reported or 
applicable  85 46.2% 

 

4.3.3. Research Question 3: What are the contextual settings of ITS 
BN studies?     

Contextual settings provide environmental information about how a specific study 

is conducted and may yield additional information that could influence the study results; 

however, contextual settings are not considered when designing a research study. For 

this research question, there are five contextual categories, regarding the demographics 

and characteristics of ITS studies that adopted BN in their student modeling.  

 

Country  

Table 4.17 shows the distribution of countries in which the included research 

studies were implemented. The research studies were conducted across 32 countries. 

USA, Canada and China comprise 46.2% of the total distribution and are the countries 

that have conducted the most studies in this area. For the remaining 29 countries, the 

number of studies per country ranges from one to seven. The data reflects the popularity 

of using BN for student modeling in the ITS communities across a variety of regions 

globally.  
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         Table 4.17． Country Distribution in BN Studies 

Country/Region  Number of Studies Percentage 
USA 36 25.2% 
Canada 21 14.7% 
China 9 6.3% 
Spain 7 4.9% 
Malaysia 6 4.2% 
Mexico 6 4.2% 
Italy 5 3.5% 
Greece 4 2.8% 
Brazil 4 2.8% 
Argentina 3 2.1% 
Taiwan 3 2.1% 
Egypt 3 2.1% 
France 3 2.1% 
India 3 2.1% 
Singapore 3 2.1% 
UK 3 2.1% 
Korea 2 1.4% 
Netherlands 2 1.4% 
Australia 2 1.4% 
New Zealand 2 1.4% 
Columbia 2 1.4% 
Portugal 2 1.4% 
Iran 2 1.4% 
Thailand 2 1.4% 
Cuba 1 0.7% 
Philippines 1 0.7% 
Germany 1 0.7% 
Russia 1 0.7% 
Vietnam 1 0.7% 
Morocco 1 0.7% 
Indonesia 1 0.7% 
Turkey 1 0.7% 
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Subject Domain  

Table 4.18 presents the number of BN studies by subject domain. The top three 

subject domains are computer science, math, and physics, representing 60.2% of the 

overall subject domains in study. Excluding the studies classified as not reported or 

applicable (16.8%), the remaining studies in other subject domains account for 23% of the 

overall studies. This result is consistent with that of my meta-analysis that found the 

dominant subjects for ITS research, since its emergence, continue to be science, math, 

and physics.  

 

          Table 4.18． Subject Domains in BN Studies 

Subject Domain  Number of Studies Percentage 
Computer science  38 26.6% 
Math  31 21.7% 
Physics 17 11.9% 
Language Learning  8 5.6% 
Medical Education 8 5.6% 
Engineering  6 4.2% 
Biology 4 2.8% 
Aeronautics 3 2.1% 
Other Domains -Human 
Development 1 0.7% 

Other Domains - Job 
Interview Skills 1 0.7% 

Other Domains - Teacher 
Education 1 0.7% 

Other Domains- 
Analytical Skill Training 1 0.7% 

Not reported or 
applicable 24 16.8% 
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Educational Level 

Table 4.19 presents the distribution of BN studies by educational levels. It suggests 

that, excluding studies classified as not reported or applicable (36.4%), the majority of the 

studies are implemented within post-secondary settings (39.2%). The total number of 

studies conducted at elementary and secondary school levels is only half of the number 

of those studies that have been conducted at post-secondary institutions. Only a small 

percentage of studies was conducted for professional training (1.4%). ITS researchers’ 

tendency to run studies in  post-secondary settings probably stem from their being able to 

recruit university students more conveniently than it would be to recruit those in 

elementary and secondary schools, which requires greater effort to coordinate with 

schools administrators and curricular schedules.  

 

Table 4.19． Educational Level in BN Studies 

Educational Level Number of Studies Percentage 
Elementary  16 11.2% 
Secondary 13 9.1% 
Post-secondary 56 39.2% 
Others - Professionals 
training (astronaut 
training,  orthopedic 
surgery training) 

2 1.4% 

Others - mixed groups of 
various educational levels 4 2.8% 

Not reported or applicable 52 36.4% 

 

 

Knowledge Type 

Table 4.20 presents the distribution of BN studies by knowledge type. Excluding 

studies classified as not reported or applicable (21%), the majority of the studies, across 
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all domain areas, investigated procedural knowledge (57.3%). This result is supported by 

data showing that the top three subject domains, in Table 17, are computing science, 

math, and physics because the type of knowledge associated with these three subject 

domains are procedural in nature.  

 

          Table 4.20． Knowledge Type in BN Studies 

Knowledge Type Number of Studies Percentage 
Declarative 22 15.4% 
Procedural 82 57.3% 
Both 9 6.3% 

Not reported or applicable 30 21.0% 

  

 

 

 

Targeted Level of Knowledge  

Table 4.21 presents the distribution of BN studies by the participants’ level of 

knowledge that was targeted by the ITS. Excluding studies classified as not reported or 

applicable (53.8%), the majority of the remaining studies were aimed towards novice 

students (35%). There are only nine studies (6.3%) conducted for students at intermediate 

or advanced levels and two studies (1.4%) intended for both novice and intermediate 

levels. This result may indicate that implementing ITSs to support more advanced learners 

be practically difficult and costly because this would require a large amount of domain 

knowledge to be modelled and a high degree of computational power to keep track of 

student performance and internal cognitive processing in student modeling.    
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         Table 4.21． Targeted Level of Knowledge in BN Studies 

Targeted Level of 
Knowledge Number of Studies Percentage 

Novice  50 35.0% 
Intermediate 8 5.6% 
Advanced 1 0.7% 
All Levels 4 2.8% 
Mixture of Novice and 
Intermediate 2 1.4% 

Not reported or applicable 77 53.8% 

 

4.3.4. Research Question 4: What constructs are modeled in BN 
student modeling (e.g., level of knowledge, affect, 
motivation, etc.)? 

Table 4.22 presents all constructs captured in student models examined in BN 

studies. The full list of constructs in student modeling are: 

a. time spent 

b. number of attempts  

c. motivation  

d. prior knowledge 

e. knowledge level or performance score/level  

f. affective state 

g. learning style 

h. demographic  

i. others  
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Table 4.22 reveals that 49 studies (34.3%) out of all 143 studies just modeled 

students’ knowledge or performance in ITSs. An additional 55 studies (38.5%) modeled 

students’ knowledge plus one more variable.  

 

         Table 4.22． Constructs Modeled in BN Student Models 

Constructs Modeled 
in BN Student 
Modeling 

 Number of Studies Percentage 

e 49 34.3% 
ei 40 28.0% 
eg 5 3.5% 
de 6 4.2% 

i 3 2.1% 

ef 3 2.1% 
edi 1 0.7% 
efi 2 1.4% 
aei 2 1.4% 
f 2 1.4% 
aeg 2 1.4% 
g 2 1.4% 
gi 2 1.4% 
fi 2 1.4% 

adei 2 1.4% 

cefi 1 0.7% 
cegi 1 0.7% 
cei 1 0.7% 
cdef 1 0.7% 
abehi 1 0.7% 
aeghi 1 0.7% 
adgi 1 0.7% 

aefi 1 0.7% 

ai 1 0.7% 

dehi 1 0.7% 
def 1 0.7% 

efgi 1 0.7% 
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Constructs Modeled 
in BN Student 
Modeling 

 Number of Studies Percentage 

egdi 1 0.7% 

eghi 1 0.7% 

egi 1 0.7% 

eiag 1 0.7% 

fe 1 0.7% 
fh 1 0.7% 

gf 1 0.7% 

hegi 1 0.7% 
Note: Given the number of variables, the constructs are presented in the abbreviated 
format in English letters. 

 

To understand more clearly which constructs are most captured in student models, 

the frequency with which each construct appears in BN studies is calculated and listed in 

Table 4.23. It shows that knowledge level has the highest frequency among all constructs 

in BN studies. Excluding the category others, learning style, affective state, and prior 

knowledge are the three most modeled constructs in BN studies. Student motivation is the 

least modeled construct in BN studies. Only one included study explicitly captured the 

number of attempts on correct answers.  

         Table 4.23． Frequency of Constructs Modeled in BN Student Models 

Frequency of Constructs Modeled in BN 
Student Modeling Number of Studies 

A. Time Spent 11 
B. Number of Attempts 1 
C. Motivation 4 
D. Prior Knowledge 14 
E. Knowledge Level or Performance 
Score/Level 127 

F. Affective State 16 
G. Learning Style 21 
H. Demographic 6 
I. Others 69 
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Table 4.24 presents a variety of constructs modeled in the category others in all 

BN studies. The data suggests that students’ self-regulatory skills, learning activities and 

behaviors when interacting with ITSs, and misconceptions are the top constructs modeled 

in the BN studies.  

 

Table 4.24． Constructs Modeled in Student Models in Others Category 

Constructs Modeled in BN Student 
Modeling  Number of Studies 

Self-regulatory/metacognitive 
skills/states  12 

Students' learning activities and 
behaviors 11 

Students' misconceptions 8 
Scientific inquiry skill  5 
Students' errors/mistakes  3 
Students' interests, personality and 
preferences  3 

Scaffolds, hints and help students used 
and ignored 3 

Scaffolds, hints and help students used 
and ignored 3 

Students' collaborative skills 2 
State of problem-solving 2 
Students' confidence in their work 2 
Students' carelessness 2 
Parameters of students’ learning 
interaction 2 

Whether the student elicits help or not 1 
Test items related to knowledge nodes 1 
 Social and psychological signals/cues 1 

The students' learning paths identified by 
indexes that highlight students' cognitive 
actions and navigation behaviors 

1 

Students' learning rate 1 
Students' computer expertise and 
connection speed 1 

Learner's belief about his cognitive 
achievement 1 

Students' behavior in playing games 1 
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Constructs Modeled in BN Student 
Modeling  Number of Studies 

The randomized position of each 
representation icon in trial 1 

Type and amount of help asked 1 
Kind of help received 1 
Students' disengagement  1 
Students' learning problems 1 
Students' plan/goals and associated 
actions 1 

Students' attention and gaze data 1 
Similarity between the problem and a 
candidate example students worked on 1 

   

 

4.3.5. Research Question 5: What pedagogical approaches are 
applied in ITS BN studies? 

Table 4.25 presents the distribution of the pedagogical approaches with reference 

to learning theories taken in the BN studies. Overall, there are 11 studies (7.7%) that 

embedded collaborative and social learning theories in their respective learning design, 

supporting students’ social and interactive learning in a collaborative manner. There are 

only two studies (1.4%) that used a modified cognitive tutor following the ACT-R design. 

One study reported to have adopted both cognitive load theory and problem-based 

learning to guide design for developing conceptual, practical and strategic knowledge for 

students in Indian rural area (Toshniwal & Yammiyavar, 2013). Another study integrated  

collaborative, social learning theory with community of practice to build a collaborative 

learning environment to support students’ situated, multi-step problem-solving skills in 

algebra (Singley, Singh, Fairweather, Farrell, & Swerling, 2000).  

Excluding almost half of all studies classified as not reported or applicable (49.7%), 

a majority of researchers in the remaining 72 studies have followed some type of 

pedagogical framework to design and guide their research studies (39.9%, in other 

category). For instance, to promote teaching practice for apprentice teachers, Chieu and 

Herbst (2011) adopted Piagetian epistemology to design an intelligent learning 



 

101 

environment that fosters learning by having students’ adapt their prior knowledge to the 

feedback they receive. The Andes ITS study followed the coached problem-solving 

approach to provide students with relevant assistance in overcoming impasses while 

solving a physics problem (Gertner, Conati, & VanLehn, 1998). Moreover, Weragama and 

Reye (2013) used Vygotsky’s Zone of Proximal Development (ZPD) to scaffold students 

with exercises for the PHP language programming in the ITS. Such efforts indicate that 

ITS researchers have actively worked to integrate pedagogical elements embodied in 

various theoretical framework to obtain effective learning results during the learning design 

phase.     

 

Table 4.25． Pedagogical Approach with Theoretical References in BN    
Studies 

Pedagogical Approach with 
Theoretical Reference  Number of Studies Percentage 

Cognitive Learning Theory  2 1.4% 
Collaborative and Social 
Learning Theory 11 7.7% 

Instructional Design Theory 0 0.0% 
Others   57 39.9% 
Cognitive Learning Theory + 
Others 1 0.7% 

Collaborative and Social 
Learning Theory + Others 1 0.7% 

Not reported or applicable 71 49.7% 
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4.3.6. Research Question 6: What instructional strategies are 
applied in ITS BN studies? 

Table 4.26 presents the distribution of the respective instructional strategies 

applied in BN studies. Excluding 78 studies classified as not reported or applicable 

(54.5%), a majority of researchers in the remaining 65 studies have integrated some type 

of instructional strategies into their ITS design (27.3%). There are 13 studies (9.1%) 

categorized as problem-oriented, which probably correspond to the procedural, problem-

solving learning activities required in the top three subject domains based on the previous 

discussion. Five studies adopted collaborative instructional strategies to promote 

students’ interaction during learning. Only two studies were classified as either example-

oriented, or natural language dialogue, or program visualization.   

 

         Table 4.26． Instructional Strategies applied in BN Studies 

Instructional Strategies   Number of Studies Percentage 
Example-oriented 2 1.4% 
Program Visualization 2 1.4% 
Program Analysis 0 0.0% 
Natural Language Dialogue 2 1.4% 
Collaborative 5 3.5% 
Problem-oriented 13 9.1% 
Natural Language Dialogue + 
Problem-oriented  1 0.7% 

Collaborative + Problem-
oriented  1 0.7% 

Others  39 27.3% 

Not reported or applicable 78 54.5% 

 

The learning pace a student is able to take in an ITS reflects the instructional 

intention of enabling students the flexibility to control how they learn. A learner-paced ITS 

allows students to explore the learning content at their own will and follow their own 

strategies and speed. Students are not restricted to study in a pre-defined curricular order 

and complete learning tasks within a given period of time. System-paced learning in ITS, 
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on the other hand, involves students following a structured approach to learn. As such, 

students have to complete work as instructed with little control over what to learn next. 

Table 4.27 presents the number of studies in each category in the BN studies. Excluding 

studies classified as not reported or applicable (49.7%), among the remaining 57 studies, 

there are more ITSs designed in a self-paced manner (23.8%) than a system-paced one 

(16.1%). 

 

         Table 4.27． System-paced or Learner-paced in ITS Design in BN Studies 

System-paced or Learner-
paced in ITS Design?   Number of Studies    Percentage 

Self-paced 34 23.8% 
System-paced 23 16.1% 

Not reported or applicable 86 60.1% 

 

Table 4.28 presents the number of pedagogical agents in the BN studies. Typically, 

a pedagogical agent is an animated character that plays a virtual instructor or peer role in 

an ITS to guide or provide feedback to students on their performance during learning. The 

data suggests that, excluding the studies classified as not reported or applicable (18.9%), 

a majority of studies (47.6%) do not have a pedagogical agent in the design. 37 studies 

(25.9%) reported having one pedagogical agent in their ITSs. Eleven studies (7.7%) 

reported to have included multiple pedagogical agents in their ITS design.  

 

         Table 4.28． Number of Pedagogical Agents in BN Studies 

Number of Pedagogical Agents     Number of Studies    Percentage 

Zero 68 47.6% 
One 37 25.9% 
Multiple 11 7.7% 

Not reported or applicable 27 18.9% 
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4.3.7. Research Question 7: What are the characteristics of BN 
student models? 

 

BN is a powerful technique to model process under uncertainty with its “rigorous 

probabilistic formalism with graphical representation and efficient mechanisms” (Pek, & 

Poh, 2004, p. 282). In this section, the following characteristics of BN student modeling 

were identified that may contribute to the effectiveness of ITSs to promote learning.   

 

Ability to Handle Inherent Uncertainty in Student Modeling  

When an ITS is devised to model and predict students’ knowledge, it involves a 

high level of inherent uncertainty because students’ mental states are unlikely to be 

explicitly revealed and can implicitly change without being easily noticed from overt 

behaviors. In this study, it was found that, the wide adoption of BN in building student 

models lies in its power to handle uncertainty of predicting student’s current states 

(knowledge, emotion, performance etc.). BN modeling maintains a graphical 

probabilistic/belief network to represent the interdependency and interrelationship of 

nodes of interests, e.g., knowledge. In a typical BN student model, knowledge and skills 

assessments on students and structures are performed on a corresponding belief network. 

By eliciting evidence of change from the most recent representation of a student’s 

knowledge, BN algorithm runs automated reasoning to predict the current knowledge state 

and then propagates updates to all related nodes in the entire belief network (Mayo & 

Mitrovic, 2000). This process is conducted through a rigorous computational mechanism 

based on a sound theoretical foundation in statistics and weighs all corresponding 

evidence in the network, instead of directly relying upon students’ subjective responses 

and actions, which may include guesses or slips of the tongue (Reye, 2004).  

Moreover, BN student modeling can capture and represent changes in students’ 

mental states over time. For instance, DBN, a specific type of BN, is used to model 

temporal evolution of a variable node. In a DBN student model, each node is tracked with 

multiple values, reflect changes across time slices and indicate their temporal 

interdependencies (Conati & Zhao, 2004). Each time slice represents a moment depicting 
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the occurrence of a student activity when evidence is collected for a particular node in the 

network (Seffrin, Rubi, & Jaques, 2014). Therefore, for a specific time-sliced node, 

representing the current moment, it has one more time slice for a previous state and 

another one for a future state (Ting & Zadeh, 2007). These time-sliced nodes are 

interconnected by the temporal arcs that define their influence on each other as a result 

of temporal changes, which can be further analyzed to understand students’ progress over 

time. Therefore, BN student modeling performs inferences more efficiently in a highly 

structured belief network than other types of student modeling that operate using a set of 

diagnostic rules. Therefore, BN student modeling can obtain a more accurate prediction 

of student knowledge, enabling the ITS to make effective pedagogical decisions to 

accommodate ongoing study needs for students in multidimensional learning constructs.  

      

 

Ability to Model a Wide Range of Constructs in Student Modeling  

In this analysis, thirty-seven different constructs were found to have been modeled 

in BN student models, when combining variables listed in Table 4.22 and 4.23 (see 

Research Question #4). Among the 37 constructs, many are related to student learning 

including cognitive, metacognitive, behavioral, aptitudinal, motivational and affective 

dimensions.  This diversity in the aspects of learning considered by a BN student model 

is believed to provide the model with the capability to reason and make inferences from 

across a variety of learning dimensions, thereby allowing ITS researchers greater flexibility 

in selecting a subset of constructs most relevant to their respective research questions.  

 BN student modeling can also support a wide range of dimensions upon which an 

ITS can adapt to students because of the large amount of student data captured by the 

model. Other types of student models are restricted to a limited number of constructs. For 

instance, in addition to students’ current mastery of knowledge, the BN student model also 

captures information on students’ help-seeking behaviors. Therefore, an ITS can adapt 

instruction to provide hints to students when they are stuck but fail to elicit any system 

help. In addition to the adapted learning content, the ITS can also guide students to learn 
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to monitor their progress and seek help when necessary. The adapted instruction is 

generated by integrating evidence collected from students’ behaviors as they progress, 

instead of relying solely on students’ current state of knowledge. Through leveraging multi-

dimensional learning constructs, BN student modeling increases the user modeling 

bandwidth with a greater quantity and quality of user information to assess and represent 

students’ latest states. In this way, BN student modeling can provide more targeted 

adaptation for personalized learning to individual students.  

 

Ability to Build Short-term and Long-term Student Models in an ITS 

BN student models can be used to track and assess students’ ongoing state 

changes, over the short-term and long-term, in targeted modeling constructs such as 

knowledge, affect or metacognitive skills. Short-term student modeling refers to the 

tracking of the student learning process while a student works on the current learning task 

and moves to a new one upon completion. During this dynamic process, new evidence of 

the student’s progress is derived and used to propagate to each of the relevant nodes in 

the entire BN network as the posterior probability. In this way, the updated BN network 

maintains a long-term student model with all known nodes representing individual learning 

tasks that the student has completed so far.  When the student starts a new learning task, 

the posterior probability of those existing nodes in the long-term model are used as the 

prior probabilities to initiate the related nodes in the new short-term model. New evidence 

will be further collected along with the student’s progress on the new task. This loop will 

continue until all tasks are completed. In other words, the short-term student model 

represents a snapshot of the student’s most recent behaviors or actions and is kept 

temporarily during BN modeling. The long-term student model depicts the full view of the 

students’ current states on the targeted constructs and is kept permanently as part of BN 

modeling.    

Some ITS researchers have made both the short-term and long-term models 

explicit in their design, whereas others have kept them as part of one BN model. For 

instance, Conati and Zhao (2004) explicitly built both short-term and long-term models 

using DBN for their Prime Climb educational game on number factorization for elementary 
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school students. The short-term model was used to track a student’s current action on 

solving a specific number factorization, contextualized within the act of climbing a 

particular mountain in the game. Once the student completes climbing this mountain, the 

student’s progress is saved in the short-term model and used to update the probabilities 

of the corresponding knowledge nodes in the long-term model. Once the update is 

complete, the short-term model is disposed while a new short-term model is 

simultaneously created when the student starts to climb a new mountain. In the physics 

ITS Andes (Conati, Gertner, & Vanlehn, 2002), students’ current problem-solving behavior 

is captured in a task-specific network as part of the overall Bayesian student model. The 

network makes inferences based on the student’s most current behaviors and actions on 

solving a problem. Once the problem is solved, the short-term network saves the posterior 

probability of the related physics rule nodes in the long-term student model and is 

discarded afterwards. Similarly, a new task-specific network is created when the student 

starts working on a new problem. The process of tracking closely the student’s progress 

allows for the constant updates needed to support long-term student models.  

 

 

 

 

4.4. Discussion 

4.4.1. Summary of the Results 

In this study, I address seven research questions to uncover the characteristics of 

ITSs with BN student modeling from 143 studies, conducted in 32 countries, between the 

years of 1992 to 2014. For almost half of these studies, only the framework for designing 

an ITS using BN student modeling was provided. The remaining studies implemented ITSs 

with BN student models, which were evaluated for effectiveness with participants; these 
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studies employed experimental designs or collected feedback from participants using self-

report instruments such as questionnaires. Also, the analysis reveals that BN ITSs have 

been widely used in a great variety of subjects across a range of educational levels, 

including professional training. Excluding studies that were classified as not reported or 

applicable, the majority of the remaining studies reported positive experimental and 

learning outcomes.  

For Bayesian student modeling, a total of 37 constructs were tracked and modelled 

in student models. These constructs spanned multiple dimensions at the cognitive, 

metacognitive, behavioral, aptitudinal, motivational and affective levels. Capturing such a 

variety of user data in real-time makes it possible for researchers to identify specific 

student attributes during the course of learning, thereby enabling the provision of 

appropriate instructional support to intervene and remediate knowledge as deemed 

necessary. Excluding those studies classified as not reported, the results indicate that the 

studies integrated one or multiple types of instructional strategies into the ITS design to 

facilitate different levels of learning activities and interactions. Similarly, among the 143 

studies, researchers adopted one or multiple pedagogical frameworks to guide the design 

of ITSs and build authentic, interactive learning environments to promote meaningful 

learning among students.  

 

 

4.4.2. Quality of Reporting 

To include more ITS studies using BN student modeling in the review, the selection 

criteria allowed including studies without evaluation experiments but having ITS design 

proposals. This wider spectrum of studies confirmed that reporting on fundamental 

features of ITS research was insufficient, an issue that had been already been identified 

in the meta-analysis. In some empirical studies, reporting omitted key methodological 

features such as attrition, types of test items in assessment tests, descriptions of 

comparison groups, and reliability of outcome measures. Insufficient reporting about 

details pertaining to pedagogical approaches and instructional strategies also existed in 
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both empirical and design studies. In many studies, especially those relating to BN design, 

not enough explanation was given about how underlying pedagogical frameworks guided 

researchers’ designs for the modeling components of the ITS. The rationale for selecting 

and implementing corresponding instructional strategies and learning scaffolds are not 

often provided; this gap in reporting makes it challenging for readers to understand how 

these strategies can be adopted within their particular learning contexts. Without 

presenting the ways in which an ITS design embodies pedagogical and learning theories, 

the reporting of these studies could be perceived as more of a technical exercise than as 

being one that aims to forward research within the learning sciences.   

 

4.4.3. What This Review Can Tell Us About ITS 

This review confirms that Bayesian networks have been effectively used to model 

a great variety of learning constructs spanning multiple facets of learning in student 

models. Among these constructs, a set of contextual and process variables are modeled 

in addition to common variables describing student performance. For instance, a student’s 

prior knowledge and gender are profiled and analyzed as contextual characteristics that 

may influence performance (Stevens & Thadani, 2006). To understand the course of 

learning per se, process variables, such as the number of attempts to answer an exercise 

correctly or student actions logged over a period of time, are captured to gain insights on 

learning as it occurs (e.g. Bedor, Mohamed, & Shedeed, 2004). This diverse set of learning 

constructs operationalized at a fine level of granularity through student modeling makes it 

possible to elicit evidence of learning in its immediate context and facilitates the 

examination of how learning occurs incrementally and gradually over time. The data 

provide a rich resource for discerning the interplay of those constructs as they shape 

students’ motivational and participatory behaviors during learning, thereby providing 

insights on how to assess the impact of interactions of varied levels of complexity on 

student learning. The captured data can increase predictive accuracy of student states by 

facilitating the transformation of user performance data into learner parameters leveraged 

through BN inference.  
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Despite the great potential of utilizing these variables to seek evidence of learning, 

it should be noted that almost half of the 143 studies were still at the ITS design phase at 

the time they were published rather than at the prototype implementation or end product 

stage of ITS development. Needless to say, the instantiation of the design involves a 

process of validating related assumptions and hypotheses as well as discarding unrealistic 

requirements. The infeasibility of capturing all or only a portion of the constructs in a 

student model, as proposed in many studies, becomes apparent during the 

implementation phase and is inevitably constrained by a number of unforeseen factors. 

Therefore, the operationalization in modeling certain learning constructs is still in doubt 

and should not be taken for granted as being readily applied within a typical ITS.  

Another observation emerging from this review is that, among the 143 studies, the 

research questions primarily center around whether a proposed BN student model 

accurately predicts students’ performance or whether the new ITS can effectively promote 

learning gains. In many cases, when a positive learning outcome had been detected, a 

conclusion was often broadly drawn and the effect attributed to the overall individualized 

treatment in the ITS. Further investigations to uncover the actual underlying learning 

mechanism with regard to the associated contributing variables were not conducted. 

Although some BN studies captured a broad set of variables in the student model, the 

data were not further analyzed to understand how the variables influenced learning. 

Therefore, despite perceived ITS benefits, it would be challenging for ITS researchers to 

generalize about whether a set of similar attributes could be captured and that learning 

effects could be replicated across a broader audience and different learning contexts. 

Thus, I recommend that ITS researchers not only direct attention to the general evidence 

of learning gains but also explore critical underlying parameters and corresponding 

contexts surrounding positive learning outcomes. Hypotheses derived from the set of 

contextual, process and student performance variables should be developed and then 

tested. Such investigations would yield insights into how student behavior during learning 

is influenced by the interplay of these variables.    

With its high predictive power, Bayesian student modeling is capable of diagnosing 

the student’s current state accurately and efficiently. Yet, diagnosing students properly is 

just the very first step in facilitating individualized learning through an ITS. A series of 
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sequent steps have to take place in the respective domain and tutoring modules in order 

to produce highly individualized tasks. Yet, many studies did not articulate sufficiently how 

new evidence of learning, detected in a student model, was interpreted and utilized in 

these two modules. The procedure of feeding the evidence nodes and causal links from 

the Bayesian student models into these two modules often remains a black box to readers. 

The justification for offering certain response feedback and differential instructional 

strategies to support students is also not well documented. Therefore, I suggest that the 

entire flow of user data, its processing and utilization across the critical components in an 

ITS should be transparent and clearly presented to readers so relevant research can be 

properly evaluated and drawn upon by the ITS community.    
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Chapter 5. General Summary 

5.1. Summary of the Results of Two Reviews 

In this thesis, I conducted a meta-analysis and a review of Bayesian student 

modeling to understand the effect and development of ITSs over the past decades. The 

meta-analysis examined empirical studies that evaluated the effects of ITSs prior to 2013. 

The overall result suggests ITSs outperform other modes of instruction except one-to-one 

human tutoring and small-group instruction. The review of Bayesian student modeling 

investigated the strength of BN and summarized studies between 1992 and 2014 

regarding characteristics of Bayesian student modeling and its capacity to handle 

uncertainty in predicting student performance. The meta-analysis focused on detecting 

the effects of ITSs with regard to a set of moderator variables describing characteristics 

of ITSs, and followed a statistical procedure that combines data from multiple evaluation 

studies. The BN review, on the other hand, explored the research questions investigated 

and the respective modeling parameters captured in the student models in individual 

studies. The review complements the meta-analysis, which required the exclusion of a 

great number of studies in its analysis because of the need for strict inclusion criteria. By 

broadening the kind of studies that could be analyzed, the review provided in greater 

insight into the characteristics of current research practice in the ITS community, and 

facilitated the exploration of more facets of the student capabilities modeled in ITSs at a 

granular level.  

Through the synthesis of results from 107 studies, the meta-analysis provides 

strong evidence that ITSs can be effectively used to complement and substitute for other 

modes of instruction, in a variety of academic subjects, across a range of educational 

levels. In the BN review, a majority of studies found ITSs generated positive learning 

outcomes in comparison to other instructional modes. In a way, both classes of studies 

underline the effectiveness of ITSs where students receive individualized instruction and 

assistance to reach their own learning goals.  

In addition, these two studies found ITSs have been widely applied to a number of 

common academic subjects. In both sets of studies, mathematics, physics and computer 
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science are the most popular subjects for which ITS researchers strive develop students’ 

declarative and procedural knowledge. Furthermore, both kinds of studies show that ITSs 

have been adopted to support pedagogical instruction across a range of educational 

levels. More ITSs tend to be built for and used in post-secondary institutions rather than 

elementary, secondary or other educational settings. Similarly, both studies found that a 

majority of ITSs have been designed to target novice students or participants with low 

prior domain knowledge rather than more advanced students or professionals.     

In addition to these findings, each study identified a specific set of characteristics 

that bear on the research questions addressed by ITS studies. While the previous 

chapters have elaborated upon these results, the following section will discuss their 

implications for the overall design of ITSs.  

 

5.2. Implications for the Design of ITSs 

 

A Fundamental Question for the Design of an ITS  

Both reviews in this study revealed that ITS studies share the assumption that one-

on-one tutoring is the most effective instructional method, outperforming all others. The 

researchers aimed to reproduce or improve on the beneficial effects of one-to-one human 

tutoring. This effect is thought to be primarily attributed to the individualized instruction 

made available to students during learning with an ongoing accurate snapshot of a 

student’s current state of knowledge or skillset. The more accurately an ITS can diagnose 

a student’s current state of learning, the greater is the likelihood the ITS can provide 

productive assistance. Thus, the ITS needs to simulate a human tutor to reproduce results 

achieved through the one-on-one interaction between a human tutor and a student. The 

limited access students have to teachers for one-on-one help provides a rationale and 

impetus for developing ITSs. Consequently, much time, resources and effort have been 

invested to pursue this research goal. Since the emergence of the term intelligent tutoring 
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system, in 1982, a variety of ITS research groups have worked on numerous projects and 

their stance on this underlying assumption is now firmly entrenched within the educational 

community. Based on results of the reviews that I conducted, I believe it is time to revisit 

assumptions underlying ITS design. We should begin by asking this fundamental question: 

What do we expect an ITS to do in terms of supporting student learning? Alpha Go’s 

victory in beating a professional human Go player reflects the great advances made in 

machine learning (Knight, 2016).  Given the evolution of artificial intelligence, which had 

been highly influential in the development of ITS research,  should  providing individualized 

instruction to mimic the efficacy of a human tutor still be the only goal targeted by the 

design an ITS? Can we not go beyond what a human tutor commonly does to support 

students with revolutionary practices beyond the limitations of human beings? For 

instance, could an ITS model a student’s misconceptions and visualize how they occur by 

dynamically tracing the reasoning processes in the student’s mind? Artificial intelligence 

has evolved greatly over the past decade. However, our fundamental understanding of 

designing an ITS seems not to have evolved apace. The technical advancement of AI 

alone does not bear pedagogical fruit until researchers identify approaches that handle 

uncertainties to predict key constructs in learning activities and integrate these within 

instructional and pedagogical requirements. Therefore, I urge ITS researchers to review 

the affordances of new techniques in artificial intelligence as well as in other related fields, 

and to reflect on how these may provide new directions to ITS design, potentially leading 

to breakthroughs in the ITS field.   

 

 

 

Are We Asking the Right Research Questions? 

Both analyses reported here show a majority of empirical studies have focused on 

evaluating the overall effectiveness of an ITS used within a particular project. There is 

nothing wrong with this research approach. However, we, as ITS researchers, must move 

beyond this evaluative research question, which is generally investigated as part of a 

preliminary assessment of computer-assisted applications. For many research initiatives, 
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we have not ventured further to investigate how underlying features in the ITS contribute 

to the effects of ITSs.  In this light, I propose three new directions for future research.  

Firstly, the BN review identified that learning constructs were used by student 

models as the foundation for tracing changes over time and those constructs served as 

reference points for understanding student learning. Constructs were used to diagnose 

the state of student learning so the tutoring module could assign appropriate learning 

tasks. While studies used a set of these learning constructs for tracing, many studies did 

not further investigate how these constructs influenced particular aspects of student 

learning. Therefore, I recommend the influence of such constructs be further examined at 

a finer granularity in relation to relevant cognitive and affective variables and student 

performance. With a better understanding of how specific constructs relate to and mediate 

student learning, researchers can better identify which variables are needed to develop 

more accurate student models.    

Secondly, further to conducting general ITS evaluations by comparing an ITS to 

other modes of instructions, I suggest comparing two or more versions of the same ITS 

with each version operationalizing a theoretically informed design variation. For instance, 

a comparison could evaluate one version of an ITS providing immediate feedback and 

another with delayed feedback. Another study might investigate the influence on learning 

progress when students are provided varying degrees of control over pace in an ITS. Such 

comparative research could be very informative regarding effects of particular ITS features 

and could, in turn, provide insight for designing ITSs tailored to a wider range of students 

according to their varied learning attributes and needs.  

Thirdly, both reviews revealed much attention has been given to exploring the 

development of ITS student models. While accurate student modeling is critical to the 

design of an ITS that provides adapted learning support, pedagogical decisions that 

influence the design of appropriate student support is of equivalent weight. Without the 

capability to offer the most appropriate assistance when it is required by a student, an ITS 

would simply be a traditional CAI application. Therefore, I recommend pedagogical 

strategies be explicitly considered when designing ITS assistance to provide kinds of 

interventions needed to achieve desired learning outcomes. Specifically, a series of 
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related pedagogical questions should be explored with reference to particular learning 

theories in the ITS field to inform the design of the tutoring/teaching module in an ITS. 

These questions include: 

• How should we map the associated learning tasks, activities and 

resources to a specific student state? 

• How can we ensure that students are always on the right track? 

• What strategies can help students close the gap in their knowledge?   

  

 

 

 

Do We Have an Ecological Environment to Build the Right ITS for Students?  

In the early 1980s, ITSs emerged as a new field to research how an instructional 

system could intelligently predict student progress and offer the most effective assistance 

to guide students’ problem solving and learning. Since then, the field of ITSs has 

embraced a series of technological and research innovations. It has attracted numerous 

ITS groups and researchers and has grown rapidly. In spite of much research in this area, 

the meta-analysis revealed a lack of common terminology in this field. For instance, 

different ITS systems present the same domain knowledge using different terminology. 

Furthermore, a lack of commonly defined research practices exists within the field. Various 

researchers have built their own system architectures, have run distinctive computing and 

reasoning algorithms, and have applied varied strategies to represent domain knowledge 

(Glavinić, Stankov, Zelić, & Rosić, 2008). Reusability and interoperability of intelligent 

systems were rarely considered in the research. In this regard, a lack of common ground 

leads to misunderstanding and confusion as well as the inefficient investment of time and 

money on similar research projects across regions instead of building upon existing 

research. Therefore, I propose the ITS field begin to unify research practices. Instead of 

working in isolation, I recommend research efforts draw upon a common conceptual 

framework, taxonomy of terminology and design practices. Only when ITS researchers 
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begin to work collectively will research advance through a research environment that 

fosters collaborative contributions to ITS development (Brawner, Goodwin, & Sottilare, 

2016).  

 

 

 

 

 

5.3. Quality of Reporting 

As previously discussed, both the meta-analysis and BN review study revealed 

there is insufficient structure to organize reports about fundamental features in primary 

ITS research. In many empirical studies, methodological features were not reported, such 

as  means and standard deviations, student attrition rates, study duration, the reliability of 

outcome measures, and the random assignment of participants, In addition, pedagogical 

and instructional theories which informed the design of an ITS were often omitted from 

research reports. Two possible reasons can be offered to account for insufficient reporting 

of research details. The primary reason relates to challenges imposed by page or word 

limits for publications, which requires researchers to omit information in favour of 

accommodating more study findings. As more researchers adopt the same approach to 

handle this challenge, the omission of methodological details gradually becomes a 

common practice that is accepted over time. The other reason is the lack of a common 

standard for reporting on ITS design principles and pedagogical considerations, primary 

features and key components, experiment details, and research findings and implications. 

Interdisciplinary research demands a shared body of knowledge and research insight to 

support consistent practices in the ITS community. Despite the variation of research goals, 

differentiation of pedagogical and learning theories, heterogeneity of methodologies, 

diversity of student background, I advocate for a common conceptual framework and 

terminology to be developed to promote shared understanding and to shed light on the 

research efforts of the discipline.  
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5.4. Limitations and Constraints 

For this dissertation, I conducted two studies to examine the effectiveness of ITSs 

and their characteristics that support individualized instruction. One limitation was limited 

primary studies that were available for coding. For the meta-analysis, I searched and 

coded most relevant articles independently. I received some help from another PhD 

student who assisted me with the search and the coding of newly published studies while 

I was reviewing, compiling and coding the existing pool of publications. Although we 

discussed and reached agreement on codes for specific moderator variables within 

particular studies retrieved during her search, we did not work on the same set of research 

studies in parallel. This process limited our ability to determine our level of inter-rater 

agreement and to validate the accuracy of our coding. However, an author of the published 

manuscript of this meta-analysis conducted a random verification of the coded 

spreadsheet and the results found codes were consistent and accurate. He also 

questioned the coders’ understanding of a number of moderator variables including 

research setting, comparison instruction and ITS intervention. These variables were 

revisited and re-coded by me after all four authors reached an agreement on how they 

should be interpreted and coded.  

For the Bayesian student modeling study, I independently searched for relevant 

articles in the bibliographic databases and developed the coding book in reference to 

those used in other meta-analyses. The variables were revised to align with the research 

questions of this study. Based on experience gained in the meta-analysis study, I clearly 

defined specific moderator variables by listing the possible selection items and creating 

the Other category to avoid potential changes in the conceptualization of a specific 

moderator variable, which sometimes occurs over the lengthy course of coding work. 

Then, I performed all screening, reviewing and coding activities. No additional coder was 

involved during this phase. During coding, to ensure an overall consistency, I noted 

incidents involving subjective judgement. After all coding was completed, subsequently I 

randomly revisited 40 coded items to verify coding accuracy. During this verification 

process, I modified three items; therefore, the overall accuracy was judged consistent and 

acceptable.    
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In this study, all data came from a pool of empirical literature, which was analyzed, 

following secondary data analysis procedures, to discover new findings by synthesizing 

years of research efforts. Needless to say, the data sets across studies varied greatly in 

terms of data collection, research methodology, and research participants and 

experimental setting. Although not a limitation from the perspective of this study, concerns 

about secondary data analysis can arise because data sources vary in quality and 

questions may be raised about the appropriateness of the original data synthesis, 

especially with regard to the research questions. These issues may raise concerns about 

the kinds of inferences that can be made beyond the research studies investigated 

(Mueller & Hart, 2011).   

Inbuilt biases affecting the design and implementation of heterogeneous 

experimental studies also pose constraints on inferences made and the way in which the 

synthesized results should be interpreted. A potential bias is the sponsorship of ITS 

research projects, possibly favoring ITSs over other instructional modes. In the studies 

reviewed, there was a tendency to set project goals and experimental conditions towards 

what may be more feasibly achieved by an ITS, making it easier to produce better learning 

outcomes for ITSs over other modes of instruction. Another potential inbuilt bias pertains 

to the possibility that more detailed instructional planning and attention were given to the 

design of the ITS condition over the other instructional practices found in the control 

conditions. Although the study’s results do present strong evidence for the effectiveness 

of ITSs, one cannot infer ITSs should replace other modes of instruction because the 

effect may have resulted from supplementary well-planned and executed instructional 

strategies rather than from particular features of ITS.   

Another limitation associated with both analyses conducted for this research study 

is the lengthy process of searching, coding and analyzing vast amounts of research 

literature.  New publications, which were not available during the initial search efforts, were 

not part of the analysis. For the meta-analysis study, the 107 studies only included those 

that were available until 2012. Subsequent publications, between 2013 and 2016, have 

not yet been reviewed. For the study of Bayesian student modeling, the 143 research 

articles included in the review were published between 1994 and 2014. New trends and 

potential shifts in research interests for articles published between 2014 and 2016 have 
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not yet been investigated. Integrating recent publications into both studies would be an 

appropriate approach for a follow-up study to increase confidence in the conclusions 

drawn from the two studies. This may also bring about new insights that reshape our 

understanding of and the implications for the design of ITSs. 

 

 

 

 

5.5. Conclusion 

For this study, I conducted two ITS reviews to examine the effect of ITSs and to 

bring new insights to the ITS community. This research makes two major contributions to 

the ITS literature. First, it builds upon the work of prior ITS reviews, which only investigated 

the effectiveness of ITSs within particular subsets of ITS literature (by subject or level of 

education). The current meta-analysis instead provides a comprehensive evaluation that 

combines a larger number of studies from all subject domains across all educational levels 

in the ITS literature. It provides a holistic view of the effects of ITSs on student learning. 

By synthesizing a more comprehensive set of studies, the meta-analysis was able to attain 

the greater statistical power needed to detect the overall mean effect sizes. Its results are 

more conclusive than other prior reviews and provides evidence on the effectiveness of 

ITSs over other types of non-ITS learning environments.  

The second contribution is a further exploration of findings discovered in the 

comprehensive meta-analysis. By taking a closer look at a particular type of student 

modeling technique deployed in ITSs, this review integrates a great number of research 

studies on Bayesian student modeling. It explores the specific types of research questions 

investigated in studies, the set of learning constructs captured in the student model, and 

associated instructional and pedagogical approaches that are used to identify which ITSs 
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characteristics could have contributed to student learning. The results of the second 

review not only support the findings of the first review, but they also reveal the collective 

effort of ITS researchers modeling the student modeling using a diverse set of variables 

at a fine level of granularity. The identification of a wide range of learning constructs in the 

current ITS BN literature provides ITS researchers with new directions for research. These 

include further investigating a specific subset of these constructs to determine how these 

mediate student learning. The study also revealed that researchers should trace 

incremental changes on variables during the learning process as well as observe how 

learning occurs in this context. Furthermore, findings of this review provide insight about 

using BNs to increase predictive power when faced with uncertainty in student modeling 

and more accurately diagnosing students’ most current state of learning to elicit evidence 

for learning.  

Overall, this study reviewed a large quantity of ITS literature and synthesized years 

of research efforts to increase understanding of the current state of ITS research. It 

soughts insights for refining existing practices and presented researchers with a new set 

of principles to advance the development of ITSs. It also provided the entire ITS 

community with guidance for future directions in research. This study was conducted with 

the view that  an  ITS will eventually be developed that will give students authentic 

personalized learning support that surpasses what even a human tutor can provide, 

thereby enabling students to construct their own understandings when freely inquiring into 

and exploring the world.   
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