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Abstract 

Trigonometry is one of the fundamental topics taught in high school 
and university curricula. However, it is considered as one of the most challenging 
subjects for teaching and learning. Contributing to research on learning 
trigonometry, this dissertation sheds light on aspects of undergraduate 
students’ understanding of transformations of sinusoidal functions.  
Six undergraduate students participated in the study. Two types of tasks – (A) 
Identifying sinusoidal functions and (B) Assigning coordinates – were presented to 
participants in a clinical interview. 

To analyze the collected data, three theoretical frameworks, Mason’s theory of 
shifts of attention, Presmeg’s visual imagery and Carlson, Jacobs, Coe, Larsen, and 
Hsu covariational reasoning were used in this dissertation. Mason’s theory provided 
opportunity to study the critical role of attention and awareness in learning and 
understanding mathematics, and in particular the concept of transformation of sinusoidal 
functions. Presmeg’s classification of visual imagery was applied for investigating 
students’ visual mental constructs since the participants applied their imagery on 
different occasions when they completed the interview tasks. Lastly, participants’ 
solution approaches were evaluated using covariational reasoning, focusing on 
Carlson’s et al. description of mental actions associated with developmental levels.  

The results of this research show that undergraduate students participating in 
this study experienced difficulty in identifying a phase shift/ horizontal transformation of 
the sinusoidal functions. They, in fact, determined “BC” as the amount of the phase shift 
instead of “C” when they relied on the representation of sinusoids as  𝑓(𝑥) = 𝐴 𝑠𝑖𝑛/
𝑐𝑜𝑠((𝐵(𝑥 + 𝐶)) + 𝐷. Some participants were also unable to complete tasks in which 
coefficient of x was a fraction. I conclude this dissertation with some pedagogical 
suggestions in terms of learning and teaching transformations of sinusoidal functions.
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Chapter 1.  
 
Introduction 

Trigonometry has been used in various applications such as architecture, 

astronomy and geography. Trigonometry is one of the fundamental topics taught in high 

school and university curricula, but it is considered as one of the most challenging 

subjects for teaching and learning. Despite its importance and its complexity, research 

on trigonometry is sparse and quite limited. In the literature, only a small number of 

studies concentrate on students’ learning of trigonometric concepts (e.g., Gray and Tall, 

1991; Brown, 2005; Weber, 2005; Moor, 2010), and on teaching trigonometry (e.g., 

Akkoç and Gül, 2010 and Moor, 2012). In the succeeding chapter, the findings on 

aspects of trigonometric topics in the mathematics education literature are presented in 

greater detail.  

In what follows, I begin with a brief description of my academic background and I 

then outline some personal experience that led my research towards trigonometric 

functions. I wrap up the chapter with an overview of sequencing chapters in this 

dissertation.  

1.1. The Researcher’s Background and Motivation 

I came from a country where mathematics is the one of the most important topics 

amongst other subjects in the school curriculum. In my country, Iran, students begin to 

learn mathematics when they are very young, in Grade 1, and they all need to pass a 

final mathematics exam in order to become eligible to study the following grade. 

Furthermore, the majority of Iranian families are interested in sending their children to 
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high quality schools, where students are required to successfully complete the schools’ 

entrance exams, which mostly focus on their knowledge of various mathematics topics.. 

 As such, there are very tough competitions amongst students to learn, practice 

and earn high marks on the mathematics exams. The importance of mathematics exams 

becomes more highlighted for high schoolers, who need to successfully pass the 

university entrance exam, which is comprised of the mathematics topics students 

learned in Grades 9-12.  

The vital role that Mathematics plays in a student’s future life makes mathematics 

classrooms boring and stressful for most of students. However, in my school life, I had a 

great mathematics teacher for the last three years of high school. She was the most 

well-educated, patient and friendly teacher I ever had in my school years. She was my 

inspiration to choose mathematics as my major in post-secondary education. 

Fortunately, I passed the university entrance exam successfully and I started my 

bachelors in the subject of “Pure mathematics.”  

Graduating from university, I became a high school mathematics teacher. As a 

young and energetic teacher, I often tried my best to be an effective and helpful teacher 

for my students. As I knew that mathematics classrooms are often boring, I attempted to 

create a fun and interesting learning environment for my students. I showed my students 

examples of the application of mathematics in real life and I provided them with in-class 

activities. In spite of all the efforts I made, there still were some students who hated 

mathematics and therefore they did not make enough effort to learn mathematics. At that 

stage, I noted that I needed to learn more about teaching mathematics as well. 

Observing students’ struggles to understand and deal with a subject in which 

they had no interest, motivated me to learn more about various effective teaching 

methods. I began my master’s studies at the University of British Columbia (UBC), 

where I learned about teaching mathematics from different angles. Meanwhile, I tutored 

some high school and university students in Vancouver.  
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When I worked as a tutor in Vancouver, I realized that students’ difficulties in 

some specific topics in mathematics were similar to those with which my students 

struggled in my home country. Not only Canadian high school students, but also 

university students encountered similar difficulties. Knowing university students’ 

difficulties with some mathematics topics inspired me to explore and to do research 

related to teaching mathematics at the undergraduate level. Therefore, after graduating 

from UBC in the summer 2012, I began my PhD program in the fall 2012 at Simon 

Fraser University.  

As a first year PhD student I worked as a Teaching Assistant (TA) for the Applied 

Calculus Workshop (ACW), where I helped students who were registered in Calculus I or 

Calculus II in doing the assignments and answering their questions about the lecture 

notes. Helping students in ACW made me realize that one of the difficult topics for 

undergraduate students is “trigonometry.” Discussing with some Mathematics instructors 

at SFU Mathematics department about students’ struggles in the calculus courses 

assured me that “trigonometry” is indeed one of the most challenging topics for 

undergraduate students. Parallel with my own experience, the SFU instructors agreed 

that graphing trigonometric functions is one of the hardest parts in trigonometry in a 

Calculus course. As such, for this PhD dissertation, I decided to investigate the way 

undergraduate students deal with this challenging topic.    

1.2. Organization of this Study 

This dissertation is comprised of eight chapters including the introduction 

presented in this chapter. Chapter 2 presents a review of the historical development of 

trigonometry. The chapter begins with the ways the ancient Egyptians and Babylonians 

used trigonometry in 3000 BCE, and it continues with the birth of trigonometric functions 

by a Persian mathematician, Al-Khawarizmi (c. 780- c. 850).  

 In Chapter 3, I review the research studies focused on trigonometry from 

different points of view. Students’ understanding and misunderstanding of aspects of 
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trigonometric functions, as well as the influence of technology on pupils’ grasping of 

trigonometric topics are covered in the first part of Chapter 3. The rest of the chapter is 

devoted to the review of research studies focused on teachers’ conceptions of 

trigonometry, as well as various methods mathematics’ teachers often employ when 

teaching trigonometric concepts. I wrap up Chapter 3 with a brief description of gaps in 

the area of research on learning trigonometric concepts and the need for further 

research on this important topic. 

The following chapter is devoted to the methodology of this study. In Chapter 4 of 

this dissertation, I state the main goal of this study followed by the general research 

questions. I then provide a review of the pilot study and describe how the interview tasks 

were designed for the purpose of this study. The participants for the main study and their 

academic backgrounds are presented next. At the end of this chapter, I describe the way 

I collected data and how I analyzed the data according to the three frameworks. The 

three theoretical frameworks (Mason’s (2008) theory of shifts of attention, Presmeg’s 

(1989) visual imagery, and Carlson’s et al. (2002) covariational reasoning) which I 

employ for analyzing the data collected for this study. These are explained in Chapter 5. 

In Chapter 6, I analyze the response of one of the participants, Andy, in detail 

with respect to the three theoretical frameworks. There, I describe how he completed 

each interview task, the difficulties he encountered and the errors he made during the 

interview. The analysis of the responses of the rest of the participants to each of the 

interview tasks is presented in the Chapter 7. To complete a comprehensive analysis; I 

compared the answers of five students with each other and with Andy’s responses. 

Finally, the conclusion of this dissertation comes in Chapter 8, where the 

research questions are restated and answered. In this chapter, I present a summary of 

the findings and then I state the contributions of this study. The limitations of this study, 

the applications of the findings in teaching transformations of sinusoidal functions, and 

the need for further research are noted at the end of this dissertation in Chapter 8.   
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Chapter 2. 

 History of Development of Trigonometry 

Looking at the trigonometry history shows that it took long time to develop, the 

first stages of development date back to about 3000 BCE. Reading several history books 

about the development of mathematics, and trigonometry in particular, shows how 

people in ancient times used it for multiple purposes such as exploring astronomy (e.g., 

recording the rising and setting of stars and calculating the time of day). However, 

reviewing the developmental history illustrates that since the beginning, trigonometry 

was a difficult topic for human beings and it has taken thousands of years for 

mathematicians and astronomers to grasp the content. In spite of the historical difficulty 

of trigonometry, which caused its slow progress, teachers often expect students to 

understand the topic in a short time. Looking at the historical development of 

trigonometric concepts, however, helps in gaining appreciation of the discipline and of 

potential struggle of learners. In what follows the key people who have had fundamental 

contributions in the development of trigonometry, the difficulties they encountered and 

the ways they solved them are explained in this paper.    

The historical development of trigonometry is described in this chapter in three 

different sections. In the first section, I explain the use of trigonometry in the “Ancient 

Egypt and Mediterranean World” The second one is related to the arrival of 

trigonometry in the “Indian and Islamic world” and the next section deals with the 

history of progression of trigonometry to “European World.” In the last section, I also 

talk about Trigonometry in the Contemporary Curriculum. This chapter concludes 

with a summary of the development of trigonometry from the earliest times to the 

modern period. 
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2.1. Ancient Egypt and Mediterranean World  

The term “trigonometry” came from the Greek words trigonon, meaning “triangle,” 

and the Greek word -metria, meaning “measurement.” As the name implies, 

trigonometry emerged from the study of right triangles and the relationships among the 

lengths of the sides and the angles of the triangle (Steckroth, 2007). The origin of 

trigonometry came from the ancient Egyptians and Babylonians, who developed and 

used theorems on ratios of the sides of similar triangles without being actually aware of 

trigonometry in the modern form (Adamek, Penkalski, and Valentine, 2005). The ancient 

Egyptians utilized trigonometry in land surveying, constructing their pyramids, and 

correlating shadow lengths of a vertical stick (gnomon) with the time of day (see Figure 

2.1). The shadow tables are the ancestors of cotangent and tangent (Maor, 1998).The 

Babylonian astronomers also related trigonometric functions to arcs of circles and to the 

lengths of chords subtending the arcs to develop astronomers’ records of the events of 

the lunar month, the rising and setting of stars and the motion of planets and of the solar 

system (Van Brummelen, 2009).  

 

Figure  2.1. Ancient Egyptians gnomon 

Although the primitive forms of trigonometry (e.g., gnomon) were in existence 

previously, the development of modern trigonometry into an ordered science began 
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slowly with the introduction of the common unit of angular measure, the degree, 

originated by the Babylonians (Maor, 1998). Some historians believe that the Babylonian 

astronomers first divided a circle into 360 parts. The reasons for this division might be 

because of the intimacy of this number (360) to the number of days in the year, 365 

days, or the possibility of dividing a circle naturally into six equal parts, each subtending 

a chord equal to the radius (Maor, 1998). What is historically clear is the fact that the 

system fit very well into the Babylonian sexagesimal (which is based on 60 rather than 

our current decimal number system based on ten) numeration system. The early 

Greeks, later, adopted the Babylonian sexagesimal number system and they introduced 

the degree for the first time (Van Brummelen, 2009). Greeks used the word µοιρα 

(moira) to refer to degree. The Arabs translated µοιρα into daraja, which, then, became 

the Latin word de gradus from which came the word degree (Maor, 1998).  

Other than what is known about the Babylonian astronomers and the Greeks’ 

adoption of the degree, there is a gap in the history of the development of trigonometry 

until the improvement of trigonometry by the Greek astronomer Hipparchus of Nicaea 

(ca.190-120 B.C.). 

 Hipparchus came to be known as “the father of trigonometry” and is the first 

person whose use of trigonometry is documented (Adamek et al., 2005). His work 

stressed the need for a system that provided a unit of measure for arcs and angles 

(Sozio, 2005).In astronomy, Hipparchus is credited with discovering the procession of 

the equinoxes (a slow circular motion of celestial poles once every 26700 years), 

determining the celestial longitude and latitude of 1000 stars and recording their 

positions on a map. He also classified stars according to their brightness by introducing 

a scale in which the magnitude of the brightest stars is 1 and the faintest stars have a 

magnitude of 6 (Maor, 1998). Hipparchus was the first person to determine exactly the 

times of the rising and setting of the zodiacal signs and also to estimate the size and 

distances of the sun and moon (Van Brummelen, 2009). 

To be able to do his calculations for his astronomical work, Hipparchus needed a 

table of trigonometric ratios (Maor, 1998). However, since there was not such a table, he 
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had to compute his own table (this is considered as one of the beginning difficulties of 

developing trigonometry). Hipparchus considered every triangle (planar or spherical) as 

being inscribed in a circle of large fixed radius (see Figure 2.2), so that each side of the 

triangle became a chord (a straight line drawn between two points on a circle) (Maor, 

1998). In order to calculate the length of various parts of the triangle, Hipparchus had to 

figure out the length of the chord as a function of the central angle (Half of this chord 

later became the sine function (Van Brummelen, 2009)). The length of the chord is 

denoted by Crd. 

 

Figure  2.2. The relation between the chord function aTable  2.1nd the modern 
sine 

Using basic circle properties, 𝐶𝑟𝑑(𝑎) = 2𝑅 sin(𝑎 2⁄ ) ( Or  sin(𝑎 2⁄ ) = 𝐶𝑟𝑑(𝑎) 2𝑅⁄ ). 

Hipparchus chose a large fixed radius, R, to avoid fractions [when the radius is chosen 

large enough (R= 3438 in sexagesimal system), when divisions are made, these parts 

become whole numbers (Adamek et al., 2005)]. Maor (1998) states that from his 

calculations, Hipparchus borrowed the idea from the Babylonian astronomers who 

divided every circle into 360 degree and he, thus, began with the chord of 60° equal with 

the radius of the circle (R= 60°) when he constructed his table.  

To complete his table and find other angles (except R=60), Hipparchus needed 

to know how to calculate the chord of the supplement of a given arc (which is written as:  
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𝐶𝑟𝑑(180 − 𝛼) =  √((2𝑅)2 − (𝐶𝑟𝑑(𝛼))
2

)  ) and also the formula for the chord of 

half angle: (𝐶𝑟𝑑
𝛼

2
)

2
= 𝑅 (2𝑅 − 𝐶𝑟𝑑(180 − 𝛼)  (Van Brummelen, 2009). As such, although 

Hipparchus, as an astronomer, was mainly concerned with spherical triangle (Maor, 

1998 and Hunt, 2000), he still would have needed to know many formulas of plane 

trigonometry (as mentioned these lack of knowledge, made the development of 

trigonometry a difficult task for ancient people) which are in the modern form as: 

 (sin 𝛼)2 +  (cos 𝛼)2 = 1  

(which is a trigonometric version of the Pythagorean Theorem),  

(sin 𝛼 2⁄ )2 =  (1 − cos 𝛼) 2⁄ , or  

 sin(𝛼 + 𝛽) =  sin 𝛼 × cos 𝛽 + cos 𝛼 × sin 𝛽  

Hunt(2000) and Van Brummelen (2009) indicate that Hipparchus used, for 

example, Pythagorean Theorem [according to Thales’s theorem if two angles (α and 

180- α) are supplementary angles, the triangle having two sides Crd (α) and Crd (180- α) 

is a right triangle ( see Figure 2.3)] for the supplementary formula as:   

𝐶𝑟𝑑(180 − 𝛼) =  √(2𝑅)2 − (𝐶𝑟𝑑 (𝛼))
2
 (Formula 1) 
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Figure  2.3. Supplementary angles 

Since he knew: 

𝐶𝑟𝑑(𝛼) = 2𝑅 × sin 𝛼 2⁄    (Formula 2)   

𝐶𝑟𝑑(180 − 𝛼) = 2𝑅 sin (180 − 𝛼) 2 = 2𝑅 × cos 𝛼 2⁄ .⁄  (Formula 3) 

Thus, from formula (1), (2) and (3): 

 2𝑅 cos(𝛼 2⁄ ) =  √(2𝑅)2 −  (2𝑅 sin(𝛼 2⁄ ))2    

(2𝑅)2  (cos 𝛼 2⁄ )2 = (2𝑅)2 −  (2𝑅 sin 𝛼 2⁄ )2      (Formula 4)    

Therefore, both sides of the equation (Formula 4) will be equal because 

Hipparchus knew  sin(𝛼 2⁄ )2 +  cos(𝛼 2⁄ )2 = 1     (Van Brummelen, 2009).  

Hipparchus wrote twelve books on the computation of chords in a circle. 

Unfortunately, however, all his works were lost and most of what is known about his 

works is through later references in Ptolemy's Almagest (explained later in this paper), 

written three centuries after Hipparchus died.  
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The next Greek mathematician known to have made a great contribution to 

trigonometry and in particular to spherical trigonometry was Menelaus of Alexandria 

(c.a. 100 A.D.) (Maor, 1998). Menelaus wrote a six-book treatise on chords, but those 

books (e.g., On the Triangle and Elements of Geometry) have all been lost. Menelaus, 

however, authored a three-book work called Spherics which is his only surviving work. 

Although the Greek version of this text is lost, and all that remains is an Arabic version 

translated a thousand years after Menelaus wrote the original version, this work still 

provides a good source for the development of spherical trigonometry (Van Brummelen, 

2009).  

The first book of the Sphaerica is geometric in content and deals systematically 

with the conception and definition of a spherical triangle for the first time. Menelaus 

described a spherical triangle as the area included by the arcs of great circles on the 

surface of a sphere subject to the restriction that each of the sides or legs of the triangle 

is an arc less than a semicircle (Van Brummelen, 2009). He then imitated the theorems 

of Euclid's propositions about plane triangles and extending them to give the main 

propositions about spherical triangles (e.g., the two triangles on the base of any 

spherical triangle with two equal sides are themselves equal). In this book, however, 

Menelaus avoided proving any theorem (Van Brummelen, 2009). 

 The second book has astronomical interest only, whereas the third book 

contains some important information about the development of trigonometry and it deals 

with spherical trigonometry and includes the Menelaus's theorem (Van Brummelen, 

2009). For plane triangles the theorem was known before Menelaus (see Figure 2.4): 

... if a straight line crosses the three sides of a triangle (one of the sides is 

extended beyond the vertices of the triangle), then the product of three of the 

nonadjacent line segments thus formed is equal to the product of the three remaining 

line segments of the triangle. 



 

12 

 

 

Figure  2.4. The theorem of plane triangles 

Menelaus produced a spherical triangle version of this theorem, which is called 

Menelaus's theorem. Instead of using a spherical triangle, Menelaus indicated his 

proposition in terms of two intersecting great circles (see Figure 2.5): 

"Between two arcs, ADB and AEC, of great circles are two other arcs of great 

circles DFC and BFE which intersect them and also intersect each other in F. All the 

arcs are less than a semicircle." (http://aleph0.clarku.edu/~djoyce/ma105/trighist.html). 

 

 

 

Figure  2.5. Menelaus’s theorem 

http://aleph0.clarku.edu/~djoyce/ma105/trighist.html
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According to Menelaus’s theorem: 

𝐶𝑟𝑑(2𝐴𝐸) 𝐶𝑟𝑑 (2𝐶𝐸) = 𝐶𝑟𝑑 (2𝐴𝐵) 𝐶𝑟𝑑(2𝐵𝐷) × 𝐶𝑟𝑑 (2𝐷𝐹) 𝐶𝑟𝑑 (2 𝐹𝐶)⁄⁄⁄ . 

and 

𝐶𝑟𝑑(2𝐴𝐶) 𝐶𝑟𝑑(2𝐴𝐸) = 𝐶𝑟𝑑 (2𝐶𝐷) 𝐶𝑟𝑑 (2𝐷𝐹) × 𝐶𝑟𝑑 (2𝐵𝐹) 𝐶𝑟𝑑 (2𝐵𝐸).⁄⁄⁄   

If Menelaus's theorem for spherical trigonometry was written in terms of modern 

sines, they would be as follows: 

sin(𝐴𝐸) sin(𝐶𝐸) = sin(𝐴𝐵) sin(𝐵𝐷) × sin(𝐷𝐹) sin(𝐹𝐶)⁄⁄  ⁄  

sin(𝐴𝐶) sin(𝐴𝐸)⁄ =  sin(𝐶𝐷) sin(𝐷𝐹) × sin(𝐵𝐹) sin(𝐵𝐸)⁄⁄  

Though Menelaus’s developments were very important, the first major and the 

most influential work on trigonometry is The Mathematical Syntaxis, usually known as 

the Almagest which is a work of thirteen books by Ptolemy of Alexandria (ca. 85-ca. 165 

A.D) (Maor, 1998). 

Ptolemy focused on a combination of both astronomy and trigonometry in 

Almagest. The book is based upon the assumption that a motionless earth sits at the 

center of the universe and the heavenly bodies move around it in their prescribed orbits 

(Maor, 1998). In order to accomplish his goal (recording the motions of all celestial 

objects), Ptolemy noticed that he needed a substantial trigonometric tool. Therefore, the 

subject of chapters 10 and 11 of the Almagest is about Ptolemy’s table and a detailed 

set of instructions (containing some of the earliest extent derivations of common 

trigonometric results) on how to construct the table (Van Brummelen, 2009). Almagest is 

reliant on much of the work of Hipparchus and Menelaus (Adamek et al., 2005). Some 

historians believe that Ptolemy completed Hipparchus’s work through adding some 

necessary details and constructing new tables. However, since much of Hipparchus’ 

work was lost, it is difficult to distinguish between what additions and modifications 

Ptolemy made, and what already existed (Adamek et al., 2005).  
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Figure  2.6. 𝒅 = 𝑪𝒓𝒅𝜽 = 𝟐𝑹 𝐬𝐢𝐧 𝜽 𝟐⁄  

Ptolemy's table gives the length of a chord in a circle as a function of the central 

angle (see Figure 2.6) that subtend it for angles increasing from 0 degrees to 180 

degrees at intervals of half a degree (Maor, 1998). He took the diameter of the circle to 

be 120 units and thus R= 60. Ptolemy's table of chord is essentially a table of sines 

because 𝑑 = 𝐶𝑟𝑑𝜃 = 2𝑅 sin 𝜃 2⁄    or 𝑑 = 𝐶𝑟𝑑𝜃 = 120 sin 𝜃 2⁄ .  As is clear from the 

equation, apart from proportionality factor 120, Ptolemy’s table is equivalent to a table of 

value of sin(θ/2) and thus, by doubling the angle it is a table of sin(θ) (Maor, 1998). In 

other words, the table is the earliest trigonometric table of sines.  

In his table, Ptolemy carried out his calculations to three sexagesimal places to 

achieve the accuracy of the chord length (Maor, 1998). Apart from two separate columns 

for arcs and chords, Ptolemy's table was comprised of a column of “sixtieths” (see Figure 

2.7). The column of “sixtieths” allows one to incorporate between successive entries: it 

gives the mean increment in the chord length from one entry to the next (Maor, 1998) 
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Figure  2.7. Ptolemy’s table known as sine table 

Ptolemy also developed much more powerful tools, the sum and difference 

formulas for chords (Van Brummelen, 2009). To determine the sum and difference 

formulas for chords (see Figure 2.8), Ptolemy developed the theorem that later became 

known as Ptolemy's theorem (Van Brummelen, 2009). Ptolemy's theorem is defined 

as:In a quadrilateral inscribed in a circle (see Figure 2.8), the product of the diagonal 

(AC. BD) is equal to the sum of the products of the opposite sides (AB.CD+ AD. BC)” 

(Hunt, 2000). 
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Figure  2.8. Ptolemy's theorem 

When AD is a diameter of the circle, where O is the center of the circle and d the 

diameter, then the theorem says:  

𝐶𝑟𝑑(𝐴𝑂𝐶)𝐶𝑟𝑑(𝐵𝑂𝐷) = 𝐶𝑟𝑑 (𝐴𝑂𝐵) 𝐶𝑟𝑑(𝐶𝑂𝐷) + 𝑑 𝐶𝑜𝑟𝑑 (𝐵𝑂𝐶). 

Therefore, if “a” is for angle AOB and b for angle AOC, and then there is:  

𝐶𝑟𝑑(𝑏)𝐶𝑟𝑑(180 − 𝑎) = 𝐶𝑟𝑑 (𝑎)𝐶𝑟𝑑(180 − 𝑏) + 𝑑𝐶𝑟𝑑(𝑏 − 𝑎)    

which gives the different formula: 

𝐶𝑟𝑑(𝑏 − 𝑎)= 𝐶𝑟𝑑(𝑏) 𝐶𝑟𝑑(180 − 𝑎) − 𝐶𝑑𝑟(𝑎)𝐶𝑟𝑑(180 − 𝑏) 𝑑⁄      (formula (1)). 

and since: 

 sin 𝑎 = (1 𝑑⁄ )𝐶𝑟𝑑(2𝑎)    and    cos 𝑎 =  (1 𝑑⁄ )𝐶𝑟𝑑(180 − 2𝑎)    (formula (2)),  

therefore, formula (1) corresponds to the difference formulas for modern trigonometry 

as:  

sin(𝑎 − 𝑏) =  sin 𝑎 × cos 𝑏 −  sin 𝑏 × cos 𝑎. 

Using Ptolemy’s theorem to find the sum of two chords is not quite as 

straightforward (Van Brummelen, 2009). 
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Figure  2.9. Ptolemy’s theorem and sum of two angles 

If BF extended to E, thus α = AB=DE and β= BC. Therefore, application of 

Ptolemy’s theorem to BCDE gives (see Figure 2.9): 

𝐶𝑟𝑑(180 − (𝛼 + 𝛽)) = 𝐶𝑟𝑑(180 − 𝛼)𝐶𝑟𝑑(180 − 𝛽) − 𝐶𝑟𝑑(𝛼) 𝐶𝑟𝑑(𝛽) 2𝑅⁄   (formula (3)) 

From formula (2) and (3) one could conclude the modern sum formula for cos: 

cos(𝑎 + 𝑏) = cos(𝑎) cos(𝑏) −  sin(𝑎) sin(𝑏)  (Bressoud, 2010). 

Ptolemy's theorem not only leads to the equivalent of the sum-and-difference formulas 

for sine and cosine that are today known as Ptolemy's formulas, it also helps to derive 

the equivalent of the half-angle formula for trigonometric functions, sin(𝑎)2 =

 √(1 − cos 𝑎)  (I do not explain it here due to lack of space) (Van Brummelen, 2009). 

After the early trigonometry, the Indian and Islamic trigonometry will be described 

in detail in the next section. 
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2.2. Indian and Islamic World: the Age of Six Functions  

After Ptolemy, Greek trigonometry had little development (Van Sickle, 2011). No 

documented evidence is available for the arrival of Greek astronomical models in India 

(Van Brummelen, 2009). The earliest Indian work believed to come from the influence of 

Greek trigonometry is Siddhantas (late fourth or early fifth century A.D.). It contains a 

table which is a modified version of Ptolemy’s table of chord (Maor, 1998). The 

trigonometry of Ptolemy was based on the functional relationship between the chords of 

a circle and the central angles they subtend. But, the authors of the Siddhantas (its 

original version is by an unknown author) focused on a study of the relationship between 

half of a chord of a circle and half of the angle subtended at the center by the whole 

chord (Adamek et al., 2005). From this stemmed the ancestor of the modern 

trigonometric function known as the sine of the angle (although it still was not called 

“sine”). Therefore, the main contribution of India and particularly the Siddhantas is the 

more formal introduction of the sine function to the history of mathematics (Adamek et 

al., 2005). 

Aryabhata (AD 476-550), an Indian mathematician and astronomer, collected 

and expanded upon the developments of the Siddhantas with his book entitled 

Aryabhatiya. It is believed that Aryabhatiya is the primary original Hindu work in which 

for the first time in the history of trigonometry the sine as a function of an angle was 

named. In his work which focused on calculating a table of “sine differences”, Aryabhata 

used the word ardha-jya to refer to the half-chord and sometimes the word turned 

around to jya-ardha, chord-half. In order to shorten the word, Aryabhata used jya or jiva 

(Maor, 1998). Like the chord, the jya was defined as the length of a certain line segment 

in a circle (see Figure 2.10). The relationship between jaya and the modern sine is: jaya 

(α) = 𝑅 sin(𝑎) where R is a radius of the base circle (R= 3438). Also the utkrama-jya 

(reversed sine) or versed sine is: Vers(𝑎) = 1 − cos(𝑎). 
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Figure  2.10. Aryabhata’s definition of jya and utkrama-jya 

Aryabhata’s table is given in increments of 3° 45 minutes (225 minutes) for 

angles between 0° and 90° to four decimal places of accuracy. Since Aryabhaṭa's table 

is not a set of values of the trigonometric sine functions, the measurement was not of the 

sines themselves. Instead, it was the measurement of the differences between the sines 

(see Figure 2.11). Beginning with the assumption that the first entry in the table is sine 

(225 minute) = 225, Aryabhata used the following pattern for calculating the sines:  

(225 − 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑖𝑛𝑒)  +  (225 + 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑠𝑖𝑛𝑒) 225⁄ . This total was then 

subtracted from 225 to obtain the sine table (Adamek et al., 2005). 
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Figure  2.11. Aryabhaṭa's table of sine 

After Aryabhaṭa some other Indians (e.g., Bhaskara, Brahmagupta and 

Madhava) contributed in development of trigonometry, which are not included in this 

paper due to lack of space.  

The Arrival of Astronomy from India into the Arab World: the Birth of 

Trigonometric Functions  

Translations of Indian trigonometry texts as well as of Ptolmey‘s Almagest 

(dealing with the geometry of chords) appeared in the Muslim world by Muslim 

mathematicians of mostly Persian and Arab descent in the late seventh century, soon 

after the birth of Islam (Maor, 1998). Between the two types of trigonometry, the Greek 

and the Hindu, involving their tables of sines, Muslim trigonometers chose to focus on 

the Indian sine rather than the Greek chord for the ease of calculations (Maor, 1998). 
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Abu Ja'far Muhammad ibn Musa al-Khwarizmi Al-Khwarizmi, a Persian 

mathematician, astronomer, astrologer, geographer and a scholar, introduced the Indian 

computational and mathematical methods to Arabs for the first time. 

Al-Khawarizmi (c. 780- c. 850) translated the Aryabhatiya, into Arabic language, 

in his famous book entitled Zij al-Arjabhar. In his translation, al-Khwarizmi kept the word 

jiva without translating its meaning. Since in Arabic words consist mostly of consonants, 

and vowels are interpreted by context, jiva could also be pronounced as jaib, which 

means bosom, or bay. Therefore, when the Arabic version of Aryabhatiya was translated 

into Latin, they translated jaib into sinus or sine, which means bosom or bay. The cosine 

function which first arose for the need to compute the sine of the complementary angle 

is a Latin translation of the word Kotijya of Aryabhata (Maor, 1998).  

Al-Khwarizmi also wrote a book called Zij al-Sindhind, which contains an 

accurate sine and cosine table in which R=60 for the interval of 1 degree. Al-Khwarizmi's 

Zij also includes a table of versed sine to solve astronomical problems (Van Sickle, 

2011). To solve attitude problems using gnomons and shadows, Al-Khwarizmi 

constructed the first table of tangent in the history of mathematics (although, he still did 

not call it “tangent”) in his famous book Al-Jabr wa-al-Muqabilah. He was also the 

inventor of spherical trigonometry. 

To calculate various astronomical coefficients with great accuracy, following al-

Khwarizmi, another Arab astronomer, Abdallah Muhammad Ibn Jabir Ibn Sinan al-

Battani (around 858-929) introduced the trigonometric ratio in mathematical 

calculation (e.g., tan 𝑎 =  sin 𝑎 cos 𝑎⁄  and cot 𝑎 =  cos 𝑎 sin 𝑎⁄ ) which formed the basis of 

modern trigonometry (Maor, 1998). Al-Battani used the following rule for finding the rise 

of the sun above the horizon in terms of the length “m” of the shadow by a vertical 

gnomon of height “h”:  

𝑚 = ℎ sin(90 − 𝛼) sin(𝛼)⁄       or   𝑚 = ℎ cot(𝛼).    
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In his book Zij al-Sabi, al-Battani applied the above formula to produce the table 

of cotangents for the first time, which he referred to as a "table of shadows" (in 

reference to the shadow of a gnomon) and he called it zill mabsut (or umbra recta in 

Latin) by degree from 1° to 90° to solve astronomical problems. He was also the first 

person to introduce the reciprocal functions of secant and cosecant (Maor, 1998). Al-

Battani also provided important trigonometric formulas for right-angled triangles (with 

side length of a, b and c), such as the following formula (instead of using geometrical 

methods, as Ptolemy had done): 

𝑏 sin(𝐴) = 𝑎 sin(90 − 𝐴) 

Abu‘l Wafa al’Buzjani (940-998), a Persian mathematician, who was an 

algebraist as well as a trigonometer, was known for his contributions in plane 

trigonometry and spherical trigonometry. He was the first mathematician who finally 

brought all six of the fundamental modern trigonometric functions together and 

defined them in one diagram (see Figure 2.12) in his Almagest (Van Brummelen, 2009; 

and Van Sickle, 2011). He used R=1 for the radius of the basic circle.  

 

Figure  2.12.  Six trigonometric functions in one diagram 

𝐵𝐷 =  sin(𝜃)               𝐸𝐵 =  cos(𝜃)          𝐵𝐶 = tan(𝜃)        
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 𝐴𝐵 =  cot(𝜃)             𝑂𝐷 =  sec(𝜃)           𝑂𝐸 =  csc(𝜃). 

Applying all of the modern trigonometric functions, in fact, assisted Abu‘lWafa to 

make trigonometric calculations much more easily and quickly than before, although 

initially only some of his colleagues appreciated this change (Van Sickle, 2011). He 

contributed a table of tangents using all six of the common trigonometric functions 

(Maor, 1998). Abu‘lWafa also constructed a new sine table, using eight decimal places.  

Abu‘lWafa proved several identities known today as the Pythagorean identities, 

such as:  

tan(𝑎)2 + 1 = 𝑠𝑒𝑐(𝑎)2    and     1 +  cot(𝛼)2 =  csc(𝑎)2  (Van Brummelen, 2009).  

Furthermore, he developed the following trigonometric formula: 

sin(𝑎 ± 𝑏) =  sin(𝑎) cos(𝑏) ± cos(𝑎) sin(𝑏). 

sin(2𝑎)= 2sin(𝑎) cos(𝑎)   (Ptolemey had expressed the equivalent identities in 

terms of chords)  

cos(2𝑎) = 1 − 2 sin(2𝑎)    (Adamek et al., 2005). 

Abu’l-Wefa discovered the law of sines (even though it was first introduced by 

Ptolemy) through applying a straightforward formulation of the law of sines for 

spherical triangles (where A, B, and C are surface angles of the spherical triangle and 

a, b and c are the central angles of the spherical triangle (see Figure 2.13)) (Adamek et 

al., 2005):  

sin 𝑎 sin 𝐴 =  sin 𝑏 sin 𝐵 =  sin 𝑐 sin 𝐶⁄⁄⁄ . 
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Figure  2.13.  Law of sines in a spherical triangle 

Not long after Abul-Wafa wrote Almagest, al-Biruni wrote a treatise entitled 

Maqalid 'ilm al-hay'a, devoted to plane trigonometry. In his book, Abul-Rayhan al-Biruni 

(973-1048), who was one of the greatest Persian scientists, discussed the following 

formula in tangent from which the half angle and multiple angle formulae had been 

discovered (Van Brummelen, 2011) [see the diagram below (see Figure 2.14) in which O 

is the center of the semicircle, and AED a right-angled triangle with a perpendicular from 

E to C]: 

 

Figure  2.14.  The half and multiple angle for tangent 

tan(𝜃 2⁄ ) = 𝐸𝐶 𝐴𝐶 =  sin 𝜃 (1 + cos 𝜃)⁄⁄    
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and    

tan (𝜃) 2 = 𝐷𝐶 𝐸𝐶 = (1 − cos 𝜃) sin 𝜃⁄⁄⁄ . 

Al-Biruni also wrote three major books in trigonometry: Qanun-i Masoodi, Ketāb 

maqālīd ʿelm al-hayʾa, and Ketāb fī efrād al-maqāl fī amr al-ẓelāl. In the Qānūn, al-Biruni 

proposed trigonometric theorems equivalent to those related to the sums and differences 

of angles. In his Ketāb maqālīd ʿelm al-hayʾa, Al-Biruni focused mainly on the 

applications of spherical trigonometry in astronomy and evaluated Khawrazmi’s results 

to provide more accurate detailed classification of spherical triangles and their solutions. 

Furthermore, in Ketāb fī efrād al-maqāl fī amr al-ẓelāl he discussed the familiar 

trigonometric definitions further and applied them to religious matters (e.g., determining 

times of prayer and finding the direction of Mecca).  Bīrūnī, for example, used all six 

trigonometric functions (but in gnomonic context) to measure the time of day (for 

praying) using the shadows of a gnomon (in spherical triangles). As can be noticed in 

Figure 2.15, the gnomon is vertical; with α length of the direct shadow corresponds to 

cotangent, whereas the hypotenuse of the direct shadow is secant. On the other hand, 

when the gnomon is horizontal, the length of the reversed shadow is the tangent and the 

hypotenuse of the reversed shadow is the cosecant (Van Brummelen, 2009).   

 

Figure  2.15.  Six trigonometric functions in gnomonic context 

In the 13th century, Nasīr al-Dīn al-Tūsī (1201-1274), a Persian mathematician, 

was the first person to consider trigonometry as a mathematical discipline independent 

from astronomy. He helped to differentiate plane trigonometry and spherical 
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trigonometry (Adamek et al., 2005). He also stated six fundamental formulas for the 

solution of spherical right-angled triangles. In his book entitled, On the Sector Figure, Al-

Tusi determined the law of sines for plane triangle [𝑎 sin 𝐴 = 𝑏 sin 𝐵 =  𝑐 sin 𝐶⁄⁄⁄  where 

a, b, and c are the lengths of the sides of a triangle, and A, B, and C are the opposite 

angles]. He also provided proof for the law of sines for spherical triangles, which was 

identified by Abu’l-Wefa. Furthermore, he discussed and proved the law of tangents for 

spherical triangles [tan(𝐴 − 𝐵) 2⁄ tan(𝐴 + 𝐵) 2 =  tan(𝑎 − 𝑏) 2⁄ tan(𝑎 + 𝐵) 2⁄⁄⁄⁄ ] where 

A, B, C are the angles at the three vertices of the triangle and lower-case a, b, c are 

respective lengths of the opposite sides] in his book (On the Sector Figure) (Lennart, 

2007).  

This concludes the contribution of Arab and Persian mathematicians to the 

development of trigonometry (Although some other Persians attempted to develop 

trigonometry, because of limited space they cannot be explained here). In the next 

section, the contribution of Europeans and their influences on the progression of 

trigonometry will be described in detail. 

2.3. Passage to Europe 

In the medieval West, knowledge of trigonometry gradually reached Europe 

through translation of the texts written by Muslim mathematicians and astronomers such 

as Mohammed ibn al-Khowarizmi and al-Battani (Maor, 1998). Regiomontanus (also 

known by his given name, Johann Muller), a German astronomer (1436-1476), wrote the 

first comprehensive book on trigonometry, De triangulis Omnimodis libri quinque (“of 

triangles of every kind in five books”). He, in fact, is the first person who removed 

trigonometry as a science separate from astronomy and made it into its own field 

(although Tusi treated trigonometry as a separate discipline in mathematics, 

Regiomontanus was the first who wrote a book on trigonometry).  

In his De triangulis Omnimodis (which contains five books), Regiomontanus 

included all knowledge of trigonometry from Ptolemy, Hindu and Arab scholars, and in 
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doing so created a rebirth of trigonometry in Europe (Zeller, 1941). The first book of De 

triangulis Omnimodis begins with fifty propositions on the solutions of triangles using the 

properties of right triangles. The second part of Regiomontanus’s De triangulis 

Omnimodis includes the formula for determining the area of a plane triangle in terms of 

two sides and the included angle. The third book determines theorems found on Greek 

before the use of trigonometry, and the last two books are based on spherical 

trigonometry (Maor, 1998).  

 It is strange for historians that Regiomontanus’ first trigonometry did not contain 

tangent although he must have been familiar with it from the Arabs’ use of it in 

connection with shadow reckoning (Maor, 1998). Therefore, Regiomontanus’ first 

trigonometry was not as advanced as some Arabic authors of the same time period. 

Later, however, when he wrote Tabula Directionum in 1467, Regiomontanus created a 

table of sines as well as a table of tangents that shows his awareness of tangents as 

well (Adamek et al., 2005; Zeller, 1941). Throughout this time, there was still 

disagreement as to the names of the trigonometric functions and whether tangent, 

cotangent, secant, and cosecant were proper trigonometric functions (Van Brummelen, 

2009).  

After Regiomontanus, Nicholas Copernicus (1473-1543), who was an 

astronomer and a trigonometer, completed a treatise known as De revolutionibus orbium 

coelestium. This work includes information on trigonometry and it is very similar to that of 

Regiomontanus (Van Brummelen, 2009). Copernicus’ student, George Joachim 

Rheticus (1514-1574), an Indian mathematician, combined the trigonometric works of 

both Copernicus and Regiomontanus and eventually published his significant advances 

in trigonometry, a two-volume work called Opus palatinum de triangulus (Canon of the 

Science of Triangles) (Maor, 1998). In fact, this book creates a revolution in 

trigonometry.  

The functions with respect to the arc of a circle were omitted from Rheticus’s 

work, although most previous work had been done using spherical triangles. He, instead, 

constructed a right triangle where the trigonometric functions: sine, cosine, tangent, 
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cotangent, secant and cosecant depended on the angles of the right triangle (Zeller, 

1941, Adamek et.al, 2005). In his work, Rheticus, in fact, used all six trigonometric 

functions and he had calculated tables of them given to seven decimal places, although 

he never had time to finish the tables of tangents and secants (Van Brummelen, 2009). 

However, like Copernicus, Rheticus took a student, Valentinus Otho who supervised the 

calculation (by hand) of some one hundred thousand ratios to at least ten decimal 

places, filling some 1,500 pages and finally completing the tables in 1596. These tables 

are accurate enough to be used as the basis for astronomical calculations up to the early 

20th century (Van Brummelen, 2009).  

 The next trigonometer was Franscicus Viete (also known as François Viete), a 

French mathematician in medieval trigonometry. Like his predecessors, Regiomontanus 

and Rheticus, Viete thought of trigonometry as an independent branch of mathematics. 

In his two significant books, entitled the Canon Mathematicus and Universalium 

Inspectionum Liber Singularis, Viete (in 1579) made tables for all six trigonometric 

functions for angles to the nearest minute (Adamek et al., 2005). Viete was one of the 

first to apply a statement similar to the formula for the law of tangents in which a, b, and 

c are the lengths of the three sides of the triangle, and α, β, and γ are the angles 

opposite those three respective sides (see Figure 2.16):  

(𝑎 − 𝑏) (𝑎 + 𝑏) =  tan((𝛼 − 𝛽) 2⁄ ) tan(𝛼 + 𝛽) 2⁄⁄⁄ .  

  

Figure  2.16.  Law tangent 

Viète, also, was the first who applied algebraic methods to trigonometry and he 

eventually founded modern analytic trigonometry (Adamek et al., 2005). Viete, in fact, 

tried to reduce the emphasis on the calculation of solutions of triangles and instead he 
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increased the focus on analytic functional relationships ( Merzbach and Boyer, 2011; 

Adamek et al., 2005). For instance, to derive the multiple-angle formula for sin(𝑛𝛼)and 

cos(𝑛𝛼) in terms of the powers of  sin(𝛼) and cos(𝛼), by letting 𝑋 = 2 cos 𝛼  and 𝑌𝑛 =

 cos(𝑛𝛼), he obtained the recurrence formula of: 

 𝑌𝑛 = 𝑋𝑌𝑛−1 − 𝑌𝑛−2   

which, when changed back into trigonometry, becomes the formula:  

cos(𝑛𝛼) = 2 cos 𝛼 cos(𝑛 − 1)𝛼 −  cos(𝑛 − 2)𝛼 (Maor, 1998).  

The term 'trigonometry' first appears as the title of a book Trigonometriae Sive, 

de dimensione triangulis, Liber (Book of trigonometry, or the measurement of triangles) 

by Bartholomaeus Pitiscus (1561-1613). The book includes descriptions of how to 

construct sine and other tables, and a number of theorems on plane and spherical 

trigonometry with their proofs. Pitiscus also corrected Rheticus' Opus Palatinum which 

contains serious errors in the tangent and secant tables at the ends near 1° and 90° 

(Maor, 1998). Thereafter, Pitiscus published his own new work in 1600 incorporating that 

of Rheticus with a table of sines calculated to fifteen decimal places entitled the 

Thesaurus Mathematicus (Rogers, 2006). Pitiscus also was the first who discovered the 

formulas for sin 2𝑥, sin 3𝑥, cos 2𝑥, cos 3𝑥 (Robertson, 2006). Some historians believe that 

Pitiscus’s discovery of sin 2𝑥, sin 3𝑥, cos 2𝑥, cos 3𝑥 later directed Viete to introduce 

sin(𝑛𝛼)and cos(𝑛𝛼) in 1593 (Maor, 1998).  

Next, in the early 17th century, John Napier (1550-1617), a Scottish 

mathematician, invented logarithms primarily for the purpose of simplifying numerical 

calculations in trigonometry and in 1614 he published the Mirifici logarithmorum canonis 

description (The Description of the Marvelous Rule of Logarithm).The book includes a 

description of a set of tables of the logarithms of trigonometric functions. Napier’s book 

also contains some rules/propositions which unify and simplify the process of solving 

right-angled spherical triangles. For instance, one of the propositions is:  



 

30 

 

“In any triangle: the sum of the Logarithms of any angle and side enclosing the 

same is equal to the sum of the Logarithms of the side, and the angle opposite to them”. 

It is indicated that when Napier writes “the logarithm of an angle,” he implicitly meant the 

“logarithm of the sine of the angle.” (p.35, Maor, 1998, see Figure 2.17). Therefore: 

 𝑙𝑛(sin 𝐴)= 𝑙𝑛(sin 𝐶) +𝑙𝑛𝑎 − 𝑙𝑛𝑐 (Roegel, 2012). 

  

 

Figure  2.17.  logarithm of the sine of the angle 

The book also involves the proposition for the diff erential, which corresponds to 

the logarithm of the tangent. The proposition is thus:  

“In a right angled triangle the Logarithm of any leg is equal to the sum of the 

Deferential of the opposite angle, and the Logarithm of the leg remaining (Roegel, 2012). 

As an example is: 

𝑙𝑛𝑏 = 𝑙𝑛𝑐 + 𝑙𝑛(sin 𝐵) − 𝑙𝑛(cos 𝐵) (see Figure 2.18) 

 

Figure  2.18.  logarithm of the sine of the angle in right triangle  
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Around 1635, analytical trigonometry again became more prevalent with the work 

of Roberval and Torricelli, though Viete was one of the first mathematicians to focus on 

this new branch of trigonometry (Adamek et al., 2005). Torricelli and his student 

Roberval were the first to invent the graph of half an arch of a sine curve. Adamek et al., 

(2005) express that this invention was important in the progression of trigonometry and 

its moving from a computational emphasis to a functional approach.  

 About fifty years after Napier's publication of his logarithms, Isaac Newton 

(1643-1727), a Scottish mathematician, developed the differential and integral calculus. 

One of the foundations of Newton's work was his demonstration of many functions as 

infinite series in the powers of x:   

(𝑋𝑛+1 =  𝑋𝑛 −  [𝑓(𝑥) 𝑓′(𝑥)⁄ ]). Newton in 1676 invented the infinite series for 

sin(x) and similar series for cos(x) and tan(x) in his paper "Treatise on the methods of 

series and fluxions" (Ball, 2010). The discovery of infinite series representations for the 

trigonometric functions illustrates the influence of trigonometry on calculus which was 

mainly for measuring geometric figures. Later, in 1719, Isaac Newton and James 

Stirling, a Scottish mathematician, developed the general Newton–Stirling interpolation 

formula for trigonometric functions (Maor, 1998; Adamek et al., 2005; Ball, 2010). 

The next trigonometer, a Swiss mathematician, Leonhard Euler (1707- 1783) 

also had great impact on the development of trigonometry in the 18th century. He 

developed the language of functions that is used today in applied mathematics (Van 

Brummelen, 2009). In fact, the idea of function that became an integral part of 

trigonometry and analysis is credited to Euler and his work, Introduction Analysis 

Infinitorum (Maor, 1998).  

Around 1730, Euler argued that trigonometric functions are important in solving 

differential equations representing harmonic oscillations. Therefore, as a result of this 

invention, he noticed a significant interrelation between trigonometric functions of 

sines/cosines and exponential functions such as:  𝑒𝑖𝑥 =  cos 𝑥 + 𝑖 sin 𝑥  which is now well 

known as Euler’s formula (Van Brummelen, 2009). At this time, indeed, the strict 
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analysis of trigonometric functions was established and they also introduced to the world 

the hyperbolic trigonometric functions: (cos 𝑥 = 𝑒𝑖𝑥 + 𝑒−𝑖𝑥 2⁄  and 

 sin 𝑥 = (𝑒𝑖𝑥 − 𝑒−𝑖𝑥) 2𝑖⁄ ).  

Euler also invented the power series expansions for e and the inverse tangent 

function:   acrtanz =  ∑ (−1)z2n+1 2n + 1⁄∞
n=0 . Van Sickle (2011) states that when 

trigonometry became analytic and involved complex numbers, the trigonometric 

functions were thought of completely apart from their line representations and the circles 

on which they originated; rather, they transformed into a number or ratio, the ordinate 

point on a unit circle (Figure 2.19).  

 

Figure  2.19.  A geometric interpretation of Euler's formula 

It is possible that Euler might have got the idea of trigonometric functions from 

Georg Simon Klugel (1739-1812), the author of a mathematical dictionary. He first 

introduced the term “trigonometric functions” in Analytische Trigonometrie in 1770 (Van 

Sickle, 2011). Klugel also defined the trigonometric functions as ratios for the first 

time (Figure 2.20):  

sin 𝜃 =  𝑎 𝑐⁄      cos 𝜃 =  𝑏 𝑐⁄      tan 𝜃 =  𝑎 𝑏⁄     sec 𝜃 =  𝑐 𝑏⁄      csc 𝜃 = 𝑐 𝑎⁄    cot 𝜃 =  𝑏 𝑎⁄  
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Figure  2.20. Trigonometric function as ratio 

In 1715, the English mathematician Brook Taylor (1685-1731) defined the 

general Taylor series (a representation of a function as an infinite sum of terms that are 

calculated from the values of the function's derivatives at a single point) and gave the 

series expansions and approximations for all six trigonometric function in his work 

called Methodus incrementorum directa et inversa. For example:   

sin 𝑥 =  ∑
(−1)𝑛

(2𝑛 + 1)!

∞

𝑛=0

𝑥2𝑛+1 = 𝑥 −
𝑥3 

3!
+  

𝑥5

5!
− ⋯    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

cos 𝑥 =  ∑
(−1)𝑛

(2𝑛)!

∞

𝑛=0

𝑥2𝑛 = 1 −
𝑥2

2!
+  

𝑥4

4!
− ⋯ .  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

 

2.4. Trigonometry in the Contemporary Curriculum 

Later in the eighteenth century, trigonometry was made a requirement of 

university and high school mathematics in some countries such as the United States and 

Canada. It was first taught as entirely geometrical, in terms of trigonometric line, and 

later ratio definitions became the common practice (Adamek et al., 2005). Nowadays, 

trigonometric concepts are taught in grade 10. At this grade, students in British Columbia 

(here I will only discuss the B.C. curriculum, because in Canada each province has its 
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own curriculum and students learn trigonometry in different levels according to their 

province’s curriculum) understand primary trigonometric ratios (sine, cosine, tangent) 

through applying similarity to right triangles, generalizing patterns from similar right 

triangles, and solving trigonometric problems.  

The following year (grade 11), students learn how to solve a contextual problem 

that involves two or three right triangles, using the primary trigonometric ratios. While in 

grade 10 and 11, B.C. students learn trigonometry in the geometry section, there is a 

separate section called trigonometry in Pre-calculus 11 and 12. In Pre-calculus 11, 

pupils establish an understanding of angles in standard position [0° to 360°], solve 

problems using primary trigonometric ratios for angles from 0° to 360° and then solve 

problems using the cosine law and sine law. In Pre-calculus 12, students gain an 

understanding of angles in degrees and radians, develop and apply the equation of the 

unit circle and solve problems through using the six trigonometric ratios for angles. At 

this level, students also have opportunities to graph and analyze the trigonometric 

functions (sine, cosine and tangent), to solve the first and second degree trigonometric 

equations with the domain expressed in degrees and radians and to prove trigonometric 

identities (e.g., reciprocal identities, sum or difference identities and double-angle 

identities). 

In most of the current textbooks, trigonometry is initially introduced with triangle 

trigonometry and then circle trigonometry. However, as Bressoud (2010) indicated, this 

type of teaching practice (teaching first through triangle trigonometry followed by circle 

trigonometry) is often problematic because this practice leads to student 

misconceptions. For instance, students often have a difficult time conceiving of sine 

(which is half of that chord) as a periodically varying function when students are first 

taught to think of sine as opposite over hypotenuse (Van Sickle, 2011; and Bressoud, 

2010). However, students are still forced to learn first through triangle trigonometry 

because it is thought to be simpler, even though history suggests just the opposite (Van 

Sickle, 2011). Bressoud (2010) expresses: 
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“Trigonometry arose in the study of the heavens among the classical Greeks, 

and this was always circle trigonometry. It took over a thousand years before the 

first intimations of triangle trigonometry appeared, and it was not until the 16th 

century that it became generally used as a tool for surveying. The switch in 

instructional emphasis from circle trigonometry to triangle trigonometry did not 

occur until the mid- to late-19th century” (p. 1). 

Van Sickle, (2011) indicates that teachers assist students’ understanding of 

trigonometry through reviewing the history of the development of trigonometry from the 

past to the present. Studying the history of trigonometry and informing students about 

the origins of trigonometry could help students discovering where their trigonometric 

formulas, for instance, come from, rather than simply memorizing them. Teachers, also, 

by knowing about the history of trigonometry, might apply some of the earlier theorems 

in order to help students comprehended the present concepts.    

2.5. Summary and Conclusion  

Trigonometry in general and trigonometric functions in particular have a long 

history as thousands years ago ancient Greek and Babylonian astronomers used 

trigonometry for their calculations. The slow gradual development of trigonometry, in 

fact, illustrates the chronological difficulty of the topic. The history of trigonometry shows 

that trigonometry was further expanded and developed by Arab and Persian 

mathematicians and eventually it was noticed by Europeans as a scientific subject 

independent from astronomy.  

According to historians’ reports, it was in the eighteenth century that trigonometry 

became a subject in high schools and universities. Mathematics textbooks often begin 

with some basic ideas such as angle and radian and then, trigonometric functions are 

introduced to students through right triangle strategy. Afterward, the trigonometric 

functions are presented to students in the unit circle. As can be seen from the history of 
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the development of trigonometry, this way of teaching trigonometric concepts from right 

triangle to the unit circle is opposite to the history of trigonometry.  

Having looked at the historical development, in the next chapter I turn to discuss 

research studies focused on teaching and learning trigonometry.  
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Chapter 3.  
 
Learning and Teaching Trigonometric concepts 

This literature review aims to discuss existing research on the teaching and 

learning of trigonometry; it is divided into three parts, based on the specific focus of the 

identified studies. The first part presents an overview of the studies focused on students 

and trigonometric concepts. This part itself is divided into three sections. The first section 

provides insights into students’ thinking and understanding of trigonometric functions. 

The second section investigates a group of studies addressing students’ misconceptions 

and difficulties of trigonometric functions and some related topics (e.g., angle measure). 

The final section of the first part addresses the effect of technology and students’ leaning 

of trigonometric concepts. The second part of this literature review addresses studies 

that focus teachers and trigonometric topics. This part covers research on various 

teaching methods that are able to effectively support the learning of trigonometry by 

students. The final section of the second part discusses teachers’ difficulties in grasping 

trigonometric concepts. This review will conclude with the third part, which will highlight 

the need for further research on teaching and learning trigonometric concepts and in 

particular transformations of sinusoidal functions. 
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Table  3.1. The literature review outline 

 

3.1. Research Studies on Students and Trigonometric 
Concepts 

As mentioned, the research studies on students and trigonometric functions are 

categorized into three sections: 1) students’ understanding of trigonometric functions, 2) 

students’ misconceptions in learning trigonometric concepts, and 3) technology and its 

influence on students’ understanding of trigonometric topics. 
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3.1.1. Students’ Understanding of Trigonometric Functions  

Undergraduate students of sciences, are required to study trigonometry, 

especially trigonometric functions, because a strong foundation in trigonometric 

functions will likely strengthen their learning of various mathematical topics, such as 

Fourier series and integration techniques (Moor, 2010). It is shown that understanding 

calculus and analysis is dependent on learning of trigonometric functions (Hirsh, 

Weinhold and Nicolas, 1991; Demir, 2011). However, while other functions (e.g., 

logarithmic functions) can be computed by performing certain arithmetic calculations 

expressed by an algebraic formula, trigonometric functions involve geometric, algebraic 

and graphical concepts and procedures, simultaneously (Weber, 2005, Demir, 2011). In 

other words learning and understanding trigonometric functions is a difficult and 

challenging task for students, compared to other mathematics functions, such as 

polynomial functions, exponential and logarithmic functions. 

To gain insights into students’ understanding of trigonometric functions, Weber 

(2005) studied a group of college students who were taught trigonometric functions with 

two different instructional approaches: experimental instruction and lecture- based 

instruction. The experimental instruction used was based on Gray and Tall’s (1994) 

theoretical notion of procept (the amalgam of three components: a process that 

produces a mathematical object and a symbol which is used to represent either process 

or object). The fundamental goal of this instructional approach was to provide 

opportunities to the students to participate in the class activities included construction of 

the unit circle, and drawing angles and related line segments corresponding to their 

trigonometric values (Weber, 2005). In the traditional, lecture-based, textbook-driven 

approach, the main emphasis was on developing students’ procedural skills. Most of the 

class time was devoted to providing students with explanation on how to do particular 

exercises, with illustrative examples. After completing the procedure, all the students 

were asked a series of questions such as:   

“Which is bigger sin 37° or sin 23°? Explain why.”  
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 “Without measuring, estimate the sin of 170°.” 

“Is sin 145° positive and why?”  

“Explain why sin θ can never equal 2.” 

The findings of the study demonstrated that the traditional approach provided a 

limited understanding of trigonometric functions to the students; no student could give 

justification for the reason why sin(θ) could never be 2. Students were often unable to 

rationalize various properties of trigonometric functions or reasonably estimate the 

output values of trigonometric functions for various input values. Although the students 

were reminded of the definition of functions, “for each input there can be only one 

output,” none of students could propose reasonable answer for the question of “why sine 

is a function” (Weber, 2005). Consistent with these results, Challenger (2009), Gür 

(2009) and Marchi’s (2012) studies reported a fragmented understanding of 

trigonometric functions for groups of high school students taught in a traditional lecture-

based course.  

In Weber’s study (2005), however, the experimental student groups were able to 

approximate values of basic trigonometric expressions, and they could determine 

properties of trigonometric functions. Weber realized that at least 30 out of a class of 40 

students were able to describe sine function in terms of a process between an input and 

output quantity. The students could also discuss why these functions have the properties 

that they do. Weber (2005) found that the students in the experimental group were able 

to describe the process of drawing the angle and defining its sine, and then clarify that 

for each angle there was only one possible point of intersection with the circle. He 

concluded that these students (the experimental group) were able to understand 

trigonometric functions because they could develop images of the geometric processes 

used to obtain those values in context of the unit circle. Similar to Moor (2010), Weber 

(2005) indicated that there is a close relationship between the unit circle representations 

of trigonometric expressions and students’ understanding of these functions. However, 

these results contradict the findings of Kendal and Staceys’ study (1997).  
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Kendal and Stacey (1997) assessed 178 high school students’ understanding of 

trigonometric functions through two different methods: ratio and unit circle. The research 

shows that students had a better understanding of trigonometric functions where 

functions were defined in terms of ratios of sides of right angled triangles (students often 

taught SOHCAHTOA as a memory aid), rather than with the unit circle method. These 

results are consistent with those of Palmer’s study (1980) in which the students were 

randomly assigned either a ratio or unit circle instruction to inspect which group grasped 

more trigonometric functions. The students in the ratio classes outperformed their unit 

circle counterparts. Burch (1981) also concluded that the participant students had 

difficulty interpreting trigonometric functions in the unite circle, recognizing that x and y 

coordinates of a point on the unit circle are cosine and sine values of corresponding 

angles compared with other determined trigonometric functions in terms of right triangle.  

Brown (2005), Demir (2011) and Marchi (2012) suggest that students would 

better understand trigonometric functions if they have more opportunities to take part in 

a learning trajectory where both the unit circle and right triangles are utilized, rather than 

learning trigonometric functions through instructional designs which focused on only one 

of these two methods. To examine high school students’ understanding of trigonometric 

functions, Brown (2005) developed a model of students’ understanding of trigonometric 

functions within the geometry world of triangles and angles (in degrees), and within the 

context of the unit circle. In this model, the sine and cosine of an angle can be defined in 

three different ways: as ratios, as distances, and as coordinates. The results of Brown’s 

(2005) investigations of 120 high school students revealed that those students who were 

able to use and connect all interpretations ( ratios in right triangle, directed distances and 

coordinates) and moved flexibly between them, could define trigonometric functions and 

were also better problem solvers. However, Brown (2005) noticed that the majority of the 

students could still define trigonometric functions and work effectively with only one view, 

instead of making connections between all three representations. Brown concluded that 

most students had an incomplete understanding of trigonometric functions. 

Following the students’ lack of understanding of trigonometric functions in the 

learning model developed by Brown (2005), Demir (2011) modified Brown’s model and 
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he established a new learning trajectory comprised of three different representations i.e. 

right triangle, unit circle, and graph. Demir studied 24 students aged 16-17, and found 

that the new learning trajectory could support students’ understanding of trigonometric 

functions in all aspects: the unit circle context (e.g. students knew coordinate definitions 

of sine and cosine, and utilized them appropriately to point to the correct position with 

the correct direction); the connections between unit circle and triangle context (e.g., 

students could determine a required reference triangle, and a proper trigonometric ratio 

to  calculate the required trigonometric value, e.g., sin 45˚ for sin 225˚); and the graph 

context (e.g., students were successful in interpreting the trigonometric graphs to state 

the domain and range of the trigonometric functions). As reported by Weber (2005) and 

Challenge’s (2009) studies in which the students demonstrate a certain lack of reasoning 

about trigonometric functions, the results of Demir’s study (2011) show that even with 

the new learning trajectory, a number of students were still unable to explain why sine 

and cosine are functions.  

This section of the literature review focused on the research studies (e.g., Weber 

2005 and Demir, 2011) that examined students’ understanding of trigonometric 

functions. The results of the limited number of research studies show that students often 

encountered various difficulties (e.g., reasoning why sin 𝜃 could never be 2) when 

learning trigonometric functions. There have been some studies (e.g., Orhun, 2001 and 

Tuna, 2013) which connected students’ misconceptions of trigonometric functions with 

difficulties in understanding some other trigonometric concepts such as angle measures, 

and graphs of trigonometric functions. In next section, studies focusing on students’ 

conceptions of angle measure and graph of trigonometric function are reviewed. 

3.1.2. Student’s Difficulties/ Misconceptions in Grasping 
Trigonometric Concepts  

In this section, the research studies focused on the difficulties students often 

encountered when completing trigonometric tasks are described in detail. 
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3.1.2.1. Students’ Difficulties and the Concept of Angle Measure 

A number of studies (e.g., Demir, 2011 and Tuna, 2013) have stressed that a 

deeper comprehension of the concept of angle measure facilitates students’ 

understanding of trigonometric functions. Degree and radian are used as units of 

measurement for an angle. Some researchers (e.g., Weber, 2005; Brown, 2006; 

Challanger, 2009 and Demir, 2011) highlight students’ difficulties in understanding angle 

measures in degrees, especially if they are required to work with acute angle such as 

sin 23˚ (Weber, 2005 and Demir, 2011), negative angles such as sin(−45˚) (Challanger, 

2009) or if the angle is greater than 360 degrees such as sin 405˚(Brown, 2006). 

Therefore, Martinez-Sierra (2008) and Tuna (2013) emphasize the use of radian to 

calculate the angle of trigonometric functions.  

Tuna (2013) expressed that mathematicians often introduce radian as “the ratio 

of the length of the arc faced by a central angle to the length of the radius of the circle.” 

This definition refers to the proportion of two lengths and, then, produces the radiant unit 

of a real number, which can be attributed to the correspondent radiant measure by the 

wrapping function (defined by wrapping a real number line around unit circle). 

Essentially, this is the way mathematicians have expressed trigonometric functions over 

real numbers (Akkoç and Gül, 2010). However, degree is defined by breaking a unit 

circle into 360 equal parts, and in turn, cannot be used as the domain of trigonometric 

functions. The formation of such a relationship between the concepts of radian and 

trigonometric functions is of crucial significance for students’ understanding of 

trigonometric functions (Tuna, 2013).  

Although the use of radian has a positive impact on understanding trigonometric 

functions, some studies (e.g., Fi, 2003 and Akkoc, 2008) pointed to students’ difficulty in 

the conceptualization of angle measurements in radian. For instance, Fi (2003), in study 

of 14 undergraduate students, found that the students lacked understanding of radian. 

11 of the 14 participants presented an understanding of the methods for converting 

between degree and radian measures (“2π” radians are equal to 360°), in contrast with 

results of  the Orhun (2001), Steckroth (2007) and Akkoç’s (2008) studies in which 
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students had difficulties changing degree to radian, and vice versa. However, none of 

the participants gave an accurate definition for radian measure. Akkoç (2008) and 

Tuna’s (2013) research confirms Fi’s (2003) results. Akkoç (2008) indicated that the 

majority of 42 undergraduate students were unable to define radian, and only one 

defined radian as the length of an arc: “radian is the angle measurement which is equal 

to the arc length on the unit circle” (p. 862). Tuna (2013) also found that while 90% of 

undergraduate students participating in his study were unable to define radian in a circle, 

a large number of students were able to define the concept of angle correctly.  

It was not only undergraduate students who appear to have difficulty in grasping 

the definition of the concept of radian, as suggested by Fi (2003), Akkoç (2008), and 

Tuna (2013). Orhun (2001), and Akkoc and Gül (2010) also show the same problem with 

high school participants. Akkoc and Gül (2010) noticed that high school students (grade 

10) could not define radian as ratio of two lengths: the length of the arc of a central angle 

of a circle, and the radius of the circle. Orhun (2001) asked 17 students from grade 10 to 

answer the following two questions: “What is the arc length subtended by a central angle 

60 degrees in a unit circle?” and “What is the measure of a central angle x subtends an 

arc of length pi/3 radian?” He found that only 19.5% were successful in calculating 

angles from given arc lengths. However, 70.1% could find the arc length subtended by 

an angle in a unit circle correctly. In other words, the students who participated in 

Orhun’s (2001) study had difficulties similar to the participants of Akkoc and Gül (2010) 

and Tuna (2013).  

In addition to students’ difficulty in defining radian, these studies (e.g., Orhun, 

2001 and Fi, 2003) reported students’ misunderstanding of the symbol 𝜋. Orhun (2001) 

reports that many of grade 10 students determined 𝜋 as the unit for radian measure, and 

that the students argued that 1 radian equaled to 180° instead of a number close to 3.14. 

Fi (2003) and Akkoç (2008) find exactly the same difficulties for participant 

undergraduate students. In other words, students do not view 𝜋 radian as a real number 

when discussed in a trigonometry context (Tuna, 2013).  
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The aforementioned misconceptions of angle measure, which have a direct 

influence on the understanding of trigonometric functions, are not the only difficulties 

students may encounter. There are also some other important aspects such as the 

conception of graphs, which is a very useful tool for students in learning trigonometric 

functions. In what follows, students’ understanding of graph of trigonometric functions is 

reviewed in detail. 

3.1.2.2. Students’ Difficulties and Graphs of Trigonometric Functions  

Another important issue relating to students’ difficulties in understanding 

trigonometric functions deals with graphs of trigonometric functions (Demir, 2011). 

Breslich (1928) and Orhun (2001) stated that students, without using graphs, would 

understand only one aspect of trigonometric functions, the ratio aspect, and they would 

miss the function aspect entirely. Brown (2006) and Demir (2011) expressed that if 

teaching trigonometric functions occurred in the context of graphs, students would have 

a greater chance of conceptualizing sine and cosine as functions of real numbers, and 

explaining why sine and cosine graphs represent functions by utilizing the formal 

definition “There is only one y for every x”, or the process definition based on an input-

output mechanism, or a combined conception of the first two, like “There is only one 

output for every input”.  

Although students’ conceptions of trigonometric functions rely heavily on their 

comprehension in the area of graphs of trigonometric functions (Vinner, 1983 and Demir, 

2011), many researchers (e.g., Baki and Kutluca, 2009; and Rose, Bruce and Sibbald, 

2011) signified graphs of trigonometric functions as the most challenging topic that 

students typically encounter in mathematics classrooms. In a survey, 65.9% of 123 

grade 10 students and even 93% of 146 mathematics teachers described trigonometric 

functions and graphs of trigonometric functions as the most difficult topics (for students) 

in the area of trigonometry (Baki and Kutluca 2009). Studies of Adamek, Penkalski, and 

Valentine (2005) and Tatars, Okur, and Tuna (2008) support the complexity and difficulty 

of this topic.  
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Students’ difficulties in understanding graphs of trigonometric functions can be 

traced to the following contexts, in which students are required to  1) make connections 

between algebraic and graphical representations (Lambertus, 2007), and 2) make 

transitions between the unit circle and the graphs, which are considered to be a 

fundamental aspect for understanding trigonometric functions (Rose et al., 2011; Demir, 

2011; Brown, 2006). Whereas the first context is common among trigonometric functions 

and other mathematics functions (e.g., algebraic functions as mentioned in Gagatsis, 

Elia & Kyriakides, 2003), the second one is only specific to trigonometric functions.  

In studies involving undergraduate student participants, Leinhardt, Zaslavsky and 

Stein (1993), Yerushalmy and Schwartz (1993), and Knuth (2000) recognized that the 

majority of students were limited by their focus on using algebraic representations to 

solve the mathematics problems. When they were asked to complete a task by plugging 

values into an equation or finding points on a graph, they chose the algebraic approach. 

Even when students had to approximate a y-value on a graph, they plugged the value 

into the equation instead of using the graph. As a result, students could not develop the 

skills of flexibly employing, selecting, and moving between algebraic and graphical 

representations. In other words, many students had difficulties in understanding the links 

between equations and their graphs (Knuth, 2000). Although these previously mentioned 

studies worked on other functions instead of trigonometric functions, Challenger (2009) 

noticed that some high school students had common types of difficulties. For example, 

students had difficulty when asked to find the coordinates of the point where a given 

graph of a particular trigonometric function crossed the y-axis (both equation and the 

graph given to the students). Challenger observed that the students ignored the given 

graphs and they only tried to find the points where the equations equal zero. In other 

words, the students were unable to provide a link between graphical and algebraic 

representations in the context of trigonometry. Similarly, Marchi (2012), in a study of high 

school students, indicated that none of the high school students who participated in the 

study utilized a graphical representation to find the answer for tasks such as “Explain 

how you would solve the following equations: sin 𝑥 =
1

3
  and 2 sin 𝑥 + 1 =  

2

3
,” unless it 
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was suggested to do so. Marchi concluded that the students, in fact, did not know that 

using a graph was a method for finding a solution.  

As mentioned previously, the other set of research focused on graphs of 

trigonometric functions to explore students’ abilities in making connections between the 

unit circle and graphs. Brown (2005), found that some honors high school students 

(grade 10) were unable to connect a rotation on the unit circle with a point on a graph of 

sine or cosine, and only a few students could conceptualize trigonometric graphs 

through the arc lengths on the unit circle and the corresponding horizontal position. The 

results of Brown’s study confirmed the findings of Marchi’s (2012) study in which some 

high school students could not correctly recall information and were not able to make the 

right connections when trying to connect the graph for sin 𝑥 with the unit circle. Similarly, 

Demir (2011) noticed that in spite of some students’ success, a number of high school 

students (grade 11) still had difficulties explaining the coordinates on the graphs as arc 

lengths and vertical positions on the unit circle, or marking the point on the graph 

corresponding to a given position on the unit circle.   

To sum up, students’ difficulties in the concepts of angle measure (degrees and 

radian) and graphs of trigonometric functions are discussed in this section. The results of 

a number of research studies (e.g., Tuna, 2013) illustrate that students often 

encountered difficulties in defining radian and grasping 𝜋 as a real number. The studies 

(e.g., Marchi, 2012 and Brown, 2005) also reported students’ inabilities to make 

connections between algebraic and graphical representations as well as to connect the 

unit circle and the trigonometric graphs when working with trigonometric curves. To 

overcome the reported difficulties in using graphs for trigonometric functions, Zengin, 

Furkan and Kutluca (2011) advise teachers to use technical devices such as GeoGebra 

to improve students’ learning of graphs of trigonometric functions. In the next section, 

the effect of technology on students’ understanding of trigonometry, both in general, and 

specifically on graphs of trigonometric functions, is described. 
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3.1.3. Students’ Learning of Trigonometric Concepts and the Effect 
of Technology 

There have been limited number of research studies (e.g., Blackett and Tall, 

1991; Yenitepe 2002; and Choi-Koh, 2003) on the influence of technology on the 

learning of trigonometric concepts. Robison (1996), for instance, investigated the impact 

of the use of Mathematica by 99 college students taking a course in trigonometry. The 

researcher divided students into two groups: a group that received instruction that 

included Mathematica (a computational software program used in mathematical field) 

and another group that was presented with static image and they were asked to use 

their imaginations for solving trigonometric problems. The results of the study illustrate 

that there is no difference in achievement between the group taught with animation 

(Mathematica) and the group taught with static images. However, these findings are in 

contrast with the results of Blackett and Tall’s (1991) study, which shows that 

implementing a computer software package  on the topic of triangle trigonometry had a 

positive impact on students’ understanding of trigonometric concepts. In a study by 

Yenitepe (2002), 78 high school students participated in a class lecture about unit circle 

trigonometry without technology and with technology; Yenitepe (2002) noticed that the 

students involved in technology-based instruction outperformed their counterparts in the 

exams. 

  Research studies (e.g., Choi-Koh, 2003; Army, 1991; Stacey and Ball, 2001) 

specified that technology plays a fundamental role in understanding graphs of 

trigonometric functions. Choi-Koh (2003) said that graphs in traditional teaching methods 

have served as “a display representations mean” because teachers have had only static 

media. In both the table and formula environments, graphical variations in the display 

are not continuous; they are drawn according to the discrete data. Technology, on the 

other hand, provides students with an opportunity to use tools to manipulate graphic 

objects freely (Choi-Koh, 2003) and it release students from the tediousness of 

sketching time-consuming graphs by hand, conserving their mental energy for 

conceptual development (Kissane & Kemp, 2009 and Rose et al., 2011).  
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To investigate the impact of graphing calculators on students’ mathematics 

achievements, Choi-Koh (2003) invited a 10th grade student to work on seven tasks 

including creating a graph of trigonometric functions. The results of the case study 

illustrated that the student utilized the graphing calculator as a tool to successfully graph 

sine functions and also to detect the changes in the graphs with varying coefficients. 

Choi-Koh (2003) consistent with Yerushalmy (1988), Army (1991), Stacey and Ball 

(2001) and (Lambertus, 2007) concluded that technology-based learning environments 

provide a chance for students to strengthen the connection between graphs and 

symbolic representations, to address their main difficulties in graphing trigonometric 

functions regarding this connection (between analytical and graphical representation). 

These results contrast a few investigations such as Colgan’s (1992) study on eight 

students in grades 11 and 12. In this study, the students were able to use a computer- 

based graphing tool (Zap-a-Graph) when studying the graph of trigonometric functions.  

Colgan (1992) noticed that this technical tool did not help students to make connections 

between algebraic and graphic representations of trigonometric functions and even in 

some cases led to misunderstandings. The students stated that Zap-a-Graph was not 

easy to use because it could not plot graphs of trigonometric functions in different colors 

and used only black and white images. 

 Garofalo, Drier, Harper, Timmerman, and Shockey (2000), and Demir (2011) 

expressed that technical tools such as GeoGebra are cognitive tools that support 

students in understanding connections among different representational systems in 

trigonometry. They mentioned that use of technology in mathematics classrooms, 

specifically, would allow students to establish the connections between unit circle and 

graphs, one of the most problematic areas for students studying trigonometry (in the 

area of graphing trigonometric functions). Similarly, Kissane and Kemp (2009), and 

Zengin, Furkan, and Kutluca (2012) suggest that Dynamic Geometry software would 

enable students to form relationships between graphical representations of trigonometric 

functions and positions of points on the unit circle. These results are consistent with 

Tall’s (1986) study in which ‘A’ level students utilized computer graphics as part of a 

planned teaching strategy. It showed that students were able to link unit circle and 

trigonometric graphs successfully.  
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To sum up, a few research studies have focused on the influence of technology 

on students’ learning of trigonometric concepts. While the results of some studies such 

as Colgan (1992), and Robison (1996) show no differences between the performances 

of students who have been taught with technology and those who have been taught 

without it, other studies found the opposite, especially in the area of graphs of 

trigonometric functions. All the studies (e.g., Zengin et al., 2012 and Garofalo et al., 

2000) proposed that technology environments such as Geo-Gebra and Dynamic 

Geometry software would develop students’ achievements in the area of graphing 

trigonometric functions by providing students with opportunities to make connections 

between unit circle and graph of trigonometric functions, as well as to connect analytical 

representations with graphical representations. In other words, technical devices are 

appropriate pedagogical tools that teachers could implement in classrooms to improve 

students’ performance in depicting graphs of trigonometric functions. The next section 

describes in detail some other important teaching strategies researchers suggest for 

teaching trigonometric concepts. 

3.2. Research Studies on Mathematics Teachers and 
Trigonometric Concepts   

In this section, the research studies focused on mathematics teachers and 

trigonometric concepts are presented in two parts: 1) teaching trigonometric concepts 

through different instructional designs and 2) teachers’ difficulties in teaching 

trigonometric concepts.  

3.2.1. Teaching Trigonometric Concepts through Different 
Instructional Designs  

There is a bulk of published research which studies how to teach trigonometry 

effectively; however, researchers do not agree on a specific instructional method which 

will guarantee students’ success in learning trigonometry. In this part, I summarize 

important outcomes of these researches. Weber (2005) suggests that students would 
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not benefit if instructors concentrate on teaching trigonometry through traditional, 

textbook-driven lessons. He says that students would conceptually understand 

trigonometric concepts and in particular trigonometric functions when teachers provide 

opportunities for reasoning with numerical values and connecting them with geometric 

processes, like creating the unit circle. Weber (2005) and Marchi (2012) state that this 

can only be achieved if various representations are introduced and utilized along with 

class discussion of their relationships when teaching trigonometry. 

Some other researchers such as Kendal and Stacey (1997) advised teachers to 

teach trigonometric functions through the ratio method because students who had been 

taught through this method in their study earned higher marks in a trigonometry exam 

compared to the group who learned trigonometry by the unit circle method. By 

comparing the techniques and content utilized to teach trigonometry by Turkish and 

British teachers, Delice and Monaghan (2005) found that mathematics teachers need to 

develop students’ performance at algebraic aspects of trigonometry like “simplifying” 

trigonometric expressions (because they noticed that the students typically had 

difficulties in simplifying trigonometric expressions). They add that those mathematics 

teachers who emphasize trigonometric applications in real-life situations as part of their 

method of instruction, better support students’ success by providing students with 

relevant challenges. In a similar study, Gould and Schmidt (2010) invited high school 

teachers to ask their students to create digital story problems about real-life situations 

and then apply trigonometric functions to solve those problems. The authors expressed 

that the combination of students’ motivation and this non-traditional activity approach 

would assist students in learning trigonometry successfully. 

Barnes (1999) stated that teachers could develop students’ achievements in 

trigonometry by giving them chances to participate in creative writing. She gave her own 

high school students a set of word problems (related to trigonometric concepts) to solve 

in groups and then asked students to explain their mathematics accurately in writing. Not 

only did this exercise reportedly help students to be less afraid to tackle word problems, 

it also improved their understanding of trigonometric concepts, whereas they had not 

understood it well, previously.  
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In a study of 21 grade 10 students over four weeks of trigonometry lessons, Gur 

(2009) realized that the majority of students could not justify their answers and often 

preferred to use a formula driven method (like the unit circle) according to mathematics 

textbooks instead of establishing a conceptual context for what the formula meant. After 

his observations, Gur (2009) encouraged teachers to allow the students to describe 

trigonometric definitions or concepts in their own words instead of inviting them to 

memorize information without understanding it conceptually. Gur (2009), similar to 

Orhun (2001), stated that following the memorizing formula teaching strategy would 

often provide students with the knowledge of trigonometry, only for a short period of 

time. Meanwhile, students would encounter difficulties in remembering and 

understanding the formula later, and in transferring the principle learned to new 

situations.  

In addition to advising teachers to teach trigonometric functions through 

employing their graphs to help students better understand trigonometric concepts, Orhun 

(2001), Topçu et al., (2006), and Akkoc (2008) suggest that mathematics teachers begin 

defining trigonometric functions before they teach its relationship to angles. Orhun urge 

that this change in teaching trigonometry is necessary because the measurement of an 

angle in degree opposes the general definitions and concepts in trigonometry, and this 

often confuses students. Byers (2010) and Pesek and Kirshner (2000) have another 

suggestion for teachers. They propose that mathematics teachers avoid teaching 

trigonometry by beginning the instruction with definitions of trigonometric concepts first 

and then spending remaining class time on concept development, during which time 

students often experience greater difficulty when trying to construct trigonometric 

representations. Instead, the teachers require teaching trigonometric facts through 

various representations such as the unit circle, vector, ratio and functions (suggested by 

Weber (2005) as well).  

Subsequent to their findings on students’ difficulties in understanding radian (as 

mentioned in the section 3.1.2.1) and in order to address and eliminate this difficulty, 

Akkoç and Gül (2010) recommend that mathematics teachers teach radian by clearly 

explaining its connection to arcs. They state that if teachers provide students with 
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opportunities to participate in a learning trajectory based on computer programs which 

can explore relations between arc lengths and angles in circles, and identify 

trigonometric functions primarily in domain of arc lengths, then, students would better 

understand the concept of radian. Moreover, Moor (2012), encourages mathematics 

teachers to use an arc approach to angle measurement by which students could develop 

an understanding of angle measurement as a process based on calculating an arc 

length subtending a fraction of circle circumference. According to this approach, radians 

and degrees measure the same quantity and are thus scaled versions of one another. 

One degree is 1/360th of circumference of any circle centered at the vertex of angle and 

an angle that measures, and 1 radian subtends 1/2pi of circumference of any circle 

centered at vertex of angle. Moor’s suggestions of using an arc approach to teaching 

have the potential to be quite impactful.  

To conclude, the different studies suggest various teaching methods, including 

unit circle, right triangle, story writing, real-word problems, and computer programs to 

better support students in understanding trigonometric concepts and eliminate related 

comprehension difficulties. In addition to the proposed teaching methods, the issue of 

mathematics teachers’ difficulties in teaching students trigonometric concepts is an 

important part of the research literature, and will be described in the following section.  

3.2.2. Mathematics Teachers’ Difficulties in Teaching 
Trigonometric Concepts  

Trigonometry is not only a challenging topic for students; it is also difficult for 

teachers to understand. Limited number of research studies focus on teachers and their 

understandings of trigonometric concepts, revealing the teachers’ difficulties, which are 

often similar to some of the students’ difficulties in understanding the concepts of 

trigonometry (as mentioned in the previous section). For example, radian which is one of 

the challenging trigonometric concepts for students is considered a difficult topic for 

mathematics teachers too. In a study of 14 mathematics high school teachers, Topçu, 

Kertil, Akkoc, Kamil, and Osman (2006) explored that most teachers had a lack of 

understandings of radian. For instance, in the following question:  
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 f : R → R and f(x) = x sin x is given. Plot the following points on the Cartesian 

plane. 

a) (30, f(30)) = ?  b) ( 
𝜋

2
, f(

𝜋

2
))   c) (

𝜋

6
, f (60)) ?  d) (2, f(

𝜋

3
))?  

 

Topçu et al., (2006) noticed that only 3.9% of the teachers considered “sin 30” in 

radians and 90.2% of them considered “sin 30” in degrees. In other words, the 

researchers realized that the majority of teachers did not consider radian as a real 

number although the trigonometric functions that were given to them were explicitly 

defined as a set of real numbers. These results are in line with the findings of Cizmesija 

and Siqus’s (2013) study in which the participant teachers refer to pi as the unit for 

measuring radian, whereas real numbers not being of the form q 𝜋 (q, 𝜋), q ∈ℚ, are not 

realized as the radian measures of an angle. Furthermore, the results of both 

aforementioned studies illustrate that the teachers preferred to answer the given 

trigonometric tasks in degree rather than in radian. For example, to find a length of an 

arc subtending central angle given in radians, the teachers preferred to change radians 

into degrees. Topçu et al., (2006) and Cizmesija and Siqus’s (2013) conclude that this 

tendency to convert radian into degrees might be because of the teachers’ lack of 

understanding of radian, since almost none of the participant teachers could successfully 

define the radian as a ratio of two lengths: the length of the arc of a central angle of a 

circle, and the radius of the circle. These findings are consistent with Fi’s (2006) study in 

which teachers encountered similar difficulties in understanding the concept of radian. 

These teachers’ mistakes are in line with the misconceptions of students as reported in 

Moore (2010), Demir (2011), and Moor, LaForest and Kim (2012).  

Teachers’ misconceptions of inverse trigonometric functions are also another the 

difficulties noticed in Fi’s (2006) study. Although the teachers recognized that the given 

trigonometric functions were the inverse functions, they discussed them in terms of 

reciprocal functions. Fi stated that the reason for these teachers’ mistakes might be due 

to their confusion with the real number reciprocal written form. For a non-zero real 
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number x, the multiplicative inverse is written 𝑋−1 and it is equal to  
1

𝑋
, the reciprocal of x, 

but this is not the case for trigonometric functions. Fi (2006) also indicated that none of 

the teachers who participated in the study had a conceptual understanding of the co-

concept (sine - cosine, tangent - cotangent, and secant – cosecant). The researcher 

concluded that the teachers often assumed inverse, reciprocal, and co-function as 

equivalent ideas when answering the interview questions.  

In this section, the results of the limited number of research studies that focused 

on teachers’ difficulties in the area of trigonometric concepts such as conception of 

radian, inverse trigonometric functions and co-functions, are summarized. Some of the 

teachers’ difficulties in understanding the definition of radian and converting radian to 

angle and vice versa, are similar with the students’ misconceptions of trigonometric 

functions. Therefore, it is not surprising that one concludes that the students often make 

the mentioned mistakes when working with trigonometric concepts because the 

mathematics teachers teaching the concepts of trigonometry do not fully grasp these 

complex concepts themselves. What is missing from all of this literature is a closer look 

at transformations of trigonometric function. It is exactly this phenomenon that I am 

interested in. 
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Table  3.2. Summary of Literature Review 

Researcher(s) Focus of the research(s) Result(s) 

Kendal and Staceys,1997;           
Weber, 2005;                              
Brown, 2005;                                
Orhun, 2001;                                 
Kang, 2003. 

Students’ understanding of 
trigonometric functions 

Students often have lack of 
ability in conceptualizing 
trigonometric functions 

Yerushalmy and Schwartz 
1993;  Knuth, 2000;                                        

Fi, 2003;                                    
Martinez-Sierra, 2008;                           

Akkoç and Akbaş Gül, 2010;               
Tuna, 2013;                                    
Brown, 2006  

Students’ conception of angle 
measure and graph of 
trigonometric functions 

Students often encounter 
difficulties in defining radian 

and recognizing1 radian 
equaled to 180° instead of a 
number close to 3.14. They 
also are unable to make 1) 

connections between algebraic 
and graphical representations 
and 2) transition between unit 

circle and the graphs. 

Blackett and Tall, 1991;            
Yenitepe, 2002;                              
Choi-Koh, 2002;                          

Kissane and Kemp, 2009;           
Zengin, Furkan, and Kutluca, 

2012. 

Effect of technology on learning 
trigonometric concepts 

Technology often has a positive 
influence on students’ 

conception of trigonometric 
concepts. 

Pesek and Kirshner, 2000;          
Orhun, 2001;                                           
Weber, 2005;                                     
Akkoc, 2008;                                 
Byers, 2010;                                   
Moor, 2012. 

Designing appropriate 
instruction for teaching 
trigonometric concepts 

Teaching different trigonometric 
topics through the unit circle, 
right triangle, graph, real-life 
problems and story writing. 

Topçu, et.al., 2006;                             
Fi, 2006;                                         

Moor, LaForest and Kim, 2012, 
Čižmešija and Šipuš, 2013. 

Teachers’ misconception of 
trigonometric concepts 

Teachers’ difficulties in 
understanding the concept of 
radian; reciprocal and inverse 

trigonometric functions. 
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3.3. The Need For Further Research on Teaching/Learning 
Trigonometric Concepts 

The review of the literature on teaching/learning trigonometric concepts (e.g., 

Brown, 2005 and Fi, 2006) looked at the issue through diverse lenses. A number of 

research studies discussed various teaching strategies (such as the unit circle and right 

triangle) for trigonometric concepts, while some others focused on teachers’ difficulties 

such as the misconceptions of the concept of radian, which is interconnected with their 

understanding of trigonometric functions. Students’ understanding of trigonometry and in 

particular trigonometric functions was examined by a few research studies such as Kang 

(2003) and Weber (2005), while other research studies (e.g., Moor, 2010) rooted the 

conception of trigonometric functions into students’ ability to identify and reason with 

trigonometric functions as functions or to correctly define angle measurements, 

especially radian (Akkoç & Gül, 2010). There have also been some studies, such as 

Orhun (2001) and Demir (2011), which connect the students’ identifications of 

trigonometric functions to their inadequate understanding of trigonometric graphs, and 

these authors promote teaching trigonometric functions through graphs. What is missing 

from all of this literature is a closer look at transformations of trigonometric functions. It is 

exactly this phenomenon that I am interested in. 

Although the concept of transformation of mathematics functions (except 

trigonometric functions) in analytical and graphical contexts is subject of several studies 

(e.g., Eisenberg & Dreyfus,1994; Baker, Hemenway, & Trigueros, 2000;  Chiu, Kessel, 

Moschkovich, & Munoz-Nunezby, 2001; Zazkis, Liljedahl & Gadowsky, 2003; Lage & 

Gaisman, 2006 and Consciência & Oliveira, 2011) that focus on students’ understanding 

of transformations of mathematics functions and some existing obstacles, there has 

been limited number of research studies focus on transformation of trigonometric 

functions and in particular sinusoidal functions. One of the sparse studies on the 

transformation of trigonometric functions, Ng and Hu (2006), examined the impact of 

using Trigonometric Graphs, a teacher created web-based simulation, and 

asynchronous online discussion on students’ performance in sketching transformation of 

trigonometric curves. Rose et al., (2011) looked at whether technology has a greater 
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impact on student achievement and attitudes towards transformation of trigonometric 

functions if it is implemented before or after whole class teaching. Furthermore, Zengin 

et al., (2011) examined the effect of dynamic mathematics software Geogebra on 

student achievement in learning transformation of trigonometric functions by comparing 

two groups of high school students: the experimental group (subjected to lessons 

arranged with the GeoGebra software in computer assisted teaching), and the control 

group (subjected to the lessons shaped with constructivist instruction). As it appears 

from the above mentioned research studies, the main purpose of these researches is 

examining the influence of technology on students’ learning of trigonometry and in 

particular transformation of trigonometric functions. However, these studies have not 

addressed questions such as, how do undergraduate students complete mathematics 

tasks involving the transformation of sinusoidal functions? What are the common 

mistakes students often encounter when they work with transformations of sinusoidal 

functions? 

The importance of research on the transformation of sinusoidal functions is 

rooted in my experience as an assistant teacher at a university. When assisting students 

with their homework, and having discussions with some of the Calculus instructors at 

Simon Fraser University, I have noted that transformation of trigonometric functions and 

in particular sinusoidal functions is a complex topic in which numerous students face 

major difficulties. Students often become confused when they need to identify 

transformations in analytical and graphical contexts, especially if the sinusoidal functions 

are transformed horizontally. Even if some students could identify the transformations, 

the majority of them repeatedly make mistakes in graphing the transformed functions, 

interpreting the transformed graphs or transformed trigonometric functions. Therefore, 

the main purpose of my study is examining students’ reasoning and abilities of 

transformation of sinusoidal functions since the number of studies focused on this 

important and challenging topic is very limited. There is not much research on how 

students work in situations that involve transformation of sinusoidal functions, whether 

they are able to recognize transformations and whether they have the skills to identify 

the influence of transformations on sinusoidal graphs. In other words, none of the 

aforementioned studies on teaching and learning of trigonometry investigated the way 
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undergraduate students complete tasks involving transformations of sinusoidal functions, 

types of difficulties they might encounter, and to what degree the barriers in completing 

tasks are related to students’ lack of understanding of trigonometric functions as cited in 

the literature. 

Taken together, for this thesis the major goals are gaining greater insight into 

undergraduate students’ replies to mathematics tasks involving the transformation of 

sinusoidal functions and the common mistakes they encounter when completing the 

tasks. I am interested to discover if students’ difficulties are connected to algebraic or 

graphical representation contexts or if those difficulties are related to the way their 

teachers represent the key concepts. Some of these questions have answers in the 

context of general mathematics functions. However, there is no sufficient attention to 

these questions in the context of sinusoidal functions. I believe that by conducting this 

research study and answering these kinds of questions, I will be able to extend our 

knowledge to enhance teaching of trigonometry functions and improve the experience 

and outcomes for students. 
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Chapter 4.  
 
 Methodology    

In what follows I review the pilot study and describe how I select and design the 

tasks for the main study. Then, the undergraduate students who participated in my 

research are introduced. Data collection and analysis are described in the last part of 

this chapter.  

The specific research questions are in chapter 5 following the description of 

theoretical frameworks. The general main goal of my study is to respond to the following 

research questions: 

1) How do undergraduate students complete mathematics tasks involving 

transformations of sinusoidal functions? 

2) What are the common mistakes that students encounter when they work with 

transformations of sinusoidal functions? 

4.1.  Pilot study  

Conducting a pilot study can provide valuable insights for researchers, and it 

increases the likelihood of success in the main study. Thus, I used the data collected 

from the interviews with eight students in the pilot study in order to design the interview 

tasks used in my actual research. Three male and five female students volunteered their 

time. Two students were registered in Calculus I, the rest of them was in Calculus II at 

the time of the pilot study.  
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In particular, eight students were required to complete five tasks that involved 

sinusoidal functions (transformed horizontally/vertically and both) and their sketches (I 

describe the sketches later in this section).  

Considering the standard general form of the sinusoidal function: 𝑓(𝑥)  =

 𝐴 𝑠𝑖𝑛(𝐵(𝑥 + 𝐶) + 𝐷) or  𝑓(𝑥) =  𝐴 𝑐𝑜𝑠(𝐵(𝑥 + 𝐶))  + 𝐷), transformations can be applied 

by changing the amplitude (A represents the amplitude, or steepness), the period (B 

helps determine the period of the graph (the length of the interval in which the graph of 

the sinusoidal function start repeating itself)), or by shifting the sinusoidal functions 

horizontally (which is determining by C ), or vertically (which is determined by D).  

For the pilot study, I gave the participants the interview tasks in which A, B, C 

and D was changing in the sinusoidal functions or their sketches. All eight interviews 

were videotaped and the interviews were carefully transcribed. To analyze the data 

initially I labeled the interview tasks as easy, medium and hard, based on my perceived 

difficulty related to the amount of change from the canonical sinusoid. For instance, I 

consider the task easy when the participants were required to identify the function  

𝑓(𝑥) =  𝑐𝑜𝑠(𝑥) − 1 from its given corresponding graph, or to adjust coordinates on the 

given sinusoidal curve to represent the function𝑓(𝑥) =  𝑠𝑖𝑛(𝑥). Determining the function 

of 𝑓(𝑥) =  3𝑠𝑖𝑛 (𝑥 −
𝜋

6
) from its given graph, or to adjust axes on the wavy displace to 

show the function of   𝑓(𝑥) =  2𝑐𝑜𝑠(𝑥) + 3  I considered as medium-difficulty tasks. 

Identifying the function 𝑓(𝑥) =  
1

2
𝑠𝑖𝑛 (

2

3
𝑥) + 2  or 𝑓(𝑥) =  3𝑐𝑜𝑠 (2𝑥 +

𝜋

5
) − 4 from their 

given corresponding graphs were considered as difficult tasks. Reviewing the 

transcripts, watching videos, and comparing students’ responses to each task led me to 

realize students' varying success on some items and this led me to the detailed analysis 

of transformations. 

The data analysis showed that the eight students could easily recognize the 

sinusoidal functions and their graphs in which “A” and “D” were changing, (compared 

with the canonical sinusoidal function). However, they encountered difficulties when the 

change was in coefficients “B” and “C”.  In other words; it was not easy for the 
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participants to connect the parameter B in the given sinusoidal function with period and 

the number of repeated sine cycles in the corresponding graphs.  

Furthermore, the data illustrated that the participants in the pilot study could not 

identify the phase shift (C) from the given sinusoidal graphs or functions properly.  They 

were unable to link the coefficient of x in the given functions and the represented 

numbers for C with a phase shift. Participants unsuccessfully realized the amount of the 

radian by which the sinusoidal functions transformed to the right or left. Therefore, in 

designing tasks for my main study I focus on the changes in the two parameters B and C 

in the general form of a sinusoidal function.   

4.2. Design of Tasks  

The interview tasks selected for this dissertation are based upon reviewing the 

results of the pilot study, which are described in the previous section. 

4.2.1. Tasks for the Main Study 

For the purpose of this dissertation, based upon students’ answers to the pilot 

study tasks and their common mistakes, I decided to modify the interview tasks for the 

main study. Therefore, in the next set of the interview tasks (used for this dissertation), 

the participants were given the sinusoidal functions transformed horizontally (in other 

words, those tasks in which “B” and “C” were changing).  

The tasks which were designed according to the students’ difficulties in the pilot 

study, aimed at investigating whether students are able to identify the functions 

transformed horizontally, how they determine the period, and how they connect the 

geometric representation with the symbolic representations of sinusoidal functions. For 

instance, in Task 4, students were given a sinusoidal curve and asked to label the 

coordinates such that the curve represented the function 𝑓(𝑥) =  𝑠𝑖𝑛(4𝑥). The successful 

participants would complete this task by connecting the number four (from the given 
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function) with the point in the sinusoidal curve where the four full sine cycles would 

repeat.  

Two different types of tasks were designed for this study. Type A) Identifying 

sinusoidal functions (Tasks 1, 2 and 3), and Type B) Assigning coordinates (Tasks 4 and 

5).  Both types of tasks were presented with the help of the affordances of the software: 

participants could drag, stretch and compress the graphs, using pens and so on. The 

tasks are described in detail in the next section. 

4.2.2. Sketches  

To design the interview tasks I constructed two sketches using the Geometer’s 

Sketchpad software (the software provides students with opportunities to graph functions 

and also to manipulate the graphs by adjusting the coordinates). The first sketch was 

intended to study undergraduate students’ recognition of sinusoidal functions. This type 

of sketch includes sine curves transformed vertically, horizontally or both. There were 

three red dots situated on the x and y-axes (see Figure 4.1 graph of (𝑥) = 𝑐𝑜𝑠(3𝑥) ). By 

clicking on the red dots on the x-axes, participants could stretch or squeeze the curve 

horizontally in order to find more points on the given curves. Similarly, students could 

extend/shrink the sinusoidal curves vertically by using the red dots on the y-axes.  

Moreover, students had access to the tools on the left side of the screen (see 

Figure 4.1 as an example). The translation arrow ( ) along with the dot at the center, 

for instance, give students the opportunity to move the whole graph to the left or the right 

side, in case if they need to access more information on the axes. 
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Figure. 4.1. Example of the first sketch. 

The second sketch was comprised of a plain sinusoidal curve and no coordinate 

axes (see Figure 4.2) were visible. Students could click on the given curve or the arrow 

on the right side to move the curve to the right/left. Using the segment straightedge tool  

(  ), participants could assign the x and y-axes on the sine cycle. To mark any point 

on the adjusted axes, students could also apply the tools on the right side (“A” and the 

pen tools). Moreover, students can use the tools to write the sinusoidal functions 

represented by the given graph either using the pen tool ( ) to write the function in 

their own handwriting, or the tool which helps them write in text format (see Figure 

4.2, as an example). All these tools gave students opportunities to assign coordinates 

and the points on the curve to represent the given function.   
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Figure. 4.2. Example of the second sketch.  

For the Type A tasks (‘Identifying sinusoidal function’), the sketches indicating 

the sinusoidal graphs were given and the students were asked to identify the sinusoidal 

functions represented in the given graphs (see Figure 4.3, 4.4 and 4.5). For the Type B 

tasks (‘Assigning coordinates’), the sketches comprising of the sinusoidal curves, and 

the particular sinusoidal functions in their algebraic form (see Figure 4.6 and 4.8), were 

given and the students were required to assign coordinates on the sine curve such that it 

described the given functions. Particular functions to be identified by their graphs in type 

A tasks were:  

Task 1: 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥), Task 2: 𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥) and Task 3: 𝑓(𝑥) =  𝑐𝑜𝑠(

2

5
𝑥 −

π

5
).  

Particular functions to be represented by proper assignment of coordinates in type B 

tasks included:   

Task 4: 𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥) and Task 5: 𝑓(𝑥) = 𝑐𝑜𝑠(3𝑥 −  
𝜋 

4
).  

As can be noted, all interview tasks types “A” and “B” were sinusoidal functions 

having the coefficient of x different from 1. In other words, the periodicities of the 
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functions were different from 2π (which is the period of the canonic sine and cosine 

functions). The coefficient of x in each of the tasks was either a whole number (in Tasks 

1, 4 and 5) or a fraction (in tasks 2 and 3). Moreover, two interview tasks, (Tasks 3 and 

5) included a phase shift.   

4.2.3. Tasks 1, 2 and 3 

In this part, I describe each of the Tasks 1, 2 and 3 in detail along with their 

graphs. 

4.2.3.1. Task 1 

Task 1, in which I had students identify the sinusoidal function(s), is shown in 

Figure 4.3. As can be seen from the figure, the function described the curve associated 

with the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥) (or (𝑥) = 𝑐𝑜𝑠(2𝑥 −
𝜋

2
 )). In fact, the sine function 

(𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥)) was not presented in the task, students were asked to identify it by 

considering the graph (see Figure 4.3).  

 

Figure. 4.3. Sketch represents the function 𝒇(𝒙) = 𝒔𝒊𝒏(𝟐𝒙), Task 1. 

When students completed the first part of the task and they explained their 

thinking, I encouraged them to complete the second part of the task which was 
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determining a cosine function for the curve if they indicated the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥), 

or a sine function if they determined  𝑓(𝑥) = 𝑐𝑜𝑠(2𝑥 −
𝜋

2
) for the given curve. 

 

4.2.3.2. Task 2 

To complete Task 2 (𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥)), the sketch shown in Figure 4.4 was given 

to the participants, and similar to Task 1, the sinusoidal functions needed to be identified 

from the given sinusoidal curve. Although it appears that Tasks 1 and 2 were similar, as 

they both represent the sinusoidal functions transformed horizontally, they had a major 

difference. While the coefficient of x in the sinusoidal function associated with Task 1 

was a whole number, it was a fraction in Task 2. These types of tasks are not addressed 

in the literature focused on trigonometric functions and students’ (mis)understandings. 

As such, in this research I aimed to investigate whether students identify the graphs 

representing the sinusoidal functions having whole and fractional periodicity.   

   

Figure. 4.4. Sketch of 𝒇(𝒙) = 𝒔𝒊𝒏(
𝟐

𝟑
𝒙), Task 2. 

4.2.3.3. Task 3 

For Task 3 (𝑓(𝑥) =  cos (
2

5
𝑥 −

π

5
)) students were required to deal with a fractional 

coefficient of x in the given function which was shifted horizontally (see Figure 4.5). The 

purpose of this task was to assess students’ perception of horizontal/phase shifts 
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obtained by determining the change being made to the x value. Students, in fact, needed 

to realize that the coefficient of x (i.e., 
2 

5
) should be factored from the whole argument 

(i.e., (
2

5
𝑥 −

π

5
)) in order to represents the function in its canonical form,  

𝑓(𝑥) =  𝑐𝑜𝑠(
2

5
(𝑥 −

π

2
)). In other words, the goal of the task was to investigate whether 

students recognize the function shifted horizontally to the right by 
π

2
, or they wrongly 

determine 
π

5
 as a phase shift. 

 

Figure  4.5. Sketch of 𝒇(𝒙) =  𝒄𝒐𝒔 (
𝟐

𝟓
𝒙 −

𝛑

𝟓
), Task 3. 

4.2.4. Tasks 4 and 5  

The next task (Task 4) was from the Type B of interview tasks, ‘Assigning 

coordinates’.  In this task a sinusoidal curve (see Figure 4.6), along with the sinusoidal 

function, were given. Students were required to assign the coordinates on the sinusoidal 

curve to represent the graph of 𝑓(𝑥) =  𝑠𝑖𝑛(4𝑥) (see Figure 4.7).  While Task 4 deals 

with the period concept (similar to Tasks 1 and 2), the last interview task (Task 5) was 

similar to Task 3 in which students were required to identify the period as well as the 

horizontal shift (see Figure 4.8 and 4.9).  In Task 5, students were asked to adjust axes 

on the given curve to display the graph of the function 𝑓(𝑥) =  𝑐𝑜𝑠(3𝑥 −
𝜋

4
). 
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Figure  4.6. Snapshot of Task 4, 𝒇(𝒙) =  𝒔𝒊𝒏(𝟒𝒙). 

 

Figure  4.7. Sketch of 𝒇(𝒙) = 𝒔𝒊𝒏(𝟒𝒙), solution to Task 4. 
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Figure  4.8. Snapshot Task 5,  𝒇(𝒙) =  𝒄𝒐𝒔 (𝟑𝒙 −
𝛑

𝟒
). 

 

Figure  4.9. Sketch of 𝒇(𝒙) =  𝒄𝒐𝒔 (𝟑𝒙 −
𝛑

𝟒
), solution to Task 5. 

4.3. Participants 

Six students participated in my main study. The participants were from a large 

North American university. They were selected from among students who had either 

completed a Calculus I course and were enrolled in a Calculus II, or were in a Calculus I 

course at the time of the interview. The participants were students who had volunteered 
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to participate in the study after I had made a general request to all the Math 154/155 

(Calculus I and II for the Biological Sciences) and Math 157/158 (Calculus I and II for the 

Social Sciences) classes in the Mathematics Department.   

Six undergraduate students who participated in the main study were a male and 

five females. The participants all volunteered their time. None of the six participants 

(Andy, Emma, Sally, Rose, Mia and Kate, all pseudonyms) were familiar with Sketchpad, 

but they all sketched the trigonometric functions using Sketchpad without any difficulty. 

The participants all knew me because I was working as a Teaching Assistant in the 

Applied Calculus Workshops at the time of data collection. 

4.3.1. Emma, Rose and Sally 

Emma, Rose and Sally were all first year students registered in Calculus I at the 

time of the interview. It was their first semester at the University. They stated that they 

initially learned trigonometry when they were students in high school. While Emma found 

trigonometry a hard subject amongst other mathematics topics in Calculus, Sally and 

Rose believed that trigonometry was an interesting subject. Emma and Rose mentioned 

that they earned over 85% in the high school Calculus course they took in their grade 

12, and they earned above 60% for the first midterm in Calculus I (the interview was 

conducted after the first midterm). Sally noted that she earned above 80% in both 

Calculus-12 and in the first midterm in Calculus I at the University.   

4.3.2.  Kate and Mia 

 Kate and Mia were second year students pursuing Bachelor’s Degrees in 

Business and Applied Science. Kate and Mia successfully completed Calculus I and 

were enrolled in Calculus II at the time of the interview. It was the first time they used 

Sketchpad in mathematics, but they had previous experience in working with a similar 

Dynamic Geometry software. Before conducting the interviews, Mia stated that she 

might have forgotten the trigonometric facts, but she hoped that she could remember 

them all when working on the tasks. Kate requested to practice working with Sketchpad 
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and reviewing some properties of transformations of sinusoidal functions before actually 

recording the interview.   

4.3.3.  Andy  

Having completed AP Calculus (Advanced Placement) as a high school student, 

Andy was enrolled in Calculus II as well as in Applied Linear Algebra at the time of the 

interview. He was a first year student persuing a bachelor’s degree in Applied Science. 

He wanted to be an engineer in the future. His grades in high school and University 

mathematics courses were high.  

4.4. Data Collection 

Data were collected using one-on-one, task-based semi-structured, clinical 

interviews. Each interview conducted was about 60 minutes long, and they were 

videotaped. In order to complete the interview tasks, a laptop was given to each 

participant. To provide a comfortable environment, all the interviews took place in the 

Science Department. To ensure students were familiar with the topic, all students 

participated in a brief informal conversation about sinusoidal functions as well as the 

transformation of sinusoidal functions before conducting the actual interviews. In 

particular, during the informal conservation, we discussed how sinusoidal functions 

might transform horizontally or vertically. The participants described how each of the 

elements: A, B, C and D in the general sinusoidal function (𝑓(𝑥) =  𝐴 𝑠𝑖𝑛𝑒/𝑐𝑜𝑠(𝐵(𝑥 +

𝐶) + 𝐷) might affect the graphs of the functions. The students also talked about the 

difficulties they encountered when working with the transformation of sinusoidal 

functions during their Calculus courses at high school as well as at university. The 

participants also had time to experience working with the sketchpad.  

The participants’ interactions with the sketches, their dialogues, bodily 

movements and what the participants wrote during the interviews were captured on the 

videotapes.  
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The use of semi-structured task-based clinical interviewing was fit for data 

collection with respect to my research questions. It is indicated that Piaget was one of 

the people who used clinical interviews for the first time to determine the construction of 

the individuals’ thoughts, the richness of their thoughts and also to assess the 

individuals’ cognitive competence (Ginsburg, 1981). To identify the process of the 

individuals’ thoughts, the clinical interview may involve some degree of standardization 

and the interviewer’s prompts are dependent on the participant’s involvement in the 

interview tasks. In this study, I used a few prompts to direct the discussion towards the 

purpose of the research. The prompting follow up questions were different for each 

participant according to the participants’ interaction and their responses to the interview 

tasks.  

4.5. Data Analysis   

In order to carry out analysis, I used the three theoretical frameworks (Mason’s 

shift of attention, Presmeg’ visual imagery and Carlson’s et al. convarasional reasoning). 

In the following chapter, I describe the frameworks and the way I analyse data according 

to the frameworks. To analyze the data, the videotapes were watched several times. The 

students’ conversations were listened to several times and they were transcribed 

carefully. I reviewed the performance of each participant on each interview task. The 

data analysis is detailed in Chapter 5. 
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Chapter 5.  
 
 Theoretical Considerations  

 In this study, the data consist of interviewing six participants. In order to analyze 

the participants’ responses to the interview tasks, I describe several theoretical 

frameworks involved in the data analysis (in this chapter). In each section of Chapter 6 

and 7, the collected data are analyzed and interpreted according to three theoretical 

frameworks. Mason’s theory of shifts of attention is the first framework described below. 

Mason’s theory provides opportunity to study the critical role of attention and awareness 

in learning and understanding mathematics and in particular the concept of graphing 

sinusoidal functions. Then, Presmeg’s (1989) five different category of visual imagery is 

reviewed. As a broad theory, it is used for investigating students’ visual mental 

constructs since the participants applied their imagery skills in different occasions when 

they completed the interview tasks. The ability of students is evaluated by Covariational 

reasoning focusing on Carlson’s et al. (2002) collection of mental action and 

developmental levels. At the end of this chapter, I describe data analysis with respect to 

the three frameworks. 

5.1. Mason’s Theory of Shifts of Attention  

Among all aspects of the human psyche being discussed in psychological 

literature (e.g., Piaget (1954/1981)), Mason (2008) relies on two particular aspects of the 

human psyche, attention and awareness, in his theoretical framework. He believes that 

attention and awareness are human constructs in an attempt to define components of 

‘being human’, and more specifically, ‘being mathematical’. While some researchers, 

such as, Aguirre,Turner, Gau Bartell, Kalinec-Craig, Foote, McDuffie, and Drake, (2012) 
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define awareness as understandings, insights, knowledge, and beliefs about teaching 

and learning mathematics, Mason (2008) refers to awareness as what enables people to 

act, calling upon our conscious and unconscious powers. He argues that awareness 

may exist in our body as we may initiate an action that our consciousness is able to build 

a narrative on only later in time, although we might be unable to speak about what we 

are doing.  

To educate one’s awareness, we need to shift our attention to actions which are 

being carried out and to encourage individuals to think about ‘what comes to mind’ in a 

situation (Mason, 2008). Mason argues that attention “is not an all-or-nothing 

experience”(p.8): its structure is comprised of a macro (what is attended to by an 

individual (i.e., what objects are in one’s focus of attention)), and a micro level (how the 

objects of attention are attended to). 

Mason (2008) believes that at the macro structure of attention (what is being 

attended to) learners can attend to more than one thing at once and that learners’ macro 

attention is usually caught up with their current action. He states that at the macro level, 

attention can vary in multiplicity, locus, focus and sharpness. To address the “how-

question (how something is being attended to)” (micro qualities), He distinguishes five 

different structures of attention. These are: holding wholes, discerning details, 

recognizing relationships, perceiving properties, and reasoning on the basis of agreed 

properties. He believes that when students are holding wholes, they may gaze at a 

geometric diagram or some particular part of a diagram. It can also occur when students 

gaze at a collection of symbols and “waiting for it to speak to you” or in the other words, 

“waiting for things to come to mind” (p.37).  Holding wholes may last not too long (only a 

few micro-seconds) before students can discern details. Discerning details is a structure 

of attention, in which students’ attention is caught by a specific detail that becomes 

recognized from the rest of the elements of the attended object. He states that 

discerning details, which often does not happen all at once, is neither algorithmic nor 

logically sequential. Determining details provides students opportunities to recognize 

relationships between specific elements or between symbolic and geometric 

representations of a concept. Mason asserts that there is an essential shift between 
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recognizing relationships between symbolic and graphical representation of a 

mathematics concept to perceiving properties. Mason refers perceiving properties as 

“when you are aware of a possible relationship and you are looking for elements to fit it, 

you are perceiving a property” (p. 38). Reasoning on the basis of perceived properties is 

considered as the final structure of attending in which students can perceive properties 

as the only basis for further reasoning. 

It appears that Mason’s framework of shifts of attention is appropriate for 

analyzing the collected data in my research. Applying this framework would support me 

in gaining insights not only into “what” undergraduate students attend to when 

completing mathematics tasks related to transformation of sinusoidal functions, but also 

“how” they shift their attention.    

Mason’s terms for different structures of attention also provide a language for 

analyzing students’ work. For example, when students gaze at the given curves or 

sinusoidal functions, they are holding wholes Students who look for particular details 

from the given sinusoidal functions or the given sinusoidal curve (e.g., they seek the 

point where the graph intersects the y-axis), they are, in fact, discerning details. 

Students are recognizing relationship when are able to find connection between the 

graphical representation of sinusoidal functions and their symbolic representations. 

When students consider a particular graph and recognize its shape as representing a 

sinusoidal function because the amplitude is 1 and a full sine cycle ended in 2π, they are 

perceiving properties of sinusoidal functions. When students determine the graph 

represents f(x) =  2sin(x) because its amplitude is 2 times the amplitude of a canonical 

sine function, they are reasoning based on perceived properties.    

5.2. Presmeg’s visual imagery  

Visualization is increasingly being accepted as an important aspect of 

mathematical reasoning by all branches of mathematics studies (not merely of 

“obviously visual” branches such as geometry) (Presmeg, 2006, Wheatley and Brown, 
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1994). Visualization often occurs when “thinking is spontaneously accompanied and 

supported by images” (Mariottii & Pesci, 1994, p.45). Elliott (1998) regards visualization 

as the “ability to create rich, mental images which the individual can manipulate in his 

mind, rehearse different representations of the concept and, if necessary, use paper or a 

computer screen to express the idea in question” (p.45). 

In studying the overall role of imagery in the conceptual understanding of 

mathematics concepts, Presmeg (1986a, 1986b, 1989, and 1992) identified five main 

types of visual imagery: (1) concrete, pictorial imagery; (2) pattern imagery; (3) memory 

images of formulae; (4) kinesthetic imagery; and (5) dynamic (moving) imagery.  

Based on the Presmeg’s classification, imagery is called concrete imagery if an 

individual has a picture of an object in his/her mind. For example, when students in a 

mathematics word problem are asked to divide a large pizza into some triangular slices, 

they have a concrete image of triangle in their mind. Pattern imagery is defined as an 

imagery in which pure relationships depicted of concrete details. Pattern imagery may 

appear when students required finding 𝑠𝑖𝑛(450°), which they visualize repeating pattern 

on the sinusoidal curve. Another type is memory images of formulae by which students 

typically "saw" a imprinted formula in their minds, written on a blackboard or in their 

notebooks. For instance students often used the formula of (y =a(x– h)2+k) in their minds 

when looking for the vertex point (h, k) of a quadratic function (e.g., y=x2 ). Kinaesthetic 

imagery involves physical movement in evoking mathematical concepts especially when 

students could not remember the words. Kinesthetic imagery appears when a learner 

"walks" around imaginary quadrants with her fingers to identify where the tangent at an 

angle is negative. The last category of imagery is Dynamic imagery which involves 

moving and transforming objects in the mind like when students shift horizontally the 

graph of y=x2. 

In a study of 54 high school students, Presmeg (1997a, 1992) found that each of 

these five types of visualization play an important role in students’ mathematical 

understanding. She considered the pattern imagery as an important essence in 

conceptualizing mathematics concepts because it allows learners to concentrate on the 
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rational aspect of the mathematics problem and it lacks superfluous details. Relying on 

the results of her study, however, Presmeg noticed that the concrete imagery was the 

least effective type of visualization dealing with students’ understanding of mathematical 

contents (Presmeg, 1989).  

The five categories of Presmeg’s visualization are applicable when considering 

transformations and graphing of sinusoidal functions. Concrete imagery could occur 

when students visualize a general picture of sinusoidal functions. They can visualize that 

a cosine graph going down, intersects the x-axes, continues going down and then goes 

up, intersecting the x-axes again and keeps going up, while a sine curve goes up, then 

down, intersecting the x-axes, goes down and up. Pattern imagery in the context of a 

sinusoidal function is identified when students can visualize a certain pattern in the 

graphical or symbolical representations. For instance, when students notice that in the 

function 𝑓(𝑥) =  𝑐𝑜𝑠(5𝑥), five sine cycles will repeat between the interval [0, 2𝜋].  For the 

other category of visual imagery, the memory image of formula, undergraduate students 

can use the canonical formula (𝑓(𝑥) =  𝐴 𝑠𝑖𝑛(𝐵(𝑥 + 𝐶) + 𝐷 and 𝑓(𝑥) = 𝐴 cos (𝐵(𝑥 +

𝐶)+D) while describe their thinking, or when they are able to change a cosine function 

into a sine function having the formula  𝑐𝑜𝑠(𝑥) = 𝑠𝑖𝑛(𝑥 −  
𝜋

2
) in their mind. 

The last two categories of visual imagery involving movement are kinesthetic and 

dynamic imagery. Kinesthetic imagery occurs when students involve their body, such as 

their hands, to represent the expansion of the sine curve, or when they use their index 

finger to show the value in which the sine curve intersects the x-axes. Dynamic imagery 

involves moving and transforming a given sine curve into a cosine curve in a student’s 

mind.  

It is important to note that in this research study, I used the terms kinesthetic 

imagery and pattern imagery slightly different from Presmeg’s definition. She applied 

primarily kinesthetic imagery in her research studies when participants cannot remember 

the mathematics terms and instead they expressed them by their body. However, in this 

study I apply kinesthetic imagery when students used their fingers or hands to explain 

their thinking, regardless of their memory of the mathematics facts related to the 
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transformation of sinusoidal functions. I use the notion of pattern imagery in a similar 

way. 

5.3.  Carlson’s et al. Covariational Reasoning 

Covariational reasoning, defined as cognitive activities involved in coordinating 

two quantities, varies in tandem (Moor, 2010). In the studies of undergraduate students, 

for instance, Carlson, Jacobs, Coe, Larsen, and Hsu (2002) and Moor (2010) noticed 

that covariational reasoning is central for supporting undergraduate students’ 

construction of trigonometric functions while dealing with the angle measure, the 

covariation of angle measure and the trigonometric ratio. The outcomes of research 

studies by Thompson, 1994, Carlson, 1998; Zandieh, 2000; Carlson, Jacobs, Coe, 

Larsen, and Hsu, 2002; Moore, and Bowling, 2008 also illustrate that covariational 

reasoning plays a critical role in developing students’ understanding of graphs as 

representations of the relationship between two quantities’ values.  

Following the essential and crucial role of covariational reasoning in learning 

Calculus topics, Carlson (1998) provided a framework as a means to study multiple 

behaviors of a group of undergraduate students involved in interpreting and representing 

dynamic function situations. Carlson’s (1998) framework consists of five mental actions 

(MA#) specific to the behavior displayed: 

1) Coordinating the value of one variable with changes in the other (Mental action 

1, M#1),  

2) Coordinating the direction of the change of one variable with changes in the 

other variable (Mental action 2, M#2),  

3) Coordinating the amount of change of one variable with changes in the other 

variable (Mental action 3, M#3),  
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4) Coordinating the average rate-of change of the function with uniform 

increments of change in the input variable (Mental action 4, M#4), and  

5) Coordinating the instantaneous rate of change of the function with continuous 

changes in the independent variable for the entire domain of the function (Mental action 

5, M#5).  

Table 5.1 presents a summary of verbal behaviors related to general functions 

and trigonometric function (Carlson, et al., 2002; Carlson & Oehrtman, 2004; Oehrtman, 

et al., 2008, Moor, 2010). 
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Table . 5.1. Covariational reasoning with respect to general and trigonometric 
functions 

Mental Actions Description of 
Mental Actions 

Verbal Behaviors 
Related to General 

Functions 

Verbal Behaviors Related to 
Trigonometric Functions 

Mental Action 1 
(MA1) 

Coordinating the 
value of one 
variable with 

changes in the 
other 

Verbal indications of 
coordinating the two 

variables (e.g., y 
changes with 
changes in x) 

Verbalizing that the output of 
sin (𝜃)changes with changes in 

angle measure, θ) 

Mental Action 2 
(MA2) 

Coordinating the 
direction of change 
of one variable with 

changes in the 
other variable 

Verbalizing an 
awareness of the 

direction of change 
of the output while 

considering 
changes in input 

Verbalizing an awareness of the 
increasing output values of 

sin (𝜃)with increasing values of 
angle measure θ (θ between 0 and 

𝜋

2 
radians 

Mental Action 3 
(MA3) 

Coordinating the 
amount of change 

of one variable with 
changes in the 
other variable 

Verbalizing an 
awareness of the 

amount of change of 
the output while 

considering 
changes in the input 

Verbalizing that for an angle 

measure increasing from 0 to 
𝜋

2 
 

radians, the output values of 
sin (𝜃)increases from 0 to 1 length 

of a radius 

Mental Action 4 
(MA4) 

 

Coordinating the 
average rate-of 
change of the 
function with 

uniform increments 
of change in the 
input variable. 

Verbalizing an 
awareness of the 
rate of change of 
the output (with 

respect to the input) 
while considering 

uniform increments 
of the input 

Verbalizing that the average rate of 
change of the output values of 

sin (𝜃)with respect to angle 
measure θ decreases for 

successive uniform increments of 

angle measure θ between 0 and 
𝜋

2 
 

radians 

Mental Action 5 
(MA5) 

Coordinating the 
instantaneous rate 
of change of the 

function with 
continuous 

changes in the 
independent 

variable for the 
entire domain of 

the function 

Verbalizing an 
awareness of the 

instantaneous 
changes in the rate 
of change for the 

entire domain of the 
function (direction of 

concavities and 
inflection points are 

correct) 

Verbalizing an awareness that the 
instantaneous rate of change of the 
output values of sin (𝜃)with respect 

to angle measure 𝜃 decreases over 

the domain of θ values from 0 to 
𝜋

2 
 

radians. 
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In spite of the fact that, previous research studies (e.g., Carlson, 1998, Zandieh, 

2000) attended to covariational reasoning related to trigonometric functions, as it has 

been shown in the above table, further elaboration is essential to account for connecting 

sinusoidal functions to their graphs. In what follows I elaborate on mental actions 1, 2 

and 3 associated with transformation of sinusoidal functions. 

Mental action 1: Students are aware of the fact that the graphs of sinusoidal 

functions or sine curves change as periodicity (B) is changing in the sinusoidal functions. 

They may also recognize that as a phase shift (C) is adding or subtracting from the 

argument x in the sinusoidal function, the graph should shift accordingly. Or if the given 

curve does not intersect the origin (0, 0) or y-axes at y=1, the curve should shift 

horizontally and therefore the represented sinusoidal function should comprise of a 

phase shift.  

Mental action 2: Students realize that as the coefficient of argument x in the 

sinusoidal functions increases (if it is a number more than 1), the number of repeated full 

cycles would increase in the interval [0, 2𝜋]. However, if the coefficient of x in the 

sinusoidal function is decreasing (it is a fraction less than 1) the number of full sine 

curves will decrease in the interval [0, 2𝜋]. Students verbalize that the direction of 

shifting the graph to the right or left depends all on the phase shift added or subtracted 

from the argument in the sinusoidal function (e.g., if the phase shift added to the 

argument the graph shifted to the left).  

Mental action 3: Students connect the amount of changes in period and phase 

shift and their influence in the sinusoidal graphs or functions. For example, from the 

given function 𝑓(𝑥) =  𝑐𝑜𝑠(3𝑥 −  𝜋) students acknowledge that there should be three 

sine cycles in the interval [0, 2𝜋] because the coefficient of x in the given function is 3. 

They also identify the phase shift as 
𝜋

3
, so that the graph should be shifted to the right 

side of y-axes by 
𝜋

3
. 
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It is important to note that in my study the mental actions #4 and 5 do not appear, 

because in the tasks related to a sinusoidal function there is no “average rate-of change” 

(M#4) or an “instantaneous rate of change” (M#5).  

Four years after Carlson (1998) introduced her framework; Carlson et al. (2002) 

modified it. During their investigations of the complexity of high-performing 2nd-semester 

Calculus students’ ability for the “construction of mental processes involving the rate of 

change as it continuously changes in a functional relationship”(p.352), Carlson et al. 

(2002) noticed that the mental actions determined in the Carlson’s (1998) framework 

were insufficient to classify undergraduate students’ covariational reasoning aptitude. 

They found that the covariational reasoning abilities can be interpreted from the 

collection of behaviors and mental actions shown when engaging in a mathematics 

problem or situation. In order to describe this collection, Carlson et al. (2002) extended 

the covariation framework by adding five distinct developmental levels of covariational 

reasoning (L#) that parallel the five mental actions (see Table 5.2). A student’s 

covariational reasoning ability is said to reach a certain level (e.g., Level 3) when it 

supports not only the mental action associated with that given level, but also with all 

mental actions associated with lower levels (e.g., MA1 and MA2 abilities). 

It is important to note that the above mentioned three frameworks affect the 

research questions respectively. In Chapters 3 and 4 two general research questions 

were stated. In what follows, the two research questions (questions #2 and 3) are added 

to the two previously mentioned questions (questions #1 and 4). As such, in my research 

I am interested to answer the following questions: 

 1) How do undergraduate students complete mathematics tasks involving 

the transformation of sinusoidal functions? 

2) What is undergraduate students’ covariational reasoning and visual 

imagery  of the transformation of sinusoidal functions?  

3) How do students shift their attention when completing interview tasks? 

4) What are the common mistakes students often encounter when they work 

with transformations of sinusoidal functions? 
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In what follows, I describe in detail how the data analysis was conducted with 

respect to the three frameworks. . 

5.4. Application of the Frameworks in Data Analysis 

In order to carry out my analysis, I used the three theoretical frameworks 

(Mason’s shift of attention, Presmeg’s visual imagery and Carlson’s et al. convarasional 

reasoning). To analyze the data, the videotapes were watched several times. The 

students’ conversations were listened to several times and they were transcribed 

carefully. I reviewed the performance of each participant on each interview task. When 

watching the videos, I zoomed in on all the details students’ focused on. For instance, if 

students put once the computer pointer on the origin and the point 2𝜋, and then on the 

points 
𝜋

2 
  and 

𝜋

4 
 in the graph, I considered it important to investigate how they shifted their 

attention from the properties of sinusoidal functions to the details of the graph (these are 

important according to Mason’s theory). Meanwhile, the participants’ hand movements 

(e.g., to show the function is extended horizontally), explanations and sketches helped 

me to analyze their work in respect to the Presmeg’s visual imagery framework. 

Listening to the students’ discussions and watching the videotapes also provided me the 

opportunity to classify undergraduate students’ covariational reasoning aptitude, which 

can be interpreted from the collection of behaviors and mental actions shown when 

engaging in the interview tasks.   

When analysing students’ replies to Task 1, I reviewed each student’s work 

separately. In order to describe how students recognize the point 𝜋 on the x-axes and 

consequently choose 2 for the coefficient of x in the sinusoidal function, I relied on the 

three frameworks. I found all students’ words; hand written notes, sketches, and body 

movements essential in analysing the ways students connect the number of the full sine 

cycles to the periodicity of the function. Afterward, I compared the participants’ 

approaches. In this way, I found similarities and differences among students when 

completing Task 1.  



 

86 

 

I followed the same procedure for Task 2 (based on the three theoretical 

frameworks). In Task 2, it was imperative for me to investigate how students provided a 

link between the length of a full sine curved ended at the point 3𝜋 and the argument of x, 

which was a fraction. Watching videos several times also helped me investigate whether 

students could identify a phase shift and periodicity from the given graph in Task 3. I was 

interested to inspect the points (on the x-axes) that the participants found important to 

zoom in, when they were identifying periodicity and phase shift. I was also curious to see 

which properties of sinusoidal functions they focused on and how they shifted their 

attention from the detail they discerned from the given graph to relationship between the 

graphical and symbolic representations. Moreover, I paid attention to students’ 

hands/fingers movements and their explanations to identify their dynamic and some 

other visual imagery as well as their covaritional reasoning. Listening to the students’ 

discussion and reviewing the transcripts directed me to examine whether students made 

similar mistakes in Tasks 2 and 3 when identifying the coefficient of x which was a 

fraction.  

For Task 4, while listening to each student’s discussion, I inspected whether 

participants found the number 4 important in the given task. I considered it significant to 

see where the student put the axes on the given sinusoidal curve, which points she/he 

put on the x and y-axes, and how and why the student might change the points or the 

place of the coordinates (if any). Similar to the other tasks, I was looking for each 

participant’s explanations as well as the computer pointer’s movement to determine their 

mental actions.  

The approach I use to analyse Task 5 was similar to that used for Task 4,     

except I paid extra attention to the participants’ thinking about a phase shift (as I did for 

Task 3). I wanted to study what aspects of the given function directed participants to 

realize a phase shift correctly, whether they noticed the relationship between the 

numbers 3, 
π

4
 and the phase shift.  It was also vital for me to determine what mislead 

them to identify inappropriate graphs for the given function.  
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For the purpose of this study, the data analysis is presented in the following two 

chapters, where Chapter 6 focuses on Andy’s responses to the interview tasks, and 

Chapter 7 describes the rest of the students’ responses to the tasks. The choice to 

present the data analysis in two separate chapters on the one hand introduces sufficient 

detail in presenting a particular case, but on the other hand does not bore the reader 

with unnecessary redundancy.   
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Table 5.2. Levels of the Covariation Framework 

Levels of the 
Covariation Framework 

Description of Levels of the Covariation Framework 

Level 1. Coordination At the coordination level, the images of covariation can support the 
mental action of coordinating the change of one variable with 

changes in the other variable (MA1). 

Level 2. Direction. At the direction level, the images of covariation can support the 
mental actions of coordinating the direction of change of one 

variable with changes in the other variable. The mental actions 
MA1 and MA2 are BOTH supported by Level 2 image. 

Level 3. Quantitative 
Coordination. 

At the quantitative coordination level, the images of covariation can 
support the mental actions of coordinating the amount of change in 
one variable with changes in the other variable. The mental actions 

MA1, MA2 and MA3 are supported by Level 3 image. 

Level 4. Average Rate. At the average rate level, the images of covariation can support the 
mental actions of coordinating the average rate-of-change of the 
function with uniform changes in the input variable. The average 

rate-of-change can be unpacked to coordinate the amount of 
change of the output variable with changes in the input variable. 
The mental actions MA1 through MA4 are supported by Level 4 

image. 

Level 5. Instantaneous 
Rate. 

At the instantaneous rate level, the images of covariation can 
support the mental actions of coordinating the instantaneous rate-

of-change of the function with continuous changes in the input 
variable. This level includes an awareness that the instantaneous 
rate-of-change resulted from smaller and smaller refinements of 
the average rate-of change. It also includes awareness that the 

inflection point is where the rate-of-change changes from 
increasing to decreasing, or decreasing to increasing. The mental 

actions MA1 through MA5 are supported by Level 5 image. 
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Chapter 6.  
 
Data Analysis: The Case of Andy  

As mentioned, the first analysis chapter focuses in detail on one student, 

Andy.  This analysis is presented in 2 parts. In Part 1, I summarize Andy’s approaches to 

the presented tasks. In Part 2 I analyze Andy’s work on the presented tasks according to 

the theoretical frameworks that were described in Chapter 5: Mason’s (2008) theory of 

shift of attention, Presmeg’ (1986) visual imagery and Carlson, Jacobs, Coe, Larsen, 

and Hsu’s (2002) covariational reasoning. 

Using Mason’s (2002) terms, Part 1 can be seen as ‘account-of’ Andy’s solutions, 

while Part 2 is ‘accounting-for.’ The term account-of refers to a brief description of the 

key elements of the story, suspending as much as possible emotion, evaluation, 

judgment or explanations. This serves as data for accounting-for, which provides 

explanation, interpretation, value judgement or theory-based analysis.  

Part 1: Andy’s Story, Account-Of  

6.1.1. Task 1: Identifying the Function of 𝒇(𝒙) = 𝒔𝒊𝒏(𝟐𝒙) from the 
Given Graph 

I showed Andy Task 1 which was the graph of  𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥) (See Figure 6.1) 

and I asked him to identify a function represented by this graph. 
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Figure  6.1. Graph of 𝒇(𝒙) = 𝒔𝒊𝒏(𝟐𝒙) 

Andy focused his attention on several points on the x-axis and he recognized that 

there were two sinusoidal cycles in the interval [0, 2π]. Andy concluded that the given 

graph represented the function of 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥). Thereafter, I asked Andy to think 

about whether the same graph can be represented with a cosine function. Andy 

subtracted 
𝜋

2
 from the argument 2𝑥 (taken from the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥)) and he wrote 

the function 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 −
𝜋

2
). Andy stated that he actually relied on a formula 

𝑠𝑖𝑛 (𝑎) = 𝑐𝑜𝑠 (𝑎 −
𝜋

2
) .  I invited Andy to determine a cosine function by focusing on the 

given sinusoidal curve. He knew that the cosine graph is a sine curve shifted horizontally 

to the right; however, he struggled to find the amount of horizontal shift.  

Andy, eventually, realized that the given sinusoidal curve was shifted to the right 

by 
𝜋

4
 (he stated “this point 

𝜋

4
 is the first and smallest point in which y=1”), and then he 

suggested that the cosine function was 𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +
𝜋

4
). Recognizing his mistake, I 

showed Andy the graph of 𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +
𝜋

4
) (see Figure 6.2). Observing the graph of 

𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 +
𝜋

4
), Andy, thus, recognized his error that the suggested cosine function 

did not match the given curve. As a consequence, he expressed that the given graph 

represents the function 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 −
𝜋

2
), the cosine function he found from the 

learned memorized sinusoidal formula at the beginning of the conversation.  
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Figure  6.2. Graph of  𝒇(𝒙) = 𝐜𝐨𝐬 (𝟐𝒙 +
𝝅

𝟒
) 

 

6.1.2. Task 2: Identifying the Function 𝒇(𝒙) = 𝒔𝒊𝒏(
𝟐

𝟑
𝒙) from the 

Given Graph 

For Task 2, I showed Andy the graph of 𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥) (see Figure 6.3) and I 

asked him to identify a sinusoidal function represented by the given curve. Following the 

same pattern as his response to the previous task, Andy attempted to figure out the 

number of full cycles within the interval [0, 2𝜋]. Soon he realized that the given curve 

completed one cycle in the interval [0, 3𝜋], about half a cycle more than the canonical 

sinusoidal curve completed at 2𝜋. Andy, thus, concluded that the length of the given 

graph was about 
3

2
= 1.5 times a basic canonical sinusoidal curve. In order to find a 

related function, he used a reciprocal of the fraction 
3

2
 and he offered that the function 

was  𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥). 
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Figure  6.3. Graph of 𝒇(𝒙) = 𝒔𝒊𝒏(
𝟐

𝟑
𝒙)  

I then, asked Andy to identify a cosine function represented by the given curve.  

Similar to the previous task, he subtracted 
π

2
 from the argument 

2

3
 x  (taken from the 

function  𝑓(𝑥) = sin (
2

3
𝑥)) and he wrote 𝑓(𝑥) = cos (

2

3
 𝑥 −

π

2
). However, when I asked him 

to determine the cosine function by focusing on the graph rather than applying his 

learned formula, Andy made a similar mistake as in the previous question (Task 1). Andy 

stretched the x-axes and then noticed that the graph was shifted to the right by 
3π

4
  (since 

the first point (on the x-axes) by which the graph had y=1 was x=
3π

4
).  He, therefore, 

expressed that the cosine function for the given curve should be 𝑓(𝑥) = 𝑐𝑜𝑠(
2

3
𝑥 +

3π

4
) 

which is different from his previous mentioned function. It is important to note that Andy 

did not consider the aforementioned suggested function in the general standard format 

(𝑓(𝑥) =  𝐴 𝑐𝑜𝑠(𝐵(𝑥 + 𝐶)  + 𝐷)) and this interfered with his ability to identify the correct 

function. Andy recognized his mistake after he saw the graph of the suggested cosine 

function (See Figure 6.4). Then, he used his previous learned knowledge related to the 

transformation of sinusoidal functions and he stated that we need to multiply the 

coefficient of  
2

3 
  by 

3π

4
 . Eventually he wrote the function as 𝑓(𝑥) = 𝑐𝑜𝑠( 

2

3  
𝑥 − ( 

2

3  
 ×

3π

4
)) 

(see Figure 6.4) and then determined the function 𝑓(𝑥) = 𝑐𝑜𝑠( 
2

3 
𝑥 −  

π

2
)  which was the 

correct function for the graph.  
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Figure  6.4. Graph of 𝒇(𝒙) = 𝒄𝒐𝒔( 
𝟐

𝟑 
𝒙 − ( 

𝟐

𝟑 
 ×

𝟑𝛑

𝟒
) 

 

6.1.3. Task 3: Identifying the Function of 𝒇(𝒙) =  𝒄𝒐𝒔(
𝟐

𝟓
𝒙 −

𝛑

𝟓
) from 

the Given Graph. 

 

 

Figure  6.5. Graph of 𝒇(𝒙) =  𝒄𝒐𝒔(
𝟐

𝟓
𝒙 −

𝛑

𝟓
)  

For the next task, Andy stated that  

“…the given graph could be written as a sine or cosine function, but I want to 

write a cosine function for the curve.”  

 In order to find the period of the cosine function, Andy looked for two 

consecutive points in which the curve intersects the x-axis. He expressed that the curve 

could complete one sinusoidal cycle (the curve going up, down and up again) from −
3π

4
 

to 
17π

4
  (the midpoint between 4π  and 

9

2
π) (see Figure 6.6). By this calculation, Andy 
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concluded that the cosine function has a period of 5π =
17π

4
− (− 

3π

4
) because the cosine 

curve repeats every 5π radians. 

 

Figure  6.6. Determining the period of the given cosine function 

After that, Andy realized that the given curve shifted horizontally because the 

graph did not intersect the y-axes at the point 1. To determine the amount of horizontal 

shift (B in canonical1 representation), he stretched the x-axes. Andy, then stated that 

 “Ok, it is one [y=1] in between 
𝜋

3
  and 

2𝜋

3
.”  

Thus, Andy concluded that the function was 𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 − (

2π

3
−  

π

3
)) 

(Function 1) (see Figure 6.7). Note that his approximation from the graph is imprecise 

and this influences his next decisions.  

 
1
 I refer to the form 𝑓(𝑥)  =  𝐴 𝑠𝑖𝑛/𝑐𝑜𝑠 (𝐵(𝑥 +  𝐶 ))  +  𝐷  as the canonical representation of a 

trigonometric function 
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Figure  6.7. Graph of 𝒇(𝒙) = 𝒄𝒐𝒔 (
𝟐

𝟓
𝒙 − (

𝟐𝛑

𝟑
−  

𝛑

𝟑
)) 

After a long pause, Andy changed the function into 𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 − (

π

6
)) and he 

expressed that in the previous suggested function (Function 1: 𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 −

(
2π

3
−  

π

3
)) ) he did not consider the midpoint between 

π

3
 and 

2π

3
, the point by which the 

graph shifted horizontally (from his point of view). As it can be noticed from Andy’s 

recent suggested function (or 𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
(𝑥 − (

5π

12
)) = 𝑐𝑜𝑠 (

2

5
𝑥 − (

π

6
)) )  the horizontal 

shift (or B in canonical representation) was 
5π

12
 , whereas, the curve, actually, shifted by 

π

2
 

(the correct function for the given  graph was 𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 −

𝜋

5
)) 

Andy then stated that if we want to change the cosine function into a sine 

function, we should find an x-value in which the curve intersects the x-axis. He 

expressed that the graph shifted to the left by 
3π

4
 (the first point having the value of y=0) 

(see Figure 6.5). Andy, then, wrote the sine function as 𝑓(𝑥) = 𝑠𝑖𝑛(
2

5
𝑥 −

3π

4
) which was 

incorrect (see Figure 6.8). Still, looking at the graph of 𝑓(𝑥) = 𝑠𝑖𝑛 (
2

5
𝑥 −

3π

4
) did not help 

Andy recognize his mistake. He stopped trying and could not continue.  As such, I 

moved to the next task. 
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Figure  6.8. Graph of 𝒇(𝒙) = 𝒔𝒊𝒏(
𝟐

𝟓
𝒙 −

𝟑𝛑

𝟒
) 

 

6.1.4. Task 4: Assigning Coordinates to Represent 𝒇(𝒙) = 𝒔𝒊𝒏(𝟒𝒙) 

 

Figure  6.9. Sinusoidal curve 

For Task 4, I showed Andy a sinusoidal curve (see Figure 6.9) and I asked him to 

assign the axis and coordinates such that it represents the graph of 𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥). 

Since the coefficient of x was 4 in the given sine function (𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥)), following the 

same method as in the previous tasks, Andy recognized that there should be 4 full 

cycles in the interval of [0, 2π]. To show that, he considered 2 full periods and then 

placed the point π on the x-axes. He then marked the points 1 and -1 on the y-axes (see 

Figure 6.10). Andy stated that the two consecutive cycles of the sine graph represented 



 

97 

 

“half of the graph of 𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥), the next half completed at (2π) should be exactly 

the same as the first half.  When Andy was asked to identify a cosine function for the 

given sine function and then assign coordinated accordingly, he stated that the function 

should be 𝑓(𝑥) = 𝑐𝑜𝑠(4𝑥 −  2𝜋). However, he refused to assign proper coordinate on the 

sine cycle. 

 

Figure  6.10. Representing graph of 𝒇(𝒙) = 𝒔𝒊𝒏(𝟒𝒙)    

 

6.1.5. Task 5: Assigning Coordinates to Represent 𝒇(𝒙) = 𝒄𝒐𝒔(𝟑𝒙 −

 
𝝅 

𝟒
)  

For the last task, Andy first assigned the axes in a way that sinusoidal curve 

intersects the axes on the origin (0,0). He then placed the point 
π

4
  on the x-axes referring 

(incorrectly) to the phase shift in the given cosine function (𝑓(𝑥) = 𝑐𝑜𝑠 (3𝑥 −  
𝜋 

4
)) (see 

Figure 6.11). Andy then changed his mind and the position of the assigned axes as can 

be seen in the Figure 6.12. 
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Figure  6.11.  Assigning the y-axes and the point 
𝛑

𝟒
 

 

Figure  6.12. Changing the assigned axes 

Thereafter, Andy counted 3 full cycles (because of having the coefficient of 3 for 

the argument x on the given cosine function) and then he put the point 2π on the x-axes 

as well as the points 1 and -1 on the y-axes. Since a phase shift is included in the cosine 

function(𝑓(𝑥) = 𝑐𝑜𝑠 (3𝑥 −  
𝜋 

4
)), Andy knew that he needed to shift the curve (it was 

movable in sketchpad) to the left (because he noticed the negative sign in the function) 

and he placed the y-axes on a point he labeled as 
𝜋 

4
. Not only he expressed that the 

horizontal shift was  
𝜋 

4
, but also he moved the y-axes to the left instead of the right side 

of the y-axes (see Figure 6.13). Andy, in fact, made similar mistakes as he did in the 

previous tasks. The given cosine function was shifted horizontally by 
𝜋 

12
 ((𝑓(𝑥) =

𝑐𝑜𝑠 (3𝑥 −  
𝜋 

4
)) = 𝑐𝑜𝑠 (3(𝑥 −  

𝜋 

12
) ), while Andy expressed that it was shifted by 

𝜋 

4
. 
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Figure  6.13. Graph of 𝒇(𝒙) = 𝒄𝒐𝒔 (𝟑𝒙 − 
𝝅 

𝟒
)  

6.2. Part: 2 Andy’s Story, Accounting-For 

In Part 6.2, I focus on ‘accounting for’ (Mason, 2002) Andy’s solutions, 

considering them according to three frameworks (1- Shift of attention, 2- Visualization, 3- 

Mental action). 

6.2.1. Shifts of Attention 

6.2.1.1. Task 1: Identifying the Function 𝒇(𝒙) = 𝒔𝒊𝒏(𝟐𝒙) from the Given 
Graph. 

In order to complete Task 1, Andy first focused his attention on the given graph 

and waited for visual feedback from the graph (his attention was holding wholes 

according to Mason’s classification). He then realized that the graph went through the 

origin (0,0). This shows that Andy was able to discern a very specific detail from the 

graph. Thereafter, in order to identify the type of trigonometric function, he locked again 

his attention for a few seconds on the graph as a whole. Andy then stated that the given 

graph represented a sine function because it “started” from the point (0,0). One could 

conclude that Andy was able to perceive properties of a sine curve (a cyclic graph 

started at (0,0)).  
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Andy gazed at the graph again for a while. He then shifted his attention to 

discerning more details about the curve. He, therefore, focused on the specific points 

such as (0,0), (
𝜋

4
, 1), (

𝜋

2
, 0), (

3𝜋

4
, -1) and (𝜋,0) within the interval [0, 𝜋] . Andy realized that 

the same pattern had been repeated for the second cycle from 𝜋 to 2 𝜋 (e.g., (
5𝜋

4
, 1), (

3𝜋

2
, 

0) and so on). Matching the details of where the two cycles of a sine curve intersected 

the x-axis (one cycle from 0 to 𝜋 and another one from 𝜋 to 2𝜋) and then finding the 

related points on the y-axis led to Andy’s conclusion that the length of the period was not 

the same as the canonical sinusoidal curve. In other words, Andy realized that the given 

graph was squeezed compared with the original sine curve in the interval [0, 2 𝜋]. 

Therefore he articulated that:  

“It is a sine curve but with a factor, because a regular sine graph is a periodic 

function of 2𝜋, but here at 2𝜋 there is two cycles.” 

 The above statement illustrates that Andy knew that there is a relationship 

between the geometric representations of the given graph and the number of repeated 

cycles in the given intervals. Then he indicated that the function should be 𝑓(𝑥) =

𝑠𝑖𝑛(2𝑥). This means that from reasoning on the perceived properties of the sine curve 

Andy was able to introduce a correct sinusoidal function for the given graph.  

To write a different equation for the given graph (as a cosine function), Andy 

focused his attention, this time, on those details that would lead him to find a cosine 

function. To do so, Andy compared the changes in the x and y-values of the given graph 

with the canonical cosine graph as he indicated that:  

“Because the cosine graph starts at the points where x=0 and y=1, so I basically 

need to look at the first instance on the domain that give me y=1.”  

This shows that Andy was aware of the fact that the basic canonical cosine 

function intersects the y-axes at one. This suggests that Andy perceived properties of 

cosine function. Thereafter, he gazed at the graph as a whole for a while until he 

focused his attention on more details embedded in the given sinusoid graph. Andy, thus, 
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found that the points in which the graph interconnect the x-axes were  
𝜋

2
 as well as 𝜋. 

Here, he again shifted his attention to y=1 and indicated that the graph did not intersect 

the y-axes at the point 1, as in the canonical cosine curve. Therefore, Andy interpreted 

the given curve as a graph shifted horizontally to the right. However, he still could not 

realize the amount by which the graph shifted as he stated “… I do not know what this 

point is.”  He gazed at the graph as a whole again. Andy finally figured out that the graph 

transformed horizontally by 
𝜋

4
 to the right because the value of y equals 1 for x= 

𝜋

4
. 

Afterwards, he determined the cosine function while reasoning on the perceived 

properties of the transformed sine function. He stated that “this one [the given curve] 

starts from ( 
𝜋

4
, 1), so it is 𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +

𝜋

4
) because it is shifted to the right so I need 

to have a positive sign.”  

It is clear from the above-suggested function (𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +
𝜋

4
)) that Andy 

knew that the coefficient of the argument of x should be 2 because there were 2 full 

cycles on the given graph. However, Andy made two mistakes. First, since the point  

(
𝜋

4
, 1) was on the right side of the y-axes, he added 

𝜋

4
  to the argument 2x in the cosine 

function. Second, he did not pay any attention to the effect of periodicity on the shifted 

point when he added 
𝜋 

4 
 to (2𝑥). These errors illustrate that Andy had some difficulties in 

perceiving properties of transformation of sinusoidal functions because if graph shifted to 

the right, the length of horizontal shift should be subtracted from the argument of x 

embedded in the sinusoidal function. Thus, I sketched 𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 +
𝜋

4
) using a 

sketchpad to investigate if Andy could realize the mistakes he made in determining the 

cosine function.  

After sketching the graph of 𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 +
𝜋

4
) Andy immediately recognized 

his error, noting that  

“Ok, I made some incorrect calculation, but I think I should do something with the 

coefficient of x which is 2.”  
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The feedback he got from the graph of his suggested function made him realize 

that there is a connection between the arguments of x and the point by which the graph 

is shifted. In other words, Andy noticed the relationship between the graphical 

representations of periodicity and the cosine function transformed horizontally. He then 

continued, stating 

“Basically since the coefficient of x is 2, it needs to be multiplied by 
𝜋

4
  on 2, 

because the x has 2 multiplications. So the function should be 𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 −

𝜋

2
).”   

From Andy’s suggested function (𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 +
𝜋

4
) and 𝑓(𝑥) = 𝑐𝑜𝑠(2𝑥 −

𝜋

2
)),  it 

is unclear whether Andy returned to his previous suggestion based on the known 

relationship between sine and cosine ( 𝑠𝑖𝑛(𝑎) = 𝑐𝑜𝑠 (𝑎 −
𝜋

2
) ) or whether he recognized 

the importance of the brackets  𝑓(𝑥) = 𝑐𝑜𝑠(2𝑥 −
𝜋

2
) is indeed equivalent  𝑓(𝑥) =

𝑐𝑜𝑠(2(𝑥 −
𝜋

4
)) , and that is how the recognized shift by 

𝜋

4
  is featured in the formula.  

 

6.2.1.2. Task 2: Identifying the Function 𝒇(𝒙) = 𝒔𝒊𝒏(
𝟐

𝟑
𝒙) from the Given 

Graph 

Andy gazed at the whole graph for a while and then he discerned some details 

on the values of x and y on the origin. Andy noticed that the graph intersected the origin 

at the point (0, 0), so he knew that the curve was related to a sine function. He then 

looked for more details and he realized that the horizontal length of the graph stretched 

more compared with the canonical sine curve. In fact, he noticed that the graph hit the x-

axes at 0, 
3𝜋

2
 and 3 𝜋. This observation of the details directed Andy to find a relationship 

between the graphical representations and the symbolic representations of the sine 

function. In other words, he knew that the argument of x was the reverse of the 
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horizontal length or the periodicity of the graph. As a result, he introduced 
2

3
  for the 

coefficient of x and thus, the sinusoidal function was 𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥).  

In order to identify a cosine function for the given graph, he initially spent several 

minutes finding the point on the x-axes having the value of y=1. To do so, he observed 

that the graph had the value of y= 1 between the points (0, 0) and (
3𝜋

2
, 0). He then 

zoomed in for more details on the x-axes and he eventually found a point on the x-axes 

having the value of y=1. Andy recognized that the graph had the value of y=1 for a point 

between 
𝜋

2
 and 𝜋 which was

3𝜋

4
. Thus, he expressed that the graph was shifted by 

3𝜋

4
. As 

a result, he could provide a relationship between the graph shifting horizontally and its 

transformed function. Andy stated that the product of the horizontal transformation was 

𝑓(𝑥) = 𝑐𝑜𝑠 (
2

3
𝑥 +

3𝜋

4
). Observing the graph of his suggested function, 𝑓(𝑥) = 𝑐𝑜𝑠 (

2

3
𝑥 +

3𝜋

4
), made Andy gaze at the whole graph again, while comparing both graphs (his 

suggested graph and the original given curve) (see Figure 6.14). Andy discerned some 

details on both graphs. For instance, he noticed that the point (
3𝜋

2
) had the value of y=1 

in the original graph (graph of 𝑓(𝑥) = 𝑠𝑖𝑛 (
2

3
𝑥)), but the y-value was not the same for his 

suggested graph (graph of  𝑓(𝑥) = 𝑐𝑜𝑠 (
2

3
𝑥 +

3𝜋

4
)). He also found that the new suggested 

graph (graph of 𝑓(𝑥) = 𝑐𝑜𝑠 (
2

3
𝑥 +

3𝜋

4
 )) did not pass the origin (0,0), while the given graph 

(graph of 𝑓(𝑥) = 𝑠𝑖𝑛 (
2

3
𝑥)) intersects the origin.  
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Figure  6.14. Snapshot of two graph 𝒇(𝒙) = 𝒄𝒐𝒔 (
𝟐

𝟑
𝒙 +

𝟑𝝅

𝟒
) and 𝒇(𝒙) = 𝒔𝒊𝒏 (

𝟐

𝟑
𝒙) 

Andy, then, noticed that there was a direct relationship between the periodicity or 

the horizontal length of the given sine curve and the amount of horizontal shift in its 

related function. Thus he multiplied the coefficient of x (
2

3
) by the phase shift (

3𝜋

4
) and 

wrote a new function as 𝑓(𝑥) =  𝑐𝑜𝑠(
2

3
𝑥 −

𝜋

2
). He also realized that the sign between the 

argument of x and the amount of horizontal shift should be negative because the graph 

had been shifted to the right. One can conclude that Andy was able to reason on the 

perceived properties of transformation of the sinusoidal function. While answering this 

question, Andy also was able to visualize the problem. According to Prmeseg’s 

classification (1999) his visualization fell into three categories, which will be described in 

the following section. 

6.2.1.3. Task 3: Identifying the Function 𝒇(𝒙) = 𝒄𝒐𝒔(
𝟐

𝟓
𝒙 −  

𝝅

𝟓
 ) from the Given 

Graph 

To identify the function representing the given curve in Task 3 (see Figure 6.5), 

Andy gazed at the curve (similar to the two previous tasks). After a long pause, he stated 

that  

“…We could determine a cosine function for the curve (Figure 6.5) because it did 

not intersect the origin” (perceived properties of cosine functions).  

The above statement acknowledges Andy’s general grasping of properties of 

cosine function. He then tried to discern the x-values in which the curve intersected 

thought zooming in the Figure 6.5 for a while. Andy eventually found the two points: 

(−
3𝜋

4
, 0) – (midpoint between -𝜋 and −

𝜋

2
) and (

17𝜋

4
 , 0) –  (midpoint between 4π and 

9

2
 π). 

Discerning these details from the graphical representations directed Andy to determine 

the amount of B (period from the canonical representation).  To compute B, he 

subtracted 
17π

4
  from −

3π

4
 and he then determined the period for the cosine function 

as B =
𝟐

𝟓
. One can conclude that Andy was reasoning on the perceived properties of 
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cosine function because it appears that he acknowledged that if the length of a canonical 

function is (2π), then it should be always divided into the length of full cycle of the given 

sinusoidal function (in this tasks it was 5π). It is interesting to note that finding the 

distance between endpoints of one cycle, in which the curve intersected the x-axes, is a 

strategy by which Andy often determined the periodicity in the sine function. However, 

he applied this method again when he wanted to find periodicity in a cosine function 

(Note that in a cosine function we often find the distance between the two points having 

the same amplitude).  

Andy starred at the curve (see Figure 6.5) for several seconds again and he stated: 

“… there should be another factor, a positive or negative after the x because it is 

translated by some amount to the right or left because the graph is not started 

basically at the point y=1…” 

This statement illustrates Andy acknowledged properties of cosine function 

because he knew that if the graph did not intersect the y-axes at 1, it means that it is 

shifted to the left or right. In the other words, he knew that a certain radian representing 

C or phase shift should be added to or subtracted from the argument 
2

5
x.  Eventually 

Andy provided a relationship between the graphical representation and the cosine 

function and he determined
 π

6
  as the phase shift for the function 𝑓(𝑥) = 𝑐𝑜𝑠 (

2

5
𝑥 − (

π

6
)) 

representing the given curve. However as I explained in the section 6.1, Andy this time 

was not able to perceive correctly properties of cosine function because the phase shift  

(C) in his suggested function (which was not representing the given curve (see Figure 

6.5)) was C= 
π

2
, while he found C= 

π

6
.  In other words, he did not consider the influence of 

B (period) on C. 

To identify a sine function for the task (Figure 6.5), Andy stated that:  
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“…the cosine function (𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 − (

𝜋

6
)) should be shifted to the here by a 

factor of  
3𝜋

4
 ,so the sine function is 𝑓(𝑥) = 𝑠𝑖𝑛 (

2

5
𝑥 −

3𝜋

4
)…” 

As it appears from the above statement, Andy made similar mistake as he did in 

the cosine function (𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 − (

π

6
))). He found the  x-value (

3π

4
) at which the 

curve intersected the x-axis and then he subtracted it to the argument without paying 

attention to the value “B” and its effect on “C” in the canonical representation. This 

shows Andy’s lack of reasoning on the perceived properties of the sinusoidal functions 

as well as inability in connecting a graphical representation with the Canonical 

representation).  

 

6.2.1.4. Task 4: Assigning Coordinates to Represent 𝒇(𝒙) = 𝒔𝒊𝒏(𝟒𝒙)  

In order to assign coordinates to the given graph, Andy looked at the function for 

a while. It seems that he was analyzing and computing something in his mind as he 

whispered some unclear words. He then looked at the given sinusoidal curve and he 

expressed that he first needed to sketch the y and x- axes. To adjust the y and x-axes 

on the curve, Andy acknowledged that:  

“…the sine curve always begins at the point (0,0)” (as he also explained it in the 

previous tasks).  

As such, he placed the x and y-axes as shown in Figure 6.15. One can conclude 

that Andy perceived properties of a sine curve (e.g., the sine graph begins at (0,0)).  
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Figure  6.15. Intersecting the axes and the curve in the origin 

From there, he gazed at the given function (𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥)) as the whole and at 

its cycle again for a while. Andy then tried to add more details (number and radians) on 

the x and y-axis. Andy then zoomed on the number 4 from the function. He expressed 

that:  

“…I know here [referring to x-axes] should be 𝜋 because I see here [referring to 

the function 𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥)])  4…”  

Andy realized that there should be four full cycles in the interval [0, 2𝜋] or two 

cycles in the interval [0, 𝜋] because the coefficient of x in the sinusoidal function was 4. 

This illustrates that Andy was able to reason on the perceived properties of sinusoidal 

functions, when finding a relationship between the symbolic representation and the 

graphical representation (see Figure 6.16).  

 

Figure  6.16. Putting 𝝅 on the x-axes 
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  To discern more detail from the given function, Andy again gazed at the graph for 

a while. He recognized that the maximum value of the given sine function (𝑓(𝑥) =

𝑠𝑖𝑛(4𝑥)) was 1. Therefore he added two points 1 and -1 on the y-axes to show the 

highest and the lowest points of the graph (perceived properties of the sine curve). After 

that, I asked Andy to find an alternative function for the given function and then sketch it. 

However, Andy refused to do that and he said that:  

“…I do not know how to do it…It should be very hard. I just know from the sine 

function that the cosine function is (𝑥) = 𝑐𝑜𝑠(4𝑥 − 2𝜋) … ”  

This is rather surprising, given that he was able to express given graphs as both sine 

and cosine functions in the previous tasks.  

6.2.1.5.  Task 5: Assigning Coordinates to Represent 𝒇(𝒙) = 𝒄𝒐𝒔 (𝟑𝒙 −
𝝅

𝟒
) 

Similarly to the previous task, Andy began completing the task by focusing on the 

y and x-axes. He positioned the x and y-axis on one of the sinusoidal curves in a way 

that the slope of the graph decreased and then increased (see Figure 6.17). This 

illustrates that Andy perceived properties of the cosine graph because he acknowledged 

that a cosine graph initially intersect the y-axes, then its y-value becomes zero and then 

negative, zero again and it eventually completes one cycle at the same y-value as it 

begins with.  

  

Figure  6.17. Assigning the coordinates on the sinusoidal curve 

From there, he gazed at both the curve and the function 𝑓(𝑥) = 𝑐𝑜𝑠 (3𝑥 −
𝜋

4
)  in 

order to add more details to the graph. Andy then placed 2𝜋 on the x-axes where the 
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three consecutive (cosine) cycles were completed (see Figure 6.18).  Andy’s action 

shows that he could provide a relationship between the given sinusoidal function and its 

graphical representation, similar to the previous tasks. One also can conclude that he 

was able to reason on the perceived properties of the transformation of sinusoidal 

functions. In fact, Andy was able to justify that because there was the coefficient (3) for 

the argument x in the given function (𝑓(𝑥) = 𝑐𝑜𝑠 (3𝑥 −
𝜋

4
)), there should be three cycles 

in the interval [0, 2𝜋].   

  

Figure  6.18. Putting 2𝝅 on the x-axis  

Thereafter, Andy shifted his attention to the given function (𝑓(𝑥) = 𝑐𝑜𝑠 (3𝑥 −
𝜋

4
)) 

again and he noticed that its graph should shift horizontally as he realized that 
𝜋

4
 was 

subtracted from the argument 3x. Discerning this detail directed Andy to shift the y-axis 

from its previous place (see Figure 6.18) toward the left side (see Figure 6.19). He then 

shifted his attention to the coefficient of the cosine function. Andy thus added 1 and -1 

on the y-axis, which shows his understanding of the perceived properties of cosine 

curves. However, Andy placed the y-axis at the wrong place and even seeing the graph 

of 𝑓(𝑥) = 𝑐𝑜𝑠 (3𝑥 −
𝜋

4
) did not help him assign the coordinates correctly.  
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Figure  6.19. Shifting the sinusoidal curve to the left 

 

6.2.2. Visual Imagery 

 

6.2.2.1. Task 1: Identifying the Function of 𝒇(𝒙) = 𝒔𝒊𝒏(𝟐𝒙) from the Given 
Graph 

In finding the sinusoidal function described by the given graph (Task 1,𝑓(𝑥) =

𝑠𝑖𝑛(2𝑥)), Andy repeatedly stated that because the shape of the graph is oscillating or it 

is “like a wave”, it should be a sine function. One could conclude that Andy had a 

pictorial image of sinusoidal curves in his mind. Then, Andy described that there should 

be two completed sinusoidal curves within the interval [0, 2𝜋], when he used his right 

index finger to show the full cycles (see Figure 6.20). He again used his index finger and 

pointed to the point 𝜋 on the x-axis to show the period of the first cycle. He repeated the 

same action again for the second sinusoidal curve.  He moved his hand very quickly to 

represent the fact that the given curve is more squeezed compared with the canonic sine 

curve. Andy’s gesture indicates visual kinesthetic communication when working on the 

given sinusoidal functions.  Eventually he stated that the graph belongs to the function of 

𝑓(𝑥) =  𝑠𝑖𝑛(2𝑥) because “there are two waves squeezed between 0 and 2𝜋.” This 

indicated that Andy considered a certain pattern (two full cycles) repeated within the 

interval [0, 2𝜋], so therefore he had the pattern imagery of periodicity in sine functions.  
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Figure  6.20. Andy’s right index to represent two cycles 

To determine a cosine function for the given graph, Andy pointed to a point in the 

graph (using his right index) to show that the graph should be translated by 
𝜋

2
 and then 

he wrote 𝑓(𝑥) = 𝑐𝑜𝑠(2𝑥 −
𝜋

2
) (see Figure 6.21). As Figure 6.21 shows, Andy actually 

pointed to 
𝜋

4
, however, he referred to it as  

𝜋

2
, maybe because he had a pictorial imagery 

of canonical function in his mind (in a canonical cosine function, y=1 for x=
𝜋

2
). He then 

moved his right hand across the x-axes to show the horizontal shift of the curve to the 

right (see Figure 6.22), while he expressed that “a cosine graph is a sine graph 

translated to the right by a factor of  
𝜋

2
. "   

 

Figure  6.21. Pointing to a point on the graph 
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Figure  6.22. Andy moved his hand across the x-axes 

One can conclude that Andy had a kinesthetic imagery of the horizontal 

transformation of a sinusoidal curve since he used his right index finger and his right 

hand to show his understanding of the content. Also Andy’s response indicates that he 

had memory image of formula of sinusoidal function because he acknowledged that we 

can obtain the sine curve from the cosine curve by shifting it 
𝜋

2
 units to the 

right. However, when I asked him to show me this relationship in the given graph (see 

Figure 6.21), he changed the function from 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 −
𝜋

2
) into 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 +

𝜋

4
) 

because he noticed the point y=1 and x=
𝜋

4
. After realizing his initial mistake in 

determining the cosine function (by comparing the graph of 𝑓(𝑥) = 𝑐𝑜𝑠 (2𝑥 +
𝜋

4
) and 

𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥)), Andy indicated that he did not consider the effect of periodicity  (B in 

canonical representation) on phase shift (or C) . In the other words, Andy noticed that he 

displaced the bracket in his suggested formula. This illustrates again that Andy had a 

memory image of the formula of the transformation of a sinusoidal function since 𝑓(𝑥) =

𝑐𝑜𝑠 (2𝑥 −
𝜋

2
) equals 𝑓(𝑥) = 𝑐𝑜𝑠 (2 (𝑥 −

𝜋

4
)). 

6.2.2.2.   Task 2: Identifying the Function of 𝒇(𝒙) = 𝒔𝒊𝒏(
𝟐

𝟑
𝒙) from the Given 

Graph 

To complete Task 2 (similar to Task 1), Andy used the word oscillation 

repeatedly as he expressed:  
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“Again it is a basic oscillating function has an oscillation and its oscillation starts 

from 0.”  

At the same time, Andy moved his two fingers like a wave across (see Figure 

6.23) the given curve to demonstrate that the given curve represents an oscillating 

function beginning at (0,0). 

 

Figure  6.23. Showing the oscillating function 

Andy stated that the coefficient of the argument x represents how much the 

graph was squeezed or extended by a factor. To exemplify a compressed graph having 

a whole number for the coefficient of x, he used both his hands and he put them parallel 

to each other (see Figure 6.24). His hands were like two closed parentheses. 

 

Figure  6.24. Student positioned his hands parallel to each other 
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However he expressed that since the given graph completed between 0 and 3𝜋, 

it means that the canonical sinusoidal curve was stretched and the coefficient of x is a 

fraction. Andy used both his hand to show the extended graph, but this time he opened 

his hand like an open parentheses (see Figure 6.25). This indicates that Andy identified 

the symbolic representation of sinusoidal functions, when focusing on the graphical 

representations of the related sine functions. As with the previous task, Andy’s 

kinesthetic imagery led him to conclude that the sinusoidal function had a fractional 

argument of x because the length of a full sine cycle in the given graph is bigger than the 

length of full cycle in the graph of canonical function. He concluded that because the 

graph was stretched, the coefficient of x should be a fractional number (smaller than 1).   

 

 

Figure  6.25. Student positioned his hands in the open parentheses position 

Andy, then, expressed that in order to find periodicity (B in canonical 

representation); he first needed to find a point by which the sinusoidal curve had a 

completed cycle (3𝜋). He stated  

“…usually the graph complete one cycle at 2 𝜋 but here the graph finished a full 

cycle at 3 𝜋 so this point is 3𝜋 …”.  

He used his right index finger to show me the point 3𝜋 (see Figure 6.26).  
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Figure  6.26. Showing the end point of one cycle of the sine curve 

Then Andy moved his right hand from left to right across the x-axes and added 

that, 

“…then we see that the graph is longer than the original sine graph by factor of  

3 𝜋 

2
.” … so  there is a coefficient before x in the function. This means that the 

coefficient of x is  
2

3
. So the function is 𝑓(𝑥) = 𝑠𝑖𝑛(

2

3
𝑥)” 

 Andy’s hand movements and his statement are evidence that not only was he 

able to communicate kinaesthetically about the sine function, he had the memory image 

of the formula of the transformation as he said “the coefficient of x is 
2

3
… So the function 

is 𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥)”, although he did not explicitly talk about the periodicity formula: 

𝑃𝑒𝑟𝑖𝑜𝑑 =
2𝜋

𝐵
. In other words, he knew that when the sinusoidal graph stretches 

horizontally, the arguments of the function change respectively.  

To find an alternative function for the given graph, he expressed that  

"…to have a cosine function we know that the graph should begin from y=1 at 

here…"  

 In his mind, he moved the y-axes to the right side of the graph. This phase illustrates 

that Andy had dynamic imagery when solving the question. One also can state that he 
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had pictorial imagery since it seems that Andy had an image of a canonical cosine graph 

in his mind (according to the aforementioned phase).  

Along with the two aforementioned imageries, he also pointed to the place on the 

y-axes when he used his right index finger (See Figure 6.27). Andy expressed that the 

graph (which was stretched horizontally) shifted to the right by 
3𝜋

4
  (the first point he find 

for y=1).  To show that the graph shifted horizontally, Andy moved his right hand from 

left to right (see Figure 6.28). He then stated the function as 𝑓(𝑥) =  𝑐𝑜𝑠(
2

3
𝑥 +

3𝜋

4
). Andy's 

action again shows his kinesthetic imagery of the graphing of sinusoidal functions.  

  

Figure  6.27. Andy’s pointing to the y-axes 

Observing the graph of his suggested function, Andy eventually identified the 

cosine function as 𝑓(𝑥) =  𝑐𝑜𝑠(
2

3
𝑥 −

𝜋

2
). Andy’ suggested cosine function show that he 

had the memory image of the formula of transformations of sinusoidal functions in his 

mind, because he subtracted the phase shift  
𝜋

2
 from the argument x.  
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Figure  6.28. Andy moved his hand from left to right 

To sum up, it seems that Andy had a pictorial imagery of the original sinusoidal 

curves and he was able to imagine how to displace the y-axis from a given graph to 

have a cosine function (dynamic imagery). His answer to this question also indicates that 

he had memory image of the formula of a sinusoidal function because when the graph 

stretched or squeezed. Andy used the incorrect phase shift without considering the 

multiplication of the coefficient of x on the shift. He knew that periodicity would change 

and he therefore had to change the coefficient of the argument in the function. He also 

knew that if the graph shifted horizontally by a value, it should be added/subtracted to 

the coefficient of x (although his suggested function often had the wrong sign). In most of 

his answers, he often used his right index or his right hand and this shows that he was 

able to communicate kinetically when discussing the tasks.  

6.2.2.3. Task 3: Identifying the Function of  𝒇(𝒙) =  𝒄𝒐𝒔(
𝟐

𝟓
𝒙 −

𝝅

𝟓
) from the 

Given Graph 

Similar to the other 2 previous tasks, Andy used his hands several times when he 

was completing Task 3. When discussing the period of the sine cycle (B), for instance, 

he used his right index finger to show the x-value (−
 3π

4
) by which a sinusoidal function 

intersected the x-axes (see the yellow arrow in Figure 6.29). He considered the point 

(−
 3π

4
, 0) as the starting point of a full sine cycle. Andy applied the same gesture to show 

where the particular full sine curve ended. Furthermore, Andy moved his both indexes 

fingers (see Figure 6.30) to show the length of half of cycle.      
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Figure  6.29. Andy was pointing to the point −
 𝟑𝛑

𝟒
 

   

Figure  6.30. Andy was showing the half of period 

To show that the graph did not intersect the y-axis at 1, and that as a result it 

shifted horizontally, he again used his right index finger (see Figure 6.31). 

 

Figure  6.31. Andy showing the intersection between y-axes and the curve 
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All the above-mentioned instances witnessed Andy’s kinesthetic imagery of 

sinusoidal function. Moreover, the last incident (see Figure 6.31) illustrates that Andy 

had the formula image of sinusoidal function. Andy identified that the curve (see Figure 

6.6) did not interconnect to the y-axes at one. Therefore, a phase shift (C) needed to 

subtract from the argument of x in the cosine function (𝑓(𝑥) = 𝑐𝑜𝑠 (
2

5
𝑥 − (

π

6
)) . However, 

as data show, the memory image of formula transformations of sinusoidal function, did 

not eventually support Andy to suggest a proper function for the given graph. He was 

also unsuccessful in suggesting a proper alternative sine function for the given task due 

to his limited image of formula transformations of sinusoidal function. 

6.2.2.4.  Task 4: Assigning Coordinates to Represent  𝒇(𝒙) = 𝒔𝒊𝒏(𝟒𝒙) 

For Task 4, Andy expressed that: 

“…since there is 4 here is a factor of x, there should be 1, 2, 3 and 4 full sine 

curves between 0 and 2 𝜋,”  

Andy used his right index to count the number of cycles in the interval (see 

Figure 6.32, kinesthetic imagery). This statement indicates that Andy realized that there 

was a certain pattern to the repeated cycles. In fact he noticed that a sine curve should 

be repeated 4 times in a certain interval. According to Prmesg (1986), Andy had the 

pattern imagery of a sinusoidal function. He also situated the two numbers 1 and -1 on 

the y-axes and he expressed that:  

“as the amplitude or the coefficient of 𝑠𝑖𝑛(4𝑥) is 1, we should put 1 and -1 

here…”  

He again used his right index finger to pointe to the numbers 1 and -1, while he 

emphasized that:  

“…yes, we need to show these two numbers [1,-1] here.” (see Figure 6.33)  
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Andy’s response to this task indicated that he had also a memory image of 

formula of transformation of sinusoidal function since he knew that the coefficient of x (B 

in the canonical representation) represents the number of sine curves appearing 

between 0 and 2𝜋. Andy also knew that the coefficient of 𝑠𝑖𝑛(4𝑥) (or “A” according to 

Canonical representation) represents the amplitude or the maximum and minimum 

values for the y-axis. Although Andy’s actions and his words in the previous tasks 

represent his memory image of the formula of a sinusoidal function, he never referred to 

the amplitude of the sinusoidal functions in the first two tasks. It was in Task 3 when 

Andy discussed the coefficient of the sine function (“as the amplitude or the coefficient of 

𝑠𝑖𝑛(4𝑥) is 1”).  

 

Figure  6.32. Student counted four full cycles 

 

Figure 6.33. Student pointed to the number 1 and -1 
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He then changed 𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥) into 𝑓(𝑥) = 𝑐𝑜𝑠(4𝑥 − 2𝜋 ). Since in Task 1 

(𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥)) Andy subtracted 
𝜋

2
 from the cosine function but in Task 3 he 

subtracted 2𝜋, I asked him for his reason for doing so. Andy expressed that  

“…because of having the number four behind the argument x in the cosine 

function, when we multiply four by  
𝜋 

2
 , we have 2𝜋"  

This indicates that Andy applied his memory image of formula of a sinusoidal 

function he experienced in the previous tasks. As we saw in the previous tasks, Andy 

often made errors and after visiting the graph of his suggested functions, he 

remembered the learned formula interconnecting a sine function into a cosine function. 

Or one can also conclude that Andy remembered the canonical representation in which 

B (period) influences directly C (or phase shift). 

6.2.2.5.  Task 5: Assigning Coordinates to Represent  𝒇(𝒙) = 𝒄𝒐𝒔 (𝟑𝒙 − 
𝝅 

𝟒
) 

In contrast with other tasks in which Andy used his hand and fingers in different 

situations, he did not use his body while he described his thoughts on the last task. 

However, similarly to the previous tasks, he showed his pictorial imagery of the cosine 

function coordinating when he positioned the y and x-axes on the given graph. This 

indicates that Andy was aware of the general shape of cosine function. Andy also 

focused on his memory image of the formula of a sinusoidal function. He recognized that 

there was a coefficient bigger than 1 for the x (or B> 1) in the given function. From there, 

he interpreted that the graph should be squeezed between the points 0 and 2 𝜋. By 

getting help of his formula image, Andy, also, found that “A” or the coefficient of 

𝑐𝑜𝑠(3𝑥 −
𝜋 

4
) was one. As such, he acknowledged that the maximum and the minimum 

values the function reached should be +1 and -1. In other words, since “nothing was 

multiplied to the 𝑐𝑜𝑠(3𝑥 −
𝜋

4
)” – referring to the ‘A’ value of 1 –  it means that the graph 

should not stretch or squeeze vertically. It was in Task 4 and 5 that Andy discussed the 

vertical shift. In the previous tasks, he often focused his attention to the horizontal shift 

and periodicity. The formula image also guided Andy to conclude (incorrectly) that the 
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graph should shift horizontally because  
𝜋

4
 was subtracted from the argument 3x in the 

given function. However, as we saw in the sections 6.1 and 6.2 Andy was unable in 

recognizing correctly phase shift (C) according to canonical formula (while C was 
𝜋

12
  he 

talked about 
𝜋

4
 as a phase shift). Furthermore, Andy expressed that the graph should 

have 3 cycles in the certain interval [0, 2𝜋] (similar to the previous tasks) as he counted 

“one, two, three sine cycles.” This shows that Andy had pattern imagery of sinusoidal 

functions.  

6.2.3. Covariational Reasoning 

In this section I analyze and interpret Andy’s responses to the interview tasks 

according to Covariational reasoning framework created by Carlson et al. (2002). As it 

was described in the section 5.3, Carlson et al’s., framework comprised of five distinct 

developmental levels of covariational reasoning (L#) that parallel the five mental actions 

(M#).  

As we saw in the previous analysis (in section 6.2), Andy recognized that there 

was a close relationship between the coefficient of the argument in the sine function 

(e.g., 𝑓(𝑥) =  𝑠𝑖𝑛(2𝑥)) and the number of full cycles repeated in the interval [0, 2𝜋]  

(M1: Coordinating the value of one variable with changes in the other). Andy stated that 

his reason for focusing on this certain interval [0, 2𝜋] was the fact that a canonic sine 

function began from 0 and completed at 2𝜋. In other words, a full cycle or periodicity 

happens between 0 and 2𝜋. While completing Task 1, therefore, Andy interpreted that 

having more than one cycle, between 0 and 𝜋 (one cycle) and from 𝜋 to 2 𝜋 (another 

cycle), in this interval means having a coefficient of x bigger than one in the sinusoidal 

function. Increasing the number of full sine cycles in the interval [0, 2𝜋], in fact, 

coordinate increasing the coefficient of the argument x in the sinusoidal functions  

(M2: Coordinating the direction of change of one variable with changes in the other 

variable). As such, he expressed that the function representing the graph should be 

𝑓(𝑥) =  𝑠𝑖𝑛 (2𝑥). There is, in fact, a relationship between the number of full equal cycles 

between 0 and 2 𝜋 and finding the periodicity of a sine function. Thus, if there were two 
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cycles in the given curve (for Task 1, graph of  𝑓(𝑥) =  𝑠𝑖𝑛(2𝑥)), the number presented 

the periodicity (or B) in the sine function was the number 2 (M3: Coordinating the 

amount of change of one variable with changes in the other variable). The behavior 

exhibited by this student when responding to this task suggested that Andy was at 

quantitative coordination level (L3: At the quantitative coordination level, the images of 

covariation can support the mental actions of coordinating the amount of change in one 

variable with changes in the other variable. The mental actions MA1, MA2 and MA3 are 

supported by Level 3 image). Andy’s responses to this task, in fact, supported all three 

mental actions M1, M2 and M3. 

For Task 2 (𝑓(𝑥) =  𝑠𝑖𝑛 (
2

3
𝑥)) Andy again verbalized that the graph of sine 

function and as a result the number of sine cycles in and beyond the interval [0, 2 𝜋] 

changes with change in period (compared with the canonical functions) (M1). He stated 

that the smaller the coefficient of x than 1 required a larger cycle compared with the 

canonic sine curve (M2). As we saw in the previous sections (sections 6.1.2 and 6.2.2), 

Andy was able to recognize the amount of the periodicity or the coefficient of x and 

therefore the proper sine function in the task (M3). Similar to the task 1, his response 

showed that Andy had the quantitative coordination level (L3) of ability of covariational 

reasoning of sinusoidal functions.  

Andy showed exactly the same level of covariational reasoning ability and mental 

action (in identifying periodicity) in Task 3 (𝑓(𝑥) =  𝑐𝑜𝑠(
2

5
𝑥 −

π

5
)), which was different from 

the other two tasks because a phase shift was added to the argument of this cosine 

function. Andy acknowledged that there is a connection between the coefficient of x (
2

5
) 

and the number cycles repeated in its relevance graph (M1). In addition, Andy 

recognized that as the coefficient of x in the cosine function decreasing  

(
2

5
 <1), the length of full sine cycle is extending (compared with the length of a canonical 

cosine function) (M2). Similar to the first two tasks, he was able to determine the amount 

of periodicity (M3). The Andy’s behavior directed me to conclude that he had the 

quantitative coordination level (L3) of covariational reasoning with respect to period, 
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because all his three mental actions M1, M2 and M3 supported him to coordinate the 

amount of change of period with the number of repeated sine cycles in interval [0, 2π].  

Andy also repeated the same mental action (M1, M2 and M3) (as the previous 

tasks) for Task 4 (𝑓(𝑥) =  𝑠𝑖𝑛 (4𝑥)) and Task 5 (𝑓(𝑥) =  𝑐𝑜𝑠 (3𝑥 −
𝜋

4
)) in determining 

periodicity. For instance, Andy indicated that since in each of the sinusoidal functions the 

coefficient of x was more than one (e.g. the factor of x was 4 in the Task 4), we have 

more than one sine cycle in the interval [0, 2 𝜋]. In other words, he realized that the 

bigger the coefficient of x, the more cycles in the interval [0 and 2 𝜋] (M2) (this is in 

contrast, for Task 2 (𝑓(𝑥) =  𝑠𝑖𝑛 (
2

3
𝑥))and Task 3 (𝑓(𝑥) =  𝑐𝑜𝑠(

2

5
𝑥 −

π

5
)) the smaller the 

coefficient of x than one required a larger cycle compared with the canonic sine curve 

(M2)). As we saw in the previous sections (e.g., 6.1.4), Andy recognized the amount of 

the periodicity of the coefficient of x and therefore the corresponding sine functions or 

their related graph in Tasks 4 and 5 (M3). As such, Andy had the quantitative 

coordination level (L3) of ability of covariational reasoning of sinusoidal functions, when 

identifying periodicity in Tasks 4 and 5.  

Andy was not successful in identifying the phase shift in Tasks 3 and 5. When 

completing Task 3, Andy acknowledged that since the graph’s intersection point 

changed from (
𝜋

2
 ,1) (the point from the canonical cosine graph) to another point, the 

whole argument of the function and as a result the cosine function should change (M1). 

He also admitted that a certain radian subtracted from the whole argument, because the 

graph shifted to the right (M2). However, Andy determined unsuccessfully the amount of 

phase shift. He identifies 
𝜋

6
 for a phase shift, instead of 

𝜋

2
. Therefore, Andy’s ability for 

covariational reasoning was direction level (L2) with respect to phase shift. To deal with 

phase shift in Task 5, Andy realized (similar to Task 3) that since a certain radian was 

subtracted from the argument of x, the graph should be shifted accordingly (M2). 

However, Andy was unable to determine the amount of phase shift and to express the 

influence of the amount of periodicity on the phase shift and on the graph. In other 

words, while the phase shift was 
𝜋

12
 (𝑓(𝑥)  =  𝑐𝑜𝑠(3𝑥 −

𝜋

4
) =  𝑐𝑜𝑠(3(𝑥 −

𝜋

12
)), he 
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considered it as  
𝜋

4
  and then sketched the graph accordingly. As it appears from data, 

Andy’s covariational reasoning ability was the direction level (L2) since he showed the 

collection of mental actions (M1 and M2) when engaging in the given mathematics tasks. 

When Andy was asked to write an alternative function representing the given 

graph for Task 1 (see Figure 6.1), he acknowledged that the given graph could not be for 

a canonical cosine function, because it did not intersect y-axes at the point 1 (M1). Andy 

noticed that the graph was shifted horizontally to the right and therefore the resulting 

cosine function should be changed accordingly. One might conclude that Andy’s mental 

action as M2. However, Andy’s discussion shows that he suggested adding a certain 

amount of radian to the argument of the function because the graph shifted to the right 

(so he is not at M2 level).  He still did not talk about the amount of horizontal shift and as 

a result the changes in the cosine function. To find the horizontal change, he first looked 

for a point on the x-axes for which the y-value was 1. As we saw in the previous part of 

the data analysis (in the section 6.1) Andy’s suggested function (𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 +
𝜋

4
)) 

shows that only 
𝜋

4
 radians would influence the horizontal length of one complete cycle 

whereas, Andy previously expressed that there were two full cycles for the given graph. 

In other words, if he wanted to show a correct cosine function, he should multiply 
𝜋

4
  by 2. 

Thus, it appears that his covariational reasoning was initially at the coordinating level 

(L1). 

 After seeing the graph of f(𝑥) =  𝑐𝑜𝑠 (2𝑥 +
𝜋

4
), he realized his mistake and he 

said:  

“Ok, I made some incorrect calculation, but I think I should do something with the 

coefficient of x which is 2. Basically since the coefficient of x is 2 it needs to be 

multiply 
𝜋

4
 on 2, because the x has 2 multiplications. So the function should 

be𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 −
𝜋

2
).”    
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The feedback Andy received from the graph of his suggested function led him to 

realize that the periodicity should directly affect the whole part, x and the amount of shift, 

if he wanted to have a proper sinusoidal function. Andy was able to realize the amount of 

the phase shift and its effect on the cosine function (M3). He also noticed that since the 

graph shifted to the right, the amount of phase shift should be subtracted from the 

argument 2x (M2). Observing the graph of the proposed function (the incorrect functions) 

supported Andy to transit the level of his covariational reasoning from coordinating level 

(L1) to quantitative coordination (L3). In the other words, the collection of mental actions 

(M1, M2 and M3) helped Andy to coordinate successfully the change of the argument 

with the amount of change in the phase shift and then, obtaining the correct sinusoidal 

function. 

To identify an alternative function for the given graph, Andy primarily was not 

able to recognize the horizontal shift in the Task 2 and he made the same error as he did 

(initially) in Task 1 (𝑓(𝑥) =  𝑐𝑜𝑠(
2

3
𝑥 +

3𝜋

4
)). Getting feedback from the graph of his 

suggested function led him to find the correct horizontal shift and as a result, the 

corresponding cosine function representing the given graph (𝑓(𝑥)  =  𝑐𝑜𝑠(
2

3
𝑥 −

𝜋

2
))(M3). 

The data illustrate that similar to Task 1, Andy had a transition from L2 level to L3 level 

in recognizing phase shift from the given graph in Task 2. However, Andy’s covariational 

reasoning moved back from L3 level in Tasks 1 and 2 to L1 level for the rest of interview 

tasks, when he determined the alternative functions for the given graphs/functions. 

6.3. Summary 

In this chapter, I included a detailed analysis of one of the participants, Andy’s 

completion of the interview tasks. At the beginning of this chapter, I described a brief 

overview of Andy’s answers to each of the interview tasks. I then analyzed the way he 

completed the tasks with respect to the three theoretical frameworks applied in this 

study.  
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The data analysis shows that Andy successfully completed the Tasks 1, 4 and 5 

in which the coefficient of the arguments x were whole numbers. He was also able to 

complete the tasks (Tasks 2 and 3) involving the fraction arguments for x. In fact, Andy 

determined the periodicity in the transformed functions/graphs in all interview tasks 

through applying visual imagery such as concert, pattern, kinesthetic and dynamic 

imagery, along with focusing on the details discerned from the given functions/graphs, 

perceiving properties of sinusoidal functions and connecting the analytic representations 

with the graphical representations.  

The data illustrate that Andy’s covariational reasoning ability in determining 

periodicity was the quantitative coordination level (L3), it was at the direction level (L2) 

for identifying phase shift. Andy was unable to determine the phase shift in the Tasks 3 

and 5 (L2), even after applying all previous methods (e.g., concrete imagery and finding 

relationship between symbolic and graphical representations) he used to identify 

periodicity.  Although after several attempts, he could find the alternative function for the 

Tasks 1 and 2 (L3), he was unsuccessful in Tasks 3, 4 and 5 (L1).   
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Chapter 7.  
 
Data Analysis: The case of the “Other Five Students”  

In this chapter I focus on the additional five participants and their responses to 

the five interview tasks. The data are analyzed in terms of the following three theoretical 

perspectives: 1) shift of attention, 2) visual imagery and 3) convariation reasoning. The 

students’ responses to each interview task are also compared with those of Andy 

(Andy’s responses to the interview tasks are discussed in Chapter 6). Table 7.1 

describes the participants’ success or failure in completing the interview tasks.  

Two main themes have emerged in the data analysis: “identifying the period (B)” 

and “identifying the phase shift (C)” (𝑓(𝑥) =  𝐴 𝑠𝑖𝑛/𝑐𝑜𝑠((𝐵(𝑥 + 𝐶) + 𝐷)). The students’ 

difficulties and their approaches to the tasks are explained in detail according to these 

themes.  

Table 7.1 summarizes the students’ responses to the 5 interview tasks. The list 

of tasks is found in Chapter 4. Note that some tasks have several parts, and participants 

performed differently on different part of the tasks. To indicate this, the following codes 

are used in Table 7.1:  

B         Changing a sinusoidal function into a cosine function and vice versa 

P        Identifying the period 

S        Identifying the phase shift  

        When students completed the task correctly 
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     When students completed the task after tails/feedback 

    When students have not completed the task correctly 

 

Table  7.1. Students’ performance in the interview tasks 

 

7.1. Shift of Attention and Visual Imagery: Identifying the 
Period (coefficient B of x) 

 In all the five interview tasks the participants were required to connect the period 

of the given sinusoidal function or the sine curves to a coefficient of x in a sine or a 

cosine function. For brevity, I refer to this connection as “Identifying the period” (see 

Figure 7.1).  
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Figure  7.1. Period of a canonical function 

 

7.1.1.  Identifying Period in Task 1  

7.1.1.1. Initial Confusion 

Among all six students who were interviewed in this study, almost everybody 

(except Andy) identified the period (B) unsuccessfully at the first attempt.  While Andy in 

Task 1 realized that the given curve represented the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥),  Rose, for 

example, stated: 

“It is 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥). It is sine graph because it starts at 0 and it should be 

𝑠𝑖𝑛(
1

2
𝑥). The sine graph start at 0 and then π and 2𝜋 but this one is o, ,

 2𝜋

3
. This is 

half of sine graph. Because the period here is 𝜋 while it is 2𝜋 in the original sine 

curve.”   

Kate and Emma initially made similar errors. The above statement indicates that 

these three participants recognized incorrectly the function for the given graph, 

determining it to be 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥). Analyzing the situation using Mason’s (2008)) 

framework it can be concluded that Rose, Kate and Emma reasoned on the perceived 

properties of the sinusoidal functions and from there they determined (incorrectly) 

relationships between the visual representation and the symbolic representation. This is 
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in contrast with Andy, who initially demonstrated holding wholes by focusing on the given 

graph for a while and then discerning some details from the sine curve (e.g., the graph 

intersected the x-axis at 0, 
𝜋

2
, and 𝜋). They recalled the fact that the period of a canonical 

sine function is 2𝜋, whereas the period of a cycle is 𝜋 in the curve given in Task 1. The 

students thus determined that the given curve represents the function 𝑓(𝑥) = 𝑠𝑖𝑛 (
𝑥

2
). In 

other words; these three students connected the period of the sine curve, which was 𝜋 

radians, with the coefficient of x in their suggested sinusoidal function. The statement 

revealed by these participants (Kate, Rose and Emma), in fact, divided the argument x 

by 2 because the period of the canonical function was divided by 2.   

Using Presmeg’s (1989) imagery framework, it appears that the students, in fact, 

had concrete imagery of canonical functions in their mind since they knew what the 

general shape of a sinusoidal function was and where a cycle of the curve started and 

completed. As an example, Rose sketched a picture of sinusoidal function she had in 

her mind (see Figure 7.2). One might conclude the students’ memory image of the 

formula of sinusoidal function, since they talked about period and the impact of it on the 

parameters of the suggested function (𝑓(𝑥) = 𝑠𝑖𝑛 (
𝑥

2
)). However, while there is an 

opposite relationship between the length of a full-completed cycle (compared with 

canonical sinusoidal function) and the parameter “B” in the standard sinusoidal function, 

students recalled the positive/direct connection.  

In contrast with Andy, who used his body (kinesthetic imagery) frequently when 

he explained his thinking, these three students never used their body (their hands or 

fingers). However, they had dynamic (moving) imagery as they were able to imagine a 

canonical sine function transformed into the given curve (similar to Andy). Although 

Kosslyn, Ganis and Thompson (2009) state that the dynamic imagery could lead to the 

kinesthetic sensation of making that movement, this was not the case when Rose, Kate 

and Emma worked on Task 1.  
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Figure  7.2. Rose’s pictorial image of sinusoidal function 

  While Kate, Rose and Emma did not refer to the compression of the given 

curve, it was Sally and Mia’s main considerations. Sally gazed at the given curve for a 

long pause and then she expressed: 

“….because a normal sine graph is between 0 and 2𝜋 but in this one the graph is 

compressed by half so it means that it is going to be 𝑠𝑖𝑛(
1

2
𝑥) so it is 𝑓(𝑥) =

𝑠𝑖𝑛(
1

2
𝑥)” 

Similarly, Mia stated: 

“…this graph [canonical sine function] is compressed by half so we should have 

𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥)…” 

Holding wholes while approaching the task made students realize that the 

canonical curve was transformed/shrunk (“a normal sine graph is between 0 and 2𝜋 but 

in this one the graph is compressed by half”). Holding wholes also enabled the students 

to recognize relationship between the graphical representation of the sine graph and its 

relevance function (incorrectly). Compared with Rose, Kate and Emma who initially 

discerned some specific details such as the period (𝜋) of the given curve and then 

focused on the relationship between the period and the coefficient of x in the sinusoidal 

function, Sally and Mia did not discuss the period of the sine curve. Instead, they 

focused their attention on the general shape of the curve. Meanwhile, although the five 
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students looked at the given graph from different perspectives, they proposed the same 

incorrect function (𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥)). 

Similar to the other participants, Sally and Mia had pictorial imagery since they 

had concrete descriptions of canonical functions in their mind (…this graph [canonical 

sine function] is compressed). When comparing the given curve with the graph of a 

canonical function, the students had, in fact, dynamic imagery because they were able to 

transform a canonical function into the given curve in their mind. This imagery led Sally 

and Mia (similar to Andy) to use their body when completing Task 1. As an example, 

Sally moved her two fingers (from her right hand) to illustrate the compression of the 

given curve  (see Figure 7.3). Sally’s action shows her kinesthetic imagery of sinusoidal 

functions. Mia used exactly the same gesture. 

  

Figure  7.3. Sally’s usage of her two fingers to show that the curve was shrunk 

As it appears from the students’ discussions that while 
𝑥

2
 and 

1

2 
𝑥 are the same, 

they often tended to express their suggested function for Task 1 as sine of 
1

2 
𝑥. This 

shows that the students attempted to establish the relationship between the period and 

the coefficient of x in the sinusoidal function. Since the period of the given curve (π) was 

half of the period of a canonical sine function (2π), the coefficient of x should be 
1

2
. In 
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other words, the participants’ language was often in direct correspondence with the 

resulting algebraic expression.   

The phenomenon is also reminiscent of “same A – same B” intuitive rule, as 

described by Stavy and Tirosh (2000).  For example, “Same area – same perimeter” is a 

frequent confusion of learners explained by this intuitive rule. In the case of Task 1,  

“same A – same B” was interpreted as “half of (canonical) cycle – half of argument”. 

As evident from the data, the majority of students in this study had initial 

confusion when completing Task 1; however, they successfully found the correct 

function for the given curve after the graph of their suggested function was sketched. In 

the following section, the participants’ approaches are described. 

7.1.1.2.  Importance of Computer Feedback 

Observing the graph of the function 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥) made participants realize that 

the graph of their suggested function did not correspond to the given curve. The 

participants, then, used different methods to correct their initial suggestion. In the 

following, the students’ responses are described. If a student’s solution was different 

from others, it is described in a separate section; otherwise similar students’ responses 

are explained in the same section. 

  Kate, after gazing at the screen for two minutes and holding  both graphs as 

whole, began to compare the two sinusoidal graphs respectively (see Figure 7.4) 

through discerning detail from both curves. She stated that: 

“….this one [#1] is half of 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) at 2𝜋, but this one [#2] has one, two 

complete sine graphs between 0 and 2𝜋. So, my answer was wrong. It is 

𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥). " 

As it appears from the above statement, and consistent with Mason (2008) 

observation, identifying details from the curves directed Kate to recognize relationship 

between the given curve (#2 in Figure 7.4) and its appropriate sinusoidal function 
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(𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥)). The above quote from Kate also illustrates her pattern imagery of 

sinusoidal function, since she was able to realize the repeated outline (“one, two 

complete sine graphs between 0 and 2π”) embedded in the given curve (#2). Moreover, 

Kate used concrete imagery because she had a visual image of a canonical function 

when she explained her thinking (“this one [#1] is half of 𝑓(𝑥) = 𝑠𝑖𝑛(𝑥) at  2𝜋”).  

 

Figure  7.4. Graph of 𝒇(𝒙) =  𝒔𝒊𝒏(
𝟏

𝟐
𝒙) and 𝒇(𝒙) =  𝒔𝒊𝒏(𝟐𝒙) 

Similarly, getting feedback from the graph of her suggested function (see Figure 

7.4) shifted Sally’s attention to the connection between the graph #2 (see Figure 7.4) 

and its represented function as she expressed: 

“….I made a little error when I was calculating my B value which is the 

compression of the x-values, if it is compressed by a half…., so if it is 

compressed by half it is 1 over half is 2[ it means  
1
1

2

= 2]. I think the function 

should be 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥).” 

The above excerpt also indicates that Sally attempted to reason on the perceived 

properties of the sinusoidal functions (“… if it is compressed by a half, so if it is 

compressed by half it is 1 over half is…”). This justification led her to change her initial 

suggestion successfully from 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥) into 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥). In other words, she 
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recognized the inverse relationship between the period of the given graph and the 

coefficient of x in the sine function. 

While describing her answer, Sally used the sketchpad’s pointer to refer to the 

coefficient of x in the sinusoidal function 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥) (see Figure 7.5) and she stated: 

“…we actually we should calculate by going 1 over B…” 

The aforementioned statements indicate that Sally had the memory image of 

formula of the canonical function because she acknowledged the coefficient of the 

argument x as “B.” She, moreover, had concrete imagery of sinusoidal functions as she 

expressed that the graph (the canonical function) was compressed (the canonical sine 

curve shrunk into two full sine curves). One might also conclude that Sally had the 

dynamic imagery since she was able to move the given curve in her mind to compare it 

with the canonic curves.  

 

Figure  7.5. Sally’s pointing to the B value in the suggested function 

When she saw the graph of 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥), Emma, similar to Sally, attempted to 

find connection between the period and the coefficient of x in the sinusoidal function as 

she stated: 
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“….That mean that in 𝑓(𝑥) =  𝑠𝑖𝑛(
1

2
 𝑥) the period is actually bigger [in curve #2], 

so it is 𝑓(𝑥) =  𝑠𝑖𝑛(2𝑥). It seems that you are taking 2𝜋 and divided it into 2 to 

have period of 𝜋. You suppose to get the value from here and divided it….  It has 

the period of 𝜋 but originally it has the period of 2𝜋 so we need to divide the 

period by 2 so in order for you to divide it by 2 you need to have 2x here. So it is 

2𝜋

2
  [the period].” 

Similar to the other two students (Sally and Kate), Emma was eager to discern 

some details from the curve #2 (in Figure 7.4)  (“…the period is bigger [see Figure 7.4, 

curve #2]…”). From there she was able to reason on the perceived properties of 

sinusoidal functions (“It seems that you are taking 2𝜋 and divided it into 2…”) and to 

connect the visual and symbolical representations of the sinusoidal function. She, 

eventually, determined a proper sinusoidal function for the graph.  

To show that the period of the given function is half of the period of canonical 

sinusoidal curve (see Figure 7.6), Emma moved the computer pointer across the point π. 

This movement, in fact, led Emma to recognize the formula (it provides a connection 

between the coefficient of x and the factor of the argument x in the sine function) that 

directed her to determine a correct corresponding function. Emma, in fact, (similar to 

Sally) had the memory image of formula (“…It has the period of 𝜋 but originally it has the 

period of 2𝜋, so in order for you to divide it by 2 you need to have 2x here… it is 
2𝜋

2
  [the 

period]”). Unlike Sally, who discussed the formula of sinusoidal functions that connect 

the “B-value” with 2𝜋 (Period= 
2𝜋

𝐵
); Emma (similar to Andy) did not explicitly talk about 

the component “B” and its connection with period ( although later when completing the 

other tasks, Emma applied the same formula (Period= 
2𝜋

𝐵
) as Sally used in Task 1). The 

formula Emma expressed for Task 1, showed the relationship between the length of a 

full sine cycle and2𝜋. (The formula was: The length of a full sine 

cycle=
2𝜋

𝑇ℎ𝑒 𝑐𝑜𝑒𝑓𝑖𝑡𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑖𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
, so 𝜋=

2𝜋

2
). Similar to Andy and Sally, Emma 

had concrete imagery of canonical function(“…originally it has the period of 2 𝜋 …”) as 

well as dynamic imagery.  
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Figure  7.6. Emma compared the period of the  given function with the period of 
canonical function 

After seeing the graph of 𝑓(𝑥) = 𝑠𝑖𝑛 (
1

2
𝑥), Rose and Mia (in separate interviews) 

stared at the graphs #1 and #2 for a while (see Figure 7.4). Then, they held the graphs 

(#1 and #2) as whole. They began to describe in detail the given graph (#2 in Figure 7.4) 

in respect with the graph of 𝑓(𝑥) =  𝑠𝑖𝑛(
1

2
𝑥). For example Rose stated: 

“….so, if 𝑓(𝑥) =  𝑠𝑖𝑛(
1

2
𝑥) is like this, so it is going to finish at 4𝜋. So this is going 

to be the whole graph. So it should not be 
1

2
𝑥, it should be 2x. Because when we 

have 
1

2
𝑥 we can see that it ends at 4 𝜋. But if I put here 2x, I compressed it and I 

can…have this curve finishes at 𝜋...The period of sine graph is 2 𝜋 but this one is 

compressed, so it is 𝑓(𝑥) =  𝑠𝑖𝑛(2𝑥), but 
1

2
𝑥 is expansion in fact.” 

Mia expressed:  

“…ok this curve is compressed…, it ends here at 𝜋, but in this one is at 4𝜋 …so 

the function𝑓(𝑥) =  𝑠𝑖𝑛(2𝑥)]….” 
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As mentioned previously, in order to describe that her suggested function 

(𝑓(𝑥) =  𝑠𝑖𝑛(
1

2
𝑥)) was not a proper function for the represented curve (#1, see Figure 

7.4), Emma was looking for the ended points of the full sine cycles in the given graph as 

well as in the canonical sinusoidal graph. Meanwhile, Kate paid her attention to the 

number of completed cycles in the graph, while  Rose and Mia compared the end point 

of a cycle curve #2 with that of curve #1, considering the origin as a beginning of a cycle 

(“….
1

2
𝑥 we can see that it ends at 4 𝜋. But…I can…have this curve finishes at 𝜋...”).  Mia 

used the computer pointer to show the end point of a cycle in the curve #1 (see Figure 

7.7); the end point of the cycle in curve #2 (𝑓(𝑥) =  𝑠𝑖𝑛(2 𝑥)) was displayed through the 

same manner (see Figure 7.8). In other words, Rose and Mia by linking the ended points 

of the full cycles (in the both curves and compared it with the curve of the canonical 

function), they connected the visual representations with the symbolic representations. 

They recalled that since a full sine cycle finished at 4𝜋 in curve #1, therefore the 

coefficient of x is 
1

2
  (as 

4

2
= 2 so the inverse of 2 is 

1

2
 which is the factor of x in the 

sinusoidal function). Similarly, because a sine cycle completed at 𝜋 in the given curve 

#2, the coefficient for x in the sinusoidal function should be the number 2 (the coefficient 

of 𝜋 is 1.  So 1 divided by 2 equals 
1

2
 and then the inverse of 

1

2
 is 2 which is the coefficient 

of x). In other words, similar to Emma and Andy, Mia and Rose applied their memory 

image of formula of sinusoidal functions when completing the task.  

To illustrate their thinking, they also applied their kinesthetic imagery. For 

example, when Rose described the period of a canonical function, she used her right 

index finger to point at 2𝜋 (see Figure 7.9). As it was also described in the previous 

section (section 7.1.1), Rose and Mia had concrete imagery of sinusoidal function since 

they have a picture of a canonical function in their mind. The participants’ descriptions 

indicate that concrete imagery was the most common imagery among the five categories 

of imagery.  

As demonstrated, all the participants noticed their errors after considering the 

graph of the function 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
𝑥) and they indicated the correct function for the given 
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curve. The students’ work on Task 1 provided them with an opportunity to experience 

further success in the rest of the interview tasks.  

 

Figure  7.7. The end point of the curve #1 displaced by the computer pointer 

 

Figure  7.8. Mia used the pointer to show the end point of the given curve #2 and 
the compression of the canonical function 
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Figure  7.9. Rose was pointing to 𝟐𝝅  

 

7.1.2. Identifying Period in Tasks 2 and 3 

Recall that in Task 2 the participants were asked to identify the function 𝑓(𝑥) =

𝑠𝑖𝑛(
2

3
𝑥) from the given graph. While approaching Task 2, Sally and Emma used the 

same approach that led to their success for Task 1. Emma (similar to Sally in Task 1) for 

instance after a long pause expressed: 

“…the graph should go over 2π… it is 𝑓(𝑥) =  𝑠𝑖𝑛(
2

3
𝑥) because the period is 

2𝜋

𝐵
 

and the period ends here…here is 3π… ” 

Sally gazed at the given curve as a whole and then she stated: 

“...in this graph we noticed…that in the normal sine graph the period is 2𝜋, but in 

this graph the period is 3𝜋 so that means that the x-value are compressed… so 

that means we going to divide 2𝜋 by 3𝜋, so the function should be 𝑓(𝑥) =

𝑠𝑖𝑛(
2

3
𝑥).” 
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It is evident from the above quotations that Emma and Sally’s attention shifted 

from holding whole to discerning details from the given curve. Finding the period of the 

given curve and comparing it with the period of a canonical function shows that they 

perceived properties of a sinusoidal function. To interconnect the graphical 

representation to the numerical depiction, they used their previous experience gained 

from Task 1. They first found the point in which a full cycle (starting from the origin) 

completed (here at 3𝜋) and then they divided the period of a canonical function (2π) by 

it.  This illustrates that they recalled the memory image of formula of sinusoidal function. 

They also had concrete imagery and therefore dynamic imagery of sinusoidal functions 

since they were able to move the given graph to visualize a canonical function in their 

mind. 

 Contrary to her approach to Task 1, where Kate applied her pattern imagery to 

realize the period of the given curve (“…one and two cycles are in the interval [0, 2𝜋]”), 

she did not use the same method for Task 2. Similar to Andy, Sally and Emma; Kate 

also attempted to apply her memory image of formula of sinusoidal functions when 

approaching Task 2 (she expressed that the period in a sinusoidal function is
2π

B
). 

However, after a short pause and gazing at the given graph, Kate eventually noticed that 

a full cycle finished at the point 3𝜋. She, therefore, suggested the function 𝑓(𝑥) =

 𝑠𝑖𝑛(3𝑥) without paying attention to her mentioned formula. Apparently, observing of the 

graphical representation in Task 2 led Kate to identify the function inappropriately. 

Recall that in Task 3 the students were asked the function of 𝑓(𝑥) =  𝑐𝑜𝑠(
2

5
𝑥 −

π

5
) 

from the given graph. Emma and Sally consistently applied for Task 3 the same method 

they used for Tasks 1 and 2. In other words, they were able to realize a correct period 

for the given curve using their memory image of formula of sinusoidal functions. 

However, none of the previous approaches (pattern imagery and memory image of 

formula) supported Kate to determine the period of the given curve in completing Task 3 

(she expressed “I have no idea for this graph… It is a cosine function”). Approaching 

Task 3, Rose applied the same method she used for Tasks 1 and 2. After gazing at the 

given curve, Rose noticed that a full cycle of a cosine curve, was completed at the point 
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5π. She then suggested 
2

5
 as the coefficient of x in the sinusoidal function (because 

according to her method, ended- point of a full sinusoidal cycle (5π in this task) should 

be divided in to 2 and then the results should be flipped). Similar strategy also helped 

Rose to realize a correct period for the Task 2.  

Mia’s approach to Task 2 was different from her approach to Task 1. After 

holding the graph as whole for a long pause, she did discern some details from the x-

axis. She then stated: 

“…It is sine of x over something because if it is sine of x it would end here [at 

2π]…ok, it is 𝑓(𝑥) =  𝑠𝑖𝑛(
𝑥

3
) because there are one, two three spaces here 

between 0 and this point and again one, two, three here…(see Figure 7.10)”  

As it appears from the above statement, Mia counted the number of “blocks” 

between 0 (the point A in Figure 7.10) and the point in which the curve intersected the x-

axis point B) and again from the point B to another one in which the graph intersected 

the x-axis (point C). Because the distance between the points A and B, and B and C was 

3 blocks, Mia put the fraction 
1

3
 for the coefficient of x in the suggested sinusoidal 

function. This illustrates that Mia used her pictorial imagery of canonical function in her 

mind when suggesting the incorrect function (“…if it is sine of x it would end here [at 

2π]…”). Observing the graph of the function 𝑓(𝑥) =  𝑠𝑖𝑛(
1

3
𝑥) led her to suggest the 

functions 𝑓(𝑥) =  𝑠𝑖𝑛 (
1

2
𝑥) and 𝑓(𝑥) = 𝑠𝑖𝑛(

1

2
𝑥 +

𝜋

2
) as possible solutions to Task 2. 

Considering the visual feedback from the graphs of these suggestions, then indicated 

that the function should be 𝑓(𝑥) =  𝑠𝑖𝑛( 
𝑥

1.5
), which is in fact correct but unconventional 

notation.  When she was asked to explain her thinking, she indicated: 

“…this one was too stretched [referring to the graph of 𝑓(𝑥) =  𝑠𝑖𝑛(
1

3
𝑥)] and this 

one was not stretched enough [referring to the graph  of the  previous suggested 

function 𝑓(𝑥) = 𝑠𝑖𝑛(
1

2
 𝑥 +

𝜋

2
)], so I though it should be  𝑓(𝑥) =  𝑠𝑖𝑛( 

𝑥

1.5
) to be fitted 

in this curve.” 
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By using the “trial and error” method, she could successfully find the correct 

function for the given curve. Clearly, her method in approaching this task was totally 

different from her approach in Task 1. In this task, Mia did not use her hand while 

explaining her thinking and therefore, there was no sign of kinesthetic imagery used in 

completing Task 2. However, none of the approaches applied in Task 1 and 2 helped 

Mia to determine a correct period for the Task 3. She could only express that the curve 

given in Task 3 indicated a “graph is for a cosine function expanded horizontally”.  

 

Figure  7.10. Mia counting the blocks between the points 

 

7.1.3. Identifying the Period in Tasks 4 and 5  

Recall that for Task 4, a sinusoidal curve had been shown to the participants and 

they were asked to assign the axis and coordinates such that it represents the graph of 

𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥). The data show that all the participants (except Mia) successfully 

assigned the coordinates using different strategies while approaching Task 4. Sally and 

Emma consistently applied their memory image of formula of sinusoidal functions while 

they determined the period in Task 4. However, the other participant, Kate changed her 

approach from memory image of formula (that she used for Tasks 2) into the pattern 
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imagery (as she applied previously for Task 1) when completing Task 4(see Figure 

7.11). She expressed: 

“…I know that 2π is here because 1, 2, 3, 4 periods between 0,2π and  

 here 1 and -1…” 

The above statement demonstrates that Kate also had concrete imagery of 

sinusoidal function because she knew that a canonical sine function completes one 

cycle in the interval [0, 2π] and the amplitude is 1. This also illustrates that Kate 

perceived properties of sinusoidal functions and she used them to recognize relationship 

between the symbolic representation and the graphical representation.  

 While, none of the previously used strategies helped Kate to complete 

successfully Task 5, in which she was asked to assign coordinates to represent 𝑓(𝑥) =

𝑐𝑜𝑠(3𝑥 −  
𝜋 

4
), the pattern imagery led Rose to realize the period correctly for Task 5 

(similar to Task 4). The memory imagery ability also supported Sally and Emma to 

realize correctly the period in Task 5 (similar to other interview tasks) 

 

Figure  7.11. Kate placed the 4 cycles in the interval [0, 2π] 

As mentioned earlier, all the participants were able to complete Task 4 

successfully except Mia. When completing this task she stated: 
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“…I want to compress the graph, so sine starts from here and 𝑠𝑖𝑛(4𝑥) will be half 

of this and this point should be a fourth so a normal sine graph ends here at 2π. 

In 𝑠𝑖𝑛(4𝑥) here should be 
𝜋

2
.” 

As the statement reflects, Mia acknowledged that the end point of a full cycle in a 

canonical function is at 2π and this illustrates that she perceived properties of sinusoidal 

functions (see Figure 7.12). It also indicates that she had concrete imagery of sinusoidal 

function. However, Mia was not able to reason on the perceived properties of sinusoidal 

functions and therefore, she could not complete the task successfully. In other words, 

instead of assigning the axis and coordinates such that it represents the graph of 

𝑓(𝑥) = 𝑠𝑖𝑛(4𝑥), she adjusted the coordinates for the function 𝑓(𝑥) =  𝑠𝑖𝑛(𝑥) (see Figure 

7.12). Similarly to Kate, Mia was also unable to complete Task 5. 

 

Figure  7.12. Mia misplaced the point 
𝝅

𝟐
 

7.2.  Shift of Attention and Visual Imagery: Identifying the 
Phase Shift (C in the canonical function) 

In the interview tasks (e.g., Task 3) the participants were required to recognize 

the phase shift/horizontal shift. From the canonical function (𝑓(𝑥) = 𝐴 𝑠𝑖𝑛/𝑐𝑜𝑠(𝐵(𝑥 +

𝐶) + 𝐷) the phase shift is obtained by determining the change being made to the x-value 

(see Figure 7.13). The displacement will be to the left if C is positive and to the right if 
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the phase shift is negative. For brevity, I refer to this connection as “Identifying the phase 

shift”.  

 

Figure  7.13. Identifying phase shift/horizontal shift 

The data show that few students were able to identify the horizontal shift/phase 

shift when changing the sine function into the cosine functions and vice versa in the 

interview tasks. After successfully identifying the correct sine function (𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥)) 

from the given curve in Task 1, the participants were asked to determine a cosine 

function for the given curve. As evident from data, the majority of participants chose the 

same strategy. When approaching the task, most students attempted to establish a 

relationship between a sine and a cosine function by adding up  
𝜋

2
  to the argument 2𝑥. 

For instance, Mia expressed: 

“…cosine function is a flip version of sine function…it has horizontal translation 

to the right, so it is 𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 + 
𝜋

2
).” 

From the above student’s statement one may conclude that the participants had 

memory image of formula of shifting a sine function into a cosine function because she 

realized that the sine and cosine functions always relate to each other by a difference of  

𝜋

2
.  However, Mia (and similarly most other participants) identified incorrectly the sign of 

horizontal shift. In other words, while the graph shifted to the right by 
𝜋

2
, she added 

𝜋

2
 to 

the argument 2𝑥 (instead of subtracting it). The students’ discussions indicate that they 
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have not perceived properties of sinusoidal functions and also have not successfully 

recognized relationship between the symbolic and the graphical representation of the 

cosine function.  

The participants, then, were asked to describe the cosine function from the given 

curve (instead of focusing on the formula correctly or incorrectly). As evident from data, 

none of the students (except Sally) was able to determine the proper horizontal shift 

from the given graph. For instance after 5 minutes pausing, Rose expressed: 

“…I know the differences between them are 
𝜋

2
….I do not know…it is shifted to the 

right by  
𝜋

2
….  I try to match something to match this 𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +  

𝜋

2
)….” 

As it is indicated from Rose’s reply, she attempted to determine a horizontal shift 

that represents her suggested function (𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +  
𝜋

2
)).  However, her suggested 

horizontal shift again was incorrect. Even Emma, who was able to change correctly the 

formula of the function 𝑓(𝑥) = 𝑠𝑖𝑛(2𝑥) into the cosine function 𝑓(𝑥) =  𝑐𝑜𝑠 (2𝑥 −  
𝜋

2
), was 

not able to identify a cosine function from the given graph. Sally, on the other hand, 

completed this part of Task 1 successfully focusing on the given graph. 

Unlike the other participants who relied on the formula (correctly or incorrectly) 

and the point 
𝜋

2
  when connecting the sine function into a cosine function, Sally focused 

only on the given curve in Task 1. After holding the given curve as a whole, Sally 

attempted to discern some details from the curve by stretching it horizontally. From 

there, she zoomed on the point
𝜋

4
  on the x-axis. She stated that the curve was shifted 

horizontally by 
𝜋

4
, because its y-value was 1. Sally then subtracted 

𝜋

4
 from the argument 

(2x). She, then, considered the cosine function 𝑓(𝑥) =  𝑐𝑜𝑠( 2𝑥 −  
𝜋

4
 ) for the given curve.  

Observing the graph of her suggested function (𝑓(𝑥) =  𝑐𝑜𝑠( 2𝑥 −
𝜋

4
 )) made Sally 

realize that the function did not fit the given curve (from Task 1). Sally expressed: 
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“… Ok, I think I know where my mistake was. It was that I forgot to put bracket 

around here…” 

Recognizing her mistake led Sally to suggest successfully the function 𝑓(𝑥) =

 𝑐𝑜𝑠(2(𝑥 −
𝜋

4
)). Sally’s success illustrates that she applied her memory image of formula 

of sinusoidal function (𝑓(𝑥) =  𝐴 𝑐𝑜𝑠(𝐵(𝑋 + 𝐶) + 𝐷)). It also shows that she was able to 

establish a link between the visual representation of sinusoidal function and the symbolic 

representation. Sally used the same approach for the rest of interview tasks when she 

was asked to determine alternative sinusoidal function. However, other participants 

consistently found difficulties in realizing the horizontal shift in the other tasks.  

Similar to their initial mistakes in Task 1, the majority of

students could only add up or subtract 
𝜋

2
  from the function 𝑓(𝑥) =  𝑠𝑖𝑛( 

2

3
𝑥) in Task 2 

without reflective thinking about the given graph. When asked them to focus on the given 

graph, participants were not able to realize the amount of radian by which the graph 

shifted horizontally. Kate for instance, focused her attention on the point (
3𝜋

4
, 1) and 

expressed that: 

“…𝑓(𝑥) = 𝑐𝑜𝑠( 
2

3
𝑥 +

3𝜋

4
), because here is

3𝜋

4
 . It is shifted to the to the right… 

After extending the graph, Kate zoomed on the point 
3𝜋

4
 in which the y-value was 

1. The details she discerned from the graph led her to connect the graphical 

representation with the incorrect symbolic representation when focusing on the 

horizontal shift. The data show that Kate did not apply properly her memory image of 

formula of transformation of sinusoidal functions, because she misplaced the bracket in 

the suggested function (although she found a correct point from the graph). Besides, she 

added up the point (
3𝜋

4
) to the argument x instead of subtracting it. The proper cosine 

function for the given graph was 𝑓(𝑥) = 𝑐𝑜𝑠( 
2

3
(𝑥 −

3𝜋

4
)).  Similarly, other students either 

focused on the point 
3𝜋

4
 or 

𝜋

2
  and then added them up to the argument of the function. 
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The students encountered the same difficulties when attempting to determine the 

alternative functions in the Tasks 3, 4 and 5.  To complete Task 3, for example, Rose 

after gazing at the graph and stretching the graph horizontally stated: 

“….there is a transformation in x direction….the transformation… the x where 

starts is at ( 
𝜋

2
 , 1)…we should subtract this …” 

The above statement indicates that Rose focused on the point ( 
𝜋

2
 , 1) which did 

not exist in the given graph. However because she had a pictorial imagery of the 

canonical cosine in her mind and she knew that a sine and a cosine function connecting 

each other with 
𝜋

2
, she subtracted 

𝜋

2
 from the arguments of the function. She, in fact, used 

her memory image of formula of sinusoidal function along with her knowledge of 

properties of sinusoidal functions without focusing on the appropriate point of given 

graph. The majority of students made the same error as Rose did. They just focused on 

the point 
𝜋

2
 and they subtracted it from the argument of the function. Meanwhile some 

other students extended the given graph, but they did discern the incorrect detail from 

the graph. However, they did not suggest proper phase shift and therefore a correct 

alternative function for Task 3. For example, Emma stated: 

“…I think it moves this way by  
𝜋

4
….” 

Emma unsuccessfully found a point in which the graph had the y-value=1(the 

proper point is (−
3𝜋

4
, 0)). Afterward, she made the same error as Rose and most other 

participants did; she subtracted the incorrect point from the argument BX in the function 

instead of adding it to the argument x in the cosine function (because the graph shifted 

to the left). As evident from the data most students participated in this study mixed up 

both standard formula related to the transformations of sinusoidal functions together 

(𝑓(𝑥) =  𝐴 𝑠𝑖𝑛/𝑐𝑜𝑠(𝐵(𝑋 + 𝐶) + 𝐷) and 𝑓(𝑥) =  𝐴 𝑠𝑖𝑛/𝑐𝑜𝑠 (𝐵𝑋 + 𝐵𝐶) + 𝐷)), when asking 

to find the alternative functions for the tasks. The students’ replies indicate that, in fact, 

the majority of participants were unable to apply their memory image of formula of 

transformation of sinusoidal functions properly. However, amongst the participants, Sally 
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was able to determine proper alternative function for Task 3 by applying the same 

approach (memory image of formula, discerning proper details and reasoning on the 

perceived properties of sinusoidal functions) as the previous tasks.  

Not only Sally was the only student who successfully found the alternative 

functions in all five-interview tasks, she determined the proper phase shifts in Tasks 3 

and 5. Sally’s reliance on her memory image of formula of sinusoidal functions 

supported her to discern proper details from the given function, for example in Task 5 

(𝑓(𝑥) =  𝑐𝑜𝑠(3𝑥 −
π

4
)), she stated: 

“… we first need to take out the 3 so it become 
𝜋

12
. we know it is shifted to the 

right by 
𝜋

12
…. So this is my normal cosine function we need to shift the graph 

𝜋

12
  

to the right because that is given by formula 𝑓(𝑥) =  𝑐𝑜𝑠(𝐵(𝑥 − 𝐶)) and C is the 

positive number and is 
𝜋

12
. Here is 1 and -1….” 

Identifying the amount of phase shift led Sally to assign axes and coordinates in 

the proper place (in order to identify phase shift in Task 3 (𝑓(𝑥) =  𝑐𝑜𝑠(
2

5
𝑥 −

π

5
)), Sally 

followed the same strategy). However, all other students were unsuccessful in identifying 

phase shift in Tasks 3 and 5. As an example, the memory image of formula (she used in 

previous tasks) did not help Emma to determine the horizontal shift correctly in Tasks 3 

and 5. For instance when completing Task 5, she expressed: 

“……because the amplitude is not changing so here is 1 and -1. Because the 

original period is 2π but here we have 3x so the period should be 
2𝜋

3
 but then we 

have transformation on x on the right direction. So we move the graph over by 

𝜋

4
…” 

As the above quote illustrates, Emma became confused by mixing up again 

conventional representations𝑓(𝑥) = 𝐴 𝑠𝑖𝑛/𝑐𝑜𝑠 (𝐵(𝑥 + 𝐶) + 𝐷 (1) and 𝑓(𝑥) =  𝐴 𝑠𝑖𝑛/

𝑐𝑜𝑠(𝐵𝑥 + 𝐵𝐶) + 𝐷  (2). While C is the horizontal shift in the function (1) and (2), Emma 
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made a common error as the other participants did in this task, considering BC as the 

shift. Whereas the phase shift was  
𝜋

12
  for the function 𝑓(𝑥) = 𝑐𝑜𝑠(3𝑥 −  

𝜋 

4
) according to 

the function (2) (since 
𝜋 

4
= 𝐵𝐶 and 𝐵 = 3 therefore 𝐶 =

𝜋

12
), Emma determined incorrectly 

 
𝜋

4
 =  𝐶 as the amount by which the graph should be shifted horizontally. In other words, 

although she had pictorial imagery on sinusoidal functions (as she expressed “because 

the amplitude is not changing so here is 1 and -1… original period is 2π…”), she did not 

perceive properties of sinusoidal function and therefore she did not recognize the phase 

shift correctly. As mentioned, all the other participants made the same error as Emma 

did when attempting to determine phase shift in Task 3 and 5.   

7.3. Covariational Reasoning ability: Identifying Period and 
Phase Shift 

According to Carlson et. al. (2002), a students’ covariational reasoning ability is 

said to reach a certain level when it supports not only the mental action associated with 

that given level, but also with all mental actions associated with lower levels. As 

explained Chapter 5, section 5.3, students’ developmental level related to covariation 

could vary from L1 (Coordination) to L5 (Instantaneous rate). Carlson et. al. stated that 

at the coordination level (L1), the images of covariation support the mental action of 

coordinating the change of one variable with changes in the other variable (MA1). At the 

direction level (L2), the images of covariation support the mental actions of coordinating 

the direction of change of one variable with changes in the other variable. The mental 

actions MA1 and MA2 are BOTH supported by Level 2 image. L3 includes the collection 

of mental actions from M1 (coordinating the value of one variable with changes in the 

other) to M3 (Coordinating the amount of change of one variable with changes in the 

other variable). Table 7.2 present a summary of the participants’ convariation reasoning 

ability 

 

B         Changing a sinusoidal function into a cosine function and vice versa 
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P        Identifying the period 

S        Identifying the phase shift  

Table  7.2. Students’ developmental levels 

 

As evident from data and also from Table 7.2, the students’ mental actions 

depended on the task difficulty. Students performed at L1 initially for Task 1 (𝑓(𝑥) =

 𝑠𝑖𝑛(2𝑥)) (in which almost all students made similar mistakes in suggesting the function 

for the given curve) as they identified how the coefficient of x would change as the 

period changed (M1). The students also stated that as the period of a sinusoidal function 

was decreasing (compared with the period of the canonical functions) the coefficient 

would decrease and it would be less than 1. One may be tempted to conclude that these 

students’ mental action was M2 (Coordinating the direction of change of one variable 

with changes in the other variable) because the students were able to coordinate the 

direction of change of one variable with changes in the other variable. However, 

students identified the direction unsuccessfully, since the period and the coefficient of 

the argument in the sinusoidal functions (B) had an inverse relationship (when one 



 

154 

 

increases the other decreases). The same applies for M3. Although the students 

attempted to establish a connection between the amount of period and the factor of x in 

the sinusoidal function (M3), their proposed numbers for the coefficient of x were 

incorrect. As a result, their demonstrated developmental level was L1 (Coordination). 

Getting feedback from the graph of their suggested function (𝑓(𝑥) =  𝑠𝑖𝑛(
1

2
 𝑥)) 

made the students realize that there is an inverse relationship between the period of the 

curve and the coefficient of x in the sinusoidal functions (when the period is decreasing, 

the coefficient of x would be greater than 1 (M2)). They could also identify the amount of 

periods and the coefficient of x correctly (M3). As such, upon prompting and computer 

feedback, they operated at L3.  

As it has been shown in the Table 7.2, the developmental level of some 

participants, such as Andy and Sally, stayed consistently at L3 (as in Task 1), while it 

varied for the other participants when they struggled to determine periodicity for the rest 

of the tasks. In other words, the students’ developmental level varied from L1 to L3 when 

the participants attempted to identify the connection between the coefficient of x and the 

length of the period in the given curve (Tasks 2 and 3) or the given sinusoidal function 

(Tasks 4 and 5).  

As described in the section 7.2 and Table 7.2, only Sally determined correctly the 

amount of phase shift and its influence on the function as well as its graph (L3) in Tasks 

3 and 5. The other students (Emma, Kate and Rose) acknowledged that the curve 

shifted horizontally if it did not intersect the origin (0,0) and y=1 in Task 3, and if a certain 

amount of radian subtracted from the given function in Task 5 (M1). They knew that if 

the graph shifted to the right, a certain amount of radian should be subtracted from the 

argument x and vice versa in both Tasks 3 and 5 (M2). As such, the covatiation 

reasoning ability of Emma, Kate and Rose was at L2 level because they could not 

determine the amount of phase shift correctly. However, Mia’s covariation reasoning 

stayed at L1 because not only she could not determine the direction of shifting of the 

curve as result of horizontal transformation, but also she could not identify the proper 

amount of phase shift for the Tasks 3 and 5. The majority of students did the same 
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mistake as Mia did in Task 3 and 5, when they were required to assign the alternative 

sine/cosine functions for the Tasks 1-5. In fact, most participants shifted the curve 

incorrectly to the right when the sign of the horizontal shift was positive (If they could 

shift the graph correctly, their covariation reasoning was at L2). They also did not identify 

the amount of phase shift correctly (If they determined the amount of phase shift 

successfully, their covariation reasoning was at L3). As such, the developmental level of 

the majority of students in identifying the phase shift was L1. 

A shown in the Chapters 6 and 7, the presented tasks were challenging to the 

participants. They were successful to some degree, occasionally relying on a computer 

feedback, in identifying the periodicity of the presented functions (mostly at L3 level). 

However, the success with identifying the phase shift was rather limited (often at L1 or 

L2 level). This main difficulty can be attributed to the inability to connect the visual 

representations to graphical representations of sinusoidal functions.  
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Chapter 8.  
 
Discussion  

In this chapter, I restate the research questions and I address the questions with 

respect to the findings of my study. The limitations and the difficulties I encountered 

during this dissertation are also described. Students’ strengths and weaknesses that 

were revealed when completing the interview tasks support my recommendations for 

teaching transformations of sinusoidal functions. These recommendations are presented 

in the last section of this chapter.    

8.1.  Research Findings and Comments     

In chapter 3, I reviewed the findings of prior research related to trigonometry and 

students’ difficulties in grasping trigonometric functions. In order to deal with students’ 

misconceptions and to help them understand the concept of trigonometric functions 

more efficiently, some researchers such as Tuna (2013) recommended teaching 

trigonometric functions in the context of graphs of functions. In accord with Tuna’s 

suggestion, I think students would be able to sketch trigonometric functions, if they 

comprehend the properties of transformations of functions. Despite the significant role 

transformations of trigonometric functions play in grasping trigonometric functions (as 

Tuna (2013) proposed), there have been only sporadic research studies concentrating 

on this topic. Therefore, my study has shed some light on the way undergraduate 

students deal with transformations of sinusoidal functions.  

In this research study I investigated students’ shifts of attention as well as their 

forms of visual imageries when they attempted to match the graphical representation of 
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functions with their analytical representations in the context of trigonometry. I was also 

interested in studying students’ covational reasoning as they determined sinusoidal 

functions representing given graphs, and when they adjusted coordinates to match the 

given graphs with the presented sinusoidal functions. The difficulties students 

encountered when working on the tasks involving transformations of sinusoidal functions 

are of interest in this study. As such, the particular research questions addressed in this 

study are: 

1) How do undergraduate students complete mathematics tasks involving the 

transformations of sinusoidal functions?  

2) What is undergraduate students’ covational reasoning and visual imagery of 

the transformations of sinusoidal functions?  

3) How do students shift their attention when completing interview tasks?  

4) What are the common mistakes students often encounter when they work with 

transformations of sinusoidal functions?  

In the following section I address the research questions as I concentrate on the 

main themes extracted from the participants’ responses to the presented tasks. 

The data analysis in Chapters 6 and 7 illustrates that eventually all six 

undergraduate students were able to complete successfully only Task 1 (𝑓(𝑥) =

𝑠𝑖𝑛(2𝑥)) amongst five interview tasks. In order to complete this task, they often shifted 

their attention to discerning details of the given graph and then focused on the reasoning 

on the perceived properties of sinusoidal functions. Meanwhile, they applied their 

memory image of formula, the pattern as well as concrete imagery, when completing the 

task. At the first glance, one might consider students’ mental action in grasping 

periodicity at advanced level, L3 (according to Carlson’s et al., (2002) covariational 

reasoning classification), since they were able to identify the period in Task 1 correctly. 

However, students performed differently on the other interview tasks involving periodicity 

(with whole number or fraction for the arguments of x).  
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The data show that the students’ covaritional reasoning fluctuated when 

determining the periodicity of the interview tasks. Some students’ mental development 

related to identifying periodicity was at the beginning level (L1), because the students 

acknowledged that there is a close relationship between the length of a full sine cycle 

and the periodicity of the function (M1). However, they were unsuccessful in realizing 

that the period and the coefficient of the argument in the sinusoidal functions (B) had an 

inverse relationship (when one increases the other decreases, M2). Moreover, they were 

unable in determining the amount of periodicity (if they could identify periodicity, their 

mental action would be M3). However, the covariational reasoning of the same students 

shifted to the advanced level, L3, when completing some other tasks. 

In general, the data illustrate that participants were more successful in identifying 

periodicity when the coefficient of x was a whole number, than when it was a fraction. As 

seen in Chapter 6 and 7, some students were able to determine periodicity in Task 1 and 

4 (where coefficient of x was a whole number), but they encountered difficulties in 

completing Task 2 (𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
 𝑥)) and Task 3 (𝑓(𝑥) =  𝑐𝑜𝑠(

2

5
 𝑥 −

𝜋

5
)). For example, 

Kate looked at the graph in Task 2 and at the first glance she realized a full sine cycle 

appeared between 0 and the point 3π (discerning details from the given graph). Using 

her experience in Task 1, getting feedback from the computer and relying on the 

concrete and memory image of formula, however, did not support Kate to suggest the 

proper function for the graph in Task 2 with the fraction coefficient. Kate also hesitated to 

offer a function for the given graph in Task 3. She simply stated:“…I have no idea for this 

graph.”   

As data illustrate, according to Carlson’s et al. (2002) framework, only one 

student’s developmental level was at the advanced level (L3) in determining the 

alternative sine/cosine functions for all five interview tasks. In other words, most students 

were not able to identify the alternative functions for the given interview tasks and their 

performance was at L1 level. As an example in Task 1 when students were asked to 

suggest a cosine function for the given graph, most students unsuccessfully wrote the 

function of 𝑓(𝑥) =  𝑐𝑜𝑠(2𝑥 +   
𝜋

2
). They knew that a cosine graph is a sine graph shifted 
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horizontally; however, they were unable to recognize the direction of horizontal 

movement as well as the proper amount of the shift. The students’ mistakes in the task 

illustrate that they were unable to determine a phase shift from the given graph. It is 

interesting that even some students, who applied their memory image of the formula of 

the sinusoidal functions when completing other tasks, did not use the formula to identify 

the phase shift in the given graph in Task 1 (when attempting to find the alternative 

function for the task). Even discerning details, perceiving properties of sinusoidal 

functions, and reasoning on the properties did not support them to find the correct link 

between the graph and the analytical representations and vice versa in Task 1. Similarly, 

the students’ covariational reasoning stayed at L1 level in the rest of interview tasks 

(Tasks 2-5), when identified the alternative functions for the tasks. Only Andy’s 

covariational reasoning stayed unchanged in Task 2 (at L3 level as in Task 1), although 

it moved back to L1 from L3 for Tasks 3, 4 and 5 (when he was asked to find the 

alternative functions). 

Sally was the only student who identified the phase shift in Tasks 3 and 5 

correctly (Recall that she also correctly found the alternative cosine/sine functions for all 

interview tasks). Sally, in fact, applied her memory image of formula as well as dynamic 

and kinesthetic imagery in order to match the given graph with the proper function 

shifted horizontally in Task 3 and 5. She performed at developmental level, L3.  Even 

Andy, who determined proper alternative functions for the given graph in Task 1 and 2 

(but not in the rest of tasks), did not determine phase shift in Tasks 3 and 5 successfully. 

As was described in Chapter 7, students often incorrectly identified 
𝜋

5
 for Task 3 (instead 

of 
𝜋

2
), and 

𝜋

4
 for Task 5 (instead of 

𝜋

12
). In other words, students performed poorly in both 

types of tasks; “Identifying sinusoidal functions” and “Assigning coordinate” tasks when 

completing tasks involved identifying the phase shift. In fact, the majority of participants’ 

mental development related to realizing a phase shift is at the beginning/surface level, 

L1 (according to Carlson’s et al. (2002) mental action classification). One might conclude 

that this is the case because the majority of students, in fact, did not have a proper 

memory image of formula of transformations of sinusoidal functions in their mind. As 

such, they did not focus their attention on discerning appropriate details from the given 
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tasks, although they perceived properties of sinusoidal functions. In accord with the 

findings of Chiu et al.,(2001) in the interview tasks involving the phase shift students, 

mostly misunderstood the connections between the graphical and algebraic 

representations. 

Moreover, the students’ misconceptions of recognizing phase shift affected their 

identification of periodicity. As mentioned previously in this chapter as well as chapters 6 

and 7, determining periodicity when the coefficient of x was a fraction was a difficult task 

for some students. This problem is further highlighted when phase shifts are involved in 

the tasks. When completing Task 2 (𝑓(𝑥) = 𝑠𝑖𝑛(
2

3
𝑥)) in which the coefficient of x was 

2

3
, 

there were some students who successfully determined periodicity, using their memory 

image of formula. However, those students became confused in identifying periodicity in 

Task 3 (𝑓(𝑥) =  𝑐𝑜𝑠(
2

5
𝑥 −

π

5
)) in which similar to Task 2, the coefficient of x was a fraction 

(
2

5
 ), but the amount of  

π

5
  radian was subtracted from the argument x. In other words, 

while some students realized the given curve intersected the x-axis at the point 3π and 

therefore identified periodicity correctly in Task 2, determining the full length of one full 

cycle (the beginning and end point of a full curve) was not easy for them in Task 3 in 

which the sinusoid was shifted horizontally. 

The results of this study in regarding identifying horizontal shift are consistent 

with the findings of other studies such as Oliveira (2011) and Zazkis et al., (2003). 

Besides students’ difficulties in identifying the amount of horizontal shift, identifying the 

direction of the phase shift and then moving the graph to left or right accordingly was a 

problem for the majority of students. While the findings of previous studies indicate that 

participants mixed up the positive (negative) sign of the argument in a quadratic function 

with shifting the graph to the right (left), this problem becomes more significant in the 

context of sinusoidal functions. It is the case because identifying left and right shifts in a 

periodic sinusoidal function depends on the placement of the axes. In a periodic 

functions there are multiple ways of assigning coordinates on the axes to accommodate 

the given phase shift. 
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Considering students’ performance on both types of interview tasks, it is evident 

that participants performed better in “Identifying sinusoidal functions” tasks compared 

with “Assigning coordinate” tasks, when students were required to determine periodicity. 

In other words, more students recognized period properly in the tasks a graph given and 

students required to identify sinusoidal function represented the graph, than in tasks in 

which the sinusoidal functions given and students should adjust coordinates on the given 

sinusoidal curve. As an example, Mia (who completed successfully Task 1, for example) 

assigned the axes on the given sinusoidal curve in a way that represented the graph of 

the function 𝑓(𝑥) =  𝑠𝑖𝑛(𝑥) rather than 𝑓(𝑥) =  𝑠𝑖𝑛(4𝑥) in Task 4. Her response to this 

task illustrates that she did not pay attention to the particular details could be discerned 

from the given function. However, due to having concrete imagery of a sinusoidal 

function in her mind, she situated the coordinates exactly at the same place as for the 

graph of  𝑓(𝑥) =  𝑠𝑖𝑛(𝑥).  

In accord with the findings of Gagatsis, Elia, and Kyriakides (2003) and Lage and 

Gaisman (2006), it appears from the data that sometimes the task in graphical 

representation creates cognitive difficulties that hinder students’ ability to make 

connections between the algebraic and the graphical representations. Meanwhile, the 

discrepancy in students’ performance in identifying period vs. identifying phase shift 

illustrates that they had difficulty when considering graphs of sinusoidal functions 

transformed horizontally. These findings are consistent with the results of other studies 

by Chiu, Kessel, Moschkovich, and Munoz-Nunezby (2001) Eisenberg and Dreyfus 

(1994); Baker, Hemenway, and Trigueros (2000); and Consciência and Oliveira (2011) 

who found students' misconceptions of function transformations in general, and 

horizontal transformations in particular.  

8.2. Contributions of the Study 

As was discussed in this chapter and also previous chapters, the main focus of 

this dissertation is on sinusoidal functions. While some limited previous studies focused 

on students’ difficulty in applying sine and cosine functions defined over the domain of 
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real numbers (Challenger, 2009; Moore, 2010), on the influence of teaching 

trigonometric functions in context of unit circle and triangle (Brown, 2005 and Weber, 

2005), on the students and teachers’ difficulties in realizing angle measure (Akkoç & 

Akbaş Gül, 2010) and on the recognizing real numbers as radians (Orhun, 2001), this 

dissertation (to my knowledge) is the first research focused on students’ work on the 

tasks involving transformations of sinusoidal functions. There are studies, such as Duval 

(1999) and Eisenberg and Dreyfus (1994), which examine students’ difficulties in the 

transformation of cubic and quartic functions, however, I have not come across prior 

research studies that consider how students deal with tasks that require their knowledge 

in transforming sinusoidal functions.  

In this research I focused on participants’ ability to identify periodicity and phase 

shift in sinusoidal functions, while connecting algebraic and graphical representation of 

functions. There is a small number of studies, (e.g. Shama,1998 and Van Dormolen and 

Zaslavsky, 2003) that discuss definitions of periodicity in general.  In the study by Demir 

(2012), students’ conceptual understanding of definition of periodicity of canonical 

functions in the graph, and of the periodicity of a sine function (𝑠𝑖𝑛(−
𝜋

2
)) in the unit circle 

were investigated. However, my research investigated how undergraduate students 

completed tasks that required them to identify periodicity and phase shift from the 

graphs of given sinusoidal functions and to assign coordinates on the given sinusoid 

graph in order to match a given functions and its corresponding graph. As such, the 

focus and the findings of this dissertation are unique and provide a significant 

contribution to research in the area of trigonometry and well as in the area of function 

transformations.  

Furthermore, my research contributed to task design. In this study I designed two 

types of tasks (type A and type B). While some of the prior research studies used tasks 

of type A, the design of tasks of type B (Assigning Coordinates) was novel and unique. 

None of the previous researchers required students to assign axes and coordinates so 

that the given sinusoidal curve would represent the given function.  However, the effect 

of the novelty of the task on students’ difficulties has to explore in further research.  
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8.3. Research Limitations  

I recognize some limitations of my study in terms of the interview tasks, 

participants’ familiarity with using sketchpad, as well as the number of participants.  

The interview tasks I used for my research were all comprised of sinusoidal 

functions having fractions or whole numbers for arguments of x. However, three tasks 

had whole numbers for the coefficients of x and two tasks had fractions. I might have 

more accurate results, if I had designed more of tasks in which the sinusoidal functions 

comprised of fraction coefficients. This is significant since the results of this study show 

that students encountered more difficulties in the tasks with fraction of coefficients. 

Furthermore, only two tasks included a phase shift, which were challenging for the 

participants, when compared with the tasks involving periodicity only. These two tasks 

.combined phase shift and periodicity. Lack of tasks that involved a phase shift without 

the change in the period of the conventional sinusoid weakens the conclusions on 

students’ difficulties in identifying a phase shift.    

The use of Sketchpad gave students an opportunity to manipulate the given 

graphs and also to receive immediate feedback on their initial answers and therefore to 

correct their initial suggestions. However, it seems that the majority of students were 

unfamiliar with applying sketchpad in order to adjust coordinates.  Task 4 and 5, in which 

students were required to assign the axes and place coordinates were presented at the 

end of interviews, when most students were tired. If I mixed the order of tasks from 

“Identifying sinusoidal functions” and “Assigning coordinates” students might have 

performed differently. I could have obtained more reliable findings if I also asked a few of 

the “Assigning coordinates” tasks to be completed using paper and pencil. Furthermore, 

although the study was done in the present of sketchpad, the specific interaction of 

students with sketchpad was not explored deeply in this study. 

Another limitation of this study is associated with the duration of interviews. Since 

the interviews were one hour long, some students grew tired and they wanted to finish 

the interview as soon as possible no matter how appropriate their answers were. 
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Therefore, more accurate results could have been obtained if the interviews were 

conducted in two separate thirty minute sessions on two different days. 

Six students from Calculus courses volunteered their time to participate in this 

study. Among them three were enrolled in Calculus I, where students have opportunities 

to refresh their knowledge about transformations of sinusoidal functions by reviewing the 

concepts of trigonometric functions and transformation of functions (after High School 

Calculus). The rest of students were from Calculus II, where they had no further chance 

of revising the concepts of trigonometry and transformation of trigonometric functions. 

The data show that the participants enrolled in Calculus I completed the interview tasks 

more successfully than the Calculus II students. Although it is unclear whether the 

stronger performance of students in Calculus I can be attributed to the more recent 

review of transformations of sinusoidal functions or to students’ general knowledge and 

ability, I could have had different results if all data came from students enrolled in 

Calculus I.  

8.4. Pedagogical Implications and Suggestions   

Drawing on my findings and the fact that some of the participants in this study 

encountered difficulties in identifying transformations of sinusoidal functions, this concept 

needs to be emphasized more in the Calculus textbooks. Reviewing the Calculus 

textbook that has been used at this university (e.g., Barnett, Ziegler & Byleen, 2003), I 

noticed that there is a section in the “Functions” chapter in which horizontal and vertical 

transformations of functions are described, without mentioning or exemplifying 

transformations of trigonometric functions. In another chapter, trigonometric concepts 

are explained. However only the canonical sinusoidal functions are sketched. In other 

words, since students had limited opportunities to learn about the transformation of 

sinusoidal functions, their difficulties in completing the interview tasks in this study is not 

a surprising result (students learn transforming sinusoidal functions briefly in High 

School pre-Calculus). Teachers and curriculum designers need to focus on this 

important concept, because transformations of sinusoidal functions have application in 
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other undergraduate courses, such as physics. Students’ inability to deal with 

transformations of sinusoidal functions may hinder their success in other courses.  

Students in my study experienced difficulties identifying phase shifts and 

periodicity in the given trigonometric functions. Although participants in this research 

were able to successfully identify some sinusoidal functions from the given graphs, they 

were not able to adjust coordinates on the sinusoidal curve to represent some of the 

given functions. This problem was highlighted even more when the coefficient of x in a 

given function was a fraction. However, reviewing the Calculus textbooks revealed that 

the authors focused mostly on whole number coefficients when included tasks on 

identifying functions from the given graphs. Teachers should take note of this and focus 

on sketching of sinusoidal functions with fractional coefficients. While the initial focus on 

whole number coefficients is appropriate, teachers need to enrich the repertoire of task 

presented to students by including fractional coefficients. This will enhance students’ 

understanding of the connections between algebraic and graphical representation of 

sinusoidal functions.   

After teaching periodicity, teachers can move on to the phase shift. The initial 

consideration of the phase shift should be for sinusoidal functions with a periodicity of 

2π, if the coefficient of x is 1. That is, initial consideration of horizontal transformation 

should not be conflated with that of expansion or compression.  Only then combined 

transformations should be approached.  

When interview tasks in my study involved phase shift and periodicity other than 

2π, the majority of students completed them unsuccessfully. This result is consistent 

with the prior research studies on transforming quadratic functions horizontally. This 

result is not surprising since, the textbook practice questions concentrate mostly on the 

phase shift tasks for functions having the argument of x 1 (periodicity is 2π). In these 

tasks students identify the phase shift more easily. Thus, teachers need to focus on the 

phase shift tasks in functions with periodicity other than 2π, and involving students with 

more practice questions in which phase shift is connected to both analytical and 

graphical representations. 
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To improve students’ conceptual understanding of the transformations of 

sinusoidal functions, it is very important that teachers pay attention to the students’ shifts 

of attention. Relying on the findings of this study, students are often able to discern 

details from the given function of a graph, they perceive properties of a sinusoidal 

function, but they are not able to reason on the properties. Teachers might shift students’ 

attention from details to reasoning about properties of sinusoidal functions by asking 

students to describe their thinking. Using this skill would help teachers evaluate 

students’ understanding of the transformation concept and try to improve students’ 

learning. 

8.5. Reflection of this Journey 

This research journey greatly influenced the way I was thinking about teaching 

and learning of mathematics, and in particular transformations of sinusoidal functions. 

Before doing this research, I have never thought about the influence of students’ 

imagery on their learning of mathematics. I now recognize that the students’ visual 

imagery plays an important role in their conceptual understanding of transformations of 

functions. In other words, I find it important to pay attention to the students’ body 

movements and their mental images, which might be sketched in a paper or in the 

computer screen when completing the mathematics tasks.  

Applying Carlson’s et al. (2002) covariational reasoning framework in this study 

made me realize that it significant to get insight into undergraduate students’ verbal 

expressions related to sinusoidal functions. I note that providing students with 

opportunities to participate in class conversations would let me as a teacher to identify 

the level of their mental actions and therefore to modify my instructional approaches 

accordingly, where needed.  

Conducting this study also changed my research approach significantly. In my 

previous research I relied on a single theoretical framework. I first found it a difficult task 

to analyze data collected for this study with respect to three different theoretical 
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frameworks. However, I became more and more comfortable to interpret data according 

to each framework and this gives me richer results and a broader view about 

undergraduate students’ grasping of the topic. This research provided me an opportunity 

to enjoy doing research in one of the most difficult topics in Calculus. This motivates me 

to engage in future studies focusing on undergraduate mathematics topics.  
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