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Abstract

A lot of survey questions include a phrase like, “Choose all that apply”, which lets the re-
spondents choose any number of options from predefined lists of items. Responses to these
questions result in multiple-response categorical variables (MRCVs). This thesis focuses on
analyzing and modeling three MRCVs. There are 232 possible models representing different
combinations of associations. Parameters are estimated using generalized estimating equa-
tions generated by a pseudo-likelihood and variances of the estimators are corrected using
sandwich methods. Due to the large number of possible models, model comparisons based
on nested models would be inappropriate. As an alternative, model averaging is proposed
as a model comparison tool as well as to account for model selection uncertainty. Further
the calculations required for computing the variance of the estimators can exceed 32-bit
machine capacity even for a moderately large number of items. This issue is addressed by
reducing dimensions of the matrices.

Keywords: Multiple-response categorical variables; loglinear models; pseudo-likelihood;
model averaging
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Chapter 1

Introduction

Categorical data occur in response to many kinds of data collection schemes. For example,
surveys often ask respondents to pick one response to a question out of a list of possible
items. Such variables are called single-response categorical variables (SRCVs).

A lot of survey questions include a phrase like, “Choose all that apply” (CATA), which lets
the respondents choose any number of options from predefined lists. Typically, they may
choose any combination of options or sometimes may not select anything at all. Responses
to CATA questions result in categorical variables that are known as multiple-response cate-
gorical variables (MRCVs) (Bilder and Loughin, 2004) because they have multiple response
options for each subject.

An example that involves MRCVs is described in Bilder and Loughin (2007). A survey was
conducted among Kansas farmers. They were asked the following questions about their
swine waste management practices:

1. Choose all swine waste storage methods used

(a) lagoon

(b) pit

(c) natural drainage

(d) holding tank

2. Choose all contaminants tested for

(a) nitrogen

(b) phosphorus
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(c) salt

Research questions of interest given the above two MRCVs are (1) is waste storage inde-
pendent of what contaminants it’s tested for and (2) if they are dependent, what is the
association structure?

The regular methods of analyzing categorical variables such as generalized linear models
(GLMs) assume independence of responses. However, since respondents may provide mul-
tiple responses to a CATA question, these responses may be correlated. One should not
simply ignore the within-subject dependence and analyze the responses as if they were in-
dependent (Bilder and Loughin, 2007). Furthermore, the within-subject association can
take any arbitrary form, including mixed positive and negative, which makes certain mod-
els for clustered data and repeated measurements such as generalized linear mixed models
(GLMMs) and generalized estimating equations (GEEs) questionable (Bilder and Loughin,
2014).

Numerous authors have considered the analysis and modeling of two MRCVs (see Bilder
and Loughin, 2007 for a summary). This thesis focuses on analyzing associations among
three MRCVs. For example, the survey of the Kansas farmers contains another MRCV
which gives sources of veterinary information.

3. Choose all sources of veterinary information

(a) professional consultant

(b) veterinarian

(c) state or local extension service

(d) magazines

(e) feed companies and representatives

It is conceivable that the source(s) that farmers use for information about swine waste
storage and testing might impact their practices, leading to possible complex interactions
among the three variables. Generally, these questions can take the form,

1. Are the three MRCVs independent of each other?

2. If not, is there an association between any two MRCVs?

(a) If so, does the association between the two MRCVs change across the levels of
the third MRCV?

The organization of the thesis is as follows. Chapter 2 reviews the literature regarding
analysis of two MRCVs. Chapter 3 generalizes the analysis of two MRCVs to three MRCVs.

2



Chapter 4 discusses computational considerations that arise during the analysis of MRCVs
in the presence of large numbers of options. Chapter 5 applies the models to a real world
dataset, and Chapter 6 presents conclusions and discussions.

3



Chapter 2

Review of the literature

2.1 Testing for association between an SRCV and an MRCV

Loughin and Scherer (1998) first introduce testing for associations between an SRCV and
an MRCV. They report on a survey that asked a sample of 262 Kansas farmers, “What are
your primary sources of veterinary information? Choose all that apply”. The outcome cat-
egories were A) professional consultant, B) veterinarian, C) state or local extension service,
D) magazines and E) feed companies and representatives. Further, the farmers were asked
about their highest level of education. Table 2.1 provides response counts when veterinary
information source is cross-classified with the education.

Table 2.1: Veterinary information sources and education groups. Source: Loughin and
Scherer (1998).

Information Source
Education A B C D E Total
High School 19 38 29 47 40 173
Vocational 2 6 8 8 4 28
2 yr college 1 13 10 17 14 55
4 yr college 19 29 40 53 29 170
Others 3 4 8 6 6 27
Total 44 90 95 131 93 453

Notice that the 262 farmers provide a total of 453 responses in this table. Since an individual
may contribute to multiple column items, the counts of Table 2.1 may be correlated.

Loughin and Scherer (1998) argue that the usual Pearson chi-square test statistic for the
null hypothesis of independence between the row and column variables has a distribution
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that is no longer a chi-square distribution. They present a modification to the Pearson test
statistic that compares the observed cell counts in the contingency table with their proper
expected values under the null hypothesis. They show that its null asymptotic distribution
of this modified statistic is that of a linear combination of chi-square random variables, each
having 1 degree of freedom (df). Extremely large sample sizes may be needed to make the
asymptotic distribution a reasonable approximation to the finite-sample distribution of the
modified test statistic. Therefore they propose using a bootstrap as an alternative to find
the sampling distribution of the modified test statistic.

2.2 Testing for association between 2 MRCVs

Bilder and Loughin (2004) introduce testing for independence between two MRCVs. They
use additional data from the same survey reported in Loughin and Scherer (1998), where
the same Kansas farmers were asked about their swine waste storage practices. The farm-
ers were allowed to select as many responses as applied from a list of options. Table 2.2
summarizes the response counts for each category combination of the two MRCVs.

Table 2.2: Waste storage methods and Veterinary information sources. Source: Bilder and
Loughin (2004).

Veterinary information sources
Waste storage
methods

Professional
consultant

Veterinarian State service Magazines Feed
companies

Lagoon 34 54 50 63 41
Pit 17 33 34 43 37
Natural
drainage

6 23 30 49 34

Holding tank 1 4 4 6 2

A total of 279 farmers provided responses to both of these questions, and since they are
allowed to select any number of options from the lists, they may contribute to more than
one cell in the contingency table. As a result, the total number of responses adds up to 565
in Table 2.2, which again exceeds the sample size. Correlated counts again invalidate the
asymptotic distribution of a Pearson statistic applied to the counts in this table.

Agresti and Liu (1999) also consider the problem of testing for independence between two
MRCVs. They refer to the categories for each MRCV as items, and note that representing
MRCVs using a regular contingency table presents only the counts of those who responded
positively to each item. It provides no information on the respondents who responded
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negatively to a particular item. Thus, some important information is missing in this repre-
sentation. The next section describes a better way to represent MRCVs.

2.2.1 Representation of MRCVs

Bilder and Loughin (2004) treat each item of the MRCVs as a yes/no binary response. Let
W and Y denote the MRCVs for a cross-tabulation’s row and column variables, respec-
tively. Corresponding to the data in Table 2.2, W represents waste storage methods and Y
represents sources of veterinary information. In this example, there are four items under W
and five items under Y . In general, suppose W has I items and Y has J items. Assuming
that n subjects are sampled at random, for i = 1, 2, . . . , I, let

Wi =

1, if responded ‘yes’ (positive response) for item i

0, if responded ‘no’ (negative response) for item i

Let Yj be similarly defined for j = 1, 2, ...J .

Notice that a separate 2×2 contingency table can be prepared for each pair of items (Wi, Yj).
The full set of contingency tables created for all IJ pairs of items is called an item-response
table (IRT) (Bilder and Loughin, 2007). An example is given in Table 2.3. It summarizes
all possible responses to item pairs, without regard to responses to other items. Hence, the
counts within the IRT are marginal counts taken across all of the other items. The IRT is
capable of overcoming the difficulties caused by the regular I × J contingency table, as it
summarizes both the respondents and non-respondents to a given item pair. Notice that the
regular contingency table corresponds to just the counts in the (1,1) cell of each subtable.
Also each subtable adds up to the sample size n.

Table 2.3: Item response table.

Y1 Y2 Y3 Y4 Y5
0 1 0 1 0 1 0 1 0 1

W1 0 126 10 100 36 91 45 68 68 84 52
1 109 34 89 54 93 50 80 63 102 41

W2 0 172 27 142 57 138 61 111 88 143 56
1 63 17 47 33 46 34 37 43 43 37

W3 0 156 38 127 67 129 65 112 82 135 59
1 79 6 62 23 55 30 36 49 51 34

W4 0 223 43 180 86 175 91 141 125 175 91
1 12 1 9 4 9 4 7 6 11 2
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Instead of summarizing marginal counts between each pair of items seperately, one may be
interested in summarizing counts among all possible combinations of row and column items.
This is known as the joint table (Bilder and Loughin, 2004) and is similar to the expanded
and complete tables described in Loughin and Scherer (1998) and Agresti and Liu (1999),
respectively. Table 2.4 gives the joint table of Kansas farmer data. The joint cell counts
are used to find the counts of cell (a, b) for a = 0, 1 and b = 0, 1 in the (Wi, Yj) subtable of
Table 2.3 for i = 1, ..., I, and j = 1, ..., J . The joint table has 2I rows and 2J columns. The
joint table is sparse when the sample size is much smaller than 2(I+J), or when the counts
are concentrated within a few combinations of certain row- or column-item responses. Both
of these situations hold for the Kansas farmer data.

2.2.2 Specification of SPMI

The main objective of Bilder and Loughin (2004) is to test for independence between two
MRCVs. In particular, a convenient representation of the association between the two
MRCVs can be obtained by considering whether items of W are associated with items of
Y , without regard to which combinations of W− or Y− items are chosen. Agresti and Liu
(1999) call this a test for simultaneous pairwise marginal independence (SPMI), because
the null hypothesis is that each of the subtables in the IRT is created under independence
between the respective row and column items. This test can be performed to help determine
whether each source of veterinary information is simultaneously independent of each swine
waste storage method. If SPMI is rejected, individual 2 × 2 marginal tables should be
further examined to determine where associations occur.

Let the cell counts in the joint table be denoted by nkl for the kth possible combination
of (W1, ....,WI) and lth possible combination of (Y1, ...., YJ), where k = 1, ..., 2I and l =
1, ..., 2J . The corresponding cell probability is denoted by τkl and the joint cell counts
are assumed to follow a multinomial distribution with probabilities τkl, since exactly one
combination of each item is chosen by each individual. From the probability model on the
joint table, corresponding probabilities and expected counts for the item-response table can
be constructed.

Specifically, let mab(ij) be the observed counts of the item response table; i.e., they represent
the number of joint occurrences of (Wi = a, Yj = b), where a = 0, 1, b = 0, 1, i = 1, 2...., I
and j = 1, 2...., J . Let corresponding expected counts under the probability model be µab(ij)
and let the corresponding probability P (Wi = a, Yj = b) be given by πab(ij).

Then,
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E(mab(ij)) = n
∑

{k,l:Wi=a&Yj=b}
τkl

µab(ij) = nπab(ij)

In the case of SRCVs, independence between two variables holds when their joint probability
distribution can be obtained from products of the row- and column-total probabilities of
each variable. Agresti and Liu (1999) extend this definition for two MRCVs through SPMI,
which is the simultaneous independence between each pair of items.

Therefore, the hypotheses for a test of SPMI are,

H0 : πab(ij) = πa.(ij)π.b(ij) for a = 0, 1, b = 0, 1, i = 1, ...I and j = 1, ...J,

H1 : at least one equality does not hold,

where πa.(ij) and π.b(ij) are the corresponding row- and column-total probabilities forWi = a

and Yj = b, respectively.

2.2.3 Modified test statistic and its sampling distribution

Agresti and Liu (1999) suggest using a modified test statistic that sums up all the Pearson
statistics of the subtables in the IRT to test for the independence between an SRCV and an
MRCV. It expands the modified test statistic by Loughin and Scherer (1998) to consider the
‘no’ outcomes as well as the ‘yes’ outcomes in the marginal tables. Therefore the statistic
is invariant to the switching of the ‘yes’ and ‘no’ labels for all the items. Following their
suggestion, Bilder and Loughin (2004) develop a test for SPMI between two MRCVs. Let
the Pearson statistic for testing independence between Wi and Yj be X2

s,i,j . The modified
statistic for testing SPMI is simply the sum of all such statistics across all subtables in the
item-response table,

X2
s =

I∑
i=1

J∑
j=1

X2
s,i,j

If the IJ Pearson statistics are naively assumed as independent, X2
s is asymptotically chi-

square distributed with IJ df. But in most cases the Pearson statistics are not independent
of each other, because the marginal counts in different subtables are based on the same joint-
table counts. Therefore Bilder and Loughin (2004) investigate several ways to approximate
the asymptotic distribution of X2

s . They show that it has an asymptotic distribution which
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is a linear combination of independent chi-square random variables with df = 1. Rao and
Scott (1981) propose approximations to distributions of this type. The first-order correction
adjusts X2

s so that it has the same mean as a χ2
IJ random variable. Thomas and Decady

(2004) and Bilder and Loughin (2004) show that the adjustment factor is 1. Therefore, under
the first order correction, X2

s is compared to sum of χ2
1 random variables which results in

the same testing method as if they were independent. Bilder and Loughin (2001) show that
the first-order adjusted statistic does not hold the correct size when MRCVs are involved.
Therefore, second-order corrections are used to better approximate the distribution.

A second-order correction further adjusts the modified test statistic so that it has the same
mean and variance as a χ2

ν random variable, for some value ν. Bilder and Loughin (2004)
show that the second-order adjusted statistic, X2

RS2 = IJX2
s /
∑IJ
p=1 λ

2
p, behaves approxi-

mately as a χ2 random variable with ν = I2J2/
∑IJ
p=1 λ

2
p df, where λp, p = 1, . . . , IJ, are

the coefficients of the linear combination.

Bilder and Loughin (2004) show that the sampling distribution of X2
s can instead be approx-

imated by nonparametric bootstrap procedure. Bootstrap procedures are generally used to
estimate a test statistic’s sampling distribution when its distribution is mathematically hard
to derive or when assumptions behind large-sample approximations are violated. In the
present context, the data are resampled by randomly selecting a row response combination
(w1, ...wI) and combining it with an independently chosen column response combination
(y1, ...yJ). This process is repeated n times to form a resample, and a large number of
resamples, B, are taken. The test statistic X2∗

s,b is calculated for each resample and the
p-value is computed as the proportion of test statistics greater than or equal to the original
test statistic; i.e., p-value = (#of X2∗

s,b ≥ X2
s )/B.

Bilder and Loughin (2004) also suggest using a Bonferroni adjustment as an alternative
to the bootstrap approach. For each subtable calculate the p-value pij using the usual χ2

1
approximation for X2

s,i,j and reject the null hypothesis of SPMI if any pij < α/IJ . The
Bonferroni-adjusted p-value is p̃ = IJ minij(pij). SPMI is rejected when p̃ < α.

Bilder and Loughin (2004) further show that out of the above mentioned methods, the
bootstrap method generally holds the correct size and has adequate power to detect various
alternative hypotheses. The Bonferroni and second-order adjusted X2

s are conservative
sometimes.

2.3 Modeling an SRCV and an MRCV

Agresti and Liu (1999) discuss the modeling of a multiple-response categorical variable.
Using the data from Loughin and Scherer (1998), they treat each category of the MRCV
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as a yes/no binary response. They then develop a simultaneous logit model for each of the
binary components of the multivariate response. Let variable Y1 indicate whether a farmer
said ‘yes’ to source A, variable Y2 indicate whether a farmer said ‘yes’ to source B, and
so forth. Also let X be the random variable representing the highest education level. The
simplest model is one that assumes simultaneous independence between X and Y1, X and
Y2, and so forth in five separate two-way marginal tables. This condition is referred to as
multiple marginal independence(MMI). A model for the separate tables’ probabilities under
MMI is:

log
(

πj|i
1− πj|i

)
= βj , i = 1, .., I, j = 1, .., J, (2.1)

where, πj|i denotes the probability of responding ‘yes’ for item j given the X = i. According
to model 2.1 the probability of responding ‘yes’ for item j is the same for all levels of X. i.e.,
each item is independent of the education level but the probability of a positive response
may vary among the different binary items.

A more general model for these probabilities is

log
(

πj|i
1− πj|i

)
= βij , i = 1, .., I, j = 1, .., J, (2.2)

where the probability of responding ‘yes’ for item j is different for levels of X and across
items. Since no assumptions are made on the association structure, the number of param-
eters equals the number of probabilities being modeled. In other words, this is a saturated
model. Both of these models represent marginal constraints on a multinomial model fitted
to the joint table of counts. The joint table in this context is the I × 2J cross tabulation
of responses to a row category and a combination of column items. Agresti and Liu (1999)
use maximum likelihood techniques to find parameter estimates under constraints 2.1 or
2.2. They test for MMI with large samples using likelihood ratio test and the Pearson test
statistic to compare the models 2.1 and 2.2. These statistics have large sample chi-square
distributions with df = (I − 1)J . The large-sample approximations for the sampling distri-
butions of these test statistics may not be very good, because the joint table is likely to be
very sparse.

2.4 Modeling two MRCVs

Generally loglinear models are used to model associations in regular contingency tables.
Many examples are given in Bilder and Loughin (2014). For an ordinary SRCV, let W
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represent the row variable with I levels and Y represent the column variable with J levels.
The loglinear model assuming independence between W and Y can be written as,

log(µij) = β0 + βWi + βYj , i = 1, .., I, j = 1, .., J, (2.3)

where µij is the mean count in cell (i, j), β0 is the log mean count of cell (1, 1), βWi and βYj
operate on the row and column margins respectively, and βW1 = βY1 = 0. Notice that,

βWi = log(µi1)− log(µ11) = ..... = log(µIJ)− log(µ1J) = log(µi.)− log(µ1.).

Similarly,

βYj = log(µ1j)− log(µ11) = ..... = log(µIJ)− log(µI1) = log(µ.j)− log(µ.1).

The loglinear model that allows association between W and Y can be written as,

log(µij) = β0 + βWi + βYj + βWY
ij , i = 1, .., I, j = 1, .., J, (2.4)

where βWY
ij is the interaction term which allows the difference of log mean counts between

cells in two rows to change across columns and vice versa, and βW1 = βY1 = βWY
1j = βWY

i1 = 0.

2.4.1 Identification of models

Bilder and Loughin (2007) generalize loglinear models to test for SPMI and to describe any
patterns of associations when SPMI does not hold.

Now letW and Y be MRCVs. First consider the loglinear model that assumes independence
between itemsWi and Yj . Let µab(ij) be the expected count for row a and column b of (i, j)th
subtable of Table 2.3. The SPMI model assumes independence in all subtables,

log(µab(ij)) = β0(ij) + βWa(ij) + βYb(ij), a = 0, 1, b = 0, 1, i = 1, .., I, j = 1, .., J (2.5)

This is the same as equation 2.3 with extra subscripts (i, j) added to identify which subtable
is being modeled. Odds ratios of all the subtables are 1 for the SPMI model given in equation
2.5.
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Bilder and Loughin (2007) investigate models that allow odds ratios not to be equal to 1
and to change across row and column items in different ways. Some of the possible models
are,

Homogeneous association : log(µab(ij)) = β0(ij) + βWa(ij) + βYb(ij) + λab

W-main effects : log(µab(ij)) = β0(ij) + βWa(ij) + βYb(ij) + λab + λWab(i)

Y-main effects : log(µab(ij)) = β0(ij) + βWa(ij) + βYb(ij) + λab + λYab(j)

W- and Y-main effects : log(µab(ij)) = β0(ij) + βWa(ij) + βYb(ij) + λab + λWab(i) + λYab(j)

Saturated model : log(µab(ij)) = β0(ij) + βWa(ij) + βYb(ij) + λab + λWab(i) + λYab(j) + λWY
ab(ij)

The homogeneous association model assumes that the odds ratios are the same in every
subtable and uses a single parameter, λab, to represent the common log odds ratio. The
W-main effects model assumes that the odds ratios change across the row items, but are the
same across the column items. Similarly, the Y-main effects model assumes that the odds
ratios change across the column items, but are the same across the row items. These models
have parameters for log odds ratios that may change only with i or j, respectively. The W-
and Y-main effects model allows odds ratios to vary across both the row items and column
items, but the differences of log odds ratios between subtables in two rows are constant
across the columns and vice versa. In all the models described above the odds ratios are
allowed to vary in a structured way subject to certain restrictions. But in the saturated
model, the odds ratios are allowed to adapt freely to the data without any restriction.

2.4.2 Inference for generalized loglinear models

In the context of two MRCVs, each subtable in the IRT is a 2×2 contingency table and can
be modeled by Poission distribution. Since each subtable is merely a different marginal ar-
rangement of the same joint-table counts, the subtables are not independent of one another.
Therefore, specifying a full likelihood across all the subtables involve specifying associations
across items, which results in a very complex model with many parameters. Instead, Bilder
and Loughin (2007) propose to use a pseudo-likelihood function which assumes indepen-
dence across the subtables. Therefore, the pseudo-likelihood is simply the product of each
of the IJ Poisson likelihood functions from each subtable.

The parameter estimators can be obtained by maximizing the pseudo-likelihood function
and solving a set of GEEs. They are called pseudo maximum likelihood estimators (pseudo-
MLEs). This approach is quite similar to the maximum likelihood estimation except for the
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fact that it is not based on a full likelihood. The estimates are consistent and asymptotically
normally distributed similar to MLEs.

However, the variances of the pseudo-MLEs depend on the underlying association structure
across the subtables that we misspecify as independence in the model. Therefore, the
variance estimates produced by treating the pseudo-likelihood as a regular likelihood may
be smaller than they should be, as they ignore the correlations among the counts in IJ

subtables. Liang and Zeger (1986) propose a method to correct the variances, resulting
in variance estimators that are called “sandwich” estimators as they are mathematically
written as a product of three matrices, where the same matrix is used at the each end.
Bilder and Loughin (2007) provide details, which are summarized below.

The relationship between item-response table counts and joint table counts is,

m = Bn,

where m is a 4IJ × 1 vector of observed counts of the item-response table (mab(ij)), n is a
2(I+J) × 1 vector of joint table counts (nkl) and B is a 4IJ × 2(I+J) matrix that contains
only 0’s and 1’s. Specifically, B can be written as

B =


G⊗H

G⊗ (JJ×2J −H)
(JI×2I −G)⊗H

(JI×2I −G)⊗ (JJ×2J −H)

 , (2.6)

where G is a I × 2I matrix containing all possible (W1, ...,WI)′ vectors of 0’s and 1’s, H is
similarly defined for all possible (Y1, ..., YJ)′ vectors, and Jr×c is a r × c matrix of 1’s.

The asymptotic variance of m can be estimated by,

V̂ = V̂ (m) = nB
[
diag(τ̂ )− τ̂ τ̂ ′

]
B′, (2.7)

where τ̂ is a vector of 2(I+J) × 1 containing estimated joint probabilities (τ̂kl).

For any given model, let β be a vector containing all of the model’s parameters as described
in Section 2.4.1, let X be the corresponding design matrix, and let µ̂ be the vector of
model-predicted counts. Bilder and Loughin (2007) show that covariance matrix for β̂ can
be estimated by Σ̂ = (X ′diag(µ̂)X)−1X ′V̂ X (X ′diag(µ̂)X)−1.
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2.4.3 Model comparisons

Since no true likelihood function is used, usual information criteria such as AIC and BIC
cannot be used for model comparisons. Instead, Bilder and Loughin (2007) use hypothesis
testing of nested models to perform model comparisons.

One approach uses Rao-Scott-adjusted Pearson statistics and modified asymptotic chi-
square distributions. The Pearson statistic calculated to compare two models, when one is
nested within the other, is

X2
M =

∑
a,b,i,j

(
µ̂

(A)
ab(ij) − µ̂

(0)
ab(ij)

)2

µ̂
(0)
ab(ij)

, a = 0, 1, b = 0, 1, i = 1, .., I, j = 1, .., J,

where µ̂(0)
ab(ij) and µ̂

(A)
ab(ij) are model predicted counts under the null and alternative hy-

pothesis, respectively. As described in Section 2.2.3, first-order Rao-Scott uses a chi-square
distribution with IJ df as an approximation to the true asymptotic distribution of the Pear-
son statistic. Second-order Rao-Scott adjustment attempts to correct both the test statistic
and the asymptotic distribution so that the result has the same mean and variance as the
correct asymptotic distribution. Similar calculations can be applied to statistics created
using a likelihood-ratio formulation.

The first-order correction can lead to liberal test. Further, Bilder and Loughin (2007) dis-
cover that the second-order correction for model comparison can be conservative sometimes.
An alternative approach suggested by Bilder and Loughin (2007) to compare models is to
use the bootstrap to estimate the distribution of the test statistic. They use semi-parametric
resampling as in Gange (1995) to generate correlated binary data with features similar to
the original data. The models specified under both the null and alternative hypotheses
are fitted to the resampled data and model comparison statistic X2∗

M,b computed for each
resample. A p-value is computed as (#of X2∗

M,b ≥ X2
M )/B.

Following the model comparisons, when an adequate model is found, model-estimated odds
ratios and their confidence intervals are used to investigate the associations between MRCVs.
Bilder and Loughin (2007) also show how to use standardized residuals to identify huge
deviations from the specified models.

Bilder and Loughin (2007) describe briefly how to model three MRCVs. They present a
few special models, but do not consider the many more complicated models one can apply
when modeling three MRCVs. Developing these models and understanding their features
is the main focus of this thesis and is discussed in detail in the next chapter.
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Chapter 3

Models for three MRCVs

3.1 Model building process for three MRCVs

3.1.1 Odds ratios within a subcube

When there are three MRCVs, models can be built similar to the ones described in Section
2.4.1. Let Zk be the indicator variable for the third MRCV for k = 1, ..,K similarly defined
as Wi and Yj . The joint table of counts is now a three-way cross-classification of counts for
all possible combinations of responses to the items in W,Y, and Z. The IRT in this case
consists of three-way cross-classifications of (Wi, Yj , Zk) item combinations, each of which
results in a 2 × 2 × 2 contingency table. Geometrically each subtable can be depicted as
a 2 × 2 × 2 subcube residing within each cell of a larger I × J ×K cube as shown in Fig-
ure 3.1. In this case, there are IJK subcubes and all these subcubes together form the IRT.

In the case of two MRCVs, the models are built by fully parameterizing the main effects in
each subtable and allowing the odds ratios (OR) to vary in a structured way as explained
in Section 2.4.1. In the case of three MRCVs the main effects are once again saturated with
parameters in each subcube. However, since there are six 2 × 2 faces in each subcube, six
different odds ratios can be considered for each subcube. These odds ratios are conditional,
as they are the odds ratios between two items evaluated at a fixed level of the third item.
Table 3.1 shows the notation used throughout the thesis for conditional OR of each face
within a (Wi, Yj , Zk) subcube.

There are several ways that these six conditional odds ratios could vary within a subcube.
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Figure 3.1: Item response table for three MRCVs. (Source: http://3.bp.blogspot.com/
-o_nuM7OhxIk/UEkpqCunRII/AAAAAAAAAPc/mrd5CfbQDxI/s1600/ 234.jpg)

Table 3.1: Notation for conditional ORs for each face within a (Wi, Yj , Zk) subcube.

Type of conditional OR Conditional OR
at third item= 0

Conditional OR
at third item= 1

Conditional OR between
Wi and Yj

ORij(k,0) ORij(k,1)

Conditional OR between
Wi and Zk

ORi(j,0)k ORi(j,1)k

Conditional OR between
Yj and Zk

OR(i,0)jk OR(i,1)jk

• Mutual independence: All the three items Wi, Yj and Zk are independent of each
other, denoted by (Wi, Yj , Zk). All the conditional ORs are 1; i.e., ORij(k,0) =
ORij(k,1) = ORi(j,0)k = ORi(j,1)k = OR(i,0)jk = OR(i,1)jk = 1.

• Joint independence: Two items are jointly independent of the third but are associated
with each other. This is denoted by (WiYj , Zk) , (WiZk, Yj) or (YjZk,Wi). The
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conditional ORs between the two associated items are not equal to 1 but are the same
across the levels of the third item; i.e., ORij(k,0) = ORij(k,1) , ORi(j,0)k = ORi(j,1)k or
OR(i,0)jk = OR(i,1)jk, respectively.

• Conditional independence: Two items are independent given the third, denoted by
(WiYj ,WiZk) , (WiZk, YjZk) or (WiYj , YjZk). Consider (WiYj ,WiZk) for an example.
This model specifies that Yj and Zk are independent, given Wi. Furthermore, The
conditional ORs between Wi, Yj and Wi, Zk are all not equal to 1, but are the same
for the two levels of the missing variable; i.e., ORij(k,0) = ORij(k,1) and ORi(j,0)k =
ORi(j,1)k.

• Homogeneous associations: Denoted by (WiYj ,WiZk, YjZk), the conditional ORs be-
tween any two items are not equal to 1, but they are the same across the levels of the
third item. i.e, ORij(k,0) = ORij(k,1) , ORi(j,0)k = ORi(j,1)k and OR(i,0)jk = OR(i,1)jk.

• Saturated (heterogeneous associations) : Denoted by (WiYjZk), the conditional ORs
between any two items change across the levels of the third item.

3.1.2 Odds ratios across the subcubes

Once associations within a subcube are identified, models can be extended to describe how
these associations may vary across the items that are represented by the different subcubes.
A given association within a subcube can change or be constant across its variables in other
subcubes. However a given association within a subcube must be constant across the level of
any variables not involved in the association. For example, in the joint independence model
(WiYj , Zk), the WiYj association can change across W items i = 1, ..., I, and/or across
Y items, j = 1, ..., J . However, this association cannot change across different Z items,
k = 1, ...,K. This is because, when an association does not involve the third variable, it
can be measured on the marginal sums across the levels of that variable. In the three-way
IRT, these marginal totals do not change across levels of the variable for fixed levels of the
other two variables. For example, the marginal counts for Wi = a, Yj = b across the two
levels of Zk are the same for all k. This reduces the number of possible models that can be
fitted. Table 3.2 summarizes all possible models that can be fitted to three MRCVs.

According to Table 3.2, When there are no associations within a subcube (mutual inde-
pendence), there is nothing to change across the subcubes, so this association structure is
labeled as being constant (C). Hence there is only one possible way to model it. When there
is a single 2-way association within a subcube (e.g., row 2 of Table 3.2), the association
may remain constant (C), change across one variable only (W or Y), change across two vari-
ables simultaneously with the changes being constant across the levels of the other variable
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Table 3.2: All possible models for three MRCVs.

Associations within a
subcube

Associations across subcubes No.
of
models

1. independent C 1
2. (WiYj , Zk) C, W, Y, W+Y, WY 5
3. (WiZk, Yj) C, W, Z, W+Z, WZ 5
4. (YjZk,Wi) C, Y, Z, Y+Z, YZ 5
5. (WiYj ,WiZk) (C,C), (C,W),.......,(WY, WZ) 25
6. (WiYj , YjZk) (C,C), (C,Y),.......,(WY, YZ) 25
7. (YjZk,WiZk) (C,C), (C,W),.......,(YZ, WZ) 25
8. (WiYj ,WiZk, YjZk) (C,C,C),(C,C,Y),.......,(WY, WZ, YZ) 125
9. (WiYjZk) C,W,Y,Z,W+Y, W+Z, Y+Z, W+Y+Z, WY,

WZ, YZ, (WY, YZ), (WY,WZ), (YZ, WZ),
(WY, WZ, YZ), (WYZ)

16

(W+Y) or change across two variables without any restrictions (WY). Hence there are 5
possible models through which a 2-way association can manifest itself across the subcubes
in the IRT. The same explanation applies for rows 3 and 4 of Table 3.2. When there are
two 2-way associations within a subcube (rows 5, 6 and 7 of the Table 3.2), each association
can vary in 5 different ways. Considering all possible combinations the both associations
can form, there are 25 possible ways the associations can change across the subcubes. Sim-
ilarly, when there are three 2-way associations within a subcube (row 8 of the Table 3.2),
each association can vary in 5 different ways result in all possible combinations can form
125 models. When there is a 3-way association (row 9 of the Table 3.2), it can vary in 16
possible ways. Therefore, altogether there are 232 ways the three MRCVs can be modeled.

3.1.3 Model building for three MRCVs

Once the associations within a subcube and patterns of associations across the subcubes are
identified as given in Table 3.2, one can write the models for the associations similar to the
way it is done for two MRCVs in Section 2.4.1. For a given association within a subcube,
only the highest possible order of association across the subcubes is discussed and modeled
below. The models are not shown and explained for the lower order associations across the
subcubes, since they are the subsets of the models of highest order associations, and one
can figure them out easily by omitting certain unnecessary parameters.

In the case of mutual independence, there is no association within and across the subcubes.
The model can be written as,
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log(µabc(ijk)) = β0(ijk) + βWa(ijk) + βYb(ijk) + βZc(ijk),

where µabc(ijk) is the expected count for the (a, b, c) cell of (Wi, Yj , Zk)th subcube of IRT
for a = 0, 1, b = 0, 1, c = 0, 1, i = 1, .., I, j = 1, .., J, and k = 1, ..,K. Models for
each cell of (Wi, Yj , Zk)th subcube can be written as follows.

Table 3.3: Models for each cell of (Wi, Yj , Zk)th subcube.

a b c Model
0 0 0 log(µ000(ijk)) = β0(ijk)
0 1 0 log(µ010(ijk)) = β0(ijk) + βY1(ijk)
1 0 0 log(µ100(ijk)) = β0(ijk) + βW1(ijk)
1 1 0 log(µ110(ijk)) = β0(ijk) + βW1(ijk) + βY1(ijk)
0 0 1 log(µ001(ijk)) = β0(ijk) + βZ1(ijk)
0 1 1 log(µ011(ijk)) = β0(ijk) + βY1(ijk) + βZ1(ijk)
1 0 1 log(µ101(ijk)) = β0(ijk) + βW1(ijk) + βZ1(ijk)
1 1 1 log(µ111(ijk)) = β0(ijk) +βW1(ijk) +βY1(ijk) +βZ1(ijk)

Based on Table 3.3, the parameters are estimated as

β̂0(ijk) = log(µ̂000(ijk)),

β̂W1(ijk) = log(µ̂1..(ijk))− log(µ̂0..(ijk)),

β̂Y1(ijk) = log(µ̂.1.(ijk))− log(µ̂.0.(ijk)) and

β̂Z1(ijk) = log(µ̂..1(ijk))− log(µ̂..0(ijk)).

β̂W1(ijk), β̂
Y
1(ijk) and β̂Z1(ijk) estimate the main effects of Wi, Yj and Zk respectively within

(Wi, Yj , Zk)th subcube.

When there is a 2-way association within a subcube (e.g., row 2 of Table 3.2) and it varies
across both the variables without any restrictions (WY) , the model can be written as,

log(µabc(ijk)) = β0(ijk) + βWa(ijk) + βYb(ijk) + βZc(ijk) + λab + λWab(i) + λYab(j) + λWY
ab(ij).
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Models can be written for each subcube similar to given in Table 3.3; the additional pa-
rameters are estimated as

λ̂11 = log ÔR11(1,0),

λ̂W11(i) = log ÔRi1(1,0) − log ÔR11(1,0),

λ̂Y11(j) = log ÔR1j(1,0) − log ÔR11(1,0) and

λ̂WY
11(ij) = log ÔRij(1,0) + log ÔR11(1,0) − log ÔRi1(1,0) − log ÔR1j(1,0).

When there are two 2-way associations within a subcube (e.g., row 7 of Table 3.2) and they
may vary freely across subcubes (Y Z,WZ). The model is,

log(µabc(ijk)) = β0(ijk) + βWa(ijk) + βYb(ijk) + βZc(ijk) + δac + δWac(i) + δZac(k) + δWZ
ac(ik)

+ γbc + γYbc(j) + γZbc(k) + γY Zbc(jk).

The association parameters are estimated similar to the previous case as

δ̂11 = log ÔR1(1,0)1,

δ̂W11(i) = log ÔRi(1,0)1 − log ÔR1(1,0)1,

δ̂Z11(k) = log ÔR1(1,0)k − log ÔR1(1,0)1,

δ̂WZ
11(ik) = log ÔRi(1,0)k + log ÔR1(1,0)1 − log ÔRi(1,0)1 − log ÔR1(1,0)k,

γ̂11 = log ÔR(1,0)11,

γ̂Y11(j) = log ÔR(1,0)j1 − log ÔR(1,0)11,

γ̂Z11(k) = log ÔR(1,0)1k − log ÔR(1,0)11 and

γ̂Y Z11(jk) = log ÔR(1,0)jk + log ÔR(1,0)11 − log ÔR(1,0)j1 − log ÔR(1,0)1k.

When there is a 3-way association (row 9 of the Table 3.2) and (WY Z) across the subcubes
which is the saturated model is given as,

log(µabc(ijk)) = β0(ijk) + βWa(ijk) + βYb(ijk) + βZc(ijk)

+ λab + λWab(i) + λYab(j) + λZab(k) + λWY
ab(ij) + λWZ

ab(ik) + λY Zab(jk) + λWY Z
ab(ijk)

+ δac + δWac(i) + δYac(j) + δZac(k) + δWY
ac(ij) + δWZ

ac(ik) + δY Zac(jk) + δWY Z
ac(ijk)

+ γbc + γWbc(i) + γYbc(j) + γZbc(k) + γWY
bc(ij) + γWZ

bc(ik) + γY Zbc(jk) + γWY Z
bc(ijk)

+ ηabc + ηWabc(i) + ηYabc(j) + ηZabc(k) + ηWY
abc(ij) + ηWZ

abc(ik) + ηY Zabc(jk) + ηWY Z
abc(ijk).

21



The 2-way association parameters λWZ
11(ik), λ

Y Z
11(jk), δ

WY
11(ij), δ

Y Z
11(jk), γ

WY
11(ij) and γWZ

11(ik) are esti-
mated as the same way explained above. The additional association parameters are esti-
mated as,

λ̂WY Z
111(ijk) =

(
log ÔRij(k,0) + log ÔR11(k,0) − log ÔRi1(k,0) − log ÔR1j(k,0)

)
−(

log ÔRij(1,0) + log ÔR11(1,0) − log ÔRi1(1,0) − log ÔR1j(1,0)
)

δ̂WY Z
ac(ijk) and γ̂WY Z

bc(ijk) can be obtained similarly.

η̂111 = log ÔR11(1,1) − log ÔR11(1,0) and it’s the same for conditional association between
any two variables. Let Dijk be the difference between the two conditional log ORs in
(Wi, Yj , Zk)th subcube; i.e., Dijk = logORij(k,1) − logORij(k,0). Thus the additional pa-
rameters can be estimated in terms of D̂ijk as

η̂111 = D̂111,

η̂W111(i) = D̂i11 − D̂111,

η̂Y111(j) = D̂1j1 − D̂111,

η̂Z111(k) = D̂11k − D̂111,

η̂WY
111(ij) = D̂111 + D̂ij1 − D̂1j1 − D̂i11,

η̂WZ
111(ik) = D̂111 + D̂i1k − D̂11k − D̂i11,

η̂Y Z111(jk) = D̂111 + D̂1jk − D̂1j1 − D̂11k and

η̂WY Z
111(ijk) =

(
D̂ijk + D̂11k − D̂i1k − D̂1jk

)
−
(
D̂111 + D̂ij1 − D̂i11 − D̂1j1

)
.

3.2 Inference on the models

Similar to the inferences developed for the loglinear models involving two MRCVs, inferences
for three MRCVs can be made. Parameters are estimated using GEEs generated by a
pseudo-likelihood and variances of the estimates are corrected using sandwich methods.

In the case of three MRCVs, the relationship between item-response table counts and joint
table counts is m = An, where m is a 8IJK × 1 vector of observed counts of the IRT
(mabc(ijk)), n is a 2(I+J+K)×1 vector of joint table counts (nklm) and A is a 8IJK×2(I+J+K)

matrix that contains only 0’s and 1’s. Analogous to the two-MRCV case, A can be written
as
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A =



G⊗H ⊗ L
G⊗H ⊗ (JK×2K − L)
G⊗ (JJ×2J −H)⊗ L
(JI×2I −G)⊗H ⊗ L

(JI×2I −G)⊗ (JJ×2J −H)⊗ L
(JI×2I −G)⊗H ⊗ (JK×2K − L)
G⊗ (JJ×2J −H)⊗ (JK×2K − L)

(JI×2I −G)⊗ (JJ×2J −H)⊗ (JK×2K − L)


,

where L is similarly defined as G andH for all possible (Z1, ..., ZK)′ vectors. The asymptotic
variance of m can be estimated by,

Ŵ = V̂ (m) = nA
[
diag(τ̂ )− τ̂ τ̂ ′

]
A′, (3.1)

where τ̂ is a vector of length 2(I+J+K) containing estimated joint probabilities (τ̂klm). The
covariance matrix for β̂ can be estimated by Σ̂ = (X ′diag(µ̂)X)−1X ′ŴX (X ′diag(µ̂)X)−1.

3.3 Model comparisons

3.3.1 Takeuchi Information Criterion

As mentioned in Section 2.4.3, usual information criteria such as AIC cannot be used for
model comparisons, since estimation is not based on a full likelihood. Takeuchi (1976)
proposes a version of AIC, now called the Takeuchi Information Criterion (TIC), that can
be used with likelihoods where the model is misspecified.

Suppose a random sample y = y1, ..., yn has an unknown density f(y). Let the den-
sity for a proposed model be g(y) =

∏
g(yi), where g depends on a vector of unknown

model parameters, θ. Suppose that a log-likelihood function is formed from this model as
logL(θ) =

∑n
i=1 log g(yi, θ). Then TIC generalizes AIC as,

TIC = −2 logL(θ̂) + 2tr(Q̂−1Ω̂),

where
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Q̂ = − 1
n

n∑
i=1

∂2

∂θ∂θt
log g(yi, θ̂) and

Ω̂ = 1
n

n∑
i=1

(
∂

∂θ
log g(yi, θ̂)

∂

∂θ
log g(yi, θ̂)t

)
.

Notice that when g(y) = f(y), then Q̂ = Ω̂ and the second term in TIC is twice the number
of parameters in the model, exactly as in AIC. However, TIC can be computed even when
the model is misspecified. Hence, it can be used for our marginal models that are fitted
using pseudo-likelihood. In general, the marginal loglinear model involving two MRCVs can
be written as mab(ij) ∼ Poisson(µab(ij)), with

log
(
µab(ij)

)
= Xt

ab(ij)β,

where X is 4IJ × p design matrix and p is the number of parameters in the model.

Therefore, within this context, Q̂ can be derived as below:

log g
(
mab(ij),β

)
= −µab(ij) +mab(ij) logµab(ij) − logmab(ij)!

= −exp
(
Xt
ab(ij)β

)
+mab(ij)X

t
ab(ij)β − logmab(ij)!

∂

∂β
log g

(
mab(ij),β

)
= −exp

(
Xt
ab(ij)β

)
Xab(ij) +mab(ij)Xab(ij)

=
(
mab(ij) − exp

(
Xt
ab(ij)β

))
Xab(ij)

∂

∂β
log g

(
mab(ij),β

)t
=
(
mab(ij) − exp

(
Xt
ab(ij)β

))
Xt
ab(ij)

∂2

∂β∂βt
log g

(
mab(ij),β

)
= −Xab(ij)exp

(
Xt
ab(ij)β

)
Xt
ab(ij)

Therefore,

Q̂ = 1
4IJ

∑
a,b,i,j

(
Xab(ij)µ̂ab(ij)X

t
ab(ij)

)
Q̂ = 1

4IJ X
tdiag(µ̂)X,
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where diag(µ̂) is a 4IJ×4IJ diagonal matrix whose diagonal is given by µ̂ab(ij)s. Derivation
of Ω̂ is as follows.

Ω̂ = 1
4IJ

∑
a,b,i.j

(
mab(ij) − exp

(
Xt
ab(ij)β

))
Xab(ij)

(
mab(ij) − exp

(
Xt
ab(ij)β

))
Xt
ab(ij)

= 1
4IJ

∑
a,b,i.j

[(
mab(ij) − µ̂ab(ij)

)2
Xab(ij)X

t
ab(ij)

]

= 1
4IJ X

tdiag
[
(m− µ̂)2

]
X,

where diag(m−µ̂) is a diagonal matrix of 4IJ×4IJ whose diagonal is given by
(
mab(ij) − µ̂ab(ij)

)
s.

Similarly, TIC for three MRCVs can be obtained. Let mabc(ijk) ∼ Poisson(µabc(ijk)), with

log
(
µabc(ijk)

)
= Xt

abc(ijk)β,

Then Q̂ and Ω̂ can be extended for three MRCVs as,

Q̂ = 1
8IJKXtdiag(µ̂)X

Ω̂ = 1
8IJKXtdiag

[
(m− µ̂)2

]
X,

where diag(µ̂) and diag(m− µ̂) are 8IJK × 8IJK diagonal matrices whose diagonals are
µ̂abc(ijk)s and

(
mabc(ijk) − µ̂abc(ijk)

)
s respectively.

3.3.2 Model Averaging

As described in Section 2.4.3, hypothesis testing of nested models is used to perform com-
parisons among models for two MRCVs. In the case of three MRCVs, the number of models
possible is huge and the presence of different sets of association parameters means that
many interesting models are not nested. Therefore, performing model comparisons using
nested models would be inadequate, because competing models with different association
parameters cannot be compared. Using information criteria (IC) for model comparisons
removes this restriction.

When an IC is used for model selection, the model with the smallest IC is typically selected
as the best model and further inferences are based on that model. But there could be many
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models with ICs very close to the smallest value, indicating that there is some uncertainty
regarding which model is truly the best. Basing estimation and inferences on a single model
in this case ignores potentially useful information contained in the competing models, and
also ignores the uncertainty associated with deciding which model is “correct”. Model
averaging is a technique that can be used to account for model-selection uncertainty in
further inferences by considering all the possible models.

Bayesian model averaging (BMA) (Hoeting et al., 1999) computes Bayesian information
criterion (BIC) values for each model and uses these to estimate the posterior probability
that each model is correct, given the data. Burnham and Anderson (2002) extend the
model averaging procedure to other ICs. The quantities computed for each model are no
longer posterior probabilities, since the connection to the Bayesian paradigm is lost with
the change of IC. They are instead called “evidence weights” and are calculated for each
model as below.

Let M be the total number of models fitted, TICm and TIC0 be the TIC for model m and
smallest TIC of all the models respectively. Define ∆m = TICm − TIC0 ≥ 0.

Then the evidence weight for model m is defined as,

wm = e−
∆m

2∑M
a=1 e

−∆a
2
, m = 1, ...,M

This scales the weights so that they resemble probabilities, in that they lie between 0 and
1 and the weights sum to 1 across all models. A model with a high evidence weight is
better supported by the data than one with a relatively smaller weight. Evidence weights
are also useful for identifying important parameters and estimating them while accounting
for uncertainty regarding which model is best.

Let θ be any parameter estimated or fixed to a constant value in the models. Denote the
parameter estimate from model m as θ̂m and the corresponding variance estimate from that
model as V̂ ar(θ̂m). The model-averaged estimate is given by

θ̂MA =
M∑
m=1

ŵmθ̂m,

and the variance is estimated by,

V̂ ar(θ̂MA) =
M∑
m=1

ŵm
[
(θ̂m − θ̂MA)2 + V̂ ar(θ̂m)

]
.
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In the case of MRCVs, we are mostly interested in predicting odds ratios for each subtable.
Let φ̂s,m be the estimated OR for sth subtable (s = 1, ..., 6IJK) from the mth model
(m = 1, ..,M). The model-averaged estimate of sth log(OR) is

log(φ̂s,MA) =
M∑
m=1

ŵm log(φ̂s,m),

and the variance of the model-averaged estimate of sth log(OR) is

V̂ ar(log(φ̂s,MA)) =
M∑
m=1

ŵm
[
(log(φ̂s,m)− log(φ̂s,MA))2 + V̂ ar(log(φ̂s,m))

]
.

Thereby a 95% C.I for model-averaged ORs can be obtained.
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Chapter 4

Computation of variance in the
presence of large number of items

4.1 Limitations of the current method

As explained in Section 2.4.2, marginal loglinear models can be developed to model two
MRCVs and the variances of the parameter estimates can be corrected using sandwich
methods. This computation requires an estimate, V̂ , of 4IJ × 4IJ asymptotic variance
matrix of the observed marginal counts from the IRT. Let T = diag(τ̂ )− τ̂ τ̂ ′ be a matrix of
dimension 2(I+J)× 2(I+J) which denotes the covariance matrix of joint probabilities. Then,

V̂ = V̂ (m) = nBTB′. (4.1)

Notice that when I and/or J are moderately large, T and B can be huge. In one example we
worked on, I = 41 and J = 19, so that T had 2120 entries. Merely enumerating the matrix
indexes surpasses current machine memory capacity, which ultimately leads to runtime
errors. The next section develops a new approach to find the variance of observed counts
in the IRT by reducing the dimensions of the matrices.

4.2 Solution to the problem

Elements of T are given by,
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Tij =

τ̂i(1− τ̂i); i = j

−τ̂iτ̂j ; i 6= j
.

Since the joint table is typically sparse, most of the elements of τ̂ are zeroes, which leads
the corresponding rows and columns of T to become zero too. In order to reduce the size
of T , we use the positions of the non-zero counts to identify which rows and columns of T
will be zero, and develop a new matrix T̃ by considering only the non-zero elements of τ̂
vector.

Let q be the number of non-zero counts in the joint table—presumably q << 2(I+J)— and
let τ̃ be the q × 1 vector of non-zero joint probabilities. Then, T̃ has dimension q × q and
can be obtained as,

T̃ = diag(τ̃ )− τ̃ τ̃ ′. (4.2)

The matrix B given in equation 2.6 can be written as,

B =


g11H g12H . . g12IH

g21H g22H . . g22IH

. . . . .

gcI1H
c gcI2H

c . . gc
I2IH

c

 ,

where grc is the (r, c) element of G, r = 1, . . . , I and c = 1, . . . 2I , and Hc = (JJ×2J −H).
The value of grc is either 0 or 1. Therefore, each element given in B is either a matrix of
0’s or H (or Hc depending on the row of B). In order to reduce the dimension of B, only
columns of B that correspond to non-zero rows of T are retained. Let B̃ be the reduced
version of B. Then B̃ can be obtained by considering only certain columns of G and H.
The following algorithm explains the procedure to obtain B̃.

1. First identify row and column positions of non-zero counts in the joint table. Let R be
an a × 1 vector of row positions defined as R = (R1, R2, . . . , Ra) where a is the number
of non-zero row positions (a ≤ 2I). Also, let hb; b = 1, . . . , a be variable-length vectors
containing all of the column indices of non-zero counts within the b th row.

2. R is used to decide which columns of G (and Gc, where Gc = (JI×2I−G)) should be used
and hb is used to decide which columns of H (and Hc) should be used with each column of
G.
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3. Then B̃ has dimension 4IJ × q can be written in terms of certain columns of G and H
as,

B̃ =


G[, R1]⊗H[,h1] G[, R2]⊗H[,h2] · · · G[, Ra]⊗H[,ha]
G[, R1]⊗Hc[,h1] G[, R2]⊗Hc[,h2] · · · G[, Ra]⊗Hc[,ha]
Gc[, R1]⊗H[,h1] Gc[, R2]⊗H[,h2] · · · Gc[, Ra]⊗H[,ha]
Gc[, R1]⊗Hc[,h1] Gc[, R2]⊗Hc[,h2] · · · Gc[, Ra]⊗Hc[,ha]

 ,

where the elements within the square brackets indicate which columns of each matrix are
used.

Let’s consider the following simple example that illustrates the computation of B̃. Consider
two MRCVs with two items each. Table 4.1 gives the joint table of hypothetical counts.

Table 4.1: Joint table for a hypothetical situation.

Y1 0 0 1 1
Y2 0 1 0 1

0 0 2 1 0 0
0 1 0 3 0 2
1 0 0 0 0 0
1 1 2 0 0 0
W1 W2

According to Table 4.1, there are 10 observations in total and only 5 non-zero counts. Row
positions and column positions of non-zero joint counts can be summarized as given in Table
4.2.

Table 4.2: Cross-classification of row and column positions of non-zero joint counts.

row positions column positions
1 1 , 2
2 2 , 4
4 1

For an example, there are two non-zero counts in the first row of Table 4.1 and they are at
column indices 1 and 2 respectively.

Then R = (1, 2, 4), and
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R1 = 1, h1 = (1, 2)

R2 = 2, h2 = (2, 4)

R3 = 4, h3 = (1).

Then, B̃ can be obtained as,

B̃ =


G[, 1]⊗H[, (1, 2)] G[, 2]⊗H[, (2, 4)] G[, 4]⊗H[, (1)]
G[, 1]⊗Hc[, (1, 2)] G[, 2]⊗Hc[, (2, 4)] G[, 4]⊗Hc[, (1)]
Gc[, 1]⊗H[, (1, 2)] Gc[, 2]⊗H[, (2, 4)] Gc[, 4]⊗H[, (1)]
Gc[, 1]⊗Hc[, (1, 2)] Gc[, 2]⊗Hc[, (2, 4)] Gc[, 4]⊗Hc[, (1)]

 .

4.3 Example

By using the above approach, dimensions of T and B can be substantially reduced. This
method can be used to compute the variances of the parameter estimates in the presence of
any number of items as long as the number of combinations of W and Y that have non-zero
counts is manageable.

A real dataset of two MRCVs with 41 and 19 items is analyzed using the standard variance
computation method—i.e., V = nBTB′—and using the dimension reduction approach; i.e.,
V = nB̃T̃ B̃′. Table 4.3 compares the run times of the two approaches when the number of
items is increased gradually.

Table 4.3: Run times (seconds) for computing variance using two different approaches. An
“x” means that the program terminated with an error code “Cannot allocate vector of size
xxxGB”.

I J standard method dim.reduction method
5 6 2.4 5.1
8 7 x 6.0
10 12 x 6.5
23 18 x 10.5
41 19 x 20.4

According to Table 4.3, the standard method is able to produce results only when the
dataset has a very limited number of items. In the other situations it is unable to produce
results as it reaches the total allocated memory. However, the new approach generates
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results even for the total of 60 items. Appendix A provides the R code for the comparisons
between the two methods.
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Chapter 5

Analysis Example

5.1 Description of the dataset

The dataset analyzed in this thesis is from the survey of farmers reported in Loughin and
Scherer (1998). A total of 279 farmers responded to the following three MRCVs.

1. Which of the following do you test your swine waste for? Binary responses (1=Positive,
0-Negative) are provided for each category.

(a) W1: Nitrogen

(b) W2: Phosphorus

(c) W3: Salt

2. What swine waste disposal methods do you use? Binary responses (1=Positive, 0-
Negative) are provided for each category.

(a) Y1: Lagoon

(b) Y2: Pit

(c) Y3: Natural drainage

(d) Y4: Holding tank

3. What are your primary sources of veterinary information? Binary responses (1=Pos-
itive, 0-Negative) are provided for each category.

(a) Z1: Professional consultant

(b) Z2: Veterinarian
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(c) Z3: State or local extension service

(d) Z4: Magazines

(e) Z5: Feed companies and representatives

The full data set represents a 3 × 4 × 5 structure, and is therefore somewhat cumbersome
to explore completely. For the sake of simplicity and ease of demonstration only a 2× 2× 2
subset of these data is analyzed. The subset consists of items W1,W2, Y1, Y2, Z1 and Z2.
Hence I = J = K = 2 and the IRT is a 2 × 2 × 2 cube, each consisting of a 2 × 2 × 2
subcube of marginal counts. Each cell in the main cube represents one combination of
chemical, storage method, and information source, and each subcube represents counts of
all combinations of positive and negative responses to those three items. Table 5.1 shows
the observed conditional ORs along with 95% confidence intervals between each pair of
items for a given level of the third variable. Each of these is computed from one 2× 2 table
(half of the subcube) within its respective main-cube cell.

Table 5.1: Table of observed conditional ORs along with 95% confidence intervals (in paren-
theses). Highlighted cells denote ORs that do not include 1.

WY OR Z1 = 0 Z1 = 1 Z2 = 0 Z2 = 1
W1Y1 2.5 (1.1,5.5) 0.9 (0.1,5.1) 3.1 (1.2,8.0) 1.1 (0.4,3.5)
W1Y2 1.8 (0.8,3.9) 1.8 (0.4,8.3) 1.6 (0.6,4.1) 2.0 (0.7,5.8)
W2Y1 2.9 (1.2,7.4) 1.9 (0.2,18.2) 4.5 (1.4,14.5) 1.4 (0.4,5.0)
W2Y2 1.9 (0.8,4.6) 1.2 (0.2,6.3) 1.6 (0.6,4.5) 1.9 (0.6,6.4)

WZ OR Y1 = 0 Y1 = 1 Y2 = 0 Y2 = 1
W1Z1 2.6 (0.5,13.9) 0.9 (0.3,2.5) 1.3 (0.4,4.2) 1.3 (0.4,4.7)
W1Z2 2.7 (0.8,8.5) 1.0 (0.4,2.3) 1.3 (0.5,3.2) 1.6 (0.5,4.7)
W2Z1 1.9 (0.2,17.1) 1.2 (0.5,3.5) 2.0 (0.6,6.5) 1.3 (0.3,5.4)
W2Z2 3.0 (0.7,12.7) 0.9 (0.4,2.4) 1.3 (0.5,3.6) 1.5 (0.4,5.2)

YZ OR W1 = 0 W1 = 1 W2 = 0 W2 = 1
Y1Z1 4.6 (2.0,10.5) 1.6 (0.3,9.1) 4.0 (1.8,8.9) 2.6 (0.3,26.1)
Y1Z2 1.9 (1.1,3.3) 0.7 (0.2,2.6) 1.8 (1.1,3.2) 0.6 (0.1,2.9)
Y2Z1 1.7 (0.8,3.6) 1.7 (0.4,7.9) 1.8 (0.9,3.7) 1.2 (0.2,6.5)
Y2Z2 1.6 (0.9,3.0) 2.0 (0.6,7.3) 1.7 (0.9,3.0) 2.0 (0.5,8.9)

Perusing this table reveals some patterns that anticipate what the more formal analysis will
reveal. In particular, all the WZ conditional ORs have confidence intervals that contain 1.
This suggests that there is no clear evidence of an association between chemical testing and
information source, regardless of the types of waste storage method used. The WY odds
ratio is significantly greater than 1 in certain cases that form a clear pattern. The farmers
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test for chemicals more often when they use a lagoon than when they do not, but only
if they do not get veterinary information from a professional consultant or a veterinarian.
However, when they do use either one of these sources of information, there is no apparent
association between waste storage method and chemical testing. Further, Y Z odds ratios
are significantly greater than 1 in certain situations. The farmers use lagoon more often
when they use either information source than when they don’t, but only if they don’t test
for any chemicals. But this association does not seem to hold when the farmers test for
either one of the chemicals. Also it can be noticed that none of the information sources and
none of the chemicals tested for are involved in associations with ‘pit’ as a waste storage
method.

By looking at the patterns of observed conditional ORs one can guess the type of models
that would be well fitted to the dataset. In order to identify the models, within-subcube
associations and across-subcube associations should be identified. Table 5.2 below summa-
rizes six conditional ORs of each subcube, with a value of 1 assumed if it was not excluded
by the respective confidence interval.

Table 5.2: Table of observed conditional ORs for each subcube. Highlighted cells denote
significant ORs.

Subcube ORij(k,0) ORij(k,1) ORi(j,0)k ORi(j,1)k OR(i,0)jk OR(i,1)jk

(W1, Y1, Z1) 2.5 1 1 1 4.6 1
(W2, Y1, Z1) 2.9 1 1 1 4.0 1
(W1, Y1, Z2) 3.1 1 1 1 1.9 1
(W2, Y1, Z2) 4.5 1 1 1 1.8 1
(W1, Y2, Z1) 1 1 1 1 1 1
(W1, Y2, Z2) 1 1 1 1 1 1
(W2, Y2, Z1) 1 1 1 1 1 1
(W2, Y2, Z2) 1 1 1 1 1 1

In the first four subcubes—(W1, Y1, Z1), (W2, Y1, Z1), (W1, Y1, Z2) and (W2, Y1, Z2)—the
conditional OR between the two items change across the levels of the third item except for
the association WiZk given Yj . It is equal to 1 and the same across the levels of Yj . The
conditional ORs in these four subcubes can be summarized as,

ORij(k,0) 6= ORij(k,1); i = 1, 2 j = 1 and k = 1, 2

OR(i,0)jk 6= OR(i,1)jk; i = 1, 2 j = 1 and k = 1, 2

ORi(j,0)k = ORi(j,1)k = 1; i = 1, 2 j = 1 and k = 1, 2

Therefore, within-subcube associations in these four subcubes can be considered heteroge-
neous (saturated) and is denoted by (WiYjZk) for i = 1, 2, j = 1 and k = 1, 2. According
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to Table 5.2, all the conditional ORs of the last four subcubes are equal to 1. Hence all
the three items are independent of each other (mutual independence) and can be denoted
by (Wi, Yj , Zk) for i = 1, 2, j = 2 and k = 1, 2. However considering all eight subcubes
together, a saturated model would be necessary to provide the required flexibility for 1 and
non-1 ORs.

According to the results of Table 5.2, it’s very clear that the heterogeneous associations
within the subcubes change across Y items. They may change across W and Z items as
well. We can expect the models with different combinations of these three items change
across the subcubes given (WiYjZk) within the subcube and they will be well fitted to the
given dataset.

5.2 Fitting the models

As described in Section 3.1.3, all 232 possible models are fitted to the dataset. For all
the models fitted, TIC and evidence weights are calculated. Models featuring complete
independence, one 2-way association, or two 2-way associations within a subcube all have
relatively high TIC which lead to essentially zero evidence weights regardless of whether
their ORs are allowed to vary across the models. However, when three 2-way associations
within a subcube are assumed, some models have relatively smaller TICs than the previous
scenario and produce slightly larger weights (around 0.001). When 3-way association is
assumed within a subcube, all the models result in relatively smaller TIC and result in
higher weights than the previous scenarios as given in Table 5.3. The smallest TIC (304.5)
and the highest evidence weight (0.146) are produced by the saturated model (WY Z across
the models).

Figure 5.1 shows the cumulative evidence weights produced by the models given in Table
5.3. The first 11 models cover up to 0.98 cumulative weight and the rest of the models
do not seem to add much contribution. Subsequently, our model-averaging calculations are
based only on these 11 models.

5.3 Model averaging

Model averaging is carried out as explained in Section 3.2.2. Model-averaged ORs and their
95% confidence intervals are given in Table 5.4. The R code is given in Appendix B. The
pattern of associations is the same as was seen in the conditional odds ratios in Table 5.1.
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Table 5.3: Table of TIC and evidence weights when 3-way association is assumed within
a subcube, and this association is allowed to vary across the subcubes according to the
pattern given in the first column.

Across-subcube model TIC Evidence weights
WY Z 304.5 0.146

WY,WZ, Y Z 305.2 0.106
WY, Y Z 305.2 0.106

Y Z 305.3 0.099
WZ,Y Z 305.3 0.098
WY,WZ 305.9 0.073

WY 305.9 0.073
Y + Z 306.0 0.070

W + Y + Z 306.0 0.070
Y 306.0 0.069

W + Y 306.0 0.069
C 312.9 0.002
Z 313.1 0.002
W 313.1 0.002

W + Z 313.3 0.002
WZ 313.5 0.002

Therefore the same conclusions can be made from the model-averaging process.

Table 5.4: Table of model-averaged conditional ORs along with 95% confidence intervals
(in parentheses). Highlighted cells denote ORs that do not include 1.

WY OR Z1 = 0 Z1 = 1 Z2 = 0 Z2 = 1
W1Y1 2.5 (1.1,5.3) 0.9 (0.2,4.7) 3.2 (1.3,7.9) 1.1 (0.4,3.3)
W1Y2 1.8 (0.8,3.9) 1.7 (0.4,6.8) 1.6 (0.7,4.0) 1.9 (0.7,5.5)
W2Y1 3.1 (1.2,7.8) 1.4 (0.2,8.4) 4.2 (1.4,12.3) 1.5 (0.4,5.1)
W2Y2 1.8 (0.7,4.3) 1.5 (0.4,6.3) 1.7 (0.6,4.4) 1.8 (0.6,5.6)

WZ OR Y1 = 0 Y1 = 1 Y2 = 0 Y2 = 1
W1Z1 2.4 (0.5,11.3) 0.9 (0.4,2.4) 1.4 (0.5,3.9) 1.3 (0.4,4.3)
W1Z2 2.7 (0.9,8.3) 1.0 (0.4,2.2) 1.3 (0.5,3.1) 1.5 (0.5,4.5)
W2Z1 2.6 (0.4,15.3) 1.2 (0.4,3.1) 1.8 (0.6,5.4) 1.5 (0.4,5.6)
W2Z2 2.7 (0.7,10.6) 1.0 (0.4,2.4) 1.3 (0.5,3.4) 1.4 (0.4,4.6)

YZ OR W1 = 0 W1 = 1 W2 = 0 W2 = 1
Y1Z1 4.5 (2.0,9.2) 1.7 (0.4,8.4) 4.2 (1.9,9.2) 1.9 (0.3,11.8)
Y1Z2 1.9 (1.1,3.1) 0.7 (0.2,2.4) 1.8 (1.1,3.1) 0.7 (0.1,2.8)
Y2Z1 1.7 (0.8,3.5) 1.6 (0.4,6.4) 1.7 (0.8,3.5) 1.4 (0.3,6.3)
Y2Z2 1.7 (0.9,3.0) 2.0 (0.6,6.6) 1.7 (1.0,3.0) 1.8 (0.5,6.9)
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Figure 5.1: Cumulative weights of top 16 models.
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Chapter 6

Conclusions and discussion

The thesis focuses on analyzing and modeling three MRCVs. It extends the approach of
Bilder and Loughin (2007), to allow for three MRCVs and explores the potential compli-
cations faced when modeling three MRCVs. There are 232 possible models representing
different combinations of associations. Parameters are estimated using GEEs generated by
a pseudo-likelihood and variances of the estimates are corrected using sandwich methods.
Due to the large number of possible models, model comparisons based on hypothesis test-
ing of nested models would be computationally intensive and inefficient. As an alternative,
model averaging is proposed as a model comparison tool which can be also used to account
for model selection uncertainty.

Further it is noticed that the calculations required for computing the variance of the es-
timates can exceed 32-bit machine capacity even for a moderately large number of items.
This issue is addressed in Chapter 4 by identifying and eliminating rows and columns of
zeroes from the sparse matrix. The approach is demonstrated only for two MRCVs but can
be extended for three or more MRCVs. The new approach does have certain limitations. It
works efficiently only when the joint table is largely sparse; i.e., when the number of non-
zero joint counts (q) is much less than the total number of cells in the joint table (2I+J).
It is not helpful if q is close to 2I+J . However, this would happen only if either I + J is
small or if the sample size is immense, and if all or most combinations of items are at least
somewhat likely to occur together.

Chapter 2 reviews the literature related to modeling two MRCVs and presents 6 possible
ways of modeling associations. However, Chapter 3 shows that when another MRCV is
added, there are 232 possible ways of representing different combinations of associations.
Just by adding one more MRCV, the number of possible models increases drastically. One
might be interested in identifying the models for 4 or even more MRCVs. This is certainly
conceptually possible, but the higher the dimensions the harder it would be to visualize the
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patterns in which the odds ratios might change. Therefore the difficulty of constructing
and fitting all possible models to higher dimensions would be one of the major challenges
in the context of modeling any number of MRCVs.

All the methods and models built so far assume that the simple random sample of units
are drawn from the population. But in practice, the surveys may have a complex design
and use strategies such as stratification and clustering. When a complex sampling design is
used, the observations are not independent of each other, which invalidates the methods and
models developed. Therefore, when CATA questions result from a complex survey sample,
appropriate inference techniques should be developed.

The models built so far involve only categorical variables. But one might be interested in
incorporating continuous covariates into these models and in studying how the associations
between MRCVs change across continuous covariates. This would be a great direction for
future research.
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Appendix A

An R Code to compare run times
between two methods

The following R code was used to compare run times (seconds) for computing variance using
the standard method and the dimension reduction method.

rm(list=ls())

##Set the seed
set.seed (558562316)

##Load the packages
library(MRCV)
library(compositions)
library(plyr)

##Read the dataset
data=read.csv(’C:\\ Users \\menuk \\ Google␣Drive \\ thesis
\\ analysis \\CATA.csv’)
## Change data and I, J accordingly
I =41
J =19
n= nrow(data)

## Compute run time for standard method
start.time <- Sys.time()
W.counts <- as.data.frame(table(data[, 1:I]))
cols <- c(1:I)
W.counts <- W.counts[do.call("order",as.data.frame(
W.counts[,cols])), ]
Y.counts <- as.data.frame(table(data[,(I+1):(I+J)]))
cols <- c(1:J)
Y.counts <- Y.counts[do.call("order", as.data.frame(
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Y.counts[, cols])), ]
n.counts <- as.data.frame(table(data))
cols <- c(1:( ncol(data )))
n.counts <- n.counts[do.call("order", as.data.frame(
n.counts[, cols])), ]
G <- t(data.matrix(W.counts[, 1:I]) - 1)
H <- t(data.matrix(Y.counts[, 1:J]) - 1)

tau <- n.counts[, ncol(n.counts )]/n
Jr <- matrix(data = 1, nrow = I, ncol = 2^I)
Jc <- matrix(data = 1, nrow = J, ncol = 2^J)
B.matrix <- rbind(kronecker(G, H), kronecker(G,
(Jc - H)), kronecker ((Jr - G), H),
kronecker ((Jr - G), (Jc - H)))

V <- n * B.matrix %*% tcrossprod ((diag(tau) -
tcrossprod(tau)), B.matrix)

end.time <- Sys.time()
time.taken <- end.time - start.time
cat("time␣taken", time.taken)

##Run time using mew method

start.time <- Sys.time()

## Function to convert decimal to binary vector
##given the number
convert_to_binary <- function(number ,noBits)
{

number <- number -1
i <- 0
string <- numeric(noBits)
while(number > 0)
{

string[noBits - i] <- number %% 2
number <- number %/% 2
i <- i + 1

}
return(string)

}

## Function to convert binary to decimal
convert_to_decimal <- function(binary_vec)
{

binary_char <- paste(binary_vec ,collapse = "")
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decimal_val <- unbinary(binary_char )+1

return(decimal_val)
}

##joint table for non_zero counts
joint_nonzero=count(data , vars = colnames(data))

##n vectorof non zero counts
n.nonzero.vec <- joint_nonzero$freq
Q <- length(n.nonzero.vec)

##tau vectorof non zero probabilities
tau.nonzero.vec <- n.nonzero.vec/sum(n.nonzero.vec)

##T for non_zero probabilities
T.nonzero.mat <- diag(tau.nonzero.vec)-
tcrossprod(tau.nonzero.vec)

##Get non zero positions of joint and
# convert to decimal
rows.nonzero <- apply(joint_nonzero [,1:I],1,
convert_to_decimal)
cols.nonzero <- apply(joint_nonzero[,(I+1):(I+J)]
,1,convert_to_decimal)

g_cols <- unique(rows.nonzero)
B_rows <- 1:4
G_vec <- c(1,1,2,2)
H_vec <- c(1,2,1,2)

## Function to compute B.tilda: performs
# kronecker at each iteration
calculate_B <- function(g_cols ,B_rows)
{

h_cols <- cols.nonzero[which(rows.nonzero ==g_cols)]
H_sub <- sapply(h_cols ,function(x) convert_to_binary(x,J))
G_sub <- as.matrix(convert_to_binary(g_cols ,I),ncol =1)

Jr <- matrix(data = 1,nrow= I, ncol = ncol(G_sub))
Jc <- matrix(data = 1,nrow= J, ncol = ncol(H_sub))

G_list <- list(G_sub ,Jr-G_sub)
H_list <- list(H_sub ,Jc-H_sub)

B<- kronecker(G_list[[G_vec[B_rows]]],H_list[[
H_vec[B_rows ]]])
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return(B)
}

B_mat <- sapply(g_cols ,function(x) apply(sapply(B_rows ,
calculate_B,g_cols=x,simplify = "array"),2,c),
simplify = "array")
B_mat2 <-do.call("cbind", B_mat)

## Compute the variance
Var <- n * B_mat2 %*% tcrossprod(T.nonzero.mat , B_mat2)
end.time <- Sys.time()
time.taken <- end.time - start.time
cat("time␣taken", time.taken)
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Appendix B

An R Code to compute model
averaged ORs and 95% confidence
intervals

The following R code was written to compute model averaged ORs and 95% confidence
intervals.

rm(list=ls())

##set the seed
set.seed (558562316)

##Load the packages
library(stringr)
library(MRCV)
library(psych)

## Create the dataset
data=farmer3
new_data <- data[,c(1,2,4,5,8,9)]
I=2;J=2;K=2
data <- new_data

##Across - subcube associations
wy_ac <- c("C","W","Y","W+Y","W:Y")
wz_ac <- c("C","W","Z","W+Z","W:Z")
yz_ac <- c("C","Y","Z","Y+Z","Y:Z")

wyz_ac <-c("C","W", "Y","Z","W+Y","W+Z", "Y+Z","W+Y+Z","W:Y",
"W:Z","Y:Z","W:Y,Y:Z", "W:Y,W:Z","W:Z,Y:Z",
"W:Y,W:Z,Y:Z", "W:Y:Z")
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wy.wz <- as.vector(outer(wy_ac ,wz_ac ,paste ,sep=","))
wy.yz <- as.vector(outer(wy_ac ,yz_ac ,paste ,sep=","))
yz.wz <- as.vector(outer(yz_ac ,wz_ac ,paste ,sep=","))

wy.wz.yz <- as.vector(outer(wy.wz,yz_ac,paste ,sep=","))

first.row <- data.frame(within="C",across="C")
model_table <- expand.grid(c("wi:yj"),wy_ac)
model_table <- rbind(model_table , expand.grid(c("wi:zk"),
wz_ac))
model_table <- rbind(model_table , expand.grid(c("yj:zk"),
yz_ac))
model_table <- rbind(model_table , expand.grid(c("wi:yj,
wi:zk"),wy.wz))
model_table <- rbind(model_table , expand.grid(
c("wi:yj,yj:zk"),wy.yz))
model_table <- rbind(model_table , expand.grid(c("yj:zk,
wi:zk"),yz.wz))
model_table <-rbind(model_table ,expand.grid(c("wi:yj,
wi:zk ,yj:zk"),wy.wz.yz))
model_table <- rbind(model_table , expand.grid(c("wi:yj:zk"),

wyz_ac))

names(model_table) <- names(first.row)
model_table <- rbind(first.row ,model_table)

##Model for complete independence
const = "count~ -1+W:Y:Z+wi%in%W:Y:Z+yj%in%W:Y:Z+zk%in%W:Y:Z"
model.list <- list()

### Function to create 1-2 way interactions
within_across <- function(wi ,ac, three.way)
{

terms.ac <- nchar(ac)
wi.vec <- c(wi)

if(ac == "C")
{

wi.vec <- wi.vec
}else if(terms.ac == 1){

within.eff <- paste(wi, ac, sep="%in%")
wi.vec <- c(wi.vec ,within.eff)

}else if(grepl(’+’,ac,fixed=TRUE )){

split.terms <- unlist(strsplit(ac ,’+’, fixed = TRUE))
within.eff <- as.vector(outer(wi, split.terms ,paste ,
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sep= "%in%"))
wi.vec <- c(wi.vec ,within.eff)

}else if(grepl(’:’,ac,fixed=TRUE) & three.way == FALSE)
{

split.terms <- unlist(strsplit(ac ,’:’, fixed = TRUE))
interact <- paste(wi, ac, sep="%in%")
within.eff <- as.vector(outer(wi , split.terms ,paste ,

sep= "%in%"))
wi.vec <- c(wi.vec ,within.eff , interact)

}else if(grepl(’:’,ac,fixed=TRUE)&
grepl(’,’,ac,fixed=TRUE) & three.way == TRUE){

split.int.terms <- unlist(strsplit(ac ,’,’,
fixed = TRUE))

interact <- paste(wi, split.int.terms , sep="%in%")
split.terms <-unique(unlist(strsplit(split.int.terms ,

’:’,fixed = TRUE )))
within.eff <- as.vector(outer(wi, split.terms ,paste ,

sep= "%in%"))
wi.vec <- c(wi.vec ,within.eff , interact)

}else if(grepl(’:’,ac,fixed=TRUE)&grepl(’,’,ac,
fixed=TRUE )== FALSE &three.way == TRUE){

split.terms <-unlist(strsplit(ac,’:’,fixed = TRUE))
interact.three <- paste(wi, ac, sep="%in%")

combinations.two <- t(combn(split.terms ,2))
interact.two <- apply(combinations.two , 1, paste ,

collapse=":")
within.eff.two <- as.vector(outer(wi,interact.two ,
paste ,sep= "%in%"))
within.eff <- as.vector(outer(wi, split.terms ,
paste ,sep= "%in%"))
wi.vec <- c(wi.vec ,within.eff , within.eff.two ,

interact.three)

}

return(wi.vec)

}

## Function to create 2-2 way and 2-3 way interactions
within_across.two.three.int <- function(wi ,ac)
{
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within.vec <- unlist(str_split(wi,","))
across.vec <- unlist(str_split(ac,","))

w.ac.matrix <- rbind(within.vec , across.vec)
row.names(w.ac.matrix) <- NULL
w.ac.matrix <- rbind(w.ac.matrix ,rep(FALSE ,
ncol(w.ac.matrix )))

int.matrix <- apply(w.ac.matrix , 2,
function(x)do.call(within_across , as.list(x)))

return(int.matrix)
}

## Function to calculate TIC
compute_TIC <- function(model)
{

model <- as.formula(model)
n <- nrow(data)

nvars <- 2 + is.numeric(K)
model.data.unsorted <- MRCV ::: data.format(data = data ,
I = I,J = J,K = K, nvars = nvars ,
add.constant = add.constant)

if (nvars == 2) {
model.data <- model.data.unsorted[order(
-model.data.unsorted$wi,
-model.data.unsorted$yj), ]

}
if (nvars == 3) {

model.data <- model.data.unsorted[order(
-model.data.unsorted$wi ,
-model.data.unsorted$yj ,
-model.data.unsorted$zk), ]

}

for (i in 1:I) {
parm <- paste("W", i, sep = "")
if (length(agrep(parm , model , max.distance = 0)) >0){

model.data <- data.frame(model.data , as.numeric(
(model.data[,1] == names(data)[i])))
colnames(model.data)[ncol(model.data)] <- parm

}
}
for (j in 1:J) {

parm <- paste("Y", j, sep = "")
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if (length(agrep(parm , model , max.distance = 0))>0) {
model.data <- data.frame(model.data , as.numeric(
(model.data[,2] == names(data )[(I + j)])))
colnames(model.data)[ncol(model.data)] <- parm

}
}
if (nvars == 3) {

for (k in 1:K) {
parm <- paste("Z", k, sep = "")
if (length(agrep(parm , model , max.distance = 0)) >

0) {
model.data <- data.frame(model.data , as.numeric(
(model.data[,3] == names(data )[(I + J + k)])))
colnames(model.data)[ncol(model.data)] <- parm

}
}

}

mod.fit0 <- MRCV ::: genloglin.fit(data = model.data ,
model = model ,nvars = nvars)
X <- model.matrix(mod.fit0)
p <- ncol(X)

mod.fit <- genloglin(data = data , I=I, J = J, K = K,
model = model , boot = FALSE ,B=1)
model.est <- mod.fit
mod0 <- mod.fit$mod.fit
mu.hat = as.vector(mod0$ fitted.values)
m=mod0$data$count
one.vec = rep(1,8*I*J*K)

Q=(t(X)%*%diag(mu.hat)%*%X)/(8*I*J*K)
omega =(t(X)%*%diag((m-mu.hat )^2)%*%X)/(8*I*J*K)
loglike =2*(t(mu.hat)%*%one.vec -t(m)%*%log(mu.hat)+

t(lfactorial(m))%*%one.vec)
TIC=loglike +2*tr(solve(Q)%*%omega)

return(list(TIC ,p,model.est))
}

## Function to compute weights
compute_ weights <- function(TIC.vec)
{

TIC0 <- min(TIC.vec)
diff.TIC <- TIC.vec -TIC0
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exp.diff.TIC <- exp(-diff.TIC/2)
one.vec.TIC <- rep(1,length(TIC.vec))
evidence.weight <- exp.diff.TIC/(t(exp.diff.TIC)
%*%one.vec.TIC)

return(evidence.weight)
}

## Function to get the top models
get_top_weight_models <- function(weight)
{

weight.data <- data.frame(model.index=c(1: length(weight ))
,weights=weight)
ordered.weight <- weight.data[order(weight.data$ weights
,decreasing =TRUE),]
cum_ weights <- cumsum(ordered.weight$ weights)
weights.plot <- plot(cum_ weights [1:20] , pch=20,
ylab="cummulative␣weights",xlab = "models",
main="Cummulative␣weights␣of␣top␣20␣models")

return(list(ordered.weight , weights.plot))

}

## Function to compute MA ORs
compute_OR_MA <- function(models , weight)
{

pairs <- c("WY", "YZ", "WZ")
all.OR<- unlist(lapply(pairs ,function(x)
as.vector(rownames(predict(models [[ length(models )]],

pair=x)$OR.model.asymp ))))

OR_table <- data.frame(matrix(0,nrow=length(models) ,
ncol=length(all.OR)))

colnames(OR_table) <- all.OR

var.ln.OR <- data.frame(matrix(0,nrow=length(models),
ncol=length(all.OR)))

colnames(var.ln.OR) <- all.OR

##for each model get predicted OR
for(a in 1: length(models ))
{
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model_OR <- unlist(lapply(pairs ,function(x)
predict(models [[a]],pair=x)$OR.model.asymp [ ,1]))

col.num <- which(names(model_OR) %in% all.OR)
OR_table[a,col.num]<- as.vector(model_OR)
##var(ln ORj ,m)
upper <- as.vector(unlist(lapply(pairs ,function(x)
predict(models [[a]], pair=x)$OR.model.asymp [ ,3])))
lower <- as.vector(unlist(lapply(pairs ,function(x)
predict(models [[a]], pair=x)$OR.model.asymp [ ,2])))

var.ln.OR[a,col.num]<-((log(upper)-log(lower ))/
(1.96*2))^2

}
##get ln_OR
ln.OR.table <- log(OR_table)
lower.ln.OR <- data.frame(matrix(0,nrow=length(models),

ncol=length(all.OR)))
colnames(lower.ln.OR) <- all.OR
upper.ln.OR <- lower.ln.OR

for(b in 1:ncol(ln.OR.table ))
{

lower.ln.OR[,b] <- ln.OR.table[,b]
-1.96*sqrt(var.ln.OR[,b])
upper.ln.OR[,b] <- ln.OR.table[,b]
+1.96*sqrt(var.ln.OR[,b])

}

## compute Model averaged ln(OR)
MA.ln.OR=data.frame(MA_ln.OR=apply(ln.OR.table ,2,

function(x) t(x)%*%weight ))
MA.OR=as.vector(apply(OR_table ,2,

function(x) t(x)%*%weight ))
obs.OR <- as.vector(unlist(lapply(pairs ,function(x)
predict(models [[a]], pair=x)$OR.obs [ ,1])))

num.col <- c(1: ncol(ln.OR.table ))
MA.ln.OR <- data.frame(MA.ln.OR,var.MA.ln.OR=
unlist(lapply(num.col ,function(x) t(weight) %*%
((ln.OR.table[,x]-MA.ln.OR[x ,1])^2 + var.ln.OR[,x]) )))
lower.MA.OR <-exp(MA.ln.OR[ ,1] -1.96*sqrt(MA.ln.OR[ ,2]))
upper.MA.OR <- exp(MA.ln.OR[ ,1]+1.96*sqrt(MA.ln.OR[ ,2]))
MA.ln.OR <- data.frame(MA.ln.OR, MA.OR=MA.OR,

52



obs.OR = obs.OR ,lower.MA.OR=lower.MA.OR,
upper.MA.OR=upper.MA.OR)

lower.ln.MA.OR <-MA.ln.OR[,1]-1.96*sqrt(MA.ln.OR[,2])
upper.ln.MA.OR <-MA.ln.OR[ ,1]+1.96*sqrt(MA.ln.OR[,2])

MA.ln.OR.CI <- data.frame(MA.ln.OR,lower=
lower.ln.MA.OR,upper=upper.ln.MA.OR)

return(MA.ln.OR)
}

## Identify the interaction type in ’within ’
for(i in 1:nrow(model_table ))
{

wi <- as.character(model_table$within[i])
ac <- as.character(model_table$across[i])

if(wi=="C")
{

model_table[i,3]="independent"
vec <- c()

}else if(str_count(wi ,",")==0 &
str_count(wi ,":")== 1){

model_table[i,3]="1-2␣way"
vec <- within_across(wi ,ac ,FALSE)

}else if(str_count(wi ,",")==0 &
str_count(wi ,":")== 2){

model_table[i,3]="1-3␣way"
vec <- within_across(wi ,ac ,TRUE)
vec <- c("wi:yj","wi:yj%in%W","wi:yj%in%Y","wi:yj%in%Z"
,"wi:yj%in%W:Y","wi:yj%in%W:Z", "wi:yj%in%Y:Z",

"wi:yj%in%W:Y:Z","wi:zk", "wi:zk%in%W",
"wi:zk%in%Y","wi:zk%in%Z","wi:zk%in%W:Z",
"wi:zk%in%Y:Z","wi:zk%in%W:Y",
"wi:zk%in%W:Y:Z","yj:zk", "yj:zk%in%W",
"yj:zk%in%Y" ,"yj:zk%in%Z", "yj:zk%in%Y:Z",

"yj:zk%in%W:Z","yj:zk%in%W:Y","yj:zk%in%W:Y:Z",vec)

}else if(str_count(wi ,",") ==1){
model_table[i,3]="2-2␣way"
vec <- within_across.two.three.int(wi , ac)
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}else if(str_count(wi ,",") ==2){
model_table[i,3]="3-2␣way"
vec <- within_across.two.three.int(wi , ac)

}

model_table[i,4] <- ifelse(length(vec)==0,const ,
paste(const ,paste(unlist(vec), collapse = "+")
, sep = "+"))

}

## compute TIC and P
list.TIC=lapply(model_table[,4],compute_TIC)
row.TIC= c(1: nrow(model_table ))
TIC.p.list=lapply(row.TIC ,function(x)unlist(
list.TIC[[x]][1:2]))

TIC.p=matrix(unlist(TIC.p.list),ncol=2,byrow=TRUE)
model_table = cbind(model_table , TIC.p)

##Get the names and the estimates
estimates_names <- lapply(row.TIC , function(x)
names(summary(list.TIC[[x]][3][[1]])
$ coefficients [,1]))
estimates_est <- lapply(row.TIC , function(x)
as.vector(summary(list.TIC[[x]][3][[1]])
$ coefficients [,1]))
estimates_SE <- lapply(row.TIC , function(x)
as.vector(summary(list.TIC[[x]][3][[1]])
$ coefficients [,2]))

## calaculate evidence weights

model_table [,7] <- compute_ weights(model_table [,5])

sorted=sort(model_table[,7], decreasing = TRUE )[1:11]

higher_ weights=model_table[model_table$V7 %in%
sorted ,c(1,2,6,7)]
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saturated_terms <-estimates_names [[ length(estimates_names )]]

### compute MA_OR
plot.weight <- get_top_weight_models(model_table [ ,7])[[2]]
## Change the threshold accordingly
weight.thresh <- 11
abline(v=weight.thresh ,lty=2)

top_ weights <- get_top_weight_models(model_table [ ,7])[[1]]
$ weights [1: weight.thresh]
top_models_index <- get_top_weight_models(model_table [ ,7])[[1]]
$model.index [1: weight.thresh]

top_models <- lapply(top_models_index , function(x)
list.TIC[[x]][3][[1]])

##Scale the weights
scale_ weights <- top_ weights /sum(top_ weights)
MA.OR <- compute_OR_MA(top_models ,scale_ weights)

colnames(model_table)<- c("within","across", "type","model",
"TIC","Para","evidence_weights")
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