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Abstract 

In recent years, Optical Coherence Tomography (OCT) has become one of the dominant 

imaging technologies for ophthalmic diagnostics and vision research. The fast and high-

resolution cross-sectional data that OCT provides has brought a new possibility in the 

role of intra-operative imaging. However, existing commercial OCT systems lack the 

automated real-time functionality for providing immediate feedback of changes in 

anatomical configuration as the result of surgical actions. The predominant reason for 

lacking such functionality is because high complexity algorithms are hard to implement in 

real-time imaging due to their computationally expensive nature. 

In this thesis, we will present a Graphics Processing Unit (GPU) accelerated retinal layer 

segmentation for real-time intra-operative imaging applications. Modern GPUs has 

emerged as a strong tool for mass computation in scientific researches. The 

computational power of the GPU outpaces Central Processing Unit (CPU) significantly 

when the processing task is parallelizable. Image segmentation is a computationally 

expensive algorithm and traditionally implemented in sequential instructions. An example 

of a parallelizable segmentation algorithm is Push-Relabel (PR) Graph-Cut(GC), which 

can be implemented using GPU. The GPU Retinal Segmentation (GRS) presented in 

this thesis is built upon such an algorithm. To ensure the run time of the GRS meets the 

real-time requirement for its application, multiple GPUs are used to accelerate the 

segmentation processing further in parallel. As a result of using GRS, we were able to 

achieve the visualization of the retinal thickness measurement and the enhancement of 

retinal vasculature networks in real-time. 
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Chapter 1.  
 
Introduction 

The global aging of the human population in recent years has increased the prevalence 

of age-related diseases to the modern society, with vision loss being one of them. 

According to CNIB online report, one in 11 Canadians aged 65 or older are living with 

vision loss [1]. In preventing vision loss during clinical ophthalmic treatment, surgical 

procedures may be required. Ophthalmic surgical procedures such as peeling Epi-

Retinal Membrane (ERM) rely on staining the ERM and Inner Limiting Membrane (ILM) 

with the use of an intra-operative microscope. However, the contrast generated by the 

dye stain is low, and the residual dye could cause post-operative complications. 

Moreover, the micro-anatomical changes to the retina caused by surgical procedure 

during the macular repair could potentially negatively affect the surgical outcome [2]. 

Thus, using an alternative imaging modality that capable of providing high-resolution 

images seamlessly could provide significant assistance to evaluating anatomical 

changes during surgery and greatly increase the success rate 

In recent years, Fourier Domain Optical Coherence Tomography (FD-OCT) has 

emerged as a crucial diagnostic tool for clinical ophthalmic imaging. The structural 

information provided by high-resolution cross-sectional images is indispensable for 

detecting the presence of macular edema and retinal fluid, which are characteristics of 

dominant diseases leading to blindness such as Age-related Macular Degeneration 

(AMD) and Diabetic Retinopathy (DR) [3].  According to the JP Ehlers [4], integrating 

FD-OCT to existing surgical procedures would potentially have immediate feedback on 

completion of surgical objectives or new understanding of the anatomic configuration of 

the tissues. Namely, the real-time visualization of the microanatomic changes at the ILM 

layer during surgeries such as ERM peel. However, modern commercial retinal OCT 

lacks the support of automated retinal layer segmentation [5]. The existing methods for 
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retinal layer segmentation are often conducted in post-processing due to the high 

complexity of algorithms involved during the process. In this thesis, we investigate the 

performance of the retinal segmentation of FD-OCT data using a parallel processing 

approach by Graphics Processing Units (GPU), as well as the possibility for quantitative 

analysis of intra-operative OCT. 

1.1. Optical Coherence Tomography 

Optical Coherence Tomography (OCT) is a non-invasive imaging modality first 

introduced in 1991 by Huang et al [6]. OCT is often described as an optical analogue to 

ultrasound imaging due to their similarities in imaging principles. Both of them are non-

invasive imaging modalities that use analogous terminology (A-scans, B-scans). The 

difference is that instead of sound, OCT is performed by measuring low coherence light. 

The basics of OCT will be covered in the following sections. 

OCT uses the principle of low coherence interferometry to generate the structural 

information of the sample being imaged. The core configuration of an OCT system is 

based on a Michelson interferometer [6], which uses fibre couplers as optical 

waveguides. Briefly, in a simple 2 x 2 setup, light from a low coherence laser source is 

divided by the fibre coupler into two beam paths, with one traveling through reference 

arm and the other through the sample arm. The light scattered back from both pathways 

will combine and produce interferometric fringes that correspond to the optical path 

length mismatch between the two paths, which represents the signal of the sample 

tissue. There are two types of OCT: Time Domain OCT (TD-OCT) and Fourier Domain 

OCT (FD-OCT). Figure 1-1 demonstrates the setup for each type of OCT. 
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Figure 1-1 Basic topologies of: (A) TD-OCT, (B) SS-OCT, (C) SD-OCT 
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The first type of OCT developed was TD-OCT. The axial information is acquired by 

mechanically moving the reference arm and accumulating a longitudinal scan in time, 

corresponding to the depth direction of the sample. The data throughput of TD-OCT was 

low due to the moving mechanism in the reference arm. Later in 2003, the inception of 

FD-OCT revolutionized the ophthalmic imaging by providing high data throughput in real-

time with high-resolution volumetric view of the retina for clinicians to identify the 

structural hallmarks of ophthalmic pathologies [7]. There are two sub-types for FD-OCT: 

Spectral Domain OCT (SD-OCT) and Swept Source OCT (SS-OCT), as presented in 

Figure 1-1 (B) and (C).  

SD-OCT uses a broadband light source that is split into the reference arm and sample 

arm through fibre coupler, as with TD-OCT. The main difference is that the reference 

arm is kept stationary, and that the detector is replaced with a spectrometer, acquiring 

the interferogram as a function of wavelength. Then, performing a Fourier-Transform (FT) 

on the interferogram obtained by the spectrometer will generate a spatial representation 

of the sample tissue. Since the reference arm is stable, light returning from all depths in 

the sample are interrogated simultaneously, resulting in a higher overall sensitivity. This 

permits a significant increase in data throughput, and rapid A-scan rates relative to TD-

OCT. However, the dispersive elements in the spectrometer detector do not distribute 

the light evenly spaced frequency. Therefore, the signal has to be resampled before 

processing, which could result in losses in signal quality. This is a computationally 

intensive procedure that has been demonstrated to be efficiently performed on GPU [8]. 

SS-OCT, which uses a narrowband light source that sweeps across a broadband 

spectrum. The wavelength of the narrowband light source is encoded as a function of 

time, and the interferometric signal is detected by a single pixel photodiode instead of a 

spectrometer. The result of the system remains the same as in a SD-OCT system. 

Performing the FT on the acquired spectrum will generate the corresponding depth 

information of the sample in the axial direction at a single location of the retina.  

Irrespective of TD or FD-OCT, the acquisition of an A-scan represents the depth 

information at a single point on the sample. A volumetric image is commoly acquired by 
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scanning the laser beam across the sample in a raster pattern as presented in Figure 1-

2. 

 

Figure 1-2 Raster scanning pattern 

The raster scanning pattern is performed repeatedly until an entire volume of targeted 

region is acquired, then reset back to the initial location and the cycle repeats. A series 

of laterally adjacent A-scans along the forward scanning direction are combined into a 

cross-sectional view of the sample called a B-scan. Similarly, combining a sequence of 

laterally spaced B-scans yields a reconstruction of the sample volume. And finally, the 

en-face view of the retina is a 2D projection by summing up all intensity values along the 

axial directions. Figure 1-3 illustrates the volume reconstruction of the retina using OCT.

 

Figure 1-3 Reconstruction process of OCT image 
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1.2. Research Motivations  

With the introduction of OCT in clinical ophthalmic imaging and the quantitative analysis 

of the retinal volume, clinicians have been able to detect the two major blinding diseases, 

namely AMD and DR, in the early stages and also track pathological changes as well as 

response to treatment. The progression of degenerative retinal diseases is monitored by 

measuring the thickness changes between retinal layers. Thus, extraction of the retinal 

layers through image segmentation is one of the first steps to the analysis of OCT data. 

A cross-sectional view of the OCT macular B-scan with marked layers is shown in Figure 

1-4 

 

Figure 1-4 Target retinal layers of a representative cross-sectional OCT image 
centered at the fovea 

In addition to the thickness measurement, the retinal image segmentation result can also 

be used to enhance the view of retinal vasculature network. Visualization of the retinal 

blood vessels is achieved by processing the flow contrast images using Speckle 

Variance OCT (svOCT) techniques [9]. The detail of svOCT is beyond the scope of this 

thesis. The basic idea for generating flow contrast images is by calculating the speckle 

variance from a set of B-scans acquired at the same location. This speckle variance 
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computation emphasizes particles in the retina that are in motion by generating contrast 

to locations where the speckle patterns change in the image. Thus, the blood vessels 

are pronounced stronger from the structural tissues in the retina. 

Currently, the quantitative analysis is conducted in post-processing. Due to the high 

computational complexity and the large amount of data to process, the result of the 

retinal image segmentation cannot be displayed intra-operatively in the traditional 

method with existing technology. A method that permits quantitative real-time 

observation of the dynamic changes that occur in the retina during surgery will be helpful 

to reduce the risk of the real-time decision-making.  

For intra-operative imaging, the reliability of the segmentation is one of the first things to 

consider since the result could have direct impact on the decision-making during surgery. 

In the past decade, the maximum-flow/minimum-cut (also known as Graph-Cut) 

segmentation method introduced by Boykov has become increasingly useful in the realm 

of image segmentation due to its robustness [10]. In addition to concerns in the quality of 

the segmentation, intra-operative image segmentation would also need to ‘real-time’ fast. 

Thus, computational complexity has to be carefully considered. The Graph-Cut (GC) has 

two subset algorithms: Augmenting-Path (AR) and Push-Relabeling (PR). Although PR 

does not have the best time complexity, in real world practice however, it has been 

proven to be the fastest running GC algorithms [11]. Moreover, PR is inherently 

parallelizable since the algorithm only considers local dependency during the push 

operation. If the parallelization of the PR is well applied, the overall processing time of 

segmentation can be reduced accordingly. With the advancement in microprocessors 

technology in recent years, the Graphics Processing Unit (GPU) has emerged as a 

powerful tool for massively parallel processing. The NVIDIA GPU Software Development 

Kit (SDK) has a built-in image library for PR GC segmentation [12].  

The goal of this thesis is to verify the possibility of conducting retinal image 

segmentation in real-time for 200kHz laser source system by leveraging the 

computational power of GPU, and the qualitative result of its applications in measuring 

retinal thickness and enhancing the visualization of vasculature network. In this thesis, 

Chapter 2 provides the basics of parallel programming environment. Chapter 3 
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introduces the PR GC algorithm and its parallel adaptation. Chapter 4 describes the 

processing steps for achieving real-time segmentation. Chapter 5 will cover both 

quantitative benchmarking of the GPU implementation of real-time retinal segmentation 

and the qualitative analysis of the results of the thickness measurement and 

visualization of retinal vasculature network for the macular region. Lastly, chapter 6 will 

cover the future work and upcoming changes in parallel programming environment. 
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Chapter 2.  
 
Heterogeneous computing  

 

Medical image processing procedures are often very computationally demanding due to 

the large scale of medical datasets to process. Traditionally, Central Processing Units 

(CPUs) are the dominant choice for the scientific researchers. However, with the 

increase in the size of medical datasets, the serial computational nature of the CPU can 

no longer satisfy the ever increasing demand for real-time visualization. In recent years, 

the advancement of Graphics Processor Units (GPUs) architecture has enabled its 

capability for massively parallel computation in a wide range of medical imaging 

applications, including OCT imaging and retinal segmentation. Since medical imaging 

applications involve both algorithmic and parallelizable image processing, a 

heterogeneous solution that combines both CPU and GPU is required. This chapter will 

cover the fundamentals of both CPUs and GPUs, as well as the computational platform 

that employs heterogeneous computations. 

2.1. Central Processing Unit basics 

A CPU is essentially the brain of a computer. It is designed for wide range general 

purpose applications, ranging from the simplest logical operations to sophisticated 

algorithmic calculations. The principal components of CPU include the Arithmetic Logic 

Unit (ALU) that performs arithmetic and logic operations, the processor registers that 

supply operands to the ALU and store the results of ALU operations, and the control unit 

that fetches data and instructions from main memory to the processor registers [13]. 

Modern design of a CPU also includes system components on a single integrated circuit. 

The specific components vary depending on what purpose the CPU is designed for, but 
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generally speaking these system components include: a shared cache memory between 

cores, memory controller,  peripheral interfaces, and main processing cores [14]. Figure 

2-1 displays the general layout of a die map of the 6th generation intel Skylake™ 

processor.  

 

Figure 2-1 Intel "Skylake" processor die layout 

CPU caches are special types of memories that speed up the instruction loading process. 

Typically there are 3 layers of caches in current CPU lineups [14]. L1 cache is core 

dedicated and can pre-store the information that CPU is most likely to use before the 

next instruction. It eliminates the data accessing time from CPU register to system 

memory (Dynamic Random Access Memory, DRAM). Every instruction and its data 

need to be available at the time they are requested so that the threads can be operated 

at full speed. If the information for the next instruction is not available in L1 at the time of 

request, the CPU will then look for the correct information from each level of cache, 

which results in many wasted cycles and a stalling in performance. Thus, CPUs are 

required to equip large local caches to keep themselves from stalling [15]. 
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A CPU core has a much higher clock rate compared to the GPU counterpart with heavy 

optimization towards serial instructions. This was due to the fact that traditionally 

computer algorithms were implemented as a serial stream of instructions. Nowadays a 

mainstream CPU can achieve a clock rate of more than 4.0 GHz per core. The 

processing power of a processor is measured in terms of Floating-point Operations Per 

Seconds (FLOPS). FLOPS can be calculated using the equation: 

𝐹𝐿𝑂𝑃𝑆 = 𝑠𝑜𝑐𝑘𝑒𝑡𝑠 ×  
𝑐𝑜𝑟𝑒𝑠

𝑠𝑜𝑐𝑘𝑒𝑡𝑠
 × 𝑐𝑙𝑜𝑐𝑘 ×  

𝐹𝐿𝑂𝑃𝑠

𝑐𝑦𝑐𝑙𝑒
 Eq. 2.1 

Specifically for a state-of-the-art Intel Skylake i7 processor, the performance per clock is 

32 FLOPS for single precision operations [14], which roughly translates to 500 GFLOPS 

maximum theoretical performance. According to the Linpack™ benchmarking tool, the 

processing power for arithmetic operations is roughly 240 GigaFLOPS [16]. Please note 

that data throughput is not measured in FLOPS. FLOPS measurement merely offers a 

measurement for maximum processing capability when the computational environment 

is ideal. A direct comparison between GPUs and CPUs will be presented in the next 

section. 

2.2. Graphics Processing Unit Basics 

A Graphics Processing Unit (GPU) is a specialized device that manipulates memory for 

an image buffer to accelerate the rendering process of the image output, traditionally 

used in video games where the application heavily focuses on rendering geometric 

objects for the gameplay. The geometric objects are displayed on the monitor as 

polygons that consist of pixels output by GPU. Each pixel is essentially a single entry of 

the output data, and the GPU uses a set of processors to compute such pixel output in 

parallel. The computational nature of parallelism made GPU suitable for large-scale data 

computation. As a result, nowadays the GPUs are designed to be a general purpose 

computational device to accelerate computational workloads in areas such as financial 

modeling, cutting-edge scientific research or even natural resource exploration [17]. 
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Just like CPUs, GPUs also have ALU, registers and memory control units. However, 

these three components are built within a set of processors called Streaming 

Multiprocessors (SM) or Streaming Multiprocessors eXtreme (SMX) for recent 

generations. The major component of a GPU consists of SMs, global memory and other 

system agents. The global memory (Video-RAM) is a memory pool dedicated for GPU 

and separated from CPU space. This is because data access through the Peripheral 

Component Interconnect Express (PCIE) creates huge latency in running time. Hence it 

is computationally economical to have local memories for fast accessing, then transfer 

the result back to DRAM through PCIE once the computations are complete. In addition 

to the L1 cache within each individual SM, for recent generations of GPUs, there is also 

a L2 cache memory block shared by all SMs for faster memory access. Small L2 cache 

memories are provided to help control the bandwidth requirements of applications so 

that multiple threads that access the same memory data do not need to all go to the 

DRAM. Figure 2-2 displays the chip layout of a Kepler GPU GK110, of which the GPU 

used for this thesis. 

 

Figure 2-2 Die layout for NVIDIA Kepler™ architecture  

 

Each SM is capable of supporting thousands of co-resident concurrent hardware threads, 

up to 2048 on modern architectures. All thread creation, scheduling and synchronization 

are performed entirely on hardware by the SM. To efficiently manage such large number 

of threads, the SM employs a unique architecture called Single Instruction Multiple 

Thread (SIMT), meaning that all stream processors (GPU cores) execute the same 

instructions simultaneously but with different data. SM’s multithreaded instruction unit is 
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divided into warps with 32 threads for each warp [18]. A warp is the smallest entity for 

arithmetic operations. All instructions are issued in order and there is no branch 

prediction and no speculative execution.  

2.3. Differences between CPU and GPU 

As compared to their CPU counterparts, GPU cores are designed such that more 

transistors are devoted to data processing rather than data caching and flowing control. 

Since each thread executes unified operations, the need for a sophisticated flow control 

is negligible. Threads on a CPU are generally heavy-weight entities. The operating 

system must constantly be swapping threads on and off from the CPU execution 

channel to provide multithreading capability. In comparison, threads on GPUs are much 

more light-weight. Since separate registers are allocated to all active threads, no 

swapping of registers is needed when switching among GPU threads. Resources stay 

allocated to each thread until the thread completes its execution. However, allowing 

massively concurrent data throughput increases the latency for memory transfer 

significantly, as high data throughput and short latency are fundamentally in conflict [19]. 

Particularly, PCIE has a high data bandwidth up to 16GigaBytes per second (GB/s) for 

PCIE 3.0, but with latency up to milliseconds [20]. In comparison, the data accessing 

latency for the latest CPU DRAM DDR4 is at the level of sub-nanoseconds [21]. In short, 

CPU cores are designed to minimize latency for one or two threads at a time whereas 

the GPU cores are designed to handle large number of concurrent lightweight threads 

and sacrifice latency in order to maximize the data throughput [22].  

With the heavy optimization towards massively concurrent throughput, the maximum 

computational performance of modern high-end GPUs can reach over 12 Tera Floating-

point Operations Per Second (TFLOPS) [23]. For the NVIDIA Quadro™ K6000 GPU 

used in this research, the maximum computational performance is 5.2 TFLOPS, which is 

faster than the maximum performance of a high-end CPU by magnitudes [23]. In medical 

imaging where the vast amount of data throughput is parallelizable, the GPU is a clear 

winner in terms of processing powers. 
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2.4. Needs for Heterogeneous Computing 

The GPUs outpace CPUs in terms of raw processing power thanks to the light-weight 

threads and large data throughput. However, GPUs operates poorly when it comes to 

algorithmic operations due to the very same reasons of light-weight threads and high 

latency induced by its large data throughput. As medical imaging programs do not solely 

process images, but also run complex multi-threaded tasks that controls the imaging 

system, a heterogeneous combination of CPU and GPU is required for optimal 

processing rates.  

 

Figure 2-3 OCTViewer thread distribution 

Particularly for Optical Coherence Tomography applications, the imaging software is 

responsible for at least three independent complex tasks: 1) laser scanning control; 2) 

camera synchronization and data acquisition; 3) signal and image processing. The 

thread number for the first two tasks is small but heavy-weight algorithms that require 

low operation latency, which cannot be provided by GPUs. Thus, for optimal High-

Performance Computing (HPC), a heterogeneous solution is required for executing the 

sequential parts on the CPU and numerically intensive parts on the GPU. 
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2.5. CUDA platform  

In November 2006, NVIDIA introduced Compute Unified Device Architecture (CUDA), a 

general purpose scalable parallel computing platform for GPUs. It allows the developer 

to bypass the low-level Application Programming Interfaces (API) and simply code in 

common computer languages for heterogeneous applications [22]. For the OCT imaging 

software, the CUDA language we used is CUDA C. The CUDA computing system 

consists of a host, traditionally a CPU, and one or more devices that are typically GPUs. 

Each CUDA source file can have a mixture of both host and devices code. Any 

traditional C/C++ code that runs on CPU will become host code by definition. Once 

device functions and data declarations are added to a source file, it is no longer 

acceptable to a traditional C compiler [24]. Thus, the mixed source file needs to be 

compiled by a compiler that recognizes these additional functions and declarations, 

which is NVIDIA C Compiler. (NVCC) Figure 2-4 shows the processing flow for CUDA 

program compilations. 
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Figure 2-4 Code compilation flow [18] 

 

The term “scalable” indicates the ability to scale the performance in parallelism through 

leveraging an increasing number of processor cores throughout the technology 

development. The platform enables data parallelism through providing hierarchies of 

thread groups and shared memories. This hardware architecture guides the programmer 
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to partition the big challenging problem in sub-problems that can be solved 

independently in parallel by blocks of threads, and each sub-problem into finer pieces 

that can be solved cooperatively and simultaneously by all threads within the block. All 

blocks of threads will be scheduled on available SMs as shown in Figure 2-5. 

 

Figure 2-5 An example of a multithreaded program partitioned into blocks of 
threads that execute independently on each GPU [22] 

CUDA employs a Single-Program-Multiple-Data (SPMD) programming model such that 

sequential instructions from one host thread instantiate many device threads in parallel. 

When executing a CUDA program, the kernel functions are launched by large number of 

threads on a device. All threads that are generated by a kernel launch are collectively 

called a grid. A grid consists of an array of thread blocks, and each thread block can 

contain up to 2048 threads for modern GPUs. Since CUDA uses sequential instructions, 

the program will start from the host and continues on the host until another kernel is 
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launched or the program is terminated. When all threads of a kernel complete their 

execution and the corresponding grid termination, the execution will then return back to 

the host and repeat. Figure 2-6 shows an example for a CUDA program execution. 

 

Figure 2-6 CUDA program execution flow [22] 
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For demonstration purpose, the CPU and GPU execution do not overlap in the example 

shown above. In real world applications, those two can overlap to reduce the overhead 

and improve the performance. Figure 2-7 is a sample code for a kernel definition and 

launch in CUDA C. 

 

Figure 2-7 Sample code for kernel launch 

The host and devices have separated memory due to the fact that devices have their 

own dedicated VRAM (global memory). To execute a kernel, the memory for the data 

needs to be allocated to the device memory space and the data itself needs to be 

transferred from the host memory space to the allocated device memory. Similarly, after 

device execution, the result needs to be transferred back from the device memory to the 

host memory and stored to free up the device memory as they are no longer needed. 
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However, please note that the data transfer latency through PCIE is huge and needs to 

be minimized as much as possible. Thus memory transfer between the host and devices 

shall be restricted to only large grouped raw data input or for displaying results. For OCT 

imaging software, after the retinal image is finished processing from raw spectral 

interferometric data, the result will be sent back to the host for OpenGL™ display. And 

then the cycle will repeat for another segment of spectral data input. 

2.6. Summary 

In this chapter, we covered the basics of CPUs and GPUs and compared them for their 

advantages and disadvantages of usage. The comparison laid down the narratives for 

the demand of heterogeneous computing for optimal HPC. A programming platform 

called CUDA is used and described to further explain the structure of heterogeneous 

computing. The core algorithms for retinal GC segmentation will be discussed in the next 

chapter. 
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Chapter 3.  
 
Segmentation theory 

In the previous chapter, the basics of heterogeneous computing for acceleration of 

retinal segmentation was presented. In this chapter, the details of Push-Relabel Graph-

Cut algorithm (PR GC) and Connected Component and Labeling (CCL) that were used 

in the implementation of this thesis will be discussed. 

3.1. Graph-cut background 

In computer vision, segmentation is the process of partitioning digital images into 

multiple regions (sets of pixels), according to some homogeneity criterion. The problem 

of image segmentation is a well-studied subject. While there are a variety of approaches 

to solving this problem, minimum cut / maximum flow algorithms have emerged as the 

preferred tool over others due to their relative efficiency and accuracy.  The general 

energy based function can be summarized as follows: 

𝐸(𝐿) =  ∑ 𝐷𝑝(𝐿𝑝) + 𝑝∈𝑃 ∑ 𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞) (𝑝,𝑞)∈𝑁 ,  Eq.3-1 

where 𝐿 = {𝐿𝑝|𝑝 ∈ 𝑃} is a labeling image of 𝑃; 𝐷𝑝(∙) is a data penalty functions which 

indicates the individual label-preference of each pixel based on its observed pixel 

intensities;  𝑉𝑝,𝑞  is an interaction potential which penalizes the discontinuity between 

neighbouring pixels; 𝑁 is a set of pairs of neighboring pixels [10]. In the context of flow 

networks in image segmentation, those pairs of neighbouring pixels are defined as being 

connected by edges 𝐸 with each pixel 𝑣, 𝑤 ∈ 𝑉 × 𝑉 where V is the vertices of the graph. 

The penalties in the energy function are referred as ‘cut cost’ and a cost is  assigned to 
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all edges in the graph. Image segmentation is achieved by cutting the flow network into 

partitions.  

In practical applications, we want to extract the target region of a given image (defined 

as foreground) and treat the rest of the image as noise (defined as background). This 

will bring down the labeled image into just a binary image. Thus, there are two special 

terminal vertices added to the network: source 𝑠  and sink  𝑡 . The flow network 

constructed from the given image is then referred as a graph 𝐺. The cost of the cut 𝐶 is 

the total cost of all edges separating the two groups. The cost of an edge is also called a 

capacity in terms of flow networks. The theorem of Ford and Fulkerson stats that a 

maximum flow from 𝑠 to 𝑡 saturates a set of edges in the graph dividing the vertices into 

two disjoint parts {𝑆, 𝑇} corresponding to a minimum cut. Thus finding the maximum flow 

problem is equivalent to finding a minimum cut. The process of image segmentation that 

uses algorithms based on maximum-flow/minimum-cut is often referred as graph cuts. 

Generally speaking, the algorithm for graph cut can be categorized into two groups: 

Goldberg-Tarjan “push-relabel” and Ford-Fulkerson “augmenting paths” [10]. In this 

section, we will focus on the push-relabel algorithm as this approach exhibits good data 

parallelism and maps well to the CUDA programming model.  

3.2. Push-relabel Algorithm for Graph Cuts 

In the general maximum flow problem, a directed weighted graph 𝐺 = (𝑉, 𝐸) consists of 

a set of vertices 𝑉 and set of directed edges 𝐸 that connects these vertices. The size of 

V is total number of pixels 𝑛 and size of set 𝐸 is total directed number of edges between 

each vertex  𝑚 . A source 𝑠  and a sink 𝑡  are additional terminal vertices for data 

partitioning. Each edge (𝑣, 𝑤) ∈ 𝐸 has a capacity 𝑐(𝑣, 𝑤). Directed edges indicate that 

the capacity of flowing is directional, meaning 𝑐(𝑣, 𝑤) =  −𝑐(𝑤, 𝑣). For all edges (𝑣, 𝑤) ∉

 𝐸 , we define 𝑐(𝑣, 𝑤) = 0. The push-relabel algorithm introduces extra components to 

the equation: pre-flow, excess flow, residual graph and height labeling.  
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1. Pre-flow 𝒇𝒑 

In Ford-Fulkerson’s augment path algorithm, a flow 𝑓 on the graph 𝐺 is a real valued 

function that satisfies the following constraints: 

a) 𝑓(𝑣, 𝑤) ≤ 𝑐(𝑣, 𝑤) given (𝑣, 𝑤) ∈ 𝐸 
b) 𝑓(𝑣, 𝑤) =  − 𝑓(𝑤, 𝑣) 

c) ∑ 𝑓𝑖𝑛(𝑣) = ∑ 𝑓𝑜𝑢𝑡(𝑣) given 𝑣 ∈ 𝑉 − {𝑠, 𝑡} and all edges (𝑣, 𝑤) ∈ 𝐸 
Eq.3-2 

The first constraint states that an edge on the graph can only carry flow less than or 

equal to its maximum edge capacity. The second constraint states that the flow is also 

directional. The last constraint states the flow conservation for all edges on the graph 

except the edges that directly connecting terminal vertices 𝑠 and 𝑡.  

The definition of a pre-flow 𝑓𝑝 is same as the flow definition in Ford-Fulkerson’s augment 

path algorithm except that the conservation constraints have been relaxed so that the 

amount of flow into a vertex is allowed to exceed the amount of flow out of the vertex. 

Hence, the pre-flow satisfies:  

a) 𝑓𝑝(𝑣, 𝑤) ≤ 𝑐(𝑣, 𝑤) given (𝑣, 𝑤) ∈ 𝐸 

b) 𝑓𝑝(𝑣, 𝑤) =  − 𝑓𝑝(𝑤, 𝑣) 

c) ∑ 𝑓𝑝,𝑖𝑛(𝑣) ≥ ∑ 𝑓𝑝,𝑜𝑢𝑡(𝑣) given 𝑣 ∈ 𝑉 − {𝑠, 𝑡} and all edges (𝑣, 𝑤) ∈ 𝐸 
Eq.3-3 

The relaxation of flow conservations introduces the second component, excess flow. 

 

2. Excess flow 𝒇𝒆 

For a vertex 𝑣 ≠ {𝑠, 𝑡}, the excess flow 𝑓𝑒(𝑣) is defined as the net flow into vertex 𝑣: 

𝑓𝑒(𝑣) = ∑ 𝑓𝑝,𝑖𝑛(𝑣) − ∑ 𝑓𝑝,𝑜𝑢𝑡(𝑣) Eq.3-4 

The vertex 𝑣 ∈ 𝑉 is active (overflowing) if the excess flow 𝑓𝑒(𝑣) > 0.  Note that a pre-flow 

becomes a flow if and only if the flow conservation is realized, in other words, the excess 

of every non-terminal vertex is zero. Thus transforming a pre-flow to flow that saturates 

the network involves reducing and eventually eliminating all excess flows.  
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3. Residual graph 𝑮𝒇 

A residual capacity of an edge is defined as: 

𝑐𝑓(𝑣, 𝑤) = 𝑐(𝑣, 𝑤) −  𝑓𝑝(𝑣, 𝑤)  Eq.3-5 

, where 𝑐 is the edge capacity. The graph consists of residual edges is called a residual 

graph 𝐺𝑓. For an edge (𝑣, 𝑤) ∈ 𝐸 that carries flow and capacity, the residual graph 𝐺𝑓 

includes a forward edge with the residual capacity 𝑐𝑓 and a reverse edge with residual 

capacity of pre-flow 𝑓𝑝. Edges with zero residual capacities are omitted from the residual 

graph 𝐺𝑓.   

 

4. Height function 𝒉(𝒗) 

The height function is used to ensure the regulation of push operation and termination of 

the algorithm. Imagine that each vertex in the flow network is a water tank, with unlimited 

water supply coming from source 𝑠. The goal is to push water flowing into sink 𝑡 as much 

as possible. Since the water flow can only travel downwards, the height of each water 

tank needs to be labeled in order to regulate the push operation. The excess flow at 

vertex 𝑣 ∈ 𝑉 can ‘push’ if and only if the following three constraints are met: 

a) ℎ(𝑠) = 𝑛, where 𝑛 is the number of vertices in the graph 𝐺𝑓 

b) ℎ(𝑡) = 0 
c) ℎ(𝑣) ≤ ℎ(𝑤) + 1 for (𝑣, 𝑤) ∈ 𝐸𝑓 where 𝐸𝑓 is the collection of edges 

in residual graph 𝐺𝑓 

Eq.3-6 

The third constraint is stating that the pre-flow can be pushed downhill but cannot be 

pushed too fast. Since the source is starting at height 𝑛, 𝑡 is at height 0, and each edge 

of the residual graph only goes downhill by at most 1, there cannot be any s-t path with 

more than n-1 edges. Thus when there is a feasible pre-flow with no excess flow left, 

and all the labeling constraints are hold, then the flow must be a maximum flow. 
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3.3. Operation of the algorithm 

The high-level strategy of the algorithm is to maintain the three invariants above while 

trying to zero out any remaining excesses. The operation consists of initialization, and 

then iteration between push and relabeling. The initialization starts by creating a residual 

graph  𝐺𝑓: 

 Set ℎ(𝑠) = 𝑛; 
 Set ℎ(𝑡) and all ℎ(𝑣) for 𝑣 ∈ 𝑉 − {𝑠, 𝑡} to ℎ(𝑣) = 0; 

 Set  𝑓𝑝 = 𝑐 for all edges outgoing from source 𝑠 

 Set  𝑓𝑝 = 0 for all other edges (𝑣, 𝑤) ∈ 𝐸 

The height constraints hold only during push operations. Thus the pre-flow can flow to 

vertices connecting to the source even though their height difference is more than 1. 

Then, the push operation is restricted by the height constraints: 

 Choose an outgoing edge (𝑣, 𝑤) of v in  𝐺𝑓 with ℎ(𝑣) = ℎ(𝑤) +1 

 ∆= 𝑚𝑖𝑛{ 𝑓𝑒(𝑣), 𝑐𝑓(𝑣, 𝑤)} 

 Push ∆ along the edge (𝑣, 𝑤) 

Once all outgoing edges (𝑣, 𝑤) of 𝑣 in 𝐺𝑓 are saturated, and all residual edge 𝑐𝑓 from 𝑣 

are not available for push due to the height constraint, the relabel operation is invoked to 

increase the height so that the flow can be continued. 

In summary, the algorithm in pseudo code is as follows: 

push_operation(excess_flow, residual_capacity, const height) 

{ 

 for (each vertex in V) 

  for (each w = neighbour(v)) 

   ∆= min(residual_capacity(v,w), excess_flow(v)) 

   excess_flow(v) = excess_flow(v) – ∆ 

   excess_flow(w) = excess_flow(w) + ∆ 

   residual_capacity(v,w) = residual_capacity(v,w) – ∆ 

   residual_capacity(w,v) = residual_capacity(w,v) + ∆ 

} 
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relabel(height, const excess_flow, const residual_capacity) 

{ 

 for(each vertex in V) 

  temp_height = infinite 

  for(each w = neighbour(v)) 

   if(residual_capacity>0) 

    temp_height = min(temp_height, height(w)+1) 

  height(v) = temp_height 

} 

while (vertex v != s or t) 

{ 

 choose a vertex v with maximum height h(v) 

if(vertex v is overflowing) 

 if(outgoing_edge(v,w) with h(v) = h(w)+1 exists) 

  push_operation() 

 else 

  relabel() 

} 

Here is an intuitive example of the operation of the algorithms. Assuming the vertices in 

the network are water tanks and all edges connecting them are water pipes. We want to 

find the maximum flow of water from the source tank to the sink tank. Each of these 

water tanks are arbitrarily large and will be used for accumulating water. A tank is said to 

be overflowing if it has excess flow, or water, in it. Tanks are at height from ground level. 

The water can traverse from a higher lever to a lower level. We can push new flow from 

a tank to another which is downhill from the first one. Note that there still can be a flow 

from a lower tank to a higher tank, the height level only determines the direction of a new 

flow. 
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The initial height of the source 𝑠 is set at 𝑛 and sink 𝑡 is set at 0. All other tanks have 

initial height 0, and their height increases as water flows in. There will be an infinite 

amount of flow coming into the source 𝑠, pushed towards the sink 𝑡 until the whole flow 

network is saturated. Each outgoing pipe carries flow at its maximum capacity. The flow 

will be pushed downhill gradually from an overflowing tank to another tank. If an 

overflowing tank is at the same level or below the tanks to which it can push flow, then 

the current tank will be raised in level to a height just high enough to push more flow. If, 

after all the push operations are complete and the sink  𝑡 is not reachable from any 

overflowing tank, all the excess flow will be sent back to the source 𝑠. Since the height of 

the source is n and there are only n tanks besides the source and sink, eventually all the 

tanks except the source and sink will stop overflowing. At that point, the maximum flow 

state is reached.  

 

3.4. Parallel implementation: 

3.4.1. Parallel push 

The push operation at arbitrary tile  𝑣 is dependent on edges connecting neighboring tiles 

and its excess flow and height. Thus, in parallel structure, the intra-tile dependencies 

need to be handled cautiously. For instance, a push from 𝑣 to neighbor 𝑤 will update the 

excess flow for both 𝑣 and 𝑤, as well as the residual edge capacities (𝑣, 𝑤) and (𝑤, 𝑣). 

To avoid potential read-after-write or write-after-read hazard, all the variables can be 

processed within the current neighbor direction where the pushing operation occurs: 
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push_single_direction(row_index, excess_flow, residual_capacity, const height) 

{ 

 for(each vertex from row_index to block coverage) 

  w = v+1 //right direction for instance 

  if(vertex v is overflowing) 

   ∆= min(residual_capacity(v,w), excess_flow(v)) 

   excess_flow(v) = excess_flow(v) – ∆ 

   excess_flow(w) = excess_flow(w) + ∆ 

   residual_capacity(v,w) = residual_capacity(v,w) – ∆ 

   residual_capacity(w,v) = residual_capacity(w,v) + ∆ 

} 

Thus, for single direction operation, there are no intra-tile dependencies from tiles that 

are orthogonal to the pushing direction. Therefore, the push operation can be divided 

into directional based sections. One single direction processing can be further sub-

divided into multiple groups to process in parallel. There is a potential hazard only when 

assessing the excess flow between the terminal tiles of each chunk. This problem is 

dealt by assigning one CUDA block with four warps (128 threads) where each thread 

transports flow over a chunk of 8 pixels per direction. The update of the neighbors 

outside of the assigned chunk is done after all threads are synchronized. This step 

ensures that no data hazard will occur during the operation [25]. Updates outside the 

tiles will be stored into a special border array and use a separate kernel to add the 

border array to the excess flow after each push kernel to avoid data hazard. 

3.4.2. Parallel relabel  

The parallelization of the relabel operation is simpler in comparison to push operation. 

All height variables can be updated in parallel by launching one thread per vertex. Since 

the height value stands by itself for each vertex, there will not be any racing condition 

occur during relabel operation.  
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3.5. Connected Component and Labeling 

No algorithm is perfect. Sometimes the PR GC could segment unwanted regions as 

foreground. These unwanted regions would lead to a corrupted result for retinal 

segmentation. Thus, further processing steps are required to ensure the removal of all 

unwanted segmentation artifacts. Connected Component Labeling (CCL, also known as 

Connected Component and Analysis “CCA”) is an algorithmic application of graph theory 

that detects connected elements in input data and finds a unique label for every set of 

connected elements [26]. CCL is often used as a complementary algorithm to identify 

which of those results extracted by segmentation is the region of interests. For the result 

of retinal segmentation, the extracted retinal layers are in much larger connected groups 

than those of small segmentation artifacts. CCL will then identify the two largest 

connected groups as retinal layers (ILM and BM) and remove all other unwanted 

artifacts.  

The core of the CCL is a two-pass method where the first pass assigns temporary labels 

and stores equivalences between all connected neighbouring elements, and the second 

pass analyzes the equivalences and replaces each temporary label by the smallest label 

of its equivalent class. One additional step is added for extracting the two largest 

connected groups to deliver the final segmentation result. The flow of the algorithm is as 

follows: 

1. First Pass: 
a) Iterate through each element of the data in a raster scanning pattern 
b) If there are no labeled neighbours around the current element, uniquely label 

the element and continue. Only North-East, North, North-West and West are 
checked and needed for label look-ups. 

c) If there is a labeled neighbour, assign the current element with the smallest 
label that was found in the neighbour elements. 

d) Store the equivalence between neighbour labels in the labeling stack. 
 

2. Second Pass 
a) Iterate through each element of data in a raster scanning pattern 
b) Relabel the element with smallest equivalent label from the stack 
c) Add the current element to the element counts for current label 
 

3. Region of interest extraction 
a) Find the two connected groups with largest element counts, then set all other 

groups to background (set the pixel value to zero in terms of gray scale images) 



 

30 

The term “neighbour” is defined as the non-background elements around the current  

tile(8-way connectivity). The foreground is the extracted objects from the retinal 

segmentation. Figures 3-1 to 3-4 provide a graphical example of the labeling process.  

 

Figure 3-1 Representative segmented binary image by PR GC 

The CCL will take the segmented binary image as input, after running the first pass, the 

following labels are generated as shown in Figure 3-2. 
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Figure 3-2 Generated labels after the first pass 

Then, in the second pass, each element label will be rearranged based on the lowest 

neighbouring label value, and the number of connected element will then be stored in 

the stack for each equivalent group. 
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Figure 3-3 Labeling result after second pass 

In the final step, the CCL algorithm will extract the two largest connected groups and 

zero out all other groups. The result is shown in Figure 3-4 
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Figure 3-4 Final result of CCL 

Hence, after GC segmentation, the CCL will remove all unwanted artifacts and deliver 

the correct result for ILM and BM layer. However, for the current revision, the CCL is 

implemented in traditional serial instruction processing with a CPU. This implementation 

slows down the segmentation pipeline by a considerable amount. This is because the 

CCL is inherently a sequential instruction algorithm, which is not trivial to program in 

parallel. In the result and discussion of Chapter 5 there will be a detailed benchmark 

analysis on the effect of CCL. 
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3.6. Summary 

In this chapter, we discussed the details of Graph-Cut segmentation. The GC 

segmentation is based on the maximum-flow/min-cut problem introduced by Boykov et al 

[10]. There are two variants of GC algorithm, Ford Fulkerson’s Augmented Path and 

Goldberg-Tarjan’s Push-Relabel. The PR algorithm configures the flow network with pre-

flow mechanism. The cut of the graph after complete iterations of push and relabeling 

operations represent the segmented foreground, which may contain unwanted artifacts. 

An additional Connected Component and Labeling step is applied to refine the final 

result. In the next chapter, we will apply this PR GC algorithm in our retinal imaging 

program. 
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Chapter 4.  
 
Retinal Segmentation Pipeline 

This chapter describes the implementation of GPU-accelerated Graph-Cut (GC) retinal 

segmentation. The result of the retinal segmentation can be used for calculating the 

retinal thickness between ILM and Bruch’s Membrane (BM), as well as enhancing the 

view of vasculature networks. The SV visualization described in the following chapters 

was based on the work published by Xu et al [27].  

4.1. Asynchronous parallel computing  

The definition for real-time applications states that the program must guarantee a 

response within a specific time constraint to meet the process deadline. The Swept 

Source speckle variance OCT (SS-svOCT) acquisition system in the Eye Care Center 

(ECC) of Vancouver General Hospital (VGH) is equipped with a laser source with line 

rate of 200kHz, meaning the acquisition time for a volume at the size of 1024 x 300 x 

900 frames takes around 1.575 seconds. A frame is defined by one complete scan over 

the transverse plane of the retina. The required timeline is very challenging to meet with 

single GPU solution. Thus, for real-time image segmentation, a multi-GPU solution is 

needed to meet the processing deadline. Data input will then be divided into sub-

volumes and distributed to each individual GPU. 

In the CUDA processing pipeline, data are transferred and processed in small segments 

rather than an entire volume. This way the program will start to load the next segment of 

data while processing the current ones. After current segment finished processing, the 

next segment will be transferred to device memory space and ready to be processed. 

Essentially this is a data flow control mechanism that reduces the processing lag when 
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new data comes in, making the imaging system more responsive to the data input. The 

segments of data are referred as “batches” in the rest of this article. Details of how batch 

processing works are documented by Jian et al [8]. With multiple GPUs installed in the 

system, each individual GPU will operate in the same batch structure. The flow of the 

processing tasks will be distributed as described in Figure 4-1.  

 

Figure 4-1 processing work flow for segmentation pipeline for dual GPU 
computation system 

In the scenario where only one CUDA device is installed for data processing, if the data 

volume is partitioned into 30 batches, the CUDA device will read the data memory batch-
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by-batch from the host memory space. In this case, the host is the CPU, and the device 

is the GPU. If the processing time of a batch is longer than the acquisition time, then the 

system will lag. This can be resolved by using a multi-GPU setup, in which each CUDA 

device will read the data from host memory with memory offsets. When there were two 

CUDA devices processing the data volume, device 0 will process every second batch (ie, 

the even batches) while device 1 will process the other ones (odd batches). Each CUDA 

device will treat the sub-volumes as an individual entity, which is acceptable because the 

data in batches are independent of each other. All sub-volumes will be processed 

simultaneously. After each CUDA device finishes the current cycle, the result of the sub-

volume will be transferred back to the host memory. Since each individual GPU operates 

independently, the entire processing is asynchronous. Without considering data traffic 

control and device thermal throttling, the theoretical performance should be scaled by 

the number of GPUs running in the system. In this research, an additional GPU was 

installed for display tasks only. This way the CUDA devices would be able to process the 

computational tasks full time.  

4.2. Batch processing and real-time requirement 

The image acquisition and processing program was designed to have two counters: a 

frame counter for visualization and a batch counter for processing. A batch is an evenly 

distributed segment of the input volume. The frame counter is the frame index of the B-

scan image within the volume;it indicates which frame from the data volume is currently 

being displayed. On the other hand, the batch counter is the starting frame index of each 

batch being processed by the GPU. When the program processes the acquired image, a 

regular B-scan intensity image will be processed for every single frame. On the other 

hand, the process of segmenting a single retinal intensity image could take up to 70ms 

using graph cuts. Thus, applying graph cut segmentation on every single frame wouldn’t 

be feasible for real-time high-resolution imaging. Therefore the input image data in the 

batch needs to be down-sampled in order to provide fast enough volumetric processing 

speed.  
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There are two ways in down-sampling the input image: reducing the B-scan image 

resolution or reducing the number of frames to process. We found that during the image 

acquisition, the lateral movement of the patient within the acquisition time of one batch 

(roughly 100ms) is negligible [27]. Thus we decided to apply GC segmentation to the 

first frame of each batch, and the result can then be used to represent the entire batch.  

 

Figure 4-2 Real-time deadline 

The definition of real-time processing states that the real-time program must guarantee a 

response with a specific given deadline. That means the processing of the current batch 

of data must be finished before the next input of data coming in. In the context of 

medical imaging, the real-time deadline is determined by the acquisition rate. That 

means, the retinal segmentation result needs to be finished and delivered for 

visualization before acquiring the next batch of data, as the result needs to reflect the 

change in real-time. Currently with the dual GPU setup, the processing deadline is 

around 105ms and the segmentation time for batch is around 70ms. For the acquisition 

size of 900 frames, a reasonable batch size for real-time processing would be around 30 

frames per batch.  

4.3. Segmentation Initialization 

Before initializing the segmentation pipeline, we need to first eliminate the speckle noise 

presented in the image. The constructive/destructive interference corrupts the retinal 

image quality, ultimately making the process of segmentation pipeline slower and more 
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error prone. The speckle smoothing step shall not be computationally intensive, as 

additional processing complexity may jeopardize the overall processing time. Since the 

constructive/destructive interference is reflected on the image as white and black 

intensity fluctuations, we can simply average all of the frames in a batch (we will call this 

‘frame averaging’) to bring down the fluctuation level; the results of frame averaging 

performed on a representative retinal image is qualitatively presented in Figure 4-3. 

 

Figure 4-3 Before and after frame averaging for B-scan intensity image 

 

The texture pattern of the retinal image will determine the run time of the segmentation 

processing. The more complex the image, the slower the segmentation process will be. 

Details on the benchmarking result will be discussed in the next chapter.  

The bilateral filter is a nonlinear filter that combines the gray levels of the nearby pixels 

based on both of their geometric closeness and their photometric similarity [28]. It 

preserves the edge so that the retinal layers can be detected later during the 

segmentation step. The gray scale bilateral filter for GPU is implemented from a RGBA 

bilateral filter implementation in CUDA SDK sample application. The CUDA 

implementation is based on the same published articles [28]. Each pixel is weighted by 

considering both the Gaussian spatial distance and Euclidean color distance between its 

neighbours. Figure 4-4 shows the representative effects of a bilateral filter for imaging 

smoothing. As a result, the texture pattern of the filtered image has become simpler. The 

Gaussian and Euclidean parameter were set such that the image was further smoothed 
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while preserving the retinal edges. This step is required for PR algorithm to perform 

better in terms of correctness and speed.  

 

Figure 4-4 Bilateral filtered B-scan intensity image 

After the filtering stage, we want to construct the graph for GC. As discussed in the 

previous chapter, a graph is a flow network that consists of node and edges.  The goal is 

to cut the graph to yield a set of coordinates that represent the result of image 

segmentation. Details of the algorithm were described in Chapter 3. In the retinal image, 

we define the foreground as the retinal layers, and the background as the vitreous and 

posterior chamber. According to the PR algorithm, the residual edge that doesn't have 

the forward capacities will be removed from the residual graph. Thus, the edge capacity 

for which connections between objects and background needs to be smaller than the 

edge connecting within objects or background so that they can be easily saturated from 

the push operation. Since the transition in pixel values from background to objects are 

quite large, the easy way to construct such a graph can be simply done by calculating 

the gradient of the retinal image and assigning smooth-term (n-link) edge capacities with 

values inversely proportional to the absolute intensity values of the gradient image. 

Data-term (t-link) edge capacities are assigned based on the intensity levels of the 

original image. Figure 4-5 shows a gradient generated from bilateral filtered retinal 

image.  
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Figure 4-5 Gradient image for graph construction 
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4.4. Binary image segmentation with GPU 

The NVIDIA Performance Primitives Image (NPPI) library is a collection of GPU-

accelerated functions that was pre-developed by NVIDIA for their GPUs. The NPPI 

library contains the GC segmentation function that is based on PR introduced in Chapter 

3. Although PR doesn't have the best theoretical time complexity, in all practicality, PR 

performs the best in terms of average running time [11]. The NPPI GC segmentation 

function takes the input constructed from the previous section and outputs a binary 

image with the object region highlighted as white. Figure 4-6 shows a representative 

retinal segmentation result for the macular region.  

 

Figure 4-6 Binary image segmented by NPPI GC 

Note that there are additional artifacts beneath the segmented layers. The GC function 

outputs what the algorithm recognizes as objects, which could contain undesired 

artifacts that may corrupt the result. The undesired artifact can be eliminated by 

adjusting the image histogram. However, a manual approach to tuning the intensity and 

contrast would defeat the purpose of minimizing the human effort during the clinical use 

of this software tool. The image contrast adjustment could be automated, but since every 

image volume has different histogram distributions and requires precise histogram 
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adjustment to eliminate the artifacts, this may not be a reliable solution in a clinical 

environment. Therefore, additional processing steps to automatically eliminate the 

undesired artifacts are required such that the clinical practicality can be achieved.  

4.5. Layer extractions through CCL 

The NPPI library provides morphological functions such as image erosion and dilation. 

Usually, the undesired artifacts from the GC segmentation can be eliminated by such 

morphological functions if the artifacts are small enough. However, in OCT imaging, 

artifacts are often created by beam echoes and other noise, of which are in large and 

connected forms that cannot be removed by erosion and dilation.  

An algorithm named Connected-Component Labeling (CCL) is often used in companion 

with the segmentation algorithm; the details of CCL were presented in Chapter 3. Rather 

than smoothing the artifacts as with erosion and dilation, the CCL algorithm will label 

each connected region so that we can output specific regions.  In this case, our regions 

of interest are the two largest connected components in the binary image, which 

represent the ILM layer and the BM / Retinal Pigment Epithelium (RPE) complex, 

respectively. For details of CCL, please refer to chapter 3.  Figure 4-7 demonstrates the 

result after applying CCL.  

 

Figure 4-7 Before and after applying CCL on the binary image 
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Note that the CCL algorithm was implemented using CPU. This step alone takes up to 

nearly 20% of the entire run time when implemented in serial operation. Due to the 

sequential nature of CCL, we found it rather difficult to implement CCL properly in CUDA. 

Certain CCL algorithms can be parallelized, but it has been reported that the sequential 

algorithms often outperform the parallel ones in real applications [29]. There have been 

reports on implementations of CCL algorithms for other applications in Computer Vision 

using CUDA [25].  However, this implementation was not adapted to our existing 

program due to time constraints. After GC segmentation and CCL, the final step is to 

locate the coordinate of the segmented layers in the image. Figure 4-8 is a 

representative result for GPU retinal GC segmentation. 

 

Figure 4-8 Line overlay for GPU retinal segmentation result 

To this point, we have successfully extracted the targeted retinal layers from the B-scan 

intensity image. Recall that in Section 4.2 we downsized the total number of frames by 

processing only one frame in each batch. .Therefore, before sending the segmented 

layer to the next stage, which is en-face image display, the resulting coordinate set 

needs to be re-interpolated back to full frame size. As explained in previous sections, 

since the movement within one batch imaging is negligible, one set of segmented 

coordinates is sufficient for the clinician to evaluate the result in real-time. After 

segmentation and interpolation operations are complete, the program will then proceed 

to generate a thickness map and the SV angiography for the final en-face views for each 

of the sub-volumes they were assigned. These results from each batch will then be sent 

back to host memory space and combined for OpenGL display. The detailed analysis of 
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qualitative and quantitative result for GPU Retinal layers Segmentation (GRS) will be 

discussed in the next chapter.  

4.6. Summary 

In this chapter, we described the processing pipeline of retinal segmentation using GPU. 

The segmentation algorithm uses a graph input that was interpreted from a cross-

sectional B-scan image of the retina. The retinal image is required to be pre-processed 

using frame averaging and bilateral filtering before proceeding to set up the graph. The 

GPU graph segmentation is executed by using a pre-built NPPI library. The GPU 

segmented results could contain undesired artifacts. An additional processing step of 

CCL is applied to reliably extract the targeted objects from the segmented result. After 

the segmentation result is acquired, the coordinate of targeted retinal layer will be 

recorded and sent back to the host for en-face view visualization. 
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Chapter 5.  
 
GPU-Based Retinal Layer Segmentation Result and 
Discussion 

In this chapter, we will be reviewing the GPU retinal segmentation (GRS) results both 

qualitatively and quantitatively.  At the same time, we will be investigating the 

environmental factors that may affect the result and the optimization of the algorithm 

based on the tested cases.  

5.1. Environmental setup 

The retinal image acquisition system in VGH is a SS-svOCT system with a 1060nm laser 

source that operates at a 200kHz A-scan rate, meaning the acquisition time for a SV 

volume at the size of 1024 x 300 x 900 is roughly 1.575 seconds. All data volumes used 

in this chapter are all acquired in VGH but tested on the code development machine in 

the BORG lab at SFU. The hardware specification for the development machine is listed 

in the following table.  
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Table 5-1 Hardware specification of testing bench 

Components: Model Clock Speed Description 

CPUs 2 x E5-2620 2.3GHz 
2 x 6 cores, on chip PCIE 

controller provides x40  
PCIE3.0 lanes  

RAM 
8 x 8 GB 

DDR3 
1866MHz 

Overclocked DDR3 RAM with 
CL9 latency 

Display GPU 
GTX 460 1G 

VRAM 
778MHz 

Fermi architecture device, 

 x8 PCIE lanes were in use when 
running the program 

Compute GPU 0 

Quadro 
K6000 

12G VRAM 

900MHz 
(797MHz) 

Kepler architecture device, 

 x16 PCIE lanes were in use 
when running the program, 

Thermal throttled to 797MHz due 
to spacing 

Compute GPU 1 

Quadro 
K6000 

12G VRAM 

900MHz  

Kepler architecture device, 

 x16 PCIE lanes were in use 
when running the program 

 

Note that the development machine is a server based entry-level workstation. The single 

core computational capability of the CPU in the development machine is not on par with 

the single core capability of the CPU in the acquisition machine. Our imaging software 

relies more on the CPU single-core capability because of the heavy use of algorithms 

and OpenGL rendering. As a result, the low clock frequency of CPU on the development 

machine bottle-necks the performance by a considerable amount. This setup was used 

because this is the only machine available with the full x40 PCIE lanes at the time of 

writing this thesis. On the good side, if the un-optimized hardware setup could achieve 

the targeted performance, then real-time performance is guaranteed in a proper 

hardware environment. Moreover, both computer hardware (CPU and GPU) are two 

generations behind the state-of-the-art technology, which means the code performance 

can be boosted by using up-to-date hardware. More details on overall system 

optimization will be discussed in the discussion and future work section. 
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5.2. Qualitative result of GPU retinal layer segmentation 

In this section, we will be only focusing on the quality aspect of the GPU Retinal 

Segmentation (GRS). Both of the results for thickness measurement and Segmented 

Speckle-Variance Angiography (SSVA) will be reviewed. In each section, the review will 

start from successful results for both healthy and pathological volumes, followed by 

cases where the GRS could fail. All data volumes used in this chapter were acquired 

from the ECC at VGH. 

5.2.1. Thickness measurement 

The macular region of a representative healthy retina is shown in Figure 5-1. GRS 

accurately detected the ILM layer and BM layer as shown in Figure 5-1 (A). Panel 5-1 (B) 

and (C) are the en-face view and the thickness map of the retina respectively. In 

comparison to a gold standard human delineation of these layers, the automated 

segmentation result follows the target layer correctly in most cases with location 

mismatch less than 3 pixels distance. The SS-svOCT image acquisition system was 

equipped with a 1060nm laser source, which provided an axial resolution of roughly 

~2μm per pixel after Fourier transform [30]. Given that the segmented result tolerates up 

to 3 pixels difference, which translates to roughly 6~7um tolerance in actual scale, the 

segmentation result is on par with the axial resolution and able to provide accurate 

information for retinal thickness measurement. Figure 5-1 shows a representative result 

of retinal thickness map visualization. 
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Figure 5-1 Thickness map of the representative healthy volume (SV05) 

The red line in Figure 5-1 (A) represents the segmented ILM layer, and the green line 

represents the segmented RPE layer. With the coordinates of the ILM and BM layers 

segmented in real-time, the thickness map can be generated based on the difference 

between the two coordinates. The thickness map of a healthy retina is expected to have 

a nominally rotationally symmetric thickness from the foveal dip to the surrounding 

macular tissue, as demonstrated by 5-1(B). In the case of pathological retinas, the 

rotational symmetry no longer holds when the retinal features are distorted. Such 

distortion will be reflected on the thickness map. Figure 5-2 is a case of pathological data 

with Age-related Macular Degeneration (AMD) and Non-Proliferative Diabetic 

Retinopathy (NPDR). 

 

Figure 5-2 Thickness map for a pathological volume with AMD and NPDR (H468) 
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In Figure 5-2 (A), the pathological distortion underneath the Outer Nuclear Layer (ONL) 

has created a structural bump. The location of this particular B-scan is near the lower 

portion of the en-face view, which was indicated by the red line in Figure 5-2 (B). As we 

can see, the thickness map has a corresponding geographical distribution of the 

thickness matching to the en-face view. Please note that this thesis does not particularly 

target any specific pathology, but rather the structural features that the GRS can work 

with. The pathological case listed above is for demonstration purposes.  

 

Figure 5-3 Thickness map for a pathological volume with central serous 
chorioretinopathy (H435) 

Figure 5-3 shows us a pathological data with Central Serous Chorioretinopathy. The 

thickness symmetry only exists in the center portion of the macular region. In the upper-

right region, the RPE layer is detached from BM layer due to the presence of the sub-

retinal fluid. As a result, the thickness of the region near the sub-retinal fluid is thinned. 

The ILM layer was detected accurately. On the contrary, the RPE/BM complex are hard 

to separate since they are the brightest region in the image and mixed together. Thus, 

what GRS can extract is often the brightest transition from RPE/BM complex to choroid 

rather than a specific location in the image. In Chapter 4, we discussed how the graph 

was constructed inversely based the gradient value of the image. The bigger in intensity 

difference, the easier for the push-relabel algorithm to segment the target layers. As we 

may observe, the RPE detachment can create an even clearer transition from the bright 

pixels to the dark ones. As a result, the algorithm chose to follow deformed RPE layers. 

These results demonstrate that the retinal layer segmentation can unveil pathology 

through calculating the thickness map. Before we start the section where the 
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segmentation might fail, let’s first review a case for which GRS succeeded and resulted 

in a false negative. A pathological retina with a lamellar hole is presented in Figure 5-4.  

 

Figure 5-5-4 Thickness map for a pathological volume with lamellar hole (H505) 

Despite the fovea detaching from the RPE layer, GRS wasn’t affected by the dark region 

created by the lamellar hole and still successfully detected the BM layer as shown in 

Figure 5-4 (A). The overall thickness was unaffected. If we were merely judging from the 

thickness map in Figure 5-4 (C), we might have the false impression that the retina could 

be healthy if we only look at the thickness map itself, as it shows desired healthy retinal 

features such that the retina has a rotationally symmetric thickness increase around the 

fovea dip. The segmentation is functioning as designed because the RPE layer is still in 

place. Thickness changes caused by pathological features such as lamellar holes 

cannot be detected by measuring the layer thickness between BM and ILM along. 

Current measurement to this issue is reliant on the display of the B-scan image, which 

requires monitoring from clinicians.  
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Figure 5-5 Segmentation result corrupted by bright artifacts 

 

Figure 5-6 Extreme case 

Figures 5-5 and 5-6 show scenarios where the segmentation can fail. A healthy retina is 

presented in Figure 5-5 with additional bright artifacts. The push-relabel algorithm 

mistakenly recognizes the bright artifacts as foreground. Consequently, GRS delivered 

an incorrect layer extraction as a result. To conclude, whenever there is unexpected 

bright artifact presented near the target layer, the segmentation will incorrectly include 

the bright artifact as part of the feature. Figure 5-6 shows us a retinal  tissue volume with 

significant motion artifact. Technically speaking it is beyond reasonable to expect any 

fast segmentation algorithm would work with such corrupted anatomical structures, but 

this particular volume demonstrates the other case where the segmentation can fail. For 

the region marked by the region denoted by the blue annotations, the GC detected 

Nerve Fibre Layer (NFL) rather than the RPE layer. This is because the RPE layer was 

“discontinuous” due to the shadowing artifacts in the OCT B-scan image. Please recall in 

chapter 4 that a CCL step was introduced to remove the unexpected foreground by 

noise and artifacts, the discontinued RPE layer was thereupon recognized as artifacts by 
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CCL and consequently removed. Thus, the final segmentation result was corrupted as a 

result.  

5.2.2. Segmented SV angiography 

Based on the previous section, we learned that GRS could reasonably extract the ILM 

and BM layers for thickness measurement. There is more than one area where GRS can 

be useful. The segmented coordinate of ILM and BM layers can be further used for 

enhancing the view of SV angiography. Figure 5-7 (A) is a non-segmented SV 

angiography result listed as a reference for representative image quality. The same 

volume but using the segmentation results to extract only the layers of interest is shown 

in Figure 5-8 against Figure 5-7 for direct comparison.  

 

Figure 5-7 Visualization of retinal vasculature network by naive region selection 
(SV05) 
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Figure 5-8 Visualization of vasculature network for a representative healthy 
volume. (SV05) 

In Figure 5-7(B), the middle fovea region is relatively dark because of the included extra 

dark region in the Figure 5-7(A). On the contrary, the result in Figure 5-8(C) does not 

have this issue. In Figure 5-8, the red line is the extracted ILM layer, and the green line 

and the blue line that are covering Inner Nuclear Layer (INL) and Outer Nuclear Layer 

(ONL) are generated by shifting the segmented RPE layer. Figure 5-8(B) is the regular 

fundus intensity images for reference, 5-8(C) is the primary result that corresponds to 

the region between red line (ILM) and green line (ONL). 5-8(D) corresponds to the 

vasculature network of the region between the blue line (INL) and the green line (ONL) 

whereas 5-8(E) corresponds to the vasculature network of the region between the red 

line (ILM) and the blue line (INL). The images in panels D and E are additional results to 

the main blood vessel visualization 5-8(C). They were displayed for quick evaluation of 

the retinal structure during the real-time imaging session. Figure 5-9 shows the 

vasculature network of the previously presented retinal volume with a lamellar hole.  
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Figure 5-9 Visualization of vasculature network for a pathological volume with 
lamellar hole (H505) 

The RPE layer detection works the same as before, but speckle variance imaging 

changes the story entirely. In Figure 5-9 (C) and (D) we can clearly observe a black 

region in the center fovea region. This is because the lamellar hole was created by the 

detachment of the fovea from the RPE. Hence the dark region would appear around the 

place where the fovea would be. Figure 5-10 and 5-11 shows the other two pathological 

volumes we reviewed in the thickness measurement section.  
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Figure 5-10 Visualization of vasculature network for a pathological volume with 
central serous chorioretinopathy (H435) 

 

Figure 5-11 Visualization of vasculature network for a pathological volume with 
AMD and NPDR (H468) 
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Figure 5-10 (D) displays the vasculature network between the OPL and INL without 

being affected by the RPE detachment, thanks to the segmented result following RPE 

layers. The white stripes observed in 5-10 (B) and (C) are motion artifacts that happen to 

be more pronounced in the lower portion of the vasculature network; these artifacts are 

common in current state-of-the-art OCT Angiography. Figure 5-11 shows a vasculature 

network en-face images for the AMD-NPDR volume reviewed in the thickness section. 

Note that in case where a retinal hole was created above the OPL layer, shifting ILM 

layer for corresponding vasculature visualization would be a better approach since the 

shape of INL is more close to ILM in comparison. 

5.3. Limitations 

Currently, the PR GC implementation by NVIDIA can be only applied on the macular 

region. The PR GC does not yield correct results when a discontinuity of the target layer 

is present, as is the case with images of the optic nerve head. The current GPU 

implementation is not fast enough for intra-retinal layer segmentation. Since the real-

time constraint only permits us running segmentation pipeline once for each image, 

intra-retinal layer segmentation is consequently not achievable as it would require 

iterating the segmentation pipeline multiple times for multi-level of retinal layers.  

5.4. Speed of the GPU retinal layer segmentation 

The usability of the real-time GC retinal layer segmentation application for both thickness 

measurement and the segmented vasculature network visualization is subject to the run 

time of the pipeline. Figure 5-12 shows a representative timeline for the entire 

segmented SV angiography process on a single GPU. Recall that the SS-svOCT system 

in VGH takes roughly 1.575 seconds for a data volume with 30 batches. The average 

acquisition time for one batch would be around 52.5 ms. For a single GPU 

implementation, the retina would be required to have ideal SNR and a certain shape that 

suits the segmentation algorithm in order to run in real-time.  
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Figure 5-12 Representative per-batch timeline for entire processing pipeline 
captured by NVIDIA Visual Profiler 

As we can see, although one batch successfully achieved under 52.5ms requirement, 

the rest of batches couldn’t meet the required timeline. Please note that the hardware 

used for conducting this research were outdated and couldn’t deliver the up-to-date 

hardware raw performance. This 52.5ms requirement would most likely be fulfilled if a 

state-of-the-art machinery was used. Regardless, our goal was to meet the real-time 

requirement even if using the out-dated machine we currently have. Please recall the 

parallel approach we discussed in chapter 4, where more than one GPU was used to 

ease the burden of real-time constraint. In this case, we have a PC with two dedicated 

GPUs for computation; this setup effectively relaxes the time requirement from 52.5ms 

to 105ms since two GPUs will concurrently be working together to process the data 

volume. As a result, the 105 ms easily becomes an achievable number. The healthy 

volume SV05 is used as the representative dataset for benchmarking the processing 

timeline. Figure 5-13 shows the batch-level processing timeline for GPU graph-cut vs 

segmentation pipeline vs entire processing pipeline for thickness map calculation.  
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Figure 5-13 GC vs Segmentation pipeline vs SSVA (SV05) 

All numerical benchmarking results presented in this chapter are obtained through 

averaging 20 distinct measurements. This way we can minimize the fluctuation caused 

by regulation of the data traffic. As indicated in the graph, the processing timeline for 

both the segmentation pipeline (named as segmentation module in the above plot) and 

pipeline for thickness map calculation are almost vertically offset versions of the timeline 

for GPU GC. This is because the additional calculation for thickness map generation is 

simply parallelized matrix subtractions and geographical pixel mapping. Most of the time 

consumption was taken by memory transfers. The computational cost of the subtraction 

and thickness map generation are actually quite low by themselves. On the other hand, 

the performance gap between GPU GC and entire segmentation pipeline were mostly 

taken by CCL (marked as Connected-Component and Analysis in the following figures) 

and partially memory transfer. Figure 5-14 shows the processing timeline for CCL vs 

Segmentation pipeline vs Segmented SV angiography pipeline (SSVA). Table 5-2 shows 

the numerical result of the processing timeline for each individual stage of CCL (named 
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as CCA in the plot), segmentation pipeline and SSVA (named as Segmentation Module 

Speckle-Variance). 

 

Figure 5-14 CCL vs Segmentation pipeline vs SSVA (SV05) 

 

Table 5-2 Profiling result (SV05) 

 
Graph-Cut 

(ms) 
CCL (ms) 

Segmentatio
n pipeline 

(ms) 

Thickness 
map (ms) 

SSVA (ms) 

Volume-
level mean 

655.24 186.74 858.99 929.98 1081.76 

Batch-level 
mean 

43.68 12.45 57.26 62.00 72.81 
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In Figure 5-14, we may observe that the processing time for GC and CCL does not add 

up to the entire processing time of the segmentation pipeline. The time difference was 

caused by the additional memory transfer between host and device. The SSVA takes the 

longest processing time due to the additional SV processing steps. Note that the overall 

plot trend of SSVA and the segmentation pipeline are largely the same. This is because 

the time complexity for SV processing is constant. The  time fluctuations were caused by 

the GPU data traffic. For the healthy volume SV05, the processing time for both 

thickness map calculation and SSVA are quite satisfyingly below the required real-time 

constraint of 105ms. However, retinas with complex features such as volumes with RPE 

detachment (H435) could oppose extra obstacles for the algorithm to process. By 

intuition, the pathological volume H435 should take longer time to process than the 

healthy volume SV05. Figure 5-15 shows a batch level result for CCL vs Segmentation 

pipeline vs SSVA for H435.  
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Figure 5-15 CCL vs Segmentation pipeline vs SSVA (H435) 

 

 

 

Table 5-3 Profiling result (H435) 

 
Graph-Cut 

(ms) 
CCL (ms) 

Segmentati
on pipeline 

(ms) 

Thickness 
map (ms) 

SSVA (ms) 

Volume-level 
mean 

700.68 209.10 931.11 1026.45 1211.28 

Batch-level 
mean 

46.71 13.94 62.07 69.43 80.75 

GPU0 total 701.86 211.26 935.82 1031.00 1213.32 

GPU0 average 46.79 14.08 62.39 69.79 80.89 
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GPU1 total 699.49 206.94 926.41 1021.00 1209.25 

GPU1 average 46.63 13.79 61.76 69.07 80.61 

As anticipated, the pathological retina volume clearly takes longer time to process, with 

few entries that are very close to the processing deadline for an individual batch. The 

additional processing difficulties are also reflected by the increase in GC and CCL 

processing time in comparison to the healthy volume. Note that the total time is 

calculated as the mean value between the two GPUs since they are operating 

concurrently. However, it would be an incorrect assessment to use mean time between 

devices for the real-time deadline. In this volume we see few occurrences where the 

processing times are close to the deadline. Let’s now assume that the mean value met 

the deadline and GPU1 also met the deadline, but GPU0 did not. This would still result in 

a failure in passing the real-time requirement. Therefore, taking the slower GPU would 

be a better assessment for real-time deadline. The performance discrepancy is caused 

by thermal throttling. There was limited space to install the three GPUs in the testing 

computer. One of the computational GPUs didn’t have as much ‘breathing space’ (room 

for air flow and cooling) as the other one, resulting in thermal throttling and a drop in 

performance.  
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To conclude the performance of GRS, 9 retina volumes are randomly selected for SSVA 

benchmarking as listed in table 5-4. Note that for some specific volumes, the batches 

that were assigned to GPU1 could be more challenging to process than the batches that 

were assigned GPU0. Consequently, for volume H476, GPU1 took a longer time to 

process the assigned batches than GPU0, even though GPU0 was technically slower 

due to thermal throttling. The averaged processing time for SSVA per batch is 71.86 ms, 

which is 46.12% faster than the required deadline. Therefore, it is clear that GRS is fast 

enough for real-time retinal segmentation for both thickness map measurement and 

SSVA.  

 
Table 5-4 Profilling summary 

Volume 
Names 

Mean 

total/per-batch (ms) 

GPU0 

total/per-batch (ms) 

GPU1 

total/per-batch (ms) 

Segmented SV Angiography timeline for x900 volume – 30 batches (deadline 1575 ms) 

H435-P 1211.28 80.75 1213.32 80.89 1209.25 80.61 

H505-P 1148.49 76.56 1149.82 76.65 1147.15 76.47 

SV01-H 1084.95 72.33 1110.32 74.02 1059.58 70.64 

SV05-H 1081.76 72.11 1092.19 72.81 1071.33 71.42 

SV42-P 969.78 64.65 976.11 65.07 963.43 64.22 

Segmented SV Angiography timeline for x900 volume – 20 batches (deadline 1050 ms) 

H476-P 644.57 64.46 608.70 60.87 680.44 68.04 

SV40-P 679.17 67.91 689.11 68.91 669.24 66.92 

SV41-P 711.76 71.17 745.17 74.52 678.35 67.83 

SV43-P 698.64 69.86 730.37 73.04 666.92 66.69 

Average per batch timeline for Segmented SV Angiography (deadline 105 ms) 

Average  71.09  71.86  70.32 

*With H stands for healthy, and P stands for Pathological 
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5.5. Performance due to contrast to noise ratio 

In the previous section, it was shown that the complexity of the retinal image can affect 

the processing time for GRS. Generally speaking, the Signal to Noise Ratio (SNR) would 

be the first thing to consider as the factor that could affect the performance. In terms of 

image processing, SNR could translate to image clarity or Contrast to Noise Ratio (CNR). 

In this section, we will be investigating how the performance of the PR GC can be 

improved by adjusting the histogram to its optimal level. Two histogram range scaling 

factors are available in the OCT processing software for manually adjusting the 

histogram of the image, with one scaling factor responsible for adjusting the lower bound 

of the histogram and the other for higher bound. Again, we will be using the healthy 

retinal volume SV05 for benchmarking for CNR. Four instances of the retinal data and 

the GC segmentation with visually different CNRs were arranged as shown in Figure 5-

16 by adjusting the values of the two scaling factors. 
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Figure 5-16 Images with different histogram scaling factors: (A) min: 7.5, max: 10.5 
(B) min: 10, max: 16.5 (C) min: 10.5, max: 11 (D) min: 10.5, max: 12.5 

Based on human observation, Figure 5-16 (A) is the noisiest with the lowest CNR, thus 

(A) is expected to have the slowest processing time. Figure 5-16 (C) visually has the 

highest contrast thus intuitively is expected to have the fastest processing time. However, 

recall that the graph was constructed from the gradient image, not the image itself, thus 

setting the contrast too high may not result in a more workable gradient image for 

constructing the graph. Figure 5-16 (D) visually has the most balanced contrast thus it is 

expected to have the best running time. Figure 5-16 (B) definitely has a better contrast 

than (A) and will most likely have a better workable gradient image for graph 

construction, but it is unclear whether it is better than (C) for GRS. Figure 5-17 is the 

volume-level running time comparison for segmentation pipeline between four different 

histogram scaling factor settings 



 

67 

 

Figure 5-17 Running time comparison for segmentation pipeline between four 
different histogram range scaling factor settings 

As anticipated, setting (A) has the worst run time whereas setting (D) has the best 

among the four. Apparently, setting (C) has too narrow dynamic range to generate a 

good gradient image for graph construction, ranking it the second worst. Lastly, setting 

(B) has the second best performance although it is visually dark to human eyes. Another 

two tests were conducted to find out the optimal intensity range of GRS for this particular 

volume: (i) different histogram scaling range with the same lower bound; (ii) different 

histogram scaling level but with the same range. Figure 6.18 shows the volume-level run 

time comparison (for segmentation pipeline) between 6 settings of different dynamic 

ranges with the same lower bound scaling factor. 
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Figure 5-18 Running time comparison for segmentation pipeline between 6 
settings of different histogram scaling range 

Settings (C) and (D) provide relatively better run time with setting (C) slightly better. 

Since (F) yields relatively similar results to (C), it would seem the result could be better 

as we increase the dynamic range.  However, the GRS starts delivering false results 

after the higher bound scaling factor goes beyond 16.5 as the dim image does not 

provide clear enough gradient image for constructing a graph. Figure 5-19 shows the 

volume-level running time comparison between 6 settings of different scaling factors but 

same dynamic range. 
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Figure 5-19 Running time comparison for segmentation pipeline between 6 
settings of different scaling factor levels with the same range 

 

Figure 5-20 False segmentation result in the histogram scaling setting (F: 11-13) 
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Again, we observe a similar scenario that the running time seems to get better as the 

scaling factor increases. In spite of setting (F) has the best performance, the 

segmentation result is incorrect. Thus, the best performing setting is still (E:10.5-12.5). 

Based on figure 5-16 ~ 5-20, we can conclude that the optimal intensity/contrast range 

for GRS lies around the setting where the scaling factors are 10.5 to 12.5 for this 

particular volume. The scaling factors are created for adjusting the histogram of the 

image. Thus, applying a histogram adjustment technique could bring the time aspect of 

the performance to its most optimal level. 

5.6. Final evaluation of GRS against the CPU 
implementation 

The performance of the GRS was compared against a CPU implementation of the graph 

cut segmentation.  The CPU MATLAB segmentation was implemented with shortest 

path and dynamic programming by Chiu et al [31].  However, Chiu’s implementation 

requires a narrower band of the image intensity histogram in order to have the 

segmentation function correctly. The optimal range that was used for GRS will yield a 

false result for Chiu’s implementation. The input image size was the same as presented 

in the previous sections, 512 width x 300 height.  The test bench for Chiu’s 

implementation was a different computer with 4.0 GHz i5-4670K processor.  Since 

Chiu’s implementation is purely done with CPU and MATLAB, the rest of the system 

specification are irrelevant. Figure 5-21 show the result of Chiu’s implementation.  
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Figure 5-21 Result of Chiu's implementation with our input A) GRS optimal 
histogram B) Histogram adjusted for Chiu's algorithm 

 

Table 5-5 Representative time comparison between GPU and CPU 

 Chiu’s implementation GRS GPU/CPU speed  

Processing time 
for 

segmentation 
alone 

60231.22 ms 43.68 ms x1424.71 faster 

Both of GPU and CPU timing are the average result measured over 20 repetitions. The 

quality of the GRS has been discussed in previous sections. The focus here is the speed 

improvement of GPU over CPU. The result is clear, the GPU implementation is more 

than a thousand times faster than the CPU implementation in MATLAB.. A more fair 

comparison of the speedup would be to compare the GPU performance in code 

developed and optimized in a low level language, such as C/C++. However, even in that 

case, a significant speedup is still expected based on reports comparing CPU to GPU 

implementations of graph cut segmentation [25]. 
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There are a few things worth noting when it comes to using GPU for software 

implementation.  The performance of the OCT imaging software relies on the following 

three main attributes of the GPU: core clock frequency, numbers of CUDA cores and 

VRAM capacity.  For best performance, we want the GPU to have a highest possible 

clock frequency and high possible amount of CUDA cores. For VRAM, the OCT imaging 

software has a VRAM usage at a steady level of ~600MB. However, in current consumer 

GPU lineup , the high-end GPU that has high clock frequency and large number of 

CUDA cores often come with more than 6GB of VRAM. Although 6GB VRAM is a 

overkill for our application, the high-end GPUs such as GTX 1070 and GTX 1080 are still 

recommended due to their superior clock frequency and high numbers of CUDA cores. 

5.7. Summary 

In this chapter, the results for GPU retinal layer segmentation on both thickness 

measurement and speckle variance angiography has been evaluated qualitatively and 

quantitatively. The GRS has proven to be a reliable tool for extracting ILM and RPE/BM 

complex under usual circumstances. The 71.86ms on average processing time is 46.12% 

faster comparing to the required processing deadline, which is determined by the 

acquisition speed of the OCT system. The resulting processing speed is sufficient to 

meet the requirement of real-time visualization. Currently, the PR GC implementation by 

NVIDIA can be only applied on the macular region. The PR GC does not yield correct 

results when a discontinuity of the target layer is present, such as in B-scan images of 

the optic nerve head. Also, automated intra-retinal layer segmentation is not achievable 

without running the algorithm multiple times, of which would then make the real-time 

aspect unachievable with the current configuration and hardware.  
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Chapter 6.  
 
Conclusion and Future Work 

 

In this thesis, we reviewed the GPU-based implementation for retinal layer segmentation.  

The result of the GRS is that it is capable of tracking and segmenting the ILM and BM 

within a reasonable tolerance of 6~7 microns yet also able to meet the real-time 

processing requirement.  The running time of entire visualization cycle surpasses the 

target deadline for 200kHz swept laser source SS-svOCT system by 46% on average 

when running on outdated and non-optimized computer and GPUs, indicating that the 

performance can be boosted even higher with up-to-date and optimized hardware.   

Applying GRS along with intra-operative FD-OCT imaging could potentially provide the 

ability for immediate feedback of instrument-tissue interaction to surgeons. Successful 

integration of such technology to the FD-OCT systems at a hospital based ophthalmic 

center could have great impact on the success rate of membrane peeling and related 

procedures and improve the surgical outcomes for patients.  

6.1. Future Work 

While the performance of the GRS demonstrated in chapter 5 shows its great potential 

for intra-operative FD-OCT applications,  there is also room for improvements in the 

processing steps. A parallel version of CCL is possible to implement, but difficult. Due to 

time constraints, parallel version CCL was not implemented for this project.  Also, it has 

been mentioned several times that the hardware systems were not up-to-date and the 

hardware settings were improper. Such setting downgrades the performance of the GRS 

by a significant amount. In the following subsections, we will go over these areas for 

further improvement of the thesis implementation. 
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6.1.1. Software and Algorithms 

Currently, the OCT processing pipeline for the testing performance lacks some 

functionalities such as software dispersion compensation. The dispersion compensated 

image has a better image clarity compared to non-compensated images. Having a 

higher image clarity equally translates to higher SNR when it comes to image processing. 

Thus, the performance of GRS can be further improved if the input image was dispersion 

compensated.  

Although CCL is indeed difficult to parallelize due to its sequential nature, there has 

been a successful implementation of CCL documented in the book GPU GEMs [25]. 

However, the parallelized CCL was implemented for a different application and the 

source code was no longer available from the publisher. Due to the time constraint and 

implementation difficulty, such parallelized CCL was not implemented for this thesis. 

Given enough resources and time, CCL can be parallelized and used to eliminate the 

only CPU reliance of the GRS. 

Lastly, the visualization of the display is implemented using OpenGL™ display. OpenGL 

is a low-level display API for computer graphics developers. There is one problem with 

the OpenGL library: it does not fully utilize the multi-core capabilities of CPUs. One core 

is responsible for most of the work done when running an OpenGL application [32]. 

Recently there has been a newly announced low-level graphics API called Vulkan™, 

which greatly improves the utilization of the multi-core CPU. Although using the Vulkan 

library would not contribute to the run time of image processing, it would greatly improve 

the display process so that the final visualization wouldn’t possibly be bottlenecked by 

the front-end display.  

6.1.2. Hardware environment 

The computer hardware used for the performance testing of the GRS is two-to-three 

generations behind. Also, the imaging software, OCTViewer, was not optimized for 

heavy-multi-threading processing with the CPU. This was due to two reasons: low 

utilization of multi-core CPU capability of OpenGL and the use of sequential algorithms. 

The representative utilization rate of the CPU cores when running the OCTViewer was: 



 

75 

100% for only one core, and around 40-60% % for 4 cores with rest of the cores 

completely idle etc. 

Thus, when integrating the GRS with a clinical system, the ideal CPU would be an up-to-

date consumer grade CPU with faster single core performance, rather than the server 

grade CPU with many low clock-speed cores. Also, the GPU we used in this thesis is not 

designed for the medical imaging system that is running at ECC. The strength of the 

Quadro K6000 is the ability for double precision computation. However, the OCTViewer 

wasn’t written in double precision format, and thus this capability was wasted. The 

reason why these GPUs were used was because of the exceptional VRAM capacity. But, 

with the recent announcement of NVIDIA Pascal GPUs [23], the 12GB VRAM can now 

be matched by consumer grade GPUs. Moreover, the Quadro devices were purposely 

down-clocked compared to their consumer counters parts for reliability reasons. Last but 

not the least, both Quadro devices and Xeon CPU are server grade products, which cost 

significantly more than their consumer counterparts, yet providing sub-par performance 

as they are not designed for these types of applications.  An ideal hardware 

configuration is listed in Table 6-1. 

Table 6-1 Testing bench vs ideal system 

 
Used in test bench Optimized system 

Model Speed Price(USD) Model Speed Price(USD) 

CPU 
2 x E2-
2620 

2.3GHz 2 x 382 i7-6850K 3.8GHz 617 

GPU 
2x Quadro 

K6000 
900MHz 2 x 5,999 

2 x GTX 
1080 

~1700MHz 2 x 599 

Price difference: 10,947 USD, rest of the system can be the same 

Note that not only are the price differences significant, but the performance gap between 

the two hardware configurations are significant as well. According to CPU benchmarking 

tool PassMark™, the single core capability of i7-6850K is 70% faster than that of the E2-

2620 [33]. Also, according to NVIDIA, the theoretical performance of the latest Pascal 

architecture is 2.35x times than that of the Kepler architecture [23]. In all, even without 

the parallelized CCL and the use of Vulkan API, with proper up-to-date computer 



 

76 

hardware, the performance of GRS can be potentially improved by at least two fold, 

reaching the real-time speed that may even satisfy a 400 kHz laser source system.  

With the hardware configuration used in this thesis, the intra-retinal layer segmentation 

was not achievable in a real-time constraint. If the hardware update could truly bring the 

performance boost as suggested above, the intra-retinal layer segmentation would be 

possible by running PR GC multiple times thanks to the performance improvements of 

the advanced hardware. With the rapid increase in computer performance, the 

implementation of GRS for novel applications in intra-surgical OCT is anticipated to grow. 
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