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Abstract 

Catch-only stock assessment methods have been developed to manage data-limited 

fisheries where only catch data is available. This research evaluated the ability of four 

catch-only stock assessment methods to correctly classify a stock of concern based on 

population trends. To accomplish this, true trends from simulated stocks and the trends 

produced by the models were used to classify stocks into threat categories based on 

percent change. ROC curves and PR curves were then used to test the effectiveness of 

the four models as classifiers. ROC curves indicated that the models performed well 

under most scenarios. However, the confusion matrices and PR curves revealed low 

precision values for all models. The high number of stocks falsely classified as 

threatened were masked in the ROC analysis by the imbalance of few threatened stocks 

compared to numerous non-threatened stocks. This is an important caveat, as it could 

lead to inappropriate threshold selection.  

Keywords:  ROC Curves; Precision Recall Curves; Class imbalance; Catch-only stock 

assessment; Data-limited fisheries; Population trends; 
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Chapter 1.  
 
Introduction 

Marine fish stocks are an important global resource. Global marine fisheries 

harvest has risen to an average of 80 million tonnes a year (FAO Fisheries and 

Aquaculture Organization 2016), and are relied on as a safety net to provide income and 

nutrition to many developing countries (Teh & Sumaila 2013). As of 2013, 144 nations 

have marine fisheries and it is estimated that approximately 260 million people are 

involved in global marine fisheries in both full and part time jobs, not including 

aquaculture or recreation (Teh & Sumaila 2013). Almost three billion people receive 

nearly 20% of their protein from marine fish (FAO Fisheries and Aquaculture 

Organisation 2012). These peoples reliance on marine fishes can be threatened by 

fishery collapses which can have immediate economic impacts and large ecological 

consequences and so it is important to constantly work towards sustainable fisheries 

management (Frank et al. 2005; Schrank 2005; Myers et al. 2007).  

Effective fisheries management benefits significantly from formal stock 

assessment so as to be able to manage for a targeted biomass, yet many harvested fish 

stocks are not formally assessed (Kleisner et al. 2013). Fisheries stock assessments are 

important for evaluating different management actions designed to sustainably harvest 

or rebuild a stock (Punt & Hilborn 1997; Butterworth et al. 2010). Stock assessments 

require models that use ecological knowledge and mathematical equations to make 

predictions about the response of a fish population to different management actions 

(Punt & Hilborn 1997; Cooper 2006). The results from these assessments are then used 

to set harvest limits and inform policy action (Mace 2001; Worm et al. 2009). However, in 

2012, over 80% of the global catch came from fish populations that are not assessed 

(Costello et al. 2012). In addition, of the 16% of harvested fisheries that had formal stock 

assessments, 58% were considered to be below the level of biomass capable of 

producing maximum sustainable yield (Ricard et al. 2012). More recently, Costello et al 

(2016) found that of the 4,713 stocks representing 78% of global catch, 91.6 % were 

unassessed(Costello et al. 2016). This is a concern, because these few assessed stocks 

may not suitably represent the fisheries that are not assessed. Most assessed fisheries 
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represent fish species that are robust to harvesting over a long period of time, and may 

thus represent a biased subset of fished stocks (Froese et al. 2012).  

Stock assessments require detailed information about fish populations, which is 

not always available and can be difficult to collect. Formal data-intensive stock 

assessment models include information such as catch data, mortality, age structure, 

stock recruitment relationships, catch per unit effort and other life history characteristics 

(Cooper 2006). It is the high operational costs associated with the collection of fisheries 

data that has been attributed to the low percentage of formal stock assessments 

(Costello et al. 2012; Ricard et al. 2012). Not only the costs, but also the length of time 

required to collect data and the quality of the data, as stock assessments depend on the 

quality of the data (Agnew et al. 2013). Unfortunately, it is not feasible to collect all the 

various data required for formal stocks assessments for all fisheries. Data-limited 

assessment methods were developed to deal with this issue, to manage fisheries 

sustainably and to better inform harvest policy. 

For many exploited species, catch data is the only information available; as a 

result, assessment models have been developed that require varying degrees of 

information (Branch et al. 2011; Froese et al. 2012). However, even data poor models 

such as Depletion-Based Stock Reduction Analysis (DB-SRA) and Depletion-Corrected 

Average Catch (DCAC) still require information about natural mortality, fishing mortality 

at maximum sustainable yield (MSY), an estimate of depletion, and a long series of 

catch data (MacCall 2009; Dick & MacCall 2011). For many harvested fish stocks the 

only information available is catch data, which is information about the number or weight 

of fish caught annually(Branch et al. 2011; Rosenberg et al. 2014), hence several catch-

only models have been developed that estimate biomass based only on a time series of 

catch data.  The push for more data-limited models was driven in part by the United 

States of America Congress, which required all managed American fisheries to have 

accountability measures and requirements for setting annual catch limits by 2011, 

including the data-limited fisheries (Berkson et al. 2011). Interest in data-limited 

assessment models has continued since with publications of new models. Martell and 

Froese (2013) developed a catch only stock assessment method that uses only fish 

removal estimates and estimates for two parameters based on prior knowledge of fish 

stocks. Thorsen et al. (2013) created a stock assessment model that estimates fish 

biomass from catch data based on effort dynamics. As catch only models do not require 
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the collection of additional data for fish stocks, they can provide a more cost-effective 

means to assess the health of fish populations. If effective, the catch-only models have 

the potential to be a powerful tool for fisheries management, particularly in developing 

countries where resources are more limited (Eggert & Greaker 2009; Le Manach et al. 

2012).  

Despite the widespread potential for using catch-based assessment methods, 

these data-limited methods have sparked significant debate in the scientific community 

over the accuracy of their assessments (Branch 2008; Branch et al. 2011; Daan et al. 

2011; Froese et al. 2012; Agnew et al. 2013). For example, some researchers have 

found that catch trends considerably overestimated the number of stocks classified as 

overexploited and collapsed compared to trends in biomass from more data-intensive 

assessments, and thus failed to represent the true conditions of global fisheries (Branch 

et al. 2011). While using catch data to classify stocks into different statuses has been 

argued to be scientifically and theoretically unsound (Daan et al. 2011), others argue 

strongly for using the FAO catch data to classify stocks into various categories of 

exploitation (Froese et al. 2012). To quell the controversy, there is a clear need to fully 

evaluate the ability of catch-only models to quantify population abundance. 

Many catch-only models have been evaluated based on their ability to estimate 

stock status and harvest rates, but not on their ability to estimate trends over time. Stock 

status is often described in terms of the ratio of the current population abundance to that 

which would produce maximum-sustainable-yield (B/Bmsy) (Worm et al. 2009; Branch et 

al. 2011; Rosenberg et al. 2014). This ratio is then used to determine whether a 

population is over, under, or sustainably exploited and used to set harvest rates (Mace 

2001; Worm et al. 2009). The ability of data-limited stock assessment models to 

accurately estimate parameters such as harvest levels, stock abundance and fishing 

mortality on a year to year basis has been the dominant form of evaluation(Chen et al. 

2005; Dick & MacCall 2011; Thorson et al. 2013; Rosenberg et al. 2014). While the 

ability of a model to accurately estimate stock status is an important feature, it only 

provides a snapshot in time of the status of the population. Population trends are 

informative because they can provide a long-term view of population size and can 

determine whether a population is declining or increasing; allowing managers to make 

inferences about the health of a population (Haro et al. 2000; Chamberlain et al. 2013).  

If a model cannot accurately estimate population abundance in a given year, but the 
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trend of the model’s estimates closely mirrors the true trend of the population, then that 

model may still provide useful information for fisheries management about the general 

health of a population (Figure 1). The population trends estimated from catch-only 

models have the potential to be used as indicators of population status and to classify 

populations into IUCN-like threat categories.  

 
Figure 1 -  An example of a comparison between the trend calculated from a 

model estimate (blue) versus the true underlying trend in B/Bmsy for 
the stock (red). 

Receiver operating characteristics (ROC) curves can be used to visualize and 

evaluate the performance of classifiers (Fawcett 2006). ROC curves have been used 

across conservation, ecology, and physical sciences (Pearce et al. 2000; Baxter & 

Possingham 2011; Porszt et al. 2012). These curves have been proposed as an 

effective method to examine  the tradeoffs between false positive rates and true positive 

rates in classification(Fawcett 2006). ROC curves typically examine a binary 

classification between a positive and a negative class. For the purposes of this study a 

positive is considered a threatened stock and a negative is a non-threatened stock. If a 

model correctly classifies a population as not threatened it would be a true negative, and 

it would be a true positive if a model correctly classifies a population as threatened. A 

false positive occurs when a model incorrectly classifies a stock as threatened and a 
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false negative occurs when a model incorrectly classifies a stock as not threatened 

(Table 1). ROC curves plot the true positive rate against the false positive rate for a wide 

range of possible classification threshold values (Figure 2). This allows you to select a 

threshold to decide if a population is threatened or not based on the model’s estimate of 

the population trend, by examining the rates of correct and misclassifications.  

Table 1 -  A generic confusion matrix representing the different possible 
classification outcomes. The predicated state represents the model 
estimates, and the true state is determined from the simulated 
stocks. 

Confusion Matrix 
True State 

Threatened Not Threatened 

Predicted State 
Threatened True Positive False Positive 

Not Threatened False Negative True Negative 

 

A limitation of ROC analysis is that the ROC curve is insensitive to class 

imbalances (Fawcett 2006). A class imbalance occurs when one of the two classes, 

either positive or negative, is more prevalent. This can be an important consideration 

when dealing with rare event data, such as identifying endangered or critically 

endangered stocks. The cost of a misclassification varies depending on how many 

stocks are truly threatened versus not threatened. A small misclassification rate of many 

stocks will still be a large number of misclassifications compared to the same 

misclassification rate with a small number of stocks. So, with a class imbalance of many 

non-threatened stocks and few threatened stocks, there would be very different costs 

associated with a false positive versus a false negative. Hence, if class imbalances are 

not considered, there is a risk of coming to misleading and erroneously conclusions 

about classifier performance.  

Precision recall (PR) curves have been proposed as an effective tool to evaluate 

classifier performance when there is class imbalance, particularly when the ratio of 

positive to negative classes is low (Davis & Goadrich 2006). These curves are 

commonly used in information retrieval and data mining, where there are few positive 
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classes compared to negative classes (Dumais 1991; Järvelin & Kekäläinen 2000; 

Venna et al. 2010). PR curves plot precision (positive predictive value) against the true 

positive rate (recall) (Figure 2), visualizing the trade-off between decreasing precision as 

the true positive rate increases (Davis & Goadrich 2006). As precision examines both 

the number of true and false positives, it will reflect the ratio of threatened to non-

threatened stocks, ensuring that any potential for over estimation of model performance 

due to class imbalances will be caught. 

 
Figure 2 -  An example of a ROC curve (a) and a corresponding PR curve (b). 

The ROC curve (a) plots the true positive rate against the false 
positive rate for a wide range of possible classification threshold 
values, as can be seen from the changing colour in the in the graph 
corresponding to the legend. Similarly, the PR Curve (b) plots the 
positive predictive value (precision) against the true positive rate 
(recall) for the same range of values. Looking at both figures you 
can then compare the precision of a specific threshold value 
compared to the true and false positive values on the ROC curve. 

Building upon a United Nations Food and Agriculture Organization (FAO) report 

from 2014 (Rosenberg et al. 2014), four catch-only models were evaluated to assess 

how accurately these models estimated population trends over time. Rosenberg et al. 

(2014) evaluated the ability of four data-limited stock assessment models to determine 

stock status. The four models were chosen and adjusted to apply broadly to global 

fisheries and were tested on simulated stocks. The simulated stocks were designed to 

cover a broad range of life histories, allowing for an overall evaluation of these models 

that can be extrapolated to most fish populations (Rosenberg et al. 2014). Using a 

simulation framework for testing these models allows for reliable comparison of stock 
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status between models, and allows for a robust evaluation of where models perform well 

or break down (Rosenberg et al. 2014). While the report assessed stock status 

estimates of the models, and found them to be robust (Rosenberg et al. 2014), analyses 

since have indicated that the models do not perform as well as initially thought (Andrew 

Cooper, personal communication).  

The data from Rosenberg et al. (2014) was used to evaluate the ability of four 

catch-only models to estimate and classify population trends. The models’ classification 

ability was then evaluated using both ROC and PR curves to ensure rigorous testing, as 

endangered and critically endangered stocks are rare events. This analysis provides an 

example of how using PR curves to account for class imbalance can correct for 

inaccurate conclusions derived from ROC curves. Evaluating the ability of the catch-only 

models to estimate population trends begins to address the knowledge gap that exists 

currently in the evaluation of the performance of catch only models. 
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Chapter 2. Methods 

5760 simulated stocks with known relative abundance (current biomass versus 

biomass at maximum sustainable yield (B/Bmsy)) were used in this study along with the 

estimated B/Bmsy produced by each of four catch only models created by Rosenberg et 

al. 2014. The simulated stocks were created to reflect global marine fisheries and had 

differing initial depletion, harvest rates, time series lengths and life history characteristics 

(Rosenberg et al. 2014). In addition, errors for catch reliability and recruitment variability 

were included(Rosenberg et al. 2014). Although it limits the inferences that can be 

drawn from the results to some extent, using simulated stocks instead of true fish stocks 

was necessary for a robust evaluation of the models’ performance. 

The models evaluated include one empirical model and three mechanistic 

models (Table 2). The empirical model is the modified log-linear panel regression model 

(mPRM) (Costello et al. 2012). The three mechanistic models were catch-MSY (CMSY), 

catch only model – sampling importance resampling (COM-SIR) and state-space catch 

only model (SSCOM), all of which are based on the Schaefer production model, with the 

latter two including harvest dynamics (Vasconcellos & Cochrane 2005; Martell & Froese 

2013; Thorson et al. 2013). With the exception of the mPRM model, which requires basic 

life history classification of the fish species, as either demersal, large pelagic or small 

pelagic, all the models can be run solely with a series of catch data (Rosenberg et al. 

2014). All four models are described in detail in Rosenberg et al 2014. 

Table 2 -  A comparison of the four different catch-only models used in this 
study. 

 Empirical Mechanistic 
Model Modified panel 

regression (mPRM) 
Modified catch-
MSY (CMSY) 

COM-SIR SSCOM 

Method Log-linear regression 
model 

Schafer model Schafer model with 
harvest dynamics 

Schafer model with 
harvest dynamics 

Input Catch, basic life 
history 

Catch Catch Catch 
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Three different types of linear models were used to estimate both the true 

underlying population trend of the simulated stocks and the estimated trends produced 

by the data-limited models, henceforth referred to as the simulated trends and estimated 

trends, respectively. Both linear and robust regressions were used to estimate trends in 

relative abundance, as well as the non-parametric Sen’s slope estimator. The three 

different types of linear models were used to examine if outliers or assumptions of 

normality affect the trend estimation and classification ability of the models. Robust 

regression was used as it is less sensitive to outliers than the linear regression, while the 

Sen’s slope estimator was used as it is both insensitive to outliers and robust to small 

sample sizes(Wilcox 1998). Regressions were fit to both the true patterns of B/Bmsy over 

time from the simulated stocks and the catch-only model estimates of B/Bmsy for all 

stocks using the statistical program R (R Core Team 2014). There was no cross 

comparison between regression types at any stage of this analysis; the simulated and 

estimated trends were only compared within each regression type. To compare the 

effect of a long versus a short catch series on classifier performance, trends were 

calculated over both the whole time series and over the last ten-years for each stock. 

Mean proportional error (MPE) and mean absolute proportional error (MAPE) 

were calculated to quantify bias of the model estimates. Proportional error is the 

estimated B/Bmsy – the simulated B/Bmsy over the simulated B/Bmsy, and when averaged 

across a set of values, is the average bias of the estimates. Additionally, absolute 

potential error was calculated to ensure that large errors evenly distributed between 

positive and negative biases were not missed. Regression trees were then used to 

examine any potential patterns or key factors resulting in larger or more biased errors. 

The factors considered were the different life histories, harvest rates, time series lengths, 

depletion rates, recruitment variability, error on catch, autocorrelation on recruitment 

residuals and the models themselves. 

True and estimated trends were classified into three different conservation 

categories using thresholds based on the percent decline over time as per Criterion A of 

the International Union for the Conservation of Nature (IUCN), a widely recognized 

classification system (IUCN 2012). Three threat categories were selected as thresholds 

for this study: vulnerable (> 50% decline), endangered (> 70% decline) and critically 

endangered (> 90% decline). There were three separate binary classifications for each 

simulated stock based on the three different threat levels (e.g., vulnerable or worse vs. 
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not vulnerable, endangered or worse vs not endangered, critically endangered vs not 

critically endangered). Each stock was classified under each threshold based on the true 

simulated trend in B/Bmsy and the estimated trend in B/Bmsy from each of the four models. 

The simulated populations were classified based on the percent decline using the slope 

from the linear estimators over both the whole time series and the last ten years, 

representing a long and short time series respectively. For each simulated stock, there 

are 90 classification outcomes, 18 from each model and the “true” simulated outcomes, 

from the combination of linear model, time series length and threat threshold (Figure 3). 

 
Figure 3 -  A flow chart depicting the different scenarios that were examined for 

each of the simulated stocks. 

The reliability of the model classifications based on the estimated trends was 

then quantified with ROC curves using the pROC package in R (Robin et al. 2011, R 

Core Team 2014).  ROC curves examine the rates of true and false positives by varying 

the threshold used to classify the estimated trends as threatened or not, evaluating the 

ability of each model to correctly classify the stocks and identify the threshold minimizing 
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the false positive rate and maximizing the true positive rate (Akobeng 2007; Porszt et al. 

2012). The threshold identified that maximizes the area under the curve (AUC) 

represents the cut-off that would be used to identify a population as threatened or not for 

each threat category. In addition to computing the ROC curve and the AUC, the 

confusion matrix and common performance metrics were calculated for each scenario to 

thoroughly examine the classification performance of each model. The performance 

metrics included the false positive and negative rates, the true positive and negative 

rates, and precision. For the purposes of this study the true positive rate is the proportion 

of threatened stocks that are correctly classified as threatened by the model, and the 

false positive rate is the proportion of non-threatened stocks incorrectly classified as 

threatened. Whereas the true negative rate is the proportion of non-threatened stocks 

correctly classified as non-threatened, and the false negative rate is the proportion of 

threatened stocks that are incorrectly classified as not threatened by the model.  

Precision Recall curves were computed to examine the change in precision and 

recall for different threshold values, using the PRROC package in R (Keilwagen et al 

2014, R Core Team 2014). Recall is synonymous with the true positive rate and 

precision being the percent of true positives out of the total number of estimated 

positives. Precision Recall curves were used due to the sensitivity of the ROC curve to 

class skew and to ensure that the effects of class imbalance were not being missed in 

the ROC analysis (Dumais 1991; Järvelin & Kekäläinen 2000; Davis & Goadrich 2006; 

Fawcett 2006; Venna et al. 2010). This was important to include in our analysis, as 

endangered and particularly critically endangered stocks are arguably rare events.  
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Chapter 3. Results 

The specific results from the Sen’s slope estimator, linear and robust regressions 

differed, but regardless of the method, the general conclusions remain the same. For 

brevity, only the results of the robust regression will be presented here; the results from 

the linear regression and Sen’s slope estimator are presented in Appendix 1. 

The trends estimated by all the models underestimated the true trends in the 

data (see MPE and MAPE in Table 3). The regression trees detect any clear patterns in 

the biases in trends between the different life histories, harvest rates, time series 

lengths, depletion rates, recruitment variability, error on catch, autocorrelation on 

recruitment residuals or the models themselves.  

Table 3 -  The mean proportional error (MPE) and mean absolute proportional 
error (MAPE) for each of the data limited models. The error is the 
difference between the models' estimate of the simulated stock 
trend, and that of the true simulated stock. A negative MPE value 
indicates that the model estimates are underestimating the true 
simulated trend. 

Model Long Time Series Short Time Series 
MPE MAPE MPE MAPE 

CMSY -0.512 4.493 -0.248 3.043 
COM.SIR -0.825 1.899 -1.071 1.723 

mPRM 0.682 5.114 -1.501 3.837 
SSCOM -0.887 2.254 -0.778 2.476 

 

The AUC values varied by model, threat threshold and time series length, but 

were high in most scenarios, suggesting reasonable to high classifier performance. 

Accordingly, the AUC values corresponded with mostly low false positive and negative 

rates and high true positive and negative rates. The AUC values declined as the threat 

level decreased from critically endangered to vulnerable. Here we present the ROC 

curves and confusion matrices at the optimal thresholds for the CMSY model (Figure 4, 

Table 4). CMSY was neither the best or worst performer, and is a representative 

example of the trends observed in all model performances. The remaining ROC and PR 

curves are available in Appendix 1.  
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Notwithstanding what seemed to be high classifier performance, two factors 

indicated that the ROC analysis was not fully capturing the models’ performance: the 

optimal thresholds and the number of true positives relative to false positives. The 

optimal thresholds for maximizing classifier performance were almost always lower than 

the threat threshold (e.g. for a short time series with SSCOM, a stock should be 

considered critically endangered [i.e., has declined by more than 90%] if there is an 

estimated decline of 37%). However, not all the threat thresholds were logically 

meaningful. For CMSY the optimal threat threshold for classifying a population as 

vulnerable over a long time series was a 13% increase (Appendix 1). In the confusion 

matrices, there was only one scenario under which there were more true positives than 

false positives, despite low false positive rates. These two factors suggested that the 

ROC analysis was not robustly evaluating classifier performance.  
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Figure 4 -  The ROC curve for CMSY at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over ten years, and the 
AUC values are presented on the figure, with the performance of a 
random classifier represented by the dashed grey line. 
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Table 4 -  The confusion matrices for CMSY at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered. The class imbalance indicated in the tables is the ratio 
of threatened to non-threatened stocks. 

a) 

At the optimal threshold 
-28.7 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 389 527 

Not Vulnerable 258 4348 

Class Imbalance = 1:8 647 4875 
b) 

At the optimal threshold 
-29.3 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 254 646 

Not Endangered 34 4588 

Class Imbalance = 1:18 288 5234 
c) 

At the optimal threshold 
-39.1 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 87 552 

Not Critically 
Endangered 3 4880 

Class Imbalance = 1:60 90 5432 
	

The PR Curves varied by model, threat threshold, and time series length. 

However, they all indicated that while the models perform better than random classifiers, 

there is still considerable room for improvement, with precision, also known as positive 

predictive value, dropping rapidly as the true positive rate increases (Figure 5). Precision 

at the optimal threshold (the threshold that minimizes false positives and maximizes true 

positives) declines as the threat level increases from vulnerable to critically endangered, 
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with a maximum value of 0.57 at the optimal threshold identified by the ROC analysis.  

The highest precision for all models occurs when the threat threshold is vulnerable over 

the whole time series for all models. The lowest precision is associated with the highest 

true positive rates. This means that while the models are identifying a high proportion of 

the threatened stocks at the optimal thresholds, they are also incorrectly identifying non-

threatened stocks as threatened, despite the low false positive rates. These changes 

observed in both curves corresponded to changes in the ratio of threatened to non-

threatened stocks.  
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Figure 5 -  The PR curve for CMSY at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the whole time series, are presented on the figure. As 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 

In all scenarios, the number of threatened stocks (positive classes) is 

considerably lower than the number of non-threatened stocks (negative classes), 

creating a class imbalance. At the lowest class imbalance ratio, and for the vulnerable 

threat threshold, there is still approximately double the number of non-threatened stocks 

compared to threatened stocks. The largest class imbalances reached as high as 60 (or 

greater) non-threatened stocks for each threatened stock. All the largest class 

imbalances occurred when the threat level was critically endangered.  
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The class imbalance between threatened and non-threatened stocks masked the 

number of false positive classifications by all models.  This pattern was consistent for all 

models. Interestingly, under specific circumstances, SSCOM could be potentially useful 

to identify stocks that are not critically endangered, despite the class imbalance, as it 

had a false negative rate of 0 (Table 5). 

Table 5 -  The confusion matrix for SSCOM at the optimal threshold for the 
critically endangered threat level. The class imbalance indicated in 
the tables is the ratio of threatened to non-threatened stocks. 

At the optimal threshold             
(-0.368) 

True Status 
Critically 

Endangered 
Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 92 435 

Not Critically 
Endangered 0 5233 

Class Imbalance = 1:62 92 5668 
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Chapter 4. Discussion 

The results from the ROC curve and the AUC values suggested that the four 

catch-only stock assessment models could be used to classify populations into threat 

categories in certain scenarios. However, upon careful inspection, the cases of high 

AUC values and low false positive rates were misleading regarding the model’s 

classification ability. With only a few exceptions there were more false positives than true 

positives in all confusion matrices. In several scenarios, there were more than four times 

the number of false positives. However, the false positive rate remained low because 

ROC curves are insensitive to class imbalance and consequently did not reflect the high 

number of false positives due to the low ratio of positive to negative classes (Fawcett 

2006). 

Due to the class imbalance, the trade-offs between decreasing the false positive 

rate and increasing the true positive rate are unequal. For example, with a false positive 

rate of 0.1, 10% of 5000 non-threatened stocks are misclassified (500 false positives) 

and with a true positive rate of 0.9, 90% of 250 threatened stocks are classified correctly 

(225 true positives). While these rates would indicate high classifier performance, there 

are still more than double the number of false positives compared to true positives (500 

false positives to 225 true positives). When ROC curves examine the classification rates, 

having a low false positive rate and a high true positive rate are weighted evenly, when 

in reality the costs associated with those rates are different when there is class skew. 

With the current skew, one false negative affects the true positive rate more than one 

false positive effects the false positive rate, hence minimizing the number of false 

negatives is where classifier performance is maximized. The class imbalance increased 

as the threat level increased from vulnerable to critically endangered. This occurs as 

there are fewer vulnerable stocks than non-vulnerable stocks and even fewer 

endangered and critically endangered stocks. When the ratio between the positive and 

negative classes approached 1:1, the false positive rate increased and the overall 

performance from the ROC curves indicated that the models are not particularly 

accurate classifiers.  

Precision, the probability of a stock being of concern given the model classified 

the stock as of concern, was a better indicator of model performance. PR curves showed 
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that the thresholds maximizing AUC from the ROC curve did not result in high precision. 

Precision decreased as the level of the threat threshold increased, due to the increasing 

class imbalance, the opposite of the ROC analysis, which increased with the increasing 

threat threshold. The highest precision values occurred when the trend was calculated 

over a long time series, versus a short time series, as it resulted in a lower class 

imbalance. It has been previously established in other fields that PR curves are more 

appropriate to use with imbalanced data sets (Davis & Goadrich 2006; He & Garcia 

2009). Accordingly, Precision recall analysis is a well-established method in information 

retrieval, an area of research that often deals with imbalanced data sets (Lesk 1969; 

Dumais 1991; Hull 1993; Gao et al. 2001; Lafferty & Zhai 2001; Zhai & Lafferty 2001; 

Shah et al. 2002; Alzahrani et al. 2012)  

When using ROC curves, it is important to not only look at the four main 

performance metrics and AUC values, but to also examine the confusion matrix and less 

commonly used performance metrics. The true and false positive and negative rates can 

be misleading and it is imperative to also carefully examine confusion matrices for class 

imbalance. Precision and the negative predictive value are two performance metrics that 

can be used to evaluate classifiers that will be affected by class imbalance and hence 

are more representative of classifier performance under conditions of class skew. Using 

PR curves in conjunction with ROC curves is a straightforward way to visualize important 

trade-offs when evaluating classifier performance.  

When using ROC curves in ecology, where you do not always expect even class 

ratios, it is important to understand this limitation of ROC curves as it could lead to false 

confidence in a model’s classification ability. Imbalances in the positive and negative 

classes overinflate the AUC values and are not reflected accurately by the true positive 

and the false positive rates. The high number of negative classes masked the number of 

false positives relative to the number of true positives. Relying solely on the rates from 

the ROC analysis would have led to the conclusion that the models were very accurate 

classifiers in some cases. Examining the confusion matrices and PR curves revealed the 

shortfalls of the models. 

Evaluating whether model performance is poor, acceptable or good will depend 

on the scenarios where the model will be used and the costs of any errors. While these 

models have a low precision, there is still potential for using them. The models have low 
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false negative rates, meaning they could still be used in instances where it is extremely 

important to identify all populations that are potentially declining past a certain threshold. 

False negatives are arguably worse than false positives in fisheries, making it more 

important in certain scenarios to find all stocks of concern than avoid false positives 

(Peterman 1990). However, which error is considered more concerning would depend 

on the population in question, the opinions of managers, and economic 

considerations.  The performance metrics indicate that the models are still more 

accurate than a 50/50 guess.  If there are no other options, besides a manager’s best 

guess, these models could still be valuable. We do not know what a manager’s AUC 

value would be; their opinions could be biased towards keeping fisheries open or by 

shifting baselines (Pauly 1995). Implementation errors by managers can lead to 

overexploitation (Patrick et al. 2013). For short time series, SSCOM is the most 

promising, as it has the lowest false negative rates and more realistic thresholds 

indicated from the ROC analysis for the three threat categories. CMSY could be used for 

longer time series, although the thresholds are less logical and the false negative rate is 

higher. Both models perform better over a short time series as oscillations in biomass 

are more likely to occur in a long time series and may not be accurately reflected when 

fitting the data to a line. These models would still require additional testing on data rich 

stocks to confirm that these patterns persist when using non-simulated stocks.  

While evaluating data limited assessment methods’ performance by the ability to 

classify stocks into categories is not novel, stocks have generally been classified into 

statuses across a range from developing to recovering based on catch or relative 

biomass estimates (Froese & Kesner-Reyes 2002; Kleisner and Pauly 2011, Carruthers 

et al. 2012; Kleisner et al. 2013). Although not applied to data-limited stocks previously, 

using the IUCN criterion for setting threat thresholds to classify extinction risk has been 

widely used in other studies  (Cheung et al. 2005; Dulvy et al. 2005, 2006; Porszt et al. 

2012; Hornborg et al. 2013; d’Eon-Eggertson et al. 2014; Visconti et al. 2016). Data 

limited models have been assessed for the ability to accurately estimate B/Bmsy, Fmsy, 

overfishing limits (OFL), harvest levels and adhere to management rules, either 

compared to full stock assessment methods or a true simulated condition (Dick & 

MacCall 2011; Wetzel & Punt 2011; Carruthers et al. 2012, 2014; Cope 2013; Martell & 

Froese 2013; Thorson et al. 2013). To our knowledge this is the first time that data 

limited models have been evaluated based on the ability to estimate population trends.  
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Accurate methods of fisheries assessment are required to allow managers to 

increase the sustainability of fisheries globally, however, current methods are not always 

an option or reliable. This raises the question, what else can be done with data-limited 

stocks? What methods provide a better than 50/50 chance of correctly classifying a 

stock as threatened or not? SSCOM could be an additional fisheries management tool, 

as additional support or opposition for action, if the model is used with the knowledge of 

its caveats. Further research is being conducted to determine what additional 

information will have the largest effect on model performance. 
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Appendix  
 
Supplemental Figures 

CMSY 

Short Time Series 

 
Figure A1 –  The ROC curve for CMSY at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over ten years, and the 
AUC values are presented on the figure, with the performance of a 
random classifier represented by the dashed grey line. 
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Table A1 -  The confusion matrices for CMSY at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the last ten years. The class imbalance indicated 
in the tables is the ratio of threatned to non-threatened stocks. 

a) 

At the optimal threshold 
-28.7 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 389 527 

Not Vulnerable 258 4348 

Class Imbalance = 1:8 647 4875 
b) 

At the optimal threshold 
-29.3 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 254 646 

Not Endangered 34 4588 

Class Imbalance = 1:18 288 5234 
c) 

At the optimal threshold 
-39.1 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 87 552 

Not Critically 
Endangered 3 4880 

Class Imbalance = 1:60 90 5432 
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Figure A2 -  The PR curve for CMSY at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the whole time series, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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Long Time Series 

 
Figure A3 -  The ROC curve for CMSY at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over the whole time series, 
and the AUC values are presented on the figure, with the 
performance of a random classifier represented by the dashed grey 
line. 
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Table A2 -  The confusion matrices for CMSY at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the whole time series. The class imbalance 
indicated in the tables is the ratio of threatned to non-threatened 
stocks. 

a) 

At the optimal threshold 
13.4 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 1512 1363 

Not Vulnerable 373 2274 

Class Imbalance = 1:1.9 1885 3637 
b) 

At the optimal threshold 
-57.4 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 658 870 

Not Endangered 216 3778 

Class Imbalance = 1:5.3 874 4648 
c) 

At the optimal threshold 
-67.7 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 87 811 

Not Critically 
Endangered 9 4615 

Class Imbalance = 1:56.5 96 5426 
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Figure A4 -  The PR curve for CMSY at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the whole time series, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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COM-SIR 

Short Time Series 

 
Figure A5 -  The ROC curve for COM-SIR at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over ten years, and the 
AUC values are presented on the figure, with the performance of a 
random classifier represented by the dashed grey line. 
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Table A3 -  The confusion matrices for COM-SIR at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the last ten years. The class imbalance indicated 
in the tables is the ratio of threatned to non-threatened stocks. 

a) 

At the optimal threshold 
-2.3 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 413 991 

Not Vulnerable 279 4072 

Class Imbalance = 1:7.3 692 5063 
b) 

At the optimal threshold 
-5.3 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 210 599 

Not Endangered 94 4852 

Class Imbalance = 1:17.2 304 5234 
c) 

At the optimal threshold 
-72.0 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 67 257 

Not Critically 
Endangered 25 5406 

Class Imbalance = 1:61.5 92 5663 



37 

 
Figure A6 –  The PR curve for COM-SIR at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the last ten years, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 

  

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Random performance vulnerable

Random performance endangered

Random performance critically endangered

●

−0.023 ●
−0.053

● −0.720

Pr
ec

is
io

n 
/ P

os
iti

ve
 P

re
di

ct
ive

 V
al

ue

Recall / True Positive Rate

Vulnerable
Endangered
Critically Endangered



38 

Long Time Series 

 
Figure A7 -  The ROC curve for COM-SIR at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over the whole time series, 
and the AUC values are presented on the figure, with the 
performance of a random classifier represented by the dashed grey 
line. 
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Table A4 -  The confusion matrices for COM-SIR at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the whole time series. The class imbalance 
indicated in the tables is the ratio of threatned to non-threatened 
stocks. 

a) 

At the optimal threshold 
-10.4 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 1509 1209 

Not Vulnerable 493 2544 

Class Imbalance = 1:1.9 2002 3753 
b) 

At the optimal threshold 
-13.9 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 733 1363 

Not Endangered 203 3456 

Class Imbalance = 1:5.1 936 4819 
c) 

At the optimal threshold 
-47.7% 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 98 601 

Not Critically 
Endangered 16 5040 

Class Imbalance = 1:60 114 5641 
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Figure A8 -  The PR curve for COM-SIR at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the whole time series, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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mPRM 

Short Time Series 

 
Figure A9 -  The ROC curve for mPRM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over ten years, and the 
AUC values are presented on the figure, with the performance of a 
random classifier represented by the dashed grey line. 
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Table A5 -  The confusion matrices for mPRM at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the last ten years. The class imbalance indicated 
in the tables is the ratio of threatned to non-threatened stocks. 

a) 

At the optimal threshold 
-28.0 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 415 1197 

Not Vulnerable 270 3853 

Class Imbalance = 1:7.4 685 5050 
b) 

At the optimal threshold 
-38.3 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 181 886 

Not Endangered 98 4570 

Class Imbalance = 1:19.6 279 5456 
c) 

At the optimal threshold 
-54.5 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 31 536 

Not Critically 
Endangered 36 5132 

Class Imbalance = 1:84.6 67 5668 
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Figure A10 -  The PR curve for mPRM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the last ten years, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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Long Time Series 

 
Figure A11 -  The ROC curve for mPRM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over the whole series, and 
the AUC values are presented on the figure, with the performance of 
a random classifier represented by the dashed grey line. 
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Table A6 -  The confusion matrices for mPRM at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the whole time series. The class imbalance 
indicated in the tables is the ratio of threatned to non-threatened 
stocks. 

a) 

At the optimal threshold 
-49.8 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 995 755 
Not Vulnerable 779 3206 

Class Imbalance = 1:2.2 1774 3961 
b) 

At the optimal threshold 
-52.1 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 476 1162 

Not Endangered 220 3877 

Class Imbalance = 1:7.2 696 5039 
c) 

At the optimal threshold 
-47.7 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 41 1859 

Not Critically 
Endangered 2 3833 

Class Imbalance = 1:132.4 43 5692 
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Figure A12 -  The PR curve for mPRM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the whole time series, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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SSCOM 

Short Time Series 

 
Figure A13 -  The ROC curve for SSCOM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over ten years, and the 
AUC values are presented on the figure, with the performance of a 
random classifier represented by the dashed grey line. 
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Table A7 -  The confusion matrices for SSCOM at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the last ten years. The class imbalance indicated 
in the tables is the ratio of threatned to non-threatened stocks. 

a) 

At the optimal threshold 
-16.3 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 523 796 

Not Vulnerable 169 4272 

Class Imbalance = 1:8 692 5068 
b) 

At the optimal threshold 
-25.6 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 275 497 

Not Endangered 29 4959 

Class Imbalance = 1:17.9 304 5456 
c) 

At the optimal threshold 
-36.8 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 92 435 

Not Critically 
Endangered 0 5233 

Class Imbalance = 1:60 92 5668 
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Figure A14 -  The PR curve for SSCOM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the last ten years, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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Long Time Series 

 
Figure A15 -  The ROC curve for SSCOM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds, representing percent change over the whole time series, 
and the AUC values are presented on the figure, with the 
performance of a random classifier represented by the dashed grey 
line. 
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Table A8 -  The confusion matrices for SSCOM at the three different optimal 
thresholds for a) Vulnerable, b) Endangered and c) Critically 
Endangered over the whole time series. The class imbalance 
indicated in the tables is the ratio of threatned to non-threatened 
stocks. 

a) 

At the optimal threshold 
-19.1 % 

True Status 

Vulnerable Not Vulnerable 

Predicted 
Status 

Vulnerable 1392 1570 

Not Vulnerable 610 2188 

Class Imbalance = 1:1.9 2002 3758 
b) 

At the optimal threshold 
-33.7 % 

True Status 

Endangered Not Endangered 

Predicted 
Status 

Endangered 437 896 

Not Endangered 499 3928 

Class Imbalance = 1:5.2 936 4824 
c) 

At the optimal threshold 
-95.3 % 

True Status 

Critically 
Endangered 

Not Critically 
Endangered 

Predicted 
Status 

Critically 
Endangered 62 72 

Not Critically 
Endangered 52 5572 

Class Imbalance = 1:49.5 114 5646 
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Figure A16 -  The PR curve for SSCOM at three different threat thresholds: 

vulnerable, endangered and critically endangered. The optimal 
thresholds identified in the ROC analysis, representing percent 
change over the whole time series, are presented on the figure.  As a 
random performance in PR curves varies with the class skew, the 
three corresponding random classifier performances are depicted 
by the dashed lines. 
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