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Abstract

We propose a generic deep model to learn features describing person trajectories. This
network uses layers of 1D temporal convolutions over person location inputs. The network
can model the patterns of motion exhibited by people when performing different activities.
These trajectory features are used in a two-stream deep model that takes as input both visual
data and person trajectories for sports video analysis. Our model utilizes one stream to
learn the visual temporal dynamics from video clips and the other stream to learn the space-
time dependencies from trajectories. We evaluate our trajectory feature learning model on
data from NBA basketball games. We also utilize a dataset from NHL hockey games,
which contains broadcast videos and uses state of the art automatic camera calibration,
human detection, and tracking algorithms to estimate player positions in world coordinates.
Experiments show that person trajectories can provide strong spatio-temporal cues, which
improve performance over baselines that do not incorporate trajectory data.

Keywords: Trajectory Feature; 1D Convolution; Two-Stream Neural Network; Sports
Video Analysis
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Chapter 1

Introduction

Human activity analysis is a fundamental problem in computer vision. The trajectory a
person takes while moving can provide vital information to conduct this analysis. For
example, the path followed by a walking person would look very different from that of a
basketball player dribbling around an opponent. In this paper we develop a deep network
for learning representations of person trajectories for activity analysis.

Consider the example in Fig. 1.1. Determining what event is taking place in this
scene can be done based on the visual appearance of the people in the scene, augmented
by descriptions of their trajectories over time. A large volume of work has focused on
visual features for recognizing individual actions. These are typically built from challenging
unconstrained internet video datasets such as UCF Sports [21], UCF-101 [25], HMDB-51
[14], and Sports-1M [12]. These datasets have been used to learn powerful feature descriptors
(e.g. C3D [26]), which we will leverage in our models.

A body of literature focuses on group activity and human interaction [16, 1, 15, 20, 2,
13, 5, 4, 10], some of which incorporate spatial information of individuals. However, these
representations tend to be hand-crafted and do not sufficiently encode the rich information
of individual person movements and their interactions over time.

In this paper, we address the problem of analyzing the behaviors of players in sports
video. Sports video analysis presents numerous challenges. First, players move extremely
fast and often frames are blurred due to this rapid movement. Thus, the input video clips do
not always carry the rich visual information expected. Second, sports video, especially team
sports, contains lots of player interactions. Interpreting those interactions can help under-
stand their activities as a group, but the representations used to decode such interactions
remains an open challenge.

We propose a method to analyze player activities in team sports by using their locations
in world coordinates over time. For example, consider a snapshot of time in a hockey game.
It is hard to determine what a crowd of players is doing by simply inspecting the pixels
inside the bounding boxes of players in a video clip. It is helpful to analyze the relative
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Figure 1.1: Combining visual features with trajectory features for human behaviour analysis
in videos. We develop a deep network for learning features from person trajectories. These
can be combined with visual features for analyzing human activities.

positions of players over time as well, so as to understand the spatio-temporal context and
then understand the behavior of each player.

Analysis of trajectory data is not a new area of research. Many works have proposed
computational methods to analyze player behaviors using trajectories. We refer readers to
[8] for a recent survey on this field of research. However, to the best of our knowledge, we
are the first to learn features describing trajectories with convolutional neural networks and
combine both video data and trajectories in a single framework for activity analysis.

We implement this network in a two-stream framework that handles multiple persons.
For each person, the data in two domains (video and trajectory) go through a network
shared by all people and then the outputs of each person are merged into a single vector as
the eventual feature representation. To demonstrate the generality of our model, we analyze
team formations, puck carrier detection, and event recognition across NBA trajectory and
NHL video datasets.

Although in this paper we only addressed the problem of analyzing player behaviours
in sports videos, our model is general and can be applied to various situations. In terms
of the two-stream framework, one can augment any existing action recognition model by
considering trajectory data as an extra cue. In terms of the trajectory stream, applying
1D convolutions to learn trajectory features also has broad applications. One case could be
detecting the abnormalities in surveillance videos. Usually the trajectory pattern of people
and vehicles perceived by a surveillance camera form a distribution. If at some time a traffic
accident happens, this could disrupt the usual pattern, leading to abnormal and deviated
trajectories. We can use proposed 1D temporal convolutions to handle this task. In fact,
the proposed trajectory model is capable of learning the patterns of temporal dynamics of
any feature points defined by users. For example, a feature point can be a mass point when
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an object is treated as a whole, as in the case of player trajectory analysis. A feature point
can also be a part of an object like a body joint.

The contribution of this work is two-fold. First, we propose a novel deep neural network
for behavior analysis for a group of people, which is capable of capturing spatio-temporal
dependencies from visual appearance and person trajectories. Second, experiments show
that our model outperforms baseline models that do not use trajectory data, which supports
our conjecture that person position over time plays an important role when analyzing human
activities.
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Chapter 2

Related Work

The existing literature on analyzing human activities is extensive. Thorough surveys of
earlier work include Gavrila [7] and Weinland et al. [28]. Below, we review closely related
work in activity recognition, including individual actions, group multi-person activities, and
trajectory analysis.

2.1 Deep Learning for Action Recognition

Recently, deep learning has been brought to bear on the problem of action recognition.
Approaches for video-based action recognition include the two-stream network of Simonyan
and Zisserman [24], which fuse motion and appearance feature branches into a single net-
work. Karpathy et al. [12] did extensive experiments on when and how to fuse information
extracted from video frames. Donahue et al. [6] extract features from each frame and encode
temporal information using a recurrent neural net (LSTM [9]) for action recognition. Tran
et al. [26] extended traditional 2D convolution to the 3D case, where filters are applied to
the spatial dimensions and temporal dimension simultaneously.

2.2 Group Activity Recognition

Group activity recognition examines classifying the behaviour of multiple, interacting peo-
ple. Effective models typically consider both individual actions and person-level interactions
within the group. Previous works use hand-crafted features and model interactions with
graphical models. Choi et al. [3] build hand-crafted descriptors of relative human poses. Lan
et al. [16] and Amer et al. [1] utilize hierarchical models to understand collective activity
among a group of people at different levels, ranging from atomic individual action to group
activity in the scene. The concept of social roles performed by people during interactions
has also been studied [15, 20]. All of these methods use hand-crafted representations of
inter-person relationships.
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Another line of work introduces structures into deep learning frameworks by integrating
neural networks and graphical models in a unified framework [22, 29, 23]. For example,
Deng et al. [4, 5] apply deep structured models to collective activity recognition, learning
dependencies between the actions of people in a scene. However, these works do not con-
sider spatio-temporal relationships between participants, which we believe would provide
strong indication about how a group activity is formulated. Thus, we propose a model to
incorporate spatial information by learning the dynamics of trajectories of each participant
as well as their relative movements.

The incorporation of track-level features as extra cues for interaction modeling was done
by Choi et al. [2] and Khamis et al. [13]. Recent work has developed more sophisticated
deep temporal models for activity analysis. Ramanathan et al. [19] utilize attention models
to focus on key players in sports activties. Ibrahim et al. [10] build hieararchical LSTMs
to model multiple interacting people over time. In contrast with this, our work learns
trajectory features directly from human position inputs.

2.3 Trajectory Data Analytics

There exists significant literature on trajectory analysis focusing on team sports, such as
basketball, soccer, and hockey. Applications within sports analytics include analyzing player
and team performance, and mining underlying patterns that lead to certain results. Work in
this field has included various statistical models to capture the spatio-temporal dynamics in
player trajectories. We refer readers to a recent survey [8] on detailed team sports analysis
with trajectory data.

Classic examples in the vision literature include Intille and Bobick [11] who analyzed
American football plays based on trajectory inputs. Médioni et al. [18] utilized relative
positioning between key elements in a scene, such as vehicles and checkpoints, to recognize
activities.

In the sports context, Lucey et al. [17] use a basis representation of person trajectories
that utilizes roles. The work that is most similar to ours is Wang and Zemel [27], which
uses a traditional CNN plus RNN to classify NBA offensive patterns. Person trajectories
are converted to an image representation for input to the CNN. However, an image repre-
sentation of trajectories is not an effective coding mechanism in that time is ignored, and
further most pixels are zeros, making this representation redundant. We instead propose
to build a neural network directly on top of raw trajectories.
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Chapter 3

Trajectory-Visual Model

Our model is built in a two-stream framework, one analyzing trajectory information, the
other direct visual appearance. Each stream takes incoming data in different domains as
input. In our model, video clips and person trajectories are fed into the network. For ease
of elaborating our model, we call these two streams the visual stream and trajectory stream
respectively. To integrate the two streams into a unified framework, we build a combined
feature vector by concatenating the output of each stream. This is followed by a fully
connected layer(s) for classification.

Since we aim to analyze human behaviour as a group, there are multiple people to handle
per sample, each requiring a separate neural network for feature extraction. To this end,
we let all people share the same network for feature extraction. Afterwards we merge the
features of all individuals and treat the concatenated feature as the resulting representation.
In this section, we will delve into the details of the model formulation, starting with the
structure of each stream, followed by the construction of the model for a single person and
finally the architecture of our model for a group of people in a scene.

3.1 Trajectory Stream

We start by describing the analysis of the trajectory of one person in a scene. The input
to the trajectory stream is a sequence of person world coordinates in the form of (xt, yt),
where t is frame number. These inputs are obtained via state of the art tracking and camera
calibration systems, which provide reasonably accurate, though sometimes noisy, data. To
learn the space-time variations in person trajectories, we propose to use 1D convolutions.

Recall that a person trajectory is essentially a continuous signal. We propose a direct
way of interpreting a trajectory. A 2D trajectory in world coordinates (player position
in court / rink coordinates) has two separate continuous signals, one for the x series and
one for y series. We can split the input [(x1, y1), (x2, y2), · · · , (xT , yT )] into two sequences
[x1, x2, · · · , xT ] and [y1, y2, · · · , yT ], each being a 1D continuous signal. In our approach
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Figure 3.1: Proposed two-stream network for video analysis.

we treat these two sequences as two channels. We build a convolutional neural network
on top of these inputs, with 1D convolution operating on each input. By stacking layers
of 1D convolution, we can learn combinations of x and y movements that are indicative of
particular action classes.

In detail, let X ∈ RN×T denote the input, F ∈ RN×W×M denote the filters in a convo-
lutional layer and O ∈ RM×T denote the output, where N is the number of input channels,
T is the length of input sequence, W is the filter size and M is the number of filters. To
model the behaviour of a convolutional layer1, we do the basic operation as follows:

Ok,t = σ(
N∑

i=1

W∑
j=1

Xi,t+j−1Fi,j,k). (3.1)

In the above formula, σ (·) can be any activation function. In our case, we choose ReLU
for all activations. Each convolutional layer is followed by a max pooling layer to make the
model shift-invariant and help reduce the dimension of the output.

Let Z ∈ RM×dT
S
e be the output of max pooling, where S is the step size in the pooling

operation, then we have
Zk,t = max

1≤j≤S
Ok, (t−1)·S+j . (3.2)

To build a network with stacked convolutional and max pooling layers, we use the output
Z l−1 at layer l − 1 as the input X l at layer l:

X l = Z l−1. (3.3)

We repeat the process described in Eq. 3.1 and Eq. 3.2 for a number of layers. To obtain
the output of the trajectory stream, we flatten the output of the last layer.

1We choose a step size of 1 when doing convolution and pad zeros to the input if the domain of a filter
goes outside of the input.
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3.2 Visual Stream

We choose the C3D network [26] to handle incoming visual data. In our experiments, we
use the C3D structure shown in Fig. 3.1 and use the feature from fc6 where the number of
output neurons is set to 512. The architecture of visual stream is not our key contribution
in this work. In fact, this subnetwork takes video sequences as input, so another of the
many powerful networks used for video classification could be used as our visual stream.

3.3 Stream Fusion

Since each stream is constrained to learning a certain pattern within its own data domain, it
is helpful to take advantage of the two-stream architecture, forcing the two separate streams
to share information with each other. To merge information, we concatenate the output
of each stream and pass the fused feature to a fully connected layer(s) to establish inter-
stream/domain connectivity. The resulting feature vector is a representation of individual
activity in a short sequence.

Let row vectors Xt ∈ RFt and Xv ∈ RFv be the features extracted from the trajectory
stream and visual stream respectively, where F∗ denotes the corresponding feature length
(or the number of neurons in a fully connected layer). The fused output Zf ∈ RFf is
mathematically expressed as

Zf = σ([Xv, Xt]Wf ), (3.4)

where Wf ∈ R(Fv+Ft)×Ff are the weights in a fully connected layer. More fully connected
layers could be built on top of Zf to accommodate complicated cases.

3.4 Shared Network For Multiple Persons

To design a system for analyzing behaviours of a group of people in a scene, we need
a separate network for each person. However, this is prohibitive in the sense that the
large number of resulting parameters would lead to large consumption of memory and
long training time. Thus we propose to let all individuals share the same network and
concatenate the output feature of each person. Then we establish inter-person connectivity
using a fully connected layer.

Note that when we do concatenation, we implicitly enforce an order among this group
of people. Arbitrarily enforcing such order is problematic. To resolve this issue, we have
to renumber the persons in the input list. We propose two approaches to achieve this.
First, we could augment the training dataset by random permutation. Every time a sample
(containing videos and trajectories of multiple persons) is fed into the network we shuffle
the list of people beforehand. As such, our network automatically learns to handle the
permutation issue. Second, we could automatically mark a person as the “center” person
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according to a predefined rule and put this center person always in the first position of the
list. Then we could number other people according to their distances to the center. In
our experiments, we apply the first approach to the task of puck carrier detection and the
second approach to the task of event recognition and team classification.

Now suppose we have the fused feature Z(i)
f ∈ RFf for person i (1 ≤ i ≤ Np). Let

{Z(i)
r |1 ≤ i ≤ Np} be a new set of features after renumbering and h(·) be an operator that

returns the new rank of an input. For example, h(3) might return 1, meaning the person
originally at index 3 will be placed at index 1 after renumbering. Therefore, we have

Z(h(i))
r = Z

(i)
f . (3.5)

To obtain the eventual feature representation of a group of people, we concatenate all
Z

(i)
r and apply a fully connected layer afterwards to learn the inter-person relationships,

shown below.
Ze = σ([Z(1)

r , Z(1)
r , . . . , Z(Np)

r ]We) (3.6)

In the above formula, σ(·) denotes softmax normalization, We ∈ R(Ff ·Np)×Fe are the
weights of the fully connected layer, and Ze ∈ RFe is the eventual feature representation
which can be fed into a loss function for end-to-end training.

In summary, we have a combined network that represents the trajectories and visual
appearance of all the people in a scene. This will be used for a variety of activity analysis
tasks, described next.
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Chapter 4

Datasets

We conduct experiments on two datasets. The first includes trajectory features only: player
tracks extracted from an external tracking system recording player positions in NBA bas-
ketball games. The second incorporates visual and trajectory features: player positions and
appearances obtained from broadcast video footage of NHL hockey games.

4.1 The STATS SportVU NBA Dataset

The STATS SportVU data consist of real-time positions of players and the ball in 2D world
coordinates captured by a six-camera system at a frame rate of 25Hz. Each frame has
complete annotations of the events happening in this frame, such as dribble, possession,
shot, pass and rebound. The dataset we use has 1076 games during the 2013–2014 NBA
season with around 106 frames in each game. We will use this dataset for team classification
– determine the identity of a team from the trajectories of its players during a game.
Data Preprocessing We extract 137176 possessions from the 1076 games for experiments.
Each possession starts with an offensive team having possession of the ball and ends with
a shot. We fix possession length to 200 frames. If a possession is longer than 200 frames,
we crop it starting from the last frame and count the number of frames backward until
it reaches 200. If a possession is shorter than 200 frames, we pad zeros to it. Originally
there are 25 frames per second, but we sample only half of the frames in a second, so the
sampled 200 frames actually represent a 161 second long sequence. There are in total 30
NBA teams. Fig. 4.1a shows the number of possessions we extracted from each team in the
dataset. We can see that this is a relatively balanced dataset, each team having a similar
number of samples for experiments.

116s = 200frames×2
25fps
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(a) (b)

Figure 4.1: (a): Number of possessions of each team in the dataset. (b): Number of samples
per event in the dataset.

4.2 The SPORTLOGiQ NHL Dataset

The NHL dataset has both video and trajectory data. Unlike the NBA dataset where
person trajectories are obtained from a multi-camera system, the player positions in the
NHL dataset are estimated using a homography, which maps a pixel in image coordinates
to a point in world coordinates. SPORTLOGiQ Inc. utilizes state of the art algorithms
to automatically detect and track players in raw broadcast videos. If we have the bottom-
mid point of a player bounding box, we can map this point to world coordinates with a
homography matrix, hence acquiring the player position. Similarly, the NHL dataset also
has detailed event annotation for each frame, each event being categorized into a super
class and a fine-grained class. In our experiment, we use 8 games with 6 super classes: pass,
dump out, dump in, shot, carry and puck protection. Fig. 4.1b shows the fraction of each
event in the 8-game dataset. A reader might notice that this is a highly unbalanced dataset
in terms of events. We will describe how we handle such imbalance in Sec. 5.3.
Data Preprocessing In a hockey game, typically there are 4 on-ice officials and 12 players
(6 on each team). Thus, there can be at most 16 persons on the rink at the same time. In the
following we do not make any distinction between officials and players and we use “player"
to refer to all people on the rink. Because the dataset is created from NHL broadcast
videos where not all players are visible in each frame, we need to set a threshold Np so
that our model can handle a fixed number of players. If the number of players available in
a frame is less than Np, we pad with zeros the part where players are unavailable. Each
training sample consists of data from Np players. The data of each player includes a T -frame
video clip (cropped from raw video using bounding boxes) and the corresponding T -frame
trajectory estimated from this video clip. Note that our model supports variable-length
input. If in some frames a player is not available, we set the data in these frames to zeros.
In our experiments, Np is set to 5 and video frame size is set to 96× 96. We set T to 16 by
first locating the center frame where an event happens and then cropping 7 frames before
the center frame plus 8 frames after it. If the center frame of a certain event happens to be
close to that of another event within 15 frames, we drop this sample.

11



Chapter 5

Experiments

We conduct our experiments on the NBA and NHL datasets. To demonstrate that 1D
convolution is capable of learning temporal dynamics of person trajectories, we do team
classification using the NBA dataset. Then we do puck carrier detection and event recog-
nition on the NHL dataset to show that adding trajectory information can help boost the
performance on both tasks.

5.1 Team Classification on the NBA Dataset

5.1.1 Experiment Settings

Since the NBA dataset only has trajectory data, we do not use the whole structure described
in Fig. 3.1. Instead, we only use the 1D convolutional network. To handle the permutation
issue mentioned in Sec. 3.4, we renumber players according to their distances to the ball.
The closest is No.1 and the farthest is No.5. Then the x and y coordinates of the ball and
5 players are stacked together, resulting in a 200 × 12 matrix as input, where 200 is the
length of the input sequence and 12 is the number of channels. We use 60% of the 1076
games for training, 20% for validation and 20% for test.

5.1.2 Measurement

We measure the performance of our model according to the following metrics: accuracy
and hit-at-k accuracy1, both of which are calculated over possessions. However, a single
trajectory series can hardly display the full underlying pattern a team might possess. To
resolve this issue, we propose to use all possessions in a game and classify the game as a
whole using majority voting. For example, if most possessions in a game are predicted as
Golden State Warriors, then the model predicts this game to be with the Golden State
Warriors. Our experiments show that the per-possession accuracy can be largely improved

1Hit-at-k accuracy means if any one of the top-k predictions equals the ground truth label, we claim it
as being correctly classified.
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layers acc hit@2 hit@3 game acc
2conv 10.68% 18.09% 24.31% 50.00%
3conv 18.86% 28.89% 36.47% 87.05%
4conv 22.34% 33.03% 40.47% 93.41%
5conv 24.78% 35.61% 42.95% 95.91%

5conv+2fc 25.08% 35.83% 42.85% 94.32%

Table 5.1: Metrics on models with different number of layers. All convolutional layers use
a filter size of 3 except the first layer, where the filter size is 5. The number of filters in
next layer is double the number in previous layer except the fifth layer (if any), where the
number of filters is the same as that in the fourth layer. The number of neurons in fully
connected layer is set to 1024.

when aggregated to game level (see results of “acc” and “game acc” in Table 5.1, 5.2 and
5.3). These numbers are significantly higher than chance performance of 1

30 = 3.3%.

5.1.3 Analysis

We explore the architecture of our model by varying the number of convolutional layers,
the filter size and the number of filters in each layer. Tables 5.1, 5.2 and 5.3 show the
results respectively. From Tables 5.1 and 5.3, we have that by increasing the number
of layers and filters, generally one could obtain a more complex model to achieve better
performance. However, as we increase the number of parameters in the model, there could
be a potential limit that could prohibit us from acquiring further improvement by increasing
the model complexity. For example, by adding two fully connected layers after the 5conv
model in Table 5.1, we only have a slight elevation in possession-based accuracy and a
drop in game-based accuracy. Also note that in Table 5.2, using small filter sizes generally
leads to good results (see the first three models in Table 5.2). If we slightly increase the
filter size, we have a large decrease in model performance (see the last model in Table 5.2).
This is possibly because by stacking multiple convolutional layers, the top layer is capable
of perceiving everything in the input even with small filters while when we have larger
filters, the filters are convolved with many zeros padded to the bottom layer, leading to
unacceptable inaccuracies. That is why we have a considerable drop in performance with
large filter sizes.

Fig. 5.1b shows the confusion matrix created from the 5conv model in Table 5.1. For
most teams, our model (when aggregated to game level) can correctly predict the label. The
worst case is Phoenix Suns (PHX in Fig. 5.1b), the model has only a probability around
65% to classify it correctly, but this is still much better than chance performance.

To see what kind of patterns the model learns over the time dimension, we visualize a
small fraction of the filters in the first convolutional layer. In Fig. 5.1a, we show 64 filters
learned from the input sequence of x coordinates of the ball. Some of them appear to be
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filter sizes acc hit@2 hit@3 game acc
3 3 3 2 2 24.24% 35.36% 43.25% 94.10%
5 3 3 3 3 24.78% 35.61% 42.95% 95.91%
7 5 5 3 3 23.12% 33.48% 41.04% 95.45%
9 7 7 5 5 14.13% 23.15% 30.01% 62.05%

Table 5.2: Metrics on models with different filter sizes. All models in the table use five
convolutional layers with no fully connected layer. The filter sizes listed is in a bottom-up
order and the number of filters used are 64, 128, 256, 512, 512 (bottom-up order).

base # filters acc hit@2 hit@3 game acc
16 20.37% 30.71% 38.21% 81.14%
32 23.73% 34.55% 41.85% 92.95%
64 24.78% 35.61% 42.95% 95.91%
128 21.81% 32.10% 39.24% 94.45%

Table 5.3: Metrics on models with different number of filters. All models in the table use
five convolutional layers with no fully connected layer. The base number of filters listed in
the table is the number of filters in the first layer. The number of filters in next layer is
double the number in previous layer except that the fourth and the fifth layers have the
same number of filters.

“Z" or “S" shaped and some appear to be “M" or “W" shaped. Some of them are similar, so
there could be redundancy in these filters. These temporal patterns are the building blocks
that form discriminative representations to distinguish teams.

5.2 Puck Carrier Detection on the NHL Dataset

5.2.1 Task Description

Given an input scene, our goal is to detect the player who is currently in possession of the
puck. We annotate the dataset by which player has the puck at the moment an event takes
place. For example, if a player is passing the puck to a teammate, within a small time
window (16-frame window in our case) the player must have the puck, so he is the puck
carrier. The events we use are pass, dump in, dump out, shot, carry and puck protection
as shown in Fig. 4.1b. We use a one-hot vector to represent the ground truth label (who
has the puck) and model the task as a classification problem.

5.2.2 Experiment Settings

We use accuracy to evaluate on the proposed two-stream model as well as two baselines.
The two baselines use only either the visual stream or the trajectory stream. For the
two-stream model, we use the exact model shown in Fig. 3.1 except that two shared fully
connected layers (with 2048 and 512 output neurons respectively) are used to merge the
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(a) (b)

Figure 5.1: (a) is the visualization of the filters in the first convolutional layer. (b) is the
confusion matrix based on game-wise classification. Both figures are created using the 5conv
model in Table 5.1.

C3D 1D conv C3D+1D conv
pass 74.23% 45.93% 74.23%

dump out 73.63% 38.46% 74.73%
dump in 69.57% 40.58% 72.46%
shot 82.09% 52.24% 82.84%
carry 72.57% 56.25% 75.00%

puck protection 73.33% 29.33% 70.67%
all events 74.31% 46.88% 74.88%

Table 5.4: Puck carrier detection accuracy for each event.

trajectory stream and visual stream. For trajectory stream, the filter sizes are 3, 3, 3, 2 and
the numbers of filters in each layer are 64, 128, 256, 512 (all in bottom-up order). All max
pooling uses a step size of 2. To handle the permutation problem as described in Sec. 3.4,
we randomly shuffle the list of player candidates for each sample during training. In our
experiments, we use 4 games for training, 2 games for validation and 2 games for test.

5.2.3 Experiment Results

Table 5.4 shows the results. We found that by combining visual data with trajectory data,
we achieve better accuracy. Compared to the 1D conv model, considering visual features as
extra cues in the two-stream model leads to large improvement in performance. Compared
to C3D, the two-stream model has a small performance gain.
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C3D 1D conv C3D+1D conv
pass 77.30% 77.73% 79.15%

dump out 10.17% 22.30% 23.27%
dump in 10.25% 39.39% 37.29%
shot 34.17% 42.42% 50.86%
carry 86.37% 77.21% 86.21%

puck protection 11.83% 9.87% 8.43%
mAP 38.35% 44.89% 47.54%

Table 5.5: Average precision for each event.

5.3 Event Recognition On The NHL Dataset

5.3.1 Task Description

The events used are pass, dump out, dump in, shot, carry and puck protection. The goal is
to predict the event label given the short video clips and trajectories of 5 players on the rink.
The number of samples of each event in the dataset are shown in Fig. 4.1b. It is obvious
that this dataset is highly unbalanced with the pass event taking up half of the dataset. To
resolve this problem, we minimize a weighted cross-entropy loss function during training.
The weighting for each class is in inverse proportion to its frequency in the dataset.

5.3.2 Experiment Settings

We use average precision as the metric and compare the performance of the proposed
two-stream model with that of the C3D model and the 1D convolutional network. For
the two-stream model, we use the exact model shown in Fig. 3.1, where one shared fully
connected layer with 2048 neurons is used to merge the two streams. The weights in the loss
function for pass, dump out, dump in, shot, carry and puck protection are 0.07, 0.6, 1, 0.4,
0.2 and 0.7 respectively. To resolve the permutation issue mentioned in Sec. 3.4, we enforce
an order among the Np players by renumbering the players according to the following rule.
We define the player directly related to an event as the “center” player. Then we calculate
the distances of other players to the center and rank them by increasing distances. The
closest has the highest rank and the farthest has the lowest rank. In our experiments, we
use 4 games for training, 2 games for validation and 2 games for test.

5.3.3 Experiment Results

The results are shown in Table 5.5. The mean average precision with the two-stream model
is nearly 10 percentage points higher than that of C3D. Further, in Fig. 5.3, it is clear to
see that the precision-recall curve of the two-stream model is better than that of C3D for
most events. The two-stream model outperforms C3D by a large margin, demonstrating
the effectiveness of adding trajectory data.
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Figure 5.2: Visualization of locations where events happen. Samples are drawn from the
test set.

Even considering 1D convolution on trajectory data alone can beat the C3D model. We
believe this is due to the strong relationship between events and the spatial locations. As
is shown in Fig. 5.2, different events tend to have different spatial distributions over the
rink. For example, carry happens near the three lines in the middle; dump in happens
within the neutral zone; dump out mostly happens around the corner and boundary. This
strong spatial correlation explains the importance of trajectory data for analyzing player
behaviours.

We visualize the top 5 candidates retrieved as dump in and dump out in Fig. 5.4. For
other events, the top 5 candidates are either all true positive (for pass, carry and shot) or
false positive (for puck protection). As we can see from Fig. 5.4, the retrieved events look
similar. Even from a human perspective, it is hard to predict the label of a given sample,
showing the difficulty of this task.

Figure 5.3: Precision recall curves for each event in the hockey dataset.
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Figure 5.4: Top 5 candidates retrieved as dump in and dump out respectively. Green ones
are the true positives while red ones are the false positives. The person with a bounding
box is the “center” player who is performing the action. We only show 8 frames of the
16-frame video clip by sub-sampling. If a frame is black, it means the “center” player is
missing because of failure to detect and track the player. Zoom in to see the details.
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Chapter 6

Conclusion and Future Directions

We presented a method for deep learning on human trajectories for activity analysis. Input
coordinates are passed through a network that contains layers of 1D convolutions, applied
to a spatial position representation of a person in a scene. This type of network is capable
of learning complex representations of human movement. We demonstrate its efficacy on
several tasks on real-world basketball and hockey trajectories and experiments show that
adding trajectory data can actually help improve performance compared to baselines that
do not consider trajectory. This method can be applied to person trajectories acquired from
automatic tracking systems and combined with visual features to conduct analyses of sports
videos.

Our current model does not distinguish between the two teams in a game. Even if the
model detects correctly who is carrying the puck or what action a player is performing, it
has no idea which team this player belongs to. We conjecture that the player behaviour is
strongly associated with the role he is playing. For example, is he in an offensive team or
defensive team? Thus, one future direction could be designing a model that can discover
the role/team of a player and relate that information to the player behaviour.

Another limitation of our model is that we use a fixed number of players as input. If
some player is missing, we zero out the input of this player. Because the number of visible
players in broadcast videos varies a lot, in order not to have many player inputs zeroed
out, this fixed number we use is small (i.e., 5 in our case). Therefore, one possibility is to
extend the current model to a more flexible one, which can accommodate situations where
the number of visible players range from 1 to 16 (for hockey games).
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