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Abstract

Prompted by current experiments on mechanically driven F1 ATP synthase, we investigate
optimal (minimum-dissipation) driving protocols of rotary mechanochemical motors. We
propose a simple model system coupling chemical reactions to mechanical motion under
periodic boundary conditions, driven by a periodic time-dependent force. Under linear
response approximations near equilibrium and near nonequilibrium steady states, optimal
driving protocols are determined by a generalized friction coefficient. Such a model has
a periodic generalized friction coefficient that peaks near system energy barriers, imply-
ing optimal protocols that proceed rapidly when the system is overwhelmingly in a single
macrostate, but slow significantly near energy barriers, harnessing thermal fluctuations to
kick the system over the energy barriers for free.
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Chapter 1

Introduction

Living organisms obtain energy, move around, produce products, waste energy, and per-
ceive the world around them to perform a wide variety of biological tasks [1]. These bi-
ological tasks are believed to be accomplished by cooperation and contribution of various
biological actors such as different molecular motors, in mechanisms considerably different
from human-made large-scale motors. One central distinction of biological processes and
everyday macroscopic processes is the key role of temperature, more specifically thermal
fluctuation. Familiar robust macroscopic machines—such as car engines—can perform in
a wide range of temperatures, but living processes are much more sensitive to the actual
temperature of the environment, and they often stop functioning properly outside small
temperature variations. Considering the small physical dimensions of the biological motors,
the energy scale on which many biological systems operate is close to the scale of thermal
fluctuations, i.e. kBT . Therefore, thermal fluctuations are tremendously important and
influential [2, 3] in the operation of molecular-scale biological systems. Moreover, many
biological processes are found to be impressively efficient and rapid, often occurring on
millisecond- or shorter timescales, which suggests efficient operation in the nonequilibrium
thermodynamic regime [2, 4].

During recent decades, developments in experimental methods, theoretical frameworks,
and mathematical modeling have provided both large data sets and significant complexity
in our understanding of biological systems [1, 5]. This progress has made it more convenient
and reasonable to describe biosystems quantitatively, where only qualitative explanations
were formerly conceivable. This particular perspective has become more and more attain-
able by major progress achieved in nanometer-scale technologies such as construction of
high-precision measurement instruments [6]. These subtle instruments provide essential in-
frastructures for profound interdisciplinary studies between biology and physics as well as
sufficiently precise experimental equipment to quantitatively examine proposed theoretical
frameworks in the field of nonequilibrium thermodynamics.
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Molecular motors, in general, operate in strongly fluctuating environments, yet amaz-
ingly produce highly reliable results, operating in a way that differs drastically from more
familiar human-sized machines. Death of a biological system can be equated with thermal
equilibrium, where the system (such as a molecular motor) does not evince any preference
(on average) to move forward or backward. Life thus seems to require directed operation
involving nonequilibrium dynamics. But how can biological organisms self-organize and
maintain their essential directed operation far away from equilibrium?

Dissipative physical systems (including biological systems) are open: they need a con-
tinual input of energy, matter (or both) from the environment, in order to maintain their
capacity of doing useful work. In other words, much research points to this continual flux
of energy within the physical boundaries of a dissipative system leading to the ability to
self-organize, while operating in the nonequilibrium thermodynamic regime [7]. While equi-
librium thermodynamics was primarily developed (and reached relative maturity) during
the 19th century, nonequilibrium thermodynamics is a newly emerging field of physics. In
this regard, life (and more specifically molecular motors) seems to be a set of interesting
naturally available and evolutionarily tuned objects that operate mostly far away from equi-
librium, providing a number of promising biological systems for collaborative investigation
between both physicists and biologists, theorists and experimentalists.

Much current investigation seeks to understand the remarkable features of molecular
motors, especially features crucial to machines of such size [2]. For instance, researchers are
investigating the unique cyclical operations of small biological machines that are respon-
sible for converting chemical energy sources (most notably adenosine triphosphate [ATP])
into useful mechanical work [8]. The experimentally measured mechanical efficiency of
this mechanochemical molecular motor under high viscous loading is nearly 100%, signif-
icantly higher than other biological motor proteins that are driven by hydrolysis of ATP
molecules [9]. This highly efficient operation stimulates great interest in characterizing
the limits of efficient stochastic operation of stochastic mechanochemical motors, as well
as understanding the properties of optimal driving protocols [10, 11, 12, 13, 14]. In par-
ticular, it would be informative to answer the following questions regarding the efficient
operation of stochastic motors: What is the highest possible energy conversion efficiency
rate for biological stochastic motors that are driven in finite time intervals? What sort of
interactions with the external energy resources lead physical systems to achieve the greatest
possible efficiency? How much energy the optimal, minimum-dissipation, driving protocols
save compared to more naive, driving protocols?

1.1 Molecular motors

Motor proteins play a key role in many essential cellular processes. For example, three
families of molecular motors (myosin, kinesin, and dynein) power a wide variety of intra-
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cellular movements [15]. In response to new experimental and theoretical developments,
fundamental principles of small-scale stochastic motor design and operation have been pro-
posed [16, 17, 18, 19, 20, 21, 22]. These design principles introduce nonequilibrium driving
protocols in order to effectively harness thermal fluctuations and to ultimately optimize the
stochastic system’s dissipation and hence energy expenditure. Molecular machines generally
use chemical energy to do useful work either in rotary or in linear motions that are often
essential for controlling and managing a broad set of other biological processes.

Advances in their understanding have led to significant progress in the construction of
small stochastic objects and processes, such as sensors, transporters, and actuators [23, 24,
25].

Figure 1.1: Schematic representation of the FoF1 ATP synthase, a rotary molecular machine
coupling the chemical reaction of ATP-ADP conversion with mechanical rotation in order to
produce high energy ATP molecules from low energy ADP molecules in vivo. ATP synthase
is believed to be powered by proton flow across the intermembrane region such that proton
flow rotates the central crankshaft connecting F1 and Fo regions, that ultimately stimulates
ATP production in F1’s three catalytic sites which are represented by dark green sub-unite.
See Fig. 1.2 for more details.
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Molecular motors typically operate stochastically far from equilibrium regime, immersed
in an thermal bath, where the state of the molecular environment and thermal fluctuations
are expected to be critically important and effective. Therefore, an appropriate theoretical
framework describing the physical principles of molecular machine performance should rec-
ognize their dynamic conformational changes, capture their coupling of mechanical motion
and chemical activity, and successfully explain the striking features of motor proteins such
as their high efficiency despite fast operation and large fluctuations.

1.2 FoF1 ATP synthase

In a wide variety of living organisms including bacteria, plants, and animals [26], a ro-
tary membrane-bound motor protein is responsible for the synthesis of ATP molecules, the
universal energy currency in living organisms. Our main focus in this research is on the
mitochondrial version of this enzyme, composed of two regions, one directly catalyzing ATP
synthesis (F1) and one transporting protons down their gradient (Fo). These two regions are
connected through a central mechanical crankshaft, capable of rotation in both clockwise
and counterclockwise directions. In general, it is believed that ATP synthesis is driven by
proton flow through the Fo region, from the intermembrane region into the mitochondrial
matrix, and likewise it is believed that protons can also be pushed out, against the favorable
concentration gradient, by ATP hydrolysis [27].

The F1 region is a rotary molecular machine that has a structural three-fold symmetry.
It contains three identical β subunits that catalyze the chemical synthesis and hydrolysis
of ATP/ADP molecules. It has been proposed that these catalytic sites adopt different
conformations corresponding to different angular orientations of the central crankshaft [26].
It is proposed that the different catalytic sites proceed through the same sequence of con-
formations, but at any given moment each one will be in a different phase (step) of the
chemical reaction.

The chemical reaction has three separate steps. First, ADP molecules and Pi (phos-
phate) molecules bind, then ATP is synthesized, and finally ATP is released into the mito-
chondrial matrix. It is believed that the relative orientation of the central crankshaft stimu-
lates a time-dependent conformational change within the catalytic sites, so that crankshaft
rotation drives step-by-step production of ATP from ADP [26].

Given this proposed framework for F1 ATP synthase structure and function, we would
like to answer the following questions in the context of a simple thermodynamic model
system, representing the basic features of this stochastic rotary mechanochemical molec-
ular motor: What is the optimized schedule of mechanically perturbing such a molecular
motor around a cycle of its operation that minimizes the demands for energy input from
external energy resources? And how quantitatively and qualitatively do these optimal driv-
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Figure 1.2: Schematic representation of the two main parts of FoF1 ATP synthase. Left:
the F1 component. Right: the Fo component. These two components are coupled by the
central crankshaft.

ing protocols differ from naive protocols, where the system is driven at a constant angular
velocity?

1.2.1 Structure of ATP synthase

Here we summarize structural information presented mainly in [8, 27]. The comprehensive
structure of the ATP synthase is quite complicated, but one can decompose it into two
separate regions, the F1 and the Fo regions, and each region can be decomposed further into
its detailed constitutive subunits (Fig. 1.1). The structural dynamics can be summarized
as a rotor-stator system: the central crankshaft (rotor) rotates thorough the central cavity
of the ring structure (stator).

The F1 region is composed of five different polymer chains, (in order of decreasing size of
subunits) as α3, β3, γ, δ, and ε, which together are generally responsible for catalyzing the
three steps of the overall chemical reaction converting between ATP and ADP. This stator
region is held fixed in the mitochondrial matrix by some mechanical connections. There are
three separate α chains and three separate β chains, which altogether compose a hexamer,
the α3β3 ring structure. This hexamer’s specialized task is to promote the three steps in
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ATP synthesis that will be discussed in the following sections. Although α and β subunits
can both bind ATP molecules, only β subunits are catalytically active, with the capability
to chemically synthesize ATP.

The central crankshaft, the connection of the two separate regions, is formed by the
γ and ε subunits. This elongated structure rotates in the inner hole of the ring formed
by α and β subunits, and on its opposite end connects to the Fo region embedded in the
inner mitochondrial membrane (Fig. 1.3). Details of the coupling between the central shaft
and the Fo component are still open questions. Recent investigation suggests a torsional
elasticity between the shaft and the c ring rather than a rigid coupling between the two
elements [37]. The key role of the central crankshaft is to mechanically connect the Fo

and the F1 regions in a way that establishes a tight coupling between the proton flow in
Fo and the chemical reaction in F1. The central shaft interacts with the hexamer ring
structure by perturbing the catalytic site conformations to stimulate ADP and Pi binding,
ATP synthesis, and ATP release. Finally, the δ subunit holds the entire hexamer ring fixed
through a rigid connection with the membrane-bound Fo region.

Figure 1.3: Schematic representation of the F1 cross section. The central γ shaft rotates
between the three α and three β subunits, thereby dynamically perturbing their conforma-
tional states. The b, b′, and δ subunits fix F1 within the mitochondrial matrix by forming
a solid connection to the membrane.

Our primary focus is on the efficient driving of the detached F1 region, but it is useful to
have a general picture of the entire motor, here the entire FoF1 ATP synthase. The other
main region, Fo, has a hydrophobic part forming a pathway for hydrogen ion translocation
across the mitochondrial inner membrane and down the electrochemical gradient (estab-
lished from the intramembrane space to the mitochondrial matrix by other machines). This
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region is mainly composed of two types of polymer chains—∼10 c subunits (the exact num-
ber varies across different species) forming a ring and a single a subunit—which together
form the proton tunnel across the membrane. The a subunit connects the c ring to the the
F1 region via the b and b′ subunits and a single δ polymer chain (Fig 1.2). Thus the F1 and
Fo regions are tightly coupled to each other by two elongated arm structures: the rotor and
the stator.

1.2.2 Mechanism of the catalytic region

Let us consider the mechanism by which ATP molecules are generally believed to be pro-
duced. The two constituent regions, F1 and Fo, can be investigated separately. According
to Boyer’s classic model of rotary catalysis [26], the F1 operation is summarized in three
main steps. First, reactants including the ADP and the phosphate molecules bind. Second,
the motor catalyzes the synthesis from them of ATP. Finally, ATP is released into the mi-
tochondrial environment. The hexamer ring (shown in cross-section in Fig. 1.3 is composed
of three α and three β subunits. The α subunits can bind ATP, but lack catalytic activ-
ity. Only the β subunits are catalytically active. Based on this hypothetical model that
coarse-grains the chemical reaction progress into three intermediate steps, one can simply
imagine three classes of conformations, which each β subunit can adopt (we ignore the step
regarding the phosphate binding) according to the simplified three intermediate steps in
the chemical-reaction coordinate. Essentially, the central crankshaft breaks the symmetry
of the catalytic sites. As the central crankshaft rotates, it drives the interconversion of
these three β subunit conformations, cycling between “open,” “loose,” and tightly “closed”
states. The β subunit must be in the open state to permit ATP unbinding and subsequent
reactant binding.

In the loose state, when ADP and phosphate are bound they are too distant to permit
phosphate bond formation. Only in the tightly closed state are reactants brought sufficiently
close to accomplish chemical synthesis.

1.2.3 Mechanically driven F1

Various single-molecule experiments have been developed to perturb F1 by forcing rotation
of the central crankshaft. They typically attach a molecular or metallic handle, such as
a fluorescent actin filament, gold nanobeads [28], a gold nanorod [29, 30, 31], polystyrene
beads [32] or a magnetic bead [33, 34, 35, 36].

The F1 ATPase can be experimentally detached from the rest of the entire ATP synthase
motor and immobilized on a glass surface. A magnetic bead then can be attached to the
central crankshaft. A rotating magnetic field forces the magnetic bead to rotate, in turn
forcing rotation of the central crankshaft (Fig. 1.4). An indicator can be employed to
indicate ADP-to-ATP chemical conversion, emitting a photon upon capture and hydrolysis
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of ATP, so the number of emitted photons indicates the motor’s ATP synthesis, and hence
net cycles of rotation.

The central crankshaft radius has been estimated to be around ten nanometers [37], while
the magnetic bead is typically micron-sized, so rotational diffusive motion is reasonably
expected to be dominated by the magnetic bead’s rotational diffusion.

Figure 1.4: Schematic representation of the experimental set up for mechanically driving
the F1 ATP synthase. A magnetic bead is attached to the central shaft while F1 is fixed
over a surface. A rotational magnetic filed could be applied to force the system to rotate
clockwise and anti-clockwise.

1.2.4 The protonmotive force

The Fo region couples proton flow to the mechanical rotation of the motor’s central crankshaft.
The Fo region is an integral membrane protein, it is relatively inaccessible experimentally,
so the vast majority of recent research has studied the isolated F1 region. Nevertheless, here
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we summarize the proposed mechanism of proton flow across the membrane and its cou-
pling to the F1 catalytic process. In other words, how do the three catalytic sites in the F1

region respond to the flow of hydrogen ions through the Fo proton channel? This requires
examining the structure and operation of Fo. Fo is thought to be two types of polymers
that create this molecular complex including multiple c subunits collectively forming a ring
structure, as well as a single a subunit, which is connected to the external surface of the c
ring (Fig. 1.2).

An elegant mechanism has been proposed to describe the proton flow [46]. Hydrogen
ions transfer through the Fo proton pathway, forcing the c ring to rotate in one direction
and the central crankshaft rotor to rotate in the opposite direction, ultimately stimulating
ATP production in the catalytic sites of the F1 region. Based on experimental evidence, the
a subunit has been proposed to consist of two hydrophilic half channels (neither of which
spans the entire membrane alone), one open towards the matrix environment and the other
open to the intermembrane area [47]. These channels guide and conduct the proton from
the high concentration area towards the low concentration area across the mitochondrial
inner membrane. A negatively charged residue in the center of each c subunit is responsible
for pulling positively charged protons toward the transfer tunnel, from the region with high
ionic concentration.

The proton transfer mechanism can be summarized in a few general steps [46, 48]. First,
the hydrophilic half channel is open to the matrix. At the middle point of the half channel is
the c subunit’s negatively charged residue, which draws a proton into the channel from the
high ion concentration in solution (Fig. 1.5). When the hydrogen ion binds to the residue,
the resulting product is more hydrophobic, so it naturally relocates to the hydrophobic
environment of the inner membrane interior. When this particular c subunit rotates, it
forces the ring structure to rotate until a c subunit, with negative charge at the center, faces
the half channel that in turn faces the mitochondrial matrix, the low concentration region.
Finally, the proton is released into the matrix. This proton flow from high concentration to
low concentration powers the rotation of the ring, which ultimately stimulates the catalytic
reactions in the F1 region by the rotation of the central crankshaft.

The c ring is composed of a different number of c subunits in different organisms [49].
Given the hypothesized tight coupling between proton flow and ATP production, it is
thought that the number of c subunits in the ring structure equals the ‘gearing ratio,’ the
number of protons transported per one cycle of the c ring rotation, and hence per one
rotational cycle of F1 synthesizing three ATP molecules. This gearing ratio is correlated
across organisms with the actual protonmotive force across the inner mitochondrial mem-
brane [49], suggesting that the gearing ratio could have been evolutionary tuned to provide
the minimum driving force necessary to synthesize ATP, and hence achieve much higher
efficiency during the system operation.

9



Figure 1.5: Schematic hypothetical representation of the isolated Fo region. Protons (la-
beled by ‘H’) bind the c subunits. This binding forces the c ring to rotate which ultimately
rotates the central shaft.

1.3 Summary

In summary, there is an interest in characterizing optimal (minimum-dissipation) driving
protocols of F1 ATP synthase, because of the recent experimental evidences indicating
a remarkably high efficiency for the operation of this rotary mechanochemical molecular
motor.

For this purpose, in the next chapters of this thesis, we will first summarize an approx-
imate linear-response theoretical framework [17], and then, based on basic experimental
findings regarding the structure and dynamics of the F1 ATP synthase (discussed in Chap-
ter 3), we introduce a simplified thermodynamic model system representing the isolated F1

ATP synthase with the minimal resolution required to capture some of the system’s inter-
esting properties. In the results chapter, we will present optimal driving protocols across
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control parameter space, and examine their dependence on external driving strength and
internal model parameters. We also examine how energetically effective are such optimal
driving protocols compared to naive (constant velocity) protocols, quantifying how much
energy is saved.
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Chapter 2

Theoretical Framework

Classical thermodynamics is naturally limited in its applicable regime to describe many
different classes of physical phenomenon. It is essentially a mathematical framework for
describing physical systems in equilibrium, where thermodynamic systems can be charac-
terized by the Gibbs-Boltzmann probability distribution [50, 51]. The theory of linear re-
sponse provides a framework for describing near equilibrium properties of physical systems,
where equilibrium departures arise from a weak external perturbation [52]. Nevertheless,
many everyday physical processes occur far from equilibrium, where the linear-response
approximation may no longer be accurate enough because perturbations could in general
be both strong and fast-varying. Nature, for instance, is a collection of a wide variety of
interacting open systems that, when driven by the continuous flow of matter and energy,
are intuitively expected to be far from equilibrium. In this regard, living organisms are
inherently open interacting systems that often operate rapidly, and thus they are expected
to be out of equilibrium, and typically require a non-linear description.

Therefore, it would be greatly useful to develop methods and frameworks by which
out of equilibrium processes could be comprehended in general. A primary application of
such theoretical frameworks would be a deeper investigation on nonequilibrium physical
processes in different areas of science such as processes in living organisms, or even driven
quantum systems near or far from equilibrium. In this research project, we focus on the
nonequilibrium driving protocols externally perturbing a rotary mechanochemical molecular
motor embedded in an extremely noisy environment such as the cellular milieu.

2.1 Nonequilibrium thermodynamics

During recent decades, new approaches have been developed to classify general laws that
describe physical systems in the nonequilibrium thermodynamic regime. For example, an
equality has been introduced that establishes a general connection between the free energy
difference of two equilibrium states, and the average work required to push such a system
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between the two equilibrium states via a nonequilibrium finite-time driving protocol [54, 55].
Further major progress came from comparing probability distributions of the work that is
required during a particular nonequilibrium driving protocol with that during its ‘time-
reversed’ driving protocol. This nonequilibrium fluctuation theorem states that, assuming
microscopic reversibility, the likelihood ratio of the forward-time trajectory and its time
reversal is exponential in the entropy produced (or equivalently in our example the energy
dissipated) during the forward trajectory [56, 57].

Biological systems and in particular molecular motors operate in finite-time cycles out
of equilibrium, and in general dissipate energy in the course of their function. A central
question is how they can function effectively at minimum energetic cost. We lack a com-
prehensive answer to this broad question, but for systems operating near equilibrium, a
general characterization of optimal (minimum-dissipation) driving protocols was recently
developed [17]. The key quantity in this description is the time integral of the force auto-
correlation function, which we discuss in more detail in the next few sections. We apply this
linear-response approximation to our thermodynamic system in order to calculate optimal
driving protocols for externally perturbing a model of the stochastic rotary mechanochem-
ical motor protein F1 ATP synthase.

2.2 Dissipation near equilibrium

This section summarizes the central derivation of the nonequilibrium optimal protocols
as described in [17]. A thermodynamic system can in general exchange energy with its
environment by performing or receiving work, or by transferring heat, across its physical
boundaries. In general, thermodynamic systems can be described by internal system co-
ordinates ~x specifying a particular system microstate, and external control parameters ~λ,
a set of canonical coordinates describing the external environmental interactions with the
system. Control parameters could include external forces exerted by external agents, or
even temperature of the surrounding thermal bath.

Physical properties of thermodynamic systems, such as the internal energy U(~x,~λ), are
determined by the state of both internal and external parameters. For instance, for a system
in contact with an electric or a magnetic field, external parameters could be the field spatial
orientation and its magnitude, which can be quantified by consideration of the position and
charge distribution of external agents, for example permanent magnets. On the other hand,
the electrical or chemical state of the molecules composing the system can be considered as
the internal parameters describing the system’s state.

In general, a thermodynamic system left in contact with a heat reservoir at constant
temperature will ultimately reach equilibrium in the long time limit. The system can in
general occupy many microstates with various energy levels, so at equilibrium the canonical
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ensemble specifies an energy-based probability for occupying each of the possible states [50]:

p(~x | ~λ) = Z−1 exp[−βU(~x,~λ)], (2.1)

where Z =
∑
~xi exp[−β(U(~xi, ~λ)] is the canonical partition function, and β ≡ 1/(kBT ) is

proportional to the inverse of temperature.
Consider a thermodynamic system initially thermally equilibrated with the thermal

bath, but then subject to a time-dependent driving protocol between specified initial and
final control parameter values. As a result of such external time-dependent perturbation,
the system is driven out of equilibrium. During the protocol, the system absorbs (or gives
off) heat to gradually relax toward a new equilibrium distribution characterized by the
new state of the external control parameters. Such a process pushing the system to a new
macrostate in parameter space requires doing/receiving some quantity of work W . At the
end of the process (protocol), the external control parameter can be kept constant in time,
letting the system fully equilibrate.

The second law of thermodynamics asserts that the work exerted by the external agents
during the previous process must equal or exceed the equilibrium free energy difference ∆F
between the initial and final equilibrium states:

W ≥ F2 − F1, (2.2)

where the equality holds if the process occurs reversibly (infinitely slowly). This inequality
can be recast as the Clausius inequality: ∆S ≥ Q

T , where Q and S are heat and entropy,
respectively.

The internal energy change of our thermodynamic system is described by the first law
of thermodynamics

∆U = Q+W. (2.3)

Work is associated with system energy changes due to variation of external control parame-
ters during the work steps, whereas heat is associated with energy changes due to transition
between different microstates ~x during the relaxation steps.

Although the internal energy U is a state function, both transferred heat and exerted
work on the system are naturally trajectory dependent. The average power flow across the
system boundaries is the rate of work done by external agents. Following from the first law
of thermodynamics, the average instantaneous rate of energy flow into the system, d〈U〉Λ

dt , is
the average sum of the instantaneous rate of heat flow dQ/dt and the instantaneous power
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P ≡ dW/dt due to changing control parameter during the protocol:

d〈Q〉Λ
dt ≡

〈dx
dt
∂U

∂x

〉
Λ

(2.4)

P ≡ d〈W 〉Λ
dt ≡ −dλ

dt

〈
−∂U
∂λ

〉
Λ
, (2.5)

where negative derivatives of the system energy with respect to control parameters X ≡
−∂U
∂λ are generalized (conjugate) forces. Angled brackets with subscript Λ indicate a

nonequilibrium ensemble average under the time-dependent control protocol Λ. The time
derivative of the control parameter can be brought out of the average because it proceeds
based on a deterministic time-dependent protocol. This microscopic definition of work is
discussed in more detail in [58, 59].

A system in equilibrium with a thermal bath and current state of control parameter at
time t0 experiences an average power

P (t0) = −dλ(t0)
dt 〈X〉λ(t0) , (2.6)

where angled brackets with subscript λ(t0) indicate an equilibrium ensemble average at fixed
control parameter λ(t0).

Therefore, in a system driven out of equilibrium according to a nonequilibrium time-
dependent protocol, the average excess power is

Pex(t0) = −dλ(t0)
dt 〈∆X(t0)〉Λ, (2.7)

where ∆X(t0) ≡ X(t0)−〈X〉λ(t0) is the deviation of the conjugate forceX at time t0 from its
corresponding equilibrium average given fixed control parameter λ(t0), and angled brackets
with subscript Λ indicate an average over the nonequilibrium protocol Λ.

Based on the theory of linear response, the departure of the system’s response from that
of the unperturbed system can be expressed as a time integral of the perturbation exerted
by the external agents. In general, the system response can be expanded into a Taylor series
including terms involving different powers of the external perturbation. The first-order term
expresses the system response to linear order in the external conjugate forces.

Dynamic linear response theory can determine the ensemble and time-average of dy-
namical variables in response to such external manipulation [52]:

〈X(t0)〉Λ =
∫ t0

−∞
dt′χ(t0 − t′)[λ(t′)− λ(t0)] (2.8)

χ(t) = −βθ(t) d
dt〈δX(0)δX(t)〉λ(t0) , (2.9)

15



where χij(t) is the response function of the conjugate force Xj at time t to the perturbation
in control parameter λi at time zero [51], θ(t) = 1, t > 0; 0, t ≤ 0 is the Heaviside function,
and β = 1/(kBT ).

If the external control parameter varies infinitely slowly, then the system relaxes back to
equilibrium rapidly compared to the protocol timescale. On the other hand, if the control
parameters change rapidly, the system does not have enough time to fully relax given the
new control parameter value, and basically lags behind the control parameter protocol. This
class of operations is irreversible.

The linear response approximation assumes a sufficiently slow protocol Λ such that
the nonequilibrium response can be considered as a linear function of control parameter
variation, and higher order terms are assumed to be negligible.

Substituting Eq. (2.8), describing the near-equilibrium deviation of conjugate forces,
into Eq. (2.7), gives the excess power in the linear-response approximation

Pex(t0) = β
dλ
dt

∫ t0

−∞
dt′

d〈δX(0)δX(t′)〉λ(t0)
dt′ (λ(t0)− λ(t′)) . (2.10)

The time derivative of the force autocorrelation function can be further simplified by the
method of integration by parts. Multiple terms vanish due to the boundary conditions
at t′ → −∞ and t′ → t0. The boundary terms in fact make no significant contribution,
since all measurements separated by a very long time interval are intuitively expected to
be uncorrelated. These simplifications produce the central equation characterizing excess
power of our thermodynamic system near equilibrium distribution,

Pex(t0) = β
dλ(t0)

dt

∫ ∞
0

dt′′Σλ(t0)(t′′)dλ(t0)
dt (2.11)

Pex(t0) = β

[dλ
dt

]
t0

ζ(λ(t0))
[dλ

dt

]
t0

. (2.12)

Here, Σλ(t0)(t′′) is the covariance for conjugate force X separated by time t′′, at constant
control parameter λ(t0).

This analysis collapses the integral of the time-dependent covariance matrix into a time-
independent equilibrium matrix, a generalized friction tensor:

ζ(λ(t0)) = β

∫ ∞
0

dt′′〈δX(0)δX(t′′)〉λ(t0) . (2.13)

In conclusion, nonequilibrium excess power Pex can be approximated in the regime of suf-
ficiently slow driving protocols. This linear-response approximation is based on determina-
tion of the time-integrated autocorrelation function of the system’s conjugate forces. This
expression is interesting because it is in general fully local, depending only on the current
value of the system control parameter and its time derivative. This expression is in appar-
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ent contrast with the general picture of an out-of-equilibrium physical process, where all
physical observables are expected to depend on the entire history of the driving protocol.

In general, correlation functions for a physical system are measurements of order: they
describe how different variables, such as spin, density, or force, are related at different
positions and/or times. In our model system, the force autocorrelation function describes
how the conjugate force at different times is correlated: it quantifies how deviations of the
conjugate force from the average persist over time. Thus, the time evolution of a correlation
function can be interpreted as the system forgetting its initial state. The correlation function
is naturally maximized at zero time separation t′ = 0, while in the long time limit, the
function decays to negligible values, and the system becomes uncorrelated with its previous
state (forgets the past). The error in approximating the infinite time integral of a correlation
function with its integral over finite time increases in slow relaxing correlation functions,
but we choose vary the cutoff time to keep relative error constant.

A recent derivation [60, 61] simplifies the friction coefficient description for a broad class
of over-damped dynamics, where systems are assumed to diffuse in one physical dimension
x:

ζij(λ) = 1
D

∫ +∞

−∞
dx
[
∂λiΠeq(x, λ)∂λj Πeq(x, λ)

ρeq(x, λ)

]
, (2.14)

where D is the system diffusion coefficient, ρeq(x, λ) is the equilibrium probability distri-
bution over the system’s microstates and Πeq(x, λ) is the cumulative distribution function.
This new expression for the friction coefficient requires only the equilibrium probability
distribution of the thermodynamic system and the system diffusion coefficient. This ex-
pression considerably reduces the significant time that is usually required for calculating
the time integral of the force-force autocorrelation function (especially when the correlation
function relaxes slowly) because it only depends on the equilibrium cumulative probability
distribution.

However, there are some restrictive assumptions in the derivation of this simple expres-
sion, which limit its applicability. For example, the system potential energy must satisfy
U(x, λ) → ∞ as |x| → ∞. In general, this expression seems to be an appropriate de-
scription, when stochastic equation of motion is linear or simply the imposed potential is
a harmonic potential (linear force). On a more general energy landscape, this derivation
breaks down, and thus different methods must be used to reduce the computational time
required to calculate the generalized friction coefficient in Eq.(2.13).

To provide further physical intuition, we note that the generalized friction coefficient
can be decomposed into two components

ζ(λ(t)) = kBT τ(λ(t)) I(λ(t)) , (2.15)
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the integral relaxation time τ(λ(t)) and the force variance (by definition equals the Fisher
information in the context of information theory) I(λ(t)) [40]), defined in equilibrium as

I(λ) =
∑
n

pn

(
∂ ln pn
∂λ

)(
∂ ln pn
∂λ

)
=
〈
δX2

〉
λ
. (2.16)

Here the sum is over the system microstates. In the canonical ensemble, the Fisher infor-
mation with respect to the external control parameter is the covariance matrix of fluctua-
tions around equilibrium. In other words, Fisher information of a thermodynamic system
expresses the size of thermal fluctuations at equilibrium [43]. Fisher information is also
insightful in the field of information/thermodynamic geometry. The Fisher information
matrix (when we have a multidimensional control parameter) is a covariance matrix, which
by definition is symmetric and positive semi-definite (all the eigenvalues are positive). Thus
it can be used as a metric to quantify the distance between a pair of points in the control
parameter space [44].

The integral relaxation time is

τ =
∫ ∞

0
dt′

〈
δX(t′)δX(0)

〉
λ〈

δX2
〉
λ

. (2.17)

This derivation was for systems that relax to an equilibrium distribution. Recent work
has shown that this framework, with a couple of extra assumptions, is also applicable for
slow transitions between nonequilibrium steady states (NESS) [12], that could in general
be arbitrarily far from equilibrium. An important feature of NESS is that detailed balance
is broken, which in fact requires constant dissipation of energy. In our probabilistic picture,
in an NESS distribution, due to the constant flow of probability across the system bound-
aries, the system naturally dissipates heat on an ongoing basis, known as the housekeeping
heat [69]. This constant (on average) heat transfer between the thermodynamic system and
the thermal bath is necessary to maintain the system in a particular steady-state distri-
bution. The excess heat is then the difference between the total dissipated heat and the
necessary housekeeping heat.

In this regime, elements of the friction tensor are given by the time integral of the
conjugate-force autocorrelation function in the nonequilibrium steady state ensemble rather
than in equilibrium. This generalization establishes a connection between excess work and
stationary thermal fluctuations in a nonequilibrium steady state. Moreover, at nonequi-
librium steady state the appropriate conjugate forces are not determined by the current
microstate and control parameter values, but rather depend on the stationary distribution
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over microstates, and hence on the full system dynamics. Furthermore, this generalization
only provides a lower bound (not an equality) for the energetic inefficiency.

Dynamics of our system is governed by a master equation. Thus, the nonequilbrium
steady state distribution can be determined numerically by solving T̂ · pnoneq

ss = 0, where
T̂ is the transition rate matrix and pnoneq

ss is the nonequilibrium steady-state probability
distribution. More details on implementing the master equation is provided in the next
two chapters. Similar to the previous near-equilibrium picture, we start from a NESS
distribution rather than an equilibrium distribution, and by varying the control parameter
in a time-dependent manner, we do work on the system and drive its distribution away from
NESS. At the end of the protocol, we have a nonequilibrium probability distribution that
could be far away from equilibrium/NESS distribution, but at fixed final control parameter
the distribution will eventually relax to a NESS distribution.

2.3 Optimal protocol description

For a physical system proceeding according to an externally controlled time-dependent
driving protocol λ(t), the optimal driving protocol is the one that minimizes the average
work required to transit, in a given finite-time interval, between the two points given in the
control parameter space. Consider an out-of-equilibrium physical process, where our system
is prepared in an equilibrium thermodynamic state, then is driven out of the equilibrium
state by variation of the external control parameters. A quantity of work W is imposed
on the system by the nonequilibrium time-dependent driving protocol. Repeating this
experiment many times, always starting from the same equilibrium state and enacting the
same driving protocol, produces a different W each time, due to the stochastic system
fluctuations. The final result is a work distribution for driving the system between the
two particular points in control parameter space. According to the Clausius inequality, the
average work exceeds the equilibrium free energy difference between the two equilibrium
states of the thermodynamic system,

〈W 〉 ≥ ∆F . (2.18)

One might encounter an unexpected rare realization of the experiment, whereW is less than
the free energy difference. These so-called violations of the second law of thermodynamics
are relatively rare random events, and the Clausius inequality still holds on average. Equal-
ity (work equals equilibrium free energy) is obtained when the control protocol is infinitely
slow, however when the time allotted for the driving protocol is finite, the mean work will
be larger. But what is the minimum work for a given allotted time and control parameter
endpoints?

19



Characterizing optimal protocols would enable the extraction of maximal work from
a given free energy difference during a particular finite-time driving protocol. Optimal
nonequilibrium driving protocols have been investigated in different regimes of parameter
space as well as in different thermodynamic systems [16, 62, 63], such as a stochastic particle
dragged by an optical tweezer with a harmonic potential, or held in a fixed quadratic trap
with a time-dependent strength. Optimal driving protocols have also been found for a
colloidal Brownian particle coupled to an optical trap and a tilted external ratchet potential,
as well as a Brownian particle in a double well potential [64].

The dissipation of a slow driving protocol can be minimized by minimizing the finite-
time integral of the excess power, giving the mean excess work

Wex(t0) =
∫ t0

0
dt Pex(t, λ(t), λ̇(t)) . (2.19)

This represents the difference between the mean work invested in the system in the finite-
time, but sufficiently slow, protocol, and the work required if the system were always equi-
librated during the protocol.

For systems with a single control parameter, the time integral of excess power is mini-
mized by solving an Euler-Lagrange equation [17, 65]:

∂L(t, q, q̇)
∂q

= d
dt

[
∂L(t, q, q̇)

∂q̇

]
. (2.20)

A control parameter protocol Λ giving a stationary value (a local minimum, maximum,
or saddle point) for the total excess work Wex(t0) will satisfy the Euler-Lagrange equation
with excess power substituted for L:

0 = − d
dt

[
∂Pex(t, λ(t), λ̇(t))

∂λ̇(t)

]
+
[
∂Pex(t, λ(t), λ̇(t))

∂λ(t)

]
(2.21)

= −∂ζ(λ(t))
∂λ

λ̇2(t)− 2ζ(λ(t))λ̈(t) . (2.22)

For more details on this derivation see [17]. The above criteria for characterizing station-
ary results is satisfied when the time derivative of the control parameter, the velocity of
driving protocols λ̇(t), is proportional to the inverse square root of the generalized friction
coefficient, ζ(λ)−1/2 :

2ζ∂t(ζ−1/2) + ∂λ(ζ)[ζ−(1/2)]2 = 2ζλ̇∂λ(ζ−1/2) + ∂λ(ζ)ζ−1 (2.23)

= 2ζζ−1/2
(−1

2

)
ζ−3/2∂λ(ζ) + ∂λ(ζ)ζ−1 (2.24)

= 0 . (2.25)
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In conclusion, the optimal, minimum-dissipation, driving protocols for a thermodynamic
system with only one active control parameter obey

λ̇opt(t) ∝ ζ(λ(t))−(1/2) . (2.26)

Substituting Eq. (2.26) into Eq. (2.12) shows that excess power on an optimal driving
protocol is a constant value during the course of the driving process. This optimal driving
protocol proceeds slowly where the system shows large resistance (high friction coefficient)
against rapid changes of the external control parameters (typically near energy barriers).
On the other hand, the optimal driving protocol proceeds rapidly for small resistance (low
friction coefficient), generally near thermodynamic metastable states. In general, according
to Eq. (2.12), excess power scales as the square of the control parameter velocity,

(
dλ
dt

)2
,

while for an optimal driving protocol between two specified points in the control parameter
space, the total excess work scales linearly with control parameter velocity, namely with∣∣∣∣dλdt ∣∣∣∣.

Some of this extra work will be dissipated as heat across the system boundary to the
environment, and the remaining extra energy is stored in the system, as an extra energy
associated with being away from equilibrium. Once the system completely relaxes to the
final equilibrium distribution, then all the extra energy has dissipated to the environment,
and hence the excess work exactly equals the total dissipation.

Now that we are equipped with an approximate theoretical framework—near equilib-
rium and near nonequilibrium steady state—for characterizing the optimal driving proto-
cols, and are also familiarized with the general properties, functions and structure of F1

ATP synthase, we will introduce in the next chapter a simple model of a stochastic rotary
mechanochemical molecular motor, inspired by F1 ATP synthase. In particular, we will
apply this mathematical framework to our thermodynamic model system to determine the
generalized friction coefficient, optimal driving velocities, and finally the optimal driving
protocols on a periodic energy landscape.
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Chapter 3

Model System

A thermodynamic model system that captures the general properties and behaviour of
the F1 ATP synthase is essential for the preliminary investigation on this motor’s optimal
driving protocols. This model must incorporate stochastic dynamics arising from thermal
fluctuations, in this case rotational diffusion in both energetically favorable and unfavorable
directions, here clockwise and anticlockwise rotations [66].

This model should also include the hypothesized tight coupling between mechanics and
chemistry such that chemical reaction progress strongly depends on mechanical rotation.
For simplicity we assume that F1 must convert three molecules of ATP to be able to me-
chanically rotate one full cycle; conversely, to convert three molecules of ATP, it must
mechanically rotate a full cycle.

It has also been experimentally verified that the central crankshaft rotates roughly
between only three rotational angles, corresponding to pointing at each of the three catalytic
β subunits [9], such that in each mechanical step it rotates ∼ 120o degrees to the next
catalytic site. Incorporating only these features, the thermodynamic model system that we
introduce and study here can generally represent a broad class of stochastic rotary motors,
coupling mechanical rotation to progress in specific chemical reactions.

In the specific case of F1 ATP synthase, the chemical reaction is the reaction of producing
ATP molecules from ADP molecules, believed to be stimulated by releasing or binding a
phosphate molecule at a β subunit. We model a simplified version of this reaction (ignoring
the intermediate step for binding the phosphate group) through two states with different
energy levels at a given rotational angle of the magnetic trap (representing the reactant and
the product) of the crankshaft (Fig. 3.1).

Transition dynamics between such two states is generally regulated by the height of an
energy barrier between the two states. We also model an external, time-dependent, driving
force in the form of a rotating magnetic trap, represented by a sinusoidal potential. The
magnetic trap drives our system out of equilibrium according to a deterministic rotation
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schedule θ0(t) for the preferred magnetic bead orientation (orientation of the magnetic trap)
θ0 (corresponding to the minimum of a periodic potential).

The magnetic field pushes the bead, which rotates in response to this external pertur-
bation and is tightly attached to the central crankshaft. In summary, we formulate a cyclic
six-state model system, with states A through F arrayed on a ring, in accordance with the
schematic representation of the top view of the F1 ATP synthase (Fig. 1.3).

3.1 Model Representation

Figure 3.1: A simple thermodynamic model for the F1 ATP synthase in the presence of
external perturbation.
States A and B, C and D, and E and F have angular locations zero, 2π

3 , and 4π
3 , respec-

tively. Mechanical transitions correspond to crankshaft rotation, and chemical transitions
correspond to conversion between ATP and ADP molecules. There are mechanical energy
barriers halfway between the states, namely at π

3 ,
3π
3 , and 5π

3 , as well as chemical reaction
energy barriers at zero, 2π

3 , and 4π
3 . The magnetic trap is parameterized by the angular

orientation of the trap minimum θ0 relative to the location of states A and B at zero degrees.

In the schematic representation of our model system (Fig. 3.1), states A and B sit at
zero, C and D at 2π

3 , and E and F at 4π
3 . Transitions from A to B, C to D, and E to

F involve the synthesis of ATP, while the reverse reactions decompose ATP to ADP and
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phosphate (the chemical reaction is microscopically reversible). No mechanical reorientation
of the central crankshaft occurs during these transitions. On the other hand, transitions
between F and A, B and C, and D and E represent mechanical rotation of the central shaft
through 2π

3 and does not involve any chemical reaction.
Due to the tight coupling between chemistry and mechanics, there are no straight tran-

sitions between non-adjacent states, so during a complete cycle of the motor (a 2π rotation
of the central crankshaft), the system always produces three ATP molecules from ADP
molecules or in the reverse direction decomposes three ATP to ADP molecules. We con-
sider the case of strong coupling between the magnetic field and magnetic bead. In the limit
of strong magnetic fields and a slow driving protocol, the motor is expected to rotate along
with the magnetic field. However, in a weak magnetic field or during fast driving protocols,
the motor (central crankshaft along with the magnetic bead), is expected to lag behind the
magnetic field’s time-dependent orientation, θ0(t).

3.2 System dynamics

Dynamics of the system can be analyzed through the system’s stochastic exploration of the
energy landscape. Transition state theory [52] provides a theoretical framework to estimate
transition rates of a stochastic object crossing an energy barrier.

In general, when thermal fluctuations are small compared with the height of the energy
barriers, a stochastic particle is trapped strongly in its local potential well, diffusing for a
significant period of time within the well, before ultimately getting kicked over the energy
barrier. When temperature is low enough to be in this weak thermal fluctuation limit, the
equation of motion can produce transmission rates that depend on a (near-)equilibrium
probability distribution within the local well. According to transition state theory, crossing
rates are proportional to the exponentiated free energy differences between the metastable
state (local potential minimum) and the energy barrier. This framework should be an
acceptable approximation in a high friction environment for the system’s potentially com-
plicated diffusion. If the environment does not provide enough friction then more compli-
cated dynamical considerations must be taken into account to calculate reasonable crossing
rates [53].

Generally, external perturbation of the energy landscape is imposed by changing the
magnetic trap angular orientation and strength according to a time-dependent driving pro-
tocol. For this purpose, we model an additional periodic potential with minimum located
at θ0 and spring constant (trap stiffness-magnitude of the externally imposed potential) k.

The spring constant k can in principle be controlled externally by the experimentalist,
but in this work we limit our attention to the trap minimum θ0, which in the schematic
representation of the model system (Fig. 3.1) is a green vector with angular orientation θ0

relative to the angle of states A and B.

24



We assume that our system is fully embedded in a medium with a fixed chemical po-
tential difference of ATP and ADP molecules, such that ongoing chemical reactions in-
significantly influence concentration of the molecules around the system. In other words,
concentrations of molecules are assumed to be recovered significantly faster than the system
progress in chemical reactions.

We define a six-dimensional probability vector representing the system’s probability
distribution, ~p = (pA, pB, pC, pD, pE, pF). Due to the variation of the control parameters,
the probability distribution is in general a function of time, and here we observe its time-
dependence evolution through a master equation:

d~p
dt = T̂ · ~p , (3.1)

where T̂ is a tridiagonal 6 × 6 transition rate matrix representing the system’s diffusive
dynamics. For i 6= j, the matrix element Ti,j is the probability per unit time for a system
in state i to make a transition to state j.

The diagonal elements of T are negative and are determined by conservation of prob-
ability. In general, transition rates are determined according to transition state theory,
where matrix elements could have both zero and nonzero off-diagonal entries based on the
collective effects of the unperturbed energy landscape and the sinusoidal external potential:

Ti,i+1 ∝ exp{−β[E‡i,i+1(k, θ0)− Ei(k, θ0)]}

Ei(k, θ0) = Ei − k cos(θi − θ0)

E‡i,i+1(k, θ0) = E‡i,i+1 − k cos(θi,i+1 − θ0) .

(3.2)

We have chosen a sinusoidal function because the energy function corresponding to the
interaction of a magnetic dipole (here located within the magnetic bead) and a constant
magnetic filed is similar to this mathematical form. Under these circumstances, Eq. (3.1)
has a unique equilibrium (or nonequilibrium steady-state) solution, which we can denote
by ~peq (or ~pss), and any initial distribution will relax to this probability distribution in the
long-time limit.

Eq. (3.2) expresses how transition matrix elements and the system energy profile depend
on the sinusoidal function of the external perturbation. Here, the total energy Ei(k, θ0) of
state i is a sum of the unperturbed state energy Ei and the perturbation contribution
−k cos(θi − θ0).

θi is the angle of state i and θ0 the angular orientation of the magnetic trap. The
total energy E‡i,i+1(k, θ0) of the barrier between adjacent states i and i + 1 is the sum of
the unperturbed barrier energy E‡i,i+1 and the perturbation contribution −k cos(θi,i+1−θ0),
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where θi,i+1 is the angle of the energy barrier between states i and i + 1. Transitions are
only possible between adjacent states.

States A, C, and E are identical except for their different angle, such that a rotation of
2π
3 radians would match them together (and likewise with the states B, D and F ). So it is
only the magnetic trap that breaks the symmetry.

We assume a chemical bath of ATP and ADP much larger than our system, such that
the respective chemical potentials of ATP and ADP (and hence the chemical potential
change upon chemical reaction) remain constant over the motor’s operation. We model this
by a constant energy difference ∆Echem between each pair of mechanically identical but
chemically distinct states (A and B, etc.).

In summary, the energy landscape of our thermodynamic system in the unperturbed
regime can be described as

EA = EC −∆Echem = EE − 2∆Echem

EB = ED −∆Echem = EF − 2∆Echem

EB − EA = ED − EC = EF − EE = ∆Echem.

(3.3)

As a result of having a free energy difference between the mechanically identical states
(i.e. between A−B, C−D, and E−F ), the energy landscape is effectively tilted. This tilt
produces a spontaneous net rotation of the motor (in the absence of other driving forces).

Choosing the unperturbed energy of state A as our zero of energy, then combining
Eq. (3.2) and Eq. (3.3) gives the total energy of each state as

EA(k, θ0) = −k cos(0− θ0)

EB(k, θ0) = ∆Echem − k cos(0− θ0)

EC(k, θ0) = ∆Echem − k cos
(2π

3 − θ0

)
ED(k, θ0) = 2∆Echem − k cos

(2π
3 − θ0

)
EE(k, θ0) = 2∆Echem − k cos

(4π
3 − θ0

)
EF(k, θ0) = 3∆Echem − k cos

(4π
3 − θ0

)
.

(3.4)

In order to simplify this model system, and hence the exploration of its parameter
space, we further enforce additional symmetries. For simplicity, we put mechanical energy
barriers exactly halfway between their corresponding metastable states. This means that
we have mechanical energy barriers at π

3 ,
3π
3 , and 5π

3 , while chemical energy barriers have
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the same angle as their corresponding metastable states. We also model ADP and ATP
molecules as differing only by a chemical rearrangement; a more realistic picture would
account for phosphate as a separate reactant. leading to transition rates dependent on
phosphate concentration.

In addition, we also assume that the mechanical (∆E‡mech) and chemical reaction barriers
(∆E‡chem) all have the same energy, before external perturbation by the rotary magnetic
trap. Thus, the barrier energies including external perturbation are:

E‡A,B(k, θ0) = ∆E‡chem − k cos(0− θ0)

E‡B,C(k, θ0) = ∆Echem + ∆E‡mech − k cos
(
π

3 − θ0

)
E‡C,D(k, θ0) = ∆Echem + ∆E‡chem − k cos

(2π
3 − θ0

)
E‡D,E(k, θ0) = 2∆Echem + ∆E‡mech − k cos

(3π
3 − θ0

)
E‡E,F(k, θ0) = 2∆Echem + ∆E‡chem − k cos

(4π
3 − θ0

)
E‡F,A(k, θ0) = 3∆Echem + ∆E‡mech − k cos

(5π
3 − θ0

)
E‡A,F(k, θ0) = E‡E,F(k, θ0)− 3∆Echem . (3.5)

Considering the energies of all the states and barriers, the schematic representation of
the unperturbed energy landscape is shown in Fig. 3.2.

The periodic nature of the external perturbation (a sinusoidal function) means that
energy decreases in the vicinity of the trap center (external potential minimum), while
energies of more distant states and barriers (those further away than ±π/2 from the trap’s
center θ0) are increased.

In summary, the energy landscape can in general be varied according to the finite-time
driving protocol. In our simple model, k is the strength of the external perturbation, and
θ0 is the focus or minimum of the external potential. As control parameters vary in time,
the system diffuses on the energy landscape and in general dissipates some quantity of heat,
and also some quantity of work is spent on the system by the external manipulation of the
control parameters.
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Figure 3.2: Schematic representation of the system’s unperturbed energy landscape. One
sequence of available states is represented alphabetically from A to F . Chemical reaction
barriers of height ∆E‡chem separate states A − B, C − D, and E − F , and are located at
zero, 2π

3 , and 4π
3 , respectively. Mechanical barriers of height ∆E‡mech separate states B−C,

D − E, and F − A, and are located at π
3 ,

3π
3 , and 5π

3 , respectively. There is an energy
offset 3∆Echem between two adjacent series of six states due to the tight coupling between
chemistry and mechanics (three ATP-ADP conversions regularly happen in each cycle of
the motor’s operation).

3.3 Work, heat, and ATP production

Experimentalists can externally manipulate F1 via a time-dependent magnetic field acting
on a magnetic bead attached tightly to the central crankshaft. Therefore, one can either do
work on the system by rotating the magnetic field, or get work from ATP-ADP conversion
occurring in the energetically favorable direction (reverse of the driving in our model).

Changing the control parameters changes the energy landscape of the system (see
Eq. 3.4) and drives the system out of equilibrium. In our numerical calculations we quantify
the accumulation of excess work, on average, at the following rate due to the variation in
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the system’s external control parameter θ0:

dW
dt = dθ0

dt
dU
dθ0

dU
dθ0

= −k
∑

i = A to F
pi sin (θi − θ0) . (3.6)

Dissipation of energy as heat transfer between the system and environment stems from
probability flow between system states. We adopt the convention of heat flow into the
system as positive. On average, heat transport across the system’s boundaries occurs at
the following rate

dQ
dt = (pATA,F − pFTF,A) (EF − EA)

+ (pBTB,C − pCTC,B) (EC − EB) +

+ (pDTD,E − pETE,D) (ED − EE) . (3.7)

Finally, ATP production is quantified by the probability flow across chemical reaction
barriers:

d[ATP]
dt = pATA,B − pBTB,A + pCTC,D − pDTD,C + pETE,F − pFTF,A . (3.8)

A system’s full cycle, 2π rotation of the central crankshaft, includes three jumps over the
chemical reaction barriers and synthesis of three ATP from ADP, or in the reverse direction
three ATP hydrolyzed into ADP.

In summary, this periodic rotary thermodynamic model system provides an approxi-
mate framework for calculating the nonequilibrium behavior of the F1 ATP synthase motor
protein.

Important system parameters include magnetic field orientation θ0, magnetic field strength
k, free energy difference ∆Echem between reactant and products, height ∆E‡mech of mechani-
cal energy barriers, and finally height ∆E‡chem of chemical reaction barriers. In other words,
after taking into account reasonable simplifications motivated by the F1 basic function
and structure, we are now left with a much more manageable parameter space, easing the
exploration of optimal driving protocols across this parameter space.

3.4 Model Simulation

In general, a stochastic process consists of a series of random events (jumps) such that each
process (trajectory) can be described by a particular random walk across the state space.
In this research project, we focus on investigating the ensemble average behavior of a rotary
mechanochemical system as it is exposed to an external mechanical perturbation according
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to a deterministic time schedule (a driving protocol). We investigate different protocols
that each specify a time schedule for rotating the magnetic trap, changing θ0, maintaining
constant trap strength throughout. For this purpose, we focus on two fundamental quanti-
ties of our model system: the time-dependent probability distribution of occupying different
states, and the probability current across the energy landscape. The probability distribu-
tion at equilibrium reflects how energetically favorable is a system state, while probability
current across the energy landscape characterizes the average directed diffusive motion of
the system as the external driving protocol proceeds, from an initial value to a designated
final value on the control parameter space.

We hold the system in contact with a constant-temperature thermal bath. As described
before, a thermodynamic system state is describable by two sets of separate variables.
One set ~x(t) describes the internal state of the system at time t, and the other set λ(t)
describes the state of the external control parameters. U(~x(t), λ(t)) is the internal energy
of the system at time t as a function of both the internal variables and external control
parameters.

We divide the system’s driving protocol into n successive steps, each of identical length
equal to the relatively small time step ∆t. Although we have considered a discretized time
sequence, we choose a time step sufficiently small, around 1/1000 s, that discretization
effects are negligible.

Evolution of the system is simulated over a given finite time interval, as the external con-
trol parameter is dynamically varied through a designated sequence of values {λ0, λ1, . . . , λn}
in control parameter space. One can designate a particular path through the control pa-
rameter space as

~p0
λ1−→ ~p1

λ2−→ ~p2 . . .
λn−→ ~pn , (3.9)

where at time t = 0, the system is in equilibrium with the thermal bath, its probability
distribution is ~p0, and the external control parameter is λ0. As the protocol proceeds, the
nonequilibrium probability distribution is evolved by applying the transition matrix to the
probability vector according to the master equation (Eq. (3.1)).

In general, each step consists of two substeps. First, the external control parameter
changes from λi to the next point λi+1. This process is either resisted or assisted by the
internal forces of the system that are exerted against/in favor of reconfiguration of the
external agent. This external rearrangement, in general, performs work U(~pi(~x), λi+1) −
U(~pi(~x), λi) on the system.

Secondly, the system relaxes at fixed control parameter value λi+1, updating its probabil-
ity distribution to ~pi+1. In this substep, heat U(~pi+1(~x), λi+1)−U(~pi(~x), λi+1) is transferred
to the system. We repeat this one-timestep evolution until we reach the final designated
control parameter value. Only the initial system distribution obeys the equilibrium Gibbs-

30



Boltzmann distribution, while at successive points ~p1, . . . , ~pn, probability distributions are
generally out-of-equilibrium because of the external driving forces.

Total work and total heat are a sum over all the heat and work collected during the
individual steps

W =
n−1∑
i=0

U(pi(~x), λi+1)− U(pi(~x), λi) (3.10)

Q =
n∑
i=1

U(pi(~x), λi)− U(pi−1(~x), λi) . (3.11)

In accordance with the first law of thermodynamics, the average change in the system’s
internal energy equals the net energy added as heat to the system and the work done on
the system by the external agent:

∆Utotal = W +Q . (3.12)

The average excess work that is required to be provided for the system to proceed in
the control parameter space, in a finite time interval, is

Wex = W −∆F , (3.13)

where ∆F is the free energy difference of the system when the trap is at the final and at the
initial states of the control parameter. Excess work is zero when the protocol is infinitely
slow: when the required work equals the free energy difference.

3.5 Optimal protocols

In chapter 2 we saw that the optimal driving velocity is proportional to the inverse square
root of the generalized friction coefficient ζ(λ(t)):

λ̇opt(t) ∝ ζ(λ(t))−(1/2) . (3.14)

This generalized friction coefficient is the time integral of the force-force autocorrelation
function, from t = 0 to t =∞:

ζ(λ(t0)) = β

∫ ∞
0

dt′〈δX(0)δX(t′)〉λ(t0) , (3.15)

where δX is the deviation of the conjugate force from its equilibrium, ensemble average,
value.
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Our simplified thermodynamic model system has six available states and only one active
control parameter θ0, so the generalized friction coefficient is

ζ(λ(t0)) = β
∞∑
n=0

6∑
i,j=1

pieq [Tn]i,j ∆t δXj δXi , (3.16)

where pi
eq, Ti,j , and δXi are the equilibrium probability of state i, transition rate from

state i to state j, and deviation of the conjugate force associated with the state i from
the equilibrium ensemble average force, respectively. The discrete-time dynamics is imple-
mented through the transition rate matrix such that Tij∆t denotes the probability flux per
time-step.

The first sum over timesteps n is the discretized equivalent of the time integral expres-
sion in Eq. (3.15), and the second sum over i, j averages the force autocorrelation function
over the equilibrium distribution, for given control parameter value λ(t0). More specifically,
pieq[Tn]i,j represents the probability of starting from the thermodynamic state i and ending
up at the thermodynamic state j after n time-steps, at a fixed control parameter. Accord-
ing to the dynamics of our model system (represented by the 6x6 transition matrix), the
system nonequilibrium distribution (and force-force correlation function) decays as a sum of
five decaying exponential functions with different relaxation times. In the long-time limit,
the correlation function can be approximated by a single decaying exponential function
representing the slowest relaxing mode.

Due to the complexity of the system, we do not have an exact analytic expression of the
force-force autocorrelation function. Practically, we approximate this time integral up to a
specific time where the correlation has died down to less than 1/1000 of its initial value.
We found that calculating to longer times has a negligible effect on our results. In other
words, we cut the integral off beyond a certain time, and ignore the contribution of the rest
of the time integral due to the insignificant value of the correlation in this long-time limit,
where the system has basically forgotten its history.

32



Chapter 4

Results

In this chapter, the results and interpretation of our simulations are presented and discussed.
Multiple computer simulations were done and subsequently analyzed to address the central
questions posed in the introduction section of this thesis regarding the energetically optimal
operation of the F1 ATP synthase. The fundamental goal which guided our simulations and
subsequent analysis was to find the optimized finite-time schedule (that which requires the
smallest energy input from external energy resources) of mechanically perturbing a rotary
mechanochemical molecular-scale motor around its operational cycle.

Our initial simulations primarily characterized the generalized friction coefficient in the
model of F1-ATPase performance in response to external mechanical perturbation. In this
respect, we have explored different regions of parameter space to evaluate this quantity
under different conditions in order to be able to describe the optimal driving protocols both
qualitatively and quantitatively. Additionally, we compared simulation-based exact observ-
able expectations with the approximate near-equilibrium theoretical expectations involving
the friction coefficient to assess the validity of our description of optimal protocols in the
limit of finite-time, but slow, driving operations.

We explore our model system by characterizing a parameter regime corresponding
approximately to practical, slow-varying, magnetic tweezers experiments on single F1-
ATPase [28], where the rotational diffusion coefficient is assumed to be dominated by
the contribution from a micron-sized magnetic bead, approximated as a sphere of radius
r = 10−6m with a hydrodynamic rotational diffusion coefficient [68]

D = kBT

8πηr3 . (4.1)

The micron-sized magnetic bead thus hasDbead = 0.25 rad2/s. Here, η = 7×10−4 kg/m.s
is the viscosity of water at typical body temperature, T = 310 K. The hydrodynamic
diffusion coefficient of the isolated F1’s central shaft has been estimated to be around
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Dshaft = 0.07 rad2/ns [37], thus in this setup rotational diffusion of the magnetic bead is
dominant due to the considerably larger physical dimensions.

Our transition rates in Eq. 3.2 do not have an inherent time unit. Given the transition
rates, we calculate the system’s mean square angular displacement and ultimately the dif-
fusion coefficient of the system in a flat energy landscape. Then by equating our diffusion
coefficient with the approximate diffusion coefficient in Eq. 4.1, we grant a proper physical
meaning to the time unit of our simulation and hence the system transition rates.

4.1 Generalized friction coefficient

Intuitively, the generalized friction coefficient quantifies the resistance of a physical system
against external perturbations, and could characterize system dissipation as well as the
optimal driving protocols in the near-equilibrium regime. The friction coefficient is the
time integral of the conjugate force autocorrelation function, which can be decomposed
into the product of the conjugate force variance (the zero-time autocorrelation) and the
integral relaxation time [Eq. (2.16)]. Based on the energy landscape (Fig. 3.2) defined for
our thermodynamic system in the previous chapter, we calculate this quantity for different
values of our model parameters (Fig. 4.1). For example, we vary perturbation (magnetic
trap) strength, mechanical barrier height, and chemical reaction barrier height.

The structural threefold symmetry of the F1 ATPase (discussed in the Introduction)
enters our model as a sequence of periodic states on a ring. This leads to a friction coefficient
ζ(θ0) that is a periodic function of magnetic field angular position θ0, with a periodicity
of 2π

3 matching the system’s internal periodicity. For simplicity, we have only reported the
friction in the first period of our system, namely from 0o to 120o, since other periodic images
will give identical results.

As demonstrated in Fig. 4.1, the generalized friction coefficient varies significantly upon
varying internal and external parameters such as trap strength k, mechanical and chemical
reaction barrier heights (∆E‡mech and ∆E‡chem) and trap minimum θ0. Numerical sim-
ulations, as intuitively anticipated, show minima and maxima in resistance around the
metastable states and mechanical energy barriers, respectively. Intuitively, the system
rapidly relaxes within a metastable state, so the generalized friction coefficient should be
relatively small when the trap’s minimum is near a metastable state.

On the other hand, when the trap minimum is near a mechanical barrier, the correspond-
ing equilibrium distribution has significant probability on either side of the energy barrier,
and consequently the conjugate force correlation time is maximized, leading the system to
have peaks in its resistance against external manipulations around the three mechanical
barriers. In the specific range that we have explored, in particular when a strong magnetic
field is applied, the generalized friction coefficient varies significantly, by more than eight
orders of magnitude, indicating that dissipation could be notably different when the driving
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Figure 4.1: The generalized friction coefficient, across a range of trap minima θ0, for varying
mechanical and chemical reaction barrier heights ∆E‡mech and ∆E‡chem, left to right and top
to bottom, respectively, while ∆Echem = 0. Different colors within a given sub-plot show
different trap strengths.

protocol proceeds near the potential well rather than in the vicinity of mechanical barri-
ers. What we actually observe here is that when there are low barrier heights and weak
perturbing traps, the friction coefficient is relatively flat and small, not varying with the
trap’s time-dependent minimum. As trap strength increases, the friction coefficient varies
more and more across the control parameter space. This implies that the system requires
a non-uniform control protocol velocity to minimize the required work.

For the system to proceed alongside the driving protocol (in phase), it must overcome
the activation energy barriers. The larger the energy barriers ∆E‡chem and ∆E‡mech, the
larger the difference between the transient states and the initial metastable states, the
harder it is for the process to actually happen. This is due to smaller transition rates
leading to longer relaxation times which, in turn, leads to a larger friction coefficient. In
other words, for a process or a chemical reaction to proceed in a preferred direction, the
thermodynamics must be energetically favorable (i.e. the energy difference between initial
and final metastable states must be considerable), and the kinetics must be reasonably rapid
(i.e. transition rates must be large). The magnetic trap perturbs the energy landscape such
that it makes states located around its center (minimum energy) energetically favorable,
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and it also lowers the energy barriers in close neighborhood of its center, and hence the
system would be stimulated to flow towards the center of the magnetic trap. Therefore, the
stronger the magnetic trap k the easier it is for the system to follow the magnetic trap.

4.2 Optimal driving velocity

According to the theoretical framework that we have discussed in the theory chapter, the
optimal driving protocol keeps excess power constant over the entire time interval of the
control protocol, which proceeds in a way that the velocity of the changing control param-
eter is proportional to the inverse square root of the generalized friction coefficient at the
corresponding point of control parameter space [17]:(dθ0

dt

)
opt
∝ ζ(θ0)−1/2 . (4.2)

This relation clearly does not depend on the time length of the driving protocol but is ex-
pected to characterize optimal protocols more accurately in the limit of long time intervals
when the system is closer to the equilibrium distribution. Given the variation in the gener-
alized friction coefficient (Fig. 4.1), the optimal control parameter velocity (Fig. 4.2) varies
by orders of magnitude across a given driving protocol, leading to an optimal protocol that
is significantly distinguishable from the naive (constant-velocity) protocol (Fig. 4.3). In the
specific range we explored, in the case of very strong magnetic fields, optimal velocities vary
more than three orders of magnitude.

As demonstrated in Fig. 4.2, as energy barriers go from low to high, the optimal driving
velocity around the energy barriers goes from high to low, indicating that near high energy
barriers, the system should be driven slow in order to keep the nonequilibrium probability
distribution more similar to the equilibrium distribution. In other words, we need to give the
system enough time to successfully jump over the energy barrier due to thermal fluctuations,
so it can ultimately follow, in phase, the magnetic field’s dynamic rotation.

4.3 Optimal driving protocol

The optimal protocol represents the time schedule by which one externally perturbs the
system that minimizes the amount of energy that must be externally supplied. The key
intuition from the optimal driving velocity patterns in Fig. 4.2 is that the optimal protocol
proceeds relatively fast when the system can quickly relax, providing low friction or resis-
tance, in order to leave extra time in regions where friction is large, thus giving thermal
fluctuations extra time to kick the system over barriers without requiring work.

We observe that when the generalized friction coefficient is relatively flat, the system
generally proceeds according to the naive protocol and so there is no significant energy saved
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Figure 4.2: Optimal driving velocity dθ0
dt of control parameter θ0 (in arbitrary units) as a

function of the control parameter, for naive constant-velocity protocols (dashed lines) and
optimal driving protocols under the linear response approximation (solid curves). Same
variation of k, ∆E‡mech, and ∆E‡chem as in Fig. 4.1, with ∆Echem = 0

by performing the optimal protocol, but when we have a non-uniform friction coefficient
across the control parameter space, the deviations of the optimal protocol from the naive
protocol are much larger and ultimately influential in the system’s operation.

The optimal protocols provide a higher chance for the system to make effective use of the
external free resource of energy, namely, thermal fluctuations from the surrounding thermal
bath,. After a transition from one side of the barrier to the other side has been done at
a slow speed, the optimal protocol again proceeds relatively quickly until nearing the next
mechanical barrier.

4.4 Excess power

The total excess work of a given physical process proceeding between two particular points
in control parameter space is important because it represents how efficiently a system (such
as a motor) operates during a designated finite-time driving protocol. This quantity can be
evaluated by a time integration over the excess power, which is naturally a time-dependent
function throughout the entire driving time.
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Figure 4.3: Optimal driving protocols. Control parameter position θ0 as a function of time
(in arbitrary units), for naive constant-velocity protocols (black dashed lines) and optimal
protocols under the linear response approximation (solid curves). Same variation of k,
∆E‡mech, and ∆E‡chem as in Fig. 4.1.

We estimate this excess power during naive (constant velocity) protocols using the out-
lined near-equilibrium approximation, Eq. (2.12). This specific equation, as well as the
entire optimal driving protocol framework, is a linear response approximation, so it would
be beneficial to check how well the approximation works across model parameters. In this
regard, we directly calculate the exact excess power from numerical simulation of the system
dynamics as discussed in “Model Simulation” (see Eq. (3.10)) to assess the validity of the
approximate analytic theory in the investigated parameter ranges.

As can be seen in Fig. 4.4, in the regime of low energy barriers, the approximate descrip-
tion of excess power matches almost perfectly with the numerical exact calculation of excess
power. This is because the system has settled down into a NESS that is not too far from
equilibrium. However, for high energy barriers and weak traps, the approximation does not
align perfectly with the numerical calculation. We observe breakdowns in a couple different
ways, one of which is that the exact (numerical) work is below the theoretical prediction at
very small times. This is because the system starts from an initial equilibrium distribution
and has not yet reached its steady-state distribution. By contrast, the theory essentially
assumes the system is always at a steady-state distribution at a particular distance from
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Figure 4.4: Excess power Pex as a function of control parameter θ0, calculated directly via
numerical simulation (solid curves) or estimated using the control parameter velocity and
the generalized friction coefficient (dashed curves). Magnetic field rotation angular velocity
is ∼ 10−3 Hz. Same variation of k, ∆E‡mech, and ∆E‡chem as in Fig. 4.1. For large energy
barriers, around 150o and 270o the excess power becomes negative.

equilibrium. Another breakdown is that for large energy barriers and a weak magnetic trap,
at later times the exact excess work exceeds the theoretical prediction. This occurs when the
protocol proceeds sufficiently rapidly that the system gets stuck behind the energy barrier
because it does not have enough time to transition to the other side of the energy barrier,
so its distribution lags far behind (and hence is far from equilibrium). In general, the ap-
proximate description of excess power is valid when the system probability distribution is
sufficiently close to the Gibbs-Boltzmann equilibrium probability distribution.

For really large energy barriers, the system’s distribution get stuck on the wrong side
of the energy barrier (see Fig. 4.7), while the the near-equilibrium approximation implicitly
assumes that the system is only ‘locally’ out of equilibrium. Moreover, contrary to the case
of transitions between equilibrium states where excess power is greater than or equal to
zero, Pex(t) ≥ 0, excess power can in general be less than zero due to the periodic nature of
the perturbation. We note that the height of energy barriers in an ATP synthase molecule
has been approximated [39] to be twice higher than the larger energy barrier that we have
investigated here.
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Thus for a system approximated by a near-equilibrium theoretical framework, remaining
close-to-equilibrium distribution is an important criterion. As can be seen in Fig. 4.4, the
approximate results do not agree with numerical calculations for large energy barriers. We
quantify this difference from the equilibrium distribution by the relative entropy between
nonequilibrium and equilibrium probability distributions

D(p(x)||q(x)) =
∑

x
p(x) log

[
p(x)
q(x)

]
, (4.3)

is a measure of the difference between two different probability distribution p(x) and
q(x) [40]. Relative entropy is non-negative [40], equaling zero if and only if the two distri-
butions match perfectly, p(x) = q(x). Although, it is not a true distance metric between
distributions since it is not symmetric (and doesn’t satisfy the triangle inequality), it is use-
ful to consider relative entropy as a measure of how distinct two distributions are. In this
regard, we can compare the system’s nonequilibrium probability distribution pnoneq

i (θ0) with
the corresponding equilibrium probability distribution peq

i (θ0), to quantify how much the
system distribution departs equilibrium. Moreover, the free energy difference between two
different probability distributions, but with identical control parameter, one representing an
equilibrium probability distribution and one representing an out-of-equilibrium probability
distribution, is equal to the relative entropy between the two distributions [41, 42].

As demonstrated in Fig. 4.5, when the protocol (magnetic trap minimum) proceeds
between 0o → 60o degrees, D(P noneq||P eq) ≈ 0, implying that the nonequilibrium and
equilibrium probability distributions are almost equal. However, as the protocol proceeds
further, the nonequilibrium distribution departs from the equilibrium one. Details of the
departure essentially depend on the height of energy barriers, strength of the magnetic trap,
and velocity of driving protocols. For large energy barriers, namely sub-plots to the right
and bottom, the system evidently could not cross the energy barriers. However, in other
cases, the system partially relaxes toward the current equilibrium distribution, leading to a
reasonable approximation for the excess power represented in Fig. 4.4.

Furthermore, as demonstrated in Fig. 4.5, the system more rapidly crosses energy barri-
ers when it’s driven on an optimal protocol rather than a naive (constant-velocity) protocol.
Near the energy barriers, the velocity of the optimal protocol is much lower than the velocity
of the naive protocol (Fig. 4.2), and thus provides more time for the system to successfully
cross over the energy barrier and relax toward the current equilibrium distribution.

There are many close-to-equilibrium theoretical frameworks whose physical description
is valid when the system remains sufficiently close to equilibrium. Based on our calculation,
optimal driving protocols provide an intuitive method to keep the system under investigation
closer to equilibrium than what naive protocols do [67].
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Figure 4.5: Relative entropy D(pnoneq||peq)(numerical result), between nonequilibrium
and equilibrium probability distributions as a function of control parameter θ0, for naive
(constant-velocity) protocols (solid curves) and optimal protocols under the linear response
approximation (dashed curves). Magnetic field angular velocity is ∼ 10−3 Hz. Same varia-
tion of k, ∆E‡mech, and ∆E‡chem as in Fig. 4.1.

4.5 Efficiency ratio

The ratio of W naive
ex (total excess work during a naive driving protocol) to W optimal

ex (total
excess work during an optimal driving protocol) quantifies the enhancement in efficiency
from driving this rotary mechanochemical stochastic motor on the optimal path rather
than the naive, constant velocity, driving protocol. A straightforward derivation [22] (see
Appendix A) shows that, in the regime of the linear-response approximation, this ratio
depends simply on the generalized friction coefficient value across the protocol, equaling
the ratio of the average friction coefficient to the square of the mean square-root friction
coefficient:

W naive
ex

W optimal
ex

= ζ

ζ1/22 . (4.4)
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The average is over all control parameter points across the driving process,

ζ ≡
∫ 2π

0 ζ(θ0) dθ0
2π . (4.5)

Although this measure of friction coefficient variation is independent of the protocol time,
its accuracy in approximating the actual excess work ratio depends on the protocol time,
working best in the limit of relatively slow protocols, when the system stays sufficiently
close to the equilibrium. In the range that we have explored our system, this ratio reaches
as high as 4.0 (Fig. 4.6).

Figure 4.6: Ratio of total excess work during the naive protocol to total excess work during
the optimal driving protocol, estimated from the linear-response approximation. Same
variation of k, ∆E‡mech, and ∆E‡chem as in Fig. 4.1.

The takeaway from Fig. 4.6 is that in the limit of very non-uniform friction coefficient
(Fig. 4.1), when the system is exposed to a relatively strong external perturbation, there
is a considerable benefit (in work saved) in performing an optimal protocol rather than a
naive one. This difference may be interesting in investigation of biological systems or when
one intends to design efficient stochastic nanometer-scale motors. Curves with different
mechanical barriers can cross the trap strength k increases (middle subplot in the above
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picture). In a similar study of optimal crossing of a single mechanical barrier, crossovers were
not detected [22]. Though we have note identified the necessary and sufficient conditions,
in our more complicated system, the periodic boundary conditions, multiple barriers/basins
and coupling between mechanical motion and a chemical reaction all may contribute to this
crossover.

4.6 Net rotation

As pointed out in the previous chapters, a full cycle of the system’s operation (a full 360o

rotation of the central crankshaft) requires three ADP molecules to convert to three ATP
molecules. Conversely, full rotation in the reverse direction converts three ATP molecules to
three ADP molecules. In this respect, net rotation of the system per one cycle of magnetic
field rotation, denoted by n, is an important measure of useful output in our simulation. We
calculate this through the nonequilibrium probability flow according to Eq. 3.8 and plot it
in Fig. 4.7. n is unity when the system, on average, rotates 2π during a single 2π protocol.

Although for large mechanical energy barriers and weak magnetic fields (leftmost points
in the red curves), the system is biased toward rotation along with the magnetic field, it
does not completely follow the trap’s time-dependent rotation. For low energy barriers or
strong magnetic fields (right-most points in all curves), the system more easily follows the
trap rotation.

In the regime that we have explored and for weak magnetic fields, optimal driving
protocols are not significantly different from naive (constant-velocity) driving protocols
(Fig. 4.3), and thus the system’s net rotation is not a sensitive function of the driving
protocols (Fig. 4.7). However, the system’s net rotation during the optimal and naive
protocols are distinguishable for strong magnetic fields.

For very large energy barriers, especially large chemical reaction barriers (right curves
with ∆E‡chem = 8 kBT ), the system gets stuck behind the barriers and can not rotate with the
magnetic bead. The external perturbations affect transition rates representing mechanical
rotation, but they do not facilitate or impede transition between chemical states (since the
chemical reactions do not change the mechanical coordinate), so large chemical reaction
barriers make it extremely difficult for the system to follow the trap’s lead.

4.7 Tilted energy landscape

It has been recently shown that the optimal theoretical framework [17] is applicable for find-
ing optimal protocols in slow transitions between nonequilibrium steady states (NESS) [12]
that could be, in general, far from thermal equilibrium. In this generalization, elements of
the friction tensor are given by the time integral of the conjugate force autocorrelation func-
tion averaged over the NESS probability distribution. In other words, this generalization
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Figure 4.7: System net rotation per one cycle of optimal driving protocols (dashed curves)
and naive (constant-velocity) driving protocols (solid curves). Same variation of k, ∆E†mech,
and ∆E‡chem as in Fig. 4.1.

establishes a connection between excess dissipation and stationary thermal fluctuations in
the NESS, while, for near equilibrium transitions, the friction tensor is evaluated by the
equilibrium thermal fluctuations (Fig. 4.8), and subsequently, the optimal driving velocity,
and optimal protocol, has been calculated in Fig. 4.9 and Fig. 4.10, respectively.

∆Echem denotes how energetically favorable the reactant molecules are compared to the
product molecules, which are ATP and ADP molecules here. In the previous sections of
this chapter, we have assumed ∆Echem = 0 in order to enforce that the system probabil-
ity distribution is distributed according to the equilibrium Gibbs-Boltzmann distribution:
six periodic states with equal bare energy levels (when the magnetic trap is off). This as-
sumption is relaxed for this section and the system is free to have spontaneous transitions
between nonequilibrium steady states. Although the Gibbs-Boltzmann equilibrium distri-
bution does not depend on the height of energy barriers, the NESS distribution depends
on the height of the energy barriers, and thus is characterized through the specification of
energy barrier heights as well as all the state energy levels. A full cycle of the system’s
operation basically requires more than 3∆Echem units of energy to be spent on the system
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to be able to convert three low-energy ADP molecules to three high-energy ATP molecules,
and in the reverse direction, which is more energetically favorable, this energy would be
released by the system as saved chemical energy.

Figure 4.8: The generalized friction coefficient at the NESS, across a range of trap minima
θ0, for varying mechanical energy barriers heights, ∆E‡mech and chemical free energy differ-
ences, ∆Echem, left to right and top to bottom, respectively. Trap magnitude is represented
by different colors within a given sub-plot. Chemical energy barrier height ∆E‡chem is set to
2 kBT .

For a small chemical energy difference between metastable states (i.e. ∆Echem � 1),
the system responds as an equilibrium system such that maximum and minimum values
of generalized friction coefficient are close to the location of mechanical energy barriers
and metastable states, respectively. However, increasing ∆Echem pushes the system dis-
tribution away from equilibrium and can be characterized by a markedly different NESS
probability distribution, where friction coefficient peaks and troughs are not located exactly
at the mechanical energy barriers and metastable states, in contrast with the equilibrium
distribution. We show this shift in NESS distribution minima and maxima in Fig. 4.8.

The intuition here is that the generalized friction coefficient is maximal when two
metastable states are equally probable, and hence equally energetically favorable. For in-
stance, when ∆Echem = 0, states are equally energetic favorable when the trap is exactly
halfway between the two sites, so a trap located at 60o makes A − B and C − D equally
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energetically favorable. In contrast with the equilibrium description (when ∆Echem = 0),
for ∆Echem > 0 states are equally energetically favorable when the trap is inclined towards
the higher energy site (i.e. a rightward shift of the trap) rather than being exactly halfway
between the metastable states. As intuitively expected, this shift is an increasing function
of ∆Echem (Fig. 4.8). Minima are also shifted to the right. Intuitively, the friction coef-
ficient is minimized when the probability is overwhelmingly in a specific microstate. Due
to the tilt in the energy landscape, the probability of a state is maximized when the trap
minimum is to the right of the state rather than exactly at the state.

4.7.1 Optimal driving velocity

Taking into account the variation in the generalized friction coefficient shown in Fig. 4.8,
the optimal driving velocity is shown in Fig. 4.9. It varies by orders of magnitude across a
given finite-time protocol, leading to optimal protocols that are considerably different from
naive (constant-velocity) driving protocols (Fig. 4.10). In the specific range that we have
explored, in the case of very strong magnetic fields, optimal velocities vary over a single
protocol by more than three orders of magnitude.

Figure 4.9: Optimal velocity dθ0
dt (in arbitrary units) of control parameter θ0 as a function of

control parameter, for naive constant-velocity protocols (dashed lines) and optimal protocols
under the linear-response approximation (solid curves). Chemical energy barrier height
∆E‡chem = 2 kBT . Same variation of k, ∆E‡mech, and ∆Echem as in Fig. 4.8.
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In correspondence with the shift in friction coefficient curves, optimal driving velocity
minima and maxima are also shifted towards the higher energy states such that optimal
driving velocity is relatively slow when two adjacent states are equally energetically favor-
able, giving the system more time to be kicked over the mechanical energy barrier by a
thermal fluctuation. On the other hand, the protocol proceeds relatively quickly when the
trap is near the minima of the NESS distribution, where the system rapidly relaxes to the
nonequilibrium steady-state distribution.

4.7.2 Optimal driving protocol

Due to the friction tensor shifts (Fig. 4.8), the most significant difference in optimal driving
between nonequilibrium steady states (Fig. 4.10) and equilibrium states (Fig. 4.3) is that
in the latter case, naive and optimal protocols always cross each other at the mechanical
barrier’s location, θ0 = 60o, while in the former case, depending on the details of the energy
landscape, the crossing point shifts toward the higher energy state (i.e. towards 120o).

Figure 4.10: Control parameter angle θ0 as a function of time (in arbitrary units), for naive
constant-velocity protocols (black dashed lines) and optimal protocols under the linear-
response approximation (solid curves). Chemical energy barrier height ∆E‡chem = 2 kBT .
Same variation of k, ∆E‡mech, and ∆Echem as in Fig. 4.8.

In other words, having ∆Echem 6= 0 breaks the symmetry of the energy profile around
the mechanical energy barriers, leading to a non-symmetric generalized friction coefficient,
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optimal driving velocity, and optimal driving protocol around the location of mechanical
energy barriers.

4.7.3 Net rotation

In this section, we examine in the tilted energy landscapes the net rotation n of the system,
in order to understand how a given tilt may affect the system diffusion across the energy
landscape. It is also interesting to observe how/when optimal driving protocols and naive
driving protocols have different effects on system diffusion.

Figure 4.11: System net rotation per one cycle of driving protocol for optimal driving
protocols (dashed curves) and naive (constant-velocity) driving protocols (solid curves).
Chemical energy barrier height ∆E‡chem = 2 kBT . Same variation of k, ∆E‡mech, and ∆Echem
as in Fig. 4.8.

As shown in Fig. 4.11, there exists a critical trap strength, where on average the spon-
taneous rotation of the motor due to the tilting force is canceled by the external driving
forces, giving n ≈ 0.

For trap strength greater than the critical value, the system starts to operate in the
reverse, energetically unfavorable direction, producing high-energy ATP molecules from
low-energy ADP molecules. Within the examined range, net rotation varies from roughly
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−102 rotation to almost exactly +1 rotations per one rotation of magnetic trap, where
the latter represents the tightly-coupled regime where the system’s rotation is completely
alongside the trap. Intuitively, the trap drags the system alongside when the perturbation is
sufficiently strong to make the forward state more energetically favorable. In addition to the
criterion of trap strength, protocol velocity must also provide sufficient time such that the
diffusive motion of the system can relax across barriers in reaction to the time-dependent
perturbations.

As shown in Fig. 4.10, in the regime of parameters that we have explored, for weak
magnetic fields, optimal driving protocols are not significantly different from the naive
(constant-velocity) driving protocols, and thus the system’s net rotation is not a sensi-
tive function of the driving protocols (Fig. 4.11). However for strong magnetic fields, the
system’s net rotation during the optimal and naive protocols is distinguishable.

Furthermore, for large mechanical energy barriers (∼ 8 kBT , red curves in Fig. 4.11, the
system basically does not rotate during the protocol, except for really strong perturbation
(k > 4 kBT ).

Since the nonequilibrium steady state distribution is characterized by a time-independent
current of probability, system net rotation scales up and down as we increase the tilt ∆Echem

in the energy landscape. In other words, by increasing the tilt the system would naturally
diffuse to the lower energy states and external force can not drag the system towards the
higher energy states. This effect of having a tilt is much more clear when weak external
perturbation is imposed on the system rather than a strong external driving force because
a strong magnetic trap dwarfs the contribution of the tilt.
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Chapter 5

Conclusion

In line with the recent growing interest in calculating nonequilibrium properties of stochas-
tic small systems, we have used a recently developed approximate linear-response frame-
work [17, 12] to describe optimal (minimum-dissipation) driving protocols of a stochastic
model system that can represent rotary mechanochemical molecular motors, such as F1 ATP
synthase, in which mechanical motion of the motor is tightly coupled to progress in a chem-
ical reaction. According to the mentioned theoretical framework, nonequilibrium excess
power as well as optimal driving protocols in the near-equilibrium regime can be evaluated
by calculation of a generalized friction tensor (the time integral of the force correlation
function).

In our investigation of this rotary mechanochemical molecular motor, the optimal driv-
ing velocities (Fig. 4.2) can vary by several orders of magnitude across a given protocol,
leading to optimal driving protocols that deviate significantly from naive (constant-velocity)
protocols (Fig. 4.3). In particular, a stochastic system generally dissipates less extra energy
during a nonequilibrium process if the external driving proceeds rapidly up to the mechan-
ical energy barriers, then slows down around the energy barrier to provide time for thermal
fluctuation to effectively kick the system over the mechanical energy barrier.

We have shown that in a simple periodic model system, this linear-response approxi-
mation is more accurate when the system is driven out of equilibrium in slower protocols.
Although we have only considered a single degree of freedom for the system control param-
eter, the extension to multiple degrees of freedom could be investigated as well, through
multidimensional optimization methods, as has recently been done for a two-dimensional
optimal protocol driving an Ising model [14].

F1 ATP synthase can be experimentally driven in similar ways, where the time-dependent
sinusoidal potential is provided through the interaction of a magnetic field and a magnetic
bead attached to the central crankshaft of the motor, such that the rotation of the magnetic
field drives F1 alongside the magnetic bead over a sequence of mechanical energy barriers
separating metastable states. Therefore, current experimental tools are capable of testing
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these general predictions regarding the driving protocols near equilibrium or near nonequi-
librium steady-state distributions. Experimentalists can in general hold the magnetic trap
constant at different angles θ0 and measure the ensuing force, and force-force autocorrelation
function, to approximately determine the key quantity, the generalized friction coefficient.

Success in the previous experimental tests would strengthen the utility of this new the-
oretical framework and subsequent approximations and suggestions regarding the modeling
of efficient driven stochastic machines. This model system could also help identify parame-
ter regimes which yield the best experimental distinguishability between optimal and naive
driving protocols.

In this work, the characterization of optimal protocols requires considerable compu-
tational time to calculate the force-force autocorrelation function, making exploration of
higher energy barriers more difficult. Therefore, description of optimal driving protocols
in more realistic energy landscapes corresponding to the actual F1 ATP synthase is com-
putationally very hard. To achieve this, we either need to develop different methods for
describing optimal driving protocols (such as a recent methods developed for simpler sys-
tems [60]), or we can develop special methods for approximation of slow relaxing correlation
functions [72].

Furthermore, as demonstrated in Fig. 4.5, optimal protocols remain closer to equilibrium
regime than naive driving protocols, and hence are expected to be a set of more appropriate
protocol candidates for the investigation of small stochastic systems under near-equilibrium
theoretical frameworks [67].

Biological systems including F1 ATP synthase are naturally driven by thermal fluctu-
ations, rather than single-molecule experiments, so they experience stochastic rather than
deterministic driving protocols. In this thesis, we have optimized a mechanochemical sys-
tem’s performance if it can be driven according to a deterministic time schedule. It would
be interesting to optimize stochastic protocols as well and observe if any biological systems
have been evolutionarily tuned for efficient finite-time operations in the fluctuating cellular
environment.
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Appendix A

Ratio of optimal and naive excess
works

Here we summarize a derivation originally presented in [22]. In sufficiently slow driving pro-
tocols where linear-response theory is applicable, the excess work, during a nonequilibrium
driving protocol, is the time integral of the generalized friction coefficient times the square
of the control parameter velocity [17]. By calculating friction coefficients across the control
parameter space in a discrete set of N equally spaced points and considering a piecewise
constant-velocity protocol in each time-step, this integral can be approximated by a discrete
sum:

Wex =
∫

dt
(dλ

dt

)2
ζ[λ(t)] (A.1a)

≈
∑
j

∆tj
(dλ

dt

∣∣∣∣
tj

)2
ζ[λ(tj)] (A.1b)

=
∑
j

∆λ
N

dλ
dt

∣∣∣∣
tj

(dλ
dt

∣∣∣∣
tj

)2
ζj (A.1c)

= ∆λ
N

∑
j

dλ
dt

∣∣∣∣
tj

ζj . (A.1d)

For the naive (constant-velocity) protocol, the excess work is proportional to the average
friction coefficient:

W naive
ex = (∆λ)2

N∆t
∑
j

ζj = (∆λ)2

∆t ζ . (A.2)

The optimal protocol velocity is proportional to the inverse square root of the friction
coefficient, and the proportionality constant can be found by constraining the protocol to
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finish in the allotted time interval ∆t:

∆t =
∑
j

∆λ
N

dλopt

dt

∣∣∣∣
tj

(A.3a)

=
∑
j

∆λ
N

A ζ
−1/2
j

(A.3b)

= ∆λ
A

∑
j ζ

1/2
j

N
(A.3c)

= ∆λ
A

ζ1/2 . (A.3d)

Therefore, the proportionality constant is

A = ∆λ
∆t ζ

1/2 , (A.4)

and the excess work on the optimal protocol is

W opt
ex = ∆λ

N

∑
j

(Aζ−1/2
j )ζj (A.5a)

= (∆λ)2

N∆t ζ
1/2
∑
j

ζ
1/2
j (A.5b)

= (∆λ)2

∆t ζ1/22
. (A.5c)

In conclusion, the ratio of naive and optimal excess works is

W naive
ex
W opt

ex
= ζ

ζ1/22 . (A.6)
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