
Multi-GPU accelerated real-time retinal image

segmentation

by

Maxwell Miao

B.A.Sc, Simon Fraser University, 2014

Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Applied Science

in the

School of Engineering Science

Faculty of Applied Sciences

 Maxwell Miao 2016

SIMON FRASER UNIVERSITY

Fall 2016

ii

Approval

Name: Maxwell Miao

Degree: Master of Applied Science

Title: Multi-GPU accelerated real-time retinal image
segmentation

Examining Committee: Chair: Dr. Ash M. Paramesawaran, P. Eng

Dr. Marinko V. Sarunic, P. Eng, MBA
Senior Supervisor
Professor, School of Engineering Science

Dr. Yifan Jian
Supervisor
Associate Research Professor

Dr. Mirza Faisal Beg , P. Eng
Internal Examiner
Professor, School of Engineering Science

Date Defended/Approved:

 November 10, 2016

iii

Abstract

In recent years, Optical Coherence Tomography (OCT) has become one of the dominant

imaging technologies for ophthalmic diagnostics and vision research. The fast and high-

resolution cross-sectional data that OCT provides has brought a new possibility in the

role of intra-operative imaging. However, existing commercial OCT systems lack the

automated real-time functionality for providing immediate feedback of changes in

anatomical configuration as the result of surgical actions. The predominant reason for

lacking such functionality is because high complexity algorithms are hard to implement in

real-time imaging due to their computationally expensive nature.

In this thesis, we will present a Graphics Processing Unit (GPU) accelerated retinal layer

segmentation for real-time intra-operative imaging applications. Modern GPUs has

emerged as a strong tool for mass computation in scientific researches. The

computational power of the GPU outpaces Central Processing Unit (CPU) significantly

when the processing task is parallelizable. Image segmentation is a computationally

expensive algorithm and traditionally implemented in sequential instructions. An example

of a parallelizable segmentation algorithm is Push-Relabel (PR) Graph-Cut(GC), which

can be implemented using GPU. The GPU Retinal Segmentation (GRS) presented in

this thesis is built upon such an algorithm. To ensure the run time of the GRS meets the

real-time requirement for its application, multiple GPUs are used to accelerate the

segmentation processing further in parallel. As a result of using GRS, we were able to

achieve the visualization of the retinal thickness measurement and the enhancement of

retinal vasculature networks in real-time.

iv

Acknowledgements

Through the course of my graduate studies, my senior supervisor, Dr. Marinko Sarunic,

has provided me the chance of studying the medical imaging application of

heterogeneous computing with graphics processing units. I would like to express my

deepest gratitude for his kindness and patience he spent in training me to become an

independent engineer in preparation for my future career, as well as the caring and

support.

I would also like to than my other supervisor Dr. Yifan Jian for being helpful and

supportive for explaining the abstract concepts of GPU programming. It has been a

privilege to learn from and work with Dr. Jian throughout the course of my graduate

program.

In addition, I would like to thank Dr. Faisal Beg for being in my supervisory committee

and providing his guidance in helping me advance in my master program.

Last but not the least, I would like to thank all my fellow friends in BORG for their support

throughout the course of my entire degree. It was truly my honor to work with these

talented engineers.

v

Table of Content

Approval .. ii
Abstract .. iii
Acknowledgements .. iv
Table of Content .. v
List of Tables ... vii
List of Figures.. viii
List of Acronyms .. x

Chapter 1. Introduction ... 1
1.1. Optical Coherence Tomography ... 2
1.2. Research Motivations ... 6

Chapter 2. Heterogeneous computing ... 9
2.1. Central Processing Unit basics ... 9
2.2. Graphics Processing Unit Basics .. 11
2.3. Differences between CPU and GPU ... 13
2.4. Needs for Heterogeneous Computing ... 14
2.5. CUDA platform ... 15
2.6. Summary .. 20

Chapter 3. Segmentation theory ... 21
3.1. Graph-cut background .. 21
3.2. Push-relabel Algorithm for Graph Cuts ... 22
3.3. Operation of the algorithm .. 25
3.4. Parallel implementation: ... 27

3.4.1. Parallel push .. 27
3.4.2. Parallel relabel ... 28

3.5. Connected Component and Labeling .. 29
3.6. Summary .. 34

Chapter 4. Retinal Segmentation Pipeline ... 35
4.1. Asynchronous parallel computing ... 35
4.2. Batch processing and real-time requirement ... 37
4.3. Segmentation Initialization .. 38
4.4. Binary image segmentation with GPU .. 42
4.5. Layer extractions through CCL ... 43
4.6. Summary .. 45

Chapter 5. GPU-Based Retinal Layer Segmentation Result and
Discussion ... 46

5.1. Environmental setup ... 46

vi

5.2. Qualitative result of GPU retinal layer segmentation ... 48
5.2.1. Thickness measurement .. 48
5.2.2. Segmented SV angiography .. 53

5.3. Limitations .. 57
5.4. Speed of the GPU retinal layer segmentation ... 57
5.5. Performance due to contrast to noise ratio ... 65
5.6. Final evaluation of GRS against the CPU implementation 70
5.7. Summary .. 72

Chapter 6. Conclusion and Future Work .. 73
6.1. Future Work .. 73

6.1.1. Software and Algorithms .. 74
6.1.2. Hardware environment .. 74

References .. 77

vii

List of Tables

Table 5-1 Hardware specification of testing bench .. 47

Table 5-2 Profiling result (SV05).. 60

Table 5-3 Profiling result (H435) .. 62

Table 5-4 Profilling summary ... 64

Table 5-5 Representative time comparison between GPU and CPU 71

Table 6-1 Testing bench vs ideal system ... 75

viii

List of Figures

Figure 1-1 Basic topologies of: (A) TD-OCT, (B) SS-OCT, (C) SD-OCT 3

Figure 1-2 Raster scanning pattern ... 5

Figure 1-3 Reconstruction process of OCT image ... 5

Figure 1-4 Target retinal layers of a representative cross-sectional OCT image
centered at the fovea ... 6

Figure 2-1 Intel "Skylake" processor die layout .. 10

Figure 2-2 Die layout for NVIDIA Kepler™ architecture ... 12

Figure 2-3 OCTViewer thread distribution ... 14

Figure 2-4 Code compilation flow [20] ... 16

Figure 2-5 An example of a multithreaded program partitioned into blocks of
threads that execute independently on each GPU [24] 17

Figure 2-6 CUDA program execution flow [24] .. 18

Figure 2-7 Sample code for kernel launch ... 19

Figure 3-1 Representative segmented binary image by PR GC 30

Figure 3-2 Generated labels after the first pass ... 31

Figure 3-3 Labeling result after second pass ... 32

Figure 3-4 Final result of CCL ... 33

Figure 4-1 processing work flow for segmentation pipeline for dual GPU
computation system ... 36

Figure 4-2 Real-time deadline ... 38

Figure 4-3 Before and after frame averaging for B-scan intensity image 39

Figure 4-4 Bilateral filtered B-scan intensity image .. 40

Figure 4-5 Gradient image for graph construction ... 41

Figure 4-6 Binary image segmented by NPPI GC ... 42

Figure 4-7 Before and after applying CCL on the binary image 43

Figure 4-8 Line overlay for GPU retinal segmentation result .. 44

Figure 5-1 Thickness map of the representative healthy volume (SV05) 49

Figure 5-2 Thickness map for a pathological volume with AMD and NPDR (H468) 49

Figure 5-3 Thickness map for a pathological volume with central serous
chorioretinopathy (H435) .. 50

Figure 5-5-4 Thickness map for a pathological volume with lamellar hole (H505) 51

Figure 5-5 Segmentation result corrupted by bright artifacts .. 52

ix

Figure 5-6 Extreme case ... 52

Figure 5-7 Visualization of retinal vasculature network by naive region selection
(SV05) .. 53

Figure 5-8 Visualization of vasculature network for a representative healthy
volume. (SV05) .. 54

Figure 5-9 Visualization of vasculature network for a pathological volume with
lamellar hole (H505) ... 55

Figure 5-10 Visualization of vasculature network for a pathological volume with
central serous chorioretinopathy (H435) ... 56

Figure 5-11 Visualization of vasculature network for a pathological volume with
AMD and NPDR (H468) ... 56

Figure 5-12 Representative per-batch timeline for entire processing pipeline
captured by NVIDIA Visual Profiler ... 58

Figure 5-13 GC vs Segmentation pipeline vs SSVA (SV05) .. 59

Figure 5-14 CCL vs Segmentation pipeline vs SSVA (SV05) .. 60

Figure 5-15 CCL vs Segmentation pipeline vs SSVA (H435) ... 62

Figure 5-16 Images with different histogram scaling factors: (A) min: 7.5, max:
10.5 (B) min: 10, max: 16.5 (C) min: 10.5, max: 11 (D) min: 10.5,
max: 12.5 ... 66

Figure 5-17 Running time comparison for segmentation pipeline between four
different histogram range scaling factor settings..................................... 67

Figure 5-18 Running time comparison for segmentation pipeline between 6
settings of different histogram scaling range .. 68

Figure 5-19 Running time comparison for segmentation pipeline between 6
settings of different scaling factor levels with the same range 69

Figure 5-20 False segmentation result in the histogram scaling setting (F: 11-13) 69

Figure 5-21 Result of Chiu's implementation with our input A) GRS optimal
histogram B) Histogram adjusted for Chiu's algorithm 71

x

List of Acronyms

ERM Epi-Retinal Membrane

ILM Inner Limiting Membrane

OCT Optical Coherence Tomography

FD-OCT Fourier Domain Optical Coherence Tomography

TD-OCT Time Domain Optical Coherence Tomography

SS-OCT Swept Source Optical Coherence Tomography

SD-OCT Spectral Domain Optical Coherence Tomography

AMD Age-related Macular Degeneration

DR Diabetic Retinopathy

GPU Graphics Processing Unit

CPU Central Processing Unit

SDK Software Development Kit

ALU Arithmetic Logic Unit

DRAM Dynamic Random Access Memory

FLOPS Floating-point Operations Per Seconds

PCIE Peripheral Component Interconnect Express

SM Streaming Multiprocessors

HPC High-Performance Computing

API Application Programming Interface

CUDA Compute Unified Device Architecture

SPMD Single Program Multiple Data

VRAM Video Dynamic Random Access Memory

GC Graph Cut

PR Push-Relabel

CCL Connected Component and Labeling

BM Bruch’s Membrane

SV Speckle Variance

SS-svOCT Swept Source speckle variance Optical Coherence Tomography

ECC Eye Care Center

VGH Vancouver General Hospital

NPPI NVIDIA Performance Primitives Image

xi

RPE Retinal Pigment Epithelium

GRS GPU retinal Segmentation

NPDR Non-Proliferative Diabetic Retinopathy

INL Inner Nuclear Layer

NFL Nerve Fibre Layer

ONL Outer Nuclear Layer

SSVA Segmented Speckle Variance Angiography

SNR Signal to Noise Ratio

CNR Contrast to Noise Ratio

1

Chapter 1.

Introduction

The global aging of the human population in recent years has increased the prevalence

of age-related diseases to the modern society, with vision loss being one of them.

According to CNIB online report, one in 11 Canadians aged 65 or older are living with

vision loss [1]. In preventing vision loss during clinical ophthalmic treatment, surgical

procedures may be required. Ophthalmic surgical procedures such as peeling Epi-

Retinal Membrane (ERM) rely on staining the ERM and Inner Limiting Membrane (ILM)

with the use of an intra-operative microscope. However, the contrast generated by the

dye stain is low, and the residual dye could cause post-operative complications.

Moreover, the micro-anatomical changes to the retina caused by surgical procedure

during the macular repair could potentially negatively affect the surgical outcome [2].

Thus, using an alternative imaging modality that capable of providing high-resolution

images seamlessly could provide significant assistance to evaluating anatomical

changes during surgery and greatly increase the success rate

In recent years, Fourier Domain Optical Coherence Tomography (FD-OCT) has

emerged as a crucial diagnostic tool for clinical ophthalmic imaging. The structural

information provided by high-resolution cross-sectional images is indispensable for

detecting the presence of macular edema and retinal fluid, which are characteristics of

dominant diseases leading to blindness such as Age-related Macular Degeneration

(AMD) and Diabetic Retinopathy (DR) [3]. According to the JP Ehlers [4], integrating

FD-OCT to existing surgical procedures would potentially have immediate feedback on

completion of surgical objectives or new understanding of the anatomic configuration of

the tissues. Namely, the real-time visualization of the microanatomic changes at the ILM

layer during surgeries such as ERM peel. However, modern commercial retinal OCT

lacks the support of automated retinal layer segmentation [5]. The existing methods for

2

retinal layer segmentation are often conducted in post-processing due to the high

complexity of algorithms involved during the process. In this thesis, we investigate the

performance of the retinal segmentation of FD-OCT data using a parallel processing

approach by Graphics Processing Units (GPU), as well as the possibility for quantitative

analysis of intra-operative OCT.

1.1. Optical Coherence Tomography

Optical Coherence Tomography (OCT) is a non-invasive imaging modality first

introduced in 1991 by Huang et al [6]. OCT is often described as an optical analogue to

ultrasound imaging due to their similarities in imaging principles. Both of them are non-

invasive imaging modalities that use analogous terminology (A-scans, B-scans). The

difference is that instead of sound, OCT is performed by measuring low coherence light.

The basics of OCT will be covered in the following sections.

OCT uses the principle of low coherence interferometry to generate the structural

information of the sample being imaged. The core configuration of an OCT system is

based on a Michelson interferometer [6], which uses fibre couplers as optical

waveguides. Briefly, in a simple 2 x 2 setup, light from a low coherence laser source is

divided by the fibre coupler into two beam paths, with one traveling through reference

arm and the other through the sample arm. The light scattered back from both pathways

will combine and produce interferometric fringes that correspond to the optical path

length mismatch between the two paths, which represents the signal of the sample

tissue. There are two types of OCT: Time Domain OCT (TD-OCT) and Fourier Domain

OCT (FD-OCT). Figure 1-1 demonstrates the setup for each type of OCT.

3

Figure 1-1 Basic topologies of: (A) TD-OCT, (B) SS-OCT, (C) SD-OCT

4

The first type of OCT developed was TD-OCT. The axial information is acquired by

mechanically moving the reference arm and accumulating a longitudinal scan in time,

corresponding to the depth direction of the sample. The data throughput of TD-OCT was

low due to the moving mechanism in the reference arm. Later in 2003, the inception of

FD-OCT revolutionized the ophthalmic imaging by providing high data throughput in real-

time with high-resolution volumetric view of the retina for clinicians to identify the

structural hallmarks of ophthalmic pathologies [7]. There are two sub-types for FD-OCT:

Spectral Domain OCT (SD-OCT) and Swept Source OCT (SS-OCT), as presented in

Figure 1-1 (B) and (C).

SD-OCT uses a broadband light source that is split into the reference arm and sample

arm through fibre coupler, as with TD-OCT. The main difference is that the reference

arm is kept stationary, and that the detector is replaced with a spectrometer, acquiring

the interferogram as a function of wavelength. Then, performing a Fourier-Transform (FT)

on the interferogram obtained by the spectrometer will generate a spatial representation

of the sample tissue. Since the reference arm is stable, light returning from all depths in

the sample are interrogated simultaneously, resulting in a higher overall sensitivity. This

permits a significant increase in data throughput, and rapid A-scan rates relative to TD-

OCT. However, the dispersive elements in the spectrometer detector do not distribute

the light evenly spaced frequency. Therefore, the signal has to be resampled before

processing, which could result in losses in signal quality. This is a computationally

intensive procedure that has been demonstrated to be efficiently performed on GPU [8].

SS-OCT, which uses a narrowband light source that sweeps across a broadband

spectrum. The wavelength of the narrowband light source is encoded as a function of

time, and the interferometric signal is detected by a single pixel photodiode instead of a

spectrometer. The result of the system remains the same as in a SD-OCT system.

Performing the FT on the acquired spectrum will generate the corresponding depth

information of the sample in the axial direction at a single location of the retina.

Irrespective of TD or FD-OCT, the acquisition of an A-scan represents the depth

information at a single point on the sample. A volumetric image is commoly acquired by

5

scanning the laser beam across the sample in a raster pattern as presented in Figure 1-

2.

Figure 1-2 Raster scanning pattern

The raster scanning pattern is performed repeatedly until an entire volume of targeted

region is acquired, then reset back to the initial location and the cycle repeats. A series

of laterally adjacent A-scans along the forward scanning direction are combined into a

cross-sectional view of the sample called a B-scan. Similarly, combining a sequence of

laterally spaced B-scans yields a reconstruction of the sample volume. And finally, the

en-face view of the retina is a 2D projection by summing up all intensity values along the

axial directions. Figure 1-3 illustrates the volume reconstruction of the retina using OCT.

Figure 1-3 Reconstruction process of OCT image

6

1.2. Research Motivations

With the introduction of OCT in clinical ophthalmic imaging and the quantitative analysis

of the retinal volume, clinicians have been able to detect the two major blinding diseases,

namely AMD and DR, in the early stages and also track pathological changes as well as

response to treatment. The progression of degenerative retinal diseases is monitored by

measuring the thickness changes between retinal layers. Thus, extraction of the retinal

layers through image segmentation is one of the first steps to the analysis of OCT data.

A cross-sectional view of the OCT macular B-scan with marked layers is shown in Figure

1-4

Figure 1-4 Target retinal layers of a representative cross-sectional OCT image
centered at the fovea

In addition to the thickness measurement, the retinal image segmentation result can also

be used to enhance the view of retinal vasculature network. Visualization of the retinal

blood vessels is achieved by processing the flow contrast images using Speckle

Variance OCT (svOCT) techniques [9]. The detail of svOCT is beyond the scope of this

thesis. The basic idea for generating flow contrast images is by calculating the speckle

variance from a set of B-scans acquired at the same location. This speckle variance

7

computation emphasizes particles in the retina that are in motion by generating contrast

to locations where the speckle patterns change in the image. Thus, the blood vessels

are pronounced stronger from the structural tissues in the retina.

Currently, the quantitative analysis is conducted in post-processing. Due to the high

computational complexity and the large amount of data to process, the result of the

retinal image segmentation cannot be displayed intra-operatively in the traditional

method with existing technology. A method that permits quantitative real-time

observation of the dynamic changes that occur in the retina during surgery will be helpful

to reduce the risk of the real-time decision-making.

For intra-operative imaging, the reliability of the segmentation is one of the first things to

consider since the result could have direct impact on the decision-making during surgery.

In the past decade, the maximum-flow/minimum-cut (also known as Graph-Cut)

segmentation method introduced by Boykov has become increasingly useful in the realm

of image segmentation due to its robustness [10]. In addition to concerns in the quality of

the segmentation, intra-operative image segmentation would also need to ‘real-time’ fast.

Thus, computational complexity has to be carefully considered. The Graph-Cut (GC) has

two subset algorithms: Augmenting-Path (AR) and Push-Relabeling (PR). Although PR

does not have the best time complexity, in real world practice however, it has been

proven to be the fastest running GC algorithms [11]. Moreover, PR is inherently

parallelizable since the algorithm only considers local dependency during the push

operation. If the parallelization of the PR is well applied, the overall processing time of

segmentation can be reduced accordingly. With the advancement in microprocessors

technology in recent years, the Graphics Processing Unit (GPU) has emerged as a

powerful tool for massively parallel processing. The NVIDIA GPU Software Development

Kit (SDK) has a built-in image library for PR GC segmentation [12].

The goal of this thesis is to verify the possibility of conducting retinal image

segmentation in real-time for 200kHz laser source system by leveraging the

computational power of GPU, and the qualitative result of its applications in measuring

retinal thickness and enhancing the visualization of vasculature network. In this thesis,

Chapter 2 provides the basics of parallel programming environment. Chapter 3

8

introduces the PR GC algorithm and its parallel adaptation. Chapter 4 describes the

processing steps for achieving real-time segmentation. Chapter 5 will cover both

quantitative benchmarking of the GPU implementation of real-time retinal segmentation

and the qualitative analysis of the results of the thickness measurement and

visualization of retinal vasculature network for the macular region. Lastly, chapter 6 will

cover the future work and upcoming changes in parallel programming environment.

9

Chapter 2.

Heterogeneous computing

Medical image processing procedures are often very computationally demanding due to

the large scale of medical datasets to process. Traditionally, Central Processing Units

(CPUs) are the dominant choice for the scientific researchers. However, with the

increase in the size of medical datasets, the serial computational nature of the CPU can

no longer satisfy the ever increasing demand for real-time visualization. In recent years,

the advancement of Graphics Processor Units (GPUs) architecture has enabled its

capability for massively parallel computation in a wide range of medical imaging

applications, including OCT imaging and retinal segmentation. Since medical imaging

applications involve both algorithmic and parallelizable image processing, a

heterogeneous solution that combines both CPU and GPU is required. This chapter will

cover the fundamentals of both CPUs and GPUs, as well as the computational platform

that employs heterogeneous computations.

2.1. Central Processing Unit basics

A CPU is essentially the brain of a computer. It is designed for wide range general

purpose applications, ranging from the simplest logical operations to sophisticated

algorithmic calculations. The principal components of CPU include the Arithmetic Logic

Unit (ALU) that performs arithmetic and logic operations, the processor registers that

supply operands to the ALU and store the results of ALU operations, and the control unit

that fetches data and instructions from main memory to the processor registers [13].

Modern design of a CPU also includes system components on a single integrated circuit.

The specific components vary depending on what purpose the CPU is designed for, but

10

generally speaking these system components include: a shared cache memory between

cores, memory controller, peripheral interfaces, and main processing cores [14]. Figure

2-1 displays the general layout of a die map of the 6th generation intel Skylake™

processor.

Figure 2-1 Intel "Skylake" processor die layout

CPU caches are special types of memories that speed up the instruction loading process.

Typically there are 3 layers of caches in current CPU lineups [14]. L1 cache is core

dedicated and can pre-store the information that CPU is most likely to use before the

next instruction. It eliminates the data accessing time from CPU register to system

memory (Dynamic Random Access Memory, DRAM). Every instruction and its data

need to be available at the time they are requested so that the threads can be operated

at full speed. If the information for the next instruction is not available in L1 at the time of

request, the CPU will then look for the correct information from each level of cache,

which results in many wasted cycles and a stalling in performance. Thus, CPUs are

required to equip large local caches to keep themselves from stalling [15].

11

A CPU core has a much higher clock rate compared to the GPU counterpart with heavy

optimization towards serial instructions. This was due to the fact that traditionally

computer algorithms were implemented as a serial stream of instructions. Nowadays a

mainstream CPU can achieve a clock rate of more than 4.0 GHz per core. The

processing power of a processor is measured in terms of Floating-point Operations Per

Seconds (FLOPS). FLOPS can be calculated using the equation:

𝐹𝐿𝑂𝑃𝑆 = 𝑠𝑜𝑐𝑘𝑒𝑡𝑠 ×
𝑐𝑜𝑟𝑒𝑠

𝑠𝑜𝑐𝑘𝑒𝑡𝑠
 × 𝑐𝑙𝑜𝑐𝑘 ×

𝐹𝐿𝑂𝑃𝑠

𝑐𝑦𝑐𝑙𝑒
 Eq. 2.1

Specifically for a state-of-the-art Intel Skylake i7 processor, the performance per clock is

32 FLOPS for single precision operations [14], which roughly translates to 500 GFLOPS

maximum theoretical performance. According to the Linpack™ benchmarking tool, the

processing power for arithmetic operations is roughly 240 GigaFLOPS [16]. Please note

that data throughput is not measured in FLOPS. FLOPS measurement merely offers a

measurement for maximum processing capability when the computational environment

is ideal. A direct comparison between GPUs and CPUs will be presented in the next

section.

2.2. Graphics Processing Unit Basics

A Graphics Processing Unit (GPU) is a specialized device that manipulates memory for

an image buffer to accelerate the rendering process of the image output, traditionally

used in video games where the application heavily focuses on rendering geometric

objects for the gameplay. The geometric objects are displayed on the monitor as

polygons that consist of pixels output by GPU. Each pixel is essentially a single entry of

the output data, and the GPU uses a set of processors to compute such pixel output in

parallel. The computational nature of parallelism made GPU suitable for large-scale data

computation. As a result, nowadays the GPUs are designed to be a general purpose

computational device to accelerate computational workloads in areas such as financial

modeling, cutting-edge scientific research or even natural resource exploration [17].

12

Just like CPUs, GPUs also have ALU, registers and memory control units. However,

these three components are built within a set of processors called Streaming

Multiprocessors (SM) or Streaming Multiprocessors eXtreme (SMX) for recent

generations. The major component of a GPU consists of SMs, global memory and other

system agents. The global memory (Video-RAM) is a memory pool dedicated for GPU

and separated from CPU space. This is because data access through the Peripheral

Component Interconnect Express (PCIE) creates huge latency in running time. Hence it

is computationally economical to have local memories for fast accessing, then transfer

the result back to DRAM through PCIE once the computations are complete. In addition

to the L1 cache within each individual SM, for recent generations of GPUs, there is also

a L2 cache memory block shared by all SMs for faster memory access. Small L2 cache

memories are provided to help control the bandwidth requirements of applications so

that multiple threads that access the same memory data do not need to all go to the

DRAM. Figure 2-2 displays the chip layout of a Kepler GPU GK110, of which the GPU

used for this thesis.

Figure 2-2 Die layout for NVIDIA Kepler™ architecture

Each SM is capable of supporting thousands of co-resident concurrent hardware threads,

up to 2048 on modern architectures. All thread creation, scheduling and synchronization

are performed entirely on hardware by the SM. To efficiently manage such large number

of threads, the SM employs a unique architecture called Single Instruction Multiple

Thread (SIMT), meaning that all stream processors (GPU cores) execute the same

instructions simultaneously but with different data. SM’s multithreaded instruction unit is

13

divided into warps with 32 threads for each warp [18]. A warp is the smallest entity for

arithmetic operations. All instructions are issued in order and there is no branch

prediction and no speculative execution.

2.3. Differences between CPU and GPU

As compared to their CPU counterparts, GPU cores are designed such that more

transistors are devoted to data processing rather than data caching and flowing control.

Since each thread executes unified operations, the need for a sophisticated flow control

is negligible. Threads on a CPU are generally heavy-weight entities. The operating

system must constantly be swapping threads on and off from the CPU execution

channel to provide multithreading capability. In comparison, threads on GPUs are much

more light-weight. Since separate registers are allocated to all active threads, no

swapping of registers is needed when switching among GPU threads. Resources stay

allocated to each thread until the thread completes its execution. However, allowing

massively concurrent data throughput increases the latency for memory transfer

significantly, as high data throughput and short latency are fundamentally in conflict [19].

Particularly, PCIE has a high data bandwidth up to 16GigaBytes per second (GB/s) for

PCIE 3.0, but with latency up to milliseconds [20]. In comparison, the data accessing

latency for the latest CPU DRAM DDR4 is at the level of sub-nanoseconds [21]. In short,

CPU cores are designed to minimize latency for one or two threads at a time whereas

the GPU cores are designed to handle large number of concurrent lightweight threads

and sacrifice latency in order to maximize the data throughput [22].

With the heavy optimization towards massively concurrent throughput, the maximum

computational performance of modern high-end GPUs can reach over 12 Tera Floating-

point Operations Per Second (TFLOPS) [23]. For the NVIDIA Quadro™ K6000 GPU

used in this research, the maximum computational performance is 5.2 TFLOPS, which is

faster than the maximum performance of a high-end CPU by magnitudes [23]. In medical

imaging where the vast amount of data throughput is parallelizable, the GPU is a clear

winner in terms of processing powers.

14

2.4. Needs for Heterogeneous Computing

The GPUs outpace CPUs in terms of raw processing power thanks to the light-weight

threads and large data throughput. However, GPUs operates poorly when it comes to

algorithmic operations due to the very same reasons of light-weight threads and high

latency induced by its large data throughput. As medical imaging programs do not solely

process images, but also run complex multi-threaded tasks that controls the imaging

system, a heterogeneous combination of CPU and GPU is required for optimal

processing rates.

Figure 2-3 OCTViewer thread distribution

Particularly for Optical Coherence Tomography applications, the imaging software is

responsible for at least three independent complex tasks: 1) laser scanning control; 2)

camera synchronization and data acquisition; 3) signal and image processing. The

thread number for the first two tasks is small but heavy-weight algorithms that require

low operation latency, which cannot be provided by GPUs. Thus, for optimal High-

Performance Computing (HPC), a heterogeneous solution is required for executing the

sequential parts on the CPU and numerically intensive parts on the GPU.

15

2.5. CUDA platform

In November 2006, NVIDIA introduced Compute Unified Device Architecture (CUDA), a

general purpose scalable parallel computing platform for GPUs. It allows the developer

to bypass the low-level Application Programming Interfaces (API) and simply code in

common computer languages for heterogeneous applications [22]. For the OCT imaging

software, the CUDA language we used is CUDA C. The CUDA computing system

consists of a host, traditionally a CPU, and one or more devices that are typically GPUs.

Each CUDA source file can have a mixture of both host and devices code. Any

traditional C/C++ code that runs on CPU will become host code by definition. Once

device functions and data declarations are added to a source file, it is no longer

acceptable to a traditional C compiler [24]. Thus, the mixed source file needs to be

compiled by a compiler that recognizes these additional functions and declarations,

which is NVIDIA C Compiler. (NVCC) Figure 2-4 shows the processing flow for CUDA

program compilations.

16

Figure 2-4 Code compilation flow [18]

The term “scalable” indicates the ability to scale the performance in parallelism through

leveraging an increasing number of processor cores throughout the technology

development. The platform enables data parallelism through providing hierarchies of

thread groups and shared memories. This hardware architecture guides the programmer

17

to partition the big challenging problem in sub-problems that can be solved

independently in parallel by blocks of threads, and each sub-problem into finer pieces

that can be solved cooperatively and simultaneously by all threads within the block. All

blocks of threads will be scheduled on available SMs as shown in Figure 2-5.

Figure 2-5 An example of a multithreaded program partitioned into blocks of
threads that execute independently on each GPU [22]

CUDA employs a Single-Program-Multiple-Data (SPMD) programming model such that

sequential instructions from one host thread instantiate many device threads in parallel.

When executing a CUDA program, the kernel functions are launched by large number of

threads on a device. All threads that are generated by a kernel launch are collectively

called a grid. A grid consists of an array of thread blocks, and each thread block can

contain up to 2048 threads for modern GPUs. Since CUDA uses sequential instructions,

the program will start from the host and continues on the host until another kernel is

18

launched or the program is terminated. When all threads of a kernel complete their

execution and the corresponding grid termination, the execution will then return back to

the host and repeat. Figure 2-6 shows an example for a CUDA program execution.

Figure 2-6 CUDA program execution flow [22]

19

For demonstration purpose, the CPU and GPU execution do not overlap in the example

shown above. In real world applications, those two can overlap to reduce the overhead

and improve the performance. Figure 2-7 is a sample code for a kernel definition and

launch in CUDA C.

Figure 2-7 Sample code for kernel launch

The host and devices have separated memory due to the fact that devices have their

own dedicated VRAM (global memory). To execute a kernel, the memory for the data

needs to be allocated to the device memory space and the data itself needs to be

transferred from the host memory space to the allocated device memory. Similarly, after

device execution, the result needs to be transferred back from the device memory to the

host memory and stored to free up the device memory as they are no longer needed.

20

However, please note that the data transfer latency through PCIE is huge and needs to

be minimized as much as possible. Thus memory transfer between the host and devices

shall be restricted to only large grouped raw data input or for displaying results. For OCT

imaging software, after the retinal image is finished processing from raw spectral

interferometric data, the result will be sent back to the host for OpenGL™ display. And

then the cycle will repeat for another segment of spectral data input.

2.6. Summary

In this chapter, we covered the basics of CPUs and GPUs and compared them for their

advantages and disadvantages of usage. The comparison laid down the narratives for

the demand of heterogeneous computing for optimal HPC. A programming platform

called CUDA is used and described to further explain the structure of heterogeneous

computing. The core algorithms for retinal GC segmentation will be discussed in the next

chapter.

21

Chapter 3.

Segmentation theory

In the previous chapter, the basics of heterogeneous computing for acceleration of

retinal segmentation was presented. In this chapter, the details of Push-Relabel Graph-

Cut algorithm (PR GC) and Connected Component and Labeling (CCL) that were used

in the implementation of this thesis will be discussed.

3.1. Graph-cut background

In computer vision, segmentation is the process of partitioning digital images into

multiple regions (sets of pixels), according to some homogeneity criterion. The problem

of image segmentation is a well-studied subject. While there are a variety of approaches

to solving this problem, minimum cut / maximum flow algorithms have emerged as the

preferred tool over others due to their relative efficiency and accuracy. The general

energy based function can be summarized as follows:

𝐸(𝐿) = ∑ 𝐷𝑝(𝐿𝑝) + 𝑝∈𝑃 ∑ 𝑉𝑝,𝑞(𝐿𝑝, 𝐿𝑞) (𝑝,𝑞)∈𝑁 , Eq.3-1

where 𝐿 = {𝐿𝑝|𝑝 ∈ 𝑃} is a labeling image of 𝑃; 𝐷𝑝(∙) is a data penalty functions which

indicates the individual label-preference of each pixel based on its observed pixel

intensities; 𝑉𝑝,𝑞 is an interaction potential which penalizes the discontinuity between

neighbouring pixels; 𝑁 is a set of pairs of neighboring pixels [10]. In the context of flow

networks in image segmentation, those pairs of neighbouring pixels are defined as being

connected by edges 𝐸 with each pixel 𝑣, 𝑤 ∈ 𝑉 × 𝑉 where V is the vertices of the graph.

The penalties in the energy function are referred as ‘cut cost’ and a cost is assigned to

22

all edges in the graph. Image segmentation is achieved by cutting the flow network into

partitions.

In practical applications, we want to extract the target region of a given image (defined

as foreground) and treat the rest of the image as noise (defined as background). This

will bring down the labeled image into just a binary image. Thus, there are two special

terminal vertices added to the network: source 𝑠 and sink 𝑡 . The flow network

constructed from the given image is then referred as a graph 𝐺. The cost of the cut 𝐶 is

the total cost of all edges separating the two groups. The cost of an edge is also called a

capacity in terms of flow networks. The theorem of Ford and Fulkerson stats that a

maximum flow from 𝑠 to 𝑡 saturates a set of edges in the graph dividing the vertices into

two disjoint parts {𝑆, 𝑇} corresponding to a minimum cut. Thus finding the maximum flow

problem is equivalent to finding a minimum cut. The process of image segmentation that

uses algorithms based on maximum-flow/minimum-cut is often referred as graph cuts.

Generally speaking, the algorithm for graph cut can be categorized into two groups:

Goldberg-Tarjan “push-relabel” and Ford-Fulkerson “augmenting paths” [10]. In this

section, we will focus on the push-relabel algorithm as this approach exhibits good data

parallelism and maps well to the CUDA programming model.

3.2. Push-relabel Algorithm for Graph Cuts

In the general maximum flow problem, a directed weighted graph 𝐺 = (𝑉, 𝐸) consists of

a set of vertices 𝑉 and set of directed edges 𝐸 that connects these vertices. The size of

V is total number of pixels 𝑛 and size of set 𝐸 is total directed number of edges between

each vertex 𝑚 . A source 𝑠 and a sink 𝑡 are additional terminal vertices for data

partitioning. Each edge (𝑣, 𝑤) ∈ 𝐸 has a capacity 𝑐(𝑣, 𝑤). Directed edges indicate that

the capacity of flowing is directional, meaning 𝑐(𝑣, 𝑤) = −𝑐(𝑤, 𝑣). For all edges (𝑣, 𝑤) ∉

 𝐸 , we define 𝑐(𝑣, 𝑤) = 0. The push-relabel algorithm introduces extra components to

the equation: pre-flow, excess flow, residual graph and height labeling.

23

1. Pre-flow 𝒇𝒑

In Ford-Fulkerson’s augment path algorithm, a flow 𝑓 on the graph 𝐺 is a real valued

function that satisfies the following constraints:

a) 𝑓(𝑣, 𝑤) ≤ 𝑐(𝑣, 𝑤) given (𝑣, 𝑤) ∈ 𝐸
b) 𝑓(𝑣, 𝑤) = − 𝑓(𝑤, 𝑣)

c) ∑ 𝑓𝑖𝑛(𝑣) = ∑ 𝑓𝑜𝑢𝑡(𝑣) given 𝑣 ∈ 𝑉 − {𝑠, 𝑡} and all edges (𝑣, 𝑤) ∈ 𝐸
Eq.3-2

The first constraint states that an edge on the graph can only carry flow less than or

equal to its maximum edge capacity. The second constraint states that the flow is also

directional. The last constraint states the flow conservation for all edges on the graph

except the edges that directly connecting terminal vertices 𝑠 and 𝑡.

The definition of a pre-flow 𝑓𝑝 is same as the flow definition in Ford-Fulkerson’s augment

path algorithm except that the conservation constraints have been relaxed so that the

amount of flow into a vertex is allowed to exceed the amount of flow out of the vertex.

Hence, the pre-flow satisfies:

a) 𝑓𝑝(𝑣, 𝑤) ≤ 𝑐(𝑣, 𝑤) given (𝑣, 𝑤) ∈ 𝐸

b) 𝑓𝑝(𝑣, 𝑤) = − 𝑓𝑝(𝑤, 𝑣)

c) ∑ 𝑓𝑝,𝑖𝑛(𝑣) ≥ ∑ 𝑓𝑝,𝑜𝑢𝑡(𝑣) given 𝑣 ∈ 𝑉 − {𝑠, 𝑡} and all edges (𝑣, 𝑤) ∈ 𝐸
Eq.3-3

The relaxation of flow conservations introduces the second component, excess flow.

2. Excess flow 𝒇𝒆

For a vertex 𝑣 ≠ {𝑠, 𝑡}, the excess flow 𝑓𝑒(𝑣) is defined as the net flow into vertex 𝑣:

𝑓𝑒(𝑣) = ∑ 𝑓𝑝,𝑖𝑛(𝑣) − ∑ 𝑓𝑝,𝑜𝑢𝑡(𝑣) Eq.3-4

The vertex 𝑣 ∈ 𝑉 is active (overflowing) if the excess flow 𝑓𝑒(𝑣) > 0. Note that a pre-flow

becomes a flow if and only if the flow conservation is realized, in other words, the excess

of every non-terminal vertex is zero. Thus transforming a pre-flow to flow that saturates

the network involves reducing and eventually eliminating all excess flows.

24

3. Residual graph 𝑮𝒇

A residual capacity of an edge is defined as:

𝑐𝑓(𝑣, 𝑤) = 𝑐(𝑣, 𝑤) − 𝑓𝑝(𝑣, 𝑤) Eq.3-5

, where 𝑐 is the edge capacity. The graph consists of residual edges is called a residual

graph 𝐺𝑓. For an edge (𝑣, 𝑤) ∈ 𝐸 that carries flow and capacity, the residual graph 𝐺𝑓

includes a forward edge with the residual capacity 𝑐𝑓 and a reverse edge with residual

capacity of pre-flow 𝑓𝑝. Edges with zero residual capacities are omitted from the residual

graph 𝐺𝑓.

4. Height function 𝒉(𝒗)

The height function is used to ensure the regulation of push operation and termination of

the algorithm. Imagine that each vertex in the flow network is a water tank, with unlimited

water supply coming from source 𝑠. The goal is to push water flowing into sink 𝑡 as much

as possible. Since the water flow can only travel downwards, the height of each water

tank needs to be labeled in order to regulate the push operation. The excess flow at

vertex 𝑣 ∈ 𝑉 can ‘push’ if and only if the following three constraints are met:

a) ℎ(𝑠) = 𝑛, where 𝑛 is the number of vertices in the graph 𝐺𝑓

b) ℎ(𝑡) = 0
c) ℎ(𝑣) ≤ ℎ(𝑤) + 1 for (𝑣, 𝑤) ∈ 𝐸𝑓 where 𝐸𝑓 is the collection of edges

in residual graph 𝐺𝑓

Eq.3-6

The third constraint is stating that the pre-flow can be pushed downhill but cannot be

pushed too fast. Since the source is starting at height 𝑛, 𝑡 is at height 0, and each edge

of the residual graph only goes downhill by at most 1, there cannot be any s-t path with

more than n-1 edges. Thus when there is a feasible pre-flow with no excess flow left,

and all the labeling constraints are hold, then the flow must be a maximum flow.

25

3.3. Operation of the algorithm

The high-level strategy of the algorithm is to maintain the three invariants above while

trying to zero out any remaining excesses. The operation consists of initialization, and

then iteration between push and relabeling. The initialization starts by creating a residual

graph 𝐺𝑓:

 Set ℎ(𝑠) = 𝑛;
 Set ℎ(𝑡) and all ℎ(𝑣) for 𝑣 ∈ 𝑉 − {𝑠, 𝑡} to ℎ(𝑣) = 0;

 Set 𝑓𝑝 = 𝑐 for all edges outgoing from source 𝑠

 Set 𝑓𝑝 = 0 for all other edges (𝑣, 𝑤) ∈ 𝐸

The height constraints hold only during push operations. Thus the pre-flow can flow to

vertices connecting to the source even though their height difference is more than 1.

Then, the push operation is restricted by the height constraints:

 Choose an outgoing edge (𝑣, 𝑤) of v in 𝐺𝑓 with ℎ(𝑣) = ℎ(𝑤) +1

 ∆= 𝑚𝑖𝑛{ 𝑓𝑒(𝑣), 𝑐𝑓(𝑣, 𝑤)}

 Push ∆ along the edge (𝑣, 𝑤)

Once all outgoing edges (𝑣, 𝑤) of 𝑣 in 𝐺𝑓 are saturated, and all residual edge 𝑐𝑓 from 𝑣

are not available for push due to the height constraint, the relabel operation is invoked to

increase the height so that the flow can be continued.

In summary, the algorithm in pseudo code is as follows:

push_operation(excess_flow, residual_capacity, const height)

{

 for (each vertex in V)

 for (each w = neighbour(v))

 ∆= min(residual_capacity(v,w), excess_flow(v))

 excess_flow(v) = excess_flow(v) – ∆

 excess_flow(w) = excess_flow(w) + ∆

 residual_capacity(v,w) = residual_capacity(v,w) – ∆

 residual_capacity(w,v) = residual_capacity(w,v) + ∆

}

26

relabel(height, const excess_flow, const residual_capacity)

{

 for(each vertex in V)

 temp_height = infinite

 for(each w = neighbour(v))

 if(residual_capacity>0)

 temp_height = min(temp_height, height(w)+1)

 height(v) = temp_height

}

while (vertex v != s or t)

{

 choose a vertex v with maximum height h(v)

if(vertex v is overflowing)

 if(outgoing_edge(v,w) with h(v) = h(w)+1 exists)

 push_operation()

 else

 relabel()

}

Here is an intuitive example of the operation of the algorithms. Assuming the vertices in

the network are water tanks and all edges connecting them are water pipes. We want to

find the maximum flow of water from the source tank to the sink tank. Each of these

water tanks are arbitrarily large and will be used for accumulating water. A tank is said to

be overflowing if it has excess flow, or water, in it. Tanks are at height from ground level.

The water can traverse from a higher lever to a lower level. We can push new flow from

a tank to another which is downhill from the first one. Note that there still can be a flow

from a lower tank to a higher tank, the height level only determines the direction of a new

flow.

27

The initial height of the source 𝑠 is set at 𝑛 and sink 𝑡 is set at 0. All other tanks have

initial height 0, and their height increases as water flows in. There will be an infinite

amount of flow coming into the source 𝑠, pushed towards the sink 𝑡 until the whole flow

network is saturated. Each outgoing pipe carries flow at its maximum capacity. The flow

will be pushed downhill gradually from an overflowing tank to another tank. If an

overflowing tank is at the same level or below the tanks to which it can push flow, then

the current tank will be raised in level to a height just high enough to push more flow. If,

after all the push operations are complete and the sink 𝑡 is not reachable from any

overflowing tank, all the excess flow will be sent back to the source 𝑠. Since the height of

the source is n and there are only n tanks besides the source and sink, eventually all the

tanks except the source and sink will stop overflowing. At that point, the maximum flow

state is reached.

3.4. Parallel implementation:

3.4.1. Parallel push

The push operation at arbitrary tile 𝑣 is dependent on edges connecting neighboring tiles

and its excess flow and height. Thus, in parallel structure, the intra-tile dependencies

need to be handled cautiously. For instance, a push from 𝑣 to neighbor 𝑤 will update the

excess flow for both 𝑣 and 𝑤, as well as the residual edge capacities (𝑣, 𝑤) and (𝑤, 𝑣).

To avoid potential read-after-write or write-after-read hazard, all the variables can be

processed within the current neighbor direction where the pushing operation occurs:

28

push_single_direction(row_index, excess_flow, residual_capacity, const height)

{

 for(each vertex from row_index to block coverage)

 w = v+1 //right direction for instance

 if(vertex v is overflowing)

 ∆= min(residual_capacity(v,w), excess_flow(v))

 excess_flow(v) = excess_flow(v) – ∆

 excess_flow(w) = excess_flow(w) + ∆

 residual_capacity(v,w) = residual_capacity(v,w) – ∆

 residual_capacity(w,v) = residual_capacity(w,v) + ∆

}

Thus, for single direction operation, there are no intra-tile dependencies from tiles that

are orthogonal to the pushing direction. Therefore, the push operation can be divided

into directional based sections. One single direction processing can be further sub-

divided into multiple groups to process in parallel. There is a potential hazard only when

assessing the excess flow between the terminal tiles of each chunk. This problem is

dealt by assigning one CUDA block with four warps (128 threads) where each thread

transports flow over a chunk of 8 pixels per direction. The update of the neighbors

outside of the assigned chunk is done after all threads are synchronized. This step

ensures that no data hazard will occur during the operation [25]. Updates outside the

tiles will be stored into a special border array and use a separate kernel to add the

border array to the excess flow after each push kernel to avoid data hazard.

3.4.2. Parallel relabel

The parallelization of the relabel operation is simpler in comparison to push operation.

All height variables can be updated in parallel by launching one thread per vertex. Since

the height value stands by itself for each vertex, there will not be any racing condition

occur during relabel operation.

29

3.5. Connected Component and Labeling

No algorithm is perfect. Sometimes the PR GC could segment unwanted regions as

foreground. These unwanted regions would lead to a corrupted result for retinal

segmentation. Thus, further processing steps are required to ensure the removal of all

unwanted segmentation artifacts. Connected Component Labeling (CCL, also known as

Connected Component and Analysis “CCA”) is an algorithmic application of graph theory

that detects connected elements in input data and finds a unique label for every set of

connected elements [26]. CCL is often used as a complementary algorithm to identify

which of those results extracted by segmentation is the region of interests. For the result

of retinal segmentation, the extracted retinal layers are in much larger connected groups

than those of small segmentation artifacts. CCL will then identify the two largest

connected groups as retinal layers (ILM and BM) and remove all other unwanted

artifacts.

The core of the CCL is a two-pass method where the first pass assigns temporary labels

and stores equivalences between all connected neighbouring elements, and the second

pass analyzes the equivalences and replaces each temporary label by the smallest label

of its equivalent class. One additional step is added for extracting the two largest

connected groups to deliver the final segmentation result. The flow of the algorithm is as

follows:

1. First Pass:
a) Iterate through each element of the data in a raster scanning pattern
b) If there are no labeled neighbours around the current element, uniquely label

the element and continue. Only North-East, North, North-West and West are
checked and needed for label look-ups.

c) If there is a labeled neighbour, assign the current element with the smallest
label that was found in the neighbour elements.

d) Store the equivalence between neighbour labels in the labeling stack.

2. Second Pass
a) Iterate through each element of data in a raster scanning pattern
b) Relabel the element with smallest equivalent label from the stack
c) Add the current element to the element counts for current label

3. Region of interest extraction
a) Find the two connected groups with largest element counts, then set all other

groups to background (set the pixel value to zero in terms of gray scale images)

30

The term “neighbour” is defined as the non-background elements around the current

tile(8-way connectivity). The foreground is the extracted objects from the retinal

segmentation. Figures 3-1 to 3-4 provide a graphical example of the labeling process.

Figure 3-1 Representative segmented binary image by PR GC

The CCL will take the segmented binary image as input, after running the first pass, the

following labels are generated as shown in Figure 3-2.

31

Figure 3-2 Generated labels after the first pass

Then, in the second pass, each element label will be rearranged based on the lowest

neighbouring label value, and the number of connected element will then be stored in

the stack for each equivalent group.

32

Figure 3-3 Labeling result after second pass

In the final step, the CCL algorithm will extract the two largest connected groups and

zero out all other groups. The result is shown in Figure 3-4

33

Figure 3-4 Final result of CCL

Hence, after GC segmentation, the CCL will remove all unwanted artifacts and deliver

the correct result for ILM and BM layer. However, for the current revision, the CCL is

implemented in traditional serial instruction processing with a CPU. This implementation

slows down the segmentation pipeline by a considerable amount. This is because the

CCL is inherently a sequential instruction algorithm, which is not trivial to program in

parallel. In the result and discussion of Chapter 5 there will be a detailed benchmark

analysis on the effect of CCL.

34

3.6. Summary

In this chapter, we discussed the details of Graph-Cut segmentation. The GC

segmentation is based on the maximum-flow/min-cut problem introduced by Boykov et al

[10]. There are two variants of GC algorithm, Ford Fulkerson’s Augmented Path and

Goldberg-Tarjan’s Push-Relabel. The PR algorithm configures the flow network with pre-

flow mechanism. The cut of the graph after complete iterations of push and relabeling

operations represent the segmented foreground, which may contain unwanted artifacts.

An additional Connected Component and Labeling step is applied to refine the final

result. In the next chapter, we will apply this PR GC algorithm in our retinal imaging

program.

35

Chapter 4.

Retinal Segmentation Pipeline

This chapter describes the implementation of GPU-accelerated Graph-Cut (GC) retinal

segmentation. The result of the retinal segmentation can be used for calculating the

retinal thickness between ILM and Bruch’s Membrane (BM), as well as enhancing the

view of vasculature networks. The SV visualization described in the following chapters

was based on the work published by Xu et al [27].

4.1. Asynchronous parallel computing

The definition for real-time applications states that the program must guarantee a

response within a specific time constraint to meet the process deadline. The Swept

Source speckle variance OCT (SS-svOCT) acquisition system in the Eye Care Center

(ECC) of Vancouver General Hospital (VGH) is equipped with a laser source with line

rate of 200kHz, meaning the acquisition time for a volume at the size of 1024 x 300 x

900 frames takes around 1.575 seconds. A frame is defined by one complete scan over

the transverse plane of the retina. The required timeline is very challenging to meet with

single GPU solution. Thus, for real-time image segmentation, a multi-GPU solution is

needed to meet the processing deadline. Data input will then be divided into sub-

volumes and distributed to each individual GPU.

In the CUDA processing pipeline, data are transferred and processed in small segments

rather than an entire volume. This way the program will start to load the next segment of

data while processing the current ones. After current segment finished processing, the

next segment will be transferred to device memory space and ready to be processed.

Essentially this is a data flow control mechanism that reduces the processing lag when

36

new data comes in, making the imaging system more responsive to the data input. The

segments of data are referred as “batches” in the rest of this article. Details of how batch

processing works are documented by Jian et al [8]. With multiple GPUs installed in the

system, each individual GPU will operate in the same batch structure. The flow of the

processing tasks will be distributed as described in Figure 4-1.

Figure 4-1 processing work flow for segmentation pipeline for dual GPU
computation system

In the scenario where only one CUDA device is installed for data processing, if the data

volume is partitioned into 30 batches, the CUDA device will read the data memory batch-

37

by-batch from the host memory space. In this case, the host is the CPU, and the device

is the GPU. If the processing time of a batch is longer than the acquisition time, then the

system will lag. This can be resolved by using a multi-GPU setup, in which each CUDA

device will read the data from host memory with memory offsets. When there were two

CUDA devices processing the data volume, device 0 will process every second batch (ie,

the even batches) while device 1 will process the other ones (odd batches). Each CUDA

device will treat the sub-volumes as an individual entity, which is acceptable because the

data in batches are independent of each other. All sub-volumes will be processed

simultaneously. After each CUDA device finishes the current cycle, the result of the sub-

volume will be transferred back to the host memory. Since each individual GPU operates

independently, the entire processing is asynchronous. Without considering data traffic

control and device thermal throttling, the theoretical performance should be scaled by

the number of GPUs running in the system. In this research, an additional GPU was

installed for display tasks only. This way the CUDA devices would be able to process the

computational tasks full time.

4.2. Batch processing and real-time requirement

The image acquisition and processing program was designed to have two counters: a

frame counter for visualization and a batch counter for processing. A batch is an evenly

distributed segment of the input volume. The frame counter is the frame index of the B-

scan image within the volume;it indicates which frame from the data volume is currently

being displayed. On the other hand, the batch counter is the starting frame index of each

batch being processed by the GPU. When the program processes the acquired image, a

regular B-scan intensity image will be processed for every single frame. On the other

hand, the process of segmenting a single retinal intensity image could take up to 70ms

using graph cuts. Thus, applying graph cut segmentation on every single frame wouldn’t

be feasible for real-time high-resolution imaging. Therefore the input image data in the

batch needs to be down-sampled in order to provide fast enough volumetric processing

speed.

38

There are two ways in down-sampling the input image: reducing the B-scan image

resolution or reducing the number of frames to process. We found that during the image

acquisition, the lateral movement of the patient within the acquisition time of one batch

(roughly 100ms) is negligible [27]. Thus we decided to apply GC segmentation to the

first frame of each batch, and the result can then be used to represent the entire batch.

Figure 4-2 Real-time deadline

The definition of real-time processing states that the real-time program must guarantee a

response with a specific given deadline. That means the processing of the current batch

of data must be finished before the next input of data coming in. In the context of

medical imaging, the real-time deadline is determined by the acquisition rate. That

means, the retinal segmentation result needs to be finished and delivered for

visualization before acquiring the next batch of data, as the result needs to reflect the

change in real-time. Currently with the dual GPU setup, the processing deadline is

around 105ms and the segmentation time for batch is around 70ms. For the acquisition

size of 900 frames, a reasonable batch size for real-time processing would be around 30

frames per batch.

4.3. Segmentation Initialization

Before initializing the segmentation pipeline, we need to first eliminate the speckle noise

presented in the image. The constructive/destructive interference corrupts the retinal

image quality, ultimately making the process of segmentation pipeline slower and more

39

error prone. The speckle smoothing step shall not be computationally intensive, as

additional processing complexity may jeopardize the overall processing time. Since the

constructive/destructive interference is reflected on the image as white and black

intensity fluctuations, we can simply average all of the frames in a batch (we will call this

‘frame averaging’) to bring down the fluctuation level; the results of frame averaging

performed on a representative retinal image is qualitatively presented in Figure 4-3.

Figure 4-3 Before and after frame averaging for B-scan intensity image

The texture pattern of the retinal image will determine the run time of the segmentation

processing. The more complex the image, the slower the segmentation process will be.

Details on the benchmarking result will be discussed in the next chapter.

The bilateral filter is a nonlinear filter that combines the gray levels of the nearby pixels

based on both of their geometric closeness and their photometric similarity [28]. It

preserves the edge so that the retinal layers can be detected later during the

segmentation step. The gray scale bilateral filter for GPU is implemented from a RGBA

bilateral filter implementation in CUDA SDK sample application. The CUDA

implementation is based on the same published articles [28]. Each pixel is weighted by

considering both the Gaussian spatial distance and Euclidean color distance between its

neighbours. Figure 4-4 shows the representative effects of a bilateral filter for imaging

smoothing. As a result, the texture pattern of the filtered image has become simpler. The

Gaussian and Euclidean parameter were set such that the image was further smoothed

40

while preserving the retinal edges. This step is required for PR algorithm to perform

better in terms of correctness and speed.

Figure 4-4 Bilateral filtered B-scan intensity image

After the filtering stage, we want to construct the graph for GC. As discussed in the

previous chapter, a graph is a flow network that consists of node and edges. The goal is

to cut the graph to yield a set of coordinates that represent the result of image

segmentation. Details of the algorithm were described in Chapter 3. In the retinal image,

we define the foreground as the retinal layers, and the background as the vitreous and

posterior chamber. According to the PR algorithm, the residual edge that doesn't have

the forward capacities will be removed from the residual graph. Thus, the edge capacity

for which connections between objects and background needs to be smaller than the

edge connecting within objects or background so that they can be easily saturated from

the push operation. Since the transition in pixel values from background to objects are

quite large, the easy way to construct such a graph can be simply done by calculating

the gradient of the retinal image and assigning smooth-term (n-link) edge capacities with

values inversely proportional to the absolute intensity values of the gradient image.

Data-term (t-link) edge capacities are assigned based on the intensity levels of the

original image. Figure 4-5 shows a gradient generated from bilateral filtered retinal

image.

41

Figure 4-5 Gradient image for graph construction

42

4.4. Binary image segmentation with GPU

The NVIDIA Performance Primitives Image (NPPI) library is a collection of GPU-

accelerated functions that was pre-developed by NVIDIA for their GPUs. The NPPI

library contains the GC segmentation function that is based on PR introduced in Chapter

3. Although PR doesn't have the best theoretical time complexity, in all practicality, PR

performs the best in terms of average running time [11]. The NPPI GC segmentation

function takes the input constructed from the previous section and outputs a binary

image with the object region highlighted as white. Figure 4-6 shows a representative

retinal segmentation result for the macular region.

Figure 4-6 Binary image segmented by NPPI GC

Note that there are additional artifacts beneath the segmented layers. The GC function

outputs what the algorithm recognizes as objects, which could contain undesired

artifacts that may corrupt the result. The undesired artifact can be eliminated by

adjusting the image histogram. However, a manual approach to tuning the intensity and

contrast would defeat the purpose of minimizing the human effort during the clinical use

of this software tool. The image contrast adjustment could be automated, but since every

image volume has different histogram distributions and requires precise histogram

43

adjustment to eliminate the artifacts, this may not be a reliable solution in a clinical

environment. Therefore, additional processing steps to automatically eliminate the

undesired artifacts are required such that the clinical practicality can be achieved.

4.5. Layer extractions through CCL

The NPPI library provides morphological functions such as image erosion and dilation.

Usually, the undesired artifacts from the GC segmentation can be eliminated by such

morphological functions if the artifacts are small enough. However, in OCT imaging,

artifacts are often created by beam echoes and other noise, of which are in large and

connected forms that cannot be removed by erosion and dilation.

An algorithm named Connected-Component Labeling (CCL) is often used in companion

with the segmentation algorithm; the details of CCL were presented in Chapter 3. Rather

than smoothing the artifacts as with erosion and dilation, the CCL algorithm will label

each connected region so that we can output specific regions. In this case, our regions

of interest are the two largest connected components in the binary image, which

represent the ILM layer and the BM / Retinal Pigment Epithelium (RPE) complex,

respectively. For details of CCL, please refer to chapter 3. Figure 4-7 demonstrates the

result after applying CCL.

Figure 4-7 Before and after applying CCL on the binary image

44

Note that the CCL algorithm was implemented using CPU. This step alone takes up to

nearly 20% of the entire run time when implemented in serial operation. Due to the

sequential nature of CCL, we found it rather difficult to implement CCL properly in CUDA.

Certain CCL algorithms can be parallelized, but it has been reported that the sequential

algorithms often outperform the parallel ones in real applications [29]. There have been

reports on implementations of CCL algorithms for other applications in Computer Vision

using CUDA [25]. However, this implementation was not adapted to our existing

program due to time constraints. After GC segmentation and CCL, the final step is to

locate the coordinate of the segmented layers in the image. Figure 4-8 is a

representative result for GPU retinal GC segmentation.

Figure 4-8 Line overlay for GPU retinal segmentation result

To this point, we have successfully extracted the targeted retinal layers from the B-scan

intensity image. Recall that in Section 4.2 we downsized the total number of frames by

processing only one frame in each batch. .Therefore, before sending the segmented

layer to the next stage, which is en-face image display, the resulting coordinate set

needs to be re-interpolated back to full frame size. As explained in previous sections,

since the movement within one batch imaging is negligible, one set of segmented

coordinates is sufficient for the clinician to evaluate the result in real-time. After

segmentation and interpolation operations are complete, the program will then proceed

to generate a thickness map and the SV angiography for the final en-face views for each

of the sub-volumes they were assigned. These results from each batch will then be sent

back to host memory space and combined for OpenGL display. The detailed analysis of

45

qualitative and quantitative result for GPU Retinal layers Segmentation (GRS) will be

discussed in the next chapter.

4.6. Summary

In this chapter, we described the processing pipeline of retinal segmentation using GPU.

The segmentation algorithm uses a graph input that was interpreted from a cross-

sectional B-scan image of the retina. The retinal image is required to be pre-processed

using frame averaging and bilateral filtering before proceeding to set up the graph. The

GPU graph segmentation is executed by using a pre-built NPPI library. The GPU

segmented results could contain undesired artifacts. An additional processing step of

CCL is applied to reliably extract the targeted objects from the segmented result. After

the segmentation result is acquired, the coordinate of targeted retinal layer will be

recorded and sent back to the host for en-face view visualization.

46

Chapter 5.

GPU-Based Retinal Layer Segmentation Result and
Discussion

In this chapter, we will be reviewing the GPU retinal segmentation (GRS) results both

qualitatively and quantitatively. At the same time, we will be investigating the

environmental factors that may affect the result and the optimization of the algorithm

based on the tested cases.

5.1. Environmental setup

The retinal image acquisition system in VGH is a SS-svOCT system with a 1060nm laser

source that operates at a 200kHz A-scan rate, meaning the acquisition time for a SV

volume at the size of 1024 x 300 x 900 is roughly 1.575 seconds. All data volumes used

in this chapter are all acquired in VGH but tested on the code development machine in

the BORG lab at SFU. The hardware specification for the development machine is listed

in the following table.

47

Table 5-1 Hardware specification of testing bench

Components: Model Clock Speed Description

CPUs 2 x E5-2620 2.3GHz
2 x 6 cores, on chip PCIE

controller provides x40
PCIE3.0 lanes

RAM
8 x 8 GB

DDR3
1866MHz

Overclocked DDR3 RAM with
CL9 latency

Display GPU
GTX 460 1G

VRAM
778MHz

Fermi architecture device,

 x8 PCIE lanes were in use when
running the program

Compute GPU 0

Quadro
K6000

12G VRAM

900MHz
(797MHz)

Kepler architecture device,

 x16 PCIE lanes were in use
when running the program,

Thermal throttled to 797MHz due
to spacing

Compute GPU 1

Quadro
K6000

12G VRAM

900MHz

Kepler architecture device,

 x16 PCIE lanes were in use
when running the program

Note that the development machine is a server based entry-level workstation. The single

core computational capability of the CPU in the development machine is not on par with

the single core capability of the CPU in the acquisition machine. Our imaging software

relies more on the CPU single-core capability because of the heavy use of algorithms

and OpenGL rendering. As a result, the low clock frequency of CPU on the development

machine bottle-necks the performance by a considerable amount. This setup was used

because this is the only machine available with the full x40 PCIE lanes at the time of

writing this thesis. On the good side, if the un-optimized hardware setup could achieve

the targeted performance, then real-time performance is guaranteed in a proper

hardware environment. Moreover, both computer hardware (CPU and GPU) are two

generations behind the state-of-the-art technology, which means the code performance

can be boosted by using up-to-date hardware. More details on overall system

optimization will be discussed in the discussion and future work section.

48

5.2. Qualitative result of GPU retinal layer segmentation

In this section, we will be only focusing on the quality aspect of the GPU Retinal

Segmentation (GRS). Both of the results for thickness measurement and Segmented

Speckle-Variance Angiography (SSVA) will be reviewed. In each section, the review will

start from successful results for both healthy and pathological volumes, followed by

cases where the GRS could fail. All data volumes used in this chapter were acquired

from the ECC at VGH.

5.2.1. Thickness measurement

The macular region of a representative healthy retina is shown in Figure 5-1. GRS

accurately detected the ILM layer and BM layer as shown in Figure 5-1 (A). Panel 5-1 (B)

and (C) are the en-face view and the thickness map of the retina respectively. In

comparison to a gold standard human delineation of these layers, the automated

segmentation result follows the target layer correctly in most cases with location

mismatch less than 3 pixels distance. The SS-svOCT image acquisition system was

equipped with a 1060nm laser source, which provided an axial resolution of roughly

~2μm per pixel after Fourier transform [30]. Given that the segmented result tolerates up

to 3 pixels difference, which translates to roughly 6~7um tolerance in actual scale, the

segmentation result is on par with the axial resolution and able to provide accurate

information for retinal thickness measurement. Figure 5-1 shows a representative result

of retinal thickness map visualization.

49

Figure 5-1 Thickness map of the representative healthy volume (SV05)

The red line in Figure 5-1 (A) represents the segmented ILM layer, and the green line

represents the segmented RPE layer. With the coordinates of the ILM and BM layers

segmented in real-time, the thickness map can be generated based on the difference

between the two coordinates. The thickness map of a healthy retina is expected to have

a nominally rotationally symmetric thickness from the foveal dip to the surrounding

macular tissue, as demonstrated by 5-1(B). In the case of pathological retinas, the

rotational symmetry no longer holds when the retinal features are distorted. Such

distortion will be reflected on the thickness map. Figure 5-2 is a case of pathological data

with Age-related Macular Degeneration (AMD) and Non-Proliferative Diabetic

Retinopathy (NPDR).

Figure 5-2 Thickness map for a pathological volume with AMD and NPDR (H468)

50

In Figure 5-2 (A), the pathological distortion underneath the Outer Nuclear Layer (ONL)

has created a structural bump. The location of this particular B-scan is near the lower

portion of the en-face view, which was indicated by the red line in Figure 5-2 (B). As we

can see, the thickness map has a corresponding geographical distribution of the

thickness matching to the en-face view. Please note that this thesis does not particularly

target any specific pathology, but rather the structural features that the GRS can work

with. The pathological case listed above is for demonstration purposes.

Figure 5-3 Thickness map for a pathological volume with central serous
chorioretinopathy (H435)

Figure 5-3 shows us a pathological data with Central Serous Chorioretinopathy. The

thickness symmetry only exists in the center portion of the macular region. In the upper-

right region, the RPE layer is detached from BM layer due to the presence of the sub-

retinal fluid. As a result, the thickness of the region near the sub-retinal fluid is thinned.

The ILM layer was detected accurately. On the contrary, the RPE/BM complex are hard

to separate since they are the brightest region in the image and mixed together. Thus,

what GRS can extract is often the brightest transition from RPE/BM complex to choroid

rather than a specific location in the image. In Chapter 4, we discussed how the graph

was constructed inversely based the gradient value of the image. The bigger in intensity

difference, the easier for the push-relabel algorithm to segment the target layers. As we

may observe, the RPE detachment can create an even clearer transition from the bright

pixels to the dark ones. As a result, the algorithm chose to follow deformed RPE layers.

These results demonstrate that the retinal layer segmentation can unveil pathology

through calculating the thickness map. Before we start the section where the

51

segmentation might fail, let’s first review a case for which GRS succeeded and resulted

in a false negative. A pathological retina with a lamellar hole is presented in Figure 5-4.

Figure 5-5-4 Thickness map for a pathological volume with lamellar hole (H505)

Despite the fovea detaching from the RPE layer, GRS wasn’t affected by the dark region

created by the lamellar hole and still successfully detected the BM layer as shown in

Figure 5-4 (A). The overall thickness was unaffected. If we were merely judging from the

thickness map in Figure 5-4 (C), we might have the false impression that the retina could

be healthy if we only look at the thickness map itself, as it shows desired healthy retinal

features such that the retina has a rotationally symmetric thickness increase around the

fovea dip. The segmentation is functioning as designed because the RPE layer is still in

place. Thickness changes caused by pathological features such as lamellar holes

cannot be detected by measuring the layer thickness between BM and ILM along.

Current measurement to this issue is reliant on the display of the B-scan image, which

requires monitoring from clinicians.

52

Figure 5-5 Segmentation result corrupted by bright artifacts

Figure 5-6 Extreme case

Figures 5-5 and 5-6 show scenarios where the segmentation can fail. A healthy retina is

presented in Figure 5-5 with additional bright artifacts. The push-relabel algorithm

mistakenly recognizes the bright artifacts as foreground. Consequently, GRS delivered

an incorrect layer extraction as a result. To conclude, whenever there is unexpected

bright artifact presented near the target layer, the segmentation will incorrectly include

the bright artifact as part of the feature. Figure 5-6 shows us a retinal tissue volume with

significant motion artifact. Technically speaking it is beyond reasonable to expect any

fast segmentation algorithm would work with such corrupted anatomical structures, but

this particular volume demonstrates the other case where the segmentation can fail. For

the region marked by the region denoted by the blue annotations, the GC detected

Nerve Fibre Layer (NFL) rather than the RPE layer. This is because the RPE layer was

“discontinuous” due to the shadowing artifacts in the OCT B-scan image. Please recall in

chapter 4 that a CCL step was introduced to remove the unexpected foreground by

noise and artifacts, the discontinued RPE layer was thereupon recognized as artifacts by

53

CCL and consequently removed. Thus, the final segmentation result was corrupted as a

result.

5.2.2. Segmented SV angiography

Based on the previous section, we learned that GRS could reasonably extract the ILM

and BM layers for thickness measurement. There is more than one area where GRS can

be useful. The segmented coordinate of ILM and BM layers can be further used for

enhancing the view of SV angiography. Figure 5-7 (A) is a non-segmented SV

angiography result listed as a reference for representative image quality. The same

volume but using the segmentation results to extract only the layers of interest is shown

in Figure 5-8 against Figure 5-7 for direct comparison.

Figure 5-7 Visualization of retinal vasculature network by naive region selection
(SV05)

54

Figure 5-8 Visualization of vasculature network for a representative healthy
volume. (SV05)

In Figure 5-7(B), the middle fovea region is relatively dark because of the included extra

dark region in the Figure 5-7(A). On the contrary, the result in Figure 5-8(C) does not

have this issue. In Figure 5-8, the red line is the extracted ILM layer, and the green line

and the blue line that are covering Inner Nuclear Layer (INL) and Outer Nuclear Layer

(ONL) are generated by shifting the segmented RPE layer. Figure 5-8(B) is the regular

fundus intensity images for reference, 5-8(C) is the primary result that corresponds to

the region between red line (ILM) and green line (ONL). 5-8(D) corresponds to the

vasculature network of the region between the blue line (INL) and the green line (ONL)

whereas 5-8(E) corresponds to the vasculature network of the region between the red

line (ILM) and the blue line (INL). The images in panels D and E are additional results to

the main blood vessel visualization 5-8(C). They were displayed for quick evaluation of

the retinal structure during the real-time imaging session. Figure 5-9 shows the

vasculature network of the previously presented retinal volume with a lamellar hole.

55

Figure 5-9 Visualization of vasculature network for a pathological volume with
lamellar hole (H505)

The RPE layer detection works the same as before, but speckle variance imaging

changes the story entirely. In Figure 5-9 (C) and (D) we can clearly observe a black

region in the center fovea region. This is because the lamellar hole was created by the

detachment of the fovea from the RPE. Hence the dark region would appear around the

place where the fovea would be. Figure 5-10 and 5-11 shows the other two pathological

volumes we reviewed in the thickness measurement section.

56

Figure 5-10 Visualization of vasculature network for a pathological volume with
central serous chorioretinopathy (H435)

Figure 5-11 Visualization of vasculature network for a pathological volume with
AMD and NPDR (H468)

57

Figure 5-10 (D) displays the vasculature network between the OPL and INL without

being affected by the RPE detachment, thanks to the segmented result following RPE

layers. The white stripes observed in 5-10 (B) and (C) are motion artifacts that happen to

be more pronounced in the lower portion of the vasculature network; these artifacts are

common in current state-of-the-art OCT Angiography. Figure 5-11 shows a vasculature

network en-face images for the AMD-NPDR volume reviewed in the thickness section.

Note that in case where a retinal hole was created above the OPL layer, shifting ILM

layer for corresponding vasculature visualization would be a better approach since the

shape of INL is more close to ILM in comparison.

5.3. Limitations

Currently, the PR GC implementation by NVIDIA can be only applied on the macular

region. The PR GC does not yield correct results when a discontinuity of the target layer

is present, as is the case with images of the optic nerve head. The current GPU

implementation is not fast enough for intra-retinal layer segmentation. Since the real-

time constraint only permits us running segmentation pipeline once for each image,

intra-retinal layer segmentation is consequently not achievable as it would require

iterating the segmentation pipeline multiple times for multi-level of retinal layers.

5.4. Speed of the GPU retinal layer segmentation

The usability of the real-time GC retinal layer segmentation application for both thickness

measurement and the segmented vasculature network visualization is subject to the run

time of the pipeline. Figure 5-12 shows a representative timeline for the entire

segmented SV angiography process on a single GPU. Recall that the SS-svOCT system

in VGH takes roughly 1.575 seconds for a data volume with 30 batches. The average

acquisition time for one batch would be around 52.5 ms. For a single GPU

implementation, the retina would be required to have ideal SNR and a certain shape that

suits the segmentation algorithm in order to run in real-time.

58

Figure 5-12 Representative per-batch timeline for entire processing pipeline
captured by NVIDIA Visual Profiler

As we can see, although one batch successfully achieved under 52.5ms requirement,

the rest of batches couldn’t meet the required timeline. Please note that the hardware

used for conducting this research were outdated and couldn’t deliver the up-to-date

hardware raw performance. This 52.5ms requirement would most likely be fulfilled if a

state-of-the-art machinery was used. Regardless, our goal was to meet the real-time

requirement even if using the out-dated machine we currently have. Please recall the

parallel approach we discussed in chapter 4, where more than one GPU was used to

ease the burden of real-time constraint. In this case, we have a PC with two dedicated

GPUs for computation; this setup effectively relaxes the time requirement from 52.5ms

to 105ms since two GPUs will concurrently be working together to process the data

volume. As a result, the 105 ms easily becomes an achievable number. The healthy

volume SV05 is used as the representative dataset for benchmarking the processing

timeline. Figure 5-13 shows the batch-level processing timeline for GPU graph-cut vs

segmentation pipeline vs entire processing pipeline for thickness map calculation.

59

Figure 5-13 GC vs Segmentation pipeline vs SSVA (SV05)

All numerical benchmarking results presented in this chapter are obtained through

averaging 20 distinct measurements. This way we can minimize the fluctuation caused

by regulation of the data traffic. As indicated in the graph, the processing timeline for

both the segmentation pipeline (named as segmentation module in the above plot) and

pipeline for thickness map calculation are almost vertically offset versions of the timeline

for GPU GC. This is because the additional calculation for thickness map generation is

simply parallelized matrix subtractions and geographical pixel mapping. Most of the time

consumption was taken by memory transfers. The computational cost of the subtraction

and thickness map generation are actually quite low by themselves. On the other hand,

the performance gap between GPU GC and entire segmentation pipeline were mostly

taken by CCL (marked as Connected-Component and Analysis in the following figures)

and partially memory transfer. Figure 5-14 shows the processing timeline for CCL vs

Segmentation pipeline vs Segmented SV angiography pipeline (SSVA). Table 5-2 shows

the numerical result of the processing timeline for each individual stage of CCL (named

60

as CCA in the plot), segmentation pipeline and SSVA (named as Segmentation Module

Speckle-Variance).

Figure 5-14 CCL vs Segmentation pipeline vs SSVA (SV05)

Table 5-2 Profiling result (SV05)

Graph-Cut

(ms)
CCL (ms)

Segmentatio
n pipeline

(ms)

Thickness
map (ms)

SSVA (ms)

Volume-
level mean

655.24 186.74 858.99 929.98 1081.76

Batch-level
mean

43.68 12.45 57.26 62.00 72.81

61

In Figure 5-14, we may observe that the processing time for GC and CCL does not add

up to the entire processing time of the segmentation pipeline. The time difference was

caused by the additional memory transfer between host and device. The SSVA takes the

longest processing time due to the additional SV processing steps. Note that the overall

plot trend of SSVA and the segmentation pipeline are largely the same. This is because

the time complexity for SV processing is constant. The time fluctuations were caused by

the GPU data traffic. For the healthy volume SV05, the processing time for both

thickness map calculation and SSVA are quite satisfyingly below the required real-time

constraint of 105ms. However, retinas with complex features such as volumes with RPE

detachment (H435) could oppose extra obstacles for the algorithm to process. By

intuition, the pathological volume H435 should take longer time to process than the

healthy volume SV05. Figure 5-15 shows a batch level result for CCL vs Segmentation

pipeline vs SSVA for H435.

62

Figure 5-15 CCL vs Segmentation pipeline vs SSVA (H435)

Table 5-3 Profiling result (H435)

Graph-Cut

(ms)
CCL (ms)

Segmentati
on pipeline

(ms)

Thickness
map (ms)

SSVA (ms)

Volume-level
mean

700.68 209.10 931.11 1026.45 1211.28

Batch-level
mean

46.71 13.94 62.07 69.43 80.75

GPU0 total 701.86 211.26 935.82 1031.00 1213.32

GPU0 average 46.79 14.08 62.39 69.79 80.89

63

GPU1 total 699.49 206.94 926.41 1021.00 1209.25

GPU1 average 46.63 13.79 61.76 69.07 80.61

As anticipated, the pathological retina volume clearly takes longer time to process, with

few entries that are very close to the processing deadline for an individual batch. The

additional processing difficulties are also reflected by the increase in GC and CCL

processing time in comparison to the healthy volume. Note that the total time is

calculated as the mean value between the two GPUs since they are operating

concurrently. However, it would be an incorrect assessment to use mean time between

devices for the real-time deadline. In this volume we see few occurrences where the

processing times are close to the deadline. Let’s now assume that the mean value met

the deadline and GPU1 also met the deadline, but GPU0 did not. This would still result in

a failure in passing the real-time requirement. Therefore, taking the slower GPU would

be a better assessment for real-time deadline. The performance discrepancy is caused

by thermal throttling. There was limited space to install the three GPUs in the testing

computer. One of the computational GPUs didn’t have as much ‘breathing space’ (room

for air flow and cooling) as the other one, resulting in thermal throttling and a drop in

performance.

64

To conclude the performance of GRS, 9 retina volumes are randomly selected for SSVA

benchmarking as listed in table 5-4. Note that for some specific volumes, the batches

that were assigned to GPU1 could be more challenging to process than the batches that

were assigned GPU0. Consequently, for volume H476, GPU1 took a longer time to

process the assigned batches than GPU0, even though GPU0 was technically slower

due to thermal throttling. The averaged processing time for SSVA per batch is 71.86 ms,

which is 46.12% faster than the required deadline. Therefore, it is clear that GRS is fast

enough for real-time retinal segmentation for both thickness map measurement and

SSVA.

Table 5-4 Profilling summary

Volume
Names

Mean

total/per-batch (ms)

GPU0

total/per-batch (ms)

GPU1

total/per-batch (ms)

Segmented SV Angiography timeline for x900 volume – 30 batches (deadline 1575 ms)

H435-P 1211.28 80.75 1213.32 80.89 1209.25 80.61

H505-P 1148.49 76.56 1149.82 76.65 1147.15 76.47

SV01-H 1084.95 72.33 1110.32 74.02 1059.58 70.64

SV05-H 1081.76 72.11 1092.19 72.81 1071.33 71.42

SV42-P 969.78 64.65 976.11 65.07 963.43 64.22

Segmented SV Angiography timeline for x900 volume – 20 batches (deadline 1050 ms)

H476-P 644.57 64.46 608.70 60.87 680.44 68.04

SV40-P 679.17 67.91 689.11 68.91 669.24 66.92

SV41-P 711.76 71.17 745.17 74.52 678.35 67.83

SV43-P 698.64 69.86 730.37 73.04 666.92 66.69

Average per batch timeline for Segmented SV Angiography (deadline 105 ms)

Average 71.09 71.86 70.32

*With H stands for healthy, and P stands for Pathological

65

5.5. Performance due to contrast to noise ratio

In the previous section, it was shown that the complexity of the retinal image can affect

the processing time for GRS. Generally speaking, the Signal to Noise Ratio (SNR) would

be the first thing to consider as the factor that could affect the performance. In terms of

image processing, SNR could translate to image clarity or Contrast to Noise Ratio (CNR).

In this section, we will be investigating how the performance of the PR GC can be

improved by adjusting the histogram to its optimal level. Two histogram range scaling

factors are available in the OCT processing software for manually adjusting the

histogram of the image, with one scaling factor responsible for adjusting the lower bound

of the histogram and the other for higher bound. Again, we will be using the healthy

retinal volume SV05 for benchmarking for CNR. Four instances of the retinal data and

the GC segmentation with visually different CNRs were arranged as shown in Figure 5-

16 by adjusting the values of the two scaling factors.

66

Figure 5-16 Images with different histogram scaling factors: (A) min: 7.5, max: 10.5
(B) min: 10, max: 16.5 (C) min: 10.5, max: 11 (D) min: 10.5, max: 12.5

Based on human observation, Figure 5-16 (A) is the noisiest with the lowest CNR, thus

(A) is expected to have the slowest processing time. Figure 5-16 (C) visually has the

highest contrast thus intuitively is expected to have the fastest processing time. However,

recall that the graph was constructed from the gradient image, not the image itself, thus

setting the contrast too high may not result in a more workable gradient image for

constructing the graph. Figure 5-16 (D) visually has the most balanced contrast thus it is

expected to have the best running time. Figure 5-16 (B) definitely has a better contrast

than (A) and will most likely have a better workable gradient image for graph

construction, but it is unclear whether it is better than (C) for GRS. Figure 5-17 is the

volume-level running time comparison for segmentation pipeline between four different

histogram scaling factor settings

67

Figure 5-17 Running time comparison for segmentation pipeline between four
different histogram range scaling factor settings

As anticipated, setting (A) has the worst run time whereas setting (D) has the best

among the four. Apparently, setting (C) has too narrow dynamic range to generate a

good gradient image for graph construction, ranking it the second worst. Lastly, setting

(B) has the second best performance although it is visually dark to human eyes. Another

two tests were conducted to find out the optimal intensity range of GRS for this particular

volume: (i) different histogram scaling range with the same lower bound; (ii) different

histogram scaling level but with the same range. Figure 6.18 shows the volume-level run

time comparison (for segmentation pipeline) between 6 settings of different dynamic

ranges with the same lower bound scaling factor.

68

Figure 5-18 Running time comparison for segmentation pipeline between 6
settings of different histogram scaling range

Settings (C) and (D) provide relatively better run time with setting (C) slightly better.

Since (F) yields relatively similar results to (C), it would seem the result could be better

as we increase the dynamic range. However, the GRS starts delivering false results

after the higher bound scaling factor goes beyond 16.5 as the dim image does not

provide clear enough gradient image for constructing a graph. Figure 5-19 shows the

volume-level running time comparison between 6 settings of different scaling factors but

same dynamic range.

69

Figure 5-19 Running time comparison for segmentation pipeline between 6
settings of different scaling factor levels with the same range

Figure 5-20 False segmentation result in the histogram scaling setting (F: 11-13)

70

Again, we observe a similar scenario that the running time seems to get better as the

scaling factor increases. In spite of setting (F) has the best performance, the

segmentation result is incorrect. Thus, the best performing setting is still (E:10.5-12.5).

Based on figure 5-16 ~ 5-20, we can conclude that the optimal intensity/contrast range

for GRS lies around the setting where the scaling factors are 10.5 to 12.5 for this

particular volume. The scaling factors are created for adjusting the histogram of the

image. Thus, applying a histogram adjustment technique could bring the time aspect of

the performance to its most optimal level.

5.6. Final evaluation of GRS against the CPU
implementation

The performance of the GRS was compared against a CPU implementation of the graph

cut segmentation. The CPU MATLAB segmentation was implemented with shortest

path and dynamic programming by Chiu et al [31]. However, Chiu’s implementation

requires a narrower band of the image intensity histogram in order to have the

segmentation function correctly. The optimal range that was used for GRS will yield a

false result for Chiu’s implementation. The input image size was the same as presented

in the previous sections, 512 width x 300 height. The test bench for Chiu’s

implementation was a different computer with 4.0 GHz i5-4670K processor. Since

Chiu’s implementation is purely done with CPU and MATLAB, the rest of the system

specification are irrelevant. Figure 5-21 show the result of Chiu’s implementation.

71

Figure 5-21 Result of Chiu's implementation with our input A) GRS optimal
histogram B) Histogram adjusted for Chiu's algorithm

Table 5-5 Representative time comparison between GPU and CPU

 Chiu’s implementation GRS GPU/CPU speed

Processing time
for

segmentation
alone

60231.22 ms 43.68 ms x1424.71 faster

Both of GPU and CPU timing are the average result measured over 20 repetitions. The

quality of the GRS has been discussed in previous sections. The focus here is the speed

improvement of GPU over CPU. The result is clear, the GPU implementation is more

than a thousand times faster than the CPU implementation in MATLAB.. A more fair

comparison of the speedup would be to compare the GPU performance in code

developed and optimized in a low level language, such as C/C++. However, even in that

case, a significant speedup is still expected based on reports comparing CPU to GPU

implementations of graph cut segmentation [25].

72

There are a few things worth noting when it comes to using GPU for software

implementation. The performance of the OCT imaging software relies on the following

three main attributes of the GPU: core clock frequency, numbers of CUDA cores and

VRAM capacity. For best performance, we want the GPU to have a highest possible

clock frequency and high possible amount of CUDA cores. For VRAM, the OCT imaging

software has a VRAM usage at a steady level of ~600MB. However, in current consumer

GPU lineup , the high-end GPU that has high clock frequency and large number of

CUDA cores often come with more than 6GB of VRAM. Although 6GB VRAM is a

overkill for our application, the high-end GPUs such as GTX 1070 and GTX 1080 are still

recommended due to their superior clock frequency and high numbers of CUDA cores.

5.7. Summary

In this chapter, the results for GPU retinal layer segmentation on both thickness

measurement and speckle variance angiography has been evaluated qualitatively and

quantitatively. The GRS has proven to be a reliable tool for extracting ILM and RPE/BM

complex under usual circumstances. The 71.86ms on average processing time is 46.12%

faster comparing to the required processing deadline, which is determined by the

acquisition speed of the OCT system. The resulting processing speed is sufficient to

meet the requirement of real-time visualization. Currently, the PR GC implementation by

NVIDIA can be only applied on the macular region. The PR GC does not yield correct

results when a discontinuity of the target layer is present, such as in B-scan images of

the optic nerve head. Also, automated intra-retinal layer segmentation is not achievable

without running the algorithm multiple times, of which would then make the real-time

aspect unachievable with the current configuration and hardware.

73

Chapter 6.

Conclusion and Future Work

In this thesis, we reviewed the GPU-based implementation for retinal layer segmentation.

The result of the GRS is that it is capable of tracking and segmenting the ILM and BM

within a reasonable tolerance of 6~7 microns yet also able to meet the real-time

processing requirement. The running time of entire visualization cycle surpasses the

target deadline for 200kHz swept laser source SS-svOCT system by 46% on average

when running on outdated and non-optimized computer and GPUs, indicating that the

performance can be boosted even higher with up-to-date and optimized hardware.

Applying GRS along with intra-operative FD-OCT imaging could potentially provide the

ability for immediate feedback of instrument-tissue interaction to surgeons. Successful

integration of such technology to the FD-OCT systems at a hospital based ophthalmic

center could have great impact on the success rate of membrane peeling and related

procedures and improve the surgical outcomes for patients.

6.1. Future Work

While the performance of the GRS demonstrated in chapter 5 shows its great potential

for intra-operative FD-OCT applications, there is also room for improvements in the

processing steps. A parallel version of CCL is possible to implement, but difficult. Due to

time constraints, parallel version CCL was not implemented for this project. Also, it has

been mentioned several times that the hardware systems were not up-to-date and the

hardware settings were improper. Such setting downgrades the performance of the GRS

by a significant amount. In the following subsections, we will go over these areas for

further improvement of the thesis implementation.

74

6.1.1. Software and Algorithms

Currently, the OCT processing pipeline for the testing performance lacks some

functionalities such as software dispersion compensation. The dispersion compensated

image has a better image clarity compared to non-compensated images. Having a

higher image clarity equally translates to higher SNR when it comes to image processing.

Thus, the performance of GRS can be further improved if the input image was dispersion

compensated.

Although CCL is indeed difficult to parallelize due to its sequential nature, there has

been a successful implementation of CCL documented in the book GPU GEMs [25].

However, the parallelized CCL was implemented for a different application and the

source code was no longer available from the publisher. Due to the time constraint and

implementation difficulty, such parallelized CCL was not implemented for this thesis.

Given enough resources and time, CCL can be parallelized and used to eliminate the

only CPU reliance of the GRS.

Lastly, the visualization of the display is implemented using OpenGL™ display. OpenGL

is a low-level display API for computer graphics developers. There is one problem with

the OpenGL library: it does not fully utilize the multi-core capabilities of CPUs. One core

is responsible for most of the work done when running an OpenGL application [32].

Recently there has been a newly announced low-level graphics API called Vulkan™,

which greatly improves the utilization of the multi-core CPU. Although using the Vulkan

library would not contribute to the run time of image processing, it would greatly improve

the display process so that the final visualization wouldn’t possibly be bottlenecked by

the front-end display.

6.1.2. Hardware environment

The computer hardware used for the performance testing of the GRS is two-to-three

generations behind. Also, the imaging software, OCTViewer, was not optimized for

heavy-multi-threading processing with the CPU. This was due to two reasons: low

utilization of multi-core CPU capability of OpenGL and the use of sequential algorithms.

The representative utilization rate of the CPU cores when running the OCTViewer was:

75

100% for only one core, and around 40-60% % for 4 cores with rest of the cores

completely idle etc.

Thus, when integrating the GRS with a clinical system, the ideal CPU would be an up-to-

date consumer grade CPU with faster single core performance, rather than the server

grade CPU with many low clock-speed cores. Also, the GPU we used in this thesis is not

designed for the medical imaging system that is running at ECC. The strength of the

Quadro K6000 is the ability for double precision computation. However, the OCTViewer

wasn’t written in double precision format, and thus this capability was wasted. The

reason why these GPUs were used was because of the exceptional VRAM capacity. But,

with the recent announcement of NVIDIA Pascal GPUs [23], the 12GB VRAM can now

be matched by consumer grade GPUs. Moreover, the Quadro devices were purposely

down-clocked compared to their consumer counters parts for reliability reasons. Last but

not the least, both Quadro devices and Xeon CPU are server grade products, which cost

significantly more than their consumer counterparts, yet providing sub-par performance

as they are not designed for these types of applications. An ideal hardware

configuration is listed in Table 6-1.

Table 6-1 Testing bench vs ideal system

Used in test bench Optimized system

Model Speed Price(USD) Model Speed Price(USD)

CPU
2 x E2-
2620

2.3GHz 2 x 382 i7-6850K 3.8GHz 617

GPU
2x Quadro

K6000
900MHz 2 x 5,999

2 x GTX
1080

~1700MHz 2 x 599

Price difference: 10,947 USD, rest of the system can be the same

Note that not only are the price differences significant, but the performance gap between

the two hardware configurations are significant as well. According to CPU benchmarking

tool PassMark™, the single core capability of i7-6850K is 70% faster than that of the E2-

2620 [33]. Also, according to NVIDIA, the theoretical performance of the latest Pascal

architecture is 2.35x times than that of the Kepler architecture [23]. In all, even without

the parallelized CCL and the use of Vulkan API, with proper up-to-date computer

76

hardware, the performance of GRS can be potentially improved by at least two fold,

reaching the real-time speed that may even satisfy a 400 kHz laser source system.

With the hardware configuration used in this thesis, the intra-retinal layer segmentation

was not achievable in a real-time constraint. If the hardware update could truly bring the

performance boost as suggested above, the intra-retinal layer segmentation would be

possible by running PR GC multiple times thanks to the performance improvements of

the advanced hardware. With the rapid increase in computer performance, the

implementation of GRS for novel applications in intra-surgical OCT is anticipated to grow.

77

References

[1] CNIB. Fast Facts about Vision Loss. [Online]. http://www.cnib.ca/en/about/media/vision-
loss/Pages/default.aspx

[2] M.Ohr, P.Kaiser et al. J.Ehlers, "Novel microarchitectural dynamics in rhegmatogenous
retinal detachments identified with intraoperative optical coherence tomography.," Retina,
vol. 33, pp. 1428-1434, 2013.

[3] C.Baumal, C.Puliafito et al. M.Hee, "Optical coherence tomography of age-related macular
degeneration and choroidal neovascularization," Ophthalmology, vol. 103, no. 8, pp. 1260-
70, 1996.

[4] J.P. Ehlers, "Intraoperative optical coherence tomography: past, present and future," Eye,
vol. 30, no. 2, pp. 193-201, 2016.

[5] Y.K. Tao, S. Farsiu et al. J.P. Ehlers, "Integration of a spectral domain optical coherence
tomography system into a surgical microscope for intraoperative imaging," Investigative
Ophthalmology and Visual Science, vol. 52, no. 6, pp. 3153-3159, 2011.

[6] E. Swanson, C. Lin et al. D. Huang, Optical Coherence Tomography.: Science, 1991, vol.
254.

[7] M. Sarunic, C. Yang et al. M. Choma, "Sensitivity advantage of swept source and Fourier
domain optical coherence tomography.," Optics express, vol. 11, no. 18, pp. 2183-2189,
2003.

[8] K. Wong, M. Sarunic Y. Jian, "GPU Accelerated OCT Processing at MegaHertz Axial Scan
Rate and High Resolution Video Rate Volumetric Rendering," Journal of Biomedical Optics,
vol. 18, no. 2, p. 26002, 2013.

[9] S. Han, C. Balaratnasingam, Z. Mammo, K. Wong, S. Lee, M. Cua, M. Young, A. Kirler, D.
Albiani, F. Forooghian, P. Mackenzie, A. Merkur, D. Yu, M.V. Sarunic J. Xu, "Retinal
angiography with real-time speckle variance optical coherence tomography," British Journal
of Ophthalmology, pp. 1-5, 2015.

http://www.cnib.ca/en/about/media/vision-loss/Pages/default.aspx
http://www.cnib.ca/en/about/media/vision-loss/Pages/default.aspx

78

[10] V. Kolmogorov Y. Boykov, "An experimental comparison of min-cut/max- flow algorithms for
energy minimization in vision," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 26, no. 9, pp. 1124-1137, 2004.

[11] T. Falch, M. Bozorgi et al. E. Smistad, "Medical image segmentation on GPUs - A
comprehensive review.," Medical image analysis, vol. 20, no. 1, pp. 1-18, 2014.

[12] NVIDIA. (2016) CUDA toolkit documentation. [Online]. http://docs.nvidia.com/cuda/cuda-
samples/index.html#grabcut-with-npp

[13] InetDaemon. CPU - Central Processing Unit. [Online].
http://www.inetdaemon.com/tutorials/computers/hardware/cpu/

[14] Intel. (2016, May) 6th Generation Intel® Processor Family. [Online].
http://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-
update.html

[15] T. Jamil R. Stacpoole, "Cache memories," IEE Potentials, vol. 19, no. 2, pp. 24-29, 2000.

[16] Matt Bach. (2015, August) Haswell vs. Skylake-S: i7 4790K vs i7 6700K. [Online].
https://www.pugetsystems.com/labs/articles/Haswell-vs-Skylake-S-i7-4790K-vs-i7-6700K-
641/#CPUPerformance-UnigineHeavenPro4_0

[17] Kevin Krewell. (2009, December) What’s the Difference Between a CPU and a GPU?
[Online]. https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-
a-gpu/

[18] Nicholas Wilt, THE CUDA HANDBOOK - A Comprehensive Guide to GPU Programming.:
Addison-Wesley, 2013.

[19] Y. Wang, Y. Ha, K.M.M. Aung Y. Chen, SAES: A high throughput and low latency secure
cloud storage with pipelined DMA based PCIe interface, 2013, IEEE eXplore conference.

[20] pCI-sIG. (2010) PCI Express Base Specification Revision 3.0. [Online].
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf

[21] JEDEC. Main Memory: DDR3 & DD4 SDRAM. [Online].
http://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram

http://docs.nvidia.com/cuda/cuda-samples/index.html#grabcut-with-npp
http://docs.nvidia.com/cuda/cuda-samples/index.html#grabcut-with-npp
http://www.inetdaemon.com/tutorials/computers/hardware/cpu/
http://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-update.html
http://www.intel.com/content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-update.html
https://www.pugetsystems.com/labs/articles/Haswell-vs-Skylake-S-i7-4790K-vs-i7-6700K-641/#CPUPerformance-UnigineHeavenPro4_0
https://www.pugetsystems.com/labs/articles/Haswell-vs-Skylake-S-i7-4790K-vs-i7-6700K-641/#CPUPerformance-UnigineHeavenPro4_0
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
https://blogs.nvidia.com/blog/2009/12/16/whats-the-difference-between-a-cpu-and-a-gpu/
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_3.0.pdf
http://www.jedec.org/category/technology-focus-area/main-memory-ddr3-ddr4-sdram

79

[22] NVIDIA, CUDA C Programming Guide.: Changes, 2014.

[23] NVIDIA. (2016) GP100 Pascal Whitepaper. [Online].
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf

[24] W. Hwu D. Kirk, Programming Massively Parallel Processors: A Hands-on Approach., 2010.

[25] NVIDIA, GPU Gems.: Pearson Education.

[26] E. Otoo, K. Suzuki K. Wu, "Optimizing two-pass connected-component labeling algorithms,"
Pattern Analysis and Application, vol. 12, no. 2, pp. 117-135, 2009.

[27] K, Wong, Y. Jian et al J.Xu, "Real-time acquisition and display of flow contrast using speckle
variance optical coherence tomography in a graphics processing unit.," Journel of Biomedical
Optics, vol. 19, no. 2, p. 026001, 2014.

[28] R. Manduchi C. Tomasi, "Bilateral Filtering for Gray and Color Images," International
Conference on Computer Vision, pp. 839-846, 1998.

[29] A. Leistm D. Playne K. Hawick, "Parallel graph component labelling with GPUs and CUDA,"
Parallel Computing, vol. 36, no. 12, pp. 655-678, 2010.

[30] V. Wong, GPU Acceleration of Volume Segmentation for Retinal Thickness, 2013, Bachelor's
Thesis.

[31] Xiao T. Li, Peter Nicholas, Cynthia A. Toth, Joseph A Izatt, Sina Farsiu Stephanie J. Chiu,
"Automatic segmentation of seven retinal layers in SDOCT images congruent with expert
manual segmentation," Optics express, vol. 18, no. 18, pp. 19413-28, 2010.

[32] Nathan Kirsch. (2016, Feburary) AMD and NVIDIA Release Vulkan 1.0 API Beta Drivers.
[Online]. http://www.legitreviews.com/amd-nvidia-release-vulkan-1-0-api-beta-
drivers_179095

[33] PassMarkSoftware. CPU Benchmarks. [Online]. http://cpubenchmark.net/

https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://www.legitreviews.com/amd-nvidia-release-vulkan-1-0-api-beta-drivers_179095
http://www.legitreviews.com/amd-nvidia-release-vulkan-1-0-api-beta-drivers_179095
http://cpubenchmark.net/

