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Abstract

Analysis of vascular and airway trees of circulatory and respiratory systems is important for
a wide range of clinical applications. Automatic segmentation of these tree-like structures
from 3D image data remains challenging due to complex branching patterns, geometrical
diversity, and pathology. Existing automated techniques are sensitive to parameters set-
ting, may leak into nearby structures, or miss true bifurcating branches; while interactive
methods for segmenting vascular trees are hard to design and use, making them impractical
to extend to 3D and to vascular trees with many branches (e.g., tens or hundreds). We pro-
pose SwifTree, an interactive software to facilitate this tree extraction task while exploring
crowdsourcing and gamification. Our experiments demonstrate that: (i) aggregating the
results of multiple SwifTree crowdsourced sessions can achieve more accurate segmentation;
(ii) using the proposed game-mode can reduce time needed to achieve a pre-set tree segmen-
tation accuracy; and (iii) SwifTree outperforms automatic segmentation methods especially
with respect to noise robustness.
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Chapter 1

Introduction

Analysis of anatomical branching trees in the human body (i.e., vascular and airway trees
of circulatory and respiratory systems) is important for a wide range of applications includ-
ing understanding normal and pathological anatomy and physiology, clinical diagnoses, and
disease research such as planning therapy, tracking diseases, fluid simulation studies, and
discovering biomarkers, etc. [31, 4, 40, 57, 49, 63, 58, 38, 20]. These analyses in turn require
extracting or delineating (also known as segmenting) the trees from medical images such as
magnetic resonance imaging (MRI) or computed tomography (CT). There is also a growing
need for large numbers of segmented 3D imaging datasets for training machine learning
systems and for validating newly proposed methods but there is a scarcity of segmented 3D
trees.
There are numerous methods for segmenting tree-like structures from 2D and 3D medical im-
ages. These methods may be classified into different categories depending on the underlying
segmentation approach, for example, region growing and active contours [44, 22, 25, 67, 59];
trackers [23, 66, 9, 51, 12, 36, 37]; minimal path [69, 61, 8, 41, 32]; machine learning [43,
42, 71, 72, 70]; graph-based methods [7, 6, 30, 53, 44] and others [55, 73, 3, 21, 66, 23, 26].
For more in-depth reviews of related works, the reader is referred to the following sur-
veys [64, 34, 39, 15, 56, 35, 52]. We note that current fully automatic tree segmentation
methods are not yet completely accurate and reliable. It is therefore necessary to have some
level of human interaction or intervention to guarantee acceptable segmentation results. To
address the need for user-interaction when segmenting anatomical tube-like and tree struc-
tures from images, several semi-automatic or interactive tree segmentation methods have
been proposed. However, these methods are not without limitations as we describe below.

Vickerman et al. proposed VESGEN 2D [65], which quantifies major vessel parameters
within 2D vascular trees, networks, and tree-network composites from 2D binary images
without involving too much user input. However, VESGEN requires a pre-segmented (bi-
nary) image and does not support 3D.
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Live-vessel [54, 17] is an interactive tool that incorporates multi-scale vesselness filter-
ing [24] into the seminal 2D live-wire [5, 27] framework to simultaneously compute optimal
medial axes (center-lines) and boundaries of vasculature. It also incorporates color image
gradients and quaternion curvature in the segmentation process [60]. However, Live-Vessel
is designed for 2D only and it is nontrivial how the user-interaction and visualization may
be implemented in a 3D extension.

Heng et al. [28] discussed a 3D intelligent scissors system, in which a user uses a 3D (6
degrees-of-freedom) stylus to specify the endpoints of a branch then a Dijkstra’s algorithm is
used to find the optimal path between the endpoints. However, it is not always guaranteed
that a branch is correctly delineated if the user only provides end points. Also, a 3D stylus
is not commonly available for users and its use may not be trivial for controlling the view
in 3D space.

Deschamps et al. [16] presented a path tracking method, given only one or two end seed
points and the 3D image as inputs, to build a vessel path. The technique makes use of the
user-provided seeds points to fit a minimal path. However, it is not always ensured that a
branch is correctly described if the user only provides start and finish points for the minimal
path, particularly for a noisy and complicated data structure. The user-desired seed points
are not easy to find and select using three orthogonal views provided in the tool.

Abeysinghe et al. [1] proposed Gorgon, an interactive tool for identifying skeletons in
3D images. By supplying user inputs, such as simple mouse clicking and scribbling on
an isosurface rendered from image volume, the tool guides the creation of skeletons. The
method formulates the task of drawing 3D centerlines given 2D user inputs as a constrained
optimization problem. This problem is then solved on a discrete graph using a shortest-
path algorithm. However, the resulting skeletons are not always connected and smooth.
Isosurface rendering could be problematic for data sets with a low signal-to-noise ratio.
When the branches overlap, it is difficult for the user to select the desired points by 2D
mouse clicking and scribbling.

Diepenbrock et al. [18] proposed a workflow that allows the user to interactively generate
vessel segmentations from 3D images. They present the user with multiple linked axis-
aligned, orthogonal views and different quality metrics (such as centerline uncertainty).
These aids allow the user to assess different aspects of the segmentation and modify it
accordingly, e.g., by editing branches, vessel walls, and centerlines. However, the view
angle can not be changed directly from this orthogonal slice view, which may limit the
user’s ability to interrogate the data. Further, the use of mouse clicks, on a 2D screen,
makes navigating the 3D scene unintuitive.

Yu et al. [68] proposed a Tree Analyzer system that uses several viewing and interactive
tools to examine and correct problems in trees extracted via an automatic tree extraction
“Wizard”. The navigation and editing requires the user to apply different manipulators
(e.g., 3D site locators, pickers, 3D cursor, 3D two-view site locator, and intersection center
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locator). However, we found these unintuitive to control and require extensive training.
Even though the Tree Analyzer provides a controllable camera view, the user still needs to
sketch in 3D space, a challenge for mouse-based interaction. Marks et al. [50] developed Vol-
ume Calculator (VolCal) plugin for the ImageJ (http://imagej.net/Volume_Calculator).
Given a binary (i.e., segmented) image VolCal produces a 3D schematic representation of
the tree that can be directly manipulated by the user via mouse clicking. In addition to
requiring a segmented image, a challenging task by itself, VolCal also relies on user mouse
clicks as input, which are difficult for 3D data.

As described above, airway and vessel segmentation from 3D data remain a challenging
task due to complex branching topology, structural (geometrical) diversity and possible
pathology. Existing automated techniques are sensitive to parameters setting, may leak into
nearby structures (e.g., other vasculature), or miss true bifurcating branches. Interactive
methods for segmenting vascular and airway trees in 3D, on the other hand, generally suffer
from unintuitive/complex 3D viewing, navigation, user-input or editing, or may conceal
errors unless the user visits every point along the branch. We argue that without the user
confirming segmentation everywhere along all branches of the tree, suspicion of possible
erroneous segmentation regions remain. Therefore, we set out to develop a tool that allows
the user to intuitively and quickly traverse the anatomical tree in its entirety in a 3D volume.

The objective of Gamification is to transform a mundane task into an immersive and
engaging experience. Gamification has been leveraged in many ways, e.g., improving work
productivity, patient rehabilitation, education and enhancing cognitive skills, etc [14]. A few
works have leveraged gamification for medical image analysis tasks [46, 13, 2, 29]. However,
to the best of our knowledge, gamification has never been applied to tree extraction from
medical images. Even though it may seem that gaming and serious medical applications are
two incompatible domains, we demonstrate otherwise in this work. Crowdsourcing, on the
other hand, provides a possible source of labelled (so called ground truth) data by leveraging
humans’ cognitive abilities and intelligence. Crowdsourcing is increasing in popularity and
target applications, e.g., missing person search, disaster management, astronomy, rehabili-
tation, etc. However, only a few works leveraged crowdsourcing to address medical image
analysis tasks [48, 47, 11] albeit none of these methods targeted tree extraction.
In this thesis, we present SwifTree, a new interactive method for anatomical tree extrac-
tion from 3D medical images that also supports gamification and crowdsourcing. There are
three unique aspects of SwifTree that distinguishes it from related works: (i) The operator
steers their way down the bifurcating tree branches using intuitive controls; (ii) via crowd-
sourcing, SwifTree allows multiple users to collaborate and generate several results that
are then aggregated to produce the final extracted tree; and (iii) to address the mundane
and time-consuming nature delineating many branches, SwifTree resorts to gamification. In
game-mode, the tree extraction is realized via game-play, in which the user (or player) navi-

3

http://imagej.net/Volume_Calculator


gates the 3D volume using game-like controls (e.g., speed-up, turn-left) by “flying” through
branches and identifying bifurcations locations.

To the best of our knowledge, this is the first work to explore gamification and crowd-
sourcing for vascular or airway tree extraction. This work is a first step towards enabling
the collection of large numbers of segmented anatomical trees. Table 1.1 summarizes the
most relevant works.

Table 1.1: Comparison of closest works. The meanings of the column headings are as
follows. Crowd: method leverages crowdsourcing; Game: offers a “game” mode; 3D: han-
dles 3D data; View: provides a view within the 3D volume; Control: controls the viewing
position and angle; Tree: supports extracting branching tree-like structures; Skeleton: ex-
tracts centerline; Hierarchy: generates abstract representation of tree hierarchy. *The tree
hierarchy generated by SwifTree is user-defined.

Work C
ro
w
d

G
am

e

3D V
ie
w

C
on

tr
ol
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ee

Sk
el
et
on

H
ie
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hy

Maier-Hein et al. [48] 3

Chavez-Aragon et al. [10] 3

Donath et al. [19] 3

Maier et al. [47] 3

Sommer et al. [62] 3

Dickie et al. [54] 3 3

Vickerman et al. [65] 3 3 3

Abeysinghe et al. [1] 3 3 3

Yu et al. [68] 3 3 3 3

Marks et al. [50] 3 3 3 3

Edmond et al. [20] 3 3 3 3

Heng et al. [28] 3 3 3 3 3

Diepenbrock et al. [18] 3 3 3 3 3

Proposed SwifTree 3 3 3 3 3 3 3 3*
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Chapter 2

Methods

A high-level overview of our proposed SwifTree can be seen in Figure 2.1. First, a 3D image
selected by the user is loaded into SwifTree. The image is then processed to extract image
features. The features are used to control the properties of glyphs placed in a 3D scene to
provide helpful cues to the user. Multiple views of the 3D scene are presented to the user by
placing virtual cameras at suitable vantage points for visualization (Section 2.1). The user
is provided with controls (e.g., keyboard shortcuts) to facilitate navigating through the tree
branches within the 3D scene (Section 2.2), to travel, virtually, through the tree branches
and construct trees in both a 3D spatial layout and in an abstract graph tree representation.
Several features are added to the basic interactive mode for gamification (Section 2.3). In
the crowdsourcing setup, multiple users’ tree extraction results are aggregated to yield a
single tree and graph (Section 2.4). We implemented SwifTree in different platforms (Section
2.5). The details follow.

2.1 Image pre-processing and glyph visualization

We leverage several types of glyphs to highlight different image features. Figure 2.2 shows a
schematic of the components that comprise a SwifTree 3D scene. Interpolation is performed
to show the basic intensity feature of the image (Section 2.1.1). In addition, we visualize
the tree structure including tree boundary (Section 2.1.2) and tree core (Section 2.1.3). We
also provide a few auxiliary glyphs (Section 2.1.4).

2.1.1 Image intensity display by interpolating an oblique slice

To display the image intensity, a gray-scale oblique slice (also called multi-planar recon-
struction), cutting through the 3D volume, is rendered facing the user’s viewing direction.
The slice representation is common in different 3D image visualization software. This slice is
essentially a planar rectangular polygonal mesh, whose length is proportional to the length
of the diagonal of the image. Tri-linear interpolation based on the intensity values of the 3D
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Figure 2.1: SwifTree work-flow: (1) A 3D image is loaded. (2) The image is processed
to extract interpolated intensity, gradient vectors, and Frangi filter based features. (3)
Different glyphs are used to visualize cues for the user based on the extracted features. (4)
Based on the visualization and controller, interactive tool and game mode are available to
select. (5) One or more users or players are recruited via crowdsourcing and take part in the
tree extraction session. (6) The results generated from all the sessions are collected. (7) The
results are aggregated into one solution. (8) Final single 3D tree and graph representation
is acquired.
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Figure 2.2: Elements of SwifTree 3D scene (see text of Section 2.1)

image volume is performed at the center position [x, y, z] of each of the faces of the mesh
in order to assign an intensity value to that face. Next, we describe how the interpolation
is realized.

First we find the eight corners of a cube that surround the face center [x, y, z]. We
denote the image intensity values at these corners by I000, I100, I010, I110, I001, I101, I011,
and I111. Let xd, yd, and zd be defined as follows:

xd = (x− x0)/(x1 − x0), yd = (y − y0)/(y1 − y0), zd = (z − z0)/(z1 − z0),

where x0 indicates the closet x coordinate of the 3D image volume lattice point (i.e., voxel
centre) to x from below, i.e., x0 ≤ x, and similarly x1 is the closest x coordinate to x from
above, i.e., x0 ≥ x. y0, y1, z0 and z1 are defined in a similar way.

Next, we perform linear interpolation between I000 and I100, I001 and I101, I011 and I111,
I010 and I110. We interpolate along x (imagine we are pushing the front face of the cube
to the back), so we have: I00 = I000(1 − xd) + I100xd, I01 = I001(1 − xd) + I[x1, y0, z1]xd,
I10 = I010(1−xd) + I[x1, y1, z0]xd, I11 = I011(1−xd) + I[x1, y1, z1]xd, where I000 means the
intensity value of (x0, y0, z0).

Then we do interpolation between I00 and I10, I01 and I11. We interpolate these values
(along y, as we were pushing the top edge to the bottom), so we have: I0 = I00(1−yd)+I10yd,
I1 = I01(1− yd) + I11yd.

Finally, we calculate the value Ic via linear interpolation of I0 and I1. We interpolate
these values along z (walking through a line): Ic = I0(1−zd)+I1zd. This gives us a linearly
predicted value for the point. The above operations can be visualized in Figure 2.3

7



Figure 2.3: Interpolation

To display the interpolated intensity, we consider a mapping in general:

P = aF b × PC , (2.1)

where P is a mapped value of a certain property, a and b are scalars controlling the linear and
nonlinear mappings respectively, F represents a certain feature, PC is a constant base value
of the particular property. We use Equation 2.1 to map the interpolated image intensity to
a gray color: cs = aIbc × [255, 255, 255], where cs is the mapped color, Ic is the interpolated
intensity and [255, 255, 255] denotes the base value of the property as RGB (to make cs
a gray scale color). The mapped gray scale color cs is applied as the texture onto the
corresponding mesh face. The slice would depict the cross-section of a branch as a single
bright disk. As the user moves towards a bifurcation, the disk gradually splits into two,
one for each child branch. A simple chart showing this cross section splitting pattern can
be seen in Figure 2.4. In addition to the intensity based slice, we provide other two types
of glyphs to emphasize two key image features to augment the visualization.

2.1.2 Tree boundary glyphs by gradient calculation

We also render 2D polygonal gradient glyphs based on the 3D image intensity gradient to
highlight an estimate of the surface boundary surrounding the tree branches. The size and
opacity of the polygons are proportional to the gradient magnitude while the normal vector
for the polygon points in the gradient direction. We first calculate the gradient vector field:

∇I =
[
∂I
∂x ,

∂I
∂y ,

∂I
∂z

]
= [Ix, Iy, Iz], (2.2)
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Figure 2.4: Oblique slices through the 3D volume depicting the cross sectional view of a
bifurcation (i.e., as the parent branch splits into two child branches)
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with Ix = I(x+ ∆x, y, z)− I(x−∆x, y, z)
2 ,

where ∇I is the gradient of the intensity, ∂I
∂x = Ix is the gradient of intensity along x,

I(x, y, z) is the intensity at the location (x, y, z), ∆x is the difference between x and the
closest point along the x−axis. We examine both the magnitude and direction of the image
gradient ∇I at each voxel and use them to control the appearance of the tree boundary
glyph. We first derive two vectors:n1 = [Iy,−Ix, 0];

n2 = ∇I × n1 =
[
−Iz · Ix,−Iy · Iz, I2

x + I2
y

]
,

(2.3)

where n1 and n2 are two vectors perpendicular to each other and to the gradient direction
∇I. At each voxel, we visualize the tree boundary glyph as a circular disc. The radius of
the disc is proportional to the gradient magnitude at this voxel. The face normal of the
disc is set to be the gradient direction ∇I/||∇I||. The circular disc is approximated by a
polygon with vertices set in the 2D space spanned by n1 = n1/||n1|| and n2 = n2/||n2||:

vi = n1 cos(2π/i) + n2 sin(2π/i), (2.4)

where vi is the location of the ith vertex of the polygon (Figure 2.5).

Figure 2.5: The polygon generated according to the gradient

To make the size of the polygon proportional to the gradient magnitude, we specify
Equation 2.1 such that vilocal = a||∇I(x, y, z)||b× vi. Then we make the polygon at location
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[x, y, z]:
viglobal(x, y, z) = vilocal + [x, y, z], (2.5)

where viglobal(x, y, z) is the coordinate of ith vertex of a polygon whose center is located
at (x, y, z). The color and the opacity of the polygon are also related to the magnitude
of the gradient ||∇I|| at each voxel. We re-use Equation 2.1 such that the color ca =
a||∇I(x, y, z)||b × [255, 0, 0], and the opacity of the polygon can be calculated similarly
using Equation 2.1 with αa = a||∇I(x, y, z)||b. The mapped color and opacity value are
used as texture applied to the polygons.

2.1.3 Tree core glyphs by vesselness filtering

To highlight the voxels in the interior of tree branches, we use 3D tree-core glyphs, whose
size and opacity are proportional to the tubularness response as calculated using the Frangi
filter [24]:

IV (s) =

0;

(1− exp(−R2
A

2α2 ))exp(−R2
B

2β2 )(1− exp(− S2

2c2 )),
(2.6)

where IV (s) is the vesselness scalar field obtained by the Frangi filter; exp is the exponential
function; RA differentiates between plate- and line-like structures in the image, RB measures
deviation from blob-like structures, and S emphasizes areas of high contrast. α, β and c

are scalars that control the sensitivity of the filter to the measures RA, RB and S.
A 3D image is acquired with each voxel storing the vesselness value IV (s). We visualize

the tree core glyphs as a diamond shaped object: At a particular voxel, the vesselness
value IV (s) is mapped to a yellowish color as cc = a||IV (s)||b × [255, 255, 0], opacity as
αc = a||IV (s)||b and size as sc = a||IV (s)||b. The mapped color cc and opacity αc are
applied as the texture onto the diamond object while the mapped size sc is used as the
length of the diamond diagonal.

2.1.4 Auxiliary glyphs

The user interrogates different locations within the volume that are indicated by a 3D
polyhedral cursor. The user’s task is to ‘label’ the voxels that make up the tree by controlling
the cursor position to touch those voxels. ‘On’ and ‘off’ attributes are assigned to voxel to
indicate when an a volxel is within-tree or not. The voxels which are not labeled specifically
are treated as not within-tree automatically. To convey to the user which branches are
already explored, we visualize the path generated from the cursor as a dark green trail along
the traversed voxels. These path are collected to build the tree. Additionally, two virtual
cameras are added to the scene: one camera provides a first-person local view whereas the
other displays a more global bird’s-eye view. The former is attached to the cursor with a
fixed distance of a few voxels away. The view direction of this camera is set to be the vector
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from the position of the cursor to the camera. So the camera will be always ‘looking’ at the
position of the cursor to provide a first-person local perspective view. The latter camera is
located at a fixed position on top of the image volume. The view orientation of this camera
is from the center of the the camera to the image, which is chosen to provide the bird’s eye
view, i.e., a global view of the whole scene.

2.2 Navigating the cursor in 3D space for tree extraction

The aforementioned 3D cursor can be moved and rotated interactively by the user (e.g.,
move-forward, rotate-left, etc.). In this way, the user controls the cursor to label the voxels
in the 3D volume as foreground (tree branches) or background (not tree branches).

2.2.1 Movement

First, the cursor can be moved forward, backward, up, down, left and right. To keep a
fixed distance between the oblique slice (Section 2.1.1), the first-person camera and cursor
(Section 2.1.4), their movement can be applied by an affine transformation as follows:

PH(t+ 1) = αH(t)TH(t)PH(t), (2.7)

with TH(t) =
[
I ~vH(t)
~0 1

]
,

where PH(t + 1) denotes the position of the object (H = a for the cursor, H = c for the
camera and H = s for the slice) at the time instant t + 1, αH(t) is a scalar indicating
the moving stride size of the object at the time t. TH(t) is the translation matrix of the
movement. PH(t) are the coordinates of vertices of the object. In the translation matrix
TH(t), ~vH(t) is a unit vector representing the direction of the movement (forward, backward
or panning according to the cursor’s up vector). I is a 3× 3 identity matrix and ~0 is a 1× 3
vector of zeros. The movement is implemented by the user’s clicking on the keyboard.
Effectively, this equation changes the coordinate of the objects from PH(t) at time t to
the new coordinates PH(t+ 1) at time t+ 1. The tri-linear interpolation (Section 2.1.1) is
performed every time the slice position changes.

2.2.2 Rotation

Additionally, we provide a functionality to rotate the cursor so that it can turn into the
user-desired direction. To keep the relative orientation between the camera, slice and cursor,
their rotation is calculated by:

PH(t+ 1) = Tp(t)R(t)T−1
p (t)PH(t), (2.8)
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with Tp(t) =
[
I ~pC(t)
~0 1

]
,

R(t) =


cos θ + ux(t)2 (1− cos θ) ux(t)uy(t) (1− cos θ)− uz(t) sin θ ux(t)uz(t) (1− cos θ) + uy(t) sin θ

uy(t)ux(t) (1− cos θ) + uz(t) sin θ cos θ + uy(t)2 (1− cos θ) uy(t)uz(t) (1− cos θ)− ux(t) sin θ
uz(t)ux(t) (1− cos θ)− uy(t) sin θ uz(t)uy(t) (1− cos θ) + ux(t) sin θ cos θ + uz(t)2 (1− cos θ)

 ,
where PH(t + 1) is as defined above. Tp(t) is the translation matrix from the origin i.e.,

[0, 0, 0] to the cursor center position ~pC(t) at the moment t. R(t) is the rotation matrix
at time t. In the translation matrix Tp(t), ~pC(t) is the center position of the cursor at the
time t. I and ~0 are as defined above. In the rotation matrix R(t), θ is the angle of the
rotation. u(t) = [ux(t), uy(t), uz(t)] is the axis to rotate around: when u(t) is set to be
u(t) = ±uU (t) to turn left or right, where uU (t) is the cursor’s up vector; when u(t) is set
to be u(t) = ±(vC(t))×uU (t) to turn up or down, where u(t) is the vector perpendicular to
the cursor’s up vector uU (t) and first-person camera viewing direction vC(t). The tri-linear
interpolation (Section 2.1.1) is performed every time the slice orientation changes. A simple
diagram shows the terminology of the rotation in Figure 2.6.

Figure 2.6: Rotation of the cursor, camera and slice
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2.2.3 Handling bifurcations and graph tree generation

Once the user encounters a bifurcation while travelling along a branch, i.e., by observing
the branch cross-section splitting (a simple diagram showing the splitting pattern can be
seen in Figure 2.4), they press a key to push the current state parameters (i.e., location
and camera viewpoints) into a bifurcation stack. After the user traverses one of the child
branches (and optionally the grandchild branches), they pop the state parameters, to move
the cursor and cameras back up the tree hierarchy to a previously-identified bifurcation
location, so that the other child branches can be explored. In particular, after one child
branch of the bifurcation is visited, the cursor is moved back to the bifurcation location
immediately and automatically to visit the other branch. At the same time, a tree structure
(graph tree) is generated as described in Algorithm 1.
An example of a graph tree growing procedure can be seen in Figure 2.7.

Algorithm 1 Tree Generating Algorithm
Input: K(t) {Key pressed at the moment t}
Output: Tree graph T

1: Initialization
2: i← 1, {the current node’s index sets to be 1}
3: T (i).father ← 0, {Node i’s father sets to be Node 0 (root)}
4: T (i).visit← 1, {Node i’s visited time sets to be 1}
5: while t ≤ ttotal do
6: if K(t) == S then
7: T (i+ 1).father ← i, {Node (i+ 1)’s father sets to be Node i}

T (i+ 1).visit← 1, {Node (i+ 1)’s visited time sets to be 1}
i← i+ 1,

8: else if K(t) == R then
9: i← T (i).father, {the current Node i sets to be Node i’s father}

10: while T (i).visit > 1 do
11: i ← T (i).father, {the current Node i sets to be Node i’s father}
12: end while
13: T (i).visit← T (i).visit+ 1, {current Node i’s visited time increases by one}
14: end if
15: end while

Figure 2.7: An example of the graph tree growing progress
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2.2.4 Auxiliary controller

There are several auxiliary controllers to help the user navigate and perform tree extraction.
The first-person’s view may show fewer or more branches. The user can zoom in to focus
their attention on the particular branch they are tracking, or zoom out to take a look at the
neighbouring branches. In addition, the user can choose what they want to see from the
scene including the first-person’s view and bird’s-eye view: all the glyphs (Section 2.1) can
be switched on and off based on the user’s choice. The tree graph shown in the tree graph
window is also growing interactively with the user’s key strokes. The extraction can be
turned on and off by the user to label the voxel as tree and non-tree by travelling through
them. The stride size of movement can also be set according to the user’s preference.

2.3 Interactive and game mode

We call the mode described above a ‘non-game interactive tool’ (or ’interactive’ for short)
mode. We also provided a ‘game’ mode to complete the tree extraction.

In SwifTree’s game mode, a few things are different compared to interactive tool mode:
The cursor is an avatar that possesses a velocity controlled by the player. The player
navigates the 3D volume by ‘flying’ through branches and identifying bifurcation locations
using game-like controls (e.g., speed up, slow down, turn left). Also in game mode, the
tree-core glyphs are set to be collectibles (Figure 2.2), i.e., as the user’s cursor passes over
these glyphs, they are collected and hidden with an accompanying sound effect and a score
increment. The gradient glyphs, on the other hand, are avoidables (Figure 2.2), since they
represent branch boundaries. In SwifTree’s non-game interactive mode, the user’s cursor
can be seen as an inertia-less paintbrush manipulated by the user.

2.4 Crowdsourcing and aggregation

We recruit multiple users or players to carry out a tree extraction session. The collected
tree branches for the same image across all sessions are first unioned together and then a 3D
spherical kernel is used to perform morphological closing. Then a medial axis transform is
applied to extract the tree skeleton and network analysis is performed to create the abstract
graph tree representation [33]. To ensure a robust and reliable tree given possible errors
made by the users/players, we examine consensus among the results. The tree branches are
first union among users/players:

SU =
nU⋃
i=1

Si, (2.9)

where SU is the union from all the sessions. nU is the number of trees generated from all the
sessions and Si is the the tree from the ith session. To smooth the union SU , a unity-sum
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3D kernel K is convolved with the union result SU :

SS = SU ∗K. (2.10)

Then SS is thresholded to create a binary image. After that, a medial axis skeletonization
and network analysis [33] are performed on the binary image to achieve the aggregated
skeleton tree and graph tree.

2.5 Implementation details

We used MATLAB (R2015b) to test several visualization and interaction mechanisms. Then
we ported SwifTree to: (i) the cross-platform game engine Unity3D (unity3d.com). A
snapshot of the implementation can be seen in Figure 2.8; and (ii) an online cross-browser
version using JavaScript (v6.0) and the WebGL-based 3D graphics library Three.js (r83)
(threejs.org), with PHP and MySQL to automatically collect the tree segmentation data
generated by the users.

Figure 2.8: Implementation of SwifTree by Unity3D

The user is provided with a user manual that explains how the tool should be used
(Appendix A). The manual explains how the user should load an image and, optionally,
load a pre-saved session, and begin the extraction process. The manual also introduces the
elements of the GUI, the functionality provided by different controllers, and how the tree
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extraction should be performed using the GUI and controllers. The manual also explains
how the user should deal with bifurcations to visit all child branches. The user is also
prompted to save the extraction session. Finally, the user is shown a summary of the time
and keystrokes they have used during the extraction session. More details are available in
the user manual (Appendix A).

After launching the software, the user is asked to load an image.
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Chapter 3

Data

Sample slices of the 3D volumetric datasets used in our experiments can be seen in Figure
3.1, which include both synthetic and real in-vivo image datasets:

• In-silico Phantom (computer simulated trees) including synthetic vascular images (Y-
Junc and Helix) and Vascusynth (http://vascusynth.cs.sfu.ca/Data.html),

• Physical Phantom Luboz,

• Real data including Renal Vasculature MRA (Magnetic Resonance Angiogram) and
Brain Vasculature CTA (Computed Tomography Angiography) from OSIRIX dataset (http:

//http://www.osirix-viewer.com/resources/dicom-image-library/), as well as
Airway CT (Computed Tomography) from (http://image.diku.dk/exact/).
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Figure 3.1: Datasets: (a-c) In-silico phantoms: Y-Junc (60x60x60), Helix (50x50x100),
and Vascusynth (101x101x101); (d) Physical Phantom (168x168x159); (e) Kidney MRA
(576x448x72); (f) Brain MRA (352x448x176); (g) Airway CT (512x512x587).
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Chapter 4

Results

4.1 Qualitative Results

A user manual on how to use SwifTree is attached in the Appendix A. The graphical user
interface (GUI) of SwifTree consisting of three windows is shown in Figure 4.1. The window
on the left displays the first-person view in the 3D space. The upper right window illustrates
the bird’s-eye view showing a global broad view of the whole scene. The slice, discs and
diamonds objects indicate the intensity, gradient and vesselness features, respectively. The
lower right window presents the tree growing process. The progress of the 3D tree extraction
and the abstract tree graph construction for the different datasets using SwifTree are shown
in Figure 4.2.

We collected results completed by 10 tree extraction sessions for each image using
SwifTree (Figure 4.3). The 10 sessions are aggregated to obtain a single tree for each
image. Figure 4.4 shows the aggregated tree overlapping with the original image. The
reader is referred to a simplified and anonymized web-based version of SwifTree at http:

//79.170.44.151/swiftree.org/ and to the supplementary video and images.
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Figure 4.1: The GUI of SwifTree
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Figure 4.2: Illustration of the sequence of steps (from left to right) used to extract a 3D tree
using SwifTree for: (a)Y-Junc; (b)Helix; (c)Vascusynth; (d)Phantom; (e)Kidney; (f)Brain;
and (g)Airway. Top: 3D spatial domain; bottom: corresponding abstract tree graph.
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Figure 4.3: Visualization of crowdsourcing 10 sessions of tree extraction by SwifTree for
the image (a)Y-Junc, (b)Helix, (c)Phantom, (d)Vascusynth, (e)Kidney, (f)Airway, and
(g)Brain. Different sessions are shown in different colors.
.
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Figure 4.4: The aggregated tree from 10 SwifTree sessions’ tree extraction overlaid on the
original images: (a) Y-Junc, (b) Helix, (c) Vascusynth, (d) Phantom, (e) Kidney, (f) Brain,
and (g) Airway.
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4.2 Quantitative Results

To evaluate the performance of the tree extraction tool, we consider not only the accuracy
of the tree extracted from them but also the time and effort (number of mouse and keyboard
clicks). To quantify the accuracy, we adopt the criteria as described in [45]. Namely, we
measure the following: a) Branch count (BC): The number of branches that are detected
correctly. A branch is considered detected as long as the length of the centerlines is more
than 1 mm. b) Branches detected (BD): The percentage of branches that are detected
correctly with respect to the total number of branches present in the reference. c) Tree
length (TL): The sum of the length of the centerlines of all correctly detected branches. d)
Tree length detected (TLD): The fraction of tree length that is detected correctly relative
to the total tree length in the reference e) Leakage count (LC): The number of uncon-
nected groups of ‘correct’ regions that are neighboring with a ‘wrong’ region, indicating
how easy/difficult it is to manually separate leakages from the correctly detected branches.
f) False positive rate (FPR): The fraction of the voxels passed by extracted tree that is not
marked as ‘correct’ in the reference.

4.2.1 Tree extraction accuracy

Table 4.1 compares SwifTree to ITK-Snap (itksnap.org) and Gorgon (gorgon.wustl.

edu). We see that SwifTree achieves the highest BD accuracy for all the datasets, the
highest TLD for all the datasets except Phantom, and the lowest FPR for all the datasets
except Airway.

We also summarize the time and effort by ITK-Snap, Gorgon and SwifTree. Table 4.2
and Figure 4.5 show the time consumption and number of user clicks for tree extraction by
ITK-Snap, Gorgon and SwifTree, respectively.

To consider both the accuracy and effort together, Figure 4.6 gives an overview of the
performance of the different tools using a scatter plot of tree length detected versus time
expenditure.

4.2.2 Benefit of crowdsourcing

To assess the value of crowdsroucing, in this experiment, we test crowdsourcing extension
of SwifTree by comparing non-crowdsourcing and crowdsourcing extraction. We collected
the results from 10 tree extraction sessions performed by one single user for each dataset
using SwifTree (i.e., 70 sessions). We waited for all the sessions to start aggregating at the
same time.

Figure 4.8 top shows the tree extraction for Brain, with the branches color coded accord-
ing to the index of sessions that detected them. Figure 4.8 bottom shows the line plots of
the percentage of tree length detected vs time consumption for the sessions that extracted
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Table 4.1: The accuracy of tree extraction by ITK-Snap, Gorgon and SwifTree. Highest
accuracy in bold. ‘*’: unit is cm. ‘-’: tree extraction was not feasible.

Image Tool BC BD TL TLD LC FPR
Y-Junc Gorgon 1 33.33% 3.00 5.56% 2 85.71%

ITK-Snap 3 100.00% 46.49 86.18% 1 1.89%
SwifTree 3 100.00% 48.70 90.28% 1 1.11%

Helix Gorgon 1 33.33% 1.41 0.48% 1 97.88%
ITK-Snap 3 100.00% 152.86 51.84% 35 37.99%
SwifTree 3 100.00% 222.58 75.49% 5 1.37%

Vascusynth Gorgon 27 24.55% 400.96 28.72% 85 72.92%
ITK-Snap 58 52.73% 747.60 53.56% 273 59.09%
SwifTree 87 79.09% 988.09 70.79% 152 14.71%

Phantom Gorgon 28 43.08% 564.18 48.60% 98 43.06%
ITK-Snap 47 72.31% 896.64 77.24% 45 9.64%
SwifTree 52 80.00% 841.35 72.48% 27 4.42%

Kidney Gorgon 5 21.74% 19.69 (cm) 27.20% 9 79.18%
ITK-Snap 13 56.52% 40.39 (cm) 55.80% 57 42.61%
SwifTree 21 91.30% 47.92 (cm) 66.21% 7 4.90%

Brain Gorgon - - - - - -
ITK-Snap 30 24.00% 34.54 (cm) 30.48% 82 19.63%
SwifTree 82 65.60% 64.54 (cm) 56.96% 144 12.42%

Airway Gorgon - - - - - -
ITK-Snap 57 19.32% 28.45(cm) 17.33% 81 11.21%
SwifTree 151 51.19% 91.00(cm) 55.42% 284 19.73%

Table 4.2: Time consumption and number of clicks by SwifTree, ITK-Snap and Gorgon.
The fewest clicks and lest time consumption among tools are colored in bold for each data.
‘-’ indicates tree extraction is not feasible by Gorgon for the image Brain and Airway

.

Time Effort
Gorgon ITK-Snap SwifTree Gorgon ITK-Snap SwifTree

Y-Junc 4:13 2:10 00:51 144 299 43
Helix 16:06 8:51 04:09 279 721 215
Phantom 9:27 20:13 16:31 222 904 868
Vascusynth 6:02 22:26 17:40 135 871 1049
Kidney 12:21 3:55 17:21 125 233 989
Airway - 15:21 37:23 - 621 2017
Brain - 13:36 26:43 - 537 1352
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Figure 4.5: Tree extraction time consumption (above) and number of clicks (below) for
different tools and different data (a) Y-Junc, (b) Helix, (c) Vascusynth, (d) Phantom, (e)
Kidney, (f) Brain, and (g) Airway.
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Figure 4.6: Tree length detected versus time consumption for tree extraction by ITK-
Snap, Gorgon and SwifTree. Y©: Y-Junc, H+: Helix, V•: Vascusynth, P5: Phantom,
K?: Kidney, B×: Brain and A�: Airway. Tree length detected increases downward, so
BOTTOM LEFT is the desired location for the best method
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them. The black dashed and green dotted line shows the tree length detected of the tree
aggregated from all the 10 sessions for each image.

As can be seen in Figure 4.8, the tree aggregated from all participating sessions gives a
more complete tree than any of the trees from the individual sessions. Also, the aggregated
tree has the highest tree length detected with the highest initial slope (i.e., fastest increase).
A small dip can be seen in the TLD of the aggregated tree due to false positive branches
from some sessions.

Figure 4.7: Benefits of crowdsourcing: The temporal progress of each of 10 sessions running
SwifTree on the Brain dataset. As time advances and more sessions are included, the
aggregated tree becomes more accurate and complete.

4.2.3 Benefit of gamification

In this experiment, we evaluated the performance for both the interactive non-game and
game mode. In Figure 4.10, the line plot of tree length detected vs time consumption from
the non-game and game mode for all the images is shown at the beginning of each row. On
the right, the tree extracted from the non-game and game mode with time increasing from
left to right. To investigate the influence of the gamification only, we additionally scaled up
the time axis by the number of sessions to exclude crowdsourcing effect. In the figure, we
select the total time spent by the interactive non-game mode as the last tick of time axis.
So the the tree length detected curves for both non-game and game mode behave towards
the end (rightmost side)
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Figure 4.8: Benefits of crowdsourcing: Plots of BD, TLD and FPR vs time, for all data sets
(a) Y-Junc (b) Helix (c) Vascusynth (d) Phantom (e) Kidney (f) Brain (g) Airway. Each
solid colored curve corresponds to one tree extraction session. The black dashed curve, with
better branch and tree detection (i.e., higher than other curves) and relatively lower false
positive rate, corresponds to the aggregated tree from all 10 sessions.
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It can be seen that enabling SwifTree game-mode features (i.e., velocity, sound effects,
score, collectibles, and avoidables) reduces the time needed to reconstruct a pre-set tree
compared to the non-game mode.

Figure 4.9: Benefit of gamification. Results on Brain. Progress of tree extraction shown at
5 instants. Game-mode sessions extract more branches quicker than non-game mode.

4.2.4 Robustness to noise

In this experiment, we compare automatic and interactive methods in terms of their ro-
bustness applied to noise. We polluted the images with additive white Gaussian noise with
different standard deviations. We compared our SwifTree with two automatic methods:
Frangi filter and Skeletonize3D plug-in of Imagej with respect to different noise levels.

As seen in Figure 4.11, the tree length detected, false positive rate and branches detected
versus noise variance are presented on the left. The three orthographic views of image of
different noise levels are shown on the right. In Figure 4.11, we see that Frangi filter and
Skeletonize3D report high detection rates of branches and trees (left and middle columns).
However, almost all these detections are false positives (right colume). SwifTree’s false
positive rate is much lower.
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Figure 4.10: Benefit of gamification. Results on (a) Y-Junc (b) Helix (c) Vascusynth (d)
Phantom (e) Kidney (f) Brain (g) Airway. TLD, BD and FPR vs time for game-mode
(green) and interactive (non-game) mode (red). Game-mode sessions extract more branches
quicker than non-game mode.
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Figure 4.11: Robustness to noise. Left: Comparison of Frangi filter, Imagej Skeletonize3D
and SwifTree in terms of robustness to noise. BD, TLD, and FPR are reported for the
3 methods across 3 datasets: Y-Junc (top), Vascusynth (middle) and Kidney (bottom).
Right: Sample slices from each dataset at selected noise levels for illustration.
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Chapter 5

Conclusion and Future work

We proposed SwifTree, a novel tool for extracting tree-like structures from 3D images.
We showed that by exploring gamification and crowdsourcing, SwifTree can achieve more
accurate results faster and is more robust to noise than traditional segmentation tools. We
demonstrated that aggregating the results of multiple SwifTree crowdsourced sessions has
the potential of achieving more accurate segmentation. Using the proposed game-mode can
reduce time needed to achieve a pre-set tree segmentation accuracy. SwifTree outperforms
automatic segmentation methods especially with respect to noise robustness.

• Stronger validation: Our initial experiments show that gamificaiton and crowd-
sourcing may have some value and worth exploring more. However, more experiments
must be conducted and more comprehensive validation results should be obtained.

• Alternative visualization: In this work, we explored different types of glyphs and
basic GUI that we believe were intuitive. Nevertheless, the GUI may be improved by
exploring the use of other types of glyphs and visualization mechanisms. For example,
one may consider a visualization that gives the user the ability to see ‘ahead’ rather
than just the local slice.

• Handling trifurcations: In this work, we only support bifurcations, however, tri-
furcations may also appear in real data, albeit rarely. Trifurcation may be handled
as two close-by bifurcations or the user may indicate a trifurcation, so the they can
traverse all 3 child branches.

• Handling loops: Our tool currently supports have a loop but only in the 3D tree
segmentation representation. The loop, however, is currently not reflected in the
graph/topology. Future work may include the ability to work with loops.

• Rigorous Aggregation: It would be interesting to consider more rigorous statistical
approach to combine trees. This will be particularly important when dealing with
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results provided by users who try to earn more point by submitting quick but erroneous
results.

• Professional game design Gamification can encourage the user to be more patient,
i.e., willing to spend more time when performing mundane tasks. Therefore, future
work would benefit from professional game design elements (e.g. virtual reality, scor-
ing, and levels). For instance, the game can keep user/players’ records to accumulate
the reward and rank, multi-player competitive mode (more than one players start at
different location in one image, the one with the highest score wins) to stimulate the
enthusiasm.

• Crowdsourcing platform The next phase of our work involves releasing SwifTree
publicly as a ‘Human Intelligence Task’ (HIT) on the established crowdsourcing plat-
form Amazon Mechanical Turk, then analyzing the results collected from a large scale
study involving hundreds of workers or ‘Turkers’. Further, we will set up our own
platform that allows the user who needs to segment tree from an image to submit the
task to our system and recruit other users to complete it.

• User studies: Future work, should involve performing user studies to assess the
advantage of different game and tool design choices. One key aspect that must be
evaluated related to the trade-off between speed and accuracy. For example, crowd-
sourcing from multiple users can make the tree extraction progress faster and more
efficient. However this increase in speed may result in decreased accuracy (e.g., more
false positives as users may perform a task quickly to earn points). In the current
work, we choose the speed of the cursor at most 2px per second to avoid accuracy
reduction. We will later take advantage of the user study to find the best speed. The
study will also examine which views and glyph types are most useful.

.
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Appendix A

User Manual

SwifTree is an interactive software designed to track and identify, quickly and accurately,
all branches in an anatomical tree (e.g., vascular or airway trees) from a 3D volumetric
image. SwifTree requires MATLAB and the following Toolboxes: Neural Network Toolbox,
Image Processing Toolbox, and Statistics and Machine Learning Toolbox. SwifTree has
been tested on: MATLAB 2015b on Windows 7 64bit; MATLAB 2016b on Mac OS X. The
following figures give an overview of SwifTree.

(1) Software Setup

(a) Download and unzip SwifTree.zip from /cs/ghassan/students_less/mianh/
(b) Launch MATLAB
(c) Browse to folder /SwifTree/code using the ‘cd’ or the MATLAB Folder GUI.
(d) Run SwifTree: type SwifTree in the command prompt and press return.

(2) Load 3D Image Data
You will be asked to choose an image format (e.g., MAT, DICOM, MetaImage). There
are several example MAT files provided in the Data folder. You can find these data by
pressing the button below in Fig [A.2]
For this tutorial, choose the 3D Phantom under Data/phatom.mat, and press ‘Open’
in Fig [A.3]

(3) Pre-processing
After some delay for loading and processing the image (around 1 min, depending on
your machine specifications and image size), SwifTree is ready to be used to analyze
the image in Fig [A.4]

(4) SwifTree Windows
You should see an image like the one below. Your task is to segment all the branches
of the vascular tree in the loaded Phantom image by steering your avatar (green ball in
the middle) into the bright region (i.e., the cross-section of the branch). When you are
ready, press return to start the branch tracking process. The following figure highlights
the main components of the SwifTree graphical interface in Fig [A.5]
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Figure A.1: Overview of SwifTree: (a) Input image is shown by three orthogonal slices. (b)
Simple thresholding to show approximately where the anatomical tree is. (c) The tracking
and identification of different branches using SwifTree. (d) The tree hierarchy produced
using SwifTree.

Figure A.2: Choose an image of a variety of format
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Figure A.3: Choose the 3D phantom as an example

Figure A.4: Pre-processing the image
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Figure A.5: The viewing windows of SwifTree

(5) Controls
You have two important controls: speed and direction. Speed is controlled by the keys
‘A’ to accelerate and ‘B’ to brake. You can also use the speed Slider. Direction is
controlled by pressing the arrow keys on the keyboard: . You can also pan by pressing
keyboard keys: i, k, j, and l, for up, down, left, and right, respectively. Other helpful
controls are shown in the figure below and will be detailed later in Fig [A.6]

Figure A.6: Keyboard controllers

(6) Main Window Information
As you track, most of your attention should be focused on the Main Window, which
will show the branch cross-section as well as other helpful information, as shown in the
figure below. The Display channels show which visual objects are displayed, which will
be explained later in Fig [A.7]

(7) Tracking
Now accelerate and steer through the first branch. To have a good segmentation result,
you need to stay in the middle of the branch, keeping the avatar in the bright region,

46



Figure A.7: Main window
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and collecting the yellow dots. As long as you are doing so, you will hear beeps and
your score will increase in Fig [A.8]

Figure A.8: Tracking the tree branch

(8) Bifurcation Identification
If a branching or bifurcation exists, you will encounter it as you travel down a branch
and the bright cross-section will begin to split into two, like this in Fig [A.9] Once you

Figure A.9: Bifurcation identification

have identified the appearance of a bifurcation, press button ‘S’ so you can Save this
branch location and visit it again later, which is important so you can travel down all
branches. Note how the tree hierarchy changes once you identify a bifurcation in Fig
[A.10]

(9) Tracking Branches
After you identified the bifurcation, start travelling down one of the branches (e.g., the
one to the left). When you reach the end of one branch, press ‘R’ to Return to the last
saved bifurcation location. Green rings filled with black show the trail recorded when
exploring the left branch. So now you need to travel down the other branch on the
right. Note how the tree hierarchy shows a split now in Fig [A.11]

(10) Need help?
You can always press ‘H’ for Help at any time. This will show you the keyboard controls
and other commands in Fig [A.12]
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Figure A.10: Save the bifurcation

Figure A.11: Load the bifurcation
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Figure A.12: Help
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(11) Save and Quit
When you are done, press ‘Q’ to save the sessions and results then exit. You can always
load your session at this point and continue later in Fig [A.13]

Figure A.13: Save and Quit

(12) Show results
The tracking result and other summary will be shown automatically after ‘Save and
Quit’:

(a) Tracked branches in 3D (and the path to where the results are saved)
(b) Tree topology
(c) Time spent
(d) Keystrokes pressed.

You can also see all these results by executing showSegResult in the MATLAB command
prompt in Fig [A.14][A.15]

Figure A.14: Show segmentation result

(13) Continue segmentation from a previous session
If the image data selected is detected to have been segmented previously, you will be
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Figure A.15: Summary of the time and effort spent by the user
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given the option to either continue the segmentation from the last saved point of a
previous session or start from scratch.

Figure A.16: Continue from a previous session

Different mode selection A.17 and data type selection A.18

Figure A.17: Interactive and game mode

Figure A.18: Multiple data format selection
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