
Sports Analytics
by

Rajitha Minusha Silva

M.Sc., Sam Houston State University, 2013
B.Sc.(Hons.), Rajarata University of Sri Lanka, 2008

Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

c© Rajitha Minusha Silva 2016
SIMON FRASER UNIVERSITY

Fall 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.



Approval

Name: Rajitha Minusha Silva

Degree: Doctor of Philosophy (Statistics)

Title: Sports Analytics

Examining Committee: Chair: Yi Lu
Associate Professor

Tim Swartz
Senior Supervisor
Professor

Boxin Tang
Supervisor
Professor

Oliver Schulte
Internal Examiner
Professor
School of Computing Science

Michael Schuckers
External Examiner
Professor
Department of Mathematics, Computer
Science and Statistics
St. Lawrence University, USA

Date Defended: 08 December 2016

ii



Abstract

This thesis consists of a compilation of four research papers.

Chapter 2 investigates the powerplay in one-day cricket. The form of the analysis takes
a “what if” approach where powerplay outcomes are substituted with what might have
happened had there been no powerplay. This leads to a paired comparisons setting con-
sisting of actual matches and hypothetical parallel matches where outcomes are imputed
during the powerplay period. We also investigate individual batsmen and bowlers and their
performances during the powerplay.

Chapter 3 considers the problem of determining optimal substitution times in soccer. An
analysis is presented based on Bayesian logistic regression. We find that with evenly matched
teams, there is a goal scoring advantage to the trailing team during the second half of a
match. We observe that there is no discernible time during the second half when there is a
benefit due to substitution.

Chapter 4 explores two avenues for the modification of tactics in Twenty20 cricket. The
first idea is based on the realization that wickets are of less importance in Twenty20 cricket
than in other formats of cricket (e.g. one-day cricket and Test cricket). The second idea may
be applicable when there exists a sizeable mismatch between two competing teams. In this
case, the weaker team may be able to improve its win probability by increasing the variance
of run differential. A specific variance inflation technique which we consider is increased
aggressiveness in batting.

Chapter 5 explores new definitions for pace of play in ice hockey. Using detailed event
data from the 2015-2016 regular season of the National Hockey League (NHL), the distance
of puck movement with possession is the proposed criterion in determining the pace of a
game. Although intuitive, this notion of pace does not correlate with expected and familiar
quantities such as goals scored and shots taken.

Keywords: Bayesian logistic regression; WinBUGS software; Cricket; Soccer substitutions;
Variance inflation
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Chapter 1

Introduction

1.1 Statistics in Sports

Statistics in Sports is a growing field in Statistics that provides specialized methodology
for collecting and analyzing sports data in order to make decisions for successful planning
and implementation of new strategies. Prior to the twenty-first century, decision making in
sports was primarily based on the information acquired by observation. This has changed
with technological advances, mainly related to data acquisition and the availability of per-
sonal computing.

The term “sports analytics” has been more popular than the term, “Statistics in sports”,
perhaps due to the fact that the expertise is borrowed from different fields such as Statistics,
Computer Science, Management, and the Health Sciences. Therefore, sports analytics is
broadly described as the process of data management, predictive model implementation,
and the use of information systems for decision making to gain a competitive advantage on
the field of play (Alamar and Mehrotra 2011). There are many areas where sports analytics
have been implemented. For example, sports teams use statistical analysis to evaluate
players in order to determine the best game strategy. Sports associations develop rankings
of players and teams, evaluate existing rules and study the feasibility of introducing new
rules. Sports health professionals use statistical methods to understand players’ physical
and mental conditions.

Beginning in 1977, Bill James self-published an annual book titled “Baseball Abstract”
that is viewed by many as the beginning of sports analytics. Though he did not utilize even
basic tools of Statistics such as model fitting or graphical displays for most of his writing,
the work was influential in contesting long-held beliefs in baseball. The main characteristic
of his work was that his opinions were based on evidence contained in data. Appreciation
for his work came to the peak with a 2011 movie called “Moneyball” which is based on the
book titled “Moneyball: The Art of Winning an Unfair Game” by Michael Lewis (Lewis
2004). In the book, Lewis explores some of James’ innovative concepts and illustrates
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how Billy Beane, the general manager of a Major League Baseball (MLB) team called the
Oakland Athletics, adapted these concepts into practical application. One of the most
recent academic books written about sports analytics is “Handbook of Statistical Methods
and Analyses in Sports” co-edited by Jim Albert, Mark E. Glickman, Tim B. Swartz and
Ruud H. Koning. It provides overviews of statistical methods in the major sports and
describes challenges and problems confronting statistical research in sports.

The discipline of Statistics has recognized that sport is rich in data, and that interesting
statistical problems arise in sport. Two of the early sports papers in prominent Statistics
journals that are familiar to us are by Elderton (1945) and Wood (1945). Both of these
papers concern the distribution of running scoring in Test cricket. As another early example,
Mosteller (1952) considered the problem of estimating the probability that the better team
wins theWorld Series in MLB.With the understanding of a need to foster the development of
statistics and its applications in sports, the American Statistical Association (ASA) initiated
a separate section for “Statistics in Sports”(SIS) in 1992. It promotes publications devoted
to statistical theory and methodology and their application to statistics in sports. The SIS
section also promotes meetings devoted to sports analytics, provides career guidance, data
resources and online sports statistics forums.

With the rapid evolution in the field of sports analytics, some research journals have
been created that are totally devoted to statistics in sports. Two main sports analytics
journals with a concentration on Statistics are The Journal of Quantitative Analysis in
Sports which is an official journal of the American Statistical Association and Journal of
Sports Analytics. The Journal of Sports Analytics is a more recent journal which has a
focus on practical applications that serve team owners, general managers, coaches, fans
and academics. There are many other sports science journals which are not specifically
statistical. A very abbreviated list of these journals include Journal of Sports Economics,
Journal of Sports Sciences, American Journal of Sports Medicine, International Journal
of Computer Science in Sport, Journal of Sports Science and Medicine and International
Journal of Sports Science and Engineering.

In addition to journals and books, sports analysts publish their work on blog sites
as well. Now, it has become a trend to provide day-by-day analyses of games on blogs
with less effort than publishing (e.g. www.soccermetrics.net, www.hockeyanalysis.com).
Sports analytics conferences are also a platform for professionals, researchers and students
to discuss related topics in sports. The MIT Sloan Sports Analytics Conference is one of
the highly recognized annual conferences. Other regular sports conferences include the New
England Symposium on Statistics in Sport, MathSport International and the Australasian
Conference on Mathematics and Computers in Sport. Other recent and nearby sports
analytics conferences have been the Ottawa Hockey Analytic Conference (January, 2016),
the Vancouver Hockey Analytics Conference (April, 2016), the Sports Analytics Innovation
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Summit in San Francisco, (August, 2016) and the Cascadia Symposium on Statistics in
Sports in Vancouver (September, 2016).

Banding together as societies, online forums, or professional groups is beneficial to both
the sport and to the researchers involved. The Society for American Baseball Research
(SABR) was established in 1971 with the idea of giving its members opportunities to pub-
lish their findings in its journal “Baseball Research Journal” which includes histories, bi-
ographies, statistics, personalities, book reviews, and other aspects of the game. SABR has
around 6,000 members including major and minor league baseball officials, broadcasters
and writers, and numerous former players ( www.sabr.org). At Simon Fraser Univer-
sity (SFU), a group of SFU faculty, coaches and students who have a passion for sports
and analytics formed the Sports Analytic Group (SAG) in 2015, with the goal of creating
new knowledge about sports and the underlying analytics that help the decision makers
in sports organization. They organize regular talks given by coaches and practitioners in
their respective field to understand real world situations in sports and to conduct effec-
tive research ( www.sfu.ca/sportsanalytics.html). Through the organization of two
conferences, the Vancouver Hockey Analytics Conference and the Cascadia Symposium on
Statistics in Sports (CASSIS), SAG was able to bring sports analytics experts to showcase
the power of analytics in sports.

Modern technology has made it easier to visualize the statistical information to public.
The SportVU camera system is used in the National Basketball Association (NBA) to
track the real-time positions of players and the ball 25 times per second. In the 2014 FIFA
World Cup, a system called “Matrics” which was built by an Italian firm called Deltatre,
gathered data to deliver the real-time statistics. The rich datasets can be utilized by sports
researchers to provide insights on soccer. During matches, commentators were able to
explain their opinions with the help of this visual data. Technology is also beneficial to
sports management in the area of ticketing analytics, sports betting and fan engagement.

Now, I briefly discuss six of the most popular sports in the world and the impact of
statistical analytics on these sports. What all of these team sports have in common is
money. Analytics is expensive and requires salaries for team analysts and the purchase of
hardware, software and data access.

1.2 Soccer

Using any familiar measure, soccer is clearly the most popular sport in the world. It is,
however, behind in analytics compared to various North American sports such as baseball
and basketball. Resistance to the use of new technology and a lack of standardization and
access to data are ongoing problems. Prozone sports data company is among the pioneers
in using player tracking data for technical and tactical statistical analysis. Until recently,
player performance has been primarily based on events such as passes and shots on goal.

3
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With the aid of tracking data, new metrics are being developed to measure the impact a
player has on subtle processes such as creating space for his teammates, applying defensive
pressure and reducing passing options. Although soccer is growing in North America via
international soccer and Major League Soccer (MLS), soccer is very much a world sport
with the biggest leagues in Europe.

1.3 Basketball

Basketball has the second greatest number of professional leagues worldwide. Some of the
useful metrics in basketball analytics are field goal attempts, field goal percentage, free
throw attempts, free throw percentage, defensive rebound rate, and adjusted plus/minus.
Whereas the above metrics and others have been useful for many years, a revolution has
occurred in NBA basketball due to the proliferation of player tracking data made available
from the company SportVU. Utilizing tracking data, many detailed aspects of basketball
are now being investigated such as the measurement of defensive contributions (Franks et
al. 2015).

1.4 Cricket

ICC Cricket World Cup 2015 hosted in Australia and New Zealand has been ranked third
from over 80 sporting events by Sportcal’s Global Sports Event Index, after the FIFA
Women’s World Cup 2015 and the Rugby World Cup 2015.

Though the game is more popular in the countries that were once colonized by England,
the latest format of cricket known as “Twenty20” is now gaining the attention of other
countries. However, cricket lags behind the other major professional sports in terms of
advanced analytics.

The availability of cricket data, as provided by the Cricinfo website is the primary
source for publicly available cricket data. It contains information on matches going back
to the 1770’s ( www.espncricinfo.com). An overview of cricket analytics is provided by
Tim Swartz in the chapter “Research Directions in Cricket” in the previously mentioned
“Handbook of Statistical Methods and Analyses in Sports”.

1.5 Ice Hockey

Ice hockey is the most popular winter sport in the world where it is played in snow and cold
countries like Canada, Russia, USA, and some Scandinavian countries. It is the dominant
sport in Canada. Though the sport is not widely played throughout the world, hockey
analytics are gaining attention, especially in the National Hockey League (NHL). Similar
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to basketball, there have been many common statistics that have been developed over the
years in hockey that have gained widespread usage.

However, one of the most notable recent advances in hockey analytics is the availability
of the NHL Real Time Scoring System database. Thomas and Ventura (2014) have created
an R package nhlscrapr that provides detailed event information from the database in a
format that can be handled by analysts. And in terms of hockey analytics, even more data
will be on the horizon as player tracking cameras have now been installed in NHL arenas. It
is expected that the type of data available in the NBA will soon be available for the NHL.
One of the companies leading the way in NHL player tracking technology is Sportlogiq.

1.6 Baseball

Baseball is one of the major spectator sports in both the USA and Japan, and MLB is the
oldest of the four major professional North American sports leagues - MLB, NBA, NHL
and NFL. Baseball analytics became known to the public in the 1980s, with the publication
of Bill James’ Baseball Abstract. James was the co-founder of a research based movement
called Sabermetrics, named after the Society for American Baseball Research (SABR).
Sabermetrics is concerned with the mathematical and statistical study of baseball. We
believe that nearly every MLB team now has an analytics staff.

With the introduction of cameras in MLB ballparks, and the implementation of PITCHf/x
and FIELDf/x technologies, baseball is undergoing an analytics renaissance. For example
PITCHf/x provides over 70 variables of information on every pitch thrown in every MLB
game. Some of the new metrics in baseball analytics are true average (TAv), base running
runs (BRR), special aggregate fielding evaluation (SAFE), and offensive/defensive efficiency
rating (OER/DER).

1.7 American Football

The National Football League (NFL), formed in 1920, is one of the four professional leagues
in North America. The NFL official website www.nfl.com is a primary source for foot-
ball data. In addition, the website www.advancedfootballanalytics.com appears to be
a well-organized source for football analytics. It categorizes analyses into four main ar-
eas: team analysis, player analysis, game analysis, and game probabilities. Although the
NFL appears secretive about the analytics that are carried out and there is a dearth of
research publications related to football, football may be prime for a growth in analytics.
In particular, Sam Ventura and his colleagues at Carnegie Mellon University have created
an open-source R package nflscrapR which allows easy access to detailed NFL data from
2009-2016.
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1.8 Organization of the thesis

In my thesis, there are four chapters that follow. What these chapters have in common is
sports analytics. My work attempts to investigate some interesting sports problems from a
statistical perspective and gain insight on these problems. Another common theme in the
four chapters is data. Although there is disagreement these days about what constitutes
big data, none of the data sets used in this thesis are trivial. Each data set requires some
sort of scraping procedure to secure detailed data. And it is the detailed level of the data
(as opposed to aggregrate data which people often see) that has allowed me to study the
topics under consideration.

Another common theme in my work is computation. Each of the following four chapters
use programs written either in the R programming language or in the WinBUGS program-
ming language. WinBUGS is an especially valuable language when carrying out Bayesian
analyses.

Before describing the chapters in more detail, a final general remark about the chap-
ters is that the focus is problem based. Sometimes, the problems call for more sophis-
ticated methodology and sometimes less. However, the focus has always been on solv-
ing/investigating the problem.

Chapter 2 is a project related to the powerplay in one-day cricket. This chapter is a
copy of the published paper by Silva, Manage and Swartz (2015) which has appeared in
the European Journal of Operational Research. In one-day cricket, powerplay rules have
changed frequently over the years. Here we investigate the various powerplay rules in terms
of run production and the taking of wickets. It is important for the ICC (International
Cricket Council) to have a good understanding of the effect of new rules. In our opinion,
rules to major sports should not be changed regularly as this affects record keeping and
affects the integrity of the game. The main idea in the chapter (paper) is the replacement
of powerplay overs with overs that resemble non-powerplay overs. This leads to a dataset
of paired matches, actual matches and parallel matches. This chapter (paper) appears to
be the first scientific study of the powerplay in one-day cricket

Chapter 3 considers an analysis of substitutions in soccer. This chapter is a copy of
the discussed paper by Silva and Swartz (2016) which has appeared in the Journal of
Quantitative Analysis in Sports. The project is a response to an earlier paper by Myers
(2012). Myers (2012) introduced a decision rule for soccer substitutions to improve goal
differential if a team is trailing. Myers’ rule has received considerable attention in the media
due to its apparent simplicity and for the alleged benefits from following the rule. However,
our intuition suggested that there was something problematic with the rule and this was
the motivation for our investigation. In addition to a careful analysis of Myers’ rule, we
introduced a statistical model which took into account covariates that Myers (2012) had
not considered. Our primary finding was that there is no goal scoring benefit due to various
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substitution patterns. In essence, we found a contrary result to what was advocated by
Myers (2012). One of our other observations was that when teams are of equal strength,
the trailing team is more likely to score the next goal. This secondary finding has importance
for the game of soccer where either by coaching instruction or by psychology, the leading
team goes into a defensive shell. We have demonstrated that this is detrimental to the team
that is leading. We suggest that Jose Mourinho’s “parking of the bus” is not the way that
teams should play when they are leading.

Chapter 4 considers tactics in the sport of Twenty20 cricket. This chapter is a copy of the
paper by Silva, Perera, Davis and Swartz (2016) which has appeared in the South African
Statistical Journal. Twenty20 is the most recent format of cricket that has a huge following.
This is an extremely practical chapter (paper) where we explain how teams may improve
their chances of winning based on some simple strategies. Since Twenty20 is so young, many
of its tactics have been borrowed from the sport of one-day cricket. However, Twenty20 and
one-day cricket are different games and we have attempted to exploit inefficiencies in the
way that Twenty20 is currently played. We believe that this paper has enormous potential
for changing the way that Twenty20 is played.

Chapter 5 explores new definitions for pace of play in ice hockey. We will attempt to
either blog this chapter or publish it in a journal. The proposed definitions borrow on
notions from soccer and involve calculating distance that the puck moves forward with
possession. To our great surprise, we observed that pace does not correlate with expected
quantities such as goals scored and shots taken. Therefore this chapter may be seen as a
negative result.
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Chapter 2

A Study of the Powerplay in
One-Day Cricket

2.1 Introduction

In the major sports of the world, rule changes are typically considered with great care.
For example, FIFA (Fédération Internationale de Football Association) has made very few
significant rule changes in soccer over the last 44 years ( www.fifa.com). In 1992, legislation
was introduced whereby goalkeepers were henceforth forbidden from handling back-passes.
The only other significant rule change in soccer during the period concerned the offside rule.
The offside rule has been twice liberalized (1995 and 2005) whereby offsides are now less
common. Similarly, baseball is a sport steeped in tradition where there is a reluctance to
alter the way that the game is played. In Major League Baseball (MLB), one may point to
the introduction of the designated hitter in 1973 as the most recent significant rule change
( www.baseball-almanac.com/rulechng.shtml). Wright (2014) provides a survey of the
analysis of sporting rules from the perspective of operational research (OR).

In contrast to the stability of rules (laws) involving many of the major sports, one-day
cricket has tinkered continuously with its powerplay rule. One-day cricket was introduced
in the 1960s as an alternative to traditional forms of cricket that can take up to five days
to complete. With more aggressive batting, colorful uniforms and fewer matches ending in
draws, one-day cricket has become very popular. In the early days of one-day cricket, fielding
restrictions were introduced as an additional strategy for making the game more exciting
and popular. In simple terms, the powerplay imposes fielding restrictions that encourages
aggressive batting and the scoring of runs. More specifically, fielding restrictions on the
bowling team are in place during the full 50 overs of an innings. During powerplay overs,
the level of fielding restrictions is increased whereby there are fewer fielders allowed in the
outfield which may encourage the batting team to play more attacking type shots.
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Although fielding restrictions have existed in one-day cricket since the 1996 World Cup,
the term “powerplay” was introduced by the International Cricket Council (ICC) in 2005.
And since 2005, there have been four distinct implementations of the powerplay rule. This
paper investigates the four versions with a specific focus on whether powerplays really
do increase run production. Although it may appear self-evident that run scoring increases
during the powerplay, it is conceivable that aggressive batting leads to more wickets which in
turn results in fewer runs. This is the line of reasoning which has initiated our investigation.

There are various practical questions associated with our investigation. For example,
is the run scoring and wicket taking properties associated with the powerplay in line with
the desires of the ICC? Also, in-game wagering has become extremely popular with online
sportsbooks ( http://bleacherreport.com/articles/54254). Accordingly, are in-game
wagering odds properly reflected by the onset of the powerplay? Other questions involve
strategic implications of the powerplay. For example, in what over should a team invoke the
powerplay? Moreover, is an individual’s level of batting aggressiveness appropriate during
the powerplay?

To our knowledge, there have not been any previous investigations on the effect of the
powerplay. However, there are many data analytic studies concerning one-day cricket that
have an OR focus. To get a sense of the variety of problems that have been addressed
in one-day cricket, we mention a few recent papers. Most notably, Duckworth and Lewis
(2004) developed the standard approach for the resetting of targets in rain interrupted
matches. The approach known as the “Duckworth-Lewis method” has been adopted by all
prominent cricketing boards and is based on the concept of resources which is a function
of overs remaining and wickets taken. Following the seminal work of Duckworth and Lewis
(2004), there have been various modifications and proposals for the resetting of targets (e.g.
McHale and Asif 2013). Various authors including Allsopp and Clarke (2004) and Fernando,
Manage and Scariano (2013) have investigated the effect of the home team advantage in
one-day cricket. This is obviously important for match prediction. A topic of interest in ev-
ery sport is player evaluation. Whereas in some sports, the measurement is straightforward,
cricket performance involves a combination of batting, bowling and fielding contributions.
In limited overs cricket, van Staden (2009) developed some simple and intuitive graphical
displays to investigate batting and bowling performances. Valero and Swartz (2012) dis-
pelled the myth that there are synergies in opening partnerships. It is argued that batsmen
are not affected by the performance of their partners. Team selection is a problem of real
interest to cricketing sides. Lemmer (2013) considered integer optimization methods for
team selection. Swartz, Gill, Beaudoin and de Silva (2006) extended the problem to the
determination of optimal batting orders using a simulated annealing algorithm. Norton and
Phatarfod (2008) used dynamic programming to produce an optimal run scoring strategy
for the batting team in both the first and second innings.
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In section 2.2, the data are introduced and the four historical versions of the power-
play are described. Section 2.3 is concerned with the construction of hypothetical parallel
matches. We take a “what if” approach where powerplay outcomes are substituted with
what might have happened had there been no powerplay. This leads to a paired compar-
isons setting consisting of actual matches and parallel matches where outcomes are imputed
during the powerplay period. Section 2.4 carries out the powerplay analyses by comparing
the actual matches with the parallel matches. We investigate the difference in run produc-
tion and the number of wickets taken with respect to the various powerplay rules. We also
investigate the difference in run production with respect to the over where the powerplay
was initiated. Section 2.5 provides a Bayesian analysis of individual batsmen and their
ability to take advantage of the powerplay. We then do likewise for bowlers. We conclude
with a short discussion in section 2.6.

2.2 Data and History of the Powerplay

For the analysis, we considered all ODI (one-day international) matches that took place
from July 7, 2005 until the end of 2013 which involved full member nations of the Inter-
national Cricket Council (ICC). Currently, the 10 full members of the ICC are Australia,
Bangladesh, England, India, New Zealand, Pakistan, South Africa, Sri Lanka, West Indies
and Zimbabwe. Details from these matches can be found via the Archive link at the CricInfo
website ( www.espncricinfo.com).

For these matches, only first innings data were considered. The rationale is that we
want to study the powerplay under baseline circumstances. A team’s batting behaviour
(aggressive versus passive) in the second innings depends largely on the target score that
was established in the first innings. We excluded matches that were discontinued or were
shortened to less than 50 overs. We also excluded 197 matches where we were unsure about
the starting and ending points of the powerplay. In total, we were left with 597 matches
involving reliable full first innings data.

For the imputation methods of section 2.3, we require detailed batting results, at the
level of balls bowled. This information does not appear to be generally available in a
convenient format. Hence, a proprietary R-script was developed and used to parse and
extract ball-by-ball information from the Match Commentaries. For each first innings, we
have two rows of data with 300 columns. In the jth column of the first row, we record the
number of runs scored on the jth ball bowled (with extras included). In the jth column of
the second row, we record either 0/1 according to whether a wicket was taken on the the
jth ball bowled. Some additional columns were also recorded such as the match identifier,
the batting team, the bowling team and the beginning and ending over for the batting
powerplay. This results in a large dataset with 2(597) = 1194 rows and 305 columns.
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We now review the various historical implementations of the powerplay during the period
of study, July 7, 2005 through 2013. We sometimes found it difficult to pin down details
regarding the history of the powerplay. Some of our information was obtained from the
following web sources:

• http://news.bbc.co.uk/sport2/hi/cricket/rules_and_equipment/4180026.stm

• http://voices.yahoo.com/cricket-power-play-rules-one-day-internationals-4720834.html

• http://www.espncricinfo.com/natwestchallenge/content/story/213010.html

• http://www.itsonlycricket/entry/106/

A: July 7/2005 - September 6/2008 - We have 239 observed matches where the match
identifiers range from 2259 through 2762. During this period, there were three blocks
of powerplays which imposed stricter fielding restrictions compared to the rest of the
match. The first 10 overs of the innings imposed fielding restrictions which allowed
only two fielders outside the 30-yard circle and two fielders within 15 yards of the
on-strike batsman. This was known as the mandatory powerplay. The mandatory
powerplay was followed by a five-over block known as powerplay 2 and a subsequent
five-over block known as powerplay 3. The initiation of the two non-fixed powerplays
were determined at the discretion of the bowling team. In both powerplays, the fielding
restrictions allowed only three fielders outside of the 30-yard circle. If no powerplay
had been initiated, then overs 41 through 50 automatically became powerplays. If
only one powerplay had been initiated, then overs 46 through 50 automatically became
powerplay 2.

B: October 9/2008 - September 20/2011 - We have 224 observed matches where the
match identifiers range from 2763 through 3197. Rule B is the same as Rule A
except that the start of one of the discretionary powerplays became the decision of the
batting team. Hence the nomenclature for the two discretionary powerplays became
the “bowling powerplay” and the “batting powerplay” accordingly. Although it is
technically possible for the batting powerplay to precede the bowling powerplay, this
did not occur in any of the 224 matches. The rationale for the introduction of Rule
B was based on the observation that under Rule A, the bowling team often employed
powerplays 2 and 3 as soon as possible (i.e. in overs 11-15 and 16-20, respectively).
With the decision to start one of the powerplays given to the batting team, the hope
was to spread the powerplays throughout the innings.

C: October 13/2011 - September 5/2012 - We have 51 observed matches where the
match identifiers range from 3198 through 3304. Rule C is similar to Rule B except
that the bowling and batting powerplays were not allowed to take place during overs
11 through 14 nor during overs 41 through 50.
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D: November 4/2012 - December 25/2013 - We have 83 observed matches where the
match identifiers range from 3305 through 3448. Rule D is the current rule and again
requires that the mandatory powerplay takes place during the first 10 overs with the
same fielding restrictions that allow only two fielders outside the 30-yard circle. Under
Rule D, the bowling powerplay has been dropped. The batting powerplay (a five-over
block) must be completed by the 40th over. For the batting powerplay, the fielding
restrictions allow only three fielders outside the 30-yard circle.

2.3 Construction of Parallel Matches

The construction of hypothetical parallel matches is based on a “what if” approach where
powerplay outcomes are substituted with what might have happened had there been no
powerplay. Clearly, we want the imputations to be as realistic as possible, and this should
take into account the nuances of the actual matches. For example, in a particular match, it
is possible that pitch conditions are poor and batting is subsequently difficult. In this case,
we impute overs that reflect the difficulty of scoring runs.

The study focuses on powerplay 3 under Rule A and the batting powerplays (for Rules B,
C and D). Consequently, we construct parallel matches that only involve the imputation of
powerplay 3 and the batting powerplays. The batting powerplays are of particular interest
since most of the rule changes have involved the batting powerplay. Not only are we
interested in the effect of the batting powerplay, but we are also interested in the effect due
to the over where the batting powerplay is initiated.

We now describe the imputation procedures. The procedures depend on what aspects
of the parallel match need imputation and on the information that is available from the
corresponding actual match. Table 2.1 provides a summary broken down according to the
various powerplay rules and imputation procedures. Whereas Rules A, C and D mostly use
imputation method (a), we observe that Rule B uses imputation method (b) roughly 50%
of the time. This is because under Rule B, the batting team frequently chose its powerplay
in the final overs of the match.

Imputation Method (a): The simplest imputation procedure occurs when the actual
batting powerplay is surrounded by 2.5 non-powerplay overs preceding the powerplay
and 2.5 non-powerplay overs following the powerplay. For the parallel match, we sub-
stitute the powerplay results (both runs and wickets) with what happened during the
surrounding overs. The surrounding overs are intended to be a fair representation of
how the match would have proceeded had there been no powerplay. For the portion of
the parallel match prior to the powerplay, we simply substitute what happened dur-
ing the actual match. For the portion of the parallel match following the powerplay,
we also substitute what happened during the actual match until the parallel innings
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terminate (i.e. 10 wickets lost or 50 overs consumed). Under these most basic con-
ditions, Figure 2.1 provides a pictorial aid of the imputation procedure. However, if
the actual match terminates earlier than the parallel match, there is no corresponding
match history for imputation. In this case (which is rare - 68 out of 597 observed
matches), the parallel match has w < 10 wickets taken at the point in time where
the actual match terminated (i.e. the 10th wicket occurred). We then replicate the
results from wicket w in the actual match until the end of the parallel match. We
make sure that we skip (do not impute from) the powerplay; if the powerplay has x
wickets, then our imputation begins from wicket w − x in the actual match. There
are only 18 such cases out of the 68.

Figure 2.1: Imputation method (a) under the most basic conditions. The symbol A denotes
2.5 overs preceding the start of the powerplay (PPS) and the symbol B denotes 2.5 overs
following the end of the powerplay (PPE).

Imputation Method (b): When the actual match does not have overs following the pow-
erplay, Imputation Method (a) cannot be used. For example, this occurs when the
powerplay takes place during overs 46 through 50. Our approach here is to take the
ten overs preceding the powerplay and divide it into two blocks of 5 overs. Let R1

be the number of runs scored in the first block and let R2 be the number of runs
scored in the second block. Then the ratio R2/R1 captures the change in scoring rate
as the match progresses over the ten over interval. The number of imputed runs for
the 2.5 overs following the powerplay is then set at R2(R2/R1) suggesting that the
run scoring rate should change in this period by the same factor. Since we do not
want R2/R1 to be unrealistically small or large, we do not permit the ratio to be less
than 0.67 or greater than 1.5. We carry out the same procedure with the number
of wickets. We experimented with values other than (0.67,1.5) and did not observe
meaningful differences.

13



Powerplay Total Number Imputation Method
Rule of Matches (a) (b)
A 239 238 1
B 224 110 114
C 51 51 0
D 83 80 3

Table 2.1: Summary of the imputation procedures.

2.4 Powerplay Analyses

With the construction of the hypothetical parallel matches, we have a dataset satisfying a
paired comparisons framework. For every match involving a batting powerplay, we have
a parallel match where batting outcomes are imputed as though there were no batting
powerplay. This facilitates an analysis where we can look at the difference in run production
between the actual match and its corresponding parallel match. Let R(a)

i be the number of
first innings runs scored in the ith actual match and let R(p)

i be the number of first innings
runs scored in the ith parallel match. Then the quantities of interest are the differences

Di = R
(a)
i −R

(p)
i . (2.1)

We also study the difference in the actual number of wickets lost during the powerplay
and the number of wickets that were lost during the same window in the parallel match.

2.4.1 Powerplay Rule A

Figure 2.2 provides a histogram of the differences Di in (2.1) corresponding to powerplay 3
under Rule A. The median and the mean of the dataset are 1.0 and 1.3 runs respectively
suggesting that the powerplay had a minor influence on increasing the number of runs scored.
A Wilcoxon test of the hypothesis of no effect (i.e. H0 : median = 0 versus H1 : median > 0)
was carried out and the null hypothesis was not rejected with the p-value = 0.08. Therefore,
the effect (i.e. the number of increased runs due to the powerplay) is insignificant.

In a comparison of wickets lost during powerplay 3 versus wickets lost during the cor-
responding period of the parallel match, a Wilcoxon test was also carried out. The p-value
= 0.45 was obtained indicating that there was no increase in the number of wickets taken
due to powerplay 3. There were 0.01 more wickets taken on average during powerplay 3.

2.4.2 Powerplay Rules B, C and D

In this subsection, powerplay rules B, C and D are combined since they only differ in terms
of when the batting powerplay is allowed to take place. This provides us with a dataset of
358 matches. Having seen that powerplay 3 under Rule A conferred no advantage to the
batting team, it is interesting to investigate the revised Rules B, C and D. Recall that Rules
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Figure 2.2: Histogram of the 239 differences Di corresponding to Rule A.

B, C and D put the determination of the batting powerplay into the hands of the batting
team. Perhaps the ICC had observed that Rule A was not accomplishing much in terms of
increased run production, and that tinkering with the powerplay rule was required.

Figure 2.3 provides a histogram of the differencesDi in (2.1) corresponding to the batting
powerplay under Rules B, C and D. The median and the mean of the dataset are 6.0 and
6.5 runs respectively suggesting that the powerplay provides increased run production. A
Wilcoxon test of the hypothesis of no effect (i.e. H0 : median = 0 versus H1 : median > 0)
was carried out and the null hypothesis was strongly rejected with the p-value = 6.7∗10−12.
So it appears that the powerplay changes implemented by the ICC had the effect of increased
run production.

In a comparison of wickets lost during the batting powerplay versus wickets lost during
the corresponding period of the parallel match, a Wilcoxon test was also carried out. The
p-value = 0.007 was obtained indicating that the number of wickets taken during the battng
powerplay was greater than had there been no powerplay. There were 0.17 more wickets
taken on average during the batting powerplay.

If we compare Figure 2.2 with Figure 2.3, we see that the run difference under Rules B,
C and D is greater but is also more variable than under Rule A. This implies that the newer
powerplay rules create more runs but also introduce greater uncertainty in the match. The
new versions of the powerplay provide more runs for the batting team if they can avoid
losing wickets. However, if their aggressiveness during the powerplay leads to an increased
number of lost wickets, then the powerplay is detrimental to the batting team.

Recall that the imputation procedure for a parallel match was based on the assumption
that had there not been a batting powerplay, then the results during these overs would
resemble the surrounding overs. Although apparently reasonable, it is good to check the

15
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Figure 2.3: Histogram of the 358 differences Di corresponding to Rules B, C and D.

sensitivity of the assumption. In the imputation procedure, the surrounding overs of a 5-
over batting powerplay were defined as the 2.5 overs (i.e. 15 balls) preceding the powerplay
and the 2.5 overs (i.e. 15 balls) following the powerplay. We now modify the assumption and
instead consider the surrounding 8 balls preceding the powerplay and the 7 balls following
the powerplay. Then the number of runs observed during these 8 + 7 = 15 balls are scaled
and imputed where the powerplay occurred. This provides us with a comparison set of
358 parallel matches. Under this alternative imputation procedure, we observed a mean
difference of 6.3 more runs during the actual matches than the parallel matches. This is
comparable to the 6.5 mean run difference under the original imputation procedure. This
suggests a robustness of the proposed imputation procedure.

It is also worth asking whether what happens in the surrounding overs is affected by
them being just before or just after the powerplay. To investigate this to some extent, we
obtained the mean number of runs scored in the third over prior to the powerplay (4.9), the
second over prior to the powerplay (5.6) and the over immediately prior to the powerplay
(5.3). The run scoring pattern provides no indication of a change in tactics prior to the
powerplay.

We now investigate the effect of the powerplay with respect to the over where the
powerplay was initiated. We aggregate all 597 matches. The corresponding plot is given in
Figure 2.4 along with a smoothed lowess curve to assess general features. We observe that
most of the powerplays in our dataset were initiated in the vicinity of three time points:
the 16th over, the 36th over and the 46th over. We also observe that the batting powerplay
under Rule B was invoked near the end of the innings in the majority of matches.

Further investigation of Figure 2.4 reveals that under Rule A, powerplay 3 was typically
initiated early in the innings. Specifically, powerplay 3 was initiated in the 16th over in 193
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Figure 2.4: The run differences Di for all rules A, B, C and D plotted against the over where
the powerplay was initiated. A lowess curve with parameters span=0.5 and degree=2.0 is
superimposed.

of the 239 matches. We hypothesize that the reason why the powerplay was ineffective at
this stage was because it was early in the match and the batting team did not want to take
the risk of batting aggressively and losing wickets. Recall that the timing of powerplay 3
was at the discretion of the bowling team.

Under Rules B, C and D, the initiation of the batting powerplay was at the discretion of
the batting team, and this appears to have made a positive difference in run production. A
very close inspection of the smoothed curve suggests that it may not have been advantageous
to initiate the powerplay late in the match, say beyond the 41st over. Our intuition here
is that when the batting powerplay begins late, the batsmen involved in the powerplay are
typically weaker batsmen in the lineup and are unable to take advantage of the situation. Of
course, under the current Rule D, it is no longer possible to initiate the batting powerplay
beyond the 36th over.

In Figure 2.4, there is also some evidence that initiating the powerplay near the 36th over
may be optimal. This stage of the match provides a compromise; it is sufficiently late in the
match that the batsmen are free to bat aggressively, and it is sufficiently early in the match
so that good batsmen (i.e. mid-order batsmen) are typically available for batting. The
smoothed curve also suggests that it may also be beneficial to begin the batting powerplay
around the 21st over. However, we are not convinced of this due to the sparsity of data at
this stage of the match.
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2.5 Individual Batsmen and Bowlers

We have seen that the current implementation of the powerplay contributes on average 6.5
additional runs of scoring had there not been a powerplay. It is interesting to investigate
whether some batsmen take a greater advantage of the powerplay conditions than other
batsmen.

We therefore considered 45 batsmen during the study period (i.e. rules B, C and D) who
faced a minimum of 600 balls. Details on these batsmen are provided in Table 2.2. The
number of balls faced during the powerplay varies greatly among batsmen where Kumar
Sangakkara of Sri Lanka faced 416 balls and Alastair Cook of England faced 53 balls. All
of the batsmen faced many more balls (typically about ten times as many) during non-
powerplay conditions.

With many balls faced, we appeal to the Central Limit Theorem and define

X
(1)
i ≡ run rate per over for the ith batsmen during PP ∼ Normal(µ(1)

i , σ2/n1i)
X

(2)
i ≡ run rate per over for the ith batsmen during non-PP ∼ Normal(µ(2)

i , σ2/n2i)

where n1i and n2i are the number of balls faced by the ith batsman during powerplay
conditions and non-powerplay conditions respectively. In a Bayesian analysis, we further
define prior distributions

µ
(1)
i ∼ Normal(µ(1)

0 , σ2
µ)

µ
(2)
i ∼ Normal(µ(2)

0 , σ2
µ)

σ2 ∼ Inverse Gamma(1, 1)
σ2
µ ∼ Inverse Gamma(1, 1)

where µ(1)
0 and µ(2)

0 are set according to the sample means of the dataset (i.e. an empirical
Bayes approach). The hyperparameters of the Inverse Gamma distributions provide stan-
dard reference priors. The non-constant values n1i and n2i provide a twist that prevents a
straightforward classical analysis.

We implemented the model using WinBUGS software (Spiegelhalter, Thomas and Best
2003) where our primary interest concerns the parameters µ(1)

i and µ(2)
i for i = 1, . . . , 45.

A WinBUGS implementation is straightforward as the generation of parameters from the
posterior distribution is done in the background. A user is only required to specify the
statistical distributions. We ran 15,000 iterations of the Markov chain where 5,000 iterations
were used as burn-in. Standard diagnostics provide evidence that the Markov chain has
adequately converged.

In Figure 2.5, we provide boxplots of the differences µ(1)
i − µ

(2)
i generated from the

Markov chain where the boxplots are sorted in ascending order of mean difference. We
observe that nearly all of the mean differences exceed zero which implies that batsmen
score runs at a higher rate during the powerplay. The only exceptions to this are T.
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Iqbal of Bangladesh where E(µ(1)
i − µ

(2)
i ) = −0.26 and M. Guptill of New Zealand where

E(µ(1)
i − µ

(2)
i ) = −0.05. At the other end of the plot, the greatest value of E(µ(1)

i − µ
(2)
i )

is attributed to M. Mahmudullah of Bangladesh for whom E(µ(1)
i − µ

(2)
i ) = 2.35. This

difference translates to 5(2.35) = 11.75 extra runs during the five-over powerplay block than
during non-powerplay conditions. Also notable among the exceptional powerplay batsmen
are M. Hussey of Australia where E(µ(1)

i − µ
(2)
i ) = 2.28 and S. Marsh of Australia where

E(µ(1)
i −µ

(2)
i ) = 2.19. The batsman with the highest mean value of µ(1) is V. Sehwag of India

where E(µ(1)
i ) = 7.96. Not only is Sehwag great during the powerplay but he is great at all

times with E(µ(2)
i ) = 7.19 and therefore his mean difference is only E(µ(1)

i − µ
(2)
i ) = 0.77.

Figure 2.5: Boxplots of the differences µ(1)
i − µ

(2)
i for the 45 batsmen based on output from

the Markov chain corresponding to the hierarchical model of section 2.5.

For bowlers, we carry out a similar analysis to investigate individual powerplay perfor-
mances. Here we have obtained data on 28 bowlers during the study period (i.e. rules B,
C and D) who have bowled at least 1000 balls. Details on these bowlers are provided in
Table 2.3. The inferential quantities of interest for the ith bowler are the mean run rate per
over during the powerplay µ(1)

i and the mean run rate per over µ(2)
i during non-powerplay

conditions. In cricket parlance, µ(1)
i and µ

(2)
i are referred to as the mean economy rates.

The economy rate is often regarded as more important than both the bowling strike rate
and the bowling average in one-day cricket. The bowling strike rate is defined as the average
number of balls bowled per wicket and the bowling average is defined as the average number
of runs conceded per wicket.

In Figure 2.6, we provide boxplots of the differences µ(1)
i − µ

(2)
i where the boxplots

are sorted in ascending order of mean difference. In this case, it is bowlers on the left
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side of the plot who have performed exceptionally during the powerplay. We observe that
the only bowler with a negative value of µ(1)

i − µ
(2)
i is A. Mathews of Sri Lanka with

µ
(1)
i − µ

(2)
i = −0.07. This implies that he bowls better during the powerplay than during

non-powerplay overs. Of course, this may simply be a case of small sample size as Matthews
has bowled only 116 powerplay balls. The median value of the µ(1)

i − µ
(2)
i values amongst

the 28 bowlers is 1.15 which says that the median bowler allows 5(1.15) = 5.75 more runs
on average during the five-over powerplay block than during non-powerplay overs. At the
right end of the plot is P. Kumar of India for whom µ

(1)
i − µ

(2)
i = 2.03. This implies that

Kumar allows on average 5(2.03) = 10.15 more runs during the five-over powerplay block
than during non-powerplay overs.

In Table 2.3, we have distinguished the bowlers as either fast or spin bowlers. A cursory
inspection of Figure 2.6 indicates that fast bowlers tend to be situated in the rightmost
boxplots. This suggests that spin bowlers adjust better to the powerplay overs than do
fast bowlers. To test this formally, we divide the 28 bowlers according to 10 spinners
and 18 fast bowlers. We then carry out a two-sample t-test on the null hypothesis of no
difference between the two types of bowlers where our observations are the posterior means
of µ(1)

i − µ
(2)
i . With the p-value = 0.045, we reject the hypothesis using a two-tailed test.

This shows that there is a significant difference between the economy rates of the fast
bowlers and the spin bowlers during the powerplay.

Figure 2.6: Boxplots of the differences µ(1)
i − µ

(2)
i for the 28 bowlers based on output from

the Markov chain corresponding to the hierarchical model of section 2.5.
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2.6 Discussion

This paper appears to be the first quantitative investigation on the effect of the powerplay in
one-day cricket. The main result is that recent versions of the powerplay rule contribute an
average of 6.5 additional runs. However, the contribution of increased runs is countered by
an increase in the number of lost wickets which adds uncertainty to the match. Furthermore,
the choice of over where the powerplay is initiated has some effect on the number of runs
scored. It appears that initiating the batting powerplay in the 36th over is roughly optimal.

Based on the above findings, there are possible implications for the game:

1. The ICC may want to again revisit the powerplay with a focus on the intention of the
powerplay. If the intention is to create more runs, we have now quantified the average
number of increased runs. Is 6.5 runs adequate? Altering the fielding restrictions
may further modify run scoring. Of course, the ICC may be wary of changing the
powerplay rule once again. If a goal of the batting powerplay is to introduce more
uncertainty into the game, then this appears to have been accomplished since the
average number of wickets lost during the powerplay is greater than had there been
no powerplay. When the batting team loses large numbers of wickets during the
powerplay, then their run production decreases.

2. There may be strategic implications for the powerplay. Although invoking the power-
play around the 36th over appears to be roughly optimal, teams may want to consider
their batting style (i.e. aggressive versus passive) during the powerplay. They may be
able to invoke the powerplay earlier if they tone down their level of aggressiveness.
The advantage of initiating the powerplay earlier is that early-order batsmen may be
able to take better advantage of the powerplay opportunity.

3. One might ask “what are the implications of this study for Twenty20 cricket?” In
Twenty20 cricket, the powerplay is mandated to take place during the first six overs
of each innings when the best batsmen are typically batting. At the end of the 6th
over, there are 14 overs remaining since Twenty20 matches are allotted 20 overs. In
one-day cricket, the optimal completion of the powerplay occurs roughly at the end
of the 40th over (i.e. 10 overs remaining). Also, in Twenty20, losing wickets is less
of a concern for the batting side than in one-day cricket. Therefore, there is some
suggestion that the timing of the powerplay in Twenty20 may be optimal in terms of
creating additional runs.
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Name Runs(non-PP) Balls Faced(non-PP) Runs(PP) Balls Faced(PP)

K. Sangakkara (SL) 1358 1804 395 416
Misbah-ul-Haq(PAK) 1172 1631 257 347
M. Clarke (AUS) 1373 1737 310 345
R.Ponting (AUS) 1039 1222 277 321
A.B. de Villiers (SA) 1705 1782 384 311
H. Amla (SA) 1793 1868 325 304
M.S. Dhoni(IND) 1795 1800 297 298
R. Taylor (NZ) 1035 1274 311 272
A. Mathews (SL) 940 1295 235 260
S. Raina (IND) 1044 1184 286 252
J.P. Duminy (SA) 992 1127 301 249
M.Hussey (AUS) 1181 1314 325 239
S. Watson (AUS) 1338 1420 261 234
T.M. Dilshan (SL) 1482 1607 239 230
V. Kohli (IND) 1005 1233 204 225
Y. Khan (PAK) 909 1227 161 222
J. Trott (ENG) 1012 1260 208 221
M. Jayawardene (SL) 834 1097 210 220
M. Guptill (NZ) 1128 1238 186 218
B. Haddin (AUS) 637 857 223 217
M. Hafeez (PAK) 1268 1559 237 200
Y. Singh (IND) 801 804 268 195
G. Gambhir (IND) 890 1010 179 194
M. Mahmudullah (BAN) 662 864 237 193
B. Taylor (ZIM) 709 893 146 186
J. Kallis (SA) 587 693 164 181
R. Bopara (ENG) 433 504 153 178
U. Akmal (PAK) 712 838 184 166
V. Sehwag (IND) 1121 903 241 165
S.E. Marsh (AUS) 561 762 191 165
U. Tharanga (SL) 736 1045 170 162
C. White (AUS) 850 1065 161 153
M. Samuels (WI) 511 833 132 153
S. Tendulkar (IND) 609 587 171 147
E. Morgan (ENG) 680 665 143 135
G. Smith (SA) 670 913 117 135
B.B. McCullum (NZ) 728 716 155 123
T. Iqbal (BAN) 812 989 72 111
G. Bailey (AUS) 733 669 133 110
Shakib-Al-Hasan (BAN) 732 821 100 96
M. Rahim (BAN) 823 1094 99 91
D.M. Bravo (WI) 421 639 85 89
I. Bell (ENG) 635 802 44 68
R.G. Sharma (IND) 433 550 68 60
A. Cook (ENG) 618 831 43 53

Table 2.2: Summary data on the 45 batsmen considered in section 2.5.

22



Name Style Runs Balls Bowled Runs Balls Bowled
(non-PP) (non-PP) (PP) (PP)

M. Johnson (AUS) Fast 829 1129 496 501
R. Ashwin (IND) Spin 1075 1344 408 496
S. Ajmal (PAK) Spin 1160 1592 360 489
S. Broad (ENG) Fast 827 978 446 457
L. Malinga (SL) Fast 1057 1175 423 399
Shakib-Al-Hasan (BAN) Spin 738 963 328 391
T. Bresnan (ENG) Fast 886 1097 391 377
J. Anderson (ENG) Fast 1085 1414 326 321
A. Nehra (IND) Fast 830 845 336 320
U. Gul (PAK) Fast 828 953 368 317
R. Jadeja (IND) Spin 1526 2012 272 313
A. Razzak (BAN) Spin 787 1009 311 312
S. Watson (AUS) Fast 610 774 299 302
N. Kulasekara (SL) Fast 1131 1307 252 282
D. Steyn (SA) Fast 706 984 276 257
S. Afridi (PAK) Spin 1566 2023 210 254
I. Sharma (IND) Fast 674 773 298 248
P. Utseya (ZIM) Spin 958 1209 240 244
P. Kumar (IND) Fast 1219 1522 280 237
K. Mills (NZ) Fast 769 1093 222 237
T. Southee (NZ) Fast 925 1164 270 231
M. Hafeez (PAK) Spin 969 1399 197 224
R. Rampaul (WI) Fast 692 952 210 221
D. Sammy (WI) Fast 773 1022 133 186
K. Roach (WI) Fast 664 853 168 159
A. Mathews (SL) Fast 954 1161 87 116
M. Mahmudullah (BAN) Spin 838 1032 55 57
G. Swann (ENG) Spin 948 1206 46 57

Table 2.3: Summary data on the 28 bowlers considered in section 2.5.
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Chapter 3

Analysis of Substitution Times in
Soccer

3.1 Introduction

In the game of soccer (known as football outside of North America), teams are allowed three
player substitutions in a match. The timing of the substitutions is strategic. For example,
if a team is losing, the manager (coach) may want to replace a player with a more attacking
player. On the other hand, teams should be wary of early substitutions. Once a team has
made their three substitutions, a subsequent injury on the field may force the team to play
the remainder of the match with 10 players instead of 11.

Myers (2012) proposed a substitution scheme based on regression tree methodology
that analyzed data from the top four soccer leagues in the world: the 2009/2010 seasons of
the English Premier League (EPL), the German Bundesliga, the Spanish La Liga and the
Italian Serie A. In addition, data were analyzed from the 2010 season of North America’s
Major League Soccer (MLS) and from the 2010 FIFA World Cup. The decision rule for
substitutions (page 11 of Myers, 2012) was succinctly stated as follows:

• if losing:
– make the 1st substitution prior to the 58th minute
– make the 2nd substitution prior to the 73rd minute
– make the 3rd substitution prior to the 79th minute (3.1)

• if tied or winning:
– make substitutions at will

The subsequent analysis in Myers (2012) demonstrated that teams that followed the
decision rule improved their goal differential 42.27 percent of the time. For teams that did
not follow the decision rule, they improved their goal differential only 20.52 percent of the
time.

The decision rule (3.1) is attractive both in its apparent simplicity and also due to the
benefits from following the rule. Consequently, the decision rule has received considerable
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attention in the mainstream media. For example, a quick Google search reveals YouTube
interviews, blogs and newspaper articles concerning the study, many of which marvel at the
findings (e.g. Diamond 2011 and Cholst 2013). Chapter 9 of Anderson and Sally (2013)
endorses the results in Myers (2012). They argue that by the time managers observe that a
player is tired, it is already too late. The substitution of the player ought to have occurred
earlier. They suggest that the substitution rule proposed by Myers (2012) is an analytics-
based approach that provides prescience beyond what managers are able to ascertain.

In this paper, we provide both a review of Myers (2012) and an alternative analysis
of the soccer substitution problem. At a surface level, the results appear contradictory
as our analysis indicates that there is no discernible time during the second half when
there is a benefit due to substitution. However, as we discuss, the two approaches are
not directly comparable as they use different statistical methodologies, different response
variables and different explanatory variables. Our analysis also indicates that with evenly
matched teams, the trailing team is more likely to score the next goal during the second
half. This observation has implications for the game of soccer. Teams that are leading
may be “parking the bus” or failing to send attackers forward in sufficient numbers. These
tentative reactions or strategies are seemingly detrimental.

In Section 3.2, we carefully review the paper by Myers (2012). We begin by providing
two examples where there are subtleties associated with the decision rule. In the first
example, we note that the proposed substitution scheme is not entirely practical as it
provides substitution directives that refer to earlier stages of a match. The two examples
lead to a formal characterization of the decision rule. We then discuss various aspects of the
analysis in Myers (2012). In Section 3.3, we present an alternative analysis that is based
on Bayesian logistic regression where team strength is considered and subjective priors are
utilized. The prior specification facilitates the smoothing of temporal parameters. We
conclude with a short discussion in Section 3.4.

There are at least two other papers in the literature that have addressed substitution
issues in soccer. Hirotsu and Wright (2002) use hypothetical soccer results to demonstrate
the estimation of a four-state Markov process model. With such a model (which requires the
estimation of player specific parameters), optimal substitution times may be obtained, op-
timal in the sense of maximizing league points. In Del Corral, Barros and Prieto-Rodriguez
(2008), the substitution patterns from the 2004-2005 Spanish First Division are studied.
They determine that the score of the match is the most important factor affecting sub-
stitutions. In addition, they find that defensive substitutions occur later in a match than
offensive substitutions.

In our analysis, we consider the probability that the trailing team scores the next goal.
However, scoring intensity is also relevant to soccer. It is well known that scoring intensity
increases throughout a match (Morris 1981). For example, Ridder, Cramer and Hopstaken
(1994) provided the total goals scored during the six 15-minute segments in a 90 minute
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match corresponding to the 340 matches played during the 1992 season in the two pro-
fessional Dutch soccer divisions. Based on 952 goals, the percentages in the six segments
were 13.4, 14.7, 15.4, 17.8, 17.9 and 20.8. They also demonstrated that after a red card is
issued, the scoring intensity of the 11-man team increased by a factor of 1.88 whereas the
scoring intensity of the 10-man team decreased only slightly by a factor of 0.95. Increased
scoring intensity towards the end of matches was corroborated by Armatas, Yiannakos and
Sileloglou (2007) who studied the 1998, 2002 and 2006 World Cups.

3.2 The Original Decision Rule

To gain a better understanding of the decision rule (3.1) proposed by Myers (2012), we
consider two illustrative examples.

Example 3.1: Team A scores in the 50th minute. Team B substitutes in the 45th minute,
substitutes in the 70th minute and then scores in the 75th minute.
Discussion: In this match, the conditions for use of the decision rule are applicable. The
reason is that Team B is losing at the critical 73rd minute. Therefore, we see that the
rule is not prospective - based on the score in the 73rd minute, it tells us how we should
have substituted previously in the match. From a management perspective, it would be
preferable to have a rule that provides decision guidelines at any point in time. We also see
that the simple formulation (3.1) is not entirely clear in defining an instance of “when” a
team is losing. In this example, Team B followed the decision rule and improved their goal
differential.

Example 3.2: In an actual match (March 10, 2009) between Burnley and Birmingham
in the English Premier League, the home team Burnley scored goals in the 53rd and 62nd
minutes. Birmingham substituted in the 45th minute, the 45th minute, the 67th minute
and then scored in the 90th minute.
Discussion: Here, Birmingham falls behind in the 53rd minute and remains behind for the
entire match. Birmingham substitutes in accordance with the decision rule. The question
arises as to whether Birmingham improved their goal differential. The final score of 2-
1 (for Burnley) represents no change in differential from the 53rd minute (the time of
Burnley’s first goal to make the score 1-0). However, from the time of Birmingham’s third
substitution in the 67th minute when the score was 2-0 for Burnley, there is a positive
change in differential by the end of the match. In a personal communication with Myers,
he indicates that indeed Birmingham should be credited with an improved goal differential.

Therefore, the decision rule is more complex in its implementation than as simply spec-
ified by (3.1). Given that the rule has gained some traction in soccer, it is useful to have
an unambiguous specification of the rule. We consider a formulation which is unfortunately
more complicated than (3.1) but facilitates statistical analysis.
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Accordingly, observe the first time t0 that a team has fallen behind in a match and let
j(t0) be the number of substitutions that the team has made prior to t0. We define si as
the time of the ith substitution and let SL(t) be true (false) if the team is losing (no longer
losing) at time t. We further define the next substitution time sn = s1+j(t0) and the next
critical time

t∗ =


58 if t0 ≤ 58
73 if 58 < t0 ≤ 73
79 if 73 < t0 ≤ 79

Table 3.1 provides a breakdown of the 9 situations where the decision rule is applicable
and the corresponding substitution patterns under which the decision rule is followed. When
following the decision rule, a success in reducing the goal differential is defined by observing
the change in goal differential between sn and the 90th minute. When not following the
decision rule, a success in reducing the goal differential is defined by observing the change
in goal differential between t∗ and the 90th minute.

Situations DR Applicable Substitution Pattern Required to Follow DR
t0 ≤ 58, j(t0) = 0, SL(s1) = T s1 ≤ 58, s2 ≤ 73 (if SL(73)=T), s3 ≤ 79 (if SL(79)=T)
t0 ≤ 58, j(t0) = 1, SL(s2) = T s2 ≤ 73, s3 ≤ 79 (if SL(79)=T)
t0 ≤ 58, j(t0) = 2, SL(s3) = T s3 ≤ 79

58 < t0 ≤ 73, j(t0) = 0, SL(s2) = T s2 ≤ 73, s3 ≤ 79 (if SL(79)=T)
58 < t0 ≤ 73, j(t0) = 1, SL(s2) = T s2 ≤ 73, s3 ≤ 79 (if SL(79)=T)
58 < t0 ≤ 73, j(t0) = 2, SL(s3) = T s3 ≤ 79
73 < t0 ≤ 79, j(t0) = 0, SL(s3) = T s3 ≤ 79
73 < t0 ≤ 79, j(t0) = 1, SL(s3) = T s3 ≤ 79
73 < t0 ≤ 79, j(t0) = 2, SL(s3) = T s3 ≤ 79

Table 3.1: The 9 situations under which the decision rule (DR) is applicable and the corre-
sponding conditions under which the DR is followed.

3.2.1 Examination of the Original Decision Rule

In this subsection, we provide a discussion of various aspects of the analysis related to Myers
(2012).

Recall, we have re-formulated the original decision rule (3.1) proposed by Myers (2012)
with the description provided in Table 3.1. To check our characterization, we attempted to
replicate the analysis in Myers (2012) using the formulation in Table 3.1. We aggregated
results over the same six competitions as Myers (2012); namely the English Premier League
2009-2010 season, the German Bundesliga 2009-2010 season, the Spanish La Liga 2009-
2010 season, the Italian Serie A 2009-2010 season, North America’s Major League Soccer
2010 season and the 2010 World Cup held in South Africa. We obtained an improved goal
differential 40.07 percent of the time when following the decision rule and 17.90 percent of
the time when not following the decision rule. These results are very close to the values
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42.27 percent and 20.52 percent reported by Myers (2012). Because of our limited data
sources, we excluded matches with red cards and matches where substitutions occurred in
the first half. These decisions likely account for the small discrepancies in the two analyses.
Our replicated analysis was based on 292 occasions where teams followed the decision rule
and 620 occasions where teams did not follow the decision rule.

We were concerned with sample size inadequacies in the above analysis, especially the
292 instances where the decision rule was followed. We therefore augmented the dataset
by including three more English Premier League seasons (2010-2011, 2011-2012 and 2012-
2013). This provided a total of 446 occasions where the decision rule was followed and 1,118
occasions where the decision rule was not followed. With the larger dataset, improved goal
differential was achieved 39.01 percent of the time when following the decision rule and
20.48 percent of the time when not following the decision rule. We therefore observe that
the difference between following the rule and not following the rule is slightly less than
previously reported. In Section 3.3, an alternative analysis is presented which is based on
a much larger dataset.

One of the assumptions of analyses based on regression trees is that observations are
statistically independent. According to the formulation of the decision rule in Table 3.1, it
is possible that both teams in a match may be subject to the decision rule. In this case, the
two situations are not statistically independent. For example, if one team improves its goal
differential, it is less likely that the opponent will improve its goal differential. The lack of
independence is not taken into account in the analysis by Myers (2012). We note that the
analysis presented in Section 3.3 does not have such issues.

In the analysis presented in Myers (2012), the decision rule is based on whether a
team follows the 58-73-79 substitution pattern. It seems to us that any possible advantage
due to a team’s substitution pattern should also depend on their opponent’s substitution
pattern. The analysis in Myers (2012) does not take the opponent’s substitution pattern
into account. However, we note that the opponent’s substitution pattern is considered in
the analysis presented in Section 3.3.

A nuanced consideration of Myers (2012) is that the analysis is based on a comparison
of following the 58-73-79 rule versus not following the 58-73-79 rule. There are many ways
that teams can fail to follow the decision rule. For example, a team could follow a 60-73-79
rule but fail to follow the 58-73-79 rule. However, it is doubtful that there would be much
difference in team performance between the recommended 58-73-79 rule and a 60-73-79 rule.
When the 58-73-79 rule is compared against all other substitution patterns, it is possible
that the rule is compared against some “bad” substitution patterns. Therefore, it would
be preferable if substitutions could be compared at different points in time. The analysis
presented in Section 3.3 provides such comparisons.

There is an aspect of the substitution analysis in Myers (2012) that is nonstandard and
is highlighted in the following example.
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Example 3.3: Team A scores in the 50th minute and Team B scores in the 56th minute.
Discussion: We consider the substitution problem from Team B’s perspective. We there-
fore have t0 = 50, j(t0) = 0, sn = s1 and t∗ = 58. Following Table 3.1, if Team B substitutes
in the 54th minute, we refer to the first row and note that the decision rule is applicable
since SL(s1 = 54) = T . However, if Team B substitutes in the 57th minute, then the deci-
sion rule is not applicable since SL(s1 = 57) = F . What makes the analysis nonstandard is
that the substitution protocol determines whether the match is a case in question.

3.2.2 Accounting for Team Strength

A final discussion point concerning Myers (2012) relates to the well-known fact that the
assessment of cause and effect is best investigated using randomized experiments. However,
in the soccer dataset, the decisions to follow the 58-73-79 rule were not randomized. It is
possible that some confounding factor could have been involved, a factor that is related to
the success of the decision rule.

When studying the decision rule, it is apparent that teams essentially follow the decision
rule when they make their substitutions early, and we hypothesize that strong teams are
more likely to substitute early. Strong teams tend to have “deeper” benches and are better
able to replace players with quality players. Obviously, stronger teams are more able to
improve goal differential.

To investigate the hypothesis, we define a variable that describes a team’s relative
strength in a given match. When determining the team’s strength, we also account for
home team advantage. Here we consider a balanced schedule where each team in a league
plays every other team the same number of times, both home and away. For a given league
in a given season, let HTA denote the league-wide home team advantage calculated as

HTA = total home goals− total away goals
total matches .

For Team j, define its average goal differential during a season by

Dj = Team j’s total goals scored− Team j’s total goals allowed
total matches by Team j

.

Then, if Team j is playing Team k, we define the relative strength of Team j as

z =
{
Dj −Dk +HTA if j’s home field
Dj −Dk −HTA if k’s home field

(3.2)

where a positive (negative) value of z suggests that Team j (k) is favored to win the match.
The value z in (3.2) has a straightforward interpretation as the number of goals by which

Team j is expected to defeat Team k. This interpretation is useful for the subjective priors
that are developed in Section 3.1. Alternative measures of team strength have been devel-
oped for soccer including latent variable probit models (Koning 2000), extended dynamic
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models (Knorr-Held 2000) and various Poisson-type models (Karlis and Ntzoufras 2003).
There are also alternative measures of the home team advantage. For example, Clarke and
Norman (1995) use regression methods to obtain team specific measures for English soccer.
Issues surrounding the use of team specific measures versus a single league-wide measure is
discussed in Swartz and Arce (2014).

Having developed the team strength parameter z, we now return to the question of
whether team strength is confounded with success of the decision rule. We use the dataset
from Myers (2012) but exclude the 2010 World Cup results where the strength parameter z
is unavailable. When teams are stronger, they follow the decision rule 37 percent of the time
(105 times out of 283 opportunities). When teams are weaker, they follow the decision rule
30 percent of the time (177 times out of 589 opportunities). Moreover, stronger teams that
followed the decision rule improved their goal differential in 56.19 percent of the cases (59
out of 105 times). This is a much higher value than the previously reported 40.07 percent
success rate for following the decision rule.

It therefore appears that team strength is relevant to the success of the decision rule.
Although team strength was not considered by Myers (2012), the analysis in Section 3.3
takes team strength into account.

3.3 An Alternative Analysis

In Myers (2012), regression trees were used to search over potential substitution times to
determine an optimal substitution rule. Recall that optimality was based on improving
goal differential. We consider a related approach that considers whether the trailing team
scores the next goal. Therefore, the response variables are different in the new analyses.
In addition, we use more data, we take into account the relative strength of the trailing
team and we also consider the time of the match. Our analysis is based on Bayesian logistic
regression using informative prior distributions.

We consider goals scored during all matches in the dataset where a team was trailing
prior to the goal being scored. Recall that Myers (2012) considered the change in goal
differential for which a team could have at most one observation per game. Accordingly,
let Yi = 1(0) denote that the ith goal was scored by the trailing (leading) team where
i = 1, . . . , n. Then Yi ∼ Bernoulli(pi). Therefore, we do not consider goals that occur when
the score is tied. Our focus is on the behavior of the trailing team.

Following (3.2), we let zi denote the strength parameter of the trailing team which takes
into account the home team advantage. We introduce the substitution variable si where
the underlying assumption is that extra substitutions refresh or infuse energy to a team in
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the same way across all teams. Corresponding to the ith goal, we define

si =


1 trailing team has made more substitutions than the leading team
-1 trailing team has made fewer substitutions than the leading team
0 trailing team has made the same number of substitutions as the leading team .

This leads to the logistic model

log
(

pi
1− pi

)
= λzi + β0t + β1tsi . (3.3)

In (3.3), we have attempted to incorporate the relevant factors that affect the probability
of a goal being scored by the trailing team. The relative strength of the trailing team
including the home team advantage is expressed through λzi. It is also well-known that
trailing teams become more desperate to score as the match progresses. We therefore see
that the term β0t includes a subscript for time where the number of minutes played is given
by t = 1, . . . , 90. The substitution parameter β1t also includes a time subscript where our
intention is to assess the most beneficial times for substitution.

Again, our dataset corresponds to all of the matches considered in Myers (2012) except
for the World Cup matches for which the strength variable zi is not available. In addition,
we supplement the dataset with English Premier League matches from three additional
seasons, 2010-2011, 2011-2012 and 2012-2013. This leads to a dataset with n = 4, 226
observations.

A first attempt in fitting model (3.3) is straightforward logistic regression. In Figure 3.1,
we have plotted the estimates β̂0t + β̂1ts with respect to the time index t for s = −1, 0, 1.
The plots correspond to the log-odds of the probability that the trailing team scores the
next goal when teams are equally matched (i.e. z = 0). We have plotted the values for the
second half only (i.e. t ≥ 46) as this is the most interesting part of the match. We note that
prior to halftime, substitutions are typically made only when there is an injury. In all three
plots, we observe that the estimates are mostly positive which implies that the trailing team
has a greater chance of scoring next. This suggests that the common strategy of playing
defensively given the lead is counter-productive. Conversely, teams that fall behind are
more likely to play more aggressively, and this behaviour appears to have merit. A value
β0t = 0.2 which appears typical from Figure 3.1 translates to p = 0.55. This implies that
the next goal will be scored by the trailing team 55 percent of the time compared to 45
percent of the time by the leading team. We also observe that the substitution covariate s
does not appear to have much impact on which team scores the next goal.

A main purpose in displaying Figure 3.1 is to observe the variability of the estimates. We
would like to reduce the variability by taking into account prior knowledge. For example,
we know that there should be only a small difference in the parameters β0t at adjacent
times t and t + 1. To improve the smoothness in the estimates with respect to time, we
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Figure 3.1: Estimates of the parameters β0t+β1ts based on logistic regression for the second
half of play. The three plots correspond to the the substitution covariate s = −1, 0, 1. The
lines β0t + β1ts = 0 are superimposed.

next consider a Bayesian approach where parameters borrow information from one another.
The variability in Figure 3.1 obscures potential trends with respect to time. For example, it
may be possible that there is a decreasing trend in the final minutes of a match. This may
be due to increased risk taking by the trailing team which is now more exposed to goals on
the counter-attack. It is also possible that β0t has larger values for times slightly greater
than t = 45. This may be due to inspirational instruction at halftime by the manager.

3.3.1 The Prior Distribution

We take a Bayesian approach and require the specification of the prior distribution for the
parameters in (3.3). Although many Bayesian statisticians advocate a subjective formula-
tion of prior opinions (Goldstein 2006, Lindley 2000), most practitioners avoid the challenge
involved in the elicitation of prior opinions. In many applications, priors of convenience are
chosen which are often diffuse and improper.

One of the advantages in sports analytics is that researchers typically have good in-
stincts. For example, the known objectives for winning, the rules of the game and the
limited durations of matches give sport a simplicity when compared to the investigation of
more complex phenomena. When processes are well understood, this facilitates the use of
subjective priors. We consider subjective priors for the parameters in model (3.3). Subjec-
tive priors are particularly important for logistic regression; it is well known that diffuse
default priors on the coefficients in logistic regression induce probability distributions on p
that are convex and are typically inappropriate (Baskurt and Evans 2015).

Referring to the logistic model in (3.3), the parameters are λ, β0t and β1t for t =
1, . . . , 90. To reduce parameter specification to situations of interest, we restrict the time
variable to t = 46, . . . , 90. This leaves us with 91 primary parameters. During this time-
frame, 2,989 observations were recorded which provides a ratio of 2,989/91 ≈ 32.8 observa-
tions per parameter. The time restriction also improves the speed of computation.
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The parameter λ relates the strength of the trailing team to the probability that the
trailing team scores the next goal. We expect that as the strength of the trailing team
increases so should their probability of scoring the next goal (i.e. λ > 0). We therefore
prefer a prior distribution for λ that is defined on R+, and it is also intuitive that the
density should be concave. Therefore, we impose the prior λ ∼ Gamma(a0, b0). The
specification of a0 and b0 are obtained by referring to gambling websites where soccer
markets are thought to be close to efficient (Nyberg 2014). In our dataset, the largest
values of the relative team strength covariate z are roughly z = 1.5. For most of the
soccer matches considered in this analysis, when an exceptionally strong team faces an
exceptionally weak team, the handicap in favor of the strong team is roughly 1.5 goals1

with roughly 2.5 total goals. This implies a scoreline of 2.0-0.5 in favor of the strong team.
Consequently, goal scoring in favor of the strong team can be expected to occur in roughly
a 4:1 ratio, i.e. with probability 0.80. When β0t = 0 and s = 0 in (3.3), we solve the logit
expression, log(p/(1 − p)) = log(0.80/0.20) = λz = λ(1.5), yielding an expected value of
λ = 0.92. We therefore select hyperparameters a0 = 10.0 and b0 = 10.9 where we observe
that the specified prior has E(λ) = 0.92 and there is sufficient variability surrounding λ to
allow for errors in our subjectivity.

Recall that when a goal is scored at time t, the parameter β0t relates the probability
that the trailing team scores the goal. It is conceivable that β0t could be either positive or
negative. It is also clear that β0t values are dependent in the sense that β0t1 and β0t2 should
be comparable when |t1 − t2| is small. This suggests that the multivariate distribution

β0 = (β046, . . . , β090)′ ∼ Normal(µ0,Σ) (3.4)

provides a sensible subjective prior. When the two teams are evenly matched (i.e. z = 0) and
when the two teams have made the same number of substitutions (i.e. s = 0), we have little
intuition as to who will score the next goal. We therefore choose µ0 = (0, . . . , 0)′. We then
define Σ as a first order autoregressive covariance matrix where the (i, j)th element of Σ is
given by σ2ρ|i−j|. The remaining prior specification concerns the variance parameter σ2 > 0
and the correlation parameter ρ ∈ (0, 1). In an evenly contested match (i.e. z = 0) when
both teams have made the same number of substitutions (i.e. s = 0), we cannot imagine
the goal ratio for the trailing team at any time t varying beyond 1:2 or 2:1. Therefore
log(2) − log(1/2) = (β0t + 3σ) − (β0t − 3σ) which yields σ = 0.23. To introduce some
variability in σ, we assign σ ∼ Gamma(2.3, 10) where E(σ) = 0.23. For ρ, we assume that
there is no meaningful difference in goal scoring rates at times t and t+ 1. We express this
as imposing the correlation ρ = 0.97. We note that at five minute differences t and t + 5,
this implies a correlation of ρ|t+5−t| = 0.86. To introduce some variability in ρ, we assign
ρ ∼ Beta(38, 1) where E(ρ) = 0.97. We note that ρ serves as a smoothing parameter where

1In gambling circles, a 1.5 handicap means that a wager on the favorite team is successful if the team
wins by two or more goals, and the wager is unsuccessful otherwise.
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the variability in neighbouring β0t values is reduced as ρ→ 1. We note that we experimented
with alternative prior specifications and observed qualitatively similar results.

Recall that when a goal is scored at time t, the parameter β1t relates the probability that
the trailing team scores the goal when they have made at least one more substitution than
the opposition. The arguments advanced in the prior specification of β0 can be repeated in
the case of β1 = (β146, . . . , β190)′. Therefore β1 will also be assigned a multivariate normal
distribution with parameters that have the same hyperparameter specifications as in the
case of β0.

We remark that sometimes statisticians entertain complex models where resulting esti-
mates are subsequently used in secondary analyses. Although sometimes this may be the
only viable route, these approaches may be viewed as somewhat ad-hoc where there is a
mixing of inferential procedures. For example, in this application, we could have taken the
β0t estimates from ordinary logistic regression and simply smoothed the estimates using
some sort of procedure such as lowess. Instead, we have proposed a comprehensive model
where the smoothing mechanism is facilitated through the prior specification. This strikes
us as a more appealing approach for statistical inference.

3.3.2 Results from Bayesian Logistic Regression

We implemented the Bayesian logistic regression model (3.3) via the WinBUGS program-
ming language (Spiegelhalter, Thomas, Best and Lunn 2003). WinBUGS is often convenient
for Bayesian analysis as the user only needs to specify the model and provide the data; the
associated and sometimes difficult Markov chain Monte Carlo operations are handled in the
background by WinBUGS. In our implementation, we carried out 5,000 burn-in iterations
followed by 10,000 iterations which were used to estimate posterior characteristics. Stan-
dard diagnostic procedures were carried out which suggested practical convergence of the
Markov chain.

We first consider the parameter λ which relates the relative strength of the trailing
team to the probability that the trailing team scores the next goal. The posterior mean
and posterior standard deviation are given by E(λ | y) = 1.00 and SD(λ | y) = 0.05. The
posterior density of λ is provided in Figure 3.2. We see that the posterior distribution
is roughly symmetric. In comparison to the subjective prior distribution for λ which had
mean E(λ) = 0.92, the posterior distribution is more concentrated and shifted further to
the right. The main message involving λ is as expected - with everything else being equal
(i.e. β0t = β1t = 0), the stronger team is more likely to score the next goal. Putting this
into greater context, imagine that the trailing team is expected to defeat the leading team
by one goal (i.e. z = 1). Then λ̂z = 1.00 and the probability that the next goal is scored
by the trailing team is p = exp(1.00)/(1 + exp(1.00)) = 0.73.

We now turn our attention to the parameter β0t+β1ts which relates the combined effect
of the time of the match t and the substitution advantage s to the probability that the
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Figure 3.2: The posterior density of λ based on the Bayesian logistic regression model (3.3).

trailing team scores the next goal when teams are equally matched (i.e. z = 0). Figure 3.3
provides posterior means of β0t + β1ts in the second half for each of s = −1, 0, 1. In the
plot corresponding to s = 0, we first observe that the correlation structure introduced in
the prior specification (3.4) was successful in smoothing the β0t estimates when compared
to the extreme variability observed in Figure 3.1. From a practical point of view, the plots
reveal practices and consequences for the game of soccer. The positive estimates in Figure
3.3 suggest that during the second half there is a goal scoring advantage provided to the
trailing team. Why might this be? One explanation is tactical. Perhaps managers of
teams that are leading instruct players to play cautiously, to stay back, and consequently
the leading team is defending more than attacking. In these situations, the trailing team is
more likely to score the next goal. Another explanation is psychological. Perhaps teams that
are leading are fearful of giving up the lead, and hence play with the cautious characteristics
described previously. In any case, the message is clear - teams that are leading should not
play as though they are leading. Generally, they should adopt the same style that allowed
them to obtain the lead. The tactical and psychological explanations are also relevant to
the trailing team. The trailing team may be taking chances, playing fearless and attacking.

From Figure 3.3, we are also able to quantify the scoring effect due to the time of the
match and the substitution covariate s. We observe that β0t ≈ 0.2 for most of the second
half. With β0t = 0.2, the probability that the trailing team team scores the next goal is a
substantial p = exp(0.2)/(1 + exp(0.2)) = 0.55. Also, it appears that the plot dips slightly
from roughly the 50-minute mark and dips again from roughly the 80-minute mark. A
possible explanation is that the manager of the trailing team provides an inspiring talk at
halftime, but the motivation begins to wear off beyond t = 50. Also, beyond t = 80, the
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Figure 3.3: Posterior means of the parameters β0t + β1ts based on the Bayesian logistic
regression model (3.3) for the second half of play. The three plots correspond to the the
substitution covariate s = −1, 0, 1. The lines β0t +β1ts = 0 are superimposed as well as the
95 percent posterior intervals.

aggressive attacking style adopted by the trailing team becomes overly aggressive to the
extent that they become more vulnerable to the counter-attack.

We now consider the parameter β1t which was the initial focus of our investigation. We
are interested in the relationship between the substitution time t and the probability that
the trailing team scores the next goal. The detailed effects due to β1t are not easily assessed
from Figure 3.3 as the plots corresponding to s = −1, 0, 1 are similar. Posterior means
for β1t in the second half of a match are given in Figure 3.4. The noteworthy feature of
Figure 3.4 is that the estimates are not discernible from zero when looking at the 95 percent
posterior interval bands. That is, at any time t during the second half, if the trailing team
has made more substitutions than the leading team, there is no scoring benefit. This finding
is in stark contrast to Myers (2012) who claimed there is a strong benefit to the trailing
team when they substitute prior to the 58th, 73rd and 79th minutes.

We have observed that the parameters β0t and β1t appear constant with respect to t
in the Bayesian analysis. For sake of comparison, we fit two sub-models of model (3.3) in
a classical logistical regression context, suppressing the dependence on the time variable t.
Under maximum likelihood estimation, we observed β̂0 = 0.200 with standard error 0.039,
and β̂1 = -0.088 with standard error 0.053. These results are consistent with the magnitude
of estimates obtained in the Bayesian analysis as seen in Figure 3.3.

3.4 Discussion

This paper investigates various influences on scoring in soccer by considering a dataset
involving 2,989 second half goals when teams were trailing.

An important result that does not seem to be widely recognized is that when teams are
of equal strength (i.e. z = 0), the trailing team is more likely to score the next goal during
the second half. This has implications for strategy. When teams are leading, managers
should encourage their teams to play the sort of style that allowed them to obtain the lead.
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Figure 3.4: Posterior means of the parameters β1t based on the Bayesian logistic regression
model (3.3) for the second half of play. The line β1t = 0 is superimposed as well as the 95
percent posterior intervals.

Going into a defensive shell (whether intentionally or as a psychological consequence) is not
optimal. A similar sentiment has been attributed to John Madden in reference to American
football: “All a prevent defense does is prevent you from winning.”

Even more surprising than the above result is the impact of substitutions. When the
strength of the teams and the time of the match have been considered, there is no discernible
benefit for the team that has made more substitutions. This observation needs to be assessed
carefully. We are not saying that there is no need to replace players. Instead, we believe
that managers are adept at observing player performance. For example, when a player is
injured or tired, this is noticed by the manager and they substitute accordingly. Managers
are essentially making good decisions, and there are no prolonged periods where teams are
significantly weakened. What has happened via substitution is that a quality player has
been replaced with another quality player, and there is little distinction. Therefore, in
our analysis, there are no times t in Figure 3.4 that appear advantageous with respect to
substitution. In fact, one may argue that managers typically put out their best teams at the
start of a match, and therefore substitutions are often cases of replacing quality with slightly
lower quality. Perhaps this is why we see the trend in Figure 3.4 falling slightly below the
line β1t = 0. In summary, we suggest that managers should substitute, especially when
they see a drop in a player’s performance. But there is no reason to tie these substitutions
to critical times such as the 58th, 73rd and 79th minutes as in Myers (2012).

We also remark that soccer matches are not randomized experiments where substitutions
are made according to some randomization protocol. As is well known, randomization helps
deal with the influence of confounding variables.
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All soccer fans probably recall occasions when a substitute immediately made an impact
on the game, perhaps by scoring a critical goal. Was this managerial brilliance in terms
of knowing when to substitute? Perhaps it is simply a case of memory bias and confir-
mation bias (Schacter 1999). In sports (and in other activities), people tend to remember
outstanding events and use these occasions to solidify previously held opinions.

Finally, in the comparison of our approach with Myers (2012), we note that different
response variables were used and that our approach introduced new covariates. Therefore,
although both analyses address the substitution problem, they do so in different ways and
the results are not directly comparable. In terms of practice, Myers (2012) states that
managers should substitute according to the 58-73-79 minute rule. On the other hand, our
analysis suggests that there is no discernible time during the second half where there is a
clear benefit due to substitution. What then is a manager to do? We leave this as a bit of
a conundrum that may be considered in future research.

3.5 Commentary

The following is the commentary, directly copied from the article written by Bret R. Myers,
(Myers 2016) on our JQAS article entitled “Analysis of Substitution Times in Soccer.”

3.5.1 Analysis of substitution times in soccer (Silva and Swartz)

Overall, I applaud the effort of Silva and Swartz in extending research on soccer substitutions
on their JQAS article entitled “Analysis of Substitution Times in Soccer”. The problem is
still very relevant in soccer today as FIFA’s substitution rules remain unchanged and the
results of matches continue to be impacted significantly by the roles of players coming off
of the bench. My original 2012 JQAS paper entitled “A Proposed Decision Rule for the
Timing of Soccer Substitutions” advanced an important conversation concerning a critical
problem that soccer managers face in matched. As the paper has drawn much attention, it
is a natural progression for the likes of Silva and Swartz to evaluate the rule and also create
and improved approach that produces a more informative conclusion.

It is reassuring that when trying to replicate my study across the same data sets, Silva
and Swartz found similar results with just minor variation. In my analysis, there was 42.27%
improvement when following the proposed decision rule and 20.52% improvement when not
following the rule (for a difference of 21.75%). When replicating the study through their
interpretation of the decision rule, Silva and Swartz obtained 40.07% improvement when
following the rule and 17.90% improvement when not following the rule (for a difference of
22.17%). For me, this both validates the results of my study, and also, confirms the idea
that substitution patterns significantly impact a team’s likelihood improving goal differential
when behind in a match.
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While my proposed (58-73-79) decision rule was shaped using classification and re-
gression tree (CART) analysis, Silva and Swartz use Bayesian logistic regression and also
account for the strength of each team and home/away. Another difference is in the target
variables of the two studies. Concerning my proposed decision rule, the target variable is
a categorical of whether or not the trailing team improves their goal differential. However,
Silva and Swartz create a categorical variable of whether or not the trailing team scores the
next goal. The authors also expand on the original data set of my study by also including
three additional English Premier League Seasons.

Based on the results of the two studies, there are rather contradictory conclusions.
While I would argue towards a general policy that early substitutions help to improve goal
differential when behind, Silva and Swartz would argue that the timing of substitutions do
not impact the trailing team’s likelihood of scoring the next goal. With the contrasting
approaches of the two studies, it is difficult to directly compare the results and to suggest
that one paper is right and the other one wrong. Therefore, readers should not view the work
of Silva and Swartz to be a replacement for my original article in terms of the information
provided, but rather, an alternative way to view the problem.

One key advantage of my proposed decision rule is the ease of interpretability. This
benefit stems from the CART approach with binary outcomes of substituting before/after
critical times in a soccer match. Although Silva and Swartz do a very thorough and rigor-
ous job with their analysis, their model construct and corresponding results may be more
difficult for a practitioner to interpret. In order for sports research to be truly valuable,
the information needs to be able to connect with key decision makers in sports organiza-
tions. My primary concern at the conclusion of this paper is that a practitioner (or even
an academic) may end up being confused, rather than informed about the timing of soccer
substitutions.

My original study also looked at the impact of the number of substitutions and a team’s
ability to successfully comeback in matches. The evidence was clear that a team was much
better off using all three substitutions as opposed to using only two. It was unclear in the
Silva and Swartz article how quantity of substitutions impacted the trailing team’s ability
to score.

In conclusion, I encourage readers of the Silva and Swartz article to recognize both the
similarities and differences of their approach to that of my original work. I am also hoping
that more researchers will be eager to expand on the analyses of this problem, just as Silva
and Swartz have done. While I’m inclined to defend my original work and offer perspective
on how it compares to this new article, I truly admire Silva and Swartz’s novel approach
and well-executed analysis in their paper.
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3.6 Rejoinder to Myers (2016)

3.6.1 Introduction

By most measures, soccer is the most popular game in the world, and the substitution
rule in soccer is unique to the sport. Bret Myers has introduced a substitution guideline
for managers which has caught the attention of soccer insiders, fans and academics (Myers
2012). We are thankful for Myers’ original contribution and we are also thankful for his
comments on our paper (Silva and Swartz 2016) which offers an alternative analysis of
substitutions.

Since the decision criteria, the covariates and the methods in Myers (2012) differ from
those in Silva and Swartz (2016), one would not expect the conclusions to be exactly the
same. However, the two papers pose a conundrum in that the results are so strikingly
different. Distilling the two papers to their essence,

(A) Myers (2012) claims that there is a large competitive advantage for trailing teams
that follow his substitution guidelines.

(B) Silva and Swartz (2016) argue that there are no special substitution times or periods
of a match that yield a competitive advantage for trailing teams.

In this rejoinder, we first encourage the interested reader to carefully examine the dis-
cussion provided in Section 2 of Silva and Swartz (2016). The takeaway message is that
more faith ought to be placed on (B) than on (A). Second, we now expand on the analysis
of Silva and Swartz (2016) by extending their model.

3.6.2 Extension of the Silva and Swartz (2016) Model

Daniel Stenz (former Director of Analytics and Scouting for the Vancouver Whitecaps)
suggested that goal differential may also have an impact on whether the trailing team
scores the next goal. Accordingly, we have expanded model (3) in Silva and Swartz (2016)
as follows

log
(

pi
1− pi

)
= λzi + β0t + β1tsi + τ2w2 + τ3w3 (3.5)

where the new covariate w2 = 1 corresponds to a two-goal deficit by the trailing team
and w2 = 0 otherwise. The other new covariate w3 = 1 corresponds to a large deficit by
the trailing team (three or more goals) and w3 = 0 otherwise. We assume independent
Normal(0, 1) priors for τ2 and τ3.

Upon fitting the model, we see no qualitative changes in the posterior means of λ ≈ 1.00,
β0t ≈ 0.20 and β1t ≈ 0.00. For τ2, we obtained posterior means and standard deviations
0.08 and 0.08 respectively. For τ3, we obtained posterior means and standard deviations
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0.12 and 0.11 respectively. The impact is that in the case of all things being equal (i.e.
z = 0),

• Prob(trailing team scores next when down by 1 goal) ≈ logit−1(0.20) = 0.55

• Prob(trailing team scores next when down by 2 goals) ≈ logit−1(0.20 + 0.08) = 0.57

• Prob(trailing team scores next when down by ≥ 3 goals) ≈ logit−1(0.20+0.12) = 0.58
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Chapter 4

Tactics for Twenty20 Cricket

4.1 Introduction

Twenty20 cricket is the most recent format of cricket. It was introduced in 2003, and gained
widespread acceptance with the first World Cup in 2007 and with the introduction of the
Indian Premier League in 2008. The main difference between Twenty20 cricket and the
more established format of limited overs cricket known as one-day cricket is that the former
is based on a maximum of 20 overs of batting whereas the latter is restricted to a maximum
of 50 overs of batting. Consequently, Twenty20 cricket has a shorter duration of play than
one-day cricket, and this is appealing to those with limited time to follow sport. Because
the two formats of cricket are so similar, it appears that many of the practices of one-day
cricket have transferred to Twenty20 cricket. For example, although there are critics (Perera
and Swartz 2013), the Duckworth-Lewis method for resetting targets in interrupted one-day
cricket matches is also used in Twenty20 cricket. As another example, it is often the case
that a nation’s Twenty20 side will resemble its one-day side even though there are different
skill sets required in the two formats of cricket.

Since Twenty20 cricket is a relatively new sport, it may be the case that optimal strate-
gies have not yet been fully developed, and instead, Twenty20 cricket is played in much
the same way as one-day cricket. This paper explores two avenues for the modification of
tactics in Twenty20 cricket which may provide competitive advantages to teams. Of course,
with the universal adoption of strategies by all teams, advantages cease to exist. This is
one of the themes discussed in the novel “The Blind Side: Evolution of the Game” (Lewis
2006) which was later popularized as a motion picture starring Sandra Bullock.

The first avenue for improving tactics in Twenty20 cricket is based on the realization that
wickets are of less importance in Twenty20 cricket than in other formats of cricket (e.g. one-
day cricket and Test cricket). A consequence is that batting sides in Twenty20 cricket should
place more emphasis on scoring runs and less emphasis on avoiding wickets falling. On the
flip side, fielding sides should place more emphasis on preventing runs and less emphasis on
taking wickets. To justify the claim that wickets are of less importance in Twenty20 cricket
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than in one-day cricket, Table 4.1 provides a wicket comparison between Twenty20 cricket
(n = 243 matches) and one-day cricket (n = 835 matches) based on international matches
involving full member nations of the ICC (International Cricket Council). The matches
were played during the period of February 17/05 through December 25/13. We see in Table
4.1 that batting reaches the 8th batsman (i.e. 6 or more wickets taken) 84% of the time
in one-day cricket but only 65% of the time in Twenty20 cricket. Since the 8th, 9th, 10th
and 11th batsmen tend to be weaker batsmen, we observe that weak batsmen are batting
less often and that teams rarely (10% of the time) expend all of their wickets in Twenty20
cricket. Since we are less concerned with wickets, it follows that a potential strategy for
Twenty20 batting is to ensure that batsmen with high strike rates bat early in the batting
lineup. Conversely, it may make sense for the bowling team to prevent runs by introducing
bowlers with low economy rates early in the bowling order.

Proportion of first innings with x or more
wickets taken when the innings terminate

x = 5 x = 6 x = 7 x = 8 x = 9 x = 10
Twenty20 0.84 0.65 0.45 0.27 0.17 0.10
One-Day 0.94 0.84 0.73 0.58 0.44 0.29

Table 4.1: Proportion of first innings with x or more wickets taken when the innings ter-
minate, x = 5, 6, . . . , 10.

To emphasize the distinction between Twenty20 cricket and one-day cricket involving
wicket usage, Table 4.2 considers the same time frame as Table 4.1 and shows the distribu-
tion of wickets taken after 90% of the overs are used. In Table 4.2, all Twenty20 first innings
were considered that reached the end of the 18th over (i.e. 90% of the maximum number of
overs). For one-day cricket, we considered all first innings that reached the end of the 45th
over (i.e. 90% of the maximum number of overs). From these stages of a match, we again
see that late-order batsmen bat less often in Twenty20 cricket than in one-day cricket.

Proportion of first innings with x or more wickets
taken when 90% of the overs are completed

x = 5 x = 6 x = 7 x = 8 x = 9 x = 10
Twenty20 0.66 0.37 0.20 0.09 0.04 0.01
One-Day 0.76 0.54 0.35 0.24 0.14 0.09

Table 4.2: Proportion of first innings with x or more wickets taken at the time when 90%
of the overs are completed, x = 5, 6, . . . , 10.

The second avenue for improving tactics is motivated by Figure 4.1 which plots the
distribution of the amount by which Team A defeats Team B. This is a general density plot
that is applicable to many sports where “amount” could represent runs, goals, points, time,
etc. We have made the distribution symmetric although this is not required. We have also
created the plot so that Team A is much stronger than Team B, and on average, Team A
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will win by a considerable amount under standard tactics. The probability that Team B
wins corresponds to the area under the density curve to the left of zero. There is a second
distribution displayed in Figure 4.1 where Team B has modified its tactics so as to increase
variance of the response variable. It is possible that this change of tactics will result in
Team B losing on average by an even greater amount (i.e. the mean of the distribution is
shifted to the right). However, our emphasis is on left tail probabilities corresponding to
negative values. These are the cases in which Team B wins. What we see in Figure 4.1 is
that Team B wins more often under modified tactics with increased variance than under
standard tactics. In this paper, we explore tactics with inflated variance which may allow
a weaker team in Twenty20 cricket to win more often.
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Figure 4.1: Probability density functions of the amount by which Team A (the stronger
team) defeats Team B (the weaker team). The tail regions to the left of zero correspond to
matches where Team B wins.

In Twenty20 cricket, the quantity of interest that leads directly to wins and losses is
run differential. When a team scores more runs than its opposition, they win the match.
To investigate run differential, the study of historical matches between two teams is of
little value. The composition of the teams change from match to match, and there is
rarely a sufficient match history between two teams from which to draw reliable inferences.
In addition, matches from the distant past are irrelevant in predicting the future. We
therefore use simulation techniques under altered tactics to investigate the distribution of
run differential.
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In Section 4.2, we provide an overview of the match simulator developed by Davis,
Perera and Swartz (2015). The simulator is the backbone for investigating run differential.
For the casual reader, this section can be skimmed, as it is only important to know that
methodology has been developed for realistically simulating Twenty20 matches. In Section
4.3, we consider modified batting orders. The proposal is to load the batting order so that
batsmen with higher strike rates bat earlier in the batting order. This idea aligns with
the theme that wickets are less important in Twenty20 cricket than in one-day cricket. In
Section 4.4, we consider modified bowling orders. The proposal is that bowlers with low
economy rates should bowl early in the bowling lineup. This idea also aligns with the
theme that wickets are less important in Twenty20 cricket than in one-day cricket. Here,
our focus is to suppress runs rather than be concerned with taking wickets. In Section
4.5, we increase the aggressiveness of batsmen. This has the dual effect of increasing run
scoring while simultaneously increasing the rate of wickets falling. This is clearly a variance
inflation technique. In Section 4.6, we consider a more comprehensive strategy involving
modified batting and bowling orders. Here we use a simulated annealing algorithm over the
vast combinatorial space of lineups (i.e. team selection, batting order and bowling order)
so as to maximize win percentage. This approach is based on ideas from Perera, Davis and
Swartz (2016). We conclude with a short discussion in Section 4.7.

The exploration of tactics appears to be a novel exercise for cricket generally, and
Twenty20 cricket in particular. Clarke (1998) recommends that teams should score more
quickly in the first innings in one-day cricket than is the current practice. Swartz (2016)
provides a survey of cricket analytics with some discussion devoted to tactics and strategy.

4.2 Overview of Simulation Methodology

We now provide an overview of the match simulator developed by Davis, Perera and Swartz
(2015) which we use for the estimation of the run distribution for a given team. In cricket,
there are 8 broadly defined outcomes that can occur when a batsman faces a bowled ball.
These batting outcomes are listed below:

outcome j = 0 ≡ 0 runs scored
outcome j = 1 ≡ 1 runs scored
outcome j = 2 ≡ 2 runs scored
outcome j = 3 ≡ 3 runs scored
outcome j = 4 ≡ 4 runs scored
outcome j = 5 ≡ 5 runs scored
outcome j = 6 ≡ 6 runs scored
outcome j = 7 ≡ dismissal

(4.1)

In the list (4.1) of possible batting outcomes, extras such as byes, leg byes, wide-balls and
no balls are excluded. In the simulation, extras are introduced by generating occurrences at
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the appropriate rates. Extras occur at the rate of 5.1% in Twenty20 cricket. The outcomes
j = 3 and j = 5 are rare but are retained to facilitate straightforward notation.

According to the enumeration of the batting outcomes in (4.1), Davis, Perera and Swartz
(2015) suggested the statistical model:

(Xiow0, . . . , Xiow7) ∼ multinomial(miow; piow0, . . . , piow7) (4.2)

where Xiowj is the number of occurrences of outcome j by the ith batsman during the oth
over when w wickets have been taken. In (4.2), miow is the number of balls that batsman
i has faced in the dataset corresponding to the oth over when w wickets have been taken.
The dataset was special in the sense that it consisted of detailed ball-by-ball data. The
data were obtained using a proprietary parser which was applied to the commentary logs
of matches listed on the CricInfo website ( www.espncricinfo.com).

The estimation of the multinomial parameters piowj in (4.2) is a high-dimensional and
complex problem. The complexity is partly due to the sparsity of the data; there are many
match situations (i.e. combinations of overs and wickets) where batsmen do not have batting
outcomes. For example, bowlers typically bat near the end of the batting order and do not
face situations when zero wickets have been taken.

To facilitate the estimation of the multinomial parameters, Davis, Perera and Swartz
(2015) introduced parametric simplifications and a hybrid estimation scheme using Markov
chain Monte Carlo in an empirical Bayes setup. A key idea of their estimation procedure
was a bridging framework where the multinomial probabilities in a given situation (i.e. over
and wickets lost) could be estimated reliably from a “nearby” situation.

Given the estimation of the parameters in (4.2) (see Davis, Perera and Swartz 2015),
first innings runs can be simulated for a specified batting lineup facing an average team.
This is done by generating multinomial batting outcomes in (4.1) according to the laws of
cricket. For example, when either 10 wickets are taken or 20 overs are bowled, the first
innings is terminated. Davis, Perera and Swartz (2015) also provided modifications for
batsmen facing specific bowlers (instead of average bowlers), accounted for the home field
advantage and provided adjustments for second innings batting.

4.3 Modified Batting Orders

In Twenty20 cricket, the objective is to score more runs than your opponent. To maximize
runs scored, it is important to carefully consider team selection, and once a team is selected,
to determine a good batting order (Perera, Davis and Swartz 2016). The criterion “good”
is not straightforward as the consensus opinion is that you want batsmen at the beginning
of the batting lineup who both score runs at a high rate but are dismissed at a low rate.
Recall that batting in the first innings of a Twenty20 match concludes when either 20 overs
have been completed or when 10 wickets have been lost.
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However, we have argued that wickets are of less importance in Twenty20 cricket than
in the more established one-day format. We therefore consider an extremely simple idea of
altering the batting order such that batsmen with high strike rates (average runs per 100
balls) bat early in the batting lineup.

At the time of writing, India may be regarded as one of the stronger Twenty20 sides
and we consider their batting order as given in Table 4.3. This was the batting order
used in their January 31/16 match versus Australia where India won by 7 wickets with
0 balls remaining. As an opponent, we consider Bangladesh which is well-known to be
a weaker side. In the 2016 Twenty20 World Cup, Bangladesh were placed in the group
stage consisting of eight teams, from which two teams advanced to the Super 10 stage. We
consider Bangladesh’s Twenty20 batting lineup from January 17/16 where they defeated
Zimbabwe by 42 runs. Based on repeated match simulations with these lineups, we see
from Table 4.3 that Bangladesh is expected to defeat India only 21% of the time. The
simulated matches were carried out in a simple way; we generated first inning runs for
both India and Bangladesh, and then calculated the run differential to determine the match
winner.

India (Jan 31/16) Bangladesh (Jan 17/16) Bangladesh (alternative)
01. RG Sharma T Iqbal S Al Hasan (132.6)
02. S Dhawan S Sarkar S Sarkar (130.6)
03. V Kohli S Rahman S Rahman (119.0)
04. SK Raina M Mahmudullah Riyad T Iqbal (117.1)
05. Y Singh M Rahim M Rahim (115.9)
06. MS Dhoni S Al Hasan M Mahmudullah Riyad (107.3)
07. HH Pandya S Hom M Mortaza (104.6)
08. RA Jadeja N Hasan N Hasan
09. R Ashwin M Mortaza S Hom
10. JJ Bumrah A-A Hossian A-A Hossian
11. A Nehra M Rahman M Rahman

Win Pct = 21% Win Pct = 37%
Mean(Run Diff) = -22.1 Mean(Run Diff) = -10.0
StdErr(Run Diff) = 28.6 StdErr(Run Diff) = 30.0

Table 4.3: Batting orders used in the match simulator for India versus Bangladesh lineups.
The career Twenty20 strike rates for the Bangladesh batsmen are given in parentheses
Summary statistics regarding the simulation are given at the bottom.

What we further observe in Table 4.3 are the strike rates corresponding to the Bangladesh
batsmen (we ignore the four pure bowlers). We therefore consider an alternative batting
order that Bangladesh has never utilized in practice. In the alternative lineup, we place
the Bangladesh batsmen in decreasing order according to their career strike rates based on
international and IPL data up to October 25/15. The biggest changes involves Shakib Al
Hasan who moves from batting position #6 to position #1, and Tamin Iqbal who moves
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from position #1 to #4. With these radical changes, we observe a huge improvement for
Bangladesh who now win 37% of the time via the simulation procedure. We note that Al
Hasan is an explosive batsmen and the Jan 17/16 lineup does not take advantage of his run
scoring capability. In Twenty20 cricket, it is sometimes the case that the 6th batsman in an
order may not have the opportunity to bat. We also note that Iqbal is an experienced player,
and perhaps his longstanding tenure and reputation plays a role in his batting position with
Bangladesh. In Table 4.3, we also observe that the standard lineup used by Bangladesh
would have 22.1 fewer average first innings runs than India. When the Bangladesh lineup
is altered with the highest strike rate batsmen at the beginning of the batting order, the
mean run differential is reduced to 10.0 runs.

The results in Table 4.3 are stunning, and this is particularly due to the batting place-
ment of Al Hasan. Other teams may not be able to have such dramatic improvements. It
depends on whether or not their standard lineups use high strike rate batsmen near the
beginning of the batting order. Also, we have used career strike rate as a criterion for
batting order. This may not be optimal as we note that a batsman’s batting position on
his team impacts how freely he can bat which in turn affects his strike rate.

4.4 Modified Bowling Orders

From the bowling perspective, we now consider how a fielding team can suppress runs.
We again use the sample case from Section 4.3 involving a hypothetical match between
Bangladesh and India, and we consider bowling from the perspective of Bangladesh.

In Table 4.4, we provide the bowling order that was used by Bangladesh in their recent
January 17/16 match against Zimbabwe. We observe that they used six bowlers in the
match. If this bowling order is used against the India lineup listed in Table 4.3, we recall
from the simulation procedure that Bangladesh wins only 21% of the time and has an
average deficit in run differential of 22.1 runs.

We now consider what would happen if Bangladesh’s batting order was left unchanged
from January 17/16 but we require that the five bowlers (M Rahman, S Al Hasan, A-A
Hossain, M Mortaza and S Rahman) bowl in the order of increasing economy rate. In other
words, each would bowl four consecutive overs in the specified order. This idea aligns with
the theme that wickets are less important in Twenty20 cricket than in one-day cricket. We
note that the proposed bowling order is unrealistic as teams are required to change bowlers
between overs and teams strategize concerning the utilization of spin and fast bowlers.
However, using the proposed bowling order in our simulation procedure, the Bangladesh
win rate increases from 21% to 24% and the average run differential deficit improves from
22.1 runs to 20.1 runs.

Although the results above are not as dramatic as with the modified batting orders
in Section 4.3, this may be due to the fact that the Bangleshi bowlers have comparable
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Ball Bowler Ball Bowler
0.1-0.6 S Hom 10.1-10.6 S Rahman
1.1-1.6 S Al Hasan (7.20) 11.1-11.6 S Al Hasan
2.1-2.6 A-A Hossain (7.74) 12.1-12.6 M Mortaza
3.1-3.6 M Rahman (6.03) 13.1-13.6 S Al Hasan
4.1-4.6 M Mortaza (8.46) 14.1-14.6 M Mortaza
5.1-5.6 M Rahman 15.1-15.6 A-A Hossain
6.1-6.6 M Mortaza 16.1-16.6 M Rahman
7.1-7.6 S Al Hasan 17.1-17.6 A-A Hossain
8.1-8.6 S Rahman (8.52) 18.1-18.6 S Hom
9.1-9.6 S Hom 19.1-19.5 M Rahman

19.6 S Rahman

Table 4.4: Bowling order used by Bangladesh in their January 17/16 match versus Zim-
babwe. Career economy rates are given in parentheses based on international and IPL data
up to October 25/15. Shuvagata Hom’s economy rate is not listed as this was his first
international Twenty20 match where he bowled.

economy rates. For teams with greater disparities in their bowling economy rates, the
modification of bowling orders may yield greater improvements. Also, suppose that you
had three bowlers with comparable economy rates. You would not need to have them bowl
in the order ABCABCABCABC, for example. They could bowl in alternative orders such
as CBACBACBACBA.

4.5 Increased Aggressiveness

In this section, we explore the idea of variance inflation by increasing the aggressiveness of
batsmen. For implementation of this idea, we recognize that batsmen are more aggressive
when fewer wickets have been taken. We therefore define wicket shift behaviour (WSB) of -1
as a modification in batting style as if one fewer wicket had been taken. In other words, let
the state of the match (o, w) correspond to the oth over when w wickets have been taken.
Then wicket shift behaviour of -1 corresponds to

• during (o, w = 0), modify batting behaviour as though the state were (o, w = 0)

• during (o, w = 1), modify batting behaviour as though the state were (o, w = 0)

• during (o, w = 2), modify batting behaviour as though the state were (o, w = 1)

•

•

•

• during (o, w = 9), modify batting behaviour as though the state were (o, w = 8)
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We similarly define wicket shift behaviours of −2,−3, . . . ,−9 which correspond to in-
creasing levels of batting aggressiveness. It is also possible to define non-integer levels of
wicket shift behaviour. For example, with respect to a given ball, wicket shift behaviour
of −1.2 corresponds to wicket shift behaviour of −1 with probability 0.8 and wicket shift
behaviour of −2 with probability 0.2.

The proposed batting schemes are well-suited for analysis using the simulator developed
by Davis, Perera and Swartz (2015). In the simulator, every batsman has a baseline state of
batting characteristics and these characteristics are modified to provide characteristics piowj
which are applicable to the oth over when w wickets have been taken. We therefore only
need to slightly modify the code in order to account for prescribed wicket shift behaviours.

To test the idea of increasing batting aggressiveness, we return to the Bangladesh-India
matchup previously discussed, and we alter the batting style of Bangladesh using various
wicket shift behaviours. The results are provided in Table 4.5. Again, the results are based
on simulating first innings for both Bangladesh and India, and calculating the difference
in runs. We first observe that when the wicket shift behaviour is zero (ordinary batting),
the win percentage of 21.3% corroborates with the win percentage in Table 4.3 under the
standard lineup. More importantly, we observe that the numbers in Table 4.5 coincide with
our motivating intuition described in Section 4.1. In particular, we see that the variability
(last column) increases as batting aggressiveness (i.e. wicket shift behaviour) increases. Also,
in terms of win percentage, we observe that there is an initial benefit to Bangladesh through
increased aggressiveness although the benefit decreases when aggressiveness becomes too
great. Additional simulations indicate that the maximum benefit occurs for wicket shift
behaviour of -0.9. At this value, the win percentage increases to 22.8% from 21.3% under
ordinary batting.

WSB W% RD SD(RD)
0 21.3 -22.1 28.6
-1 22.8 -20.9 28.9
-2 22.5 -21.6 29.4
-3 21.2 -23.2 29.7
-4 19.6 -25.2 30.2
-5 17.1 -28.5 30.7

Table 4.5: Investigation of various wicket shift behaviour (WSB) for Bangladesh based on
their their January 17/16 lineup in a match versus Zimbabwe. The opposition team is India
based on their their January 31/16 lineup in a match versus Australia. The table reports
win percentage (W%) for Bangladesh, run differential in favour of Bangladesh (RD) and
the standard deviation of RD.

In Table 4.6, we repeat the analysis except this time we consider New Zealand versus
India based on New Zealand’s lineup on August 16/15 in a match versus South Africa. New
Zealand may provide a different perspective than Bangladesh since New Zealand is a strong
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team. In this matchup, we see the same patterns as with Bangladesh versus India. New
Zealand has a 60.2% win percentage under wicket shift behaviour −1.2 which represents an
increase from a 59.3% win percentage under ordinary batting behaviour. In this example,
because New Zealand is the stronger team (see WSB= 0), the motivation of Section 4.1
does not apply directly. Although the variance of run differential increases with increasing
aggressiveness (see the last column of Table 4.6), the maximum win percentage achieved
at WSB= −1.2 is due to a shift in the distribution of run differential rather than variance
inflation.

WSB W% RD SD(RD)
0 59.3 6.3 27.3
-1 60.2 7.0 27.5
-2 59.8 6.7 27.9
-3 59.0 6.3 28.0
-4 56.6 4.4 28.3
-5 52.7 1.9 28.8

Table 4.6: Investigation of various wicket shift behaviour (WSB) for New Zealand based
on their their August 16/15 lineup in a match versus South Africa. The opposition team
is India based on their their January 31/16 lineup in a match versus Australia. The table
reports win percentage (W%) for New Zealand, run differential in favour of New Zealand
(RD) and the standard deviation of RD.

4.6 General Modified Lineups

In this section, we consider the comprehensive strategy of determining an optimal lineup. By
lineup, we mean the simultaneous consideration of team selection, batting order and bowling
order. This problem was considered in Perera, Davis and Swartz (2016) in the context of
maximizing expected run differential. We now consider the problem of maximizing expected
win percentage. Optimality is achieved through a stochastic search algorithm over the
combinatorial space of lineups where expected win percentage for a particular lineup is
obtained via the match simulator.

For illustration, we again consider India based on their January 31/16 lineup. The
opposition is New Zealand and their baseline lineup from August 16/15 is given in Table
4.7. Corroborating the results from Table 4.6, we see that New Zealand wins 59% of the
simulated matches between these two teams. However, we now optimize the New Zealand
lineup and consider team selection from the 15 players which New Zealand named for
the 2016 World Cup. We see that the optimal team selection differs considerably from
the August 16/15 match where Tom Latham, James Neesham, Nathan McCullum, Adam
Milne and Mitchell McClenaghan are replaced by Henry Nicholls, Corey Anderson, Tim
Southee, Trent Boult and Mitchell Santner. We also observe that the batting lineups differ,
especially in the case of Kane Williamson who moves from the opening partnership to the
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6th position and Colin Munro who moves from the 7th position to the opening partnership.
We remark that throughout the 2016 World Cup, New Zealand placed Munro in the third
batting position which is more in keeping with our optimal batting lineup. However, the
takeaway message from Table 4.7 is that New Zealand improved its winning percentage
from 59% to 70% against India by using the optimal lineup. In terms of explanation, there
may be a number of contributing factors including new players, a changed batting order
and a different bowling emphasis.

India (Jan 31/16) New Zealand (Aug 16/15) New Zealand (optimal)
01. RG Sharma MJ Guptill MJ Guptill
02. S Dhawan KS Williamson C Munro
03. V Kohli TWM Latham H Nicholls
04. SK Raina GD Elliott L Ronchi
05. Y Singh JDS Neesham CJ Anderson
06. MS Dhoni L Ronchi KS Williamson
07. HH Pandya C Munro GD Elliott (4)
08. RA Jadeja NL McCullum T Southee (4)
09. R Ashwin AF Milne T Boult (4)
10. JJ Bumrah MJ McClenaghan MJ Santner (4)
11. A Nehra IS Sodhi IS Sodhi (4)

Win Pct = 59% Win Pct = 70%
Mean(Run Diff) = 6.3 Mean(Run Diff) = 14.8
StdErr(Run Diff) = 27.3 StdErr(Run Diff) = 28.9

Table 4.7: Batting orders used in the match simulator for India versus two New Zealand
lineups. The number of overs of bowling in the optimal New Zealand lineup is given in
parentheses. Summary statistics regarding the simulation are given at the bottom.

4.7 Discussion

This is an extremely practical paper. We have outlined in simple terms how teams may
improve their chances of winning. They may do this through modifying their batting order
and by modifying their bowling order. The determination of general optimal lineups as
discussed in Section 4.6 requires the specialized software developed by Perera, Davis and
Swartz (2016).

The suggestion of modifying aggressiveness in batsmen is not as easy to achieve as the
modification of batting and bowling orders. Asking a batsman to be a little more aggressive
needs to be communicated and executed in a careful way. Maybe one way of doing this is
to ask a batting partnership to try to achieve a specified run rate in a given over. Batting
a little more aggressively is something that would require both training (on the part of the
batsman) and quantitative expertise (on the part of the team captain or those providing
instruction) to specify the correct run rate.
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The big issue for us is a desire to see the sport of cricket begin to adopt analytic methods
to improve performance. At this stage in time, the sport of cricket appears to lag behind
many of the world’s major sports.
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Chapter 5

The Evaluation of Pace of Play in
Hockey

5.1 Introduction

In possession sports, pace of play is a characteristic that influences the style of a match.
Generally speaking, when the pace of a game is high, the game is more fluid and there is
more opportunity for scoring.

There are different measurements of pace for different sports. For example, in the
National Basketball Association (NBA), pace is typically measured by the average number
of possessions per game. For example, in the 2015-2016 regular season, the Sacramento
Kings lead the NBA with 102.2 possessions per game which is contrasted with the Utah Jazz
who ranked last with 93.3 possessions per game (see www.espn.go.com/nba/hollinger/

teamstats). With more possessions, teams typically score and allow more points. For
example, the Sacramento Kings and Utah Jazz ranked 2nd and 30th respectively in the
30-team NBA for total points scored and allowed in the 2015-2016 regular season.

In American football, although there is a clear notion of pace of play, there is no com-
monly reported statistic that directly measures pace. In the National Football League
(NFL), the average number of plays per game is recorded for each team ( www.teamrankings.

com/nfl/stat/plays-per-game). Although this statistic is related to pace, it is obvious
that poor offensive teams who rarely make first downs have fewer plays per game. There-
fore, in football, plays per game for a team is confounded with offensive strength and is not
a pure measure of pace. Pace in football can be increased for a team by using a “hurry-up
offense” which affords more plays in a given period of time provided that the team continues
to make first downs. Furthermore, teams that frequently pass the ball (as opposed to run)
typically use up less of the clock and have more plays from scrimmage.

In both basketball and football, increasing the number of possesions can be seen as a
strategy, particularly when a team is losing. In basketball, intentional fouling stops the
clock and provides more opportunities to score and overcome a deficit. In football, ensuring
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that plays are terminated by going “out of bounds” stops the clock and provides more
possessions.

In soccer and hockey, there are also notions of pace where a “stretched” game is one
that goes from end to end, and is thought to be a game which is played at a high pace.
However, in both of these sports, there is again no commonly reported measurement for
pace of play.

In this paper, we explore various measures for pace of play in hockey that could also
be applied to soccer. In hockey, there is a limited body of literature concerning pace. In
a recent investigation, Petbugs (2016) considered the percentage of shot attempts taken
by a given team in a game (i.e. the Corsi percentage) and used this as a measure of pace.
The idea is that teams that are taking most of the shots are playing at a higher pace. As
a measure of pace, an immediate difficulty with the Corsi percentage is that the statistic
is associated with the quality of the team. If one team is playing much better, they will
be in the offensive zone for a greater period of time and will consequently have a higher
Corsi percentage. This however, does not mean that they are playing at a high pace. Hohl
(2011) provided a brief discussion on possession metrics where Corsi and the related Fenwick
statistics are considered as proxy variables for possession.

What makes this paper unusual is that we essentially report a negative result. In
the mathematical sciences, negative results are rarely communicated. For example, if an
investigator does not establish a theorem, this does not imply that the theorem is not true.
It only means that the investigator was unable to prove the result.

In the experimental sciences, the publication of negative results is also not a widespread
practice. Sometimes an experimental result is only seen as significant and publishable
if a p-value less than 0.05 is attained (Wasserstein and Lazar 2016). However, there
has been an increased calling for the publication of negative results. For example, the
reputed multidisciplinary journal PLOS ONE now contains a collection of studies that
present inconclusive, null findings or demonstrate failed replications of published work
( www.ploscollections.org/missingpieces). Without the recognition of negative re-
sults, publication biases are introduced, and this affects the validity of meta analyses. In
particular, when controversial and important questions of public safety are at stake, it is
important to have access to all major studies, either positive or negative. One can think of
examples such as the effects due to second hand smoke, the effects of high voltage trans-
mission lines and the effects due to marijuana legislation.

There is another reason why negative results should sometimes be reported. Granqvist
(2015) writes, “it causes a huge waste of time and resources, as other scientists considering
the same questions may perform the same experiments”. Our investigation may fall under
this category. We believe that our measures of pace are intuitive and sensible. With the
advent of the availability of detailed NHL event data, we imagine that other researchers
may consider similar investigations of pace to what we have attempted. In the context of
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hockey analytics, Sam Ventura (analytics consultant for the Pittsburgh Penguins) tweeted,
“I’ve said this to a large number of colleagues & students recently, so I’m posting it here
too: Null results are still interesting results!” ( https://twitter.com/stat_sam/status/

717109886430158848). Ventura then tweets, “Publish all of your results, regardless of how
"strong" or "weak" they are. It can only serve to benefit the research community by putting
this information out there.”

In Section 5.2, we describe the initial approach that we use in defining pace. We also
describe the data which we use to investigate various pace of play statistics. The proposed
statistics are based on big data sources that take the form of event data. Consequently, the
statistics could not have been computed prior to the advent of modern rink technology and
computing. In Section 5.3, we calculate the various pace statistics for the 2015/2016 NHL
season. We observe that none of the proposed statistics correlate positively with expected
and familiar quantities such as goals scored and shots taken. Consequently, there is no
appealing narrative for how pace affects games, how pace should be used as a tactic, etc.
We conclude with a brief discussion in Section 5.4.

5.2 Pace Calculation

Our understanding of pace is that the pace of play is fast when teams are rushing from
end to end, attacking and retreating. In fast paced games, there is less opportunity to be
organized in the defensive zone in terms of the numbers of defensive players and positioning.
A team that sends players forward exposes themselves to counter-attacks. When a team has
the puck and are moving sideways or passing backwards, then they are behaving cautiously
and we would say that they are playing at a slow pace. We now attempt to incorporate
these general ideas.

Our initial game pace statistic is evaluated as follows: We consider the consecutive
events E1, . . . , En in a game consisting of n events. For each i = 1, . . . , n, the location of
the event Ei is obtained according to the Cartesian coordinates (xi, yi) where (0, 0) is centre
ice and (−100, 0) is the position directly behind the home team’s goal. Rink sizes in the
NHL are standardized with dimensions of 200 feet by 85 feet. It is important to note that
teams change ends at the beginning of the second and third periods.

For each i = 1, . . . , n, we determine whether the home team (H) or the road team
(R) had possession of the puck immediately following Ei. We then determine which team
had possession immediately preceding Ei+1. If it is the same team, then there is a pace
contribution di which is the “attacking distance” travelled and is defined by

di =


max{xi+1 − xi, 0} if H had possession
max{−xi+1 + xi, 0} if R had possession
0 if change of possession

(5.1)
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We therefore define a pace contribution di only in the case of a team moving forward in
an attacking direction with possession. For example, “dumping the puck” into the offensive
zone with retrieval by the defensive team is not considered as a contribution to game pace.
Also, drifting sideways with possession is not considered as a contribution to game pace.
The total attacking distance in a game is then defined as

D1 =
n−1∑
i=1

di (5.2)

The remaining detail in the calculation of (5.2) is the determination of possession as
required in (5.1). Thomas and Ventura (2014) have created an R package nhlscrapr that
provides detailed event information and processing for NHL games. The scraper retrieves
play-by-play game data from the NHL Real Time Scoring System database and stores the
data in convenient files that can be handled by the R programming language. The nhlscrapr
package can access NHL matches back to the 2002-2003 regular season. We note that there
are 10 types of events Ei provided by nhlscrapr as listed in Table 5.1.

Event Type Frequency
Line Change 27.2 %
Faceoff 16.8 %
Shot on Goal 15.1 %
Hit/Check 13.7 %
Blocked Shot 7.9 %
Missed Shot 6.4 %
Giveaway 4.5 %
Takeaway 3.7 %
Penalty 2.2 %
Goal 1.5 %

Table 5.1: The 10 types of mutually exclusive events that are recorded using nhlscraper.
The events are listed in order of their percentage frequency from the 2014-2015 NHL regular
season based on 451,919 observed events. There are some unlisted rare events and error
codes that comprise the remaining 1%. Note that Line Change corresponds to line changes
“on the fly” and not line changes that occur during stoppages. A Missed Shot is a shot that
was not a shot on goal.

More can be said about the NHL Real Time Scoring System database and the deter-
mination of possession. However, a stumbling block with this freely accessible database is
that there are roughly 400 events recorded per match. Over a 60 minute hockey game, this
translates to an event every 9 seconds on average. Given the action in hockey, much can
transpire over 9 seconds, much more than what is recorded in the database. For example,
Figure 5.1 provides a potential path taken during 9 seconds of possession. In this case,
the pace contribution di according to (5.1) does not reflect the amount of forward progress
made by the team in possession. It is even possible for possession to change over a 9 second
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interval and for this not to be recorded. Consequently, although the NHL Real Time Scor-
ing System database has provided a breakthrough for hockey analytics, it is not detailed
enough for our purposes.

Figure 5.1: Potential path taken by a team during 9 seconds of possession. Given the
starting point A and the endpoint B, the pace contribution di is shown.

At this point in time, the NHL is moving towards the collection of data via player track-
ing cameras in every NHL venue. Consequently, there will soon be an explosion of data in
the NHL. A similar initiative has already taken place in the NBA where the SportVU system
has been in place since the 2013/2014 season. The NBA data has promoted a surge in re-
search activities including previously difficult topics of investigation such as the evaluation of
contributions to defense (Franks et al. 2015). In the NHL, the company SPORTLOGiQ has
provided us with proprietary data for most games (1140 out of 1230) during the 2015/2016
NHL season. Most importantly for our purposes, there is great detail in the SPORTLOGiQ
database with events occurring every 1.2 seconds on average. Although we are not at lib-
erty to discuss aspects of the SPORTLOGiQ database, we can say that the database has
an extended number of events compared to those in Table 5.1. Furthermore, possession is
easily determined so that the calculations of (5.1) and (5.2) are easily facilitated. In Section
5.3, we describe our investigation of pace using the SPORTLOGiQ database.

5.3 Investigation of Pace

We begin with the distance metric D1 defined in (5.2) which is the sum of forward attacking
distances by both teams in a game measured in feet. We have omitted overtime periods be-
cause teams may play differently during overtime. Specifically, since the 2015/2016 season,
teams play with three skaters instead of five during overtime periods and this may “open
up” the ice and lead to more transitions and greater pace.
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To provide an intuitive measure of pace for a game, we define

P1 = D1/T (5.3)

where T is the number of seconds in a match where teams are playing at full strength (i.e.
5v5). We reason that teams may play differently in non-5v5 situations as there is more
open ice. Therefore P1 represents the average forward attacking distance in feet during a
game.

In Figure 5.2, we provide scatterplots of the pace variable P1 versus total goals while
full strength and versus total shots while full strength in a game. The plots are based
on the 1140 recorded SPORTLOGiQ matches during the 2015/2016 regular season. In
neither plot do we see a positive correlation. The correlation coefficients for the two plots
are -0.079 (total goals) and -0.281 (total shots). This is surprising as one would think
that high paced games would lead to more scoring opportunities. In fact, the correlation
for total shots r = −0.281 is highly statistically significant (negative) with a t-statistic of
t = r

√
n− 2/

√
1− r2 = −9.88. Our intuition is that in high paced games, teams fall out of

defensive positions, that there is more open space and consequently more opportunities to
score.

Figure 5.2: Plots of familiar measures (total goals and total shots while full strength) versus
P1 for games during the 2015/2016 NHL regular season.

As a second attempt to investigate pace, we modify the calculation of D1 to D2. With
D2, we only consider attacking distances di that were traversed at a sufficient speed. The
intuition is that teams are not playing at high pace if they are moving slowly. Therefore,
we take the attacking distance di in (5.1) and obtain the time ti in seconds that it took the
team to travel the distance di. The time variable ti is available from the SPORTLOGiQ
database. Then we only include a di contribution in D2 if di/ti ≥ 5.0 feet per second.
This cutoff retains 96.5% of the observations used in calculating P1. This leads to a second
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measure of pace in a game given by

P2 = D2/T (5.4)

where T is the number of seconds in a match where teams are playing at full strength.
In Figure 5.3, we provide scatterplots of the pace variable P2 in (5.4) versus total goals

while full strength and versus total shots while full strength in a game. The plots are based
on the 1140 recorded SPORTLOGiQ matches during the 2015/2016 regular season. Again,
in neither plot do we see a positive correlation. The correlation coefficients for the two
plots are -0.091 (total goals) and -0.360 (total shots). Here the correlation for total shots is
even more negative than with P1. We note that we experimented with alternative threshold
speeds and observed qualitatively similar results.

Figure 5.3: Plots of familiar measures (total goals and total shots while full strength) versus
P2 for games during the 2015/2016 NHL regular season.

As a third attempt to investigate pace, we modify the calculation of D1 to D3. With D3,
we only consider attacking distances di that occurred between the blue lines. The intuition
is that frequent transitions between the blue lines (i.e. in the neutral zone) characterize
games that have a back and forth quality. Operationally, if we have a distance di that
begins within a team’s own blue line, we truncate it so it begins at the blue line. If a
distance di ends within the opponent’s blue line, then it is truncated to the blue line. This
leads to a third measure of pace in a game given by

P3 = D3/T (5.5)

where T is the number of seconds in a match where teams are playing at full strength.
In Figure 5.4, we provide scatterplots of the pace variable P3 in (5.5) versus total goals

while full strength and versus total shots while full strength in a game. The plots are based
on the 1140 recorded SPORTLOGiQ matches during the 2015/2016 regular season. Again,
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in neither plot do we see a positive correlation. The correlation coefficients for the two plots
are -0.040 (total goals) and -0.230 (total shots).

Figure 5.4: Plots of familiar measures (total goals and total shots while full strength) versus
P3 for games during the 2015/2016 NHL regular season.

5.4 Discussion

This paper introduces various measures for pace of play in hockey which are based on
the lengthwise distances travelled (skated) by both teams while in possession of the puck
during a game. To our great surprise, we found that our definition of pace does not correlate
positively with either total goals or shots on goal.

Therefore, our communication may be seen as a negative result. However, since the
result is counter-intuitive, we believe that it deserves mention in the hockey analytics com-
munity.

Should future refinements to pace provide meaningful correlations, then a host of inter-
esting questions may be addressed. For example, does pace contribute to scoring? Does
pace contribute to winning? Which teams are pacey? Has pace changed over seasons? Are
there pacey players? Can teams incorporate strategies related to pace and goal scoring? If
pace does increase goals at both ends of the ice, then a tradeoff between increasing pace
and goal scoring may be similar to the tradeoff between pulling the goaltender earlier and
goal scoring (Beaudoin and Swartz 2010).
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