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Abstract

In 2012, the ATLAS and CMS experiments at CERN’s Large Hadron Collider announced
they had each observed a new particle with a mass of about 125 GeV/c2. Given the available
data, the properties of this particle are consistent with the Higgs boson predicted by the
Standard Model of particle physics (SM). The Higgs boson, as proposed within the SM,
is the simplest manifestation of the Brout-Englert-Higgs mechanism. This discovery was
driven by the gluon fusion (ggF) production mode, the dominant Higgs boson production
mechanism at the LHC. The SM also predicts that the Higgs boson can be produced by
the fusion of two weak vector bosons (VBF). Measuring VBF Higgs boson production is an
important test of the SM but it is challenging to measure given its cross section is an order
of magnitude smaller than that of ggF.

After H → bb̄, H → WW ∗ is the dominant decay channel for the SM Higgs boson at 125
GeV/c2 and is therefore a promising channel to measure its properties. In addition, the
VBF H → WW ∗ search channel makes it possible to probe the exclusive coupling of the
Higgs boson to the weak vector bosons. Precise measurements of these coupling strengths
make it possible to constrain new models of physics beyond the SM.

Despite its relatively large branching ratio, H →WW ∗ → `ν`ν is a challenging channel to
search for the Higgs boson because of the neutrinos in the final state which are not directly
detectable by the ATLAS detector. Consequently, it is not possible to fully reconstruct the
mass of the WW ∗ system. Furthermore, there are several backgrounds that have the same
signature in the detector as the signal. Top quark pair production is the largest background
in this analysis.

A multivariate analysis technique, based on an eight-variable boosted decision tree (BDT),
is used to search for VBF H →WW ∗ → `ν`ν in the Run-I data and a subset of the Run-II
data. This analysis provides the first evidence for VBF H → WW ∗ → `ν`ν with a signifi-
cance of 3.2 standard deviations in Run-I and 1.9 standard deviations in Run-II. The mea-
sured signal strength relative to the rate predicted by the SM for VBF H →WW ∗ → `ν`ν

is 1.3± 0.5 using the Run-I data, and 1.7+1.1
−0.9 using a fraction of the Run-II data.
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Chapter 1

Introduction

First postulated in the 1960s, the Higgs boson has long been considered a missing puzzle
piece in the Standard Model of particle physics (SM). On July 4, 2012, physicists at the
ATLAS and CMS experiments at the European Organization for Nuclear Research (CERN)
were elated to announce the discovery of a new particle consistent with the SM Higgs
boson [1, 2]. The signal in the initial discovery was dominated by Higgs boson production
via the fusion of two gluons. However, the SM also predicts additional production modes
with significantly smaller contributions. This thesis summarizes a search for Higgs boson
production via the fusion of two vector bosons (VBF), the second largest contribution to
Higgs boson production at the Large Hadron Collider (LHC). Measuring this process is an
important test of the validity of the SM. Significant deviations from the SM predictions
suggest new physics beyond the current understanding of elementary particle physics.

Chapter 1 provides an introduction to the theoretical motivations for searching for VBF
Higgs boson production. The accelerator and detector used for this search are described in
chapter 2 and the methods used to interpret the detector signals in terms of SM particles
are summarized in chapter 3. Next, a general overview of the analysis and the adopted
strategy are presented in chapter 4. A description of the Monte Carlo generators used to
simulate theoretical predictions is given in Chapter 5. Chapters 6 and 7 define the regions
of phase space selected to search for VBF Higgs boson production while chapter 8 describes
the theoretical and experimental uncertainties on the predictions in these regions. The
statistical analysis of the data is described in chapter 9. Results extracted from the data
and their interpretation are detailed in chapter 10. Finally, a summary of the results is
presented in chapter 11.

1.1 The Standard Model of Particle Physics

The SM is a highly successful theory that describes the elementary particles of nature
and the forces through which they interact [3]. Elementary particles carry various types
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of charge which determine how they interact with other particles. They include electric
charge for electromagnetic interactions, weak charge for weak interactions, and color charge
for strong interactions. The particles in the SM are classified as fermions, gauge bosons, or
a spin-0 scalar boson.

There are 12 spin-1
2 particles in the SM which are known as fermions. Fermions can be

divided into 6 quarks (table 1.1) and 6 leptons (table 1.2). These can be further categorized
into three generations of particle pairs. For a specific fermion type, the particle pairs in
each generation only differ in mass1 and flavour. Only first generation particles are stable
and make up atoms, the building blocks of ordinary matter.

Generation Quark Electric charge (e) Mass Interactions

1
up (u) +2

3 2.2+0.6
−0.4 MeV E, W, S

down (d) −1
3 4.7+0.5

−0.4 MeV E, W, S

2
charm (c) +2

3 1.27± 0.03 GeV E, W, S
strange (s) −1

3 96+8
−4 MeV E, W, S

3
top (t) +2

3 173± 1 GeV E, W, S
bottom (b) −1

3 4.18+0.04
−0.03 GeV E, W, S

Table 1.1: Spin-1
2 fermions (quarks) in the SM [4]. Besides the top quark mass, the quark

masses are calculated using the MS renormalization scheme at a scale of 2 GeV for the
light quarks, and at a scale equal to the quark mass for the charm and bottom quarks. As
indicated by the last column, quarks can interact via the electromagnetic (E), weak (W),
and strong (S) interactions.

Generation Lepton Electric charge (e) Mass Interactions

1
electron (e) −1 0.511 MeV E, W

electron neutrino (νe) 0 < 2 eV W

2
muon (µ) −1 0.106 GeV E, W

muon neutrino (νµ) 0 < 2 eV W

3
tau (τ) −1 1.78 GeV E, W

tau neutrino (ντ ) 0 < 2 eV W

Table 1.2: Spin-1
2 fermions (leptons) in the SM [4]. All leptons can interact via the weak

interaction (W), but only the electron, muon, and tau can interact via the electromagnetic
interaction (E).

Quarks can interact by any of the three SM interactions. Even though table 1.1 quotes
masses for single quarks, these are not observed in nature. The property of the strong force
known as color confinement requires that all observed states are color neutral and so quarks

1In the remainder of this thesis, all masses and momenta are quoted using natural units (~ = c = 1).
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are measured in bound states called hadrons. Consequently, the quark masses are deduced
within the SM framework by measuring the properties of hadronic interactions. Besides the
top quark mass which is measured directly, the quoted quark masses are calculated using
the MS renormalization scheme [4].

Leptons can interact via the weak interaction, but not via the strong interaction. The
electron, muon, and tau are the only leptons that can interact via the electromagnetic
interaction and consequently are sometimes referred to as charged leptons.

Neutrinos (ν) are leptons that can only interact via the weak interaction. As a result,
they are extremely difficult to detect and their presence at collider experiments is inferred
rather than measured directly. As discussed in more detail later, this presents a significant
challenge for the analysis described in this thesis. Experimental evidence suggests that they
have small non-zero masses [5, 6].

The SM describes the electromagnetic, weak, and strong interactions. Thanks to efforts
by Glashow, Salam [7], and Weinberg [8], the electromagnetic and weak interactions can
be described by a unified electroweak theory. This hints that all the fundamental forces of
nature can be unified at some energy scale known as the grand unified theory (GUT) scale.
The force of gravity is not explained by the SM.

Gauge bosons are spin-1 particles (table 1.3) that mediate interactions between fermions.
The unified electroweak interaction is mediated by four spin-1 bosons, the photon (γ), Z0,
W+, andW−. Eight colored gluons (g) are responsible for mediating the strong interaction.

Boson Force Electric charge (e) Mass
γ (photon) Electroweak 0 0 GeV
g (gluon) Strong 0 0 GeV
W± Electroweak ±1 80.4 GeV
Z0 Electroweak 0 91.2 GeV

Table 1.3: Spin-1 force carriers in the SM [4].

The Higgs boson (table 1.4) is a massive spin-0 boson. It was first postulated in 1964 but
it took nearly half a century before the first hints of this particle surfaced. Theoretically,
it is a quantum excitation of the Higgs field, a field postulated to permeate all of space.
Particles like the photon and gluon do not interact with this field and so remain massless
while massive particles acquire their mass by interacting with the Higgs field.

Boson Electric charge (e) Spin Mass
H0 0 0 125.1± 0.2 GeV

Table 1.4: Properties of the Higgs boson, the only fundamental spin-0 boson in the SM [4].
The value for the mass is a combined measurement from the ATLAS and CMS experiments.
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Each particle mentioned has a corresponding antiparticle which has the same mass but
inverted charges. Some particles such as the H and Z are their own antiparticles.

As documented by Wu and her collaborators in 1957, the weak interaction is a chiral
interaction [9] unlike the electromagnetic and strong interactions. A chiral interaction is
one that is not invariant under parity transformations which means that the interaction is
not identical to its mirror image. In the SM, the W boson only couples to particles with
left-handed chirality and antiparticles with right-handed chirality. For massless particles,
the chirality of a particle is the same as its helicity. A particle is defined to have left-handed
helicity if the projection of its spin onto its momentum is negative and right-handed helicity
if it is positive.

1.2 Spontaneous Symmetry Breaking

Mathematically, the SM is expressed using quantum field theory (QFT). Each particle in
the SM corresponds to a quantum excitation of its corresponding field that permeates space
and time. The dynamics of the particles in the SM are expressed in terms of a Lagrangian
density, LSM . LSM can be thought of as the QFT analogue of a Lagrangian in classical
mechanics.

Free non-interacting particles can be described if LSM is symmetric under global gauge
transformations. After modifying LSM to also satisfy local gauge symmetry, it will include
terms that describe field interactions. Two particles are said to interact or couple if their
respective fields appear in a common term in LSM .

The SM can be expressed in terms of three symmetry groups:

SU(3)C × SU(2)L ×U(1)Y (1.1)

The SU(3)C term describes the strong interaction between quarks which carry color charge
C. SU(2)L × U(1)Y describes the unified electroweak interaction, where the L denotes a
weak interaction that only acts on left-handed particles (and right-handed antiparticles)
and Y represents weak hypercharge, a charge introduced in the unification of the weak and
electromagnetic interactions.

Experimental measurements indicate that the weak vector bosons have a non-zero mass.
However, introducing a mass term for the electroweak interaction violates the local gauge
symmetry of SU(2)L × U(1)Y . This is not an issue for the strong interaction since gluons
are massless and so no mass term is necessary.

In the 1960s, three independent groups of physicists developed a mechanism that intro-
duces mass terms in the Lagrangian without violating local gauge symmetry [10–12]. It is
frequently called the Higgs mechanism but is sometimes also referred to by other names such
as the Brout-Englert-Higgs mechanism or even the Englert-Brout-Higgs-Guralnik-Hagen-
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Kibble mechanism to reflect the fact that multiple people worked on this theory. When
applied to the unified electroweak theory, this mechanism is referred to as electroweak sym-
metry breaking. The strategy is to introduce a new complex scalar field in the Lagrangian
with a specifically chosen potential that maintains local gauge invariance, but has multiple
non-zero states that minimize the potential energy.

Spontaneous symmetry breaking is most easily illustrated for a single gauge boson that
has U(1) local gauge symmetry. A complex scalar field φ = 1√

2(φ1 + iφ2) is introduced in
the Lagrangian with a potential V (φ). The states that minimize the potential, denoted as
φ0, are called the vacuum states. The Lagrangian with the most general gauge invariant
scalar potential is:

LHiggs = (Dµφ)†(Dµφ)− V (φ) where V (φ) = µ2(φ†φ) + λ(φ†φ)2 (1.2)

Dµ = ∂ + igBµ is a covariant derivative, where g is a coupling constant and Bµ is a U(1)
gauge field. Using the covariant derivative Dµ instead of the derivative ∂µ ensures the
theory is locally gauge invariant. The parameter λ is required to be positive in order to
ensure V (φ) has an absolute minimum and µ2 is required to be negative to force φ to be
non-zero when V (φ) is minimized. Thanks to its recognizable shape, V (φ) is sometimes
referred to as a Mexican hat potential (see figure 1.1 for example).

Figure 1.1: The most general scalar invariant potential is V (φ) = µ2(φ†φ) + λ(φ†φ)2. The
parameter λ is required to be positive to ensure V (φ) has an absolute minimum and µ2 is
required to be negative to ensure φ is non-zero when V (φ) is minimized. Due to its shape,
V (φ) is commonly referred to as the Mexican hat potential [13]. Reprinted by permission
from Macmillan Publishers Ltd: Nature Physics 7(1) c© 2011.

The ring of minima in V (φ) correspond to the infinite number of possible vacuum states:

√
φ2

1 + φ2
2 =

√

−µ
2

λ
= ν (1.3)
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where ν is the vacuum expectation value (v.e.v.). The process of choosing a single physical
vacuum state somewhere along this ring spontaneously breaks the symmetry of the La-
grangian. Choosing the vacuum state (φ1, φ2) = (ν, 0) makes it possible to write the original
fields in terms of two new fields centered around the chosen vacuum state, φ1(x) = η(x) +ν

and φ2(x) = ξ(x). The newly defined η-field corresponds to oscillations away from the
minima of the potential, while the ξ-field corresponds to oscillations along the minima of
the potential. Interestingly, after expansion, V (η, ξ) includes a mass term for Bµ. By
demanding local gauge invariance, the initially massless gauge field has acquired mass as
required. In addition, V (η, ξ) also includes a mass term for η which can be linked to the
Higgs boson mass, an experimentally measurable observable that can be used to test the
validity of this theory. Finally, the massless particle corresponding to ξ is called a Goldstone
boson which does not correspond to a physically known particle. However, there is a term
in the rewritten Lagrangian that represents a direct coupling between the Goldstone boson
and the gauge field Bµ. A transformation to the unitary gauge2 removes the Goldstone
boson from the Lagrangian and transforms the corresponding degree of freedom into the
longitudinal polarization state of Bµ. All massive bosons have longitudinal polarization and
so spontaneous symmetry breaking provides a mechanism by which they acquire mass.

Note that even though the Lagrangian has been expressed in terms of a single unique
vacuum state and its original symmetry is not immediately evident, the potential has not
changed. The symmetry in the Lagrangian is hidden but still present.

Recall the electroweak theory of the SM must explain three massive bosons (the W+,
W−, and Z0 bosons) which suggests that three Goldstone bosons are required to account
for their longitudinal polarization states. Consequently, a complex doublet scalar field with
four degrees of freedom is introduced in the Lagrangian:

φ =



φ+

φ0


 = 1√

2



φ1 + iφ2

φ3 + iφ4


 (1.4)

Following a similar procedure as outlined above, the vacuum state chosen is φ1 = φ2 =
φ4 = 0 and φ4 = v. This convention corresponds to the unitary gauge and breaks the
symmetry of SU(2)L × U(1)Y but not of U(1)em. Consequently, the Lagrangian acquires
mass terms for the physical weak vector bosons, but the photon remains massless as required.

A more detailed pedagogical description of spontaneous symmetry breaking in the SM
and the Brout-Englert-Higgs mechanism can be found in reference [14].

2The unitary gauge is the gauge in which the complex scalar field is real.
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1.3 Higgs Boson Production

An important characteristic of the Higgs boson is that it tends to couple more strongly to
massive particles. The coupling strength of the Higgs boson scales as the particle mass for
fermions and the particle mass squared for weak vector bosons [14]. Consequently, the most
probable methods of producing a Higgs boson involve either heavy quarks or massive vector
bosons. However, the colliding protons at the LHC primarily consist of gluons and light
quarks. The quantum mechanical probability of a specific process occurring is quantified
by the cross section.

The leading Higgs boson production mechanism at the LHC is gluon-gluon fusion (ggF)
and it was the first to be discovered at the ATLAS and CMS experiments. The ggF Higgs
boson is produced via a heavy quark loop originating from two high energy gluons as
illustrated in the left Feynman diagram in figure 1.2. Loops in Feynman diagrams represent
higher order corrections in the theoretical predictions. Since the Higgs boson does not couple
directly to gluons, the loop corrections are essential to producing a Higgs boson via gluon-
gluon fusion. For the vast majority of events, the quark loop is made up of top quarks but
there is also a small contribution to the total ggF cross section coming from b-quark loops.
In principle, there is also a contribution from lighter quarks, but this contribution becomes
more and more suppressed as the quark mass decreases. Since the loop can potentially also
be made up of heavy particles beyond the SM, measuring the ggF cross section provides an
important probe for new physics beyond the SM.

�q
q

q

g

g

H0�W±, Z0

W±, Z0

q

q

q′

q′

H0

Figure 1.2: Feynman diagrams for the dominant Higgs boson production modes at the LHC,
gluon-gluon fusion (left) and vector boson fusion (right).

With a cross section that is more than 10 times smaller than that of ggF, vector boson
fusion (VBF) is the subleading Higgs boson production mode at the LHC. As shown in the
right Feynman diagram of figure 1.2, two high energy quarks radiate weak vector bosons that
fuse into the Higgs boson. The two quarks tend to leave characteristic energy depositions
in the areas of the detector close to the beam pipe which makes it possible to probe for
VBF despite its smaller cross section. Since electroweak interactions are better understood
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theoretically than strong interactions, the theoretical uncertainties on the VBF cross section
are smaller than those of ggF.

Together, ggF and VBF drive the sensitivity of Higgs boson measurements at the LHC.
Under the assumption that there are no corrections to the quark loop from particles not
included in the SM, the ggF production mode makes it possible to probe the Higgs Yukawa
coupling, the coupling of the Higgs boson to the fermions. The VBF production mode
gives access to the exclusive coupling of the Higgs boson to the weak vector bosons. These
measurements are compared with the SM predictions in order to search for possible hints of
new physics. The analysis summarized in this thesis focuses on the VBF production mode.

Figure 1.3 shows Feynman diagrams for Higgs Strahlung (WH and ZH, collectively
referred to as V H) and top-Higgs associated production (ttH), two additional Higgs pro-
duction modes at the LHC. However, due to their low cross sections, these production
modes are not expected to contribute significantly with the dataset size used in this thesis.
Searches for both these production modes are ongoing at the LHC. One advantage of Higgs
Strahlung is that it leaves a clean signature in the detector when the final state weak vector
boson decays leptonically. Even though the diagram for Higgs Strahlung has similarities to
that of ggF, it is suppressed because of the much larger total mass in the final state.

�
W±, Z0

q

q

W±, Z0

H0

�t

t

g

g

t

t

H0

Figure 1.3: Feynman diagrams for subdominant Higgs boson production modes at the LHC,
Higgs Strahlung (left) and top-Higgs associated production (right).

Figure 1.4 shows the cross sections for the Higgs boson production modes as a function of
collision energy. As indicated by the text in parentheses for each process, the cross sections
include corrections from higher order Feynman diagrams.

1.4 Higgs Boson Decay

Since the theoretical lifetime of the SM Higgs boson is on the order of 10−22 seconds, it
decays before reaching the active material of the ATLAS detector. Consequently, the Higgs
boson is studied by measuring the various particles it can decay into. Figure 1.5 summarizes
the branching ratios of the dominant Higgs boson decay modes as a function of the Higgs
boson mass. At a Higgs boson mass of 125 GeV, the dominant decay mode is H → bb̄.
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Figure 1.4: Cross sections of the Higgs boson production mechanisms at the LHC. The ggF
production mode is shown in blue while VBF is shown in red [15] c© 2017 CERN.

At the LHC, this decay mode is extremely challenging to measure in the ggF and VBF
production modes since it is very difficult to differentiate it from the far more common
processes originating from strong interactions. However, when searching for a Higgs boson
produced by Higgs Strahlung, the accompanying weak vector boson in the final state can
be used as an identifying feature. Similarly, in the case of ttH, the top quarks produced
in association with the Higgs boson both decay to a b-quark, resulting in a minimum of
four b-quarks. Since the depositions from b-quarks can be distinguished from lighter quarks,
this also results in a recognizable signature, particularly when at least one of the W bosons
from the top quark decays leptonically. Nevertheless, the high branching ratio for H → bb̄

is offset by the relatively low cross sections for V H and ttH when compared to ggF.
The ATLAS publication on the initial 2012 discovery of a new particle consistent with

the SM Higgs boson was driven by the γγ, ZZ and WW decay channels [1]. Despite its
relatively low branching ratio, the γγ channel offers a very clean final state consisting of
two photons and thanks to the energy resolution of the ATLAS calorimeter, contributes
significantly to the Higgs boson mass measurement. Similarly, the ZZ channel provides a
very clean signature when both of the Z bosons decay leptonically, but unfortunately this
also reduces the branching ratio below the γγ branching ratio at the Higgs boson mass.

The WW branching ratio dominates for Higgs boson masses above ∼ 130 GeV, but
drops off towards lower values since at least one of theW bosons is forced to go increasingly
further off-shell. Since there are two W bosons (W+ and W−) but only one Z boson, the
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Figure 1.5: Higgs boson decay branching ratios for the dominant Higgs boson decay modes
as a function of the Higgs boson mass. The vertical orange line corresponds to a Higgs
boson mass of 125.1 GeV [15] c© 2017 CERN.

branching ratio for WW is significantly larger than for ZZ even though the Z boson mass
is larger than that of the W boson. At mH = 125.1 GeV, WW is a promising channel to
probe for the Higgs boson and measure its properties. One parameter of interest in a Higgs
boson search is the signal strength µ which is defined as the ratio of the measured cross
section to that expected by the SM.

The cleanest signature in the detector is obtained when considering the case where both
W bosons decay into an electron or muon and a neutrino. Unfortunately, the branching
ratio for this Higgs boson decay mode is only 1%. In addition, the two neutrinos are not
measured by the ATLAS detector and so it is not possible to reconstruct the Higgs boson
mass in this final state. However, this final state has a distinct kinematic feature that
makes it possible to significantly reduce the backgrounds that imitate it. The SM Higgs
boson is a spin-0 particle and since angular momentum is conserved, the two spin-1 W

bosons it decays into must have opposite spin projections as indicated by the double arrows
in figure 1.6. Similarly, when a W boson decays into two spin-1

2 leptons, they must have
aligned spin projections. Due to the left-handed nature of the weak interaction, neutrinos
will have spins opposite to their direction of motion, while anti-neutrinos will have spins
parallel to their direction of motion. Consequently, the opening angle between the charged
leptons in the Higgs boson rest frame is expected to be small for H →WW ∗ events.
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Figure 1.6: Since the Higgs boson is spin-0 and due to the left-handed nature of the weak
interaction, the charged leptons coming from the W decays will preferentially travel in the
same direction. The double arrows denote the particle spins, while the thin arrows indicate
the directions of motion [16].

Due to the small opening angle between the charged leptons, the invariant mass of the
dilepton system is also expected to be small. This can be shown by considering the mass
of the dilepton system in terms of the energies (E`i) and momenta (p`i) of the two leptons:

m2
`` = (E`1 + E`2)2 − (~p`1 + ~p`2)2 (1.5)

m2
`` = (E2

`1 − ~p
2
`1) + (E2

`2 − ~p
2
`2) + 2E`1E`2 − 2|~p`1 ||~p`2 | cos ∆ψ (1.6)

where ∆ψ is the opening angle between the two charged leptons. Assuming the electron
masses are negligible:

m2
`` ≈ 2E`1E`2(1− cos ∆ψ) (1.7)

Values of ∆ψ close to zero will result in small values of m``.
Note that the Higgs boson mass is significantly smaller than the sum of the masses of

two W bosons. As a result, at least one of the W bosons is off-shell in the H → WW ∗

decay channel. This is indicated by the asterisk next to the symbol for the secondW boson.
On average, the leptons from the off-shell W boson will have lower momentum than the
on-shell W boson.

The VBF H → WW ∗ channel is particularly interesting to investigate and is the main
channel explored in this thesis [16]. Firstly, it makes it possible to probe the exclusive
coupling of the weak vector bosons to the Higgs boson. This is particularly relevant when
measuring κV , a scale factor that describes the Higgs boson coupling strength to the vector
bosons with respect to the SM expectations. For VBF, µVBFWW is proportional to κ4

V , while
for ggF, µggFWW is only proportional to κ2

V [17]. A related scale factor is κF which describes
the Higgs boson coupling strength to fermions with respect to the SM expectations.

In addition, the VBF H →WW ∗ channel is important at a theoretical level. When only
considering the lowest order Feynman diagrams for W+W− → W+W− scattering shown
in the top row of figure 1.7, the theoretical cross section includes terms originating from
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longitudinally polarized W bosons that violate quantum mechanical unitarity for center-of-
mass energies above ∼ 1 TeV. This issue is resolved by also including the VBF H →WW ∗

diagrams illustrated in the bottom row of figure 1.7 which interfere negatively such that the
overall amplitude is finite. Consequently, it is important to establish the existence of the
VBF H →WW ∗ process to validate the coupling and cross section predictions of the SM.
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Figure 1.7: The VBF H → WW ∗ Feynman diagrams (bottom row) interfere negatively
with the unitarity-violating W+W− → W+W− scattering diagrams (top row) such that
the overall amplitude is finite.
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Chapter 2

ATLAS and the LHC

The Large Hadron Collider (LHC) is a proton-proton collider located at the European
Organization for Nuclear Research (CERN) near Geneva, Switzerland. Even though the
ATLAS and CMS detectors at the LHC are best known for their recent discovery of a new
particle consistent with the SM Higgs boson, they are designed to also be sensitive to a
wide spectrum of searches for new physics beyond the SM.

2.1 The Large Hadron Collider

With a circumference of 26.7 km and a design center-of-mass energy of 14 TeV, the LHC is
the world’s largest and most powerful particle accelerator. It first circulated proton beams
in September of 2008.

Protons (and occasionally heavy ions) are accelerated to close to the speed of light and
then collided inside the four main detectors located along the circumference of the ring.
ATLAS (A Toroidal LHC Apparatus) and CMS (Compact Muon Solenoid) are general
purpose detectors. ALICE (A Large Ion Collider Experiment) and LHCb (Large Hadron
Collider beauty) were built for the respective objectives of studying quark-gluon plasmas
and charge-parity violation in b-hadron decays.

As illustrated in figure 2.1, the proton beam is supplied to the main LHC ring by a
sequence of accelerators that bring it to increasingly higher energies. The protons that
make up the beam are obtained by stripping electrons from hydrogen gas molecules using a
strong electric field. The beam is subsequently accelerated to 50 MeV in a linear accelerator
called the Linac 2. Next, it is accelerated to 1.4 GeV, 25 GeV, and 450 GeV by the Proton
Synchrotron Booster (PSB), Proton Synchrotron (PS), and the Super Proton Synchrotron
(SPS) respectively. Finally, the protons are supplied to the main LHC ring where they are
accelerated to their collision energy.

Protons are accelerated by electromagnetic fields generated inside radio-frequency (RF)
cavities. The oscillation of the electromagnetic fields inside the RF cavities also clusters the

13



Figure 2.1: A sketch of the components of the LHC accelerator complex that supply beams
to the four main experiments at the LHC [18] c© 2017 CERN.

particle beam into discrete parts known as bunches. The LHC was designed for a bunch
spacing of 25 ns. There are a total of 16 super-conducting RF cavities at the LHC, each
cooled by a cryostat.

In the main LHC ring, proton beams travel in opposite directions through two adjacent
beam pipes. The beam pipes are kept at an ultra-high vacuum on the order of 10−13

atmospheres in order to prevent gas molecules from interfering with the beam. The beam
is guided around the LHC ring using 1,232 powerful super-conducting dipole magnets that
must be kept at temperatures of only a few degrees above absolute zero to keep them in
a super-conducting state. Quadrapole magnets are used to focus the beam while separate
magnet systems are used to change the path of the beam such that they collide inside one
of the detectors.

The total number of events (N) for some process over some period of time (t) can written
as:

N = σ

∫
L(t)dt (2.1)

where σ is the cross section for the process in question, and L is the luminosity. The lumi-
nosity is fully described by the properties of the beam and for a Gaussian beam distribution,
can be written as [19]:

L = N2
b nbfrevγr
4πεnβ∗

F (2.2)
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where Nb is the number of particles per bunch, nb is the number of bunches per beam,
frev is the frequency of revolution, γr is the relativistic Lorentz factor, εn is a measure of
the transverse spread of the beam in both position and momentum, β∗ is a measure of
how focused the beam is at the interaction point, and F is a geometric correction factor to
account for the crossing angle of the two beams. As the luminosity is increased, the number
of collisions increases proportionally.

The design luminosity of the LHC is 1034 cm−2s−1. Figure 2.2 shows the total integrated
luminosity delivered by the LHC in 2011-2012 and 2015-2016.

Figure 2.2: Total integrated luminosity delivered to the ATLAS experiment by the LHC
from 2011 until 2016 [20] ATLAS Experiment c© 2017 CERN.

In the quest for rare physics processes with low cross sections, high luminosity is one
of the key performance characteristics for an accelerator. The luminosity can be increased
by increasing the number of protons per bunch, squeezing the beams using more powerful
quadrapole magnets, and by decreasing the space between the bunches. Technology is
currently being developed for the High-Luminosity LHC (HL-LHC) that will increase the
design luminosity of the LHC by a factor of 10 [21]. Unfortunately, increasing the luminosity
also increases the number of uninteresting interactions that are measured per bunch crossing.
The detectors at the LHC will require significant upgrades to be able to collect HL-LHC
data.

Even though the LHC was designed to run at a center-of-mass energy of 14 TeV, it has
not done so to date. After an electrical malfunction caused a magnet quench soon after the
startup of the LHC in 2008 [22], it was decided to run below the design energy to reduce
the probability of further incidents. In 2010 and 2011, the collision center-of-mass energy
was 7 TeV, while in 2012 this was increased to 8 TeV. This 3-year period is collectively
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known as Run-I. After a shutdown for maintenance and upgrades, the LHC started Run-II
of data collection in 2015 with a new record collision energy of 13 TeV. Run-II is expected
to continue until 2018.

2.2 The ATLAS Detector

ATLAS is one of the two general purpose detectors at the LHC designed for precision
measurements despite high interaction rates, damaging radiation, and high particle multi-
plicities. It is 44 meters long, 25 meters wide and weighs approximately 7,000 tons. ATLAS
consists of three important sub-systems which form concentric cylinders around the colli-
sion point: the inner detector, the calorimeter and the muon spectrometer as illustrated in
figure 2.3. The inner detector and muon spectrometer are tracking detectors that are used
to measure the momentum of charged particles passing through, while the calorimeter is
designed to measure the energies of particles. In order to improve the hermeticity of the
detector, each subsystem also has an end-cap region which measures particles close to the
beam pipe.

Figure 2.3: Cut-away schematic of the ATLAS detector illustrating the relative positions
of the inner detector, calorimeter, muon spectrometer and the magnet system [23] ATLAS
Experiment c© 2017 CERN.
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2.2.1 The ATLAS Coordinate System

ATLAS uses a right-handed coordinate system, with the z-axis defined parallel to the direc-
tion of the beam. The interaction point at the center of the detector is defined as the origin.
The x-y plane is transverse to the beam direction with the x-axis pointing to the center
of the ring and the y-axis pointing skywards. R is the radial distance in the x-y plane.
The azimuthal angle φ is measured in the x-y plane, starting at 0 along the positive x-axis
and increasing towards the positive y-axis. The polar angle θ is measured from the z-axis,
ranging from 0 at the positive z-axis to π at the negative z-axis. Rapidity is commonly
used instead of θ since differences in rapidity are Lorentz invariant. It is denoted by y (not
to be confused with the Cartesian coordinate y) and is defined as:

y = 1
2 ln

(
E + pz
E − pz

)
(2.3)

A closely related variable is the pseudo-rapidity (η):

η = − ln
(

tan θ2

)
(2.4)

In the limit where the momentum of the particle is much larger than its mass, the pseudo-
rapidity converges to the definition of rapidity.

The distance between two objects in the η-φ plane is defined as:

∆R =
√

(∆η)2 + (∆φ)2 (2.5)

Often quantities at the ATLAS detector are defined in the x-y plane which is also called
the transverse plane. For example, the transverse momentum pT =

√
p2
x + p2

y is defined as
the component of the momentum p that is in the transverse plane. The transverse plane is
especially important when invoking the conservation of momentum. Before a collision takes
place, the initial transverse momentum is zero. However, the initial momentum along the
beam axis is not expected to be zero since the interacting partons carry different fractions
of the proton momentum.

2.2.2 The Inner Detector

The inner detector (ID) is a tracking detector designed to precisely measure the momenta
of charged particles in the region |η| < 2.5. An important consideration in the design of the
ID is that particles only deposit a minimal amount of energy in them so as not to detract
from the measurements in the calorimeter. The ID identifies spatial points called hits along
the path of charged particles. Algorithms are used to reconstruct hits into continuous paths
known as tracks. The entire ID is surrounded by a super-conducting solenoid that generates

17



a 2 T magnetic field. Since the magnetic field bends the paths of charged particles in the
transverse plane, it is possible to deduce their momentum from the curvature of their tracks.

As illustrated in figure 2.4, the ID consists of three components: the silicon pixel detec-
tor, the semiconductor tracker (SCT) and the transition radiation tracker (TRT).

Figure 2.4: Cut-away schematic of the inner detector illustrating the relative positions of the
pixel detector, the semiconductor tracker and the transition radiation tracker [23] ATLAS
Experiment c© 2017 CERN.

The silicon pixel detector is closest to the beam pipe and has the highest spatial reso-
lution. The original configuration used during Run-I had three cylindrical layers of silicon
sensors in the barrel, and three disk-shaped layers in both of the end-caps. When a charged
particle passes through a silicon sensor, electron-hole pairs are generated and the resulting
charges are collected using an electric field. If the signal coming from the collected charge
exceeds a preset threshold, a hit is registered. For the barrel, the intrinsic accuracy of the
silicon pixel detector is 10 µm in the R − φ plane and 115 µm in the z-direction, while for
the end-caps it is 10 µm in the R − φ plane and 115 µm in the R-direction. The original
pixel detector consisted of approximately 80.4 million readout channels.

During the shutdown between Run-I and Run-II, a fourth pixel layer called the Insertable
B-layer (IBL) was added inside the ID [24]. In addition to regaining the performance lost due
to dead modules in the original pixel detector, it provides higher pixel granularity, improves
the tracking precision and allows for improved identification of secondary interaction vertices
from mesons and baryons containing b-quarks. In order to make room for the IBL, a smaller
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radius beam pipe was also installed. The IBL adds approximately 6 million readout channels
to the inner detector.

The SCT is a precision silicon strip tracker that surrounds the pixel detector. It consists
of 4 cylindrical layers of sensors in the barrel and 9 disk-shaped layers in both of the end-
caps. Each module consists of two sensors with strips that are setup in a small-angle stereo
configuration. In the barrel, one of the strips in each module runs parallel to the z-axis
while the other is offset by 40 mrad which makes it possible to determine the z-coordinate.
Similarly, in the end-cap disks, one of the strips in each module radiates outward in the
R-direction while the other is offset by 40 mrad which makes it possible to determine the
R-coordinate. For the barrel, the intrinsic accuracy of the SCT is 17 µm in the R−φ plane
and 580 µm in the z-direction, while for the end-caps it is 17 µm in the R−φ plane and 580
µm in the R-direction. The SCT consists of approximately 6.3 million readout channels.

The TRT makes up the outermost layer of the ID and extends out to |η| = 2.0. It
consists of 4 mm diameter straws (drift tubes) which run parallel to the beam pipe in the
barrel and radiate outward in the R−φ plane in the end-caps. An anode wire is suspended
in the center of each of the straws and an electric potential is applied between the straw
and the wire. The tubes are filled with a gas mixture consisting primarily of xenon. When
a charged particle passes through the gas mixture, the gas is ionized and the resulting
electrons are accelerated towards the anode wire by the electric field. The charge induced
on the anode is then converted into an electrical signal. Unlike the silicon detectors, the
TRT does not measure the z-coordinate. The intrinsic accuracy of each straw is 130 µm.
The TRT consists of approximately 351, 000 readout channels. Despite having significantly
fewer channels than the two silicon detectors, the TRT still makes a significant contribution
to the momentum measurement thanks to a larger number of hits per track and a longer
track length.

Besides momentum measurements, the TRT is also instrumental in identifying electrons.
Inhomogeneous radiators are positioned between the straw tubes which cause relativistic
particles to release transition radiation as they pass through [25]. The released radiation
ionizes the xenon gas in the straw tubes and the resulting electrons are accelerated towards
the anode wire. Since the amount of radiation released increases as particles become more
relativistic, electrons and positrons will release the largest amounts of transition radiation,
making it possible to distinguish them from more massive particles. The TRT is particularly
useful in differentiating electrons from charged pions which can be misidentified as electrons.
Charged pions are hadrons consisting of a quark-antiquark pair, where one is an up quark,
and the other is a down quark.

Figure 2.5 shows the passage of a particle through the pixel detector, the semiconductor
tracker and the transition radiation tracker.
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Figure 2.5: Schematic of the inner detector illustrating the passage of a particle through the
barrel region of the pixel detector, the semiconductor tracker and the transition radiation
tracker [23] ATLAS Experiment c© 2017 CERN.
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2.2.3 The Calorimeter

ATLAS has two calorimeters that destructively measure the energy of particles within
|η| < 4.9. The electromagnetic calorimeter (EMC) is designed for precisely measuring the
energies of electrons and photons while the hadronic calorimeter (HC) is designed to measure
hadronic energy depositions. ATLAS uses sampling calorimeters, which means that they
have layers of dense, shower initiating materials between the active layers that measure
energy deposits. Note that these energy deposits only represent a fraction of the particle’s
total energy and so needs to be calibrated to recover the total energy of the incident particle.

Both a large η-range and a sufficiently deep calorimeter are important for the measure-
ment of Emiss

T . The depth of the electromagnetic calorimeter is expressed in terms of the
radiation length, X0, the mean distance over which an energetic electron loses (1− e−1) of
its energy by bremsstrahlung. The electromagnetic calorimeter is 25X0 thick. The depth
of the hadronic calorimeter can be expressed in terms of the interaction length, λ, which
is defined as the mean distance travelled by a hadronic particle before it interacts with the
calorimeter via a nuclear interaction. The total thickness of the ATLAS calorimeters is
approximately 10λ which sufficiently limits the number of hadronic particles penetrating
the calorimeters and reaching the muon spectrometer. The two calorimeters are illustrated
in figure 2.6.

Figure 2.6: Cut-away schematic of the calorimeter illustrating the relative positions of the
electromagnetic and hadronic calorimeters [23] ATLAS Experiment c© 2017 CERN.
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The EMC is divided into a barrel (|η| < 1.475) of three layers and two end-caps (1.375 <
|η| < 3.2) of two layers. Liquid argon (LAr) is used to fill the active regions of the EMC
which are separated by layers of lead absorber plates. In order to correct for energy lost in
the dead material between the beam pipe and the EMC, a presampler using active LAr is
installed in the region |η| < 1.8.

The dominant energy loss mechanism for high-energy electrons and positrons interacting
with the absorber plates is bremsstrahlung. High-energy photons, both those entering the
calorimeter and those produced by bremsstrahlung, form electron-positron pairs as they
interact with the absorber plates. Consequently, incoming electrons, positrons, and photons
result in tree-like showers of particles that propagate through the calorimeter until there
is no longer sufficient energy to produce new particles. As the charged particles from the
shower pass through the active layers, they ionize the LAr and the ionized charge is then
converted into an electric signal proportional to the energy of the incident particle.

The granularity in ∆η×∆φ ranges from 0.025×0.025 in the central region to 0.1×0.1 in
the forward regions of the end-caps. The fine granularity of the EMC is especially important
for the precise measurement of electrons and photons. In order to ensure full φ coverage,
the active and absorber layers have an accordion-like structure as illustrated in figure 2.7.
The EMC has approximately 170,000 readout channels.

As evident from figure 2.6, the HC surrounds the EMC and consists of an extended barrel
section, two end-caps, and two forward calorimeters. It is designed to measure showers of
hadronic states originating from quarks and gluons.

The extended barrel section is a tile calorimeter that extends to |η| < 1.7. It consists of
three layers which use steel as the absorber and scintillating tiles as the active material.

The hadronic calorimeter end-caps cover 1.5 < |η| < 3.2 and are located directly behind
the electromagnetic calorimeter end-caps. Both end-caps consist of two wheels, each con-
sisting of two layers. LAr is used as the active material and is separated by copper absorber
plates.

The forward calorimeters cover 3.1 < |η| < 4.9, each consisting of three modules. The
first module is optimized for electromagnetic showers and uses copper as the absorber. The
other two modules are designed for hadronic showers and use tungsten as the absorber. All
three modules use LAr as the active material.

The HC has approximately 19,000 readout channels.

2.2.4 The Muon Spectrometer

As shown in figure 2.8, the muon spectrometer makes up the outermost layer of the ATLAS
detector. Since muons are minimum ionizing at typical ATLAS energies, they typically
penetrate the calorimeters unlike most other particles. A super-conducting toroid magnet
system consisting of a barrel and two end-caps is used to deflect the path of muons such
that their momentum can be measured from the curvature of the resulting tracks.
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Figure 2.7: Sketch of part of the central region of the electromagnetic calorimeter illustrating
its accordion-like structure [23] ATLAS Experiment c© 2017 CERN.
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Figure 2.8: Cut-away schematic of the muon spectrometer illustrating the relative positions
of the monitored drift tubes and cathode strip chambers as well as the resistive plate
chambers and thin gap chambers used by the trigger system [23] ATLAS Experiment c©
2017 CERN.

24



The barrel region and both the end-caps each have three stations of sensitive chambers.
The separation of the three stations offers a lever arm of several meters for a typical muon.
Monitored drift tubes (MDT) are used for precision measurements out to |η| < 2.7 for the
two outermost layers and to |η| < 2.0 for the innermost layer. Each chamber consists of
multiple layers of copper tubes filled with Ar/CO2 gas. As muons pass through the tubes,
the gas is ionized. An electric field accelerates the resulting charge towards a tungsten-
rhenium wire suspended in the center of the tube and the induced signal is measured.

Due to the higher particle flux, cathode strip chambers (CSC) are used for the innermost
layer in the end-caps in the region 2.0 < |η| < 2.7. The CSCs are multi-wire proportional
chambers with anode wires and orthogonally oriented cathode strips. The cathode strips
have better timing resolutions and their finer segmentation makes them more suited to cope
with the higher particle rate than the MDTs. For the CSCs, the signal from the wires are
not read out.

Separate trigger chambers are used for identifying tracks corresponding to muons with
large transverse momentum (refer to section 2.2.5 for more details on the ATLAS trigger
system). At the same time, these chambers also provide an additional coordinate measure-
ment although with coarse spatial resolution. Triggering is particularly challenging in the
forward regions of the detector since for a given momentum p, pT is small for large values
of η.

The trigger system extends out to |η| < 2.4. Resistive plate chambers (RPC) are used
in the barrel (|η < 1.05|), while thin gap chambers (TGC) are used in the two end-caps
(1.05 < |η| < 2.4). The barrel region consists of three layers of chambers, while the end-caps
have four to account for the larger particle counts. Rather than using anode wires, RPCs
consist of two parallel plates with an electric field in between them. Charged particles
passing through ionize the gas between the plates and the resulting charge is collected.
TGCs are multi-wire proportional chambers which make use of high electric fields and fine
anode wire spacing for excellent timing resolution.

The muon system can be used as a stand-alone system, but can also be combined with the
ID. Besides improving the resolution for muons at low pT , it also reduces the probability of
other particles being misidentified as muons. The muon system has approximately 1,000,000
readout channels.

2.2.5 The Trigger System

At design luminosity, there are 40 million bunch crossings inside ATLAS every second.
Recording all of these interactions is not possible as it would result in tens of terabytes of
data each second. The trigger system is designed to quickly identify interesting events which
are characterized by measurements that are consistent with large momentum particles. In
addition, the trigger stores events that have a large momentum imbalance, the signature
of neutrinos escaping the detector without interacting with it. In the case of the H →
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WW ∗ → `ν`ν analysis, the triggers used identify events with large momentum electrons or
muons.

In Run-I, ATLAS used a three-stage triggering system which selects potentially interest-
ing events. The level-1 trigger uses a subset of information from the calorimeter and muon
spectrometer to reduce the rate from ∼ 40, 000, 000 Hz to ∼ 100, 000 Hz. In addition, the
level-1 trigger also identifies regions-of-interest (ROI) that are passed on to the level-2 trig-
ger. The level-2 trigger consists of a collection of custom processors that analyze the ROIs
using the full granularity of the detector and reduce the rate to a few 1, 000 Hz. Finally, the
level-3 trigger (sometimes also called the event filter) performs a detailed analysis for each
of the events that pass the level-2 trigger using a CPU farm. The level-3 trigger reduces
the event rate to several 100 Hz which are subsequently written to a data storage system.
Figure 2.9 shows a schematic overview of the ATLAS trigger system used in Run-I.

In Run-II, the level-1 hardware-based trigger reduces the event rate to ∼ 80, 000 Hz.
The Run-II software-based triggers are merged into a single high-level trigger (HLT) which
reduces the event rate to ∼ 1, 000 Hz.

Figure 2.9: Schematic view of the ATLAS trigger system [26] ATLAS Experiment c© 2017
CERN.

2.3 Hadron Collider Physics

As mentioned previously, the LHC collides two proton beams. Protons are made up of
constituent partons which include three valence quarks, sea quarks created when qq̄ pairs
are spontaneously produced inside the proton and gluons that bind quarks together. Each
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parton carries a fraction, x, of the proton’s total momentum. A parton distribution func-
tion of the proton (PDF), f(x,Q2), is the probability density that a given parton carries
momentum fraction x at an energy scale of

√
Q2. They are determined experimentally for a

given
√
Q2 from deep inelastic scattering and then extrapolated in

√
Q2 using the DGLAP

evolution equations [27–29].
In a hard scatter event two colliding partons interact with sufficient energy to produce

new massive particles such as a Higgs boson. The protons break apart as a consequence of
the hard scatter. The massive particles very quickly decay into lighter particles that interact
with the ATLAS detector and produce measurable signals. As illustrated in figure 2.10,
disentangling the hard scatter from the busy surrounding environment is challenging.

High energy quarks and gluons coming out of the hard scatter dissipate their energy by
two mechanisms. First, both quarks and gluons radiate gluons, both before the hard scatter
(initial-state radiation or ISR) and after the hard scatter (final-state radiation or FSR).
Secondly, gluons with sufficient energy can create quark-antiquark pairs. Consequently,
quarks and gluons coming out of the hard scatter form showers of collimated particles
commonly referred to as parton showers. The parton showering is represented by the straight
and curly red lines in figure 2.10.

As the parton shower progresses, the energy of the individual quarks and gluons de-
creases causing the coupling strength of the strong interaction to increase. As the strong
coupling strength increases, hadronization becomes more and more likely. Hadronization
is the process in which quarks and gluons in the parton shower form hadrons with a net
color-charge of zero and is indicated by the light green ovals and dark green circles in fig-
ure 2.10. The showers of hadrons interact with the detector and provide an access point to
the properties of the hard scatter. Together, the parton showering and the hadronization
is called fragmentation.

As mentioned previously, photons, electrons, and positrons produce EM showers. Unlike
hadronic showers, these are not constrained by color confinement.

The underlying event (UE) in hadron-hadron collisions consists of energy measurements
from remnants of the beams and multiple parton interactions between remnants of the
colliding protons. The UE, indicated by the letters D and E in figure 2.10, needs to be
disentangled from the hard scatter.

Studying the hard scatter is further complicated by interactions originating from pro-
tons that are are not part of the hard scatter which is not shown in figure 2.10. Recall that
the LHC collides proton bunches and consequently it is very likely to have multiple interac-
tions in one bunch crossing. As illustrated in figure 2.11, pile-up presents an ever growing
challenge as the luminosity of the LHC is increased over time. Pile-up that originates from
protons interacting in the same bunch crossing is called in-time pile-up and increases as
the number of protons per bunch is increased. Out-of-time pile-up originates from proton
interactions from bunch crossings other than the one of interest. When the bunch spacing is
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Figure 2.10: Schematic representation of a simulated hard scattering process that can occur
at the LHC along with the busy surrounding environment [30]. The hard scatter (B) occurs
between the constituent partons (blue lines) of two protons (A). The massive particles (C)
resulting from the hard scatter will quickly decay into lighter particles. Both the incoming
(blue lines) and outgoing (red lines) quarks and gluons will form showers and eventually
hadronize into hadrons (light green ovals). These ultimately decay into stable hadrons
(dark green circles). Other parts of the proton can also interact in secondary interactions
(D) which together with proton remnants (E) makes up the underlying event. The straight
yellow lines represent leptons, while photon radiation is indicated by the curvy yellow lines.
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reduced, the detector is more likely to measure remnants from other bunch crossings which
causes the out-of-time pile-up to increase.
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Figure 2.11: Mean number of interactions per bunch crossing in Run-I (left) and Run-II
(right) [31, 32] ATLAS Experiment c© 2017 CERN.
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Chapter 3

Event Reconstruction

As particles originating from the proton-proton collision pass through ATLAS, they register
electronic signals in the various parts of the detector. In order to be useful for analysis, the
electronic signals must be reconstructed into so called physics objects. A physics object is
an interpretation of a set of detector measurements in terms of the particles expected by
the SM. For example, the electron physics object corresponds to a signature in the detector
that is most likely produced by an electron. A very commonly encountered physics object
at ATLAS is the jet which corresponds to a collimated shower of particles in the detector
that originate from quarks or gluons. A transverse momentum imbalance in the detector is
also classified as a physics object and is usually referred to as the missing transverse energy.
The most important physics objects in the analysis described in this thesis are electrons,
muons, jets, and missing transverse energy.

3.1 Track and Primary Vertex Reconstruction

As mentioned previously, the three components of the ID pinpoint spatial points along
the path of charged particles. Reconstructing these hits into particle tracks is challenging
because each event is also contaminated by numerous hits originating from pile-up.

Track reconstruction starts in the silicon detectors which are the two innermost detector
subsystems. The “inside-out” algorithm [33] is used. Seeds consisting of 3-hit trajectories
are identified and then extended away from the interaction point using a Kalman filter [34]
to form track candidates. For a given detector layer, the hit that is most consistent with the
track built from the previous layers is added to the track candidate. The quality of a track
candidate is assessed based on the residuals in a least square fit of the track to the hits,
the number of layers for which the track does not have a hit registered, and the number
of hits in the track that are shared by other tracks. The tracks from the silicon detectors
that pass the quality criteria are extended into the TRT and the track is refitted using
information from the entire ID. The inside-out algorithm is designed to reconstruct tracks
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from primary charged particles. Primary particles are defined as particles that are produced
directly from the proton-proton collision or from subsequent interactions of particles with
a lifetime shorter than 3× 10−11 s. Tracks reconstructed using the inside-out algorithm are
required to have pT > 400 MeV.

The second stage of track reconstruction is called back-tracking. It starts in the TRT
with unused track segments and extends them inward through the silicon detectors to build
“outside-in” tracks. Since the TRT does not have information on the z-coordinate, the
algorithm starts in the R-φ plane. The curvature of the resulting track is extrapolated and
matched to hits in the SCT. Back-tracking is developed to reconstruct tracks originating
from secondary particles which are particles produced by interactions of primary particles.
For example, photon conversions are photons that convert into electron-positron pairs. If
a photon conversion occurs inside the silicon detectors, the detector layers traversed before
the conversion will not register hits, while those after the conversion will register hits.

Next, the collection of reconstructed tracks is used to identity the interaction ver-
tices [35]. A vertex seed is chosen by calculating the global maximum in the density of
the z-coordinates along the beam of all tracks that meet track quality criteria. An iterative
vertex finding algorithm uses χ2 minimization based fitting to gauge how compatible tracks
are with a given vertex seed. Tracks that are incompatible with a given vertex by more than
7σ are used to create new vertices. The ability to identify individual vertices is important in
the reduction of in-time pile-up. Also, as pile-up conditions worsen, the number of vertices
becomes larger which in turn increases the probability that adjacent vertices are merged
into a single vertex.

Primary vertices are associated with tracks that are consistent with charged particles
that originate close to the hard scatter, while secondary vertices are associated with tracks
resulting from in-flight decays of unstable particles. Displaced secondary vertices play an
important role in the identification of b-hadrons which are longer lived compared to hadrons
made up of lighter quarks. Since hard scatter events are characterized by final state particles
with large transverse momenta, the primary vertex is chosen as the vertex with the largest
p2
T sum over all associated tracks. In the Run-I H → WW ∗ → `ν`ν analysis, the primary

vertex is required to have at least three associated tracks, each with pT > 400 MeV, while
in Run-II this requirement is relaxed to at least two associated tracks. The primary vertex
is used as a reference point to reconstruct electrons, muons, jets and missing transverse
energy, the main physics objects in the H →WW ∗ → `ν`ν analysis.

A track can be described using 5 parameters called the perigee parameters: d0, z0, θ,
φ, and q/p. The parameters are defined with respect to a coordinate system centered at
the primary vertex or with respect to the beam spot, the average position of proton-proton
interactions. The perigee P is defined as point along the trajectory of the track that comes
closest to the z-axis. The transverse impact parameter d0 is the distance between P and
the origin in the transverse plane, while the longitudinal impact parameter z0 is the z-
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coordinate of P . Requirements on d0 and z0 with respect to the beam spot are used to
distinguish primary vertices from secondary vertices. The polar angle θ is measured from
the beam axis to the track in the R-z plane, and the azimuthal angle φ is measured from
the x-axis to the track in the x-y plane.

3.2 Clustering Algorithms

The calorimeters are designed to measure energy depositions coming from electromagnetic
and hadronic showers. In order to reconstruct these into physics objects, they are first
grouped into three-dimensional clusters using clustering algorithms, a process developed
to separate statistically significant signals from random noise in the detector. ATLAS
uses sliding window clustering and topological clustering to define clusters that are used to
reconstruct electrons/photons and jets respectively.

3.2.1 Sliding Window Clustering

In the sliding window clustering algorithm [36], the calorimeter is split into a grid in η-φ,
where the dimensions of each grid element are ∆η ×∆φ = 0.025× 0.025. The cell energies
for each grid element are summed resulting in towers. A rectangular window is defined in
η-φ to perform a brute-force scan over the collection of towers. The size of the window
is adjusted for different particle types. Electrons require a larger range in φ than photons
since their trajectory is bent by the ID’s magnet system.

For each point along the scan, the total transverse energy of all the towers in the window
is calculated. For a given window, the weighted vector sum of tower energies with transverse
energies exceeding a preset threshold are used to define the coordinates of seeds in η-φ. If
two seeds are separated by less than three grid units in either η or φ, the one with smaller
transverse energy is removed.

Finally, clusters are defined as the collection of calorimeter cells within the rectangular
window centered at the identified seeds. This algorithm is particularly well suited for the
fine granularity of the EM Calorimeter.

3.2.2 Topological Clustering

Topological clustering [36] is an iterative procedure that allows clusters to grow and conse-
quently results in clusters of varying size. First, energy depositions with a signal to noise
ratio of at least 4 are used to define seeds. The seeds are grown by iteratively adding
neighboring cells that have a signal to noise ratio of at least 2. Finally, the cells adjacent
to the neighboring cells are also included (equivalent to requiring a signal to noise ratio of
at least 0). The clusters are referred to as “420” clusters reflecting the required signal to
noise ratios. This algorithm is used in the calorimeters for efficiently finding low energy
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clusters above the detector noise. If a topological cluster has more than one maximum, it
is subdivided.

The energy of a topological cluster is calculated from the energy sum of the con-
stituent energy cells. Corrections are applied using the local cell signal weighting calibration
method [37] that corrects for the signal losses from noise threshold effects and energy lost
in the non-instrumented regions of the detector. Since the detector response is different for
electromagnetic and hadronic showers, clusters are first categorized as electromagnetic or
hadronic based on the measured energy density and the shower depth.

3.3 Physics Object Reconstruction

The collection of tracks and clusters defined in section 3.1 are used to reconstruct physics
objects that can be interpreted in terms of SM particles.

3.3.1 Electron Reconstruction

Electrons are reconstructed by matching clusters identified by the sliding window algorithm
to tracks in the inner detector in the pseudorapidity range of |η| < 1.37 and 1.52 < |η| <
2.47. The gap 1.37 < |η| < 1.52 corresponds to the transition region between the barrel
and end-cap of the electromagnetic calorimeter and consequently is excluded. Even though
electrons are expected to deposit most of their energy in the EM calorimeter, they can also
do so in the hadronic calorimeter.

Track definitions used in electron reconstruction are modified from the description in
section 3.1 to account for their tendency to emit radiation by bremsstrahlung as they pass
through the detector. First, a track is fitted under the assumption that the particle inter-
acting with the detector material is a charged pion. If the resulting track does not overlap
within ∆R < 0.3 with the center of an inner-layer EM cluster matching a set of quality
requirements, the track is refitted under the assumption that it originates from an electron
and so is allowed to lose a fraction of its energy via bremsstrahlung.

Tracks are extended into the EM calorimeter and are required to satisfy quality criteria
on the match between the track and the energy clusters. For all tracks with hits in the
silicon detectors, the track fitting procedure is repeated with the Gaussian Sum Filter
algorithm [38], a variation of the Kalman filter that takes into account the non-linear effects
of bremsstrahlung. The agreement between the fitted track and the EM clusters in ∆φ and
∆η is checked again, this time with more stringent requirements.

The total energy is derived from the cluster energies from individual layers of the detector
inside a window of η × φ = 3 × 7 for the barrel, and η × φ = 5 × 5 for the end-caps. A
multivariate estimator is used to calculate the total cluster energy corresponding to an
electron based on the total measured energy, the fraction of energy in the presampler, the
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depth of the shower and the orientation of the shower. Unless a track does not have hits in
the silicon detectors, the η and φ of an electron are determined from the track.

Despite the high efficiency of reconstructing electrons, identified electron candidates can
also include charged hadrons or electrons originating from hadron decays. In order to reduce
this contamination, a likelihood-based method is used to identify and categorize electron
candidates [39, 40]. The characteristics of EM showers and electron tracks are used to try
determine if an electron produced the observed combination of shower and track.

Different categories of electrons ranging from “tight” to “loose” are defined based on
different selection requirements on the likelihood function. The “loose” category uses vari-
ables that are effective in removing jets that originate from light quarks. More stringent
identification categories also include additional variables in the likelihood function that help
reject photon conversions and jets originating from heavy flavour decays. Even though using
a more stringent category improves the fake rejection in the electron candidate set, it also
reduces the efficiency. In Run-I, the “very tight” category is used for electron candidates
with 10 < ET < 25 GeV, while in Run-II the “tight” classification is used for 15 < ET < 25
GeV. The “medium” category is used for ET > 25 GeV in both Run-I and Run-II. The more
stringent requirements at lower ET reduce the contamination from photon conversions and
the misidentification of light jets as electrons.

Photon conversions are also reduced by requiring a hit in the innermost layer of the
pixel detector. Note that in Run-II, the innermost layer of the pixel detector is the IBL.

3.3.2 Muon Reconstruction

The H → WW ∗ → `ν`ν analysis makes use of “combined muons” which are muons that
are reconstructed by matching tracks in the inner detector and the muon spectrometer
with consistent trajectories [41, 42]. Even though the MS extends to |η| < 2.7, muons are
required to have |η| < 2.5 to be inside the sensitive area of the ID.

Muon candidate tracks are reconstructed in the ID using the methods described in
section 3.1. In addition, ID tracks are required to have a minimum number of hits in each
of the three ID components. In the MS, track segments are first identified in individual
layers and then merged by fitting tracks. Tracks segments in the ID and MS are matched
if they agree within a range of η and φ. Since this can result in multiple matches, the
pair with smallest χ2 in the fitted track is selected. The matched pair is removed, and the
procedure is iterated until there are no pairs remaining.

3.3.3 Further Lepton Requirements

Both electrons and muons are required to be consistent with originating from the primary
vertex by imposing requirements on their transverse and longitudinal impact parameters, d0

and z0 respectively. This is implemented by placing upper bounds on |d0/σd0 | and |z0 sin θ|,
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where σd0 is the estimated uncertainty on d0, and θ is the polar angle of track. The factor of
sin θ in the longitudinal impact parameter requirement accounts for the larger uncertainties
on the position of vertices associated with tracks at large polar angles.

Furthermore, the leptons are required to be isolated in both the tracker and the calorime-
ter. This reduces the contamination from leptons originating from heavy flavour quark
decays as well as from other particles being misidentified as electrons. A region of radius
∆R is constructed in η-φ space around each lepton candidate. In the tracker, the scalar pT
sum of all tracks meeting predefined track quality requirements inside the region, but not
including the lepton candidate, is calculated. If the ratio of this scalar pT sum to lepton
pT exceeds a predefined threshold, the lepton candidate is not considered isolated and so
is discarded. In the calorimeter, a similar approach is used, except that the track pT s are
replaced by the transverse energies of clusters. The choice of ratio threshold varies as a
function of the lepton pT from around 0.05 to 0.30 while ∆R is typically chosen around
0.4. Corrections are applied to the transverse energy sum to account for contributions from
pile-up and the underlying event.

3.3.4 Jet Reconstruction

The anti-kT algorithm [43] is used to group the calibrated topological clusters into jets. It is
an iterative procedure that starts with calculating the distances between all pairs of clusters
(dij) and the distances between the beam and each cluster (diB). The distance between
clusters i and j is defined as:

dij = min
(

1
k2
T i

,
1
k2
Tj

)
∆2
ij

R2 where ∆2
ij = (yi − yj)2 + (φi − φj)2 (3.1)

and the distance between the beam and cluster i is defined as:

diB = 1
k2
T i

(3.2)

where kT i, yi, and φi are the transverse momentum, rapidity, and azimuthal angle for
the ith cluster. The distance parameter R is chosen to be 0.4 for the H → WW ∗ → `ν`ν

analysis.
Next, the minimum value of all dij and diB is identified. If the minimum value is one of

the dij , clusters i and j are combined and their four-momenta is calculated as the sum of the
constituent clusters. The values for dij are then recalculated, and the process is repeated. If
the minimum value is one of the diB, then that cluster (or collection of clusters) is removed
and categorized as a jet. This procedure is iterated until there are no clusters remaining.
Note that dij is smaller for larger transverse momentums and so the algorithm is more likely
to group low pT clusters with high pT clusters than make jets of low pT clusters.
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The anti-kT algorithm is widely used within ATLAS because of its favourable properties.
It is infrared safe which means that the set of jets identified by the algorithm is not changed
if additional soft gluon radiation is added in the vicinity of the jets, an effect that is present
in QCD processes. Furthermore, it is collinear safe which implies that it is not impacted by
collinear splittings of topological clusters, an effect that is expected in the decay of energetic
hadrons.

Next, corrections are applied to the reconstructed jets that take the effects of in-time
and out-of-time pile-up into account [44]. Events with pile-up jets are reduced using the jet
vertex fraction (JVF) [45] in Run-I and the jet vertex tagger (JVT) [44] in Run-II. Both
techniques require a minimum fraction of the summed scalar pT of tracks close to a jet in η-φ
space to come from tracks that are associated with the primary vertex. Finally, since only
a fraction of the total hadron energy is registered by the ATLAS calorimeter, corrections
factors binned in pT and η are applied to calibrate the jet energy to the hadronic energy
scale [37].

In the H → WW ∗ → `ν`ν analysis, events are split into several categories based on
their jet multiplicity. For this purpose, jets are required to have pT > 25 GeV for |η| < 2.4,
and pT > 30 GeV for 2.4 ≤ |η| < 4.5. The higher pT threshold in the forward region is
chosen to suppress pile-up jets.

Jets originating from b-quarks (referred to as b-jets) are expected to have distinguishable
characteristics when compared to jets originating from lighter quarks. The b-hadrons (and
to a lesser extent, c-hadrons) that form when b-quarks (and c-quarks) hadronize tend to
have longer lifetimes than hadrons of lighter quarks and consequently typically result in
displaced secondary vertices in the event. Multivariate algorithms are used to quantify the
probability that a given jet originates from a heavy flavour quark using quantities based
on the presence of secondary vertices and shower shapes. In the Run-I analysis, the MV1
algorithm [46] is used, while in Run-II the MV2C10 algorithm [47] is used. In both cases,
the 85% working point is used, which means that the efficiency of correctly identifying true
b-jets is 85%. The working point can be increased, but doing so will increase the rate at
which light jets are mistagged as b-jets. The chosen working point corresponds to a mistag
rate of ∼ 10%. The identification of heavy flavour jets is limited to jets in the acceptance
of the ID (|η| < 2.5) with pT > 20 GeV.

3.3.5 Missing Transverse Momentum

Before a collision takes place, the total transverse momentum is expected to be approxi-
mately zero. Consequently, by the conservation of momentum, the final transverse momen-
tum is also expected to be zero. However, recall that neutrinos can not be detected directly
with the ATLAS detector resulting in a measured momentum imbalance in the transverse
plane. Calculating the missing transverse energy makes it possible to infer the momentum
of the neutrino system in the transverse plane.
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The missing transverse momentum is defined as the negative vectorial sum of the trans-
verse momenta of physics objects that have been identified by ATLAS’s algorithms (such
as leptons, photons, and jets) and of the remaining low pT soft objects [48–50].

Missing
Transverse
Momentum

= −




∑

identified
objects

~pT +
∑

soft
objects

~pT


 (3.3)

There are multiple effective ways of defining these two terms. ~EmissT is a calorime-
ter based version of the missing transverse momentum that is used in the Run-I VBF
H → WW ∗ → `ν`ν analysis. It relies on the calorimeter’s large rapidity coverage and its
sensitivity to neutral particles. The identified objects included in ~EmissT are the calibrated
leptons that pass the analysis selection as well as calibrated photons and jets with ET > 20
GeV. The remaining soft objects are added to the vectorial sum using the calibrated energy
clusters from the calorimeter.

Unfortunately, the resolution of ~EmissT deteriorates as the pile-up increases. This can be
circumvented by measuring the soft objects using the tracker. In this case, the soft term
is calculated as the vectorial sum of all tracks originating from the primary vertex with
pT > 500 MeV but not belonging to any of the identified objects. This definition of the
missing transverse momentum is denoted as ~p missT .

The magnitudes of ~EmissT and ~p missT are denoted as EmissT and p missT respectively. As
further explained in chapter 6, both the Run-I and Run-II analyses rely on p missT , but only
the Run-I analysis uses EmissT . In the VBF H → WW ∗ analysis, all kinematic quantities
defined in terms of the missing transverse energy are calculated using p missT .
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Chapter 4

Analysis Strategy

As described in chapter 1, VBF H →WW ∗ → `ν`ν events leave a characteristic signature
in the detector. Nevertheless, this process is challenging to measure because of its low cross
section and because of the multiple backgrounds with much higher cross sections that mimic
it. This chapter starts with a brief introduction to the H →WW ∗ → `ν`ν analysis in order
to provide the context for the VBF analysis. Next, in order to motivate an analysis strategy,
the features of the signal and dominant backgrounds are explored. Finally, an overview is
given of the multivariate analysis technique used.

4.1 Analysis Overview

As illustrated in the schematic overview in figure 4.1, the VBF H →WW ∗ → `ν`ν analysis
is part of a larger H → WW ∗ → `ν`ν analysis that searches for the ggF, VBF, and V H
Higgs boson production modes in final states with 0 jets, 1 jet, and 2 or more jets. The
ggF, VBF, and V H production modes have been thoroughly analyzed using the Run-I data
[16, 51]. The first Run-II result for the VBF and WH production modes based on 5.8 fb−1

of data has recently been made public [52].
The focus of this thesis is on the VBF production mode which is expected to primarily

reside in the category with 2 or more jets in the final state. The jets are expected to
originate from the quarks that radiate the weak vector bosons which fuse to form the Higgs
boson. Furthermore, the VBF analysis is divided into two categories, one where the two
charged leptons in the final state have different flavour (DF: eµ/µe) and another where they
have the same flavour (SF: ee/µµ). Both categories are included in the Run-I result, but so
far only the different flavour analysis has been published in the most recent Run-II result.
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Figure 4.1: Schematic overview of analyses within the H → WW ∗ → `ν`ν analysis group.
The categories with red borders include data from Run-I and Run-II, while the other cat-
egories only include data from Run-I. The categories described in this thesis are marked
with a bold border. The lepton final state is indicated below each production mode, where
` represents either an electron or a muon.

4.2 Signal and Background Features

Figure 4.2 (left) shows a Feynman diagram for a VBF H → WW ∗ event. As described in
sections 1.3 and 1.4, they are characterized by two forward jets, two charged leptons with
a small opening angle caused by the V − A structure of the weak interaction, and missing
transverse energy coming from the neutrinos. In addition, the mass of the WW system
coming from the Higgs boson decay is bounded by the Higgs boson mass. These properties
are used to define a region that is enriched in signal.
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Figure 4.2: Representative Feynman diagrams for VBF H →WW ∗ → `ν`ν (left) and ggF
H →WW ∗ → `ν`ν (right) as expected to contribute in the VBF analysis.

In the VBF H → WW ∗ → `ν`ν analysis, ggF Higgs boson production (figure 4.2,
right) is treated as a background. As with VBF, the opening angle between the charged
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leptons is expected to be small. At leading order, ggF events do not have any jets in the
final state. The jets in the VBF signal region are most likely to come from initial state
radiation which reduces the expected rate in the 2-jet category with respect to the 0- and
1-jet categories. They are expected to be less forward and have lower momenta than those
from VBF events. In contrast to Higgs boson processes, the remaining backgrounds do not
have a sharp upper bound on the invariant mass of the diboson system or small expected
opening angles between the charged leptons.

One of the dominant backgrounds is the reducible tt̄ background (figure 4.3, left). Since
tt̄ events are expected to have two jets originating from b-quarks, a large fraction of this
background can be rejected using algorithms that differentiate jets from b-quarks from those
originating from light-flavour quarks. Another top related background is single top quark
production which is a relatively small contribution. The Feynman diagram in figure 4.3
(right) shows tW which is an irreducible background. There are also reducible contributions
from s-channel (tb̄) and t-channel (tqb̄) single top production where one of the jets in the
event is misidentified as the second charged lepton.
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g
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Figure 4.3: Representative Feynman diagrams for tt̄ (left) and single top quark production
(right) as expected to enter as background processes in the VBF analysis.

The diboson background, V V , consists of processes with two leptonically decaying vector
bosons. The largest contribution comes from the irreducible WW background (figure 4.4,
left). Since it is not expected to have any jets at leading order, WW is significantly reduced
once two jets are required. The diboson background also includes smaller contributions
from Wγ, Wγ∗, WZ, and ZZ, but these are suppressed by requiring exactly two leptons.
A related background is single W production accompanied by a radiated quark or gluon
that is misidentified as a lepton. This reducible background is referred to as the W+jets
background (figure 4.4, right). The misidentification of jets as leptons can be extended a
step further if the remaining W boson in the W+jets diagram in figure 4.4 is replaced by
an additional radiated quark or gluon which is also misidentified as a lepton. If two jets are
misidentified as leptons, the background is called the multi-jet or QCD background.
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Figure 4.4: Representative Feynman diagrams for WW (left) and W+jets (right) as ex-
pected to enter as background processes in the VBF analysis.

Finally, there is a significant background coming from the Drell-Yan process (DY). It
occurs when a quark and anti-quark pair annihilate into an electrically neutral vector boson
(Z0/γ) which then decays into a pair of leptons of the same flavour and opposite electric
charge. In the case of Z0 → ττ (figure 4.5, left), the τ leptons can decay leptonically and
result in two charged leptons of opposite flavour. Z0 → ee/µµ (figure 4.5, right) becomes an
important background when considering events that have two charged leptons of the same
flavour. Since Z0 → ee/µµ events do not have neutrinos in the final state, this background
can be reduced using a selection requirement on the missing transverse energy.
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Figure 4.5: Representative Feynman diagrams for Z0 → ττ → `ν`ν (left) and Z0 → ee/µµ
(right) as expected to enter as background processes in the VBF analysis.

The leptons shown in all of the above Feynman diagrams are referred to as prompt
leptons as they originate directly from the hard-scatter.

The overall analysis strategy is to measure the VBF H → WW ∗ → `ν`ν process in a
region of phase space that is enriched in signal. This is accomplished by choosing selection
requirements on kinematic variables that reject the above mentioned backgrounds but retain
as much signal as possible. Since the expected number of VBF H → WW ∗ → `ν`ν events
is relatively low, and since there are strong correlations between some of the kinematic
quantities of interest, the analysis benefits significantly from introducing a multivariate
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discriminant. A boosted decision tree (BDT) is trained on simulation of the signal and
background processes and then used in the definition of the signal-enriched region.

4.3 Boosted Decision Trees

On the spectrum of multivariate techniques, BDTs are relatively simple. Even though
more complex techniques such as neural networks and support vector machines (SVM)
can potentially give better results with extensive parameter tuning, BDTs offer very good
performance with little optimization. In addition, they also have a simple and intuitive
interpretation.

A decision tree is a binary classifier with a tree-like structure. As illustrated in the
example in figure 4.6, candidate events are sorted into nodes using selection requirements
on a set of j BDT training variables, xi, where i = 1, 2, ...j. Each node split corresponds to
one selection requirement on a single variable. One variable can be used at multiple node
splits. The process of choosing variables and the corresponding selection requirements for
each node split is referred to as the decision tree training. It is accomplished by using a
training set, a representative set of signal and background events with known identity. In
particle physics analyses, the training set is often derived from Monte Carlo predictions.
After the training is complete, each node at the bottom of the tree can be classified as
signal-like or background-like based on if it is dominated by signal or background.

Boosting is a commonly used technique to improve the performance of a decision tree.
It involves training additional decision trees using the same training samples but where
the misclassified events are given larger event weights. Consequently, the boosted decision
trees are more likely to correctly categorize the events that were misclassified in the original
decision tree. A boosted decision tree is a collection or forest of decision trees. The forest
of trees is ultimately combined by taking the average of the constituent decision trees. In
the VBF H → WW ∗ → `ν`ν analysis, it is observed that a large forest of shallow trees
typically performs better than a small forest of deep trees. Shallow trees are also less likely
to be susceptible to statistical fluctuations in the training set.

4.3.1 BDT Training

The objective of the BDT training is to choose selection requirements that result in nodes
that are pure in either signal or background. The purity of a node is quantified using the
Gini Index as separation criteria:

σ = p · (1− p) (4.1)

where the signal purity, p, is defined as the ratio of the number of signal events to the total
number of events in that node. The Gini index ranges from zero (when the node contains
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Figure 4.6: Example of a simple decision tree trained with 4 training variables, x1, ..., x4.
The process of determining the values of C1, ..., C4 is called the training of the decision tree.
The selection requirements at each node are used to categorize a set of candidate events
(yellow node) as signal (green nodes) or background (red nodes).
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only signal or only background) to 0.25 (when a node contains equal parts of signal and
background).

The separation gain of a specific selection requirement is defined as:

σparent − (fleftσleft + frightσright) (4.2)

where

• σparent is the Gini index of the parent node,

• σleft and σright are the Gini indices for the two resulting daughter nodes after applying
a selection requirement on some variable, and

• fleft and fright are the weighted fractions of events in the left and right daughter nodes
respectively.

The entire training set starts at the root node as labelled in figure 4.6. A scan is
performed over each of the training variables to determine which combination of variable
and selection requirement provides the largest separation gain using the definition in equa-
tion 4.2. This combination is then used to define two new daughter nodes for which this
procedure is repeated iteratively.

The BDT training is subject to two constraints:

• the tree cannot be larger than a predefined maximum tree depth, and

• the number of events in each node cannot be less than the predefined minimum number
of events per node.

The BDT training is terminated if it cannot continue without violating either of these con-
straints. This makes it possible to prevent the tree from training on statistical fluctuations
in the training set, an effect known as overtraining.

4.3.2 Boosting

The process of boosting involves training a large number of trees and combining them into
a single discriminant. In the VBF H → WW ∗ → `ν`ν analysis, the gradient boosting
method is used. The BDT discriminant is defined using the individual decision trees as
basis functions:

F (~x) =
M∑

m=0
βmf(~x,~am) (4.3)

where:

• M is the number of decision trees in the forest,

• f(~x, ~am) represents the mth decision tree in the forest, where f(~x, ~am) ∈ [−1, 1],
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• ~am defines the training variable and corresponding selection requirement used at each
node for the mth decision tree in the forest,

• βm is the weight assigned to the output of the mth decision tree in the forest, and

• ~x is a tuple with the values of all the input variables for a specific event.

The BDT training involves finding the parameters βm and ~am such that the difference
between F (~x) and the true value y as determined by the training sample is minimized.
The degree of deviation is quantified by the loss-function, L(F (~x), y). One example of a
loss-function is the exponential loss-function which is defined as

L(F (~x), y) = e−F (~x)y (4.4)

The exponential loss-function fully defines the boosting procedure. It corresponds to the
AdaBoost algorithm which is one of the most commonly used boosting algorithms for BDTs.

Since e−F (~x)y grows exponentially for large negative values of F (~x)y, the AdaBoost
algorithm doesn’t perform well in the presence of outliers. This weakness is remedied with
the binomial log-likelihood loss-function which is still able to retain the good performance
of AdaBoost:

L(F (~x), y) = ln(1 + e−2F (~x)y) (4.5)

Unfortunately, it is not easy to derive the boosting procedure for the binomial log-likelihood
loss-function. Consequently a numerical steepest-descent approach is used to minimize the
loss-function. This is also why the method is called gradient boosting.

The shrinkage is a parameter that controls how quickly the BDT learns from the training
sample by controlling how much the weight of misidentified events is increased. Reducing
the shrinkage makes the BDT output more robust, but may require increasing the size of
the forest to reach the same level of performance.

Another method for making the BDT less sensitive to statistical fluctuations in the
training sample is called bagging. When implemented, a separate random subset of the
training sample is used to train each tree. The bagging fraction is the fraction of the total
training sample that is used for each tree training. When bagging is used in conjunction
with gradient boosting as is done in the VBF H → WW ∗ → `ν`ν analysis, the method is
called stochastic gradient boosting.

The BDT output is calculated from the forest of decision trees and is denoted by OBDT.
In the VBF H → WW ∗ analysis, −1 ≤ OBDT ≤ 1, where −1 corresponds to an event that
is background-like, while 1 corresponds to an event that is signal-like.
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Chapter 5

Signal and Background Modelling

The kinematic distributions for most of the physics processes relevant to the VBF H →
WW ∗ → `ν`ν analysis are derived from Monte Carlo simulation. Designated samples are
prepared for the dominant backgrounds that specifically populate the phase space of interest
in the VBF H →WW ∗ → `ν`ν analysis.

5.1 Monte Carlo Samples

In order to be able to compare data collected by the ATLAS detector with the predictions
from theory, computer software is used to generate simulated data also known as Monte
Carlo samples (MC). In general, separate programs are used to model the various charac-
teristics of an event. The hard scatter is simulated by a generator using matrix-element
Feynman calculations. Depending on the order of the generator, a limited number of quan-
tum loops corrections and/or real emissions can also be modelled at matrix-element level.
These corrections can be classified based on the type of interaction they are mediated by.
QCD corrections are those that are mediated by gluons, while EW corrections are those
mediated by the electroweak vector bosons.

POWHEG [53] is a widely used generator in both Run-I and Run-II that includes cor-
rections at next-to-leading order (NLO) in QCD. The SHERPA [54] (Run-I and Run-II)
and ALPGEN [55] (Run-I only) generators are used when higher parton multiplicities are
important. These are able to handle the emission of additional partons at matrix-element
level which correspond to higher order diagrams and consequently are called multi-leg gen-
erators. In Run-I, the ACERMC [56] and GG2VV [57] leading order (LO) generators are
used when no NLO generators are available. In Run-II, MADGRAPH [58] is also used.
MADGRAPH is a tree-level multi-leg generator which means it does not incorporate loop
corrections, but does include corrections for the emission additional partons.
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The CT10 PDF [59] is used with POWHEG and SHERPA in both Run-I and Run-II.
In Run-I, the CTEQ6L1 PDF [60] is used with both ALPGEN and ACERMC, while in
Run-II, NNPDF23LO PDF [58] is used with MADGRAPH.

The generator is interfaced to a program that models the parton showering, hadroniza-
tion, and underlying event. Programs used for this in the VBF H →WW ∗ → `ν`ν analysis
include PYTHIA6 [61], PYTHIA8 [62], HERWIG [63] (Run-I only), and SHERPA. In the
case of HERWIG, the underlying event is modelled using JIMMY [64]. Care is taken to en-
sure that the parton shower does not duplicate parton radiation processes already accounted
for at generator level.

Next, stable particles originating from the hard scatter and hadronization are propagated
through a simulation of the ATLAS detector using GEANT4 [65, 66]. The simulated hits
in the detector are digitized to resemble the data collected by the detector. At this stage,
pile-up interactions are simulated using PYTHIA8 and overlaid on the generated signal
and background interactions. In order to match the pile-up conditions in the MC to that
of the data, the distribution of the overlaid interactions in MC is reweighted such that
the distributions for the average number of interactions per bunch crossing in the MC and
data are the same. Consequently, it is important that the projected pile-up conditions used
during the generation of the MC are similar to those in the collected data. If this is not
the case, large weights will need to be applied on the MC in regions of phase space where
the distribution of the average number of interactions per bunch crossing peaks in the data.
This will increase the statistical variance of the MC sample.

The MC generators used in Run-I and Run-II are summarized in table 5.1. More details
for each process are given in section 5.1.1 for Run-I and section 5.1.2 for Run-II. There are a
large number of generators that can be used to model the signal and background processes.
Since each program has strengths and weaknesses, the choice of generator for a specific
process is typically a compromise. For example, including higher order loop diagrams in the
SHERPA generator can significantly increase the amount of time required to generate each
event which leads to smaller MC sample sizes and larger statistical uncertainties. ATLAS
has a dedicated team called the Physics Modeling Group (PMG) that, in collaboration with
the physics analysis groups, work out recommendations for the different physics processes
along with prescriptions for evaluating the associated systematic uncertainties.

5.1.1 Monte-Carlo Samples Used in Run-I

VBF and ggF Higgs boson production are modelled with POWHEG interfaced to PYTHIA8,
while the V H production mode is modelled using PYHIA8. The Higgs boson mass is
assumed to be mH = 125 GeV. For VBF, the cross section is calculated using approxi-
mate next-to-next-to-leading-order (NNLO) QCD corrections [67] and NLO EW [68, 69]
corrections. The cross section for ggF Higgs boson production is calculated with NNLO
QCD corrections [70] and NLO EW corrections [71]. Corrections are applied from soft
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Process Run-I MC Run-II MC

H
ig

gs

VBF H →WW ∗ POWHEG+PYTHIA8 POWHEG+PYTHIA8

ggF H →WW ∗ POWHEG+PYTHIA8 POWHEG+PYTHIA8

V H H →WW ∗ PYTHIA8 POWHEG+PYTHIA8 (MiNLO)

T
op

tt̄ POWHEG+PYTHIA6 POWHEG+PYTHIA6

tW POWHEG+PYTHIA6 POWHEG+PYTHIA6

tb̄ POWHEG+PYTHIA6 -
tqb̄ ACERMC+PYTHIA6 -

W
W

qq̄/g →WW SHERPA POWHEG+PYTHIA8

gg →WW GG2VV+HERWIG SHERPA

EW WW SHERPA SHERPA

D
Y Z/γ∗ ALPGEN+HERWIG MADGRAPH

EW Z/γ∗ SHERPA SHERPA

O
th

er
D

ib
os

on

Wγ ALPGEN+HERWIG SHERPA

WZ/Wγ∗ (low mZ/γ∗) SHERPA -
WZ/Wγ∗ (high mZ/γ∗) POWHEG+PYTHIA8 POWHEG+PYTHIA8

Zγ SHERPA SHERPA

ZZ POWHEG+PYTHIA8 POWHEG+PYTHIA8

EW WZ/Wγ∗ SHERPA -
EW ZZ SHERPA -

Table 5.1: Overview of the Monte Carlo samples used in the Run-I and Run-II analyses.
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gluon resummations up to next-to-next-to-leading-log (NNLL) [72]. As with ggF Higgs
boson production, the V H cross sections are corrected to NNLO in QCD [73] and NLO in
EW [74]. The branching ratios for the Higgs boson decay modes are calculated using the
PROPHECY4F [75] and HDECAY [76] programs.

One of the dominant backgrounds in the VBF H → WW ∗ → `ν`ν analysis is the top
background which consists of tt̄ and single top. The tt̄ background is modelled at NLO in
QCD using POWHEG interfaced to PYTHIA6 and is normalized to NNLO, including a
resummation of NNLL soft gluon terms using Top++2.0 [77]. The single top background is
broken down into s-channel single top (tb̄), t-channel single-top (tqb̄), and Wt production.
The Wt and s-channel single top hard scatter are simulated using POWHEG, while s-
channel single top is simulated using ACERMC. All generators used for single top are
interfaced with PYTHIA6. Their normalizations are corrected to approximately NNLO in
QCD using a NNLL resummation of soft gluon terms [78–80].

Standard model WW production is divided into two components, QCD WW and EW
WW . For QCD WW , the final state quarks or gluons originate from QCD vertices, while
for EW WW they are produced via electroweak vertices. QCD WW is modelled using
SHERPA 1.4.1 which includes diagrams for qq̄/qg/q̄g →WW . The event generation is done
at LO in QCD but includes diagrams for up to three radiated partons in the hard scatter.
The normalization is corrected to NLO using MCFM [81]. However, since the MCFM
calculation does not include diagrams with two partons in the final state, the normalization
does depend on SHERPA’s jet multiplicity prediction. The contribution from gg → WW

production via a quark loop is modelled at LO using GG2VV which includes both WW

and ZZ diagrams along with their interference. EW WW production is also modelled
using SHERPA at LO with two partons in the final state. Interference between EW WW

production and VBF H →WW ∗ production is not simulated since VBF H →WW ∗ is the
process that is being measured. However, the uncertainty assigned on the MC prediction
for EW WW is calculated to account for this effect.

The DY background is sometimes also referred to as the Z+jets background. As with
WW , this background is split into QCD and EW components. QCD Z+jets is generated
using ALPGEN interfaced with HERWIG. Events are generated at LO but include tree
level calculations for the radiation of up to 5 partons. The overall cross section is corrected
to NNLO using DYNNLO [82]. EW Z+jets is modelled using SHERPA.

Even though the main diboson background contribution comes fromWW , there are also
smaller contributions from other diboson processes. Wγ is simulated using ALPGEN inter-
faced to HERWIG with tree-level calculations for up to five radiated partons and includes
NLO corrections from MCFM. For mZ/γ∗ > 7 GeV, POWHEG interfaced to PYTHIA8 is
used to model WZ/Wγ∗ which correctly accounts for the interference between the Z and
γ∗ diagrams. Since POWHEG is not able to model events with invariant masses close zero,
SHERPA is used to model events with mZ/γ∗ < 7 GeV with up to one radiated parton
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calculated at matrix level. This sample is normalized using a NLO cross section predic-
tion from MCFM. ZZ is also modelled using POWHEG interfaced to PYTHIA8. The Zγ
background is modelled using SHERPA and the cross section is normalized to NLO using
MCFM. Zγ events generated as part of the ALPGEN Z+jets are vetoed to avoid double
counting this background. Finally, SHERPA is also used to model EW WZ, EW Wγ∗, and
EW ZZ.

5.1.2 Monte-Carlo Samples Used in Run-II

MC samples for all of the major backgrounds are also included for the most recent Run-II
result. The processes that are not included in Run-II, but are included in Run-I have a
negligible impact.

In Run-II, the VBF, ggF, and V H Higgs boson production modes are modelled with
POWHEG-BOX v2 and are interfaced with PYTHIA8. For the V H samples, the MiNLO [83]
treatment is applied. As in Run-I, the Higgs boson mass is assumed to be mH = 125
GeV. For VBF, the cross section is calculated using approximate NNLO QCD corrections
and NLO EW corrections. The cross section calculated for the ggF Higgs boson produc-
tion mode is improved with respect to Run-I with next-to-next-to-next-to-leading order
(NNNLO) QCD corrections [84] and NLO EW corrections. As in Run-I, the V H cross
sections are corrected to NNLO in QCD and NLO in EW. The branching ratios for the
Higgs boson decay are calculated using the HDECAY program.

The top related backgrounds, tt̄ and tW are modelled using POWHEG-BOX v2 inter-
faced to PYTHIA6. The cross section for tt̄ is normalized to NNLO in QCD using the
TOP++2.0 program and includes soft gluon resummation terms to NNLL. Unlike in Run-I,
the contributions from tb̄ and tqb̄ are not simulated with MC but are part of the data-driven
W+jet estimate which is described in section 7.5.

POWHEG-BOX v2 interfaced with PYTHIA8 is used to model WW production initi-
ated by qb̄/qg/q̄g and the cross section is corrected to NNLO accuracy in QCD [85]. The
contribution from gg → WW is modelled using SHERPA v2.1.1 with up to one additional
radiated parton at NLO accuracy. The cross section is corrected to NLO [86]. SHERPA is
also used to model EWWW production with two partons in the final state at LO accuracy.

QCD Z+jets is modelled using MADGRAPH5 at LO, but includes calculations for the
radiation of up to four partons. This generator is interfaced to PYTHIA8. As in Run-I,
Zγ events that are generated in the QCD Z+jets sample are vetoed as they are accounted
for by a separate sample. For the EW Z+jets processes, only the Z → ττ decay channel is
considered as this is the dominant contribution. It is modelled using SHERPA at LO.

Both Zγ and Wγ are modelled using SHERPA v2.1.1 at LO, including up to three radi-
ated partons in the matrix element calculation. WZ and ZZ are modelled with POWHEG-
BOX v2 interfaced with PYTHIA8 along with the WW background. The EW diboson
processes besides WW are small, and are not modelled in the Run-II analysis.

50



5.2 VBF-Filtered Samples

During the Run-I analysis, the VBF analysis shared the same MC samples as the ggF
analysis. However, since the signal-like events are located in the high mjj tail, MC statistics
are often a limiting factor in the analysis optimization. Figure 5.1 shows the reconstructed
mjj distribution for tt̄ in the most sensitive bin of the Run-I signal region. The limited
statistics make it impractical to split this bin into smaller and more sensitive bins. In
addition, a lack of MC statistics in the signal region will also result in suboptimal BDT
performance as the sample sizes used in the BDT training will not be large enough to learn
the features of the signal.
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Figure 5.1: Reconstructed mjj distribution from MC for tt̄ in the most sensitive bin of the
Run-I signal region. The uncertainty bars are statistical only.

In Run-II, designated MC samples are prepared that specifically populate the high mjj

tail using a truth level filter. These samples are referred to as VBF-filtered samples. The
non-filtered samples used by default in the ggF analysis are called the nominal samples.

Truth level filters are used widely within ATLAS. They typically involve binning in one
or more truth variables at the event generation stage of the MC production. The number of
events in each bin is then optimized such that the phase space of interest is well populated.

Recall from equation 1.7 that there is a strong correlation between the opening angle
of the charged leptons and the corresponding dilepton mass. The same reasoning can
be applied to the forward jets that are characteristic of VBF Higgs boson production as
described in section 1.3. Since the opening angle between the jets is expected to be large for
VBF Higgs boson candidate events, the invariant mass of the dijet system is also expected
to be large. Consequently, the filter used for this analysis is binned in truth mjj , where the
jets are reconstructed using the anti-kT algorithm on truth level particles before they pass
through the detector simulation.
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Since the VBF signal events span a large range of mjj , this concept is extended to an
infinite number of bins in truth mjj for the VBF analysis. In general, the larger the truth
mjj , the larger the fraction of generated events that are kept by the filter. The MC event
weights are then adjusted to compensate for the discarded events.

For most processes, the nominal samples were already generated when the filtered sam-
ples were produced. Consequently, the VBF-filtered samples are merged with the nominal
samples whenever possible. This eliminates the need to generate events twice for low mjj .

The filter is defined on the interval [mlow
jj ,m

high
jj ] in terms of a function, f(mjj), that

describes the fraction of events that are kept at each value of mjj :

f(mjj) =
(
mjj

mlow
jj

)α
f(mlow

jj ), where α =
ln
[
f(mlow

jj )/f(mhigh
jj )

]

ln
(
mlow
jj /m

high
jj

) (5.1)

f(mjj) is bounded by f(mlow
jj ) and f(mhigh

jj ) where 0 < f(mlow
jj ), f(mhigh

jj ) ≤ 1. The pa-
rameter α describes the shape of the function between mlow

jj and mhigh
jj . For the VBF

H → WW ∗ → `ν`ν analysis, α is optimized to make the unweighted mjj distribution fall
off less quickly such that the high mjj tails are sufficiently populated.

Outside of [mlow
jj ,m

high
jj ], f(mjj) is constant and so the unweighted mjj distribution in

this range will be the same as for the nominal samples:

f(mjj) =




f(mlow

jj ), mjj < mlow
jj

f(mhigh
jj ), mjj > mhigh

jj

(5.2)

For each MC event generated, a uniform random number, R ∈ (0, 1) is generated. The
event is only included in the sample if R < f(mjj).

Since a fraction of the generated events are discarded, the event weights are adjusted
accordingly:

w(mjj) = 1
f(mjj)

(5.3)

For some fraction of generated events, there will be less than two truth jets and in these
cases it will not be possible to reconstruct the truth mjj . Consequently, f0 and f1 are
defined to be the fraction of events kept for all events with 0 and 1 truth jets respectively.
These events are usually covered by the nominal sample if it exists, but if not, a common
choice is to set f0 = f1 = f(mlow

jj ). This ensures that the event weights of events with 0
and 1 truth jets that end up in the signal region are comparable to the other events in this
region.

For a given MC sample, the filter configuration is fully defined in terms of 6 parameters
mlow
jj , mhigh

jj , f(mlow
jj ), f(mhigh

jj ), f0 and f1. In addition, it is necessary to specify if the
filtered sample is to be merged with an existing nominal sample. If so, then the sample
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is truncated at mlow
jj since the nominal sample will cover mjj < mlow

jj and events with less
than 2 truth level jets.

The merging boundary for the VBF-filtered samples and nominal samples is chosen
to align with mlow

jj . Since tt̄ is the largest background in the VBF analysis, it is used as
a baseline in configuring the VBF-filtered samples. As illustrated in figure 5.1, most of
the mjj distribution for tt̄ in the most sensitive bin of the Run-I signal region is above
500 GeV. In addition, with a merging boundary at truth mjj = 500 GeV, only 4% of the
Run-II nominal sample is discarded as shown in figure 5.2. Consequently, the VBF-filtered
sample is used for truth mjj > mlow

jj = 500 GeV, while the nominal sample is used for truth
mjj < mlow

jj = 500 GeV. Next, mhigh
jj is chosen to be 2.5 TeV since it was projected using

MC at the time of optimization that there would be approximately 2 VBF candidate events
with mjj > 2.5 TeV by the end of 2016. This prediction assumed an integrated luminosity
of ∼ 30 fb−1 of 13 TeV data by the end of 2016, but recall from figure 2.2 that the amount
of data delivered by the LHC exceeds this prediction. As more data is collected, the number
of VBF candidate events expected beyond mhigh

jj will increase and so future samples may
require higher values for mhigh

jj .

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05 mjj
Entries  95060
Mean   1.878e+05
RMS    1.639e+05

 DistributionjjTruth m

 [GeV]jjTruth m

4%

Figure 5.2: Run-II truth mjj distribution in MC for tt̄ after requiring at least two truth
jets and two truth leptons.

Since events at high truth mjj are the most signal-like, f(mhigh
jj ) is defined to be 1.0

which is equivalent to stating that no events are discarded for truth mjj ≥ 2.5 TeV. By
fitting equation 5.1 to the median mjj in two bins of the Run-I signal region, f(mlow

jj ) is
calculated to be 5.02 × 10−3 which means that approximately 1 in 200 events is kept for
mjj ≤ 500 GeV. In the VBF H → WW ∗ → `ν`ν analysis, f(mhigh

jj ) is always 1.0 but
f(mlow

jj ) is adjusted for samples with mjj distributions that are different from that of tt̄.
As a sanity check, the ratio of tt̄ events in the 100 GeV window around 2, 500 GeV to

100 GeV windows around various values of truth mjj is compared to f(mjj) in table 5.2.
Note that the slope of f(mjj) is more shallow than the natural slope of 1

mjj
. Consequently,
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the unweighted distribution of mjj is still expected to drop on f(mlow
jj ) < mjj < f(mhigh

jj )
but less rapidly than the nominal mjj distribution on the same range.

Truth mjj f(mjj) Truth mjj window Ratio
200 GeV 2.47× 10−4 150 GeV < mjj < 250 GeV 5.68× 10−5

500 GeV 5.02× 10−3 450 GeV < mjj < 550 GeV 6.05× 10−4

1, 000 GeV 4.91× 10−2 950 GeV < mjj < 1, 050 GeV 8.34× 10−3

1, 500 GeV 1.86× 10−1 1, 450 GeV < mjj < 1, 550 GeV 5.66× 10−2

2, 000 GeV 4.80× 10−1 1, 950 GeV < mjj < 2, 050 GeV 2.49× 10−1

2, 500 GeV 1.0 2, 450 GeV < mjj < 2, 550 GeV 1.0

Table 5.2: Comparison of f(mjj) to the ratio of tt̄ events in the 100 GeV window around
2, 500 GeV to 100 GeV windows around selected values of truth mjj .

Finally, for each filtered sample, it is necessary to specify the size of the sample. In
general, the sample-size was chosen such that statistical uncertainty at the merging bound-
ary is approximately the same for the filtered and nominal sample. Figure 5.3 shows the
statistical uncertainty as a function of the truth mjj for the tt̄ sample. Note that the un-
certainties in this plot are much smaller than in the signal region since this plot is shown
before the analysis selection is applied.

0 200 400 600 800 1000 1200 1400

S
ta

t E
rr

or
 in

 %
 (

be
fo

re
 a

na
ly

si
s 

se
le

ct
io

n)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Statistical Uncertainty vs. m

Run I - Nominal (39.85 M)
Run II - Nominal (20.0 M)

Run II - Filtered (6.0 M)

jj

 [GeV]jjTruth m

Figure 5.3: The statistical uncertainty on the tt̄ sample as a function of the truth mjj

after requiring at least two truth jets and at least two truth leptons. The sample-size
of the filtered sample (blue) is chosen such that its statistical uncertainty at 500 GeV is
approximately the same as for the Run-II nominal sample (red). For comparison, the Run-I
statistical uncertainty is also included (green).

The truth mjj distribution for the filtered tt̄ sample without applying weights is shown
in figure 5.4. As mentioned previously, this distribution drops off much slower than the
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nominal distribution and demonstrates how the filter shifts the mjj distribution to higher
values.
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Figure 5.4: Truth mjj distribution for the filtered tt̄ sample without applying weights after
requiring at least two truth jets and at least two truth leptons.

Figure 5.5 shows the truth mjj distribution for the nominal and filtered samples after
applying the event weights. Note that the relative statistical uncertainties on the nominal
sample are large at high truth mjj while this is not the case for the filtered sample.
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Figure 5.5: Weighted truthmjj distribution for the nominal (red) and filtered (blue) tt̄ sam-
ples after requiring at least two truth jets and at least two truth leptons. The distributions
have been normalized to 1 event.

A similar procedure is followed for the other VBF-filtered samples. Table 5.3 summarizes
the VBF-filtered samples prepared for the Run-II VBF H → WW ∗ → `ν`ν analysis. Note
that all samples except the SHERPA EW WW use the same slope parameter, α. In the
case of EW WW , the two W bosons are radiated from two high energy quarks that result
in two forward jets in the detector. Consequently, these events are expected to have larger
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values for mjj on average and so α is lowered such that the the unweighted slope in mjj is
similar to that of the tt̄ sample.

Since nominal samples were not available for the SHERPA EW WW sample and the
MADGRAPH tt̄ sample at the time the filtered samples were prepared, these samples are
not truncated at mlow

jj unlike the other samples. Consequently, mlow
jj is set to 100 GeV and

f(mlow
jj ) is used for mjj < 100 GeV. In addition, f0 and f1 are set to f(mlow

jj ) for both these
samples. For the other samples, the 0 and 1 jet events already exist in the nominal sample
and so f0 and f1 are set to zero.

Sample Generator Size α mlow
jj mhigh

jj f(mlow
jj ) f(mhigh

jj )
ggF POWHEG+PYTHIA8 200 K 3.3 500 GeV 2,500 GeV 0.005 1.0
WW POWHEG+PYTHIA8 200 K 3.3 500 GeV 2,500 GeV 0.005 1.0

EW WW SHERPA 2.1 200 K 1.1 100 GeV 2,500 GeV 0.025 1.0
tt̄ POWHEG+PYTHIA6 6 M 3.3 500 GeV 2,500 GeV 0.005 1.0
tt̄ MADGRAPH5 7.5 M 3.3 100 GeV 2,500 GeV 0.000025 1.0

Table 5.3: Summary of the VBF-filtered samples prepared for the VBF H →WW ∗ → `ν`ν
analysis along with the parameters used to generate them.

Unfortunately, for the results summarized in this thesis, most of the filtered samples
are only used in the BDT training. Due to an ATLAS-wide technical issue related to the
propagation of event weights, only the SHERPA EW WW could be processed in time
to be included in the statistical analysis. Nevertheless, the VBF-filtered samples provide
a promising method to populate the region of interest. Future iterations of the analysis
are expected to improve with the inclusion of additional samples for other sub-dominant
backgrounds.
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Chapter 6

Candidate Event Selection

The VBF H → WW ∗ → `ν`ν analysis benefits considerably from the development and
optimization of a BDT. Kinematic selection requirements applied before the training of
the BDT are referred to as preselection, while those applied after the training are referred
to as selection. The signal-enriched region of phase space that results after applying the
preselection and the selection is called the signal region (SR).

6.1 Preselection

All candidate events selected in the VBF H →WW ∗ → `ν`ν analysis are required to pass
a single lepton trigger (e or µ). In the Run-I analysis, candidate events passing a dilepton
trigger (ee, µµ, or eµ) are also included. The dilepton trigger allows for lower lepton pT

thresholds while still keeping the trigger rate manageable. Future iterations of the Run-II
analysis will tentatively also include dilepton triggers. Tables 6.1 and 6.2 summarize the
trigger lepton pT thresholds for the triggers used in Run-I and Run-II respectively.

2012 trigger pT thresholds (GeV)
Type Level-1 trigger High-level trigger
e 18 or 30 24 or 60
µ 15 24 or 36
e, e 10 and 10 12 and 12
µ, µ 15 18 and 8
e, µ 10 and 6 12 and 8

Table 6.1: Lepton trigger pT thresholds used in the Run-I analysis.

Candidate events are required to contain exactly two leptons of opposite charge with
pT > 10 GeV in Run-I and pT > 15 GeV in Run-II. Since one of the W bosons coming
from the Higgs boson decay is off-shell, a low pT threshold is important to maximize the
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2015 trigger pT thresholds (GeV) 2016 trigger pT thresholds (GeV)
Type Level-1 trigger High-level trigger Level-1 trigger High-level trigger
e 20 24 or 60 or 120 20 24 or 60 or 140
µ 15 20 or 50 15 24 or 50

Table 6.2: Lepton trigger pT thresholds used in the Run-II analysis.

signal efficiency. However, decreasing the pT threshold also increases the background con-
tamination from light-flavour jets and photon conversions being misidentified as electrons.
A higher threshold for Run-II is chosen to offset the increased production cross sections for
QCD processes. The lepton with the higher pT is referred to as the leading lepton, while
the other lepton is referred to as the subleading lepton.

The Run-I analysis is divided into two categories, one where the leptons have different
flavour (DF: eµ1 and µe) and one where the leptons have the same flavour (SF: ee and
µµ). As mentioned in section 4.2, the Drell-Yan (DY) background in the SF channel is
significantly larger than in the DF channel. Since the SF channel is less sensitive than the
DF channel, it is not included in the first Run-II analysis summarized in this thesis.

In Run-I the leading lepton is required to have pT > 22 GeV. In Run-II, the leading
lepton is required to have pT > 25 GeV to account for the higher pT thresholds in the lepton
triggers. The only exception is that muons in the 2015 data are required to have pT > 22
GeV.

After the lepton requirements outlined above, a large fraction of the background is DY,
especially for the SF channel. In the SF analysis, Z/γ∗ → `` is reduced significantly by
demanding |m`` −mZ | > 15 GeV, a selection requirement called the Z veto. The γ∗ → ``

process is reduced by requiring m`` > 12 GeV for the SF analysis and m`` > 10 GeV for the
DF analysis. This selection requirement also removes low mass resonances such as J/Ψ and
Υ mesons. In addition, for the SF channel, m`` < 75 GeV is applied to ensure the signal
region is orthogonal to the Z → ee/µµ control region described in section 7.4. Note that this
selection requirement also removes all candidate events removed by the Z veto. Figure 6.1
shows the SF m`` distribution after the preselection but with the Z veto removed. The
orange line corresponds to the selection requirement applied on m``. In the DF analysis,
the DY contributions are primarily from Z/γ∗ → ττ → eνµν.

As evident from the Feynman diagrams in section 4.2, Z → ee/µµ is the only dominant
background that is not expected to have neutrinos in the final state. Consequently, this
background is further reduced by applying selection requirements on the missing transverse
energy in the SF channel, EmissT > 45 GeV and pmissT > 40 GeV. No missing transverse

1The ordering of the particle symbols is by the pT of the leptons. The first particle is the leading lepton
and the second is the subleading lepton.
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Figure 6.1: The SF m`` distribution is shown after the preselection, but without applying
the Z veto. The Z veto removes a significant fraction of the Z → `` background by
removing all candidate events to the right of the orange line. The yields are normalized to
the expected yields for 20.3 fb−1 of Run-I data. The shaded uncertainty bands shown on
the background prediction are statistical only.

energy selection requirements are applied for the DF channel since the contribution from
Z → ee/µµ is expected to be small in this channel.

Since VBF Higgs boson candidate events are characterized by two forward jets, each
candidate event is required to have at least two jets. The dominant background for jet
multiplicities of 2 or more is tt̄. It is considerably reduced by requiring the number of b-jets
with pT > 20 GeV to be zero, a selection requirement known as the b-jet veto.

Table 6.3 summarizes the analysis preselection for Run-I and Run-II. After applying the
preselection, the expected VBF signal purity is about 0.3% for DF and 0.2% for SF.

6.2 Implementation of the BDT

The BDT is trained after the preselection described in section 6.1. The preselection is
chosen to reduce backgrounds while rejecting a minimal amount of signal. The preselection
also removes regions of phase space that are poorly modelled by the MC such as at low
lepton pT for which the fake lepton background is hard to model. Note that it is possible
to apply more one-dimensional selection requirements to further reduce the backgrounds.
However, since it applies selection requirements in multiple dimensions, the BDT is able to
achieve a significantly better signal efficiency for the same level of background rejection.

59



Variable Run-I Run-II
Lepton charge opposite opposite

p`1T > 22 GeV > 22/25 GeV (2015 µ/ 2015 e, 2016 eµ)
p`2T > 10 GeV > 15 GeV
m`` > 10/12 GeV (DF/SF) > 10 GeV
m`` < 75 GeV (SF only) -

|mZ −m``| > 15 GeV (SF only) -
pmissT > 40 GeV (SF only) -
EmissT > 45 GeV (SF only) -
njet ≥ 2 ≥ 2
nb = 0 = 0

Table 6.3: Summary of the preselection applied before training the BDT. The Run-I analysis
is split into DF and SF channels, while the SF channel is omitted in the Run-II analysis.

6.2.1 BDT Training Variables

The BDT training variables used are kinematic quantities derived from the jet kinematics,
the charged lepton kinematics and the missing transverse energy. The initial BDT trainings
in Run-I were based on a set of approximately 30 training variables. Many of these vari-
ables were correlated with each-other and so added unnecessary complexity to the BDT.
For example, in addition to including individual rapidities for the two jets in the BDT,
the difference in rapidity was also included and so constituted redundant information. In
addition, some of the variables suffered from poor MC modelling when compared with the
data in regions of phase space away from the signal region. In particular, variables that
depend on the modelling of low pT QCD activity were found to be poorly modelled by the
MC simulation.

An iterative procedure called the “N − 1 minimal loss pruning” is used to reduce the
number of training variables without significantly degrading the performance of the BDT.
Consider a set of N training variable candidates. A set of N unique BDTs are trained, where
each BDT has one training variable removed. Consequently, each BDT training has N − 1
training variables. The variable removed for the best performing BDT is then removed from
the set of training variable candidates. The procedure is repeated until the performance of
the best performing BDT starts dropping significantly below the performance of the initial
N -variable BDT.

The BDT performance was initially estimated using a Gaussian significance estimate,
S√
B
, where S and B are the total signal and background yields to the right of OBDT corre-

sponding to a fixed value of S. This metric was used to reduce the total number of BDT
training variables to 11. This procedure reduced the complexity of the BDT without signifi-
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cantly reducing the performance of the analysis. The total number of training variables was
further reduced to eight, using the full statistical analysis described in chapter 9 to assess
the performance of a particular configuration. Even though the latter method is much more
representative of the analysis performance, it is also much more time consuming.

The Run-I kinematic distributions for the eight selected BDT training variables are
shown for DF in figure 6.2 and SF in figure 6.3. These plots are made using the candidate
events that satisfy the selection requirements, but before the BDT distribution is split into
bins. Each distribution is described in more detail in the text that follows. Note that the
signal yield has been scaled up by a factor of 50 to match the yield of the total background.

The top row of plots in figure 6.2 make use of the spin-0 nature of the Higgs boson that
favours small opening angles between the charged leptons as described in section 1.4. As
shown in equation 1.7, it also follows that the mass of the dilepton system is expected to be
small. Both the invariant mass of the charged leptons, m``, and the opening angle between
the charged leptons in the transverse plane, ∆φ``, are included in the BDT training. While
∆φ`` only includes the transverse angular separation, m`` also incorporates information on
the energies of the charged leptons.

Due to the neutrinos in the final state, it is not possible to reconstruct the Higgs boson
mass. However, by invoking conservation of momentum in the transverse plane, it is possible
to define the transverse Higgs boson mass:

mT =
√

(E``T + pννT )2 − |~p.``T + ~p.ννT |2 (6.1)

where E``T =
√

(p``T )2 + (m``)2. As evident in the left plot in the second row of figure 6.2,
the mT distribution is bounded by the Higgs boson mass which helps reject the tt̄ and WW

backgrounds. The transverse Higgs boson mass is included in the BDT training.
The two quarks radiating the weak vector bosons in VBF Higgs boson production are

expected to result in jets in the forward regions of the detector. Consequently, the rapidity
gap between the leading and subleading jets, ∆yjj = |yj1 − yj2|, is expected to be large
compared to the background as shown in the right plot in the second row of figure 6.2. Using
a similar kinematic argument as with the dilepton system, large opening angles between the
two jets corresponds to the large dijet masses. While ∆yjj represents the angular separation
of the jets, mjj incorporates information about their energies and momenta. As illustrated
in the left plot of the third row in figure 6.2, signal-like candidate events are expected to
have large mjj . Both ∆yjj and mjj are included in the BDT training.

Next, the charged leptons coming from the Higgs boson decay are expected to be cen-
tered between the leading and subleading jets. The centrality of a lepton, `, with respect
to the two leading jets is defined as:

C` =
∣∣∣∣η` −

ηj1 + ηj2
2

∣∣∣∣
/ |ηj1 − ηj2|

2 (6.2)
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Figure 6.2: Kinematic distributions of the BDT training variables in the different flavour
sample used in the Run-I analysis [16]. The plots are shown at the selection stage imme-
diately before the signal region is split into bins of BDT. The yields are normalized to the
expected yields for 20.3 fb−1 of Run-I data and the VBF signal is scaled up by a factor of
50. The shaded uncertainty bands shown on the background prediction are statistical only.
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Figure 6.3: Kinematic distributions of the BDT training variables in the same flavour sample
used in the Run-I analysis [16]. The plots are shown at the selection stage immediately
before the signal region is split into bins of BDT. The yields are normalized to the expected
yields for 20.3 fb−1 of Run-I data and the VBF signal is scaled up by a factor of 50. The
shaded uncertainty bands shown on the background prediction are statistical only.
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As illustrated in figure 6.4, C` is zero when the lepton is exactly centered in the rapidity
gap between the two jets (as indicated by the red line) and increases to 1 when the lepton
is aligned with either of the jets (as indicated by the blues lines). If the lepton is outside
the rapidity gap spanned by the two jets, C` is larger than 1.

C` = 0 C` = 1

Jet
2

C` = 1

Jet 1 C` > 1

0 < C` < 1

Figure 6.4: The centrality of a lepton, C`, is a measure of how central it is in rapidity with
respect to the two jets with the highest pT represented by the black arrows in the diagram.
It ranges from 0 to 1 for leptons inside the rapidity range of the jets (red shaded area),
where C` = 0 if the lepton is centered between the two leading jets (red line), and C` = 1 if
the lepton is aligned with either one of the leading jets (blue lines). For C` > 1, the lepton
is outside the rapidity range of the two leading jets (blue shaded area).

The sum of the centralities of the two leptons,
∑
C` = C`1 + C`2, is used as a training

variable in the BDT. As evident from the right plot in the third row of figure 6.2, the
charged leptons for signal candidate events are more central with respect to the jets than
for the backgrounds.

A related variable that is also included in the BDT training is the sum of the four
combinations of lepton and jet masses. It is defined as:

∑
m`j = m`1,j1 +m`1,j2 +m`2,j1 +m`2,j2 (6.3)

As shown in the bottom left plot of figure 6.2,
∑
m`j is expected to be larger for VBF Higgs

boson candidate events since they have larger opening angles between the leptons and jets.
Even after the b-tag veto, tt̄ makes up a significant portion of the background and so

a variable is included in the BDT that specifically targets tt̄ reduction. Since a b-veto is
applied in the signal region, a large fraction of tt̄ events in this region consist of one b-jet
that is missed by the b-tagging algorithm, and one jet originating from QCD radiation.
Consequently, the tt̄ candidate events that make their way into the signal region are specif-
ically those with additional QCD activity. In addition, since gluon-gluon annihilation is the
dominant production mode for tt̄, these events are typically accompanied by more low pT

QCD radiation than VBF Higgs boson production. In order make this feature accessible to
the BDT, the vectorial ~pT sum of all final state objects is defined as:

~p.sumT = ~p.``T + ~p.missT +
∑

~p.jT (6.4)
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where
∑
~p.jT includes all jets in the candidate event. The magnitude of ~p.sumT , which is

included as a training variable in the BDT, is shown in the bottom right plot of figure 6.2.
This variable is expected to be close to zero for signal like candidate events, but will move
away from zero for processes with significant soft gluon radiation.

Table 6.4 summarizes the training variables included in the BDT.

Variable Motivation
∆yjj Two leading jets are expected to be

forwardmjj

∆φ`` Opening angle between leptons is
expected to be smallm``

mT Proxy on Higgs boson mass
∑
C` Leptons are expected to be lie centered

in rapidity gap of two leading jets∑
m`j

psumT tt̄ background rejection

Table 6.4: Summary of the kinematic variables used in the BDT training.

Figure 6.5 shows the OBDT distribution for the DF and SF analyses. Even though
each of the individual BDT training variables only provides a limited amount of separation
power to extract the signal from the large backgrounds, the BDT is able to combine their
separation power into a single discriminant. As expected, the signal distribution peaks near
OBDT = 1, while the backgrounds peak near OBDT = −1.

6.2.2 BDT Training Configuration

Note that the charged lepton kinematics for ggF Higgs boson production are expected to
be similar to those of VBF Higgs boson production as described in section 1.3. However,
unlike VBF Higgs boson production, ggF Higgs boson production is not expected to have
a significant fraction of candidate events with jets in the forward regions of the detector.
Consequently, the only process considered as signal in the BDT training is VBF Higgs
boson production. Higgs boson production via gluon-gluon fusion is still included in the
BDT training but as a background implying that the BDT attempts to reject it along with
the other backgrounds. Although this choice slightly reduces the discrimination power of the
charged lepton kinematics in the BDT, the goal of the analysis is to establish the existence
of VBF Higgs boson production and therefore this process needs to be separated from ggF
Higgs boson production. Higgs Strahlung (WH/ZH) is not included in the training since
it is expected to be extremely small in the VBF signal region.

Most of the backgrounds mentioned in section 4.2 are included in the BDT training. The
W+jets background is estimated using a data driven approach which includes candidate
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Figure 6.5: OBDT distributions for different flavour (top) and same flavour (bottom) as
implemented in the Run-I analysis [16]. The plots are shown at the selection stage im-
mediately before the signal region is split into bins of BDT. The yields are normalized to
the expected yields for 20.3 fb−1 of Run-I data. The yields for VBF Higgs boson produc-
tion correspond to the SM predictions and are not scaled up as in previous figures. The
shaded uncertainty bands shown on the background prediction include the systematic and
statistical uncertainties.
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events with negative weights (see section 7.5 for more details). Since negative event weights
are not treated correctly when using the gradient boosting method, the W+jets estimate
is not included in the BDT training. In Run-I, a single BDT is trained using DF and SF
candidate events, while for Run-II, the BDT is trained using only DF candidate events.
For the Run-II analysis, the contributions from Z → ee and Z → µµ are not included as
they are expected to be negligible in the DF analysis. The presence of the Z → ee/µµ

process makes the sample composition of the SF analysis quite different from that of the
DF analysis. Consequently, a separate BDT for DF and SF was also explored in the context
of the Run-I analysis so that each BDT is specifically trained for the region of phase space
where it is being applied. However, this strategy also drastically reduced the available
training statistics for the two designated BDTs and consequently the performance of the
BDT did not improve significantly. In addition, this strategy also doubles the number of
control regions (see chapter 7 for more details on the control regions) since separate control
regions would be required for DF and SF. This in turn increases the statistical uncertainties
in the control regions.

Since the available MC sample sizes are limited, the same MC events used to train the
BDT are also used to estimate the expected signal and background yields in the signal region.
If only a single BDT is trained, this would imply that the BDT is applied to the same events
on which it is trained. This can potentially overestimate the expected performance of the
analysis, particularly if the BDT is overtrained. Consequently, the BDT is cross-evaluated
which means that two separate BDTs are trained on two statistically independent training
samples, A and B. The BDT trained on A is applied to B, and the BDT trained on B is
applied to A. In both cases, the training sample refers to the candidate events on which the
BDT is trained, while the test sample refers to the events on which the BDT is applied.

In the absence of overtraining, the distribution of OBDT should look similar when applied
to the training and testing samples. The left and right plots in figure 6.6 show the Run-II
OBDT distributions, both applied to their training and testing samples. The comparison
shows no strong indications of overtraining. This is also checked for the Run-I analysis,
with similar results.

As described in chapter 4, there are a number of parameters in the BDT training that
can be optimized. In both Run-I and Run-II, the optimal parameters were chosen using a
grid scan while ensuring that the chosen configuration did not show strong evidence of over-
training. The various configurations were ranked using a similar metric of significance to
that used for the N−1 minimal loss pruning described above. The parameters were scanned
for both shallow trees with a maximum depth of 5 and deep trees with a maximum depth of
1,000. In general, large forests of shallow trees (“boosted stumps”) performed better than a
small number of deep trees. Since the number of configurations grows quickly as additional
parameters are scanned, only a few values for each parameter is tried in the optimization.
The parameters scanned along with the minimum and maximum values tested are:
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Figure 6.6: In order to check for the presence of overtraining in the Run-II BDT, the test
samples (solid histograms) and training samples (points with uncertainty bars) are compared
for signal (blue) and background (red). The left and right plots corresponds to using training
samples A and B. The distributions show no strong indications of overtraining.

• the maximum tree depth (min: 5, max: 1,000)

• the number of trees in the forest (min: 275, max: 1,000)

• the minimum number of events in each node (min: 400, max: 10,000)

• the shrinkage or algorithm learning rate (min: 0.025, max: 0.15)

• the bagging fraction (min: 0.25, max: 0.60)

Figure 6.7 shows a 2D scan over the number of trees and the minimum number of events
required per node. All other BDT training parameters are kept at fixed values during this
scan. Even though the BDT performance improves as the number of events per node is
decreased, this also increases the probability that the BDT is overtrained. In addition, as
the size of the forest is increased, the performance of the BDT also improves.

The chosen parameters are summarized in table 6.5.

6.3 Selection

After the BDT training, further selection requirements are applied in order to define the
signal region. Training the BDT before these selection requirements increases the sample
size available for the training. Besides reducing the probability of overtraining, this also
increases the separation power of the BDT.

Since the mediating weak vector bosons do not carry color charge, the level of hadronic
activity between the two leading jets is expected to be small for signal candidate events. Any
candidate event that has jets with pT > 20 GeV inside the rapidity gap of the leading jets
is removed, a requirement called the central jet veto (CJV). The CJV suppresses processes
where extra jets are produced by QCD radiation. Mathematically, this selection requirement
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Figure 6.7: Results of a 2D significance scan over the number of trees and the minimum
number of events required per node for trees with a maximum depth of 5. All other BDT
training parameters are fixed in this scan.

Parameter Run-I Run-II
Boosting algorithm Gradient Gradient

Boosting loss function ln(1 + e−2F (~x)y) ln(1 + e−2F (~x)y)
Maximum tree depth 5 10

Number of trees 1000 1000
Minimum number of candidate events per node 1000 5000

Use bagging in gradient boosting true true
Bagging fraction 0.25 0.25

Shrinkage (algorithm learning rate) 0.125 0.15

Table 6.5: BDT training parameters used in Run-I and Run-II.
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is defined in terms of the centrality of any additional jets besides the two leading jets. It is
defined analogously to the lepton centrality:

Cj3 =
∣∣∣∣ηj3 −

ηj1 + ηj2
2

∣∣∣∣
/ |ηj1 − ηj2|

2 (6.5)

The CJV requires that Cj3 > 0 for all additional jets in the candidate event. Note that
the jets that enter the calculation of Cj3 are likely to be low pT QCD jets originating from
the parton showering in the MC. Since the distribution for Cj3 is challenging to model with
MC for low pT QCD jets, this variable is not included in the BDT training.

In addition to including the sum of the lepton centralities in the BDT training, C` < 1
is required for both charged leptons, a selection requirement called the outside lepton veto
(OLV).

In order to reduce the Z → ττ contamination, a Z → ττ veto is also applied. It is
defined in terms of mττ , the invariant mass of the τ lepton pair system under the collinear
approximation. The collinear approximation assumes that a given candidate event is pro-
duced by Z → ττ , that the decay products of the leptonically decaying τ ’s are collinear
with the τ ’s, and that all the missing transverse energy in the candidate event is from the
neutrinos coming from the two τ decays. The Z → ττ veto requires mττ < mZ − 25 GeV.
Figure 6.8 shows the DFmττ distribution before applying the Z → ττ veto. The orange line
corresponds to the upper bound applied on mττ . This selection requirement also ensures
that the VBF H → WW ∗ → `ν`ν analysis is orthogonal to the ATLAS H → ττ analysis
which requires mττ > mZ − 25 GeV. This is especially important to prevent using the same
candidate events in data multiple times when combining the various ATLAS Higgs boson
analyses.

The final requirement for the signal region is a selection requirement on OBDT. The
region of phase space being removed by this selection requirement is used as a validation
region to check the modelling of the BDT training variables and is called the low OBDT

validation region. However, it is not included in the statistical analysis described in section 9
since the kinematic distributions in this region are very different from those in the signal
region. For example, as illustrated in figure 6.9, the ∆φ`` peaks at large values, which is not
consistent with the signal events that are expected in the signal region. Since a separate
BDT is trained for Run-I and Run-II, the selection requirement values are not the same
for the two cases. For Run-I, the signal region is defined as −0.48 < OBDT < 1, while for
Run-II it is defined as −0.8 < OBDT < 1.

Table 6.6 summarizes the analysis selection.
Since the VBF signal to background ratio is expected to increase with increasing OBDT,

dividing OBDT into multiple bins improves the overall sensitivity of the analysis. The signal
regions for both the Run-I and Run-II analyses are divided into multiple bins of OBDT. The
optimal bin boundaries are chosen by performing a scan over possible bin boundaries for
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Selection Requirement Definition
Central jet veto Cj3 > 0 for all additional jets

Outside lepton veto C` < 1 for both charged leptons
Z → ττ veto mττ < mZ − 25 GeV

BDT OBDT ∈ [−0.48, 1]/[−0.8, 1] (Run-I/Run-II)

Table 6.6: Summary of the selection applied after training the BDT.

all candidate events that pass the selection, excluding the selection requirement on OBDT.
In Run-I, an algorithm based on an estimate of Poisson significance is used:

Z0 =
√

2((S +B) ln(1 + S/B)− S) (6.6)

where S is the signal yield, and B is the background yield. The algorithm scans the
significance Z0 for x < OBDT ≤ 1, where x starts at 0.98 and increments down by 0.02. For
values of x close to 1, Z0 will be small due to the limited statistics. Since OBDT for signal
is expected to peak close to 1, Z0 will increase as x decreases. However, since the signal to
background ratio decreases as x decreases, Z0 will reach a maximum value. This maximum
value is chosen as the bin boundary. This process is repeated iteratively, each time starting
the algorithm at the last chosen bin boundary. In the Run-I analysis, a total of three bins
are defined. Adding additional bins does not significantly increase the significance since
they would have very low signal to background ratios.

In Run-II, a more sophisticated bin optimization procedure is used. The distributions
for OBDT from MC for the signal and total background are parameterized with degree 5
and 3 polynomials respectively as illustrated in figure 6.10. Since the shape of OBDT is
challenging to parameterize when OBDT is close to 1, this region is approximated using the
average bin content. This approximation is not expected to degrade the optimization since
the expected yields in this region are small, making it illogical to split it into more than
one bin.

In order to calculate the maximum possible significance, the parameterized OBDT dis-
tributions are used in an unbinned likelihood maximization. Even though this method does
not take the systematic uncertainties described in chapter 8 into account, it does provide a
reasonable approximation of the best possible performance of the analysis in the limit of an
infinite number of bins with infinite MC statistics in each bin. In practice, a finite number
of bins must be chosen to ensure the statistical uncertainty in each bin is reasonable. The
optimal significance is calculated to be Z0 = 1.45.

Next, using the parameterized OBDT distributions, a scan is done for the optimal bin
boundary assuming 2 bins. The lower bound of the lower bin is fixed at OBDT = 0.0, and
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with a degree 5 polynomial while the background distribution (right) is approximated with
a degree 3 polynomial. The region OBDT > 0.85 is approximated by the average bin content
in that region.

the upper bound for the upper bin is fixed at OBDT = 1.0. As illustrated in figure 6.11, the
optimal bin boundary of 0.7 recovers 86% of the unbinned significance.
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Figure 6.11: OBDT binning optimization for 2 bins where the lowest and highest OBDT
bounds are fixed at 0.0 and 1.0 respectively. The y-axis corresponds to the significance
relative to the unbinned fit.

An additional scan is done assuming three bins of OBDT. As before, the lowest and
highest OBDT bins are fixed at OBDT = 0.0 and OBDT = 1.0 respectively. As shown in
figure 6.12, the optimal OBDT boundaries in this case are 0.5 and 0.85 which recovers 96%
of the unbinned significance.

Initially, the 3-bin scenario was chosen as baseline given its superior performance. How-
ever, during the calculation of the detector and theory systematic uncertainties described
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Figure 6.12: OBDT binning optimization for 3 bins where the lowest and highest OBDT
bounds are fixed at 0.0 and 1.0 respectively. The z-axis corresponds to the significance
relative to the unbinned fit.

in section 8, insufficient MC sample size for the alternate samples in the highest OBDT bin
was a reoccurring issue. Consequently, the 2-bin setup was chosen to reduce the statistical
component in the systematic uncertainties. The lower bound of the lower bin was chosen to
be −0.80 in order to ensure sufficiently large sample sizes in the control regions described in
chapter 7. This does not degrade the performance of the analysis since this bin is dominated
by background.

Note from figure 6.12 that the analysis can be improved by a few percent by splitting
the lower OBDT bin into two bins. By keeping the bin boundary of 0.70, an additional bin
boundary can be defined at 0.35 which will increase the significance from 86% to just over
90% of the unbinned significance. Unfortunately, this improvement was not implemented
due to time constraints.

Table 6.7 summarizes the bins chosen for the Run-I and Run-II analyses. As more Run-
II data becomes available and the MC sample sizes are increased, the high OBDT region will
become more and more populated, allowing the signal region to be divided into a larger
number of more sensitive bins.

A summary of the expected event yields after applying all selection requirements is given
in table 6.8 for the Run-I analysis and table 6.9 for the Run-II analysis. As additional selec-
tion requirements are applied, the ratio of signal to background increases. The uncertainties
shown are statistical only.
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Analysis Number of bins OBDT bin boundaries
Run-I 3 [−0.48, 0.3, 0.78, 1]
Run-II 2 [−0.8, 0.7, 1]

Table 6.7: OBDT bin boundaries for the signal region in the Run-I and Run-II analyses.

Run-I DF (eµ/µe)
Selection Total Total

Data
Requirement Signal Background
njet = 2 32.0± 0.2 59,020± 40 61,434
nb = 0 25.6± 0.2 7,560± 20 7,818

Central jet veto 21.6± 0.2 6,090± 20 6,313
Outside lepton veto 16.8± 0.2 1,271± 9 1,264

Z → ττ veto 14.6± 0.2 703± 6 718
Signal Region (OBDT > −0.48) 11.5± 0.1 44± 1 57

Run-I SF (ee/µµ)
Selection Total Total

Data
Requirement Signal Background
njet = 2 20.3± 0.2 26,140± 80 27,637
nb = 0 16.1± 0.2 8,030± 60 8,249

Central jet veto 12.1± 0.2 2,510± 30 2,653
Outside lepton veto 9.4± 0.1 570± 10 664

Z → ττ veto 7.7± 0.1 403± 8 469
Signal Region (OBDT > −0.48) 6.4± 0.1 54± 2 73

Table 6.8: Expected and observed event yields at various event selection stages in the Run-I
analysis. The uncertainties shown are statistical only.
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Run-II DF (eµ/µe)
Selection Total Total

Data
Requirement Signal Background

p`1T > 22/25 GeV, p`2T > 15 GeV 38.3± 0.4 185,600± 700 -
m`` > 10 GeV 36.5± 0.4 166,200± 700 -

njet = 2 20.4± 0.3 50,490± 90 53,455
nb = 0 17.8± 0.3 6,160± 60 6,301

Central jet veto 13.9± 0.2 4,590± 50 4,642
Outside lepton veto 10.6± 0.2 990± 30 1,006

Z → ττ veto 9.2± 0.2 530± 10 576
Signal Region (OBDT > −0.8) 8.7± 0.2 131± 8 129

Table 6.9: Expected and observed event yields at various event selection stages in Run-II
analysis. The uncertainties shown are statistical only.
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Chapter 7

Background Estimation

In order to be able to measure the signal strength for VBF Higgs boson production, it
is important to have a thorough understanding of the backgrounds present in the signal
region. However, the signal region selection requirements define a region of phase space for
which many MC generators are not optimized. In particular, tt̄, the dominant background,
is suppressed with a b-veto. Consequently, the majority of tt̄ candidate events in the signal
region consist of a b-jet that is not identified by the b-tagging algorithm and a jet that does
not originate from a top quark decay. Since generators are being used in regions of phase
space for which they were not originally designed, data-driven corrections are applied to the
dominant backgrounds whenever possible and kinematic distributions are checked in data
validation and control regions.

Even though theW+jets background is relatively small in the VBF H →WW ∗ → `ν`ν

analysis, it is also estimated using a data-driven approach. This is because it is challenging
to accurately simulate the misidentification of jets as leptons in the MC.

7.1 Data-driven Normalization of Signal Region Yields

The simplest data-driven background estimate in the VBF H → WW ∗ → `ν`ν analysis
uses a control region (CR) to correct the yields for a specific process in the signal region.
This method is used for the top quark and Z → ττ backgrounds to ensure that these
backgrounds are correctly estimated in the VBF region of phase space.

First, a control region is defined with the goal to select a sample that is enriched in
the background of interest and orthogonal to the signal region. The observed yield in the
control region, Ndata

CR , is calculated by subtracting all signals and backgrounds besides the
background of interest from the data yield. NMC

CR and NMC
SR are defined as the yields from

MC for the background of interest in the control and signal region respectively. Next, a
normalization factor, β, is calculated by taking the ratio of Ndata

CR to NMC
CR . The estimated
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yield in the signal region, N est
SR , is defined as:

N est
SR = NMC

SR

(
Ndata

CR
NMC

CR

)

︸ ︷︷ ︸
β

(7.1)

In equation 7.1, N est
SR is expressed in terms of a data-to-MC normalization in the control

region (β), but it is also possible to express it in terms of a MC based extrapolation factor
from the control region to the signal region (α):

N est
SR = Ndata

CR

(
NMC

SR
NMC

CR

)

︸ ︷︷ ︸
α

(7.2)

In restricted regions of phase space such as the one defined by the VBF analysis selection,
a MC-only estimate of a process is often accompanied by large theoretical uncertainties.
However, when using an extrapolation factor α as defined in equation 7.2, the uncertainty
can be significantly reduced. Assuming data sample sizes in the control region are sufficiently
large, the statistical uncertainty on Ndata

CR will be small. In addition, for a control region
that is sufficiently pure in the process of interest, the systematic uncertainty on the MC
subtraction term in Ndata

CR will also be small. Note that if a systematic variation changes
NMC

SR and NMC
CR in the same direction, then the effect of that systematic uncertainty cancels

in α. For a pure, well-populated control region, the combination of the uncertainty on α

and Ndata
CR will be significantly smaller than that of the MC only prediction.

7.2 Top Control Region

Despite the b-veto that is applied, there is still a large contribution from top quark back-
ground candidate events in the signal region. This is not surprising given that at 13 TeV,
the cross section for VBF H → WW ∗ → `ν`ν production is three orders of magnitude
smaller than that of dileptonically decaying tt̄ production.

In general there is a high level of agreement between theory calculations and ATLAS
measurements of top quark production [87, 88]. However, as previously mentioned, a top
control region is still well motivated given the unique corner of phase space corresponding
to the VBF H → WW ∗ → `ν`ν signal region. Most of the top quark candidate events in
the signal region consist of a b-quark that is not identified by the b-tagging algorithm along
with a jet from initial state radiation. In addition, these candidate events are expected to
have forward jets. Consequently, they will have a different topology than the ones used for
the above cited studies where the jets are required to be b-tagged and central.

In order to define a top control region with a similar topology to the signal region, all
preselection and selection described in chapter 6 is applied except that the b-veto is replaced
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by requiring there to be exactly one b-jet. At first glance, it would appear more logical to
define a pure top control region by requiring there to be exactly two b-jets. However, doing
so also moves the topology of the top control region further away from the signal region.
Since b-tagging is only available for |η| < 2.5, requiring two b-jets forces at least two jets to
be central, while signal-like candidate events are expected to have forward jets.

In the case of the Run-I analysis, the top control region includes both DF and SF
candidate events to minimize the statistical uncertainty. It is also divided into OBDT bins
like the signal region but since the sample sizes in the most signal-like bins of the top control
region are relatively small, a single normalization factor is calculated for the combination
of OBDT bins 2 and 3. In Run-II, only DF candidate events are included in the top control
region and it is not binned in OBDT. Consequently, only a single normalization factor is
calculated for the entire control region.

Recall from section 6.3 that the low OBDT validation region is not included in the
statistical analysis of the data. This also implies that the corresponding low OBDT region
for the top control region is not included in the statistical analysis. Even though this low
OBDT region has events with one b-tag, they are very different kinematically compared to
the events in the top control region for similar reasons as explained for the signal region in
section 6.3.

The top normalization factors calculated for Run-I and Run-II are summarized in ta-
ble 7.1. The Run-I normalization factor is not consistent with unity, but this difference
is covered when also considering the systematic uncertainties described in section 8.1.1.
Figure 7.1 shows the OBDT distribution in the top control region with the statistical and
systematic uncertainties. This mismodelling is not evident in the Run-II analysis even
though the same generator is used.

Run-I Run-II
Bin 1 Bins 2-3 Bins 1-2

1.6± 0.2 1.0± 0.3 1.0± 0.1

Table 7.1: Summary of the top normalization factors (values for β) calculated in the Run-I
and Run-II analyses. The uncertainties are statistical only.

The top control region is dominated by dileptonically decaying tt̄ but also includes
contributions from single top quark production. In order to validate the MC prediction of
the top quark background, the predicted BDT training variable distributions are plotted
with the data in the top control region. The Run-I DF and SF distributions are shown in
figures 7.2 and 7.3, while the Run-II DF distributions are shown in 7.4. These plots do not
include the normalization factors described in this section.

79



0 0.5 1 1.5 2 2.5
×

-210

-110

1

10

210

310

1

10

210

310

0 1 2 3
0.5

1
1.5

 stat±Obs 
 syst±Exp 

Top
DY
WW
Misid
VV

     VBFH
     ggFH

BDT bin number

O
bs

 / 
E

xp
 

(a)

 [TeV]jjm

 G
eV

 
32

E
ve

nt
s 

/ 1
66

 

 VBF top CR2≥jn(b) 

E
ve

nt
s 

/ b
in

 

ATLAS
TeV 8 = s

-1fb 20.3 

ATLAS

-1fb 20.3 
TeV 8 = s

Figure 7.1: The OBDT distribution is shown in the Run-I top control region after the top
control region selection requirements up until the Z → ττ veto [16]. No normalization
factors are applied in this plot. The uncertainty band shown includes systematic and
statistical uncertainties.

7.3 Z → ττ Control Region

The Z → ττ control region is defined based on all preselection and selection described in
chapter 6. However, in order to specifically select Z → ττ candidate events, the Z → ττ

veto is replaced by |mττ −mZ | < 25 GeV. In addition, m`` is required to be less than 80
GeV in order to suppress contamination from the top background.

Due to the small number of events in this control region, a common normalization factor
is calculated for the entire control region. In Run-I, the control region includes both SF and
DF candidate events, while in Run-II it only includes DF candidate events. As shown in
table 7.2, the normalization factors derived for the Run-I and Run-II analyses are consistent
with unity.

Run-I: Bins 1-3 Run-II: Bins 1-2
0.9± 0.3 0.9± 0.2

Table 7.2: Summary of the Z → ττ normalization factors calculated in the Run-I and
Run-II analyses. The uncertainties shown are statistical only.

As described in more detail in section 9.1, the Z → ττ control region is treated differently
in the Run-I and Run-II analyses. In Run-I, only the predicted yield from this control region
is included in the statistical analysis of the data, while in Run-II the entire control region
is included.
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Figure 7.2: Different flavour BDT training variables shown in the Run-I top control region
after the Z → ττ veto. No normalization factors are applied in these plots. The uncertainty
band shown includes statistical and systematic uncertainties.
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Figure 7.3: Same flavour BDT training variables shown in the Run-I top control region after
the Z → ττ veto. No normalization factors are applied in these plots. The uncertainty band
shown includes statistical and systematic uncertainties.
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Figure 7.4: Different flavour BDT training variables shown in the Run-II top control region
after the Z → ττ veto. No normalization factors are applied in these plots. The uncertainty
band shown only includes the statistical uncertainty.
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7.4 Z → ee/µµ Control Region

Z → ee/µµ is the dominant background in the SF VBF H → WW ∗ → `ν`ν analysis and
consequently it is only included in the Run-I analysis. Due to the absence of neutrinos, this
process is not expected to have missing transverse energy and it is significantly reduced by
applying selection requirements on EmissT and pmissT . However, due to the high cross section
for Z → ee/µµ there is still a significant contribution in the signal region. The largest
contribution of these momentum imbalances arise from the mismeasurement of jets in the
event. Furthermore, since |mZ −m``| > 15 GeV is required, the Z → ee/µµ events that
remain in the signal region are in the tails of the m`` distribution, a region of phase space
the MC is not optimized for. In order to account for these effects, a data driven approach
is used.

The Z → ee/µµ background is estimated using an “ABCD data-driven method” that
makes use of four orthogonal regions of phase space. The first, region A, corresponds to the
signal region where the estimate is applied. As described in section 6.3, this region includes
the selection requirements EmissT > 45 GeV and m`` < 75 GeV. Region B is enriched in
Z → ee/µµ by replacing EmissT > 45 GeV with 25 GeV < EmissT < 45 GeV.

A 15 GeV window in m`` around the Z-boson peak is used to measure the relative
efficiencies of the EmissT selection requirements in data. It is split into regions C and D that
are defined analogously to regions A and B, except that m`` < 75 GeV is replaced with
|m`` −mZ | < 15 GeV. Table 7.3 summarizes the 4 regions used in the ABCD estimate.

low m`` Z-boson peak

hi
gh

E
m
is
s

T

Region A - SR Region C
EmissT > 45 GeV EmissT > 45 GeV
m`` < 75 GeV |m`` −mZ | < 15 GeV

lo
w

E
m
is
s

T

Region B Region D
25 GeV < EmissT < 45 GeV 25 GeV < EmissT < 45 GeV

m`` < 75 GeV |m`` −mZ | < 15 GeV

Table 7.3: Summary of the 4 orthogonal regions in the ABCD method used to estimate the
Z → ee/µµ background in the Run-I SF analysis.

The yield in region A in the ith OBDT bin is then estimated as:

N est
A,i = Ndata

C
Ndata

D
Ndata

B,i (7.3)

where Ndata
X is the data yield in region X after subtracting all non-Z → ee/µµ contribu-

tions using MC. The method relies on two assumptions that are further elaborated on in
section 8.1.2: OBDT must not be correlated to EmissT and m`` must not be correlated with
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EmissT . In order to account for the small correlation between m`` and EmissT , a MC driven
correction factor called the non-closure is applied to equation 7.3:

fnon-closure = NMC
A /NMC

B

NMC
C /NMC

D

(7.4)

where NMC
X are the Z → ee/µµ MC yields for region X.

Regions A and B are split into bins of OBDT, with bins 2 and 3 merged into a single
bin because of limited statistics. The relative rates in bins 2 and 3 of OBDT are taken from
MC. Regions C and B are not binned in OBDT. The value of Ndata

C /Ndata
D is calculated to

be 0.43 ± 0.03. The data-driven estimates are consistent with the MC predictions. The
normalization factor calculated for OBDT bin 1 is 1.0± 0.2, while the normalization factor
for bins 2 and 3 is 0.9± 0.3, where the uncertainties are statistical only.

7.5 W+jets Background Estimate

As mentioned in section 4.2, W+jet and multi-jet backgrounds make their way into the
signal region when one or two jets are misidentified as leptons. These backgrounds are
commonly referred to as “fake backgrounds” since one or both of the reconstructed leptons
do not originate from prompt leptons. Since the misidentification of jets in challenging to
model well in MC, both the shape of kinematic distributions and their normalizations are
derived from data. A data-driven estimate was developed for the ggF H → WW ∗ → `ν`ν

analysis where fake backgrounds are significant. The same estimation technique is used for
the VBF analysis. Since the fake backgrounds tend to be more central in rapidity, they are
significantly smaller in the VBF analysis.

The W+jets control region is defined identically as the signal region, except that one of
the leptons is required to fail the identification and isolation criteria, but meet less stringent
requirements. These leptons are referred to as “anti-identified” leptons. The dominant
contribution in this control region comes fromW+jet events where a jet produces an object
that is reconstructed as a lepton.

In Run-I, the W+jets process is estimated in this control region from data by subtract-
ing the contribution from the multi-jet background which is also estimated from data as
described below. Furthermore, the small non-fake background is estimated using MC and
then also subtracted. In Run-II, the multi-jet background is not treated separately and so
the W+jets process is estimated from data by only subtracting the non-fake background
using MC.

Next, a “fake factor” from the W+jets control region to the signal region is defined as:

ffake = NID
Nanti-ID

(7.5)
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where NID is the number of jets that satisfy the standard lepton requirements, while Nanti-ID

is the number of jets that pass the anti-identified requirements. The fake factor is calculated
in bins of pT and η using jets from a jet-enriched Z control region in Run-I and a dijet control
region in Run-II.

For Run-I, the W+jets estimate in the signal region is then written as:

NW+jets,est
SR = ffake · (Ndata

1-fake-CR −N
multi-jet
1-fake-CR −N

non-fake,MC
1-fake-CR ) (7.6)

where Ndata
1-fake-CR is the total data yield in the W+jets control region, Nmulti-jet

1-fake-CR is a data-
driven estimate of the multi-jet background described below, and Nnon-fake,MC

1-fake-CR is the MC
prediction for the non-fake background in the W+jets control region. The analogous equa-
tion for Run-II does not include the Nmulti-jet

1-fake-CR term.
As already mentioned, a separate control region is defined in the Run-I analysis for the

multi-jet background. It is defined like the W+jets control region except that both leptons
are required to satisfy the criteria for anti-identified leptons. The corresponding fake factor,
f ′fake is derived from a region that is enriched with multi-jet candidate events. The multi-jet
estimate is then defined as:

Nmulti-jet,est
SR = f ′fake · (Ndata

2-fake-CR −N
W+jet,MC
2-fake-CR −Nnon-fake,MC

2-fake-CR ) (7.7)

where Ndata
2-fake-CR is the total data yield in the multi-jet control region, NW+jet,MC

2-fake-CR is the
contribution from W+jets estimated using MC, and Nnon-fake,MC

2-fake-CR is the MC prediction for
the non-fake background in the multi-jet control region. A key feature of this data-driven
estimate is that the MC subtraction terms are small.

In order to calculate Nmulti-jet
1-fake-CR in equation 7.6, an additional fake factor from the multi-

jet control region to the W+jet control region is calculated:

Nmulti-jet
1-fake-CR = f ′′fake · (Ndata

2-fake-CR −N
W+jet,MC
2-fake-CR −Nnon-fake,MC

2-fake-CR ) (7.8)

7.6 Validation Regions

Besides control regions, validation regions are also defined. Even though these regions are
not used directly in the analysis, they are used to check the modelling of kinematic variables.

Recall that the lowest OBDT bin in both the Run-I and Run-II analyses is not included
in the signal region. This region is well populated and is used to check the modelling of the
correlations between the BDT training variables. This region is called the low OBDT valida-
tion region. The correlation modelling for Run-I is shown in figure 7.5 and the correlation
modelling for Run-II is shown in 7.6. The uncertainties shown are statistical only. Overall,
the correlations between training variables observed in the data are consistent with those
in the MC.
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Figure 7.5: Modelling of correlations between the BDT training variables in the Run-I low
OBDT validation region [16]. The black points represent the data profiles, while the red
points represent the MC profiles.
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Figure 7.6: Modelling of correlations between the BDT training variables in the Run-II low
OBDT validation region [52]. The black points represent the data profiles, while the red
points represent the MC profiles.
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Chapter 8

Systematic Uncertainties

The models of physics and the experiment used are imperfect. The uncertainties in these
models are referred to as systematic uncertainties. For any MC generator, there are a num-
ber of possible sources of systematic uncertainty. These uncertainties need to be propagated
to the event yields in the signal and control regions so that they can be correctly accounted
for in the statistical analysis of the data. The uncertainties are categorized as theoretical
or experimental uncertainties depending on their origin. In general, theoretical uncertain-
ties are those related to choices made in the generation of the MC samples. For example,
the programs chosen to simulate the hard scatter and the parton showering both have cor-
responding theoretical uncertainties. Experimental uncertainties originate from detector
measurements that are uncertain as well as the uncertainty in the techniques used to ana-
lyze the data collected by the detector. For example, detector calibrations like the energy
and momentum scale, the trigger efficiencies, and the efficiencies of selection requirements
all have corresponding experimental uncertainties.

Each source of systematic uncertainty can be broken down into a normalization uncer-
tainty and a shape uncertainty. Normalization uncertainties change the overall event yield
and so have the same relative impact in each bin of OBDT. For example, the uncertainty
on the total luminosity is a normalization uncertainty. In contrast, shape uncertainties
impact different regions of phase space differently since their sources change the kinematic
distributions used in the analysis. For instance, the resolution of the measured jet energy
will be narrower in the central regions of the detector than in the forward regions. Some
systematic uncertainties will only affect one of the two, but in many cases, both components
are important. While normalization uncertainties are quoted as single numbers, shape un-
certainties are quoted as three or two uncertainties corresponding to the OBDT bins in the
Run-I and Run-II analyses respectively.

In the interest of conciseness, the language used to describe systematic uncertainties is
somewhat imprecise. For instance, one of the theoretical sources of uncertainty considered
is the choice of PDF and so is colloquially called the PDF uncertainty. However, this
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uncertainty does not refer to the systematic uncertainty on the PDF being used but rather
probes the sensitivity of the measurement to the choice of PDF.

8.1 Theoretical Uncertainties in Run-I

The theoretical sources of uncertainty that are considered include the parton shower and
underlying event model (PS/UE), the choice of PDF, the QCD scale, and the matrix element
model. Additional sources of uncertainty are considered for individual processes when
necessary. The uncertainties for subdominant backgrounds are not discussed in this chapter
as they have a negligible impact on the analysis result.

8.1.1 Top Quark Uncertainties in Run-I

The PS/UE uncertainty is evaluated by taking the difference between the default tt̄ sample
showered with PYTHIA6 with one showered with HERWIG, but using the same generator
for the hard scatter. These two programs use different methods to simulate the hadroniza-
tion process. HERWIG uses the cluster model [63], while PYTHIA uses the Lund string
model for hadronization [61]. The impact on the extrapolation factor α in each of the OBDT

bins is within the statistical uncertainty, and so this systematic uncertainty is negligible.
The PDF uncertainty is calculated using the eigenvector error sets included with CT10 [59]
and cross-checked by comparing the OBDT distribution using the CT10 and NNPDF [89]
PDFs. The PDF uncertainty is ∼ 1% in each bin of OBDT.

Unfortunately it was not feasible to generate reconstructed MC samples with sufficient
sample sizes to evaluate the QCD scale and the matrix element model uncertainties. Conse-
quently, these systematic uncertainties were evaluated using “truth-level” samples that are
simulated up until the fragmentation stage but are not passed through the time-consuming
detector simulation. The truth-level charged leptons are required to originate from the W
bosons that come from the top quark decays. Truth-level jets are built using the anti-kT
algorithm on the truth-level hadrons that result from the simulated fragmentation. The pT
and η requirements applied are the same as used in the fully reconstructed samples. Low pT

tracks (also called soft tracks) are simulated for charged particles that are inside |η| < 2.47,
the active area of the tracker. Tracks that are within ∆R = 0.4 of a jet are not included in
the soft track term as their contribution is already accounted for in the transverse momenta
of the corresponding jet. Truth-level pmissT is defined as the vector sum of the transverse
momenta of the leptons, jets, and soft tracks.

In order to maximize the MC sample size, a reweighting technique was used to simulate
the b-tagging. Candidate events are reweighted by the probability of having zero b-jets or
one b-jet for the signal region and control region respectively. The weights are calculated
in terms of the b-tagging efficiencies (εi) which are derived as a function of the pT , η, and
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flavour of the ith jet. For 0 b-tags:

w0 =
∏

i

[1− εi(pT , η,flav)] (8.1)

and for 1 b-tag:

w1 =
∑

i

εi(pT , η,flav) ·
∏

i 6=j
[1− εi(pT , η,flav)] (8.2)

In order to motivate their validity for evaluating the top uncertainties, the truth level
samples are compared to fully reconstructed samples. In general there is reasonable agree-
ment between the truth level and reconstructed samples. A comparison for mjj and m``

using MC@NLO is shown in figure 8.1. Note that agreement is not critical since system-
atics are evaluated as the ratio of generators and so effects of the detector reconstruction
approximately cancel out. For each systematic evaluated on the OBDT distribution using
truth level samples, the ratios of truth to reconstructed kinematics are compared for the
two generators to confirm they are consistent. For all the generators used in the evaluation
of systematics for tt̄, there is good agreement between the truth and reconstructed level
OBDT distribution.

Figure 8.1: Comparison of the truth level (hollow points) and reconstructed level (solid
points) distributions for mjj (left) and m`` (right) using the MC@NLO tt̄ generator. These
plots are made in the signal region but with the Z → ττ veto, outside lepton veto, and
BDT selection requirement removed.

The tt̄ QCD scale uncertainty was evaluated using a truth-level MC@NLO [90] sample
that was showered with HERWIG. The factorization scale (µF ) and renormalization (µR)
scales in the MC generator are independently scaled up and down by a factor of two as
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recommended by the LHC Higgs Cross Section Working Group [17]. These parameters
probe the sensitivity to higher order QCD corrections in the matrix element level calculation.
Even though the uncertainty is chosen as the largest deviation in the extrapolation factor,
α, it is still within the statistical uncertainty in each OBDT bin. The largest deviation in
the extrapolation factor is in the most sensitive OBDT bin and is 5%.

The dominant theoretical uncertainty for the tt̄ background is the matrix element
modelling uncertainty. The extrapolation factor α is derived for three different genera-
tors, MC@NLO, POWHEG, and ALPGEN, all showered with HERWIG. MC@NLO and
POWHEG are both NLO predictions and so account for potential differences in the cal-
culation of NLO matrix elements. In contrast, ALGEN is a multi-leg LO generator which
simulates the emission of up to three additional partons. The uncertainty on α is taken
from the difference between MC@NLO and ALPGEN which exhibit the greatest difference
of the three generators. The uncertainty on α in OBDT bins 1, 2, and 3 is 10%, 12%, and
21% respectively. The ratio of αMC@NLO/αALPGEN is shown in figure 8.2. The red points
correspond to the fully simulated sample with limited statistics, while the blue points corre-
spond to the truth-level sample. By using the truth level sample, the statistical component
of this systematic uncertainty is significantly reduced.

Figure 8.2: The variation from unity in the ratio in the extrapolation factor α for ALPGEN
(LO) to MC@NLO (NLO) is used to evaluate the systematic uncertainty on α. The blue
points correspond to the truth-level sample, while the red correspond to the fully recon-
structed sample. The statistical uncertainty on the systematic uncertainty is significantly
reduced using the truth-level sample.
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8.1.2 Z → ee/µµ Uncertainties in Run-I

The Z → ee/µµ estimate relies on two assumptions which are checked using MC. First,
in order to be able to extrapolate the OBDT shape from the low EmissT region B to the
signal region, it is necessary that OBDT is not correlated to EmissT . At first glance, this
assumption may not seem motivated since pmissT is used in some of the BDT training vari-
ables. However, note that only two of the BDT training variables, mT and psumT , depend on
pmissT . Furthermore, the control region is defined using the calorimeter-based EmissT rather
than the tracker-based pmissT . Figure 8.3 shows the Z → ee/µµ OBDT distribution for high
EmissT (region A) and low EmissT (region B). The left plot is made using ALPGEN interfaced
with HERWIG, the nominal generator for this process. In this case, there is no correla-
tion observed between OBDT and EmissT . The comparison is also done using PYTHIA for
the parton showering (right plot) which results in a discrepancy in the highest OBDT bin.
Since there is no intrinsic reason to expect the parton showering to impact the underlying
correlation between OBDT and EmissT , this is most likely a statistical fluctuation. In order
to safeguard against underestimating the uncertainty, the largest difference from these two
generators is taken as the systematic uncertainty, resulting in uncertainties of 4%, 10%, and
60% on Z → ee/µµ in the three bins of OBDT.

Figure 8.3: OBDT distributions for Z → ee/µµ for high EmissT (red) and low EmissT (blue)
for ALPGEN+HERWIG (left) and ALPGEN+PYTHIA (right).

Secondly, in order to be able to extrapolate the relative efficiencies of the EmissT selection
requirements from the Z-peak window to the low m`` region, it is necessary that EmissT is
not correlated with m``. However, note that as the center-of-mass energy of a Z → ee/µµ

candidate event increases, m`` also tends to increases. At the same time, a higher center-
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of-mass energy also increases the amount of initial state radiation which in turn increases
the resolution on the EmissT . Consequently, a small correlation is expected between the m``

and EmissT . As mentioned in section 7.4, this effect is captured by a correction factor which
is called the non-closure of the estimate which can only be obtained from the MC:

fnon-closure = NMC
A /NMC

B

NMC
C /NMC

D

(8.3)

where NMC
X are the Z → ee/µµ MC yields for region X. The non-closure is calculated to

be 0.8± 0.2. In addition, the 17% deviation of fnon-closure from unity is also assigned as an
uncertainty.

8.1.3 W+jet Uncertainties in Run-I

A number of sources of systematic uncertainty are considered for the determination of
uncertainties on the fake factors. Recall that ffake is calculated from a Z enriched region,
but is applied toW+jet candidate events. MC is used to calculate the ratio of ffake usingW
samples to ffake using Z samples. This correction factor is applied to ffake, and the difference
is also assigned as a systematic uncertainty. For electron fakes, the uncertainty on ffake is
20% while for muon fakes it is 22%. In addition, a systematic uncertainty is also applied
on ffake to account for electroweak contamination in the Z control region. This systematic
uncertainty is calculated by comparing the fake factor with and without the inclusion of
electroweak processes. It varies as a function of pT and η, and is maximally 25% for electron
fakes and 21% for muon fakes. In addition, the statistical uncertainty on the control region
is included in the systematic uncertainty which ranges up to 52% for electron fakes, and
34% for muon fakes. A similar procedure is used to evaluate the uncertainty on f ′fake. The
dominant source of systematic uncertainty is the choice of multi-jet sample from which to
derive the fake factors. It is 60% for electron fakes, and 40% for muon fakes.

As shown in table 8.1, the uncertainties on the fake estimate are relatively large. How-
ever, this does not significantly impact the analysis since the expected fake yields in the
VBF H →WW ∗ → `ν`ν signal region are small.

8.1.4 Other Theoretical Uncertainties in Run-I

The dominant uncertainty for the VBF MC sample is the PS/UE uncertainty. OBDT is
particularly sensitive to this uncertainty since one of the BDT training variables, psumT ,
relies on the modelling of low pT jet activity. It is evaluated by comparing the default
parton showering program PYTHIA8 with HERWIG which results in a shape uncertainty
of ∼ 0%, 5%, 14% in OBDT bins 1, 2 and 3 respectively.

In order to assess the impact of the choice of QCD scale, the factorization and renor-
malization scales for the default VBF MC sample are independently scaled up and down
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by a factor of two. The resulting uncertainty on the overall yields in the signal region is on
the order of 0.5%, and the shape uncertainties are 1%, 3%, and 3%.

The PDF uncertainty is evaluated by comparing the default CT10 PDF with NNPDF.
This results in a normalization uncertainty of 3%.

Next, the uncertainty from the choice of matrix element model is evaluated by comparing
the default generator for VBF, POWHEG, to aMC@NLO. Both generators are NLO but
use different methods to interface the hard scatter to the parton showering. The resulting
normalization uncertainty on the choice of matrix element model is 4%.

As mentioned in sections 5.1.1 and 5.1.2, the VBF Higgs boson production process is
modelled with up to NLO EW corrections. The VBFNLO [69] generator is used to determine
the size of these higher order EW corrections. A 4% difference in the total normalization
is calculated when running the generator with and without the higher order EW diagrams
while the impact on the OBDT shape is negligible. Since the EW corrections have already
been applied to the VBF Higgs boson production process, a corresponding systematic is
not applied.

Along with tt̄, WW is one of the major backgrounds in the VBF H → WW ∗ →
`ν`ν analysis. Efforts were made to construct a control region for this background, but
unfortunately it is not apparent how to define one with sufficient purity. One possibility is
to select DF candidate events and require m`` to be large (refer to figure 6.2). Even though
this effectively reduces most backgrounds, there is still a large contribution from tt̄ in this
control region.

In order to evaluate the matrix element model uncertainty for QCD WW , truth level
samples are compared using a similar procedure as described for tt̄ in section 7.2. The
default SHERPA sample is compared to MADGRAPH which is interfaced to PYTHIA for
the parton showering. Both generators include up to three radiated partons in the matrix
element level calculation. The differences in the two generators result in shape uncertainties
of 14%, 8%, and 12%. The EWWW matrix element model is also evaluated using SHERPA
and MADGRAPH interfaced with PYTHIA. This results in a normalization uncertainty of
10% and shape uncertainties of 16%, 12%, and 10%.

Scaling the factorization and renormalization scales up and down by a factor of two
results in a normalization uncertainty of 27% and a negligible shape uncertainty for QCD
WW . This uncertainty is evaluated using MADGRAPH interfaced to PYTHIA. For EW
WW , a normalization uncertainty of 10% is assigned based on a generic LO estimation for
EW WW [91].

The remaining uncertainties for QCD and EW WW are relatively small compared to
the matrix element model uncertainty and QCD scale. The PDF uncertainties are on the
order of a few percent. The interference between EW WW and VBF H → WW ∗ is also
computed and found to be negligible at 1%. It is calculated by comparing the cross sections
for EW WW with and without the interference from VBF H → WW ∗, and cross checked
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by comparing the cross sections for VBF H → WW ∗ with and without the interference
from EW WW . Using a similar approach, the uncertainty on the interference between
QCD WW and EW WW is also found to be negligible at 2%.

Higgs boson production via gluon-gluon fusion is a significant background in the VBF
H →WW ∗ → `ν`ν analysis. In order to assess the uncertainties coming from higher order
QCD corrections, the factorization and renormalization scale are independently varied using
the MCFM generator. Note that the central jet veto effectively removes events with 3 or
more jets and so the uncertainty needs to be calculated for this region of phase space. The
Stewart-Tackmann procedure [92] is used to calculate the uncertainty in the 2-jet bin with
this consideration in mind. The cross section for this region can be written as:

σ2j = σ≥2j − σ≥3j (8.4)

where σ≥2j is the cross section for 2 or more jets, and σ≥3j is the cross section for 3 or more
jets. The Stewart-Tackmann method assumes that the uncertainties on σ≥2j and σ≥3j are
uncorrelated. The effect of varying the QCD scale is assessed in the signal region for σ≥2j

without the CJV applied and for σ≥3j with the CJV inverted. The resulting normalization
uncertainty on σ2j is 29% and the shape uncertainties are 3%, 7%, and 48% in bins of OBDT.

In order to evaluate the uncertainty from the PS/UE, the default PYTHIA8 is compared
with HERWIG resulting in a 15% normalization uncertainty. Finally, the PDF uncertainty
is calculated to be 8%.

Even though the Z → ee/µµ background is estimated using a data-driven approach,
recall from section 7.4 that the relative rates in the second and third bins of OBDT are
derived from MC. The uncertainties for this background are computed using a SHERPA
sample. The largest uncertainty is the QCD scale for which a 11% normalization uncertainty
is assigned. The other sources of uncertainty do not contribute significantly.

The Z → ττ process is normalized using a control region. Unfortunately the statistics
in this region are low resulting in a large statistical uncertainty of 30% on the expected
yield. Since the theory systematic uncertainties are expected to be within the statistical
uncertainty and since this background is small in the signal region, theory uncertainties are
not computed for this background.

8.2 Theoretical Uncertainties in Run-II

Unlike in Run-I, all Run-II uncertainties are calculated using reconstructed samples. Conse-
quently, some of the systematic uncertainties, particularly those in the most sensitive bin of
OBDT, will be driven by statistical uncertainties. However, since the statistical uncertainty
on the data in the most sensitive OBDT bin is already large, this does not significantly
degrade the performance of the analysis with the current dataset. With the larger dataset
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that will be available for the next result to be published, the uncertainties for Run-II will
need to be reevaluated.

8.2.1 Top Quark Uncertainties in Run-II

As in Run-I, the dominant uncertainty on the top background is the matrix element mod-
elling uncertainty which is evaluated to be 35%. It is calculated for tt̄ by comparing
POWHEG and MG5_aMC@NLO [58] both interfaced with HERWIG++ [93].

The QCD scale uncertainty is evaluated using POWHEG interfaced with PYTHIA6
by varying the relevant parameters. The PS/UE uncertainty is derived by comparing the
PYTHIA6 and HERWIG++ showering models with the hard scatter being modelled by
POWHEG in both cases.

8.2.2 W+jet Uncertainties in Run-II

In Run-II, the dominant uncertainty originates from the difference in jet flavour composition
between the dijet sample used to evaluate the fake factors and theW+jets control region. It
is calculated using a Z+jet enriched data sample which is expected to have a similar ratio of
identified to anti-identified leptons as theW+jet control region. The difference between the
fake factors in the Z+jet and dijet samples is assigned as a systematic uncertainty. Unfor-
tunately, the Z+jet sample has limited statistics which increases the statistical component
of this uncertainty. An additional systematic uncertainty is estimated from MC to cover
the difference in sample composition between the W+jet and Z+jet samples. The total
sample composition systematic uncertainty is calculated to be 63% for muons and 40% for
electrons. This systematic uncertainty also has the largest impact on the determination of
the signal strength as described in section 9. However, this uncertainty is expected to be
smaller in future iterations of the analysis as more statistics in data will be available.

Uncertainties originating from the subtraction of electroweak processes and statistical
uncertainties on the fake factors are also considered.

8.2.3 Other Theoretical Uncertainties in Run-II

All of the Run-II PDF uncertainties are evaluated using a common procedure. The CT10
PDF is compared with both MSTW [94] and NNPDF. The resulting difference is then added
in quadrature with the uncertainty derived from the PDF eigenvector error set included with
CT10.

The PS/UE uncertainties for VBF Higgs boson production are derived by interfacing the
default POWHEG generator to both PYTHIA8 and HERWIG7 [95] and comparing the dif-
ference. As in Run-I, the factorization and renormalization scales are independently scaled
up and down by a factor of two to determine the QCD scale uncertainty. Next, the ma-
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trix element model uncertainty is evaluated by comparing POWHEG to MG5_aMC@NLO
where both generators are interfaced to PYTHIA8.

Unlike in Run-I, all of the QCD WW uncertainties are derived from reconstructed
samples rather than truth level samples. The uncertainty is dominated by the matrix
element modelling uncertainty which is 50%. It is derived by comparing SHERPA to the
nominal POWHEG interfaced with PYTHIA. In general, SHERPA is expected to model the
forward jets more accurately that POWHEG. However, there is also a slight mismodelling
of the data observed in version 2.1 of SHERPA for forward jets.

The QCD scale uncertainties are evaluated using a SHERPA sample that includes two
radiated jets at matrix element level. The PS/UE uncertainties are evaluated by comparing
the nominal POWHEG generator interfaced with PYTHIA8 and with HERWIG++.

Next, the ggF background includes an uncertainty on the acceptance of the central-
jet veto. As in Run-I, it is evaluated using the Stewart-Tackmann method, but using
MG5_aMC@NLO. The resulting uncertainties are 28% for H + 2-jet events and 32% for
H + 3-jet events. The QCD scale uncertainties are 3% in bin 1 of the OBDT, and 32% in
bin 2.

The uncertainty on the ggF matrix element modelling is determined by comparing
POWHEG with MG5_aMC@NLO, both interfaced to PYTHIA8 for the parton shower-
ing.

8.3 Experimental Uncertainties

Experimental uncertainties originate from uncertainties associated with the modelling of
the ATLAS detector. In general, these systematic uncertainties are evaluated in bins of
OBDT. For the sake of conciseness, the uncertainties in this section are listed as averages
over all OBDT bins in the signal region.

The sizes of the uncertainties are summarized in table 8.1 for the Run-I DF analysis and
in table 8.2 for the Run-I SF analysis. Further details on these uncertainties are provided in
the text that follows. For the top background, the uncertainties shown are the uncertainties
on the extrapolation factor α as defined in equation 7.2. All other uncertainties shown are
on the total event yields. The Run-II experimental uncertainties are not included here as
they are dwarfed by the statistical uncertainties on the data. However, these uncertainties
are included in the analysis and are expected to become more important as more 13 TeV
data is analyzed.

In general, leptons are well understood and the uncertainties originating from them are
relatively small. The efficiencies of selecting leptons in MC are corrected with scale factors
to match data. Two uncertainties are assigned on the scale factors, one corresponding to
the lepton isolation, and the other corresponding to the lepton identification. Two further
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Uncertainty Sig. Bkg. Top WW ggF Other V V Z/γ Fakes
Trigger - 0.1 - - - 0.5 0.5 -

Electron identification 0.8 0.7 0.8 0.9 0.8 0.9 0.9 -
Electron isolation 0.7 0.6 0.7 0.7 0.8 0.8 0.8 -
Electron resolution - 0.6 0.3 0.1 - 1.4 4.7 -

Electron scale - 0.5 0.5 0.6 - 1.3 2.8 -
Muon identification - - - - - - - -

Muon isolation 0.8 0.7 0.8 0.8 0.8 0.9 0.9 -
Muon resolution - - - - - - 0.1 -

Muon scale - 0.1 - - - - 0.4 -
JES flavour 0.8 0.9 0.5 2.9 3.0 3.5 0.3 -
JES η model 2.8 4.7 3.9 10.2 5.9 1.3 6.6 -

JES η statistical - 0.7 0.8 1.3 0.8 1.8 0.2 -
JES flavour response 0.7 0.2 0.1 2.1 1.9 2.9 4.7 -

JES detector - 0.7 0.9 0.9 0.7 0.9 - -
JES pile-up pT - 0.6 - 0.6 - - 4.2 -
JES high pT - 0.5 - - - - 3.8 -
JES pile-up ρ - - 0.5 1.5 1.4 0.6 5.6 -
JES modelling 1.1 1.7 1.9 3.8 3.4 5.4 2.6 -
JES < µ > 0.1 0.5 0.3 0.2 0.4 2.5 0.5 -
JES NP V - 0.3 0.2 0.7 0.4 2.8 3.2 -
JES AFII - - 0.1 - - - - -
JES total 3.2 5.3 4.6 11.7 7.9 8.4 12.1 -

JER 2.1 3.2 1.8 1.5 0.3 11.8 11.5 -
b-tag SF - 2.4 6.5 - - - - -

light tag SF 1.3 1.3 1.2 1.7 1.9 1.8 1.6 -
c-tag SF - - - 0.1 - - - -
Emiss

T scale - 0.3 - - - - 2.2 -
Emiss

T resolution - - - - - - - -
pmiss

T scale - 2.2 2.6 1.9 1.0 0.3 6.6 -
pmiss

T resolution 0.3 1.8 2.0 1.7 1.1 7.8 4.5 -
dijet fake rate - 1.9 - - - - - 14.5
fake rate µ - 1.6 - - - - - 12.0
fake rate e - 2.2 - - - - - 17.1

< µ > re-scale 1.2 0.5 0.8 0.3 0.9 3.6 4.4 -

Table 8.1: Experimental normalization uncertainties in the Run-I DF analysis in percent
calculated for the entire signal region.
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Uncertainty Sig. Bkg. Top WW ggF Other V V Z/γ Fakes
Trigger 1.2 0.5 1.1 1.2 1.2 0.6 0.1 -

Electron identification 0.6 0.3 0.6 0.7 0.6 1.9 0.1 -
Electron isolation 0.6 0.3 0.5 0.6 0.6 1.4 0.1 -
Electron resolution - 0.4 0.5 0.1 0.3 0.3 0.5 -

Electron scale - 0.1 0.1 1.0 - 3.4 0.2 -
Muon identification - - - - - - - -

Muon isolation 1.0 0.4 1.0 1.0 1.0 0.4 0.1 -
Muon resolution - 0.1 - 0.4 - - 0.1 -

Muon scale - - 0.2 - - - 0.1 -
JES flavour 1.9 1.1 0.6 4.4 4.0 18.0 0.1 -
JES η model 5.2 3.2 5.4 9.8 8.0 10.2 1.2 -

JES η statistical 0.6 0.6 0.9 1.1 0.6 4.7 0.3 -
JES flavour response 1.4 0.9 0.7 2.3 2.5 14.2 0.1 -

JES detector 0.9 0.7 1.0 0.6 0.8 7.4 0.3 -
JES pile-up pT - 0.4 - 0.1 0.3 0.9 0.6 -
JES high pT - 0.2 - - - - 0.3 -
JES pile-up ρ 0.4 0.5 0.1 2.0 1.0 10.9 - -
JES modelling 2.1 1.6 1.4 4.6 4.2 15.2 0.6 -
JES < µ > - 0.5 0.1 1.1 0.7 3.3 0.4 -
JES NP V - 0.4 0.1 1.1 0.3 7.0 0.3 -
JES AFII - - 0.1 - - - - -
JES total 6.2 4.1 5.8 12.2 10.3 33.4 1.6 -

JER 2.5 1.5 1.8 4.1 1.0 1.2 1.3 -
b-tag SF - 1.3 6.8 - - 0.8 - -

light tag SF 1.4 0.6 1.2 1.8 2.0 1.3 0.1 -
c-tag SF - - - 0.1 - 0.2 - -
Emiss

T scale - 0.2 - - - 3.6 0.2 -
Emiss

T resolution - 0.2 - - - 5.9 0.1 -
pmiss

T scale 0.1 1.0 3.0 1.1 1.1 2.7 0.6 -
pmiss

T resolution 0.6 0.9 1.6 1.2 1.1 10.1 0.4 -
dijet fake rate - 0.1 - - - - - 4.9
fake rate µ - 0.3 - - - - - 12.6
fake rate e - 0.3 - - - - - 13.7

< µ > re-scale 3.4 0.6 0.4 1.2 1.7 13.5 0.2 -

Table 8.2: Experimental normalization uncertainties in the Run-I SF analysis in percent
calculated for the entire signal region.
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uncertainties are evaluated corresponding to the calibration of the lepton momentum scale
and resolution.

Due to the more complex nature of hadronic showers, the uncertainties associated with
jets are significantly larger than those associated with electrons and muons. The jet energy
scale (JES) and jet energy resolution (JER) are evaluated. The JES uncertainty is evaluated
in terms of 12 orthogonal components [37] as summarized in table 8.1. Due to the forward
jets in the VBF H → WW ∗ → `ν`ν analysis, the largest component is related to the
extrapolation of the JES from the central region to the forward region of the detector. This
uncertainty is driven by the significant difference in jet η modelling between the POWHEG
and HERWIG generators. There are also contributions to account for the behaviour of high
pT jets, the difference in response of the calorimeter to jets originating from light quarks
versus gluons, uncertainties from the modelling of pile-up, and uncertainties from jet energy
corrections. Although not as large as the JES, the JER also contributes significantly to the
uncertainty on the total event yields.

Next, uncertainties are calculated on the efficiency of the b-tagging algorithms. The
uncertainties are derived from the theoretical and detector uncertainties on the inputs to
the b-tagging scale factors. The efficiencies are calculated from a tt̄ rich control region
in six pT bins resulting in six orthogonal contributions to the total uncertainty [46]. This
uncertainty has the most impact on the top background since it contains hadrons originating
from real top quarks. Further uncertainties are also applied to account for the light flavour
and charm hadrons that have been misidentified as b-jets.

Recall from equation 3.3 that EmissT and pmissT are defined in terms of identified objects
and soft objects. The uncertainty on the first contribution is derived from the uncertainties
calculated for electrons, muons and jets. For the soft objects, the uncertainty on the QCD
scale and resolution is calculated. In general, these uncertainties grow with the amount of
QCD radiation in the process of interest.

The uncertainty from pile-up is assessed by rescaling < µ >, the average number of
interactions per bunch crossing, and observing the impact in the signal region. Finally,
whenever the normalization of a process is calculated using MC, the uncertainty on the
total luminosity needs to be taken into account. It is on the order of a few percent.
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Chapter 9

Statistical Analysis

Statistical data analysis methods are used to interpret the data in the context of the SM
predictions. The total yields in the signal region are written as the sum of the total predicted
signal scaled by the signal strength µ, and the total predicted background. The background-
only hypothesis is defined as the case where µ = 0. Using a ratio of likelihood functions, a
test statistic is defined and used to quantify the probability of observing an analysis outcome
that is at least as signal-like as the one in data, assuming the background-only hypothesis.
If the background-only hypothesis can not be rejected, limits are set on physical parameters
of interest such as the Higgs boson mass. In contrast, if the background-only hypothesis is
rejected with sufficient significance, the presence of a signal is established and its properties
are measured. A measured value of µ consistent with 1 indicates that the data yields in the
signal region are consistent with the total SM predicted yield for signal and background.
Additional properties of interest include the mass, production cross section, spin, parity,
and coupling strength to other particles. These provide probes to check if the measured
signal is consistent with the Higgs boson predicted by the SM.

9.1 Likelihood Function

A likelihood function, L, is used to interpret the data in terms of the expected yields in
the various data samples defined in the analysis. L is defined as the likelihood of observing
an outcome in data given a set of parameters that describe the degrees of freedom in the
model.

In order to motivate the functional form of L, consider a simplified analysis consisting
of a signal region defined by a single set of selection requirements. For the moment, it is
assumed that there are no uncertainties on the background and signal predictions in this
signal region. The yields in this signal region are expected to follow a Poisson probability
distribution:

P (N |λ) = e−λλN

N ! (9.1)
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where N is the observed number of events and the Poisson mean, λ, is the expected number
of candidate events. Then the likelihood function can be written as:

L(µ) = P (Ndata
SR |µN sig

SR +Nbkg
SR ) (9.2)

where P is assumed to be a Poisson probability, µ is the signal strength (defined in sec-
tion 1.4), Ndata

SR is the number of events observed in data, N sig
SR is the number of predicted

signal events, and Nbkg
SR is the number of predicted background events. Since µ is the pa-

rameter being measured, it is the parameter of interest. The expression for L(µ) represents
the model that is used to interpret the data. Its value is estimated by maximizing L(µ) with
respect to µ. This is accomplished by taking the derivative of L with respect to µ, setting it
to zero, and solving for µ. The value of µ that maximizes the likelihood function is denoted
as µ̂, where the carat indicates this is an estimate for µ. Due to the simplicity of this
likelihood function, it can be maximized analytically. In practice, likelihood functions used
in physics analyses are more complex and need to be maximized using numerical methods.
A common strategy is to minimize the negative log of the likelihood function. The log helps
ensure that the calculated results do not exceed the numerical bounds of the computational
tool being used. In addition, it simplifies the optimization since a log of products can be
rewritten as a sum of logs. In the case of the H →WW ∗ → `ν`ν analysis, the optimization
is done with the MINUIT software package [96].

For Poisson probabilities, the likelihood maximization results in:

µ̂ = Ndata
SR −Nbkg

SR
N sig

SR
(9.3)

Assuming the existence of a SM Higgs boson, the expected value of µ̂ is µ̂exp = 1.0. The
deviation of the observed signal strength in data from µ̂exp is denoted as µ̂obs and provides
a probe to test the SM.

The model described by equation 9.2 is the simplest implementation of the likelihood
approach and does not adequately describe the VBF H →WW ∗ → `ν`ν analysis. First, it
does not account for the control regions that are used to constrain specific backgrounds as
described in chapter 7. Assuming a normalization factor of β is applied to background A
in all the signal and control regions in the analysis, the likelihood function is extended as:

L(µ, β) = P (Ndata
SR |µN sig

SR + βNbkg A
SR +Nother bkg

SR ) ·P (Ndata
CR |µN

sig
CR + βNbkg A

CR +Nother bkg
CR )

(9.4)
where N sig

X , Nbkg A
X , and Nother bkg

X are the expected event yields in region X for the signal,
background A, and all other backgrounds besides A, respectively. As before, the values of
µ and β that best fit the data are determined by maximizing L(µ, β). Note that the signal
and control regions are treated identically in the likelihood function. However, since control
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regions are constructed to have negligible signal yields, a priori they are not expected to have
a large direct impact on the value of µ. Equation 9.4 is generalized to multiple signal and
control regions by adding an additional Poisson probability term for each new independent
signal and control region.

Next, the likelihood function defined so far does not account for the sources of systematic
uncertainties on the MC described in chapter 8. In addition, since the MC samples have a
finite number of events, there are statistical uncertainties on the MC as well. The parameters
corresponding to these uncertainties are referred to as nuisance parameters (NPs) since they
are not parameters of immediate interest. In this thesis, nuisance parameters are denoted
by θi.

Nuisance parameters allow the event yields to vary within their uncertainties in the
maximization of the likelihood. For a given nuisance parameter, θi, the event yield is
rewritten as:

N(θi) = N0ν(θi) (9.5)

where N0 is the expected nominal yield, and ν(θi) describes how the nuisance parameter af-
fects the yield. Next, the likelihood is multiplied by a penalty term, A(θi|θ̄i), corresponding
to the probability distribution of θi and where θ̄i is the central value of θi.

For systematic uncertainties on MC yields, the exponential response function is used in
the VBF H →WW ∗ → `ν`ν analysis:

ν(θi) = (1 + εi)θi (9.6)

with a unit-variance Gaussian probability distribution:

A(θi|θ̄i) = G(θi|θ̄i, 1) = 1
2π exp

(
−(θ̄i − θi)2

2

)
(9.7)

The values for the parameter εi correspond to uncertainties summarized for the various
systematic uncertainties in chapter 8. If a nuisance parameter is varied by one standard
deviation, θi = ±1, the yield will change by εi%. With the above described choice of ν(θi)
and A(θ̄i|θi), N(θi) will be log-normally distributed [97] and centered at N0. Alternatively,
it is also possible to choose ν(θi) = (1 + εiθi) which will result in N(θi) being normally
distributed. However, note that this choice allows N(θi) to take on non-physical, negative
values, particularly in the most sensitive OBDT bin where the expected event counts are
low.

Note that even though ν(θi) gives the likelihood maximization the flexibility to alter
N(θi) from its nominal value, A(θi|θ̄i) becomes smaller and consequently penalizes the
likelihood as θi moves away from θ̄i. The preceding discussion considered a single nuisance
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parameter, but the concept is easily generalized to account for many nuisance parameters:

N(~θ) = N0
∏

i

νi(θi) (9.8)

where each νi(θi) has a corresponding A(θi|θ̄i) in the likelihood expression.
In most cases, a common θi is used for each source of systematic uncertainty even though

the values of εi may be different in each bin of OBDT for a given shape uncertainty. The
systematic uncertainties are correlated between bins of OBDT. The exception is for the tt̄
systematic uncertainty in Run-I where a separate θi is used for the two bins of the top
control region. This choice gives the data more flexibility in constraining the top yields in
the signal region.

Next, the statistical uncertainty on the MC predications also needs to be taken into
account. For this end, a random variable Nraw(θi) is defined that corresponds to the number
of MC events in a particular region of phase space. Nraw(θi) is expected to be Poisson-
distributed [98] and the mean is estimated with N̂raw, the measured number of events. The
standard deviation of Nraw(θi) is

√
N̂raw. For statistical uncertainties:

ν(θi) = θi (9.9)

with a Poisson probability distribution:

A(θi|θ̄i) = P (N̂raw|θiNraw) (9.10)

Since increasing the number of nuisance parameters increases the complexity of the likeli-
hood maximization, a single nuisance parameter is applied for the statistical uncertainty
on the total yield in each signal and control region rather than including separate nuisance
parameters for each process.

For consistency, the treatment of the control regions summarized in equation 9.4 is also
expressed in terms of ν(θi) and A(θi|θ̄i):

ν(θi) = θi (9.11)

A(θi|θ̄i) = P (Ndata
CR |µN

sig
CR + θiN

bkg A
CR +Nother bkg

CR ) (9.12)

In order to differentiate them from the uncertainties, the nuisance parameters corresponding
to the control regions are denoted by β in the equations that follow.

The VBF H →WW ∗ → `ν`ν analysis likelihood is made up of the product of the above
described terms:

L(µ, ~β, ~θ) = LSR(µ, ~β, ~θ) · LCR(µ, ~β, ~θ) · LNP(~θ) (9.13)
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For Run-I, the likelihood term corresponding to the signal region is:

LISR(µ, ~β, ~θ) =
1,2,3∏

bin i

DF,SF∏

flav j


P (Ndata

SR i,j |µN
sig
SR i,j(~θ) +

top,Z/γ∑

bkg k
βki,jN

bkg k
SR i,j(~θ) +

other∑

bkg l
Nbkg l

SR i,j(~θ))




(9.14)

For both DF and SF, there are three separate Poisson terms corresponding to the three
bins of OBDT. The index k iterates over the top and Z/γ → `` background, while the
index l iterates over the backgrounds which do not have a control region in the fit. For the
top background, the β parameter is the shared between the DF and SF channels, βtopi,DF =
βtopi,SF = βtopi . For the DF Z → `` channel, the β parameter is set to zero, βZ/γi,DF = 0 = β

Z/γ
i .

Note that the W+jet and the Z → ττ control regions are not included in the likelihood
maximization. The yields for these processes are calculated externally and included with
the sum over the index l which also includes all the backgrounds estimated purely from
MC.

The Run-II likelihood term corresponding to the signal region is similar but requires
several modifications to account for the differences between the Run-I and Run-II analyses.
The number of OBDT bins in the signal region is reduced from three to two, the SF analysis
is removed, the Z/γ → ee/µµ control region is removed, and the Z → ττ control region is
added:

LIISR(µ, ~β, ~θ) =
1,2∏

bin i


P (Ndata

SR i |µN
sig
SR i(~θ) +

top,Z→ττ∑

bkg k
βki N

bkg k
SR i (~θ) +

other∑

bkg l
Nbkg l

SR i (~θ))


 (9.15)

Next, the Run-I likelihood term corresponding to the control regions can be written as:

LICR(µ, ~β, ~θ) =
top,Z/γ∏

CR K

1,2∏

bin i


P (Ndata

CRK,i |µN
sig
CRK,i(~θ) +

top,Z/γ∑

bkg k
βki N

bkg k
CRK,i(~θ) +

other∑

bkg l
Nbkg l

CRK,i(~θ))




(9.16)
The product only includes two bins in OBDT in the top control region since the highest two
bins are merged in the Run-I analysis. Consequently, in equation 9.14, βk2 = βk3 .

Analogously, for Run-II:

LIICR(µ, ~β, ~θ) =
top,Z→ττ∏

CR K


P (Ndata

CRK |µN
sig
CRK(~θ) +

top,Z→ττ∑

bkg k
βkNbkg k

CRK (~θ) +
other∑

bkg l
Nbkg l

CRK(~θ))




(9.17)
Since the top and Z → ττ control regions consist of a single bin, βk1 = βk2 = βk.

The final term in the likelihood expression constrains the nuisance parameters:

LNP(~θ) =
∏

NP i
G(θi|θ̄i, 1)

∏

region j
P (N̂j |θjNj) (9.18)
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where the first term is the product over all nuisance parameters corresponding to the sys-
tematic uncertainties. The second product corresponds to the statistical uncertainties on
the MC in all of the signal and control regions in the fit.

The Run-I likelihood maximization is done simultaneously with that of the ggF Higgs
boson production analysis mentioned in the H → WW ∗ outline in figure 4.1. In this case,
an additional nuisance parameter is added corresponding to the signal strength µggF which
is constrained by the ggF analysis. Since both the VBF and V H Higgs boson produc-
tion modes are produced via an interaction with two weak vector bosons, the parameter
of interest, µVBF, is also used to scale V H. Nevertheless, the analysis is not optimized
to be sensitive to V H and the contribution in the signal region is expected to be small.
For full details of the ggF Higgs boson likelihood, refer to reference [16]. The likelihood
maximization described in this paper also includes 7 TeV data.

The Run-II likelihood maximization is stand-alone and uses SM predictions for ggF and
V H Higgs boson production (i.e. µggF = 1 and µV H = 1). The parameter of interest in
this case is µVBF.

9.2 Discovery Statistic

The significance of a signal is summarized by a p-value which is the probability of observ-
ing an analysis outcome that is at least as signal-like as the one in data, assuming the
background-only hypothesis. In the particle physics community, the convention is that a p-
value less than 1.35×10−3 constitutes evidence for a signal and a p-value less than 2.87×10−7

constitutes a discovery. Experimental outcomes are ranked on a one-dimensional scale using
a test statistic that is used to calculate the p-value.

Since the likelihood function is differentiated in the maximization, the magnitude of
L for a single hypothesis is arbitrary. A meaningful test statistic requires a comparison
of at least two likelihood evaluations corresponding to two hypotheses. According to the
Neyman-Pearson lemma [99], the ratio of two likelihoods provides the best discrimination
between two hypotheses.

The profile likelihood-ratio test statistic is used to compare two hypotheses:

qµ = −2 ln L(µ, ~̂θµ)

L(µ̂, ~̂θ)
(9.19)

where µ̂ and ~̂θ are the respective values of µ and ~θ that maximize their corresponding
likelihoods. The denominator is calculated by simultaneously maximizing the likelihood for
both µ and ~θ and consequently equals a constant. When evaluating qµ for some value of
µ, the numerator is evaluated by maximizing the likelihood for ~θ but leaving µ fixed. Note
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that because of the negative sign in the definition, maximizing the numerator is equivalent
to minimizing qµ.

In order for qµ to be meaningful, it is necessary to determine its probability density func-
tion (PDF), f(qµ|µ′). Integrating f(qµ|µ′) over some range of qµ returns the probability of
measuring qµ in that range given the assumed value of µ in data is µ′. One method of deter-
mining f(qµ|µ′) is by randomly generating MC pseudo-experiments (sometimes informally
also called toys). Each pseudo-experiment corresponds to a possible observed outcome in
data for the yields in all of the analysis signal and control regions. The yields for each
region are sampled from their corresponding likelihood terms. In addition, the nuisance
parameters are sampled from their corresponding constraint terms, A(θi|θ̄i). The pseudo-
experiments can be generated under the background-only hypothesis or under the signal +
background hypothesis.

Unfortunately, it is often not feasible to generate a sufficient number of pseudo-experiments
for a given analysis, especially if the analysis has a large number of nuisance parame-
ters, a large number of signal regions, or a large number of control regions. Furthermore,
since f(qµ|µ′) generally falls off towards larger values of qµ, larger significances require
more pseudo-experiments. The primary computational bottle-neck in generating pseudo-
experiments is the evaluation of the two likelihood maximizations. Consequently, it is
common practice within the ATLAS experiment to approximate f(qµ|µ′) using analytic
functions. In the case of a single parameter of interest, it has been shown that the test
statistic can be rewritten as [100]:

qµ = −2 ln L(µ, ~̂θµ)

L(µ̂, ~̂θ)
= (µ− µ̂)2

σ2 +O(1/
√
N) (9.20)

where µ̂ is a Gaussian distribution with a mean of µ′ and a standard deviation of σ, and
N is number of events in the data. O(1/

√
N) is a correction term that becomes negligible

as the total number of data events increases. If the correction term in equation 9.20 is
ignored, f(qµ|µ′) can be rewritten as a non-central chi-squared distribution with one degree
of freedom [101]:

f(qµ|µ′) = 1
2√qµ

1√
2π

(
exp

(
−1

2(√qµ +
√

Λ)2
)

+ exp
(
−1

2(√qµ −
√

Λ)2
))

(9.21)

where the non-centrality parameter Λ is:

Λ = (µ− µ′)2

σ2 (9.22)

Consequently, assuming the data sample size is large enough, equation 9.21 can be used to
approximate f(qµ|µ′) without having to generate the CPU intensive pseudo-experiments.
This approximation is often referred to as the asymptotic approximation which is valid in
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the case where all the signal and control regions are well populated with data. More details
on the validity of using the asymptotic approximation in the VBF H → WW ∗ → `ν`ν

analysis are provided in section 9.3.
In the H →WW ∗ → `ν`ν analysis, the definition of the test-statistic is modified to also

allow µ̂ to drop below the value of µ being tested in the likelihood which makes it sensitive
to both excesses and deficits in the data:

qµ =





−2 ln L(µ,~̂θµ)
L(µ̂,~̂θ)

, µ̂ < µ

+2 ln L(µ,~̂θµ)
L(µ̂,~̂θ)

, µ̂ ≥ µ
(9.23)

Given f(qµ|µ′), it is possible to gauge the agreement between the observed data and
a given value of µ. The p-value is defined as the integral of f(qµ|µ′) to the right of qobsµ

observed in data:
pµ =

∫ ∞

qobs
µ

f(qµ|µ′)dqµ (9.24)

This corresponds to the probability of qµ being larger than the observed value in data.
In order to test the background-only hypothesis, µ and µ′ are set to zero:

p0 =
∫ ∞

qobs
0

f(q0|0)dq0 (9.25)

As qobs0 becomes larger, p0 becomes smaller making the background-only hypothesis more
and more unlikely.

In order to make the p-values easier to interpret, they are typically converted into a
Gaussian significance denoted as Zµ:

Zµ = Φ−1(1− pµ) (9.26)

where Φ−1(x) is the inverse of the Gaussian cumulative distribution function:

Φ(x) = 1√
2π

∫ x

−∞
e−t

2
dt (9.27)

The threshold of p0 ≤ 2.87 × 10−7 for discovery or observation corresponds to Z0 ≥ 5,
while the threshold of p0 ≤ 1.35× 10−3 for evidence corresponds to Z0 ≥ 3. In the case of
a discovery, the value and uncertainty on the signal strength µ is of particular interest as
it gives an indication of how well the data agrees with the expectations for SM VBF Higgs
boson production.

Particularly when optimizing an analysis, it is useful to be able to calculate an expected
value for the test statistic. In order to do this, a value needs to be chosen for the assumed
signal strength in the data. Typically, the SM model assumption is used (µ′ = 1). First,
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f(q0|1) is used to calculate qexp0 , the median value of the test statistic. The expected p-value
is then calculated using equation 9.25 with qobs0 = qexp0 .

Using the approximation in equation 9.21, it can also be shown that if µ = µ′ = 0:

Z0 =





√
|q0| , q0 > 0

−
√
|q0| , q0 < 0

(9.28)

9.3 Validation of the Asymptotic Approximation

The results quoted in this thesis are derived using the asymptotic approximation. However,
equation 9.20 is only valid if N is large enough. However, by construction the event yields
in the most sensitive OBDT bin are expected to be low. Consequently, it is important
to confirm that the asymptotic approximation is valid for the VBF H → WW ∗ → `ν`ν

analysis.
For the Run-II VBF H →WW ∗ → `ν`ν analysis, 250,000 pseudo-experiments are gen-

erated for the background-only and for the background + signal hypotheses. Only 3.2 fb−1

of integrated luminosity corresponding to the 2015 dataset is used for the studies summa-
rized in this section. The median value of the test statistic for the signal + background
hypothesis, qS+B median

0 , is calculated from the relevant set of pseudo-experiments and then
used to calculate q0.

For the asymptotic approximation, qS+B median
0 is approximated from a signal + back-

ground Asimov dataset. An Asimov dataset is a single representative analysis outcome
where the yields in each of the signal and control regions are the same as the expected
yields and all nuisance parameters are set to their nominal values. The test statistic is then
calculated using equation 9.21.

The signal + background test statistic distribution is shown in the left plot of figure 9.1.
From the pseudo-experiments, qS+B median

0 = 0.80 while for the asymptotic approximation,
qS+B median

0 = 0.83.
As illustrated in the right plot of figure 9.1, each peak in the signal + background q0

distribution corresponds to a discrete number of events in the second bin of OBDT. If only
the most sensitive OBDT bin is considered, there would be a delta function spike in q0 for
each possible event yield in this bin. However, there are many possibilities for the yields in
the other OBDT bin and the control regions, particularly since these have higher expected
event yields. Each possibility has a corresponding value for q0 and consequently the spikes
are washed out. In addition, as the expected data yield in the second OBDT bin increases,
the bumps are expected to move closer together and eventually become indistinguishable.

Next, the background-only q0 distribution is shown in the left plot figure 9.2. Note
that a χ2 does not model the features in the q0 distribution as assumed in the asymptotic
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Figure 9.1: Test statistic distribution for the signal + background pseudo-experiments (left).
The plot on the right is binned in the number of events in the most sensitive OBDT bin.

approximation. As before, the distinct peaks correspond to the number of events in the
most sensitive OBDT bin as illustrated in the right plot of figure 9.2.

0
q

0 1 2 3 4 5 6

210

310

410

510

 (Bkg Toys)
0

q
q0_Bkg

Entries  250000
Mean   0.4337
Std Dev     0.914

Exp: p0 = 0.185,   Z0 = 0.898

 (Bkg Toys)
0

q

Bkg
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

210

310

410

510

<=1 events

2 events

3 events

4 events

5 events

6 events

>=7 events

 (Bkg Toys)
0

q

Figure 9.2: Test statistic distribution for the background-only pseudo-experiments (left).
The plot on the right is binned in the number of events in the most sensitive OBDT bin.

From the pseudo-experiments, Zpseudo
0 = 0.90 while for the asymptotic approximation,

Zasymp
0 = 0.91. Even though this suggests that the asymptotic approximation gives a

reasonable value for the significance, it is necessary to gauge the impact of the sinusoidal
behaviour in the q0 distribution on the significance. Figure 9.3 shows Zpseudo

0 as a function
of Zasymp

0 (left) as well as the ratio of Zasymp
0 to Zpseudo

0 as a function of Zasymp
0 (right).

For each background-only pseudo-experiment, Zasymp
0 = √q0 is calculated. The oscillatory

behaviour in the pseudo-experiments is within 0.1 unit of Z0 away from Zasymp
0 . This

implies that the asymptotic approximation predicts the significance for the background-
only pseudo-experiments to within 0.1 units of Z0 of the pseudo-experiment result. As the
size of the dataset increases, the difference between the pseudo-experiments and asymptotic
approximation are expected to become smaller and so it is valid to use the asymptotic
approximation for the Run-II analysis.
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Figure 9.4 shows the µ distribution for signal + background pseudo-experiments. The
median value of µ agrees with the SM expectation of µ = 1. Like in the q0 distribution, the
distinct peaks in µ correspond to different numbers of events in the most sensitive OBDT

bin.
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Figure 9.4: Distribution of µ for signal + background pseudo-experiments (left). The red
vertical lines corresponds to the median with the green lines corresponding to 1 σ deviations
away from the median. The plot on the right is binned in the number of events in the most
sensitive OBDT bin.

Figure 9.5 shows the background-only q0 distribution (left) and the signal + background
µ distribution (right) with the 2015 ATLAS data. Even though the observed value for q0 is
significantly above the expected value, the observed µ is still within one standard deviation
from the median value.
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Chapter 10

Results

The signal region has been optimized to have a high signal to background ratio. This region
is used to compare the data yields to the background-only predictions, and to the signal
and background predictions. Any statistically significant excess over the background-only
prediction in the signal region is interpreted as VBF H → WW ∗ → `ν`ν production. A
summary of Higgs boson measurements at the LHC is also presented in this chapter.

10.1 Event Yields

Tables 10.1 and 10.2 summarize the expected yields and those observed in data in the signal
region for the Run-I and Run-II analyses respectively.

In the Run-I DF analysis, 57 data events are observed in the signal region while the
expected background yield is 52 events. The Run-I DF OBDT distribution is shown in
figure 10.1. There is an excess with respect to the background-only yields in the two most
sensitive bins of OBDT.

For the Run-I DF OBDT distribution in figure 10.2, the signal region is divided into six
bins to show the shape of OBDT.

In the Run-I SF analysis, 73 data events are observed in the entire signal region while
the expected background yield is 58 events. The Run-I SF OBDT distribution is shown in
figure 10.3.

A total of 129 events are observed in data in the Run-II signal region while the background-
only expected yield is 131 events. The Run-II signal region has a larger yield than the Run-I
signal region. Due to the lower total integrated luminosity used in the Run-II result, it was
necessary to extend the signal region to lower OBDT values in order to ensure sufficient
sample sizes in the control regions. Consequently, the first OBDT bin of the Run-II signal
region is less signal-like than the first bin in the Run-I signal region.

The shape of the Run-II OBDT distribution in the signal region is shown in figure 10.4.
The dashed blue line represents the predicted VBF signal scaled up by a factor of 10.
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Run-I DF (eµ/µe)
OBDT Total Total

Data Top WW ggF
Other

Z/γ Fakes
Bin Signal Background V V

Bin 1 4.4± 0.1 42.3± 2.2 37 21.1 6.0 3.0 2.6 4.5 5.1
Bin 2 4.3± 0.1 7.9± 0.9 14 2.6 2.1 1.2 0.8 0.6 0.7
Bin 3 3.1± 0.1 1.5± 0.2 6 0.4 0.5 0.3 0.1 0.2 0.0

Run-I SF (ee/µµ)
OBDT Total Total

Data Top WW ggF
Other

Z/γ Fakes
Bin Signal Background V V

Bin 1 2.3± 0.1 47.8± 5.7 53 13.1 3.5 1.5 0.9 27.8 1.0
Bin 2 2.5± 0.1 8.7± 1.6 14 1.7 1.1 0.6 0.3 4.8 0.2
Bin 3 1.7± 0.1 1.3± 0.3 6 0.3 0.3 0.2 0.0 0.6 0.0

Table 10.1: Yields in bins of OBDT in the Run-I DF and SF analyses. The yields for
top, W+jets, and Z/γ are derived from their respective control regions. The uncertainties
included for the total yields are statistical only.

Run-II DF (eµ/µe)
OBDT Total Total

Data Top WW ggF
Other

Z/γ Fakes
Bin Signal Background V V

Bin 1 6.0± 0.2 127.6± 8.0 120 44.9 18.2 8.0 6.7 23.8 25.9
Bin 2 3.1± 0.1 3.6± 0.7 9 0.9 0.4 0.7 0.2 0.1 1.3

Table 10.2: Yields in bins of OBDT in the Run-II DF analysis. The yields for top, W+jets,
and Z/γ are derived from their respective control regions. The uncertainties included for
the total yields are statistical only.
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Figure 10.1: OBDT distribution for different flavour in the Run-I signal region [16]. The
uncertainty bands shown represent the statistical and systematic uncertainties on the total
signal and background yields.
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Figure 10.5 shows the ATLAS event display for a candidate VBF H → WW ∗ → `ν`ν

event taken from the 13 TeV Run-II data. As expected, it is characterized by two forward jets
and two charged central leptons with a small opening angle balanced by missing transverse
energy from the neutrinos. OBDT for this particular event is 0.90 implying that it originates
from the second bin of OBDT in the Run-II analysis.

Figure 10.5: Event display for a candidate Run-II VBF H →WW ∗ → eνµν event [52].

Figure 10.6 shows the distributions of the BDT training variables in the Run-I signal
region including both DF and SF events. Even though it may be challenging to deduce
the presence of a signal in any of these individual distributions, the strength of the BDT is
in its ability to combine their discrimination power into a single variable. This is further
illustrated in figure 10.7 which shows the distributions for m``, ∆φ``, ∆yjj , mjj , mT , and
the OBDT distribution in the highest two bins of OBDT. In general, the excess is observed
in regions where the VBF H → WW ∗ process is expected, namely, at low m``, low ∆φ``,
high ∆yjj , and high mjj .
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Figure 10.6: Run-I BDT training variable distributions in the signal region including both
different flavour and same flavour events [16]. The uncertainty bands shown represent the
statistical and systematic uncertainties on the total signal and background yields.
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Figure 10.7: Run-I distributions for m``, ∆φ``, ∆yjj , mjj , mT , and the BDT in the two
highest bins of OBDT including different flavour and same flavour events [16]. The uncer-
tainty bands shown represent the statistical and systematic uncertainties on the total signal
and background yields.
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10.2 Statistical Analysis

The data is analyzed using the statistical framework described in chapter 9.

10.2.1 Run-I Statistical Analysis for the VBF Analysis

The mass of the Higgs boson assumed in the Run-I likelihood minimization is mH = 125.36
GeV which is the measured value in Run-I from the H → ZZ∗ and H → γγ analyses. As
previously described, the likelihood minimization is performed for the ggF and VBF analyses
simultaneously. Figure 10.8 shows value of the test statistic as a function of µ̂VBF/µ̂ggF in
the likelihood scan. The right axis includes the Gaussian significance which is calculated
using equation 9.28.
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Figure 10.8: Scan of the likelihood as a function of µ̂VBF/µ̂ggF [16]. The green, yellow,
and cyan shaded areas correspond to the 1, 2, and 3 standard deviations away from the
minimum.

In order to test for the presence of a signal, the compatibility of the data with the
background-only hypothesis, µ̂VBF = 0, is tested. This is equivalent to testing µ̂VBF

µ̂ggF
= 0.

The resulting significance is:

Zobs
0 = 3.2 , Zexp

0 = 2.7 (10.1)

where Zobs
0 is the observed significance and Zexp

0 is the expected significance assuming the
SM signal strength for the VBF Higgs boson production. Zexp

0 is calculated from qexp0 using
equation 9.28. The objective of an analysis is to maximize this quantity as much as possible
as Zexp

0 effectively quantifies the sensitivity of the analysis. This result constitutes the first
evidence for the H →WW ∗ → `ν`ν process.
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As described in detail in reference [16], a selection based analysis (also referred to as a
“cut-based” analysis) was also performed using the same dataset. A signal region is defined
using a sequence of selection requirements on a subset of the kinematic variables used in
the BDT analysis. Using mT as discriminant, the significance of this cross-check analysis
is:

Zobs
0 = 3.0 , Zexp

0 = 2.1 (10.2)

The BDT offers nearly 30% improvement in the expected significance over the selection
based analysis.

Next, the minimum value of the test statistic in figure 10.8 is used to determine the best
fit value of the ratio of the VBF to ggF Higgs boson signal strength:

µ̂VBF
µ̂ggF

= 1.3+0.6
−0.5 (stat.) +0.5

−0.3 (syst.) = 1.3+0.8
−0.5 (10.3)

The signal strengths µ̂VBF and µ̂ggF are consistent with each-other within their uncertainties.
Figure 10.9 shows the likelihood plotted in two dimensions as a function of µ̂VBF and

µ̂ggF. The measured values for µ̂VBF and µ̂ggF are extracted from this plot:

µ̂VBF = 1.3± 0.4 (stat.) +0.3
−0.2 (syst.) = 1.3± 0.5 (10.4)

µ̂ggF = 1.0± 0.2 (stat.) ± 0.2 (syst.) = 1.0± 0.3 (10.5)

Note that the uncertainty on µ̂ for the VBF analysis is driven by statistical uncertainties.
Collecting additional data is vital to improving the sensitivity to this production mode.

Next, given the values of µ̂VBF and µ̂ggF, it is possible to test the SM predictions for the
coupling of the Higgs boson to fermions and to bosons [17]. As mentioned in chapter 1.4, κV
and κF , correspond to the bosonic and fermionic couplings of the Higgs boson with respect
to SM expectations. The likelihood is shown as a function of κV and κF in figure 10.10.
The values extracted from the minimization are:

κV = 1.04+0.07
−0.08 (stat.) +0.07

−0.08 (syst.) = 1.04± 0.11 (10.6)

κF = 0.9± 0.2 (stat.) +0.2
−0.1 (syst.) = 0.9+0.3

−0.2 (10.7)

The observed values for κV and κF are in good agreement with the SM expectations.
Finally, it is possible to calculate σ · BH→WW ∗ , where σ is the Higgs boson production

cross section and BH→WW ∗ is the branching ratio to H → WW ∗. For this measurement,
the theoretical uncertainties related to the total production yield are removed from the
likelihood minimization as they do not apply in this measurement. The value for σ·BH→WW ∗

is calculated as the product of µ and the SM prediction of the Higgs boson production cross
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section that is used in the analysis. The measured cross sections are:

σVBF · BH→WW ∗ = 0.5± 0.2 (stat.) ± 0.1 (syst.) pb = 0.5± 0.2 pb (10.8)

σggF · BH→WW ∗ = 4.6± 0.9 (stat.) +0.8
−0.7 (syst.) pb = 4.6+1.2

−1.1 pb (10.9)

These measurements agree with the predicted values from theory for Run-I:

σVBF · BH→WW ∗ = 0.35± 0.02 pb (10.10)

σggF · BH→WW ∗ = 3.3± 0.4 pb (10.11)

Table 10.3 summarizes the 10 most important nuisance parameters in the likelihood
minimization ordered by their impact on the uncertainty on µ̂. The uncertainties are derived
by removing the ggF analysis from the minimization and only considering the VBF analysis.
The total uncertainty is dominated by the statistical uncertainty on the data which implies
that the analysis will benefit from more data.

The leading source of systematic uncertainty originates from the η modelling for jets.
This uncertainty arises from the extrapolation of the jet energy scale from the central
region of the detector to the forward regions where jets from VBF Higgs boson events are
expected. The uncertainty from the parton showering and underlying event in VBF Higgs
boson production has approximately the same impact on µ. OBDT is particularly sensitive
to this uncertainty since one of the training variables, psumT , relies on the modelling of low
pT jet activity. This is especially relevant for VBF Higgs boson production since the two
quarks radiating the weak vector bosons typically have large momentum, increasing the
probability of them emitting gluons.

Figures 10.11 and 10.12 show the post-fit OBDT distributions in the signal region for DF
and SF respectively. Post-fit plots are created by scaling all nuisance parameters to their
best fit values from the likelihood minimization.

10.2.2 Overview of the Run-I ggF Analysis

Since the statistical analysis for the ggF and VBF analyses is done simultaneously, a brief
overview of the ggF analysis is given here. A complete description can be found in refer-
ence [16].

As shown in the schematic overview in figure 4.1, the ggF analysis considers candidate
events with 0 jets, 1 jet, and ≥ 2 jets in the final state. Since this Higgs boson production
mode is not expected to have jets at leading order, the 0 jet category offers the highest
sensitivity. As the selected number of jets is increased, the sensitivity decreases.

Unlike in the VBF analysis, the jets from ggF Higgs boson candidate events are not
expected to have a distinct signature in the forward regions of the detector. The bulk of the
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Source ∆µ+σ
VBF/µVBF ∆µ−σVBF/µVBF

Statistical +0.43 -0.39
Jet energy scale η model +0.12 -0.08

VBF PS/UE +0.12 -0.07
µggF +0.09 -0.08

Branching ratio of H →WW ∗ +0.09 -0.05
Non-closure of Z → ee/µµ estimate +0.06 -0.05

Luminosity +0.06 -0.04
WW QCD scale +0.05 -0.05

α extrapolation parameter for top +0.05 -0.05
VBF matrix element model +0.07 -0.04
Total statistical uncertainty +0.43 -0.39
Total systematic uncertainty +0.31 -0.22

Total uncertainty +0.53 -0.45

Table 10.3: The 10 most important nuisance parameters in the Run-I analysis ranked by
their impact on the uncertainty on µ̂. This ranking was derived by only considering the
VBF analysis and leaving out the ggF analysis.
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Figure 10.11: Post-fit OBDT distribution for different flavour in the Run-I signal region [16].
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Figure 10.12: Post-fit OBDT distribution for same flavour in the Run-I signal region [16].
The uncertainty bands shown represent the statistical and systematic uncertainties on the
total signal and background yields.

discrimination power of signal from background comes from the lepton kinematics and the
missing transverse energy. Since the number of variables with significant separation power
is smaller in the ggF analysis, a multivariate discriminant will not provide the same gain
over a selection based analysis as in the VBF analysis. Consequently, the ggF analysis does
not use a multivariate analysis technique like the BDT used in the VBF analysis.

The dominant background in the ggF analysis is WW . It is modelled using MC with
data driven corrections from a control region. Additional control regions are defined for the
Drell-Yan, diboson (other than WW ), top quark, and W+jet backgrounds. The remaining
backgrounds are estimated purely from MC predictions.

The discriminating variable used is the transverse mass, mT . In the statistical analysis,
it is binned in dilepton mass (m``) and subleading lepton pT (p`2T ). Figure 10.13 shows the
different flavourmT distributions used in the statistical analysis for the 0 and 1 jet channels.

Figure 10.14 shows the combined mT distribution for all candidate events with less than
2 jets. The right plot shows the mT distribution in data with the background prediction
subtracted. The superimposed red histogram corresponds to the mT distribution for ggF
as expected from MC.

Assuming a mass of 125.36 GeV, the significance of measuring ggF Higgs boson produc-
tion for Run-I is:

Zobs
0 = 6.1 , Zexp

0 = 5.8 (10.12)

This is the first standalone observation of the H → WW ∗ → `ν`ν process at the ATLAS
experiment.
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Figure 10.14: The plot on the left shows the combined post-fit mT distribution for the ggF
analysis for all channels with less than 2 jets [16]. The plot on the right shows the expected
mT distribution in the data after all backgrounds have been subtracted. The red histogram
corresponds to the mT distribution for ggF as predicted by the MC. The uncertainty bands
shown represent the statistical and systematic uncertainties on the total background yields.
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10.2.3 Run-II Statistical Analysis for the VBF Analysis

Assuming a mass of 125 GeV, the significance of measuring VBF Higgs boson production
for Run-II is:

Zobs
0 = 1.9 , Zexp

0 = 1.2 (10.13)

Note that even though the Run-II result corroborates the Run-I result, it does not signifi-
cantly add to its sensitivity. Consequently, a statistical combination of the two results is not
performed at this time. However, as the Run-II sensitivity becomes comparable to that of
Run-I with the accumulation of more data, a combination of the Run-I and Run-II results
may be in order to establish the first observation (Z0 = 5) of VBF H → WW ∗ → `ν`ν at
the ATLAS experiment.

The parameter of interest being measured in Run-II is µVBF. The best fit value for the
signal strength is:

µ̂VBF = 1.7+0.8
−0.8 (stat.) +0.6

−0.4 (syst.) = 1.7+1.1
−0.9 (10.14)

Similar to the Run-I result, the measured signal strength is larger than the SM expectation,
but consistent within uncertainties.

The measured value for the total production cross section is:

σVBF · BH→WW ∗ = 1.4+0.8
−0.6 (stat.) +0.5

−0.4 (syst.) pb = 1.4+0.9
−0.7 pb (10.15)

This measurement agrees with the predicted theoretical value for Run-II:

σVBF · BH→WW ∗ = 0.81± 0.02 pb (10.16)

The 10 most important nuisance parameters in the likelihood minimization are summa-
rized in table 10.4. As before, they are ordered by their impact on the uncertainty of µ̂.
Again the uncertainty is driven by the statistical uncertainty on the data. The second most
important systematic uncertainty originates from the uncertainty on the fake factor in the
W+jets estimate. The size of this systematic uncertainty is also largely driven by a lack of
statistics in the region where this uncertainty is evaluated.

The Run-II post-fit OBDT training variable distributions are shown in figure 10.15. Fi-
nally, figure 10.16 shows a post-fit summary of the Run-II analysis. It includes the two
controls regions, as well as the two OBDT bins in the signal region.

10.3 Status of Higgs Boson Measurements

The original ATLAS publication on the discovery of a new particle consistent with the
SM Higgs boson in 2012 was based on 4.8 fb−1 of 7 TeV data and 5.8 fb−1 of 8 TeV
data. The quoted significance for ggF Higgs boson production of 5.9 standard deviations is
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Source ∆µ+σ
VBF/µVBF ∆µ−σVBF/µVBF

Statistical +0.57 -0.47
W+jet factor fake (sample composition) +0.18 -0.15

MC statistical +0.15 -0.15
VBF matrix element model +0.14 -0.05
WW matrix element model +0.11 -0.07
ggF QCD scale (Njet ≥ 3) +0.08 -0.07

Jet energy resolution +0.08 -0.07
b-tagging +0.08 -0.06
Pile-up +0.08 -0.06

ggF QCD scale (Njet ≥ 2) +0.06 -0.06
Total statistical uncertainty +0.57 -0.47
Total systematic uncertainty +0.33 -0.26

Total uncertainty +0.66 -0.54

Table 10.4: The 10 most important nuisance parameters in the Run-II analysis ranked by
their impact on the uncertainty on µ̂.
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driven by the three most sensitive search channels, H → γγ, H → ZZ∗, and H → WW ∗.
More recently in 2016, ATLAS published a paper combining the H → γγ, H → ZZ∗,
H → WW ∗, H → Zγ, H → bb̄, H → ττ and H → µµ Higgs boson results using the
complete Run-I dataset from 2011-2012. With the additional data and improved analysis
techniques, the ATLAS experiment sees evidence for VBF Higgs boson production with
an observed significance of 4.3σ (expected significance is 3.8σ). When the Higgs boson
search results from ATLAS and CMS are combined [102], the observed significance for VBF
is 5.4σ (expected significance is 4.6σ) which corresponds to the first observation of VBF
Higgs boson production.

The ATLAS combination of the above mentioned channels is also used to determine
the signal strength. Figure 10.17 summarizes the signal strength measurements for each of
these analyses. The combined signal strength of all these measurements is µ = 1.18+0.15

−0.14,
where the uncertainty includes both statistical and systematic uncertainties. This agrees
with the SM predictions with a p-value of 0.18 and so does not provide obvious hints of new
physics impacting the Higgs boson cross sections.

For the individual Higgs boson production channels, the ATLAS combination yields
µggF = 1.23+0.23

−0.20 and µVBF = 1.23 ± 0.32 which agrees with the SM expectations. Fig-
ure 10.18 summarizes the signal strength measurements for the Higgs boson coupling to
fermions (ggF and ttH) and the Higgs boson coupling to the vector bosons (VBF and
V H) assuming mH = 125.36 GeV. The relative contributions between ggF and ttH and
between VBF and V H are predicted from the SM. The black star corresponds to the SM
prediction, the colored +’s correspond to the best fit values of various Higgs boson search
channels, while the solid and dotted contours correspond to the 68% and 95% confidence
level intervals.

In order to test if the newly observed particle is consistent with the SM Higgs boson,
efforts are also made to measure its properties. Using the Run-I ATLAS data, the combi-
nation of the H → γγ, H → ZZ∗ → ```` , and H →WW ∗ → `ν`ν analyses show a strong
preference for a spin-0 Higgs boson with positive parity [104] [105] which agrees with the
SM expectations. The spin-0 nature is especially important to the H → WW ∗ → `ν`ν

analysis as described in section 1.4.
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Figure 10.17: Summary of the Higgs boson signal strength measurements at the ATLAS
experiment [103]. The uncertainties shown include both statistical and systematic uncer-
tainties.
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Figure 10.18: Summary of the signal strength measurements at the ATLAS experiment [103]
for the Higgs boson coupling to bosons (y-axis) and fermions (x-axis). The black star
corresponds to the SM predictions, and the plus symbols correspond to the measurements
from 5 different analyses.
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Chapter 11

Conclusions

The discovery of a new particle consistent with the SM Higgs boson was a major break-
through for the particle physics community. Precisely measuring the particle’s properties is
one of the highest priorities of the LHC experiments. A search for the VBF H →WW ∗ →
`ν`ν process using the ATLAS detector has been presented in this thesis. Measuring this
new process adds crucial information about the coupling of the Higgs boson to the weak
vector bosons. Any deviation from the SM predictions would be a sign of new physics
beyond the SM.

Measuring VBF Higgs boson production is challenging given its cross section is an order
of magnitude smaller than that of ggF. In addition, the H → WW ∗ → `ν`ν channel
is complicated by the neutrinos in the final state which are not directly detectable by
the ATLAS detector. There are also several large backgrounds such as top quark pair
production that have a similar signature in the detector as the signal. Consequently, a
multivariate analysis technique based on an eight-variable boosted decision tree (BDT) has
been optimized to search for the VBF H →WW ∗ → `ν`ν process.

Using 20.3 fb−1 of 8 TeV data collected in Run-I, the search resulted in an observed
significance of 3.2σ while the expected significance is 2.7σ. This result constitutes the first
evidence for the VBF H → WW ∗ → `ν`ν process. The signal strength is measured to be
µVBF = 1.3± 0.5.

Using 5.8 fb−1 of 13 TeV data collected in Run-II, the observed significance is 1.9σ
while the expected significance is 1.2σ. The signal strength is µVBF = 1.7+1.1

−0.9. Note that
the Run-II results quoted here are based on a small fraction of the total expected Run-II
dataset.

At the time of writing, the significance for the VBF H → WW ∗ → `ν`ν process at
ATLAS does not reach the 5σ threshold required to establish a discovery of this process
by a single experiment. As more data is collected and analyzed, this objective will become
more and more reachable particularly since the current analyses are limited by the available
data sample sizes.
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The VBF H →WW ∗ → `ν`ν process is a powerful channel to measure κV , the coupling
strength of the Higgs boson to the weak vector bosons. Using the Run-I data, the measured
κV from the VBF and ggF analyses is consistent with the SM predictions within the mea-
surement uncertainties. Since the statistical and systematic uncertainties on µ are similar
in size in the Run-I ggF analysis, the systematic uncertainties will dominate as more data
is collected. In contrast, the Run-I VBF analysis is dominated by statistical uncertainties.
Consequently, the VBF analysis will be increasingly more important in the determination
of κV as more data is collected, particularly with its quartic relationship to µV BFWW .

There are a number of ways in which the VBF H → WW ∗ → `ν`ν analysis can be
improved. As mentioned above, the sensitivity of both the Run-I and Run-II analyses is
limited by the available data sample sizes. Consequently, collecting and analyzing more data
is vital to the success of this analysis. As the data set grows, the BDT can be reoptimized
to define new regions of phase space with larger signal to background ratios. In parallel,
the MC statistics will also need to be increased to sufficiently populate these regions. VBF-
filtered samples have been developed and provide a promising method to generate MC
samples with low statistical uncertainty to estimate the backgrounds, evaluate systematic
uncertainties, and train the BDT.

Run-II data taking at the LHC is still in progress and is expected to deliver a total
integrated luminosity of 150 fb−1 by the end of 2018. A series of upgrades are planned
for the LHC which will increase the instantaneous luminosity. The ATLAS detector will
be upgraded in parallel, allowing it to collect data more quickly and perform more precise
measurements of the Higgs boson. The Phase 1 upgrades are scheduled to commence after
the conclusion of Run-II and will allow the LHC to deliver over 300 fb−1 by the end of
2023. The Phase 2 upgrades will mark the beginning of the High Luminosity LHC (HL-
LHC) which is expected to deliver 3,000 fb−1 sometime around 2035. An average of 200
inelastic proton-proton collisions are expected per bunch crossing at the HL-LHC. This will
unfortunately lead to more jets from pile-up, an effect that will degrade the purity of the
VBF H →WW ∗ → `ν`ν signal region. The proposed new ATLAS Inner Tracker (ITk) will
have an extended rapidity coverage which will be instrumental in rejecting jets from pile-
up. The large expected dataset at the HL-LHC will make it possible to perform precision
measurements of the VBF H →WW ∗ → `ν`ν process.
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Appendix A

Author Contributions

ATLAS analyses are typically performed in collaboration with many people. This section
summarizes some of the areas where the author has made significant contributions.

• Development and optimization of the multivariate VBF H → WW ∗ → `ν`ν analysis
using a boosted decision tree (BDT) as described in chapter 6. This includes choosing
the selection requirements, BDT training variables and the BDT training parameters
that maximize the significance of the analysis.

• Validation of the analysis choices by checking the modelling of kinematic variables and
their correlations in various regions of phase space. In addition, the BDT discriminant
was also validated. Most of the plots of kinematic variables shown in chapters 6 and 7
were prepared by the author.

• Development and study of methods for estimating the Drell-Yan background in the
SF analysis.

• Experimental validation and performance measure of substituting EmissT with p missT

in the BDT training variables.

• Preparation of configuration files for the generation of Monte Carlo samples for both
Run-I and Run-II (see chapter 5). In Run-II, the author contributed to the develop-
ment of a filter that specifically populates the region of phase space corresponding to
the VBF H →WW ∗ → `ν`ν signal region as described in section 5.2.

• Cross check of the significance calculation using a profile likelihood-ratio test statis-
tic. In Run-II the author validated the asymptotic approximation using pseudo-
experiments as described in section 9.3. Many of the VBF signal region plots shown
in Chapter 10 were prepared by the author.

• Investigate sources of mismodelling in the Monte Carlo simulation and derive the
corresponding systematic uncertainties. Considerable time was spent in understanding
the mismodelling of tt̄ observed in Run-I and a systematic uncertainty was calculated
to account for this discrepancy as described in section 8.1.1.

• Study effects of defects in the detector on the analysis (such as the effect of inactive
calorimeter cells).
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• Investigate orthogonality of the VBF H →WW ∗ → `ν`ν analysis with other analyses
such as the H → ττ analysis.

• Preparation of the ATLAS event display in figure 10.5.

• Before the commencement of the Run-II analysis, the author performed sensitivity
studies in order to determine the best analysis strategy for Run-II.

In addition, the author also contributed to other efforts outside of the H →WW ∗ → `ν`ν
group:

• Data Quality shifts, both in the ATLAS control room and offline.

• Calculation of trigger efficiency correction factors for high pT muons.
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