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Summary. This paper identifies a criterion for choosing the largest set of rejected
hypotheses in high-dimensional data analysis where Multiple Hypothesis testing is
used in exploratory research to identify significant associations among many
variables. The method neither requires predetermined thresholds for level of
significance, nor uses presumed thresholds for false discovery rate. The upper limit
for number of rejected hypotheses is determined by finding maximum difference
between expected true hypotheses and false hypotheses among all possible sets of
rejected hypotheses. Methods of choosing a reasonable number of rejected
hypotheses and application to non-parametric analysis of ordinal survey data are
presented.
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1. Introduction

In high-dimensional data analysis, multiple simultaneous hypothesis testing arises
because we need to identify which null hypotheses, among many, should be reasonably
rejected (Neuvial, 2013). A significant finding (discovery) is a hypothesis that is rejected
based on statistical evidence.

When performing multiple hypothesis testing, as the number of hypotheses being
tested (m) gets bigger and bigger, using a p-value threshold (alpha), such as .05, for
rejecting hypothesis based on p-values becomes problematic. P-value is a measure of the
probability of a rejected hypothesis to be a false positive. When number of hypothesis
being tested is big, for example 1000, the expected number of false positives is (m*alpha).
If alpha is .05 this means that the expected number of false positives among significant
findings is less than or equal to 50.

It is anticipated that, when there are no expected true discoveries, the frequency
distribution of p-values to be uniform. Which means that the proportion of tests resulting
a p-value in any class should be the same. In many situations, “it is reasonable to assume
that larger p-values are more likely to correspond to true null hypotheses than smaller
ones” (Neuvial 2013, 1428) or smaller p-values are less likely to correspond to true null
hypotheses. In many research situations, p-values have a frequency distribution like figure
1, where number of hypotheses with very low p-values are more than other p-values.

Figure 1, frequency distribution of p-values many expected true discoveries
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The first column in figure 1 is presenting hypotheses with p-value<.05. These the
hypotheses that we might be inclined to declare as rejected hypothesis or significant
discoveries; however, the expected number of false positives in this subset can be very
high. In other words, many of rejected hypothesis may be true nulls. Therefore, we may
want to reduce our threshold (alpha) for rejection so fewer but more significant hypotheses




are rejected. Reduction of alpha, decreases the chance of false positives in our discovery set
and thus leads to a smaller chance of false discoveries. Unfortunately, this may increase
the false negatives. By decreasing Alpha, we are accepting to have more false negatives.

False discovery rate (FDR) is defined as expected number of false discoveries (false
positives among rejected hypotheses) divided by total number of rejected hypotheses
(Neuvial 2013, 2). In many situations, a p-value of .05 may lead to a big FDR. Several
algorithms have been proposed to consider FDR in the process of selecting significant
findings.

Bonferroni has suggested to consider a hypothesis significant when alpha is less
than or equal to alpha/m (Storey and Tibshirani, 2003,2). By choosing a rejection
threshold much lower than alpha, the probability of making one or more false discoveries
will be less than or equal to alpha.

Bonferroni’s suggestion guaranties a family-wise error rate (FWER) less than or
equal to alpha; but this conservative measure can result in many false negatives. When
the number of significant hypotheses are few this measure is appropriate; because even
expectation of one false positive in the result set is damaging. In many studies, where
number of significant findings are many, the researcher may be able to afford a higher
FDR, if that will prevent many false negatives. Not detecting many important associations
may be more harmful than probability of one false negative among many significant
findings.

Many adaptive hypothesis testing procedures rely on estimates of the proportion of
true null hypotheses in the initial pool using plugins, a single step, in multiple steps, or
asymptotically (Blanchard and Roquain, 2009). Plug-in procedures use an estimate of the
proportion of true null hypotheses (Neuvial, 2013). Thresholding-based multiple testing
procedures, reject hypotheses with p-values less than a threshold (Neuvial, 2013).

Storey and Tibshirani (2003) have proposed a strategy that assigns each hypothesis
an individual measure of significance in terms of expected false discovery rate called g-
value. Most g-value based strategies rely on some estimate of the proportion of true null
hypotheses. However, the choice of the threshold of g-values at which the researcher draws
the line of significance remains subjective.

Storey (2007) has argued that two steps that are involved in any multiple-testing
procedure. The first step is “determining the order in which the tests should be called
significant” by “ranking the tests from most to least significant”. The second step is
“choosing an appropriate significance cut-off somewhere along this ordering”. Storey
focuses on performing the first step optimally, given a certain significance framework for
the second step. He cites (Shaffer, 1995) defining the goal: “to estimate the appropriate
cut-off to obtain a particular error rate, usually based on the familywise error rate or false
discovery rate”. Storey (2007) proposes an optimal discovery procedure based on
maximizing Expected True Positives (ETP) for each Expected False Positive (EFP) among all
Single Thresholding Procedures (STP).

Norris and Kahn (2006) have proposed balanced probability analysis (BPA) based
on three variables: (i) The total number of true positives (TTP); (ii) The false discovery rate
(FDR), defined as the aggregate chance that a true null hypothesis is rejected by statistical
accident. (iii) The false negative rate (FNR), defined as the number of hypothesis that
should truly be rejected but are missing from the significance list divided by the total
number of hypothesis that should truly be rejected. They believe other definitions of type 2



error rates, such as the false nondiscovery rate (the ratio of hypotheses that should truly
be rejected but are nondiscovered to the number of unrejected Hypothesis) “are difficult to
intuit for the nonstatistician”. They “calculate the FNR directly from the data, by using
resampling to estimate the null and alternate distributions”. Their “procedure weakly
depends on the estimated FDR, and requires one model-dependent step to optimize a
single parameter”.

As Norris and Kahn (2006) have argued, the true FDR can be accurately determined
only when the TTP is known. They used an adaptation of the algorithm by Storey and
Tibshirani (2003) they estimate the TTPs. They estimated FDR and then they estimated
FNR based on their estimates of FDR and TTP.

2. A Non-Parametric Maximum for Reasonable Number of Rejected Hypotheses

This article, is concerned about the second step mentioned above, “choosing an
appropriate significance cut-off somewhere along this ordering”, but we won't need to
know or estimate the total number of true positives or total number of true Negatives.

Although Setting a subjective threshold for FDR (such as 0.05) can relax the
extremely conservative suggestion by Bonferroni it can be a limitation which may
unnecessarily limit the number reasonable findings a researcher should report. I will
show that, in some situations, grounded on observed data one can identify an
objective upper bound for “level of significance and FDR” that is reasonable for the
researcher to report.

When we tabulate the p-values resulted from a study into sorted classes (from
smallest to largest p-value), we will have the frequency of each observed p-value. We have
a special interest in the set of smallest p-values; thus, the first class is the most valuable
class for us. All the P-values with a value closest to Zero (or zero if such hypotheses exist)
in set S; which will have will have f; members (f;>=1).

The next smallest p-value will be p,. Set 2, will contain all the hypotheses with a
value of p,. S; will have f, members (f,>=1). For each one of k observed p-values there will
be corresponding frequency and a set of hypotheses.

Total number of hypotheses tested= N = Zi'{zl( fl)

In the equation above, f; is the frequency of hypotheses in set Si. If we set the Alpha
(rejection threshold) at p,. We will have f, rejected Hypotheses, of which p, XN are
expected to be false Discoveries (EFD,).

EFD;= p1*N
Therefore, from the first set we expect to have:
ETD1=f1-(p1*N)

ETD; is expected true discoveries if we reject hypotheses with p-value less than or
equal to pi. We may be interested in including the set of f; hypothesis S, in our discoveries,
but the p-value of these Hypotheses is P2 and the expected false discoveries in rejected set
S:1 and S; will be pz*N.

R:=5:U S,



p2*N is always bigger than p:*N. p.*N will be the Cumulative Expected False
Discoveries (CEFD) in Ra:

CEFD;= p,*N

Therefore, from the first two sets we expect to have Cumulative Expected False
Discoveries (CETD) in R; as:

CETD2=(f1+f2)-( P2 *N)

Therefore, cumulative expected true discoveries CETD; from S; and S,, will be bigger
than ETD:. The series of expected false discoveries in each set: EFD,, EFD,, EFDs, ...... is
usually increasing because the p-values are getting bigger. And the series of expected true
discoveries is each set: ETD;, CETD;, CETDs, .... is usually increasing in the first sets. But
because p-values are increasing and by adding each set to rejected set we are in fact
increasing our Alpha, The proportion of false discoveries added by set S; (j>i) to R;is more
than the contribution of false discoveries in set Si to Ri and contribution of true discoveries
in from §; to R is more than the contribution of true discoveries by §; to Ri. When i goes
toward N, pi goes toward 1

impi=1
lim CEFD; =lim N *p; = N
i-»N i-»N

i-N

lim CETD; = lim (R; — CEFD;) = 0
i-

If we define delta:
§; =CETD;-CEFD;

At some point §; must start to decrease and must have a maximum. The
maximum number of rejected hypotheses happens at set Smax after which adding the
hypotheses in the next set Smax+1 (Setting alpha at pmax+1 ) Will contribute more to false
discoveries than to true discoveries.

Rmax S 51 U 52 U53 U .. USmax

Rpnax is the largest set of rejected hypothesis that is reasonable to be reported. The
largest alpha that is reasonable to be the threshold for rejecting hypotheses is Pmax. FDRmax
is the biggest reasonable FDR to be reported.

CEFDmax _PmaxXN
FDRmax = =5 ™ =517,

That is the point at which we have no incentive to add the set S, 4,41 to our
discoveries. If we add set S,,,.+1 to our set of rejected hypotheses, the difference between
CETD and CEFD (6) will start to decline. max is an objective upper bound for the number of
hypothesis we reject. If Maximum &max happens when we add Smax to set of rejected
hypotheses, we have decided that the threshold alpha for rejecting null hypotheses is p,,qx,
we will reject hypothesis with p-value<=p,, ..

If we have k observed p-values p; < p, < p; < ... < py, related to sets of tested
hypotheses Si, S, Ss, ..., Si; 8mqx happens when we add set Sy, to our rejected hypotheses.

The number of rejected hypotheses, at level Alpha will be p,,,.,, and the biggest
reasonable set of rejected hypotheses R, ., will be:



m
Rpmax = Zl fl

Maximum ECTD can be calculated based on the following formula:
8max = Max(CETD; — CEFD;)

k k
Omax = Max <z (f; — CEFD;) — Z CEFDi>
i=1 i=1

Table 1, summarizes what we discussed above. Notice that the upper limit for
number of rejected hypotheses is determined based on maximization of difference between
expected true hypotheses and False Hypotheses. Alpha is reported (not assumed) and is
not subjectively selected. The FDR is dictated by data. If the researcher decides to add more
sets to discoveries, he/she is accepting the cost of adding more false discoveries than true
discoveries to the set of rejected hypotheses.

Table 1, CEFD, CETD and & Find the maximum in
this column
Set of Observed p-  Observed Set of rejected hypotheses Cumulative Cumulative Expected 8§=CETD-CEFD
observations value frequency of p- Expected False  TRUE Discoveries if set
In the set value Discoveries if set is rejected (CETD)
is rejected
(CEFD)
Sy Py fi Ry =S, Nxp, fi—Nxp, fi = Nxp; — NXp;
Sz P2 fa R, =5, US, Nxp, fit+ fa=Nxp,

2

., ()= 2xtxp,
i=
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3. Objective Optima for False Discovery Rate and Significance Threshold

Making the set of Rejected hypotheses beyond R,,,,, may increase CETD, but it will
increase the CEFD even more; it will decrease the quality of discovery measured as 6. At
Rqx however, we don’t have a sharp or sudden decrease of 8. Delta usually changes
relatives slowly around R,,,, . We have a peak and a slow reversal in trend for §. The
researcher can use different ways of piecewise regression to identify an optimum number
of rejected hypotheses much less than R4, but much more than Rppr—g0s -

For example, piecewise regression of the p-values of hypotheses in sets S1 to Smax ,
and number of observations in R: to Rmax , with one breakpoint can model the
observations with two line segments. The breakpoint, where the slope of the two lines
changes, is were the efficiency of adding more hypotheses to R changes. It is an objective
threshold at which rejected hypotheses are less than Rmax, while number of CETD is close to
true discoveries at Rmax resulting in a better FDR with little loss of CETD. Therefore, the
number of rejected hypotheses at the break point, Ry ,is an optimal number of
hypotheses. It doesn’t decrease the quality of our discovery, measured by 6 very much.

A more computationally intensive piecewise regression of the p-values of
hypotheses in sets S1 to Smax+e can be conducted such that the second segment is a
horizontal line close to the point (R,,4x, Pmax)- The horizontal line can also be the one that
passes the point (R,,qx, Pmax)- The resulting set of discoveries is not very sensitive to the
selection of piecewise regression method.

4. Example: application of method to non-parametric analysis of survey data

Table 1 shows the sorted results of using the procedure when analyzing a large
survey regarding “variables influencing citizen engagement in mediated democracies”.
Fisher’s Exact test was used to check the significance of associations observed in cross-
tabulated data, and Sommer’s D was used to measure the extent of association. The null
hypothesis was that the observed association in crosstabulation is accidental.

For one of the outcome variables, 1031 hypotheses regarding crosstabulations were
tested. If we rely on 0.05 rule of thumb for alpha, too many hypotheses will be falsely
rejected. If we rely on 0.05 rule of thumb for FDR, many potentially significant findings,
may falsely remain unrejected. Notice that Bonferroni'’s correction for p-value=0.05 would
suggest a threshold of rejection of 0.0000485 which means we can conservatively reject 16
hypotheses at FDR 0.002414.

We observe 7 Hypotheses with p-value of O in set S; which will be obviously
rejected. If we decide to reject the hypothesis in the second set at p-value=0.000001, we will
add 1 hypothesis to the set of rejected hypotheses. The single hypothesis that can be
rejected contributes 0.998956 to the total expected true discoveries. Cumulative expected
False discoveries will be 1031*0.000131=001044. Rejecting the hypotheses in sets S; and S,
we are in fact declaring the threshold alpha is 0.000001, cumulative expected False
discoveries will be 1031*0.000131=001044, FDR will be 0.000131.

We may be interested to reject more hypotheses in next sets. If we reject all the
hypotheses in sets S: to Szs, we will have 42 hypotheses in our set of rejected hypotheses
Rss. FDR will grow to 0.048322. Like many researchers who will not reject set S37, we can
define our alpha to be 0.001944. In other words, we reject hypotheses with p-value less



than 0.001944. This is more powerful than Bonferroni’s correction. But we expect
2.029536 of 42 discoveries to be false.

Our set S177 has the 184th p-value at 0.0393. The resulting set of rejected
hypotheses from S1 to S177 is expected to have 41.0292 to be false discoveries and
142.9708 true discoveries. The expected false discovery rate as the result of increasing
Alpha to 0.0393 will be 0.222985.

Table 1, Frequency distribution of p-values from 1031 tested hypotheses

Set Frequency Lessthan p-value of the set Cumulative Expected FDR Expected Expected 6=
in set cumulative (alpha if this set Expected False Cumulative True CETD-CEFD
frequency is rejected) Number of Discovery Number of Discovery
hypotheses False contribution True contribution
in rejected Discoveries of this set Discoveries of this set
sets CEFD CETD
if this set is if this set is
rejected rejected
1 7 7 0 0 0 0 7 7 7
2 1 8 0.000001 0.001044  0.001044 0.000131 7.998956  0.998956 7.997912
3 1 9 0.000005 0.00522  0.004176 0.00058  8.99478  0.995824  8.98956
4 1 10 0.000008 0.008352  0.003132 0.000835 9.991648 0.996868 9.983296
5 1 11 0.000009 0.009396 0.001044 0.000854  10.9906 0.998956 10.98121
6 1 12 0.000015  0.01566  0.006264 0.001305 11.98434  0.993736 11.96868
7 1 13 0.000021 0.021924  0.006264 0.001686 12.97808 0.993736 12.95615
8 1 14 0.000022 0.022968 0.001044 0.001641 13.97703  0.998956 13.95406
9 1 15 0.000034 0.035496  0.012528 0.002366  14.9645  0.987472 14.92901
10 1 16 0.000037 0.038628  0.003132 0.002414 15.96137 0.996868 15.92274
11 1 17 0.0001 0.1044 0.065772 0.006141 16.8956 0.934228 16.7912
34 1 40 0.00183  1.91052 0.061596 0.047763 38.08948  0.938404 36.17896
35 1 41 0.001841 1.922004  0.011484 0.046878 39.078  0.988516 37.15599
36 1 42 0.001944 2.029536  0.107532 0.048322 39.97046  0.892468 37.94093
37 1 43 0.002081 2.172564  0.143028 0.050525 40.82744  0.856972 38.65487
38 1 44 0.00213  2.22372  0.051156 0.050539 41.77628  0.948844 39.55256
39 1 45 0.002369 2.473236  0.249516 0.054961 42.52676  0.750484 40.05353
40 1 46 0.002387 2.492028 0.018792 0.054175 43.50797 0.981208 41.01594
41 1 47 0.002582  2.695608 0.20358 0.057353 44.30439 0.79642 41.60878
104 1 110 0.010835 11.31174  0.363312 0.102834 98.68826  0.636688 87.37652
105 1 111 0.010966  11.4485 0.136764 0.10314  99.5515 0.863236 88.10299
106 1 112 0.011041  11.5268 0.0783 0.102918 100.4732 0.9217 88.94639
107 1 113 0.01112 11.60928 0.082476 0.102737 101.3907 0.917524 89.78144
108 1 114 0.011198 11.69071  0.081432 0.10255 102.3093  0.918568 90.61858
109 1 115 0.011256 11.75126 0.060552 0.102185 103.2487 0.939448 91.49747
110 1 116 0.01126 11.75544  0.004176 0.10134 104.2446  0.995824 92.48912
111 1 117 0.012177 12.71279 0.957348 0.108656 104.2872 0.042652 91.57442
112 1 118 0.012225  12.7629  0.050112 0.10816 105.2371  0.949888  92.4742
113 1 119 0.014141 14.7632 2.000304 0.124061 104.2368 -1.0003 89.47359
114 1 120 0.014273 14.90101  0.137808 0.124175  105.099 0.862192 90.19798
115 1 121 0.014334  14.9647 0.063684 0.123675 106.0353  0.936316 91.07061
173 1 180 0.037786 39.44858 0.37584 0.219159 140.5514 0.62416 101.1028
174 1 181 0.038832 40.54061  1.092024 0.223981 140.4594 -0.09202 99.91878
175 1 182 0.039077 40.79639 0.25578 0.224156 141.2036 0.74422 100.4072
176 1 183 0.039224 40.94986  0.153468 0.22377 142.0501 0.846532 101.1003
177 1 184 0.0393  41.0292 0.079344 0.222985 142.9708 0.920656 101.9416
178 1 185 0.04194 43.78536 2.75616 0.236678 141.2146 -1.75616 97.42928
179 1 186 0.042014 43.86262  0.077256 0.235821 142.1374  0.922744 98.27477
180 1 187 0.042584  44.4577 0.59508 0.237742 142.5423 0.40492 98.08461
181 1 188 0.042642 44.51825  0.060552 0.236799 143.4818 0.939448  98.9635
182 1 189 0.043978 45.91303  1.394784 0.242926  143.087 -0.39478 97.17394



The p-value of each set can be observed in Figure 2. Since we have sorted our
hypotheses based on their p-values, as we include more sets of hypotheses to our rejected
set, the alpha (threshold p-value) increases. Depicted in red we see that FDR or .05 is
allowing 42 or hypotheses to be rejected.

Figure 2, All p-values for 1031 hypotheses tested
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Figure 3, focuses on the first 400 lowest p-value hypotheses. The blue line is
depicting the cumulative expected number of false discoveries among Rejected Hypotheses
(false positives). Since CEFD is alpha*N, and alpha is the p-value of the last class rejected,
CEFD is an increasing entity. The purple curve, FDR in percentage form, is also increasing
even though one may find local fluctuations in its values.

lim CEFD; = limNXp; =N
i->N i-N
lim FDR; = lim FDRp; = 1
i->N pi—1
The green line depicts the CETD. The p-value of first sets is very low, and these

hypotheses are most likely to be true rejections, when we reject the first sets of hypotheses,
CETD is growing very fast. Even when we pass the threshold of FDR=0.05 the p-values of




next sets are very low which keep FDRs close to .05. For example, in the study presented
above, the hypothesis in set 37 has a p-values of 0.0001 and FDR3; is 0.050525.

If we add Ss; to our rejected set R, our CETD will grow and CEFD will also grow, but
the growth of CETD is much faster. This trend however doesn’t last forever. As p-values get
bigger, CEFD will grow faster and CETD will grow slower. If we continue rejecting
hypotheses with big p-values CEFD will accelerate and will surpass CETD. CETD will start
to decline when p-values included in rejection set get close to 1. If we look at the difference
CETD-CEFD shown in the last column of table 1, we are sure that it has a maximum
above which rejecting a set of hypotheses will contribute more to CEFD than CETD and the
difference will start to decline.

Figure 3, CETD, CEFD and FDR for different number rejected hypotheses
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In figure 4, §, the difference between the expected true discoveries and expected
false discoveries among rejected hypotheses, is depicted as a black line. As expected it has
several local minima and maxima but it has a global maximum. Let us name the rejected




number of hypotheses at this point as R,,,. FDR is always growing. By every new
hypothesis we reject, we are increasing the proportion of false discoveries in the rejected set
of hypotheses. Rejecting more hypotheses after we have reached Ruax, Will weaken the
quality of discoveries in absolute sense. Table 1 shows that the p-values of set S177 is
0.0393. Rejecting hypothesis beyond R,,,, , for example rejecting set Si7s which contains
hypothesis 185, may increase the quantity CETD but it will increase the quantity of CEFD
even more; it will decrease the quality of discovery because delta will go from 101.9416 to
97.42928.

Rpax 18 @ maximum for number of rejected hypotheses our data can justify. It will
dictate a maximum for acceptable significance level alpha considering the data we have.
In this data, R,,4, doesn’t appear as a sharp peak at which we have a turn, it is a peak
around which the trend has an slow reversal; therefore, we can use many methods that
suggest a reasonable number of rejected hypotheses much lower than R, .

If we use piecewise regression to identify two line segments, that will mimic the
data upto Rmax. The breakpoint is found at R,¢s. If we reject set Sios, or reject 110
hypotheses with lowest p-value, we will have a §105=88.10299 close tO 6max=101.9416 at R4y,
with an FDRos =0.10314 about half of FDR,,,4, = 0.222985. As shown in table 1, the p-value
of set S10s P10s=0.010966, about three times less than the p-value for pma=0.0393.

Figure 4, maximum & and the breakpoint of piecewise regression
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Figure 5 shows a slightly different strategy. If we use iterative piecewise regression to
identify two line segments, one of which being a horizontal line that ends a few p-values
after pmax. The breakpoint is at p;,g. If we reject set S112, or reject 118 hypotheses, we will
have a §112=92.4742 close t0 8max=101.9416 at R,,,,, with an FDR112 =0.10816 about half of
FDR,q = 0.222985. As shown in table 1, the p-value of set S112 p112=0.012225, about three
times less than the p-value for pmax=0.0393.

Using segmented regression is just one of many ways the researcher can include the
information about Ruax. The researcher can devise a more objective strategy to select the
set of rejected hypothesis without relying on 0.05 or any other presumed thresholds for

alpha or FDR. The researcher, should report the resulting alpha and FDR instead of
assuming them.

Figure 5, maximum & and the breakpoint of piecewise regression with horizontal piece
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In the example shown above, the optimum (breakpoint of piecewise regression) is not very
sensitive to the method of conducting regression. Either way, it suggests the about 10% of
hypotheses which is much more than the number that could be rejected based on
FDR=0.05 criterion and much less than absolute maximum Reasonable Number of
Rejected Hypotheses.

In many exploratory researches the goal is to identify a set of significant
associations. Many times, the extent of association (like slopes in linear regression) are
more important for understanding the phenomena, or modeling the system, than the
differences of FDRs associated with each p-value among significantly accepted
alternatives. To test the quality of resulting set of rejected hypotheses, the non-parametric
Sommer’s D statistics for the extent of association for each comparison was calculated. It
was observed that near all the rejected hypothesis had a level of association whose
confidence intervals were on one side of Zero.

5. Discussion

In exploratory research, or for whom a few more possible false positives among
many truly rejected hypotheses is not a sensitive issue, relying on predetermined threshold
of 0.05 for FDR may be too limiting. But accepting larger and larger FDRs is not also a
reasonable approach. The process explained in this paper neither requires predetermined
thresholds for level of significance, nor uses presumed thresholds for false discovery rate.
We observed a naturally occurring metric (for the quality of the set of rejected hypothesis),
which has an upper bound. The researcher can rely on this maximum and devise methods
to find an optimum that remains acceptable in terms of quality of discovery. Once the set
of rejected hypotheses is determined a related significance level and FDR should be
reported.

The paper presented methods that could identify optimum reasonable number of
rejected hypotheses. The found optimum is in the range between most conservative
selection criteria, such as what has been used in Bonferroni’s procedure, and this identified
upper bound.

The criterion and methods can be used in many fields of inquiry dealing with high-
dimensional data, including genomics and survey analysis. The results of using the
criterion in the pairwise crosstabulation analysis of an ordinal outcome variable with
1031 potential ordinal predictors in a large survey, regarding “variables influencing
citizen engagement in mediated democracies”, is used as an example of application of the
method in social sciences.

One can follow the following steps to identify ém.x that data can afford.
start by sorting p-values from smallest to largest
tabulate the hypotheses to classes of observed p-values
reject the set of hypotheses with the least p-value (the first set is called S;)
calculate cumulative expected false discoveries for all the rejected hypotheses (P; XN)
calculate 1-CEFD for all the rejected hypotheses
calculate 6=CETD-CEFD

record the results

NSk N



8. repeat steps 2 to 7 for all the sets.
9. Find the set with maximum recorded & called 8max resulting from rejecting set Smax
10. The biggest reasonable set of rejected hypotheses Rnax will be
Roax = S1U S, US3 U ..U Spax
11. The p-value for set Sy is pm Which is the alpha that should be reported
12. The FDR that should be reported is
_ PmaxXN

FDRpax = ST,
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