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Abstract

Catastrophe bond (CAT bond) is one of the modern financial instruments to transfer the

risk of natural disasters to capital markets. In this project, we provide a structure of payoffs

for a zero-coupon CAT bond in which the premature default of the issuer is also considered.

The defaultable CAT bond price is computed by Monte Carlo simulations under the Va-

sicek interest rate model with losses generated from a compound doubly stochastic Poisson

process. In the underlying Poisson process, the intensity of occurrence is assumed to follow

a geometric Brownian motion. Moreover, the issuer’s daily total asset value is modelled by

the approach proposed in Duan et al. (1995), and the liquidity process is incorporated to

capture the additional return of investors. Finally, a sensitivity analysis is carried out to

explore the effects of key parameters on the CAT bond price.

Keywords: Catastrophe bond; premature default; stochastic interest rates; doubly stochas-

tic Poisson process; liquidity process
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Chapter 1

Introduction

1.1 Overview of catastrophe bonds

Natural disasters such us floods, earthquakes, or hurricanes can cause substantial financial

losses with high uncertainty of occurrences, which is known as catastrophe risk. In other

words, the risk of catastrophic events of high severity but low frequency may result in

insurance companies to have insufficient reserves to cover insurance claims. This leads

insurers or reinsurers to look for new financial or insurance instruments to make sure that

they hold enough capital in case of future catastrophic events. One of examples of reducing

reserve requirements and coverage cost is to issue a catastrophe bond (hereinafter referred

to as CAT bond).

CAT bonds are well-known insurance-linked securities (short for ILS) used by insurance

companies to transfer the risk of natural disasters to capital markets. They were invented

after Hurricane Andrew hit southern Florida in 1992 causing about $25 billion in damage

in today’s dollars (“The Insurance Industry Has Been Turned Upside Down by Catastrophe

Bonds”, The Wall Street Journal, 2016). This hurricane is the costliest and most destructive

damage ever at the time. Because of the unpredictable nature of the catastrophe, CAT

bonds typically provide relatively higher yields to attract investors, offering an alternative

way for investors who are seeking out higher returns.

Figure 1.1 shows the outstanding and new issued CAT bond and ILS market volumes

from 1997 to the third quarter of 2016, according to the Artemis Deal Directory, a leading

data provider. The data for this chart includes not only non-life CAT bonds, but also

life-related ILS as well as other private transactions tracked by the Artemis Deal Directory.

As we observe from Figure 1.1, the market size of CAT bond and ILS proceeds at a slow

pace until the financial crisis in 2008, followed by a significant growth. Roughly $7.8 billion

of CAT bond and ILS issuance is witnessed for the year 2015, the third highest full-year

1



Figure 1.1: CAT bond and ILS Risk Capital

Source: Artemis Deal Directory
http : //www.artemis.bm/deal_directory/cat_bonds_ils_issued_outstanding.html

record ever. Additionally, according to the data from the Artemis Deal Directory, a new

record for the total CAT bond issuance reaches $2.215 billion during the first quarter of

2016. Such an issuance volume represents about 31% growth over the previous record set

in the first quarter of 2015. It is the first time in the history that the outstanding CAT

bond limit was pushed to more than $26 billion at the end of a quarter. All these statistics

showing an increasing volume of transactions in the CAT bonds market is anticipated.

1.2 Structure of a CAT bond transaction

As presented in Figure 1.2, the basic structure of CAT bonds includes three parties, a

sponsor (insurer or reinsurer), a special purpose vehicle (short for SPV), and bond investors.

The sponsor enters into a risk transfer contract by paying premiums to a SPV, which

is created specially for the transaction, in exchange for the coverage provided by the SPV

via the issued securities. The SPV issues CAT bonds to investors (CAT bonds can also be

issued by a traditional insurer) in the capital markets. In such a way the risk of disasters

2
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Figure 1.2: Basic CAT bond structure

Source: Risk Management Solutions, Inc. (2012)

can be mitigated by shifting the risk to bond investors. The proceeds from the sale of bonds

are then deposited in a collateral account managed by the SPV.

During the risk period, if specified events set in the CAT bond provisions do not occur, the

bond investors are paid a competitive yield. As mentioned earlier, due to the uncertainty

arising from rare events with dramatic consequences, these investors are compensated by

higher interest rates in return for taking on the risk. The collateral account is then liquidated

upon the expiration of CAT bonds and the investors are repaid with the full face value.

On the other hand, if a contingent event occurs and the accumulated loss amount reaches

the trigger level, the investors sacrifice fully or proportionally their interest and face value.

Proceeds will be withdrawn from the collateral account and reimburse the sponsor in order

to help the sponsor pay claims arising from the events. From the perspective of the investors,

the face value is repaid at risk because they could lose the entire face value in the SPV if

the covered event is severe enough.

1.3 Trigger types

In the CAT bond market, three types of triggers that are commonly used are indemnity

trigger, industry loss trigger, and parametric trigger. Table 1.1 summarizes that, for each

type of trigger, what kind of coverage it provides. Generally, the use of a trigger involves a

trade-off between moral hazard and basis risk (Doherty and Richter (2002)).

First, for a traditional indemnity trigger, the CAT bond is triggered by the actual claims

or losses of the CAT bond’s issuer. This type of trigger minimizes the issuer’s basis risk,

the gap between the bond payout and incurred losses. For this reason, this is the most

advantageous for the issuer. However, it poses the danger of moral hazard that the issuer

has an incentive to underwrite policies in a high catastrophe-risk area. The disadvantage

3

Image removed due to copyright



Table 1.1: Summary of three types of triggers

CAT bonds with Coverage based on

indemnity trigger issuer’s actual excess claims

industry loss trigger total industry losses on a catastrophic event

parametric trigger exceedance of specific event parameters

of using the indemnity trigger is that it may require a longer waiting period until the

settlement of all claims has been reached, so it tends to be infavouered by the investors.

Second, unlike an indemnity trigger that is designed such that the debt is forgiven in

direct relationship to the issuer’s actual claims or losses, an industry loss trigger is defined

by the estimate of the total losses experienced by the industry after a certain catastrophic

event. Since the industry loss trigger is determined by considering the experiences of many

companies and is provided by an independent third-party service (e.g., Property Claims

Services in the U.S. and PERILS in Europe), it is more transparent than the indemnity

trigger and consequently lessens the moral hazard. In addition, industry loss triggers can

be measured more quickly after a catastrophic event than traditional indemnity triggers.

Therefore, industry loss triggers become more advantageous for investors. On the other

hand, this type of trigger exposes the issuer to a higher level of basis risk because the

amount of claims it has to pay may not be exactly the same as the issuer’s share of the

industry loss.

Third, the parametric trigger is based on the occurrence of a natural disaster, such as

an earthquake exceeding magnitude of 7.0. Apparently, it is more understandable for the

investors than the probability of an issuer incurring a certain amount of losses. According

to Cummins (2008), a parametric trigger subjects the issuer to the highest degree of basis

risk. If the location or geographical area where the loss is measured is defined appropriately,

this type of parameters can roughly predict the issuer’s size of claims, and results in a lower

degree of basis risk. For CAT bonds with a parametric trigger, they are very transparent,

and the moral hazard risk is the lowest among these three types of triggers because it is

difficult for an issuer to manipulate losses. Moreover, the claims are settled even more

quickly because the parameter of an event is available shortly after a triggering event. As

a result, it is the most attractive to the investors.

Overall, these triggers either reduce the sponsor’s moral hazard behaviour but create

the basis risk or the other way around, which supports the evidence that a trade-off exists

between moral hazard and basis risk. According to the statistics available on Artemis, most

CAT bonds use either an indemnity trigger or an industry loss trigger. In this project,

4



we focus on the CAT bond contracts based on indemnity triggers, where the payouts are

directly tied to the losses of a CAT bond’s issuer, due to its popularity.

1.4 Motivation

Lee and Yu (2002) evaluated the zero-coupon defaultable CAT bonds for a log-normal

loss process by applying Monte Carlo simulations. However, there exists the possibility that

a CAT bond’s issuer goes bankrupt before the bond matures. This project differs from Lee

and Yu (2002) by considering the early default arrival as shown in Black and Cox (1976).

As pointed out in Lin et al. (2009), a pure Poisson process is not appropriate to describe

the arrival process of future natural disasters because of the global climate change in recent

decades. An increasing exponential trend of the annual number of natural catastrophic

events can be observed in the U.S. over 54 years starting 1950, which supports the adoption

of a compound Poisson process with stochastic intensity. Based on their findings, when

pricing a CAT bond, we take into account the assumption that the dynamic aggregate

losses of an insurance company follow a compound doubly stochastic Poisson process with

lognormal distribution of the loss magnitudes to represent this phenomenon.

Besides, there is no literature regarding pricing of a CAT bond with liquidity risk involved.

Liquidity refers to an investor’s ability to quickly sell or purchase a security at the price

that reflects the current market conditions without causing a drastic change in the price.

An important characteristic of a liquid market is that there are always willing buyers and

sellers who are ready to enter transactions. Conversely, in an illiquid market, it is often

characterized by a big trade-off between how soon and how much the security can be sold for.

In such a market, liquidity risk influences all market participants. This project completes

the literature by incorporating the liquidity process (see Longstaff et al. (2005)) to capture

the extra return that investors may require. This extra return can be regarded as the

compensation for risks borne by the bond investors, differing from the investors who hold

riskless securities.

1.5 Outlines

The rest of this project is organized as follows. The following chapter gives an overview

of articles in this area.

In Chapter 3, we first introduce notations and assumptions that are used in this project.

Then, the models for CAT bond issuers, including dynamics of interest rate, asset, loss,

liquidity and the frequency of catastrophic events, are presented. Furthermore, we specify

5



the payoffs of a zero-coupon CAT bond under different scenarios. The pricing formulae are

also provided.

Chapter 4 prices one-year zero-coupon CAT bonds through Monte Carlo simulations for

illustrations. Sensitivity analysis is carried out as well to explore how the CAT bond price

varies with key parameters. Finally, Chapter 5 concludes the project with some general

remarks.

6



Chapter 2

Literature review

Pricing securities subject to default risk have been studied by a number of articles. For

example, Merton (1974), Duffie et al. (1996), Lando (1998), Hui et al. (2003), and Longstaff

et al. (2005). Merton (1974) presented a risk structure of interest rates with the probability

of default. Instead of using the classical approach in Merton (1974), Duffie et al. (1996)

proposed an intensity-based framework by deriving a risk-neutral valuation formula to price

defaultable securities, in which the time of default with arrival intensity itself is a random

process. Lando (1998) also presented a similar framework, where the default intensity is

assumed to follow a doubly stochastic Poisson process, also known as the Cox process. Based

on the result from Duffie et al. (1996), Duffie et al. (1997) proposed an alternative way

of valuing swaps by discounting the future cash flows with a default and liquidity-adjusted

instantaneous short rate. Longstaff et al. (2005) pointed out that most corporate bond

spreads are caused by default risk, and incorporated interest rate and liquidity processes,

apart from the default process, to develop a closed-form expression for pricing a corporate

bond. Each of the processes is stochastic and independent of each other. However, few

researchers attempted to price defaultable CAT bonds.

Another important issue to be addressed when pricing CAT bonds is the possibility that

a CAT bond’s issuer goes bankrupt and becomes insolvent before the CAT bond expires.

In the model of Merton (1974), default refers to the event when the firm’s value at maturity

falls below its liability. However, the underlying assumption is that the default event may

only occur at the maturity date of a bond. Later, Black and Cox (1976) relaxed the

assumption of Merton (1974) by taking into account the premature default. The concept of

safety covenants was applied in the model of Black and Cox (1976). That is, bond holders

have the right to force the firm to go bankrupt or reorganize if the value of the firm’s assets

is lower than a certain barrier. Briys and De Varenne (1997) proposed a corporate bond

valuation model where both early default and interest rate risk are considered.

7



On the issuer’s assets side, the dynamics of a firm’s value is governed by a geometric

Brownian motion in the framework of Merton (1974), with the assumption of a flat term

structure. Subsequently, Duan et al. (1995) extended Merton’s (1974) asset price dynamics

by relating the asset model to the Vasicek’s (1977) mean-reverting stochastic interest rate

model to evaluate the interest rate risk exposures of banks. In order to analyze interest rate

risk characteristics of corporate bonds, Nawalkha (1996) also generalized Merton’s (1974)

model to include Vasicek’s (1977) term structure model. In this project, we use the same

setting as Duan et al. (1995) and Nawalkha (1996) that incorporated Vasicek (1977) process

into Merton’s (1974) model for asset dynamics to obtain the daily asset value of a CAT

bond’s issuer.

As for the aggregate loss model, a typical way in risk theory is to use a compound

Poisson process; see Bowers et al. (1986) for details. In a compound Poisson process, our

interest centres on the sum of the loss random variables for all loss arrivals following a

Poisson process up to a certain time. In the case of CAT bonds, these variables are positive

random severities that are independent and identically distributed, and are independent of

the underlying Poisson process for loss frequencies. Baryshnikov et al. (2011), Lee and Yu

(2002), and Jaimungal and Wang (2006) modelled the frequency and severity of catastrophes

with compound Poisson processes to evaluate the prices of different CAT insurance products.

All of these articles used a constant arrival rate of catastrophic events within the process

to describe dynamic losses. However, Jang (2000) indicated that the appropriateness of

using a Poisson process as the loss arrival process in insurance modelling is questioned, and

thus employed a doubly stochastic Poisson process to measure the number of losses due

to catastrophic events, for deriving pricing formulae for a stop-loss reinsurance contract.

In addition, Lin et al. (2009) indicated that historical data regarding adjusted number

of natural catastrophic events shows an upward trend from 1950 to 2004 in the U.S., and

suggested that a doubly stochastic Poisson process would be more adequate than using an

average constant occurrence rate of catastrophes. To keep up with this trend, we assume a

compound doubly stochastic Poisson process for the aggregate losses in this project.

This project follows the existing literature on the valuation of default-risky CAT bonds.

An important theoretical work in this area includes Lee and Yu (2002), which assumed

the interest rate dynamics of Cox et al. (1985) and a compound Poisson process for the

aggregate loss dynamics. As previously mentioned, we adopt the one-factor interest rate

model by Vasicek (1977), which has the disadvantage of producing negative values. However,

the Central Banks of Denmark, Sweden, Switzerland and Japan recently decided to adopt

negative interest rate policy. Thus, it becomes reasonable to model interest rate movements

with the Vasicek (1977) process nowadays.

8



The objective of this project is to incorporate the interest rate and liquidity risks, early

default time, and compound doubly stochastic Poisson process into the pricing model of a

zero-coupon CAT bond.

9



Chapter 3

The model

In this chapter, we present the stochastic interest rate model, the asset dynamics, the

aggregate loss dynamics, and the liquidity process of a CAT bond’s issuing firm, along with

the model assumptions and notations. Throughout this project, we assume a CAT bond

matures at time T ; the subscript t (t < T ) is measured in days, unless stated otherwise, and

an issuer is the issuing firm of a CAT bond, either a traditional insurer or a special purpose

vehicle (SPV). Furthermore, we provide the payoff structures for CAT bonds without and

with default risk, respectively, as well as their pricing formulae.

3.1 Issuers of CAT bonds

3.1.1 The stochastic interest rate model

Interest rate models have been used widely in the valuation of interest rate derivatives.

Two of one-factor interest rate models that are widely used in the finance literature are the

Vasicek (1977) model and the Cox, Ingersoll and Ross (1985) model. The former allows

negative interest rates while the latter ensures that interest rates are always non-negative.

Both of them are driven by only one source of market risk. Furthermore, they both have

mean-reverting property that ensures a trajectory of interest rate will revert toward the

long-term mean level in the long run.

Jaimungal and Wang (2006) and Lin et al. (2009) proposed pricing formulae for catas-

trophe put options with the Vasicek model. Lin et al. (2009) relaxed the assumption in

Jaimungal et al. (2006) to include a stochastic catastrophic process. In addition, Nowak et

al. (2012) priced zero-coupon CAT bonds with the Vasicek interest rate model. We follow

their setting and assume the interest rates are governed by the Vasicek model.

10



Let rt be the interest rate. Assuming that rt follows the Vasicek (1977) model with

parameters κ, θ, and σr, the stochastic differential equation is given by

drt = κ(θ − rt)dt + σrdWr,t, (3.1)

where κ is the mean-reverting force measuring the effect of pulling the process back to its

long-term mean θ; σr is the volatility of the interest rate; and Wr,t is a Weiner process

modelling the randomness of market risk.

3.1.2 The asset dynamics

In Merton (1974), the dynamics for the firm’s assets is modelled by a lognormal diffusion

process. However, Lee and Yu (2002) pointed out that this typical approach of modelling

asset value fails to capture the impact of stochastic interest rates, since the issuers invest

most of their proceeds from the sale of CAT bonds in treasury securities or other interest-

sensitive assets.

For this reason, we adopt the asset model which depicts the asset value consisting of

interest rate risk and credit risk, where credit risk is independent of interest rate risk. More

details can be found in Duan et al. (1995). Specifically, the asset dynamics is written as

dVt

Vt
= rtdt + φσrdWr,t + σV dWV,t, (3.2)

where Vt represents an issuer’s asset value at time t, t ∈ [0, T ]; rt is the interest rate at time

t; φ can be interpreted as the interest rate elasticity of an issuer’s total assets; σr and σV

are the volatilities of the interest rate risk and credit risk, respectively; and WV,t denotes a

Weiner process independent of Wr,t.

3.1.3 The aggregate loss dynamics

A classic model for the distribution of the aggregate loss over a time period in actuarial

literature is the compound Poisson process; see, for example, Bowers et al. (1986). Yet an

increasing trend in the number of future catastrophic events is anticipated due to global

warming, according to Lin et al. (2009). Therefore, as opposed to using a deterministic

intensity rate, we assume a stochastic intensity rate to model the arrival of catastrophic

events. The aggregate loss model is then known as a compound doubly stochastic Poisson

process. It provides more flexibility to model the rate of occurrence of catastrophic events

because the rate itself is stochastic and time-dependent. The following introduces the

models for loss frequency and severity of catastrophic events, and their assumptions.

11



1. Arrival process for catastrophic events: define λC
t as the stochastic intensity rate

at time t that follows a geometric Brownian motion. The process can be expressed as

dλC
t

λC
t

= µλdt + σλdWλ,t, (3.3)

where µλ and σλ are the instantaneous change rate and the volatility of change rate

of the catastrophic intensity, respectively, and Wλ,t is a Weiner process. Note that

the superscript C is short for the term “catastrophic events”.

Given an initial value λC
0 , the stochastic differential equation (3.3), by Itô’s lemma,

has an analytical solution given by

λC
t = λC

0 × exp

(

µλ − 1

2
σ2

λ + σλWλ,t

)

, t ≥ 0. (3.4)

2. Counting process: denote N(t) as the number of catastrophic events up to time

t with N(0) = 0, and assume it follows a Poisson process parameterized by the

stochastic rate λC
t .

3. Loss severity: let Xj (j ≥ 1) represent the loss amount incurred from the jth catas-

trophe. We assume that Xj’s are independent, identical, and log-normally distributed

random variables with parameters µC and σC . We also assume that all severities Xj ’s

are independent of the counting process N(t).

4. Aggregate loss process: based on the assumptions above, the aggregate loss dis-

tribution is then known as a compound doubly stochastic Poisson process. Let Ct be

the aggregate loss of an issuer at time t given by

Ct =

N(t)
∑

j=1

Xj

with Ct = 0 if N(t) = 0.

3.1.4 The liquidity process

Liquidity risk is a financial risk that an investor cannot meet the short term financial

demands. An illiquidity market has characteristics that both the trading volume and fre-

quency are low. Typically, financial instruments with lower trading volume tend to expose

the investors to a higher degree of liquidity risk since the market demand cannot easily

match with the market supply condition. Because of the characteristic, investors may re-

quire an extra yield on the assets in return for their inability to convert the assets to cash
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quickly. This extra return can be treated as an incentive for investors in the capital markets

to invest in such risky securities.

Following Longstaff et al. (2005), the liquidity dynamics γt is assumed to be governed by

the following stochastic process

dγt = σγdWγ,t, (3.5)

where σγ is a positive constant and Wγ,t is a Weiner process.

3.1.5 Other assumptions and notations

Some other notations and assumptions regarding the issuer of a CAT bond are given as

follows.

1. Independence between processes: Longstaff et al. (2005) assumed the dynam-

ics of default intensity, interest rate, and liquidity are independent of each other to

simplify the model. Following this idea, for simplicity, we make the same assumption

that each of the Weiner processes in rt, Vt, λC
t and γt is independent of each other.

2. Face value: let L be the face value of an issuer’s total debts at maturity.

3. Bankruptcy level: we let KD
t , similarly as in Bielecki and Rutkowski (2013), denote

the threshold of a poor performance of the issuer’s assets set by Black and Cox (1976),

in terms of a time-dependent deterministic barrier, given by

KD
t =







K · e−γ(T −t) for t ∈ [0, T )

L for t = T
,

for some constant K > 0. It is also known as a safety covenant, which provides bond

holders the right to take over a firm if the value of that firm’s assets after a certain

catastrophic event is less than the contractual threshold KD
t . Note that the super-

script D is short for the term “default” hereafter.

In this project, it is assumed that γ equals 0. The bankruptcy level can then be

simplified to KD, a constant over time.

4. Default time: let τd be the first time when an issuer’s total assets Vt after deducting

the aggregate loss Ct falls below the level KD. This includes default prior to or at

the maturity date. The default time equals (inf ∅ = +∞)

τd = inf{t ∈ [0, T ] : Vt − Ct < KD}.
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3.2 Zero-coupon CAT bonds

As mentioned earlier, we study only the indemnity loss trigger in this project. The

following specifies the assumptions of a zero-coupon CAT bond we use in this project,

including the trigger barrier, the trigger time, and the payoffs.

1. Recovery rate: we first define β ∈ [0, 1] as the recovery rate that determines the

recovery payoff received at default time, if default occurs prior to or at the CAT bond’s

maturity date.

2. Trigger level: denote KC
j as the annual indemnity loss trigger level set in the CAT

bond provisions. According to the property for a compound Poisson process that the

value of each arrival is independent of the underlying Poisson process, KC
j can be

determined by

KC
j = λC

j × exp

(

µC +
σ2

C

2

)

,

which is the expectation of the compound aggregate loss process, Ct, based on the

Poisson process N(t) with intensity rate λC
j and log-normal severity with mean µC

and variance σ2
C . Here, λC

j represents the rate of occurrence for the jth year and is

assumed constant over the entire jth year, j = 1, 2, ..., T . Therefore, KC
j is a function

that is piecewise constant.

3. Trigger time: in the case when an indemnity trigger is being used, we denote τc as

the first time t ∈ [0, T ] when the value of the aggregate loss (Ct) of an issuer exceeds

KC
j . Specifically,

τc = inf{t ∈ [0, T ] : Ct > KC
j ; j − 1 < t ≤ j, j = 1, 2, ..., T }.

It is assumed that the CAT bond is triggered only once by or at the maturity date T .

4. Payoffs: denote the payoff by POi(time), where the subscript i changes according

to which case is being discussed, and time indicates when the payment is made. For

example, i = f and i = d mean the cases of default-free and default-risky CAT bonds,

respectively.

(a) We begin with the simplest case where there are no default risk involved in

pricing a CAT bond. In this special case, the future bond payoffs are paid out to

the bond holders only when the CAT bond expires. Let POf (T ) be the payoff
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at time T ; the payoff of a default-free CAT bond at maturity can be written as

POf (T ) =







L if CT ≤ KC
j ,

a · L if CT > KC
j .

(3.6)

If CT ≤ KC
j , then the bond holders receive whole face value L at maturity. Oth-

erwise the bond holders receive only a partial face value a · L, where a ∈ [0, 1) is

a pre-specified proportion of the face value needed to be paid to the bond holders

when the established trigger has been reached.

(b) Now we consider a CAT bond with default risk; the payoff is determined accord-

ing to the time of default occurring (default after, at, or by the maturity date)

and are specified below.

i. The event of default does not occur during the risk period of the CAT bond

(i.e., τd > T ), so the payment is made at time T . That is

POd(T ) =







L if CT ≤ KC
j and VT − CT ≥ L,

a · L if CT > KC
j and VT − CT ≥ a · L.

(3.7)

This payoff structure is an extension of (3.6), with the consideration of de-

fault risk. Similar concept as in (3.6), for the case when the trigger has not

been pulled, the bond holders receive L at maturity; whereas if the CAT

bond is triggered, they lose a portion of the face value and receive a · L.

ii. The issuer is insolvent and defaults at the maturity date of the CAT bond,

i.e. τd = T . Then

POd(T )

=







max{β · (VT − CT ), 0} if CT ≤ KC
j and VT − CT < L,

min{a · L, max[β · (VT − CT ), 0]} if CT > KC
j and VT − CT < a · L,

(3.8)

where 0 ≤ β < 1. The upper term in (3.8) happens when the underlying

aggregate loss does not exceed the trigger level KC
j but the issuer defaults at

the bond’s maturity date. In this case, the bond holders receive either a por-

tion of the issuer’s remaining asset value or nothing at time T . Whereas the

lower term in (3.8) represents the scenario that the CAT bond is triggered
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and the issuer is insolvent. In this case, the bond holders get the minimum

of a · L and max[β · (VT − CT ), 0] when the CAT bond matures.

iii. The event of default occurs before the CAT bond expires (i.e., premature

default, τd < T ), so the payment is made at τd and can be written as

POd(τd) =











β · KD if τc > τd,

min{a · L · e
−
∫ T

τd
(rt+ γt) dt

, β · KD} if τc ≤ τd.
(3.9)

The upper term in (3.9) includes two scenarios, for which the investors of

the CAT bond receive β · KD. One is that the trigger is not pulled by or at

time T (τd < T < τc), and the other is that the trigger is pulled after the

issuer defaults and occurs by or at time T (τd < τc ≤ T ).

The lower term in (3.9) shows the scenario that the issuer defaults after the

CAT bond is triggered (τc ≤ τd). The payoff a · L paid at time T includes

the discount factor “exp
[

− ∫ T
τd

(rt + γt) dt)
]

” because it is compared to the

payoff β · KD when the issuer defaults on its debts at time τd. The issuer

pays out the minimum of the two quantities at τd, the default time of the

CAT bond’s issuer.

Table 3.1 summarizes all possible payoffs stated in (3.7)− (3.9) for the CAT

bond forgiven on the issuer’s actual losses. Scenarios i., ii., and iii. describe

the events of default that does not occur during the CAT bond term, occurs at

maturity, and occurs prior to time T , respectively.

It is worth noticing that the payoffs are made at time T for both i. and ii.,

whereas for iii. the investors receive the payoff at time τd if the issuer defaults

before the CAT bond’s maturity date. As might be expected, the events for all

scenarios in Table 3.1 are disjoint. In order for us to investigate the scenario-

specific effect on the total price of a CAT bond, we specify each row in the

condition column of Table 3.1 as Scenarios 1, 2, 3, 4, 5-1, 5-2 and 6, starting

from top to bottom.

5. Price at time 0: once the payoffs of a CAT bond are known, we can then price the

CAT bond at its issuing date (i.e., time 0). Denote Pi(0, T ) as the price at time 0

discounting from time T , and i as discussed in Section 3.2. According to the specified

interest rate, asset, aggregate loss, and liquidity dynamics, the CAT bond’s pricing
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Table 3.1: Summary of payoffs under different scenarios

Issuer defaults CAT bond is Payoff

or not triggered or not Condition (at T for i. and ii.; and at τd for iii.)

i.

No. No.
{τd > T, τc > T,

L
VT − CT ≥ L}

No. Yes.
{τd > T, τc ≤ T,

a · L
VT −CT ≥ a·L}

ii.

Yes, at time T . No.
{τd = T, τc > T,

max{β · (VT − CT ), 0}
VT − CT < L}

Yes, at time T . Yes.
{τd = T, τc ≤ T,

min{a · L, max[β · (VT − CT ), 0]}
VT −CT < a·L}

iii.

No. {τd < T < τc}
β · KDYes,

before time T . Yes, after the
issuer defaults.

{τd < τc ≤ T }

The issuer defaults by time T and
after the CAT bond is triggered.

{τc ≤ τd < T } min{a · L · e
−
∫ T

τd
(rt+ γt) dt

, β · KD}

formulae are provided below.

(a) Based on the payoff structure in (3.6), the CAT bond can be valued by the

discounted expectation of the payoffs of two disjoint events, τc > T and τc ≤ T .

The pricing formula is given by

Pf (0, T ) =E

[

POf (T ) · e−
∫ T

0
(rt+ γt) dt

]

=E

[

L · e−
∫ T

0
(rt+ γt) dt

1{τc>T }

]

+ E

[

a · L · e−
∫ T

0
(rt+ γt) dt

1{τc≤T }

]

=E

[

L · e−
∫ T

0
(rt+ γt) dt | τc > T

]

× Pr(τc > T )

+ E

[

a · L · e−
∫ T

0
(rt+ γt) dt | τc ≤ T

]

× Pr(τc ≤ T ).

(3.10)

This pricing formula involves interest rate and liquidity risks; the randomness

of catastrophe intensity is also embedded, where 1 is an indicator function. We

observe that the payoffs in each of the terms are discounted at the adjusted rate

rt + γt.
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In the terms on the right-hand side of the second equality in (3.10), the former

is the expected present value of the promised payment to the investors when the

CAT bond is not triggered during the risk period of the CAT bond (i.e., τc > T ),

and the latter is the expected present value of the payment when a specified

event occurs that meets the trigger condition to activate a payout (i.e., τc ≤ T ).

Obviously, the intersection of these two events {τc > T } and {τc ≤ T } is empty.

Next, the terms on the right-hand side of the last equality in (3.10) are obtained

by applying the law of total expectation.

(b) Based on the payoff structure in (3.7)−(3.9), and the property that the events for

all scenarios are mutually exclusive and exhaustive, the price of the CAT bond

at time 0 can be written as

Pd(0, T )

= E

[

L · e−
∫ T

0
(rt+ γt) dt

1{τd>T,τc>T,VT −CT ≥L}

]

+ E

[

a · L · e−
∫ T

0
(rt+ γt) dt

1{τd>T,τc≤T,VT −CT ≥a·L}

]

+ E

[

max{β · (VT − CT ), 0} · e−
∫ T

0
(rt+ γt) dt

1{τd=T,τc>T,VT −CT <L}

]

+ E

[

min{a · L, max[β · (VT − CT ), 0]} · e−
∫ T

0
(rt+ γt) dt

1{τd=T,τc≤T,VT −CT <a·L}

]

+ E

[

β · KD · e−
∫ τd

0
(rt+ γt) dt

1{τd<T <τc or τd<τc≤T }

]

+ E

[

min{a · L · e−
∫ T

0
(rt+ γt) dt, β · KD · e−

∫ τd
0

(rt+ γt) dt}1{τc≤τd<T }

]

.

(3.11)

This pricing formula differs from (3.10) by taking into account the default risk and

the event of premature default. The first two terms in the expression represent

the expected present values of future payoffs when there is no event of default

occurs during the CAT bond term. The third and forth terms show the expected

present values of payoffs paid at time T when the issuer defaults at the maturity

date, no matter whether the CAT bond has been triggered or not. Finally, the

last two terms are the expected present values of future payoffs in the event of

an premature default. Since all the conditions stated in each of the expressions

above are mutually exclusive and exhaustive, (3.11) can be rewritten as the

sum of all the products of a conditional mean and corresponding probability by

applying the law of total expectation. More specifically,
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Pd(0, T )

= E

[

L · e−
∫ T

0
(rt+ γt) dt | τd > T, τc > T, VT − CT ≥ L

]

× Pr(τd > T, τc > T, VT − CT ≥ L)

+ E

[

a · L · e−
∫ T

0
(rt+ γt) dt | τd > T, τc ≤ T, VT − CT ≥ a · L

]

× Pr(τd > T, τc ≤ T, VT − CT ≥ a · L)

+ E

[

max{β · (VT − CT ), 0} · e−
∫ T

0
(rt+ γt) dt | τd = T, τc > T, VT − CT < L

]

× Pr(τd = T, τc > T, VT − CT < L)

+ E

[

min{a · L, max[β · (VT − CT ), 0]} · e−
∫ T

0
(rt+ γt) dt | τd = T, τc ≤ T, VT − CT < a · L

]

× Pr(τd = T, τc ≤ T, VT − CT < a · L)

+ E

[

β · KD · e−
∫ τd

0
(rt+ γt) dt | τd < T < τc or τd < τc ≤ T

]

× Pr(τd < T < τc or τd < τc ≤ T )

+ E

[

min{a · L · e−
∫ T

0
(rt+ γt) dt, β · KD · e−

∫ τd
0

(rt+ γt) dt} | τc ≤ τd < T

]

× Pr(τc ≤ τd < T ).

(3.12)
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Chapter 4

Numerical Results

This chapter calculates the price of a defaultable zero-coupon CAT bond using Monte

Carlo simulations, based on the assumptions we made and the pricing formulae we derived

in Chapter 3. The simulations are run with 100, 000 paths, on a daily basis. In addition,

throughout this chapter, it is assumed that the CAT bond can only be triggered once during

its risk period.

This chapter is organized as follows. Section 4.1 provides the methodology regarding

how we simulate each of the stochastic processes and obtain the simulated price of the

CAT bond. The steps taken in order to calculate the price of the defaultable zero-coupon

CAT bond are also provided. In Section 4.2, the general assumptions used for numerical

illustrations are given. Afterwards, we compute the price of the bond for a representative

base case, including the bonds without and with the default risk. In the last section, we

carry out a sensitive analysis to study how the bond price varies with key parameters.

4.1 Simulation methodology

From Sections 4.1.1 to 4.1.3, we briefly introduce how to simulate the stochastic processes

that we discussed in Chapter 3. Unless the process itself has an analytic solution, instead of

assuming that a process evolves continuously, a typical approach to modelling a continuous

process is to partition the underlying interval [0, T ] into tiny subintervals of equal width

∆t and calculate the value of the process at each of the discrete time points, tj = j · ∆t,

j = 1, 2, . . . , (T/∆t). By doing this, the computation process is simplified. With this in

mind, we provide the approximation formulae for (3.10) and (3.12) in Section 4.1.4. Lastly,

Section 4.1.5 describes the steps for simulation procedure.
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4.1.1 Generate interest rates

We adopt the Vasicek (1977) process, a mean reverting short rate process, to model the

interest rates. Its stochastic differential equation is given by (3.1). With a specific initial

rate of return r0, the trajectory of the short rate can be generated by the following equation

(see Gillespie (1996) for more details):

rt = e−κ∆t · r0 + (1 − e−κ∆t) · θ + σr ·
√

1 − e−2κ∆t

2κ
·
√

∆t · Nr(0, 1), (4.1)

where

• t = tj = j · ∆t and ∆t = tj − tj−1 = 1/365, j = 1, 2, . . . , T/∆t;

• the parameters κ, θ and σr are defined in Chapter 3; and

• Nr(0, 1) denotes the random number generated from the standard normal distribution.

4.1.2 Generate issuer’s total assets

The asset dynamics is presented in (3.2), the Merton’s (1974) model with the considera-

tion of the interest rate risk (see Duan et al. (1995)). Given the initial value V0, the value

of the issuer’s total assets at time t by Itô’s lemma is given as

Vt = V0 × exp

[

∫ t

0

(

rs − φ2 · σ2
r + σ2

V

2

)

ds + φ · σr · Nr(0, t) + σV · NV (0, t)

]

, (4.2)

where

• rs is the interest rate at time s;

• the parameters φ, σr and σV are defined in Chapter 3; and

• Nr(0, t) and NV (0, t) represent the generated normal random numbers with mean 0

and variance t for interest rate and asset value components, respectively.

Since both σ2
V and σ2

r are pre-specified values, and

∫ t

0
rs ds is approximated by

j
∑

i=1
rti ×∆t,

(4.2) can be rearranged and rewritten as follows, in which the sample values of Vt are

computed at the discrete time points t = tj = j · ∆t and ∆t = tj − tj−1 = 1/365, j =

1, 2, . . . , T/∆t.

Vt ≈ V0×exp









j
∑

i=1

rti × ∆t



− φ2 · σ2
r + σ2

V

2
· t +

√
t × (φ · σr · Nr(0, 1) + σV · NV (0, 1))



 .

(4.3)

Note that the two Nr(0, 1)’s in (4.1) and (4.3) have the same generated values from the

standard normal distribution.
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4.1.3 Generate values for the liquidity process

The dynamics of the liquidity process with parameter σγ is given by (3.5). This stochastic

process is also known as the standard Brownian motion without a drift term. Given an

arbitrary value of γ0, the liquidity component at time t can be obtained by solving the

stochastic differential equation. Specifically,

γt = γ0 + σγ ·
√

t · Nγ(0, 1), (4.4)

where t = tj = j · ∆t, ∆t = tj − tj−1 = 1/365, j = 1, 2, . . . , T/∆t, and Nγ(0, 1) is the

generated standard normal random number.

4.1.4 Approximate the price of the CAT bond

Since the stochastic processes of rt and γt are simulated on a daily basis, and they serve

as the discount factor in both (3.10) and (3.12), we have

Pf (0, T ) ≈E

[

L · e
−
∑T/∆t

j=1
(rtj + γtj )×∆t | τc > T

]

× Pr(τc > T )

+ E

[

a · L · e
−
∑T/∆t

j=1
(rtj

+ γtj
)×∆t | τc ≤ T

]

× Pr(τc ≤ T ),

(4.5)

an approximated formula to price the CAT bond without the default risk involved.
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Similarly, the expression for the approximated pricing formula when the default risk is

taken into consideration becomes

Pd(0, T )

≈ E

[

L · e
−
∑T/∆t

j=1
(rtj

+ γtj
)×∆t | τd > T, τc > T, VT − CT ≥ L

]

× Pr(τd > T, τc > T, VT − CT ≥ L)

+ E

[

a · L · e
−
∑T/∆t

j=1
(rtj + γtj )×∆t | τd > T, τc ≤ T, VT − CT ≥ a · L

]

× Pr(τd > T, τc ≤ T, VT − CT ≥ a · L)

+ E

[

max{β · (VT − CT ), 0} · e
−
∑T/∆t

j=1
(rtj + γtj )×∆t | τd = T, τc > T, VT − CT < L

]

× Pr(τd = T, τc > T, VT − CT < L)

+ E

[

min{a · L, max[β · (VT − CT ), 0]} · e
−
∑T/∆t

j=1
(rtj + γtj )×∆t | τd = T, τc ≤ T, VT − CT < a · L

]

× Pr(τd = T, τc ≤ T, VT − CT < a · L)

+ E

[

β · KD · e
−
∑τd/∆t

j=1
(rtj + γtj )×∆t | τd < T < τc or τd < τc ≤ T

]

× Pr(τd < T < τc or τd < τc ≤ T )

+ E

[

min{a · L · e
−
∑T/∆t

j=1
(rtj + γtj )×∆t

, β · KD · e
−
∑τd/∆t

j=1
(rtj + γtj )×∆t} | τc ≤ τd < T

]

× Pr(τc ≤ τd < T ).

(4.6)

Note that τd/∆t is a positive integer; see Section 4.1.5 for more details.

4.1.5 Simulation procedure

The following states the steps taken in each round of simulation.

1. Generate Wλ,j to get the annual occurrence intensity of catastrophic events λC
j (λC

j

is constant in the entire jth year) using (3.4), where j is measured in years.

2. Once the rate of occurrences per year has been determined,

(a) calculate the trigger level KC
j set in the CAT provisions; and

(b) generate a vector of inter-arrival times {Sl : l ≥ 1} from the exponential distri-

bution with mean 1/λC
j .

3. Calculate the arrival time of the ith catastrophe, Ti =
∑i

l=1 Sl, where i is a positive

integer. Ti/∆t is then rounded to the nearest integer Ii and let

T̂i = Ii × ∆t.
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4. Collect the rounded arrival time T̂i of the ith catastrophes i = 1, 2, . . . , occurring

during the CAT bond term until T̂k is close to but not exceed T for some k. In other

words, we find some k such that T̂k ≤ T and T̂k+1 > T .

5. Generate k catastrophe losses {Xi : 1 ≤ i ≤ k} from the lognormal distribution with

mean µC and standard deviation σC .

6. Calculate the issuer’s cumulative losses at each time of the triggering event, C
T̂i

=
∑i

j=1 X
T̂j

, where i = 1, 2, . . . , k.

7. Determine the trigger time τc by finding the smallest integer i∗ ≤ k such that T̂i∗ ≤ T

and C
T̂i∗

> KC
j for some j. In this case, τc = T̂i∗ , implying that the CAT bond is

triggered by or at time T . Otherwise, τc > T .

8. Simulate the sample paths of daily interest rate under the Vasicek process by (4.1),

the issuer’s total assets by (4.2), and the values of liquidity process by (4.4).

9. If there exists i′ ≤ k that meets the condition T̂i′ ≤ T and V
T̂i′

− C
T̂i′

< KD, then the

default time τd = T̂i′ = Ii′ × ∆t. Otherwise τd > T , meaning that no default event

occurs prior to or at the maturity of the CAT bond.

10. Create seven indicator variables set to 0 for seven different scenarios. Classify the

result based on the conditions specified in Table 3.1 to the corresponding scenario,

add 1 to that indicator variable, and calculate its present value of the payoff.

After 100, 000 times of simulation, we count the number of occurrences and add up all

simulated present values of payoffs for each scenario, as per we discussed in Table 3.1.

Finally, we obtain

(a) the occurring probability of each scenario, which is estimated by dividing the number

of corresponding counts by 100, 000. They are the probability terms Pr( ⋆ ) in (4.5)

and (4.6);

(b) the discounted payoff of each scenario at time 0, which is estimated by the total

corresponding discounted payoffs over 100, 000. They are the conditional expected

values E( · | ⋆ ) in (4.5) and (4.6); and

(c) the price at the inception of the contract, Pf (0, T ) or Pd(0, T ), which is estimated

by the average of 100, 000 simulated present values of the total payoffs. The price

can also be obtained by summing the products of the probability from (a) and the

conditional expected value from (b) using the same methodology as shown in (4.5)

and (4.6).
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Since all scenarios are mutually exclusive and exhaustive, any two of them cannot be true

at the same time, and the sum of the probabilities of all disjoint scenarios is equal to 1 (all

these possibilities exhaust all of the 100, 000 outcomes).

4.2 Base case

This section first gives the assumptions for the parameter values in the CAT bond pro-

visions and the stochastic model parameters. After that, we present a numerical analysis

for both default-free and defaultable CAT bond prices under the assumptions for the base

case.

4.2.1 Assumptions

For the base case, all parameter values and definitions are summarized in Table 4.1. For

simplicity, we assume that the bankruptcy level, KD, and the face value of the issuer’s total

debts, L, are constant over time (both equal to $100). The maturity period, T , is set to

be 1 year. Further, a is set at 0.5, meaning that when the CAT bond’s trigger has been

pulled but the issuer is solvent, the bond holders will receive a · L. The recovery rate β that

determines the payoff at the time of default, either prior to or at the maturity date T , is

set to be 0.6.

Since we do not have real data handy to estimate the parameters for the underlying

stochastic models, they are chosen and adjusted based on the existing literature. For exam-

ple, we refer to Lee and Yu (2002) for the parameters of the asset, interest rate dynamics,

and the log-normally distributed catastrophe losses for the issuer, in which a one-year zero-

coupon bond with default risk is priced. We also follow the assumption in Lee and Yu

(2002) regarding the initial asset-to-liability ratio. Moreover, we refer to Lin et al. (2009)

for the parameters of the doubly stochastic Poisson process that models the frequency of

catastrophic events. For the liquidity process parameters, we assume the similar parameter

values to those of the interest rate model since they both serve as the discount factor as

shown in (3.10) and (3.12).

4.2.2 Numerical illustrations

Once the assumptions of the model/process parameter values are set for the base case, we

can then compute the prices of both CAT bonds without and with default risk by following

the procedure as described in Section 4.1.5.

1. CAT bonds without default risk
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Table 4.1: Base case parameters

Parameter Value

Interest rate model

r0 Initial rate of return 0.05

κ Speed of reversion 0.2

θ Long-term mean level 0.05

σr Instantaneous volatility 0.1

Asset model

V0 Initial asset value of the issuer V0/L ratio = 1.1

φ Interest rate elasticity of asset −3

σV Volatility of credit risk 0.05

Log-normal loss model

µC Mean of the issuer’s catastrophe losses 3

σC Standard deviation of the issuer’s catastrophe losses 0.5

CAT intensity model

λC
0 Initial arrival rate of catastrophic events 2.5

µλ Instantaneous drift of intensities 0.05

σλ Volatility of intensities 0.01

Liquidity model

γ0 Initial instantaneous liquidity 0.03

σγ Instantaneous volatility 0.01

Other parameters

a The ratio of the face value needed to be paid if the
CAT bond is triggered

0.5

KD The bankruptcy level 100

L The face value of the issuer’s total debt 100

β Recovery rate 0.6

T Expiry time 1 year

∆t Width of time step 1/365

Based on the payoff structure in (3.6), we apply the pricing formula in (4.5) to calcu-

late the approximated price of a default-free CAT bond under each scenario. In the

case that there is no default risk being considered, we only have to study two scenar-

ios, the CAT bond is triggered before the maturity date and the triggering event does

not activate the issuer’s payout.

26



The numerical values of the three elements (conditional mean, probability and their

product) that have been mentioned at the end of the simulation procedure are summa-

rized in Table 4.2. In addition, the percentages of the price under each of the scenarios

relative to the total price at the inception of the CAT bond contract are also provided.

Table 4.2: Summary under the base case without default risk

Conditional

Scenario Mean Probability Price %

i.
1 93.00816 0.51485 47.88525 68.2411%

2 45.93514 0.48515 22.28543 31.7589%

Total 70.17068 100.0000%

The overall price is around $70.17 as shown in Table 4.2. The first scenario that the

CAT bond is not triggered during the CAT bond term contributes about 68% to the

total price; while the other one that represents the opposite situation occupies about

32%. The issuer does not default in both scenarios.

2. CAT bonds with default risk

We now incorporate the risk that the issuer may be insolvent and default into the

pricing of a CAT bond. Table 4.3 gives the same three elements as those in Table 4.2.

These results are based on the payoff structure in (3.7) − (3.9), and the price is esti-

mated by (4.6).

Table 4.3: Summary under the base case with default risk

Conditional

Scenario Mean Probability Price %

i.
1 92.30593 0.19971 18.43442 29.1464%

2 44.34452 0.00020 0.00887 0.0140%

ii.
3 46.00891 0.12320 5.66830 8.9621%

4 14.03417 0.00035 0.00491 0.0078%

iii.

5-1 57.76890 0.19301 11.14998 17.6291%

5-2 58.91005 0.44508 26.21968 41.4556%

6 45.81113 0.03845 1.76144 2.7850%

Total 63.24759 100.0000%
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As we observe from Table 4.3, the numbers of occurrence in the 100, 000 simulation

runs are low for both Scenarios 2 and 4, resulting in the low ratios of the scenario

price to the total price. The total price with the default risk is about $63.25, which

is cheaper than the one ($70.17) without default risk as one may expect. The intu-

ition for this consequence is that higher uncertainty leads to a lower price of the CAT

bond, in such a way that the investors have more incentive to purchase the CAT bond.

Figure 4.1: Comparisons between the default-free and default-risky CAT bonds
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Figure 4.1 compares the allocated percentages for different scenarios under the default-

free and defaultable CAT bonds. Because the issuer’s default risk is taken into account,

the percentages for Scenarios 1 and 2 for the case of a CAT bond without default risk

are then distributed into seven scenarios for the case of a CAT bond with default

risk. More detailed, with the consideration of default risk, the price for Scenario 1

to the total price goes down remarkably from 68.2411% to 29.1464%. The notable

influence on the percentage for Scenario 2 (down to 0.0140% from 31.7589%) can also

be observed in Figure 4.1.
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4.3 Sensitivity analysis

This section analyzes the sensitivity of the price at the issuing date of a defaultable CAT

bond, Pd(0, T ), to the key parameters of each of the stochastic processes, as well as the

remaining parameters in the CAT bond provisions.

In the following subsections, each figure displays three groups of eight bars, where each

group represents the prices for a value of some key parameter. Also, the first seven bars in

a group represent the prices for the seven different scenarios with the same order as Table

3.1, while the last bar gives the total price of the defaultable CAT bond. For a tiny bar, we

add a numerical value to specify the corresponding price.

4.3.1 Effect of changes in the interest rate model parameters

The purpose of this sensitivity test is to study the effect of interest rate risk on the CAT

bond price. Since we assume the CAT bond expires in one year in this project, the changes

in some parameter values will not affect the price significantly. As a result, we do not

include the impacts of the initial rate of return, r0, and the long term mean level, θ, on the

bond price. Lastly, a brief summary of the effects are provided.

1. Volatility of interest rate risk, σr

Figure 4.2 plots the result at three different values of σr. It shows that at higher

parameter value, as the amount of randomness of the process increases, the overall

bond price drops. For example, when σr changes from 0.1 to 0.2, the total price of

the CAT bond falls from around $63.25 to $58.87.

Table 4.4: Probabilities under each scenario for three different values of σr

Probability

Scenario σr = 0.1∗∗ σr = 0.15 σr = 0.2 Trend

i.
1 0.19971 0.14717 0.11812 ↓
2 0.00020 0.00051 0.00085 ↑

ii.
3 0.12320 0.12973 0.13171 ↑
4 0.00035 0.00092 0.00145 ↑

iii.

5-1 0.19301 0.23902 0.26609 ↑
5-2 0.44508 0.43530 0.42844 ↓
6 0.03845 0.04735 0.05334 ↑

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.
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Figure 4.2: CAT bond prices for three different values of σr
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Table 4.4 gives the detailed changes in the probability under each of three cases and

each of seven scenarios. Recall that in Chapter 3 we incorporate the interest rate risk

into the asset dynamics, so the growing volatility affects not only the outcomes of the

simulated interest rates but also the CAT bond issuer’s total assets. Because of that,

the more volatile the value of issuer’s assets is, the higher the uncertainty is for the

bond holders to get their money back when the triggering event occurs and incurs

a large amount of losses to the issuer. Based on these reasons, it is not surprising

that the probability under Scenario 1 displays a decreasing trend when the value of

σr gets higher, as presented in Table 4.4. Although most of the scenarios present an

increasing trend in probability, however, we can see from Figure 4.2 that the decrease

in price under Scenario 1 is much more than the increase in price under other scenarios.

Consequently, the overall bond price is lower as the interest rate volatility σr rises.

2. Speed of reversion, κ

Figure 4.3 exhibits the prices under each scenario and the total price for three different

values of κ. This figure shows that the increase in κ causes a tiny growth in the bond

price. In addition, Table 4.5 displays the details of changes in the probability under
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each of the scenarios.

Figure 4.3: CAT bond prices for three different values of κ
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∗∗ : base case.

Table 4.5: Probabilities under each scenario for three different values of κ

Probability

Scenario κ = 0.2∗∗ κ = 0.5 κ = 0.8 Trend

i.
1 0.19971 0.19988 0.20051 ↑
2 0.00020 0.00020 0.00020 −

ii.
3 0.12320 0.12333 0.12288 ↑
4 0.00035 0.00034 0.00034 ↓

iii.

5-1 0.19301 0.19271 0.19253 ↓
5-2 0.44508 0.44513 0.44520 ↑
6 0.03845 0.03841 0.03834 ↓

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend; − : no significant trend.

The main reason why we study the way in which the CAT bond value varies when κ

increases is to compare the influences of σr and κ on the bond prices. For the Vasicek
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model, the variance in the long run is σr/(2κ). In other words, the future interest rate

will tend to move towards the long term equilibrium level, θ, with such a variance.

Intuitively, increasing κ implies the larger mean-reverting force that drifts the process

towards its long term mean faster over time. In contrast, a rising σr increases the

randomness. From another perspective, it is clearly to see that the value of σr/(2κ)

increases with σr but decreases with κ. Thus, we can expect that the CAT bond

becomes more expensive with a lower degree of randomness. The prices at time 0

under three different levels of σr and κ are displayed in Table 4.6.

Table 4.6: Overall effects of κ and σr on the CAT bond price, Pd(0, T )

κ Pd(0, T ) σr Pd(0, T )

0.2∗∗ 63.24759 0.10∗∗ 63.24759

0.5 63.24692 0.15 60.58566

0.8 63.26647 0.20 58.87125

Overall effect Increase Decrease

∗∗ : base case.

Table 4.6 shows an opposite effect of these two parameters on the CAT bond price,

which supports the argument we just mentioned. For example, Pd(0, T ) grows slightly

from about $63.25 to $63.27 when κ increases from 0.2 to 0.8, whereas Pd(0, T ) drops

by around $4.38 when σr increases from 0.1 to 0.2.

To sum up, the general pattern for changes in the Vasicek interest rate model parameters

are summarized in Table 4.7.

Table 4.7: Impacts of the parameters of the Vasicek model on Pd(0, T )

Increase in

parameter value Effect on Pd(0, T )

σr ↓
κ ↑

↑ : increasing trend; ↓ : decreasing trend.
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4.3.2 Effect of changes in the asset model parameters

First we test the sensitivity of the defaultable CAT bond price with respect to each of

the parameters in the asset model. At the end of this subsection, a brief summary of effects

is provided.

1. Asset-to-liability ratio, V0/L

The defaultable CAT bond prices for three different values of asset-to-liability ratio

are given in Figure 4.4. The figure shows that as V0/L increases, the CAT bond

becomes more expensive due to the issuer’s growing capability of repaying money to

the CAT bond holders. For instance, the price of the bond rises from about $63.25 to

$67.99 when we increase V0/L from 1.1 to 1.3.

Figure 4.4: CAT bond prices for three different asset-to-liability ratios
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∗∗ : base case.

Furthermore, if we look into each of the scenarios, we can see that Scenarios 3, 5-1

and 5-2 show a downward trend since it is less likely that the issuer defaults even

when a catastrophe occurs during the risk period of the CAT bond. Or equivalently,

the investors expect to get most or all of their face value back when the CAT bond

matures. Either of these reasons makes the bond more valuable. Conversely, for the
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Table 4.8: Probabilities under each scenario for three different values of V0/L

Probability

Scenario V0/L = 1.1∗∗ V0/L = 1.2 V0/L = 1.3 Trend

i.
1 0.19971 0.28404 0.35365 ↑
2 0.00020 0.00106 0.00368 ↑

ii.
3 0.12320 0.10950 0.08829 ↓
4 0.00035 0.00098 0.00244 ↑

iii.

5-1 0.19301 0.12238 0.07398 ↓
5-2 0.44508 0.41438 0.35926 ↓
6 0.03845 0.06766 0.11870 ↑

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.

rest of the scenarios, the prices increase with the issuer’s asset-to-liability ratio. The

same pattern can also be found in Table 4.8 which provides the overall changes in the

probability under each scenario.

2. Volatility of credit risk, σV

Figure 4.5 illustrates the effect of σV on the CAT bond price. This figure shows a de-

creasing trend in the bond prices when the volatility of credit risk rises. It is because

a larger volatility implies a higher degree of variation in the asset value over time, and

hence leads to a greater likelihood of the issuer going bankrupt no matter whether

the specified trigger conditions are met or not, which causes the bond’s value to go

down. For example, the bond price drops by about $2 when the value of σV increases

from 0.05 to 0.3.

In particular, we can observe that under Scenario 1 where neither an event of default

occurs nor the CAT bond is triggered during the maturity period of the bond, the

CAT bond price decreases significantly as σV increases. The prices under Scenario 5-2

also show a relatively inconsiderable downward trend for increasing σV values. The

reverse effect can be found in the remaining scenarios.

Table 4.9 provides the summary of changes in probability. According to Table 4.9,

the patterns for the changes in the probability under different levels of volatility, σV ,

are identical to those in the CAT bond price.

3. Interest rate elasticity of asset, φ

Figure 4.6 gives the CAT bond prices with respect to three different φ values. When
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Figure 4.5: CAT bond prices for three different values of σV
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∗∗ : base case.

Table 4.9: Probabilities under each scenario for three different values of σV

Probability

Scenario σV = 0.05∗∗ σV = 0.2 σV = 0.3 Trend

i.
1 0.19971 0.17681 0.15699 ↓
2 0.00020 0.00034 0.00043 ↑

ii.
3 0.12320 0.12584 0.12782 ↑
4 0.00035 0.00053 0.00084 ↑

iii.

5-1 0.19301 0.21327 0.23111 ↑
5-2 0.44508 0.44158 0.43754 ↓
6 0.03845 0.04163 0.04527 ↑

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.

φ falls from 0 to −5, the price decreases drastically by over $15. As explained in

Lee and Yu (2002), a higher absolute value of interest rate elasticity creates a higher

volatility of issuer’s default risk. Our result is consistent with the pattern as in Lee

and Yu (2002). Table 4.10 provides more detailed impacts of three different values of
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φ on the occurrence of each of the scenarios with 100, 000 simulation runs.

Figure 4.6: CAT bond prices for three different values of φ
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∗ : this scenario does not occur in the 100, 000 runs; ∗∗ : base case.

Table 4.10: Probabilities under each scenario for three different values of φ

Probability

Scenario φ = 0 φ = −3∗∗ φ = −5 Trend

i.
1 0.49582 0.19971 0.13669 ↓
2 0.00000 0.00020 0.00063 ↑

ii.
3 0.01439 0.12320 0.13076 −
4 0.00000 0.00035 0.00109 ↑

iii.

5-1 0.00571 0.19301 0.24847 ↑
5-2 0.46200 0.44508 0.43334 ↓
6 0.02208 0.03845 0.04902 ↑

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend; − : no significant trend.
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To conclude, the results for the overall changes in asset model parameters are summarized

in Table 4.11.

Table 4.11: Impacts of the parameters of the asset model on Pd(0, T )

Increase in

parameter value Effect on Pd(0, T )

V0/L ↑
σV ↓
φ ↓

↑ : increasing trend; ↓ : decreasing trend.

4.3.3 Effect of changes in the aggregate loss model parameters

Here we first examine the sensitivity of Pd(0, T ) under sixteen different combinations of

parameters in the aggregate loss model. We focus on the parameters µC , λC , µλ and σλ

other than the initial value (λC
0 ) of the aggregate loss process because of the same reason

that the CAT bond matures in one year, and the effect of a change in λC
0 is not significant

as one may expect. The following Table 4.12 gives an overview of the CAT bond price under

the compound doubly stochastic Poisson process with λC
0 = 2.5.

Table 4.12: CAT bond prices under the aggregate loss model

(µλ, σλ)

σC µC (0.05, 0.01) (0.05, 0.1) (0.5, 0.01) (0.5, 0.1)

1
2 61.92155 62.52160 61.31362 61.68471

3 62.59355 63.14338 61.64132 62.00858

2
2 63.16100 63.59509 61.46369 61.79564

3 63.33969 63.76677 61.61973 61.94469

The price under the base case is $63.24759 with parameter values (λC
0

, µλ, σλ, µC , σC) = (2.5, 0.05, 0.01, 3, 0.5).

From Table 4.12, we note that the overall bond price becomes cheaper when the in-

stantaneous growth rate (µλ) of catastrophic frequency increases, while an increase in the

volatility (σλ) appears to affect the CAT bond price in an opposite way. This table also

reveals that increasing values of both µC and σC result in a higher value of the CAT bond.
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Similarly as before, we discuss the details under each scenario for different values of

parameters µC , σC , µλ and σλ below.

1. Log-normal loss model - µC

Figure 4.7 diagrams the impact of µC on the CAT bond price. The figure shows an

upward trend in the price of the CAT bond as the value of µC increases, in spite

of that the overall simulated losses are larger at the same time. For example, the

price grows by roughly $3 when µC rises from 1 to 3. One of the reasons is that

the annual trigger level, KC
j , increases with the mean of catastrophic loss. A higher

trigger threshold indicates that the CAT bond is less likely to be triggered when a

catastrophic event occurs, and thus makes the CAT bond worth investing from the

viewpoint of the investors. Table 4.13 displays the patterns under each of the seven

scenarios.

Figure 4.7: CAT bond prices for three different values of µC
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∗∗ : base case.

Particularly, the numbers of occurrences in the 100, 000 simulation runs increase under

both Scenarios 5-1 and 5-2 as µC increases, meaning that the event of premature

default is more likely to happen due to lager size of losses no matter whether the
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Table 4.13: Probabilities under each scenario for three different values of µC

Probability

Scenario µC = 1 µC = 2 µC = 3∗∗ Trend

i.
1 0.20000 0.19982 0.19971 ↓
2 0.06061 0.01180 0.00020 ↓

ii.
3 0.12331 0.12327 0.12320 ↓
4 0.00180 0.00180 0.00035 ↓

iii.

5-1 0.19261 0.19283 0.19301 ↑
5-2 0.23088 0.35326 0.44508 ↑
6 0.19079 0.11722 0.03845 ↓

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.

trigger level is pulled or not. This supports the argument that although a higher µC

generally produces the greater amount of losses that makes the issuer more possible to

be insolvent, it meanwhile puts up the trigger barrier (KC
j ) that reduces the possibility

of losses exceeding the barrier.

2. Log-normal loss model - σC

In this example, it is interesting to see that there is actually no specific trend in the

CAT bond price when we increase the value of σC as shown in Figure 4.8. Intuitively,

the variations in losses generated from the log-normal distribution are comparatively

large when the loss standard deviation is high. Therefore, it probably has more ex-

treme values, either larger or smaller size of losses. Table 4.14 presents the detailed

changes under each of the scenarios.

Table 4.14: Probabilities under each scenario for three different values of σC

Probability

Scenario σC = 0.5∗∗ σC = 1 σC = 2 Trend

i.
1 0.19971 0.20613 0.23716 ↑
2 0.00020 0.00002 0.00000 ↓

ii.
3 0.12320 0.12727 0.14621 ↑
4 0.00035 0.00006 0.00000 ↓

iii.

5-1 0.19301 0.23082 0.34118 ↑
5-2 0.44508 0.33906 0.18747 ↓
6 0.03845 0.09664 0.08798 −

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend; − : no significant trend.
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Figure 4.8: CAT bond prices for three different values of σC

σ
C

=0.5 σ
C

=1 σ
C

=2
0

10

20

30

40

50

60

70

P
ric

e

0.00491 0.00039

0*0.00887 0.00087 0*

Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5-1 Sce. 5-2 Sce. 6 Total

63.24759** 62.59355 63.33969

∗ : this scenario does not occur in the 100, 000 runs; ∗∗ : base case.

3. CAT intensity model - µλ

Figure 4.9 shows how the CAT bond price varies with three different values of µλ. We

observe from this figure that the price goes down by around $1 when the value of µλ

rises from 0.05 to 0.5. Recall from (3.4) that the annual arrival rate of catastrophic

events, λC
j , increases with µλ. When catastrophic events arrive at a higher rate, it

implies that the time between events has a lower mean, 1/λC
j . That is, a higher λC

j

indicates that the catastrophic events occur more frequently during the risk period of

the CAT bond. Hence, either the value of an issuer’s assets less the amount of aggre-

gate losses falls below the bankruptcy level or the issuer’s aggregate loss exceeds the

trigger level is more likely to occur. Because of this reason, the decline in the overall

bond price can be treated as a compensation for higher uncertainty. More detailed

changes in the probability under three different values of µλ are reported in Table 4.15.

4. CAT intensity model - σλ

Now we study the effects of three different choices of the volatility σλ on the price

of the CAT bond. Figure 4.10 illustrates the results. We note that the CAT bond
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Figure 4.9: CAT bond prices for three different values of µλ
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Table 4.15: Probabilities under each scenario for three different values of µλ

Probability

Scenario µλ = 0.05∗∗ µλ = 0.1 µλ = 0.5 Trend

i.
1 0.19971 0.19317 0.13694 ↓
2 0.00020 0.00016 0.00000 ↓

ii.
3 0.12320 0.11967 0.08493 ↓
4 0.00035 0.00029 0.00000 ↓

iii.

5-1 0.19301 0.21056 0.30026 ↑
5-2 0.44508 0.44480 0.47451 −
6 0.03845 0.03135 0.00336 ↓

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend; − : no significant trend.

price goes up with σλ based on the parameter values we select. For example, the CAT

bond price increases from about $63.25 to $66.27 when the volatility of catastrophic

intensity rises from 0.01 to 1. The details regarding the changes in the probability are
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provided in Table 4.16.

Figure 4.10: CAT bond prices for three different values of σλ
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Table 4.16: Probabilities under each scenario for three different values of σλ

Probability

Scenario σλ = 0.01∗∗ σλ = 0.1 σλ = 1 Trend

i.
1 0.19971 0.21098 0.31290 ↑
2 0.00020 0.00041 0.00194 ↑

ii.
3 0.12320 0.13171 0.19288 ↑
4 0.00035 0.00048 0.00096 ↑

iii.

5-1 0.19301 0.18554 0.12716 ↓
5-2 0.44508 0.44194 0.32706 ↓
6 0.03845 0.02894 0.03710 −

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend; − : no significant trend.
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At last, based on our numerical illustrations, we conclude this section by summarizing

the impacts of the aggregate loss model parameters µC , σC , µλ and σλ on the CAT bond

price in Table 4.17.

Table 4.17: Impacts of the aggregate loss parameters on Pd(0, T )

Increase in

parameter value Effect on Pd(0, T )

Log-normal loss µC ↑
severity distribution σC −

Arrival process µλ ↓
for catastrophic events σλ ↑

↑ : increasing trend; ↓ : decreasing trend; − : no significant trend.

4.3.4 Effect of changes in the liquidity model parameters

We now investigate the CAT bond prices with various choices of parameter values in

the liquidity dynamics. Table 4.18 provides the CAT bond prices under this stochastic

process with different parameter values. Here we discuss only the general effect instead of

the details. The reason is as discussed in Chapter 3; since γt plays the role in the discount

factor in (3.12), the patterns for the changes in price and probability under each of the

scenarios can be expected to be similar.

The results in Table 4.18 show that the CAT bond price Pd(0, T ) decreases as γ0 increases.

When the initial value (γ0) of the liquidity process goes up, the value (γt) of the liquidity

process increases, and further leads to a lower CAT bond price. Therefore, we can regard

the decrease in price as the compensation for the CAT bond investors who bear a higher

liquidity risk. On the other hand, the choice of σγ has relatively lower impacts on the CAT

bond price. A higher σγ value slightly increases the CAT bond price since it causes the

value (γt) of the liquidity process more volatile and sometimes may produce negative values,

which finally results in a higher present value of the payoff. Take γ0 = 0.01 for illustration,

Table 4.19 presents the difference between the CAT bond prices for two different values of

σγ . The table shows that the total of positive differences is greater than the absolute value

of that of the negative differences, and hence the overall price rises when σγ increases. The

same situation occurs for different choices of γ0.

In conclusion, the results for the changes in parameter value under liquidity dynamics

are summarized in Table 4.20.
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Table 4.18: CAT bond prices under the liquidity process

σγ γ0 Pd(0, T )

0.1 0.01 64.01466

0.05 62.50047

1 0.01 64.07041

0.05 62.55387

2 0.01 64.17471

0.05 62.65441

Table 4.19: Prices under each scenario with γ0 = 0.01 and two values of σγ

Price

Scenario σγ = 1 σγ = 2 Difference∗

i.
1 18.83424 18.88754 +0.05330

2 0.00895 0.00887 −0.00008

ii.
3 5.80487 5.83511 +0.03024

4 0.00498 0.00495 −0.00003

iii.

5-1 11.28429 11.29909 +0.01480

5-2 26.33087 26.33003 −0.00084

6 1.80222 1.80912 +0.00691

Overall +0.10430

∗: Difference = (the price for σγ = 2) − (the price for σγ = 1).

Table 4.20: Impacts of the parameters of the liquidity model on Pd(0, T )

Increase in

parameter value Effect on Pd(0, T )

γ0 ↓
σγ ↑

↑ : increasing trend; ↓ : decreasing trend.

4.3.5 Effect of changes in other parameters

Finally, the last sensitivity analysis is to study the effects of the remaining parameters

such as a, KD, and β in the CAT bond provisions by examining how the CAT bond price

varies with these parameters.

1. The ratio of the face value needed to be paid if the CAT bond is triggered, a
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Figure 4.11 diagrams the CAT bond prices at different levels of a. If the issuer promises

to repay most of the face value to the CAT bond’s investors when the CAT bond is

triggered before its maturity, then the CAT bond is considered more valuable. Or else

the CAT bond loses its attractiveness, and the issuer has to reduce the price in order

to attract the investors to purchase the CAT bond. Figure 4.11 demonstrates that

the CAT bond price goes up from roughly $61.83 to $63.73 when a increases from 0.1

to 0.9.

Figure 4.11: CAT bond prices for three different values of a
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∗∗ : base case.

Changing the value of a affects the payoff rather than the probability, so we summarize

the changes in percentage, relative to the total price, for each scenario in the Trend

column of Table 4.21. We observe from Table 4.21 that Scenarios 2, 4 and 6 show

an increasing trend in the percentage since the payoffs under these three scenarios

involve a. In contrast, the remaining scenarios show a reverse pattern.

2. The issuer’s bankruptcy level, KD

Overall, the relationship between the CAT bond price, Pd(0, T ), and the bankruptcy
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Table 4.21: Percentages of total price for three different values of a

Percentage of total price

Scenario a = 0.1 a = 0.5∗∗ a = 0.9 Trend

i.
1 29.8152% 29.1464% 28.9276% ↓
2 0.0066% 0.0140% 0.0112% ↑

ii.
3 9.1677% 8.9621% 8.8948% ↓
4 0.0001% 0.0078% 0.0133% ↑

iii.

5-1 18.0336% 17.6291% 17.4967% ↓
5-2 42.4069% 41.4556% 41.1444% ↓
6 0.5698% 2.7850% 3.5120% ↑

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.

level, KD, is illustrated in Figure 4.12.

Figure 4.12: CAT bond prices for three different values of KD
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When the issuer’s total assets less total losses incurred by a triggering event drops

below the bankruptcy level KD, it is considered as an event of default. A higher value
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of KD exposes the issuer to a higher degree of default risk since it is easier for the

issuer to meet the condition of bankruptcy. As a consequence, it results in a lower

overall price of the CAT bond. From the perspective of the investors, a cheaper price

is regarded as an incentive for them to invest in the CAT bonds with a higher insol-

vent risk of the issuer. Although this intuition seems reasonable, however, it is worth

noting that the price rises from around $59.47 to $63.25 when KD increases from 80

to 100 as presented in Figure 4.12. To investigate this, let us look into the changes in

each single scenario given in Table 4.22.

Table 4.22: Summary of the results for three different values of KD

Scenario

i. ii. iii.

KD 1 2 3 4 5-1 5-2 6

80 Conditional
92.38634 45.21596 46.03907 13.36784 45.92860 46.95558 45.18127

Mean

Probability 0.28689 0.00181 0.17820 0.00270 0.05083 0.36224 0.11733

Price 26.50472 0.08184 8.20416 0.03609 2.33455 17.00919 5.30112

% 44.5670% 0.1376% 13.7951% 0.0607% 3.9255% 28.6005% 8.9137%

90 Conditional
92.33586 44.82995 46.04046 13.36324 51.78927 52.95908 45.87137

Mean

Probability 0.25069 0.00069 0.15547 0.00102 0.10976 0.41743 0.06494

Price 23.14768 0.03093 7.15791 0.01363 5.68439 22.10671 2.97889

% 37.8724% 0.0506% 11.7112% 0.0223% 9.3004% 36.1693% 4.8738%

100∗∗ Conditional
92.30593 44.34452 46.00891 14.03417 57.76890 58.91005 45.81113

Mean

Probability 0.19971 0.00020 0.12320 0.00035 0.19301 0.44508 0.03845

Price 18.43442 0.00887 5.66830 0.00491 11.14998 26.21968 1.76144

% 29.1464% 0.0140% 8.9621% 0.0078% 17.6291% 41.4556% 2.7850%

Trend ↓ ↓ ↓ ↓ ↑ ↑ ↓

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.

In Table 4.22, we provide the conditional mean, probability, scenario price and the

percentage for each scenario under three different values of KD. Observe from this

table that Scenario 1 and Scenario 5-2 take up roughly 70% of the total price. Despite

the fact that the probabilities and percentages for most scenarios decrease as KD

increases, Scenarios 5-1 and 5-2 appear to have a reverse pattern.
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Now recall that both Scenarios 5-1 and 5-2 represent the events of premature default

of the issuer when the CAT bond is not triggered and is triggered after the issuer

defaults, respectively. Besides, as mentioned before, the higher the KD value is, the

more likely the issuer defaults earlier before time T . Therefore, the probabilities

of these two scenarios increase with the issuer’s bankruptcy level, and eventually

dominate the change in the total price. For example, for the case KD = 100, both

scenarios contribute about 60% of the total price. This explains why the overall price

increases even though the most scenarios present a decreasing trend as the value of

KD increases.

3. Recovery rate, β

Figure 4.13 illustrates the relationship between Pd(0, T ) and the recovery rate, β. In

the case of default, the CAT bond investors receive the recovery payment at the de-

fault time. We can see from the figure that the CAT bond price decreases sharply

from about $77.60 to $48.63 as the value of β drops from 0.8 to 0.4. Owing to the

possible decreasing recovery payoff, the CAT bond tends to be infavouered by the

investors, and further affects the bond price.

Figure 4.13: CAT bond prices for three different values of β
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Similarly as in 1., changing the value of β affects the payoff much more than the prob-

ability. The Trend column of Table 4.23 displays the changes in percentage, relative

to the total price, for each scenario. The table shows that the total contribution of

Scenarios 3, 4, 5-1 and 5-2 to the total CAT bond price rises from about 59% to 74%

when the recovery rate, β, increases from 0.4 to 0.8. Thus, the total increasing per-

centage of these four scenarios significantly influences the overall change in the total

CAT bond price.

Table 4.23: Percentages of total price for three different values of β

Percentage of total price

Scenario β = 0.4 β = 0.6∗∗ β = 0.8 Trend

i.
1 37.9071% 29.1464% 23.7572% ↓
2 0.0182% 0.0140% 0.0114% ↓

ii.
3 7.7706% 8.9621% 9.7399% ↑
4 0.0067% 0.0078% 0.0084% ↑

iii.

5-1 15.2853% 17.6291% 19.1592% ↑
5-2 35.9441% 41.4556% 45.0538% ↑
6 3.0680% 2.7850% 2.2700% ↓

∗∗ : base case; ↑ : increasing trend; ↓ : decreasing trend.

Lastly, we conclude this section with a summary of the patterns for parameters a, KD

and β in Table 4.24. The CAT bond price increases with all of the three parameters.

Table 4.24: Impacts of parameters a, KD and β on Pd(0, T )

Increase in

parameter value Effect on Pd(0, T )

a ↑
KD ↑
β ↑

↑ : increasing trend; ↓ : decreasing trend.
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Chapter 5

Conclusion

In this project, we have studied the CAT bond, one of the popular insurance-linked

securities for insurance companies to transfer the catastrophe risk to the capital market. We

provide a pricing formula for defaultable CAT bonds with liquidity risk under a stochastic

interest rate process. In the pricing model, we also take into account the event of an

issuer’s premature default; so the payoffs may occur either prior to or at the maturity

date, depending on when the issuer goes bankrupt. In addition, in order to keep up with

an increasing trend in the number of future catastrophic events due to global warming,

we assume that the issuer’s losses are governed by a compound doubly stochastic Poisson

process with intensity rate following a geometric Brownian motion instead of using a typical

Poisson process with a constant intensity rate. This model allows one to investigate the

relationships between the CAT bond price and interest rate risk, default risk, as well as

liquidity risk.

The model is illustrated with numerical experiments and a sensitivity analysis. We first

simulate the price of a default-free CAT bond, and compare the result to that of a defaultable

CAT bond. It is not surprising that the incorporation of default risk reduces CAT bond

prices since the investors have to bear the risk of not getting their full face value back at the

end of the CAT bond term. Next, we show how the price of a defaultable CAT bond varies

with key parameters, including the parameters of the interest rate model, asset dynamics,

aggregate loss model, and liquidity process. We demonstrate the importance of taking

liquidity risk and stochastic arrivals of catastrophic events into account. In addition, we

examine the impacts of the ratio of the face value of a CAT bond to the issuer’s total debts,

the issuer’s bankruptcy level, and the recovery rate on the CAT bond price. It is noteworthy

that not all results follow the intuition; for example, adjust the issuer’s bankruptcy to a

lower level does not make the CAT bond more valuable.

50



For the future work, we can extend our pricing model to include moral hazard and basis

risk studied in Lee and Yu (2002). Since the industry loss trigger is one of the commonly

used types of triggers in the industry, an integrated analysis of moral hazard and basis risk

would be an important step to deliver a more detailed scheme for the CAT bond’s issuers

to manage catastrophe risks.
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