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Abstract

Optimization has been a central topic in most scientific disciplines for centuries. Continu-
ous optimization has long benefited from well-established techniques of calculus. Discrete
optimization, on the other hand, has risen to prominence quite recently. Advances in
combinatorial optimization and integer programming in the past few decades, together
with the improvement of computer hardware have enabled computer scientists to approach
the problems in this area both theoretically and computationally. However, obtaining the
exact solution for many discrete optimization problems remains is still a challenging task,
mainly because most of these problems are NP-hard. Under the widespread assumption
that P 6= NP, these problems are intractable from a computational complexity standpoint.
Therefore, we should settle for near-optimal solutions. In this thesis, we develop techniques
to obtain solutions that are provably close to the optimal for different indivisible resource
allocation problems. Indivisible resource allocation encompasses a large class of problems
in discrete optimization which can appear in disguise in various theoretical or applied settings.

Specifically, we consider two indivisible resource allocation problems. The first one is a
variant of the vehicle routing problem known as Skill Vehicle Routing problem, in which the
aim is to obtain optimal tours for a fleet of vehicles that provides service to a set of customers.
Each of the vehicles possesses a particular set of skills suitable for a subset of the tasks. Each
customer, based on the type of service he requires, can only be served by a subset of vehicles.
We study this problem computationally and find either the optimal solution or a relatively
tight bound on the optimal solution on fairly large problem instances. The second problem
involves approximation algorithms for two versions of the classic scheduling problem, the
restricted R | |Cmax and the restricted Santa Claus problem. The objective is to design a
polynomial time approximation scheme (PTAS) for ordered instances of the two problems.
Finally, we consider the class of precedence hierarchies in which the neighborhoods of the
processors form Laminar families. We show similar results for a generalization of this model.

Keywords: Vehicle routing problem; Integer linear programming; Branch-and-cut algo-
rithms; Prize-collecting traveling salesman problem; Scheduling problems; Convex and
bipartite permutation graphs
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Chapter 1

Resource Allocation Problems

1.1 Indivisible Resource Allocation

Resource Allocation problem is the problem of distributing a set of scarce resources
among some customers (or players) while satisfying some constraints. It has applications in
areas such as on-line auctions, scheduling, production planning, spectrum allocation, and
load balancing, and therefore is considered to be of tremendous practical importance. At the
same time, the problem is also interesting from a theoretical perspective as finding a solution
to a Resource Allocation problem is usually challenging and calls for mathematically
involved approaches. Due to its twofold nature, the problem has occupied a central role in
many fields of study such as computer science, operations research, game theory, economics,
social choice theory, and mathematics. The approaches taken for tackling resource allocation
problems can widely vary based on whether the resource in question can be split into any
arbitrary fraction or not. Consequently, two subcategories of the problem arise: Divisible
Resource Allocation and Indivisible Resource Allocation. As the names imply, in
the former case any fraction of a resource can be allocated to players, whereas in the latter, a
resource is assigned to a player in its entirety. Divisible Resource Allocation problem,
most commonly referred to as the Cake Cutting problem, is a problem of interest for
many theoretical and empirical disciplines. Many research papers in these disciplines focus
on fair division of limited divisible resources. Also along this line, much work has been
done on defining the meaning and perception of fairness, and conditions that can either
guarantee the existence of a fair division or imply its absence. The long list of such disciplines
includes economics, game theory, mathematics, sociology, political sciences, philosophy, and
psychology [16]. We shall not discuss the Cake Cutting problem any further and refer the
interested reader to a seminal book by Brams and Taylor on the topic [16].

On the other hand, the indivisible case has more of a combinatorial flavour to it and
thus has mostly been a topic for the algorithmic line of research [5]. For this very reason, it
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is the primary focus of this research. In the most basic form, an instance of a Indivisible
Resource Allocation problem, or IRA for short, includes the following components:

(1) a set P of m players

(2) set of R of n indivisible resources or equivalently, items

(3) a value function or utility function fi : 2R → R for each player i ∈ P

(4) an objective function on any arbitrary allocation of items

where an allocation is a partitioning of the items A = (A1,A2, . . . ,Am) such that
∪mi=1Ai = R, and Ai ∩ Ak = ∅ whenever i 6= k. Each of the sets Ai is to be allocated to
a player i ∈ P. Note that some of the sets Ai might be empty. It has to mentioned that
an instance of an IRA problem may encompass many other components beyond the four
mentioned above. For example, every resource might be only available in a certain time
window, or some constraints can be inflicted on the problem based on some specific job
characteristics. We will discuss these additional components in further detail in Section 1.3.1.
The goal then is to find the allocations A in such a way the objective function is “optimized”
(we will formally define the optimality criterion in Section 1.3.1), while the constraints of
the problem instance are all satisfied.

The Indivisible Resource Allocation (IRA) research pursues three targets: i)
efficient algorithms that optimize the objective function when possible, ii) spell out conditions
under which finding an optimal allocation is a hard task (meaning that no polynomial
algorithm seems to exist to find such allocations), and iii) find solutions that are as close as
possible to optimal allocation.

In this thesis, we study two problems, either of which has its connections to the Indivisible
Resource Allocation problem. These problems are variations of the Vehicle Routing problem
and the Scheduling problem. In what follows, our objective is to place the Vehicle Routing
and Scheduling problem in the context of resource allocation. Then, we survey the general
literature on the IRA and introduce some basic notations and definition along the way.

1.2 Connections to Vehicle Routing

We propose that the concept of Indivisible Resource Allocation is connected to the class
of vehicle routing problems in at least two ways. First, roughly speaking, vehicle routing
problems deal with situations where some customers demand a particular service. The
objective of the problem is to assign vehicles to subsets of customers to meet their needs. In
most of the settings, the vehicles cannot be fractionally assigned to a job, and every customer
must be covered by at least one vehicle. These requirements are the very constraints that
shape any Indivisible Resource Allocation problem. On top of that, of course, the solution
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must take other restrictions into account. For instance, the customers are located in a metric
space, and the cost of an assignment must reflect the distances between these locations.
Also, we seek tours that start and end at a particular place, say a depot. These are the type
of constraints that feature in the large family of Travelling Salesman Problem. In that light,
we can view many variations of the vehicle routing as a hybrid of an IRA problem and a
TSP problem, in which the indivisible resources are the vehicles and the costs are dictated
by rules similar to those of the TSP.

The second way that connects the vehicle routing to IRA problems is the underlying
model on which the solution techniques are based. Through experience, we have come
across mathematical formulations that can help in solving both problems efficiently. Such
formulations prove to be useful for both problems, whether the intention is to solve the
problem for large instances computationally or to provide approximation algorithms with
desirable approximation guarantees. We will make references to these formulations in time.

1.3 Connections to Scheduling

For long, the notion of resource allocation has been tied to the classic problem of scheduling.
Scheduling, in short, is best described as “optimal allocation of scarce resources to activities
over time” [79]. The connection can easily be made between the two subjects when one casts
a scheduling problem as a particular type of resource allocation, in which the resources can
represent CPU processing times one wishes to allocate to some tasks. Because of this close
connection, we will borrow from the rich jargon of machine scheduling for our discussion of
resource allocation problems whenever the equivalence of the resource allocation instance
and the scheduling instance of the problem is apparent. We will discuss this further in the
next subsection.

1.3.1 A Standard Notation

As mentioned before, when we are referring to an instance of an IRA problem, we use P to
represent the set of m players and R to denote the set of n resources. Also, it is assumed
in many cases that any resource j ∈ R has a value vij to a player i ∈ P. If any arbitrary
resource has the same value to all players, we let vj denote that value for ease of notation.
In the context of job scheduling, however, which constitutes a significant portion of the
indivisible resource allocation literature, the players are usually thought of as machines, and
the resources correspond to jobs to be scheduled on these machines. Therefore, in such
settings, we switch to a different notation. We letM denote the set of m machines, J the
set of n jobs, and pij the processing time of a job j ∈ J on a machine i ∈M. Equivalently,
if jobs have the same processing times on all machines (which occurs in certain types of the
Machine Scheduling problem), we shorten the processing times to pj for all jobs j ∈ J .
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A General Framework

Still, a lot has to be clarified before we can define a solid instance of the Machine Schedul-
ing problem. But even after doing so, the number of problem types that may arise is
virtually unlimited. Therefore, our discussion of the problem types has to be selective.
Consequently, we will focus on a particular type of resource allocation which is closely related
to single-criterion deterministic machine scheduling. The term “single-criterion” reflects the
fact that the optimization is carried out under a single optimality criterion, and the term
“deterministic” indicates that all the information that define a problem instance are known
in advance with certainty. To define an instance of the Machine Scheduling problem,
we will use a general framework which was first introduced by Graham et al. [54]. This
general framework spans a large class of scheduling problems, as a result of which we need
to narrow down our focus even further to a finer subclass of the large family of scheduling
problems. In what follows, we will only mention parts of the framework that apply to the
subclass in consideration. At the end of this chapter, it should be clear to the reader what
the problems in the aforementioned subclass exactly are.

Graham et al. propose that an instance of Machine Scheduling problem is defined
by the machine environment, the job characteristics, and the optimality criterion. Base on
these three features, they introduce a three-field classification scheme in the form of α |β | γ.
We will discuss each field in what follows.

• Machine environment (α). We let α = α1 α2. For the sake of our discussion, we
allow α1 to to assume a value from the set {◦, P,Q,R} 1. The symbol ◦ denotes the
empty symbol and is reserved for the case of a single machine here. The other three
values are characterized as follows:

– α1 = P : The machines are identical parallel machines, meaning that each job
has the same running time on all the machines, or pij = pj for all jobs j ∈ J .

– α1 = Q : The machines are uniform parallel machines, meaning that each machine
i ∈M has a speed si associated with it, and each job j ∈ J has a fixed processing
time pj on a machine with unit speed. Therefore, the processing time of job j on
machine i will be pij = pj/si.

– α1 = R : The machines are unrelated parallel machines, meaning that a job j ∈ J
has a machine-dependent processing time pij on a machine i ∈M.

For the case where there exists only one machine (α1 = ◦), we set α2 = 1. In all other
cases, α2 can either be ◦, meaning that m, the number of jobs, is a part of the input
(and thus a variable), or it takes a positive integer value, which means that m is a
constant equal to α2.

1Other notations are available for α1 which can represent a variety of scheduling problems such as open
shops, flow shops, and job shops.
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• Job characteristics (β). Job characteristics may include some restrictions on how
jobs are scheduled on the machines. For instance, whether or not job preemption
is allowed, or whether certain precedence relations rule the order in which different
jobs can be fed into the machines. Throughout our entire discussion, we let β = ◦,
representing the most general case where no such restrictions exist.

• Optimality criterion (γ). For the third field, the most common criteria studied in
the field are of one of these two forms: {fmax,

∑
fi}, where f is the value function.

If the optimality criterion is set to fmax, it indicates that we seek to minimize the
maximum of fi among all machines i ∈M, and if it is set to

∑
fi, it means we intend to

minimize the sum of all fi’s. Note that we are using the Machine Scheduling-specific
notation we introduced earlier. For many variants of the IRA problem, which in a
way are the conceptual duals of scheduling problems, the goal would be to maximize
fmin or

∑
fi. A couple of options for the choice of f are listed below (Note that fi’s

are associated with machines).

– C: Completion time. The time by which a job is processed on machine i.

– L: Lateness. In case jobs come with e predefined deadline, the difference between
the completion time of a job on machine i and its deadline.

Example 1.3.1. If the goal is to minimize the maximum completion time of a set of
unrelated machines, we let α = R, β = ◦, and γ = Cmax, therefore, we refer to such a
problem as an R | |Cmax problem.

1.3.2 Social Welfare and Fairness

The problems we consider in this thesis have two types of objectives: i) to optimize social
welfare, or ii) to ensure some level of fairness. We will briefly discuss each of these objectives
in what follows.

Optimizing the social welfare is probably one of the most natural objectives one can
pursue when dealing with a resource allocation problem. The challenge is to allocate
indivisible resources to players in such a way that the sum of the utilities of all players is
maximized. In the context of scheduling, resource values are replaced by job processing
times. Therefore it makes more sense to set the objective to minimize the sum of all utilities,
the utility of a machine being its workload in this case. One can approach the problem of
maximizing the social welfare from a game theoretic point of view, in which the research splits
into two major sub-categories. One takes a more existential route and involves identification
of the equilibria of the game, and comparing them against outcomes (allocations) that would
be socially optimal. Most of the results in this area are not constructive, and we will not
survey any of them. The other sub-category deals with a more constructive approach by
aiming at the design of algorithms that can achieve a socially optimum allocation. More
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specifically, one can look at a setting in which players have (private or public) valuations
for subsets of resources instead of valuing items directly. This particular type of valuation
functions gives rise to the combinatorial nature of the problem. The goal is to develop
a procedure for eliciting these valuations from the players and use them to decide how
to allocate the resources to players in a way that the social benefit is optimized. This
viewpoint of resource allocation is very suitable for modeling auctions, in which players bid
on bundles of items using predefined communication rules (sometimes referred to as the
bidding language), and after a period has passed, the auctioneer selects the winner of the
auction. Consequently, this class of problems is referred to as combinatorial auctions in
algorithmic game theory literature. We can consider the problem under the assumption of
perfect or imperfect information. In the former, our job is to design exact or approximation
algorithms that gather information from the bidders through some well-defined queries and
decide on how to allocate the items so as to maximize the social welfare. The former falls
into the domain of truthful mechanism design. In this area, we devise simple procedures for
the auction that ensure an optimal (or approximately optimal if absolute optimality is not
feasible) social welfare provided that all players bid truthfully. In other words, the social
welfare is maximized only when the players reveal their real private valuations. Some of the
most remarkable results on social welfare maximizing truthful mechanisms “involve multiple
assumptions on how players would react to various incentives” [39], as they need more
sophisticated models to tame the complexity of the problem. Due to these complications
and space considerations, we avoid all the results on this topic.

Welfare-maximizing resource allocation algorithms are not suitable in settings where
some notion of fairness needs to be guaranteed as there might be instances in which all
the resources are allocated to a single player in the optimal solution [94]. Therefore, an
effort has been made to formulate and solve the problem under some constraints to ensure
fairness and the result is a subclass of the original problem known as the Fair IRA problem.
Researchers have proposed several criteria for fairness. Among the most prominent ones is
the concept of Max-Min (or Min-Max) allocations adopted from scheduling literature, and
envy-free allocations which has it roots in non-cooperative games. In the former, we seek to
maximize the utility of the player who has received the minimum value set of resources (or in
the dual context of scheduling minimize the maximum workload among all machines), thus
enforcing fairness to the system by ensuring a minimum level of benefit for all players. In
the latter, similar to the treatment of social welfare maximizing problems, two independent
subcategories are considered: one under the assumption of perfect information, and the
other assuming otherwise. Regardless, we wish to minimize the tendency of players to prefer
the set of resources allocated to other players over their bundle in both these subcategories.
Envy-free allocations will be defined precisely in Section 1.4.3.
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1.4 Resource Allocation Variations

In this section, we first mention a few definitions regarding the utility functions that we
frequently use in later sections. What comes after serves the primary intention of the chapter,
which is to briefly survey some of the most significant variations of the Fair IRA and
Welfare Maximizing IRA problems.

1.4.1 Preliminaries

As one can expect, the utility functions of the players is a major determinant of the problem
type, which directly affects the complexity of the resource allocation setting. Since the early
days of the resource allocation research, theoreticians of this field have tried to propose
functions that can closely mimic the utility of players of a real world setting. As a result,
many different types of utility functions have been the subject of this study throughout the
years. We list some of the most prominent in this section.

Definition 1 (Monotone Utility Functions). A utility function f is said to be monotone if
and only if fi(C) 6 fi(D) for every subset of items C ⊆ D ⊆ R and every player i ∈ P.

Monotonicity is modeled after a quite natural assumption that if you add more resources
to a bundle already assigned to a player without removing any items, they will not end up
unhappier than before. Another natural utility function is defined as follows:

Definition 2 (Additive Utility Function). A utility function f is said to be additive if and
only if for every player i ∈ P and every subset of items C ⊆ R, fi(C) =

∑
j∈C fi({j}).

One might argue that additivity is more of a simplification than a natural property of
the utility function. A fine reasoning for this argument is that of the marginal values. For
any player who has already received a hefty bundle of resources, the added happiness caused
by a single new resource to her bundle is usually insignificant, while the very same item
could make another player much happier if they had received only a small or empty set.
This following definition best captures the mentioned phenomena.

Definition 3 (Submodular Utility Functions). The following definitions are equivalent:

• A utility function f is said to be submodular if and only if for subsets of items C,D ⊆ R
with C ⊆ D and j ∈ R\D, fi(C ∪{j})− fi(C) > fi(D∪{j})− fi(D) for every player
i ∈ P.

• A utility function f is said to be submodular if and only if for subsets of items C,D ⊆ R,
fi(C) + fi(D) > fi(C ∪D) + fi(C ∩D) for every player i ∈ P.

Among other types of the utility function that we are going to deal with in the section are
the class two of fractionally sub-additive utility functions and sub-additive utility functions
defined below.
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Definition 4 (Fractionally Sub-additive Utility Functions). A utility function f is said
to be fractionally sub-additive if and only if for every subsets of items C,D1, D2, . . . , Dk,
f(C) 6

∑
k αkf(Dk) with 0 6 αk 6 1 for all k whenever the sets Dk form a “fractional

cover” [39] for C, or more precisely, whenever the following holds: for every resource j ∈ C,∑
k |DK3j αk > 1.

Definition 5 (Sub-additive or Complement-free Utility Functions). A utility function f is
said to be sub-additive or complement-free if and only if for every subsets of items C and D,
f(C ∪D) 6 f(C) + f(D).

1.4.2 Welfare Maximizing Indivisible Resource Allocation

Combinatorial Auctions

Auctions come in a variety of forms. There are numerous ways of determining the valuation
functions as well as choosing the bidding language2, Furthermore, different auctions have
different governing rules such as the number of rounds, the winner determination criteria,
how to charge the winner or winners of the auction, and so forth. As a result, the notion of
combinatorial auctions has a vast reach that encompasses a myriad of problems and spans
over many disciplines other than theoretical computer science such as operations research
and economics. Although the topic is relatively recent and continues to grow rapidly, the
literature on combinatorial auctions is already so rich that any comprehensive survey can
easily amount up to a book3. Naturally, we will only look at a modest subset of combinatorial
auctions which are closely related to scheduling and resource allocation, namely those that
are carried out in just one round with the objective of maximizing the social welfare.

A Word on the Bidding Language

The bidding language is a protocol of communication that specifies how the players or
bidders in the auction may present their bids to the auctioneer. The importance of such a
specification becomes evident in combinatorial auctions due to the underlying complexity of
the bids. For a set R of resources of cardinality n, there are 2n − 1 non-empty subsets, but
for obvious reasons it would not be practical to specify a bid in this setting with 2n − 1 real
numbers, one valuation for each non-empty subset. The goal of a bidding language is to
encode the bids more succinctly. Ignoring the unnecessary technicalities, we let the bidding
language be a mapping from the set of possible bids to a set of finite strings of characters.
In what follows, we summarize some of the main aspects of the bidding languages that we
will use in later sections. For more information on bidding languages, we refer the interested
reader to chapter 9 of [27].

2Roughly speaking, the bidding language is the formal representation of the bids in a combinatorial
auction. We will have a short discussion on bidding languages in the next subsection.

3In fact, there are books already published on the topic by notable authors (see [27] as an example).
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The “basic” bidding languages are as follows:

• Atomic Bids. The most basic form of bids are the atomic bids. Each bidder can
submit a pair (C, v) in which C is a subset of items (or resources), and v is the
valuation, or the amount that the bidder is willing to pay for that subset. It means
that only the subset C is of interest to the bidder, and all other subsets of items are of
value 0 to her. These types of bids have a very limited expressive power of course as
they cannot even capture the additive valuation of two items.

• OR Bids. In these types of bids, each bidder can submit an arbitrary number
of subset-value pairs, (C1, v1), (C2, v2), . . . , (Ck, vk), in which each of the tuples is
an atomic bid, and Ci’s are disjoint for i = 1, 2, . . . , k. A bid of this kind can be
represented by (C1, v1) OR (C2, v2) OR . . . OR (Ck, vk). Here, the bidder is willing to
acquire any number of the subsets for which she has submitted a pair for a price equal
to the sum of their respective vi’s. It is known that OR bids can represent valuations
over items that don’t have any substitutability, i.e., those where for all C ∩D = ∅,
f(C ∪ D) > f(C) + f(D), and only them, in which f is the utility (or valuation)
function.

• XOR Bids. Here, each bidder can submit an arbitrary number of subset-value pairs
(atomic bids), (C1, v1), (C2, v2), . . . , (Ck, vk), and is willing to acquire only one of the
the sets Ci for the price of vi. It can be proved that the XOR bids can represent
any possible valuation over the sets of resources. An XOR bid is represented by
(C1, v1) XOR (C2, v2) XOR . . . XOR (Ck, vk).

Remark 1.4.1. Let the size of a bid be the number of its atomic bids. Assume a setting in
which the bidders have additive utilities over a set of n resources. Then, their valuations
can be represented by OR-bids of size n, while to show such a valuation using XOR bids one
needs bids of size 2n. Therefore, neither OR-bids alone nor XOR-bids by themselves are
suitable to represent most of the valuation functions under study in the literature. One way
to overcome this shortcoming is by combining the two types.

One can also think of a combination of OR and XOR bids in the two following ways:

• OR-of-XOR Bids. As the name suggests, each bidder can submit an arbitrary
number k of bids, and she is willing to acquire any number of such bids. The only
difference is that here, any of these k bids is an XOR-bid instead of an atomic one.
This class of bids in sometimes referred to as OXS-bids.

• XOR-of-OR Bids. Likewise, each bidder can submit an arbitrary number k of
OR-bids in this model, and she is interested in acquiring only one of such bids. Bids
of this type are often called XOS-bids in combinatorial auctions literature.
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No matter the choice of the bidding language, there are instances of the problem for
which there is no escape from an exponential representation of the valuations [90]. To
overcome this issue, we assume the existence of some query oracle who can answer the given
query in constant time. Of course, this assumption can make a tremendous computational
power available for the algorithm designer, and weaken the model extensively. Therefore, to
avoid oversimplification of the problem, the type of queries answered by the oracle must be
chosen with care. The most popular types of oracles studied in the literature are as follows:

• Value Oracles. A value oracle can return the value of any bundle of resources for a
player i. Value oracles are more prevalent in computer science literature.

• Demand Oracles. Demand oracles are stronger models which are typical of a more
economic point of view. A demand oracle can answer vector queries of the type
(v1, v2, . . . , vn) for a given bidder i, one valuation for each item in R. The answer
returned for such a query is a subset of resources T ⊆ R for which fi(T )−

∑n
i=1 vi is

maximized. In other words, the oracle returns a bundle of items most demanded by a
player i for a set of given prices v1, . . . , vn.

Remark 1.4.2. Blumrosen and Nisan show in [14] that demand oracles can simulate value
oracles. Therefore, one can readily use any algorithm designed for the value oracle model in
a demand oracle model as well, but not the other way around.

We survey models using both of these types of oracles in the next sections.

Types of Combinatorial Auctions

Different variations of combinatorial auctions can be identified based on their input utility
functions (valuation functions used by the bidders). Some of these types include:

(1) Sub-additive or Complement-free auctions

(2) Fractionally Sub-additive auctions

(3) Submodular auctions

(4) XOS auctions

(5) OXS functions

These classes of auctions are not mutually exclusive, and in fact, they form a hierarchy.
Lehmann et al. propose such a hierarchy of combinatorial auctions in [81]: OXS ⊂ Sub-
modular ⊂ XOS ⊂ Complement-free. Furthermore, Feige shows in [39] that the class of
fractionally sub-additive utility functions (and the corresponding type of auctions) is the
same as the class of XOS utility functions (auctions). In this section, we mainly focus
on the top three types of auctions in the hierarchy as they are the most appealing to the
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combinatorial auctions researchers as well. Naturally, any of the results for a higher class in
the hierarchy also holds for the lower level ones, but not the other way around.

Combinatorial Auctions with Submodular Bidders

• Utility functions: submodular

• Objective function: find an allocation A that maximizes the sum of utilities over
all players

For the case of submodular bidders, Lehmann et al. provide a 2-approximation greedy
algorithm under the value oracle model [81]. A series of papers improve this factor to e−1

e .
First, Dobzinski and Schapira provided a 2− 1

n -approximation in [34] using a randomized
algorithm. Later, Fleischer et al. [45] extended the e−1

e approximation to a special case of
submodular bidders in which each of the bidders has a budget constraint as well by rounding
a linear programming relaxation. Then, Călinescu et al. provide a e−1

e approximation
algorithm in [18] for a subclass of submodular utility functions, namely when f , the utility
function, is the sum of weighted rank functions of matroids. They apply the pipage rounding
technique of Ageev and Sviridenko [1] to a linear programming formulation of the problem
to obtain their main result. Finally, Vondrak achieves a randomized (expected) ( e−1

e − o(1))-
approximation algorithm for submodular bidder in the value oracle model in [106]. This
result heavily depends on the pipage rounding technique and its adaptation to matroid
polytope by Călinescu et al. in [18]. As for the lower bounds on approximability of the
problem, Khot et al. prove that it is NP-hard to approximate the social welfare within a
factor of e−1

e + ε [73].
For the stronger model of demand oracles, Dobzinski and Schapira provide a e−1

e -
approximation algorithm [34]. Their technique involves solving a linear programming
relaxation of the problem and using randomized rounding to find a “pre-allocation”, and
later finalize the allocation in such a way that the approximation factor is guaranteed. This
bound is later improved to e−1

e + ε (in expectation) for small values of ε (ε ≈ 0.01) by Feige
and Vondrak in [40]. Also, Chakrabarty and Goel show an inapproximability result of 15

16 + ε

in [22], unless P = NP.

Combinatorial Auctions with XOS Bidders

• Utility functions: fractionally sub-additive

• Objective function: find an allocation A that maximizes the sum of utilities over
all players

As mentioned before, this class is the same as auctions with bidders who have fractional
sub-additive utility functions. For this case, and under the value oracle model, Dobzinski,
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Nisan, and Schapira give a (1/
√
m )-approximation algorithm [33]4. The algorithm is indeed

provided for the broader class of complement-free bidders, which works for the case of XOS
bidders as well. Also, Dobzinski and Schapira show in [34] that it is NP -hard to approximate
the problem within an approximation factor better than 1

m1/4 .
The problem has also been studied under the demand oracle model. A deterministic 1

2 -
approximation algorithm is given in [33]. Dobzinski and Schapira also provide a randomized
e−1
e -approximation algorithm for the problem that uses a slightly different oracle called the

XOS oracle 5, which can answer XOS queries [34]. Feige later improves this result using a
different rounding technique to get the same e−1

e approximation factor for the more general
case of demand queries [39]. Furthermore, Dobzinski et al. show that it is NP -hard to
approximate the social welfare within a factor of e−1

e + ε for the demand oracle model [33].

Combinatorial Auctions with Complement-free Bidders

• Utility functions: sub-additive

• Objective function: find an allocation A that maximizes the sum of utilities over
all players

The class of complement-free bidders corresponds to those auction in which the bidders
have sub-additive valuation functions. Using the value oracle, the authors of [33] provide a
(1/
√
m )-approximation algorithm for the problem. The factor of 1√

m
is the best approx-

imation guarantee known for this problem. As for the lower bound on approximability,
Dobzinski and Schapira prove NP -hardness of approximating the social welfare in this case
within a factor of 1

m1/4 [34]. This lower bound is improved to 1
2 + ε by Feige [39] for any

arbitrarily small yet positive real value of ε.
For the model of demand oracles, Dobzinski et al. have a (1/ logm)-approximate solution

[33]. Similar to the [34], an LP-relaxation of the problem is solved and randomly rounded to
find a pre-allocation, which is later improved to obtain the final allocation with the desired
approximation guarantee. The linear programming used here is often referred to as the
configuration LP. We explain this formulation in detail in Section 1.4.3 when we discuss the
General Santa Claus problem. Later, Feige provides a randomized 1

2 -approximation for
this class [39]. He obtains this resul by again finding a pre-allocation through rounding the
solution to an LP relaxation of the problem and then improving the rounding in the next
step. This is what Feige calls “two stage rounding” in [39]. In the first round, a tentative
allocation is produced which may assign an item to more than one player. This is regarded
as a competition among the players who have the same item, each fighting over its possession.

4This result also appears in a conference version of the paper published in the proceedings of STOC 2005.
5XOS oracles can be considered a special case of demand oracles. They behave in the same was as the

demand oracles in general, but instead of taking one valuation for each item, they accept an XOS bid and
return the subset of items that maximizes this bid.
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The second rounding stage is then the contention removal round, which tries to allocate each
shared item to a player who has the maximum marginal utility for it. The author of this
thesis is not aware of any inapproximability results for the case of complement-free bidders
and demand oracles.

1.4.3 Fair Indivisible Resource Allocation

Envy-free Allocation of Indivisible Resources

Lipton et al. considered the Envy-free IRA in [85]. Generally speaking, an allocation of
items to players is envy-free, if every player thinks she has the portion of items with the
largest value (based on her own utility function), and thus, does not envy any other player.
A more formal statement of this concept is given in Definition 6.

Definition 6 (Envy-free Allocation). [85] An allocation of items A = (A1,A2, . . . ,Am) to
m players is envy-free if every player prefers her own share than the share of any other
player. That is, for each i ∈ P, argmaxk{fi(Ak)} = Ai.

Also, the envy for a specific allocation A is defined as follows.

Definition 7. [85] The envy of a player i for another player k in an allocation A is defined
as

eik(A) = max{0, fi(Ak)− fi(Ai)}.

For the entire allocation A, the envy denoted by e(A) is defined as

e(A) = max
i, k∈P

{eik(A)}.

For indivisible goods, it is not always possible to find envy-free allocations. Therefore, a
natural question to ask is what is the minimum envy attainable in a given setting. Researchers
have defined the following problems based on this question.

Bounded Envy Indivisible Resource Allocation

• Utility functions: monotone

• Objective function: find an allocation A with a bounded envy e(A) 6 α, for some
given upper bound α

Lipton et al. prove that for the case of indivisible items, an allocation with envy at most
α always exists, where alpha is the maximum marginal utility [85]. The marginal utility of
a player is the maximum increase in her utility after adding one more item to her bundle.
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More formally,

α = max
C, i, j
{fi(C ∪ {j})− fi(C)}

where C ⊂ R is a bundle of items, i ∈ P is a player, and j ∈ R is a single item. They
also provide an algorithm that finds such allocations in O(nm3), where m is the number of
players and n is the number of items.

Minimum Envy and Minimum Envy-ratio Problems

Although the Bounded Envy IRA guarantees the existence of an allocation with envy
bounded by the maximum marginal utility, in many cases the minimum attainable envy can
be even smaller. Lipton et al. approached the problem from an optimization perspective,
aiming at minimizing the envy for indivisible resources [85]. They studied two types of envy
minimization algorithms. The utility functions are the same for both settings, and the only
difference is in the objective function.

The Minimum Envy IRA problem is defined as follows:

• Utility functions: monotone or additive, accessible through an oracle

• Objective function: find an allocation A that minimizes the envy defined as
maxi, k{0, fi(Ak)− fi(Ai)}

and the Minimum Envy-ratio IRA is defined in the following manner:

• Utility functions: monotone or additive, accessible through an oracle

• Objective function: find an allocation A that minimizes the envy ratio defined as
maxi, k{1, fi(Ak)

fi(Ai) }

As mentioned in the utility functions, the existence of a value oracle is assumed in this
model. Any arbitrary algorithm should make queries to the oracle about the value of a
subset of items for an individual player to access the utility functions.

For the case of monotone utility functions, Lipton et al. show that any deterministic
algorithm that solves Minimum Envy IRA or Minimum Envy-ratio IRA runs in a number
of rounds that is exponential in the number of items in the worst case [85]. This result is
unconditional in the sense that it does not depend on any complexity theory assumption.
Specifically, it is independent of the famous assumption of P 6= NP. The authors set forth
the proof of hardness by showing that any deterministic algorithm would need an exponential
number of queries to the value oracle to solve these two problems.

For the case of additive utilities, the Minimum Envy IRA problem is NP-complete since
there is a reduction from the Set Partition6 problem, which is known to be NP-complete.

6Set Partition problem is the problem of deciding whether a given subset can be partitioned into two
subsets of equal sum.
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Also, it is shown in [85] that no polynomial time approximation algorithms exist for the
problem unless P = NP. Indeed, using techniques similar to the inapproximability result
of the Subset Sum Difference problem, the authors show that for any constant c, no
polynomial time algorithm can approximate the Minimum Envy IRA problem within a
factor of 2mc . The Minimum Envy-ratio IRA problem appears to be more tractable on
the other hand. In the same paper, Lipton et al. provide a Polynomial Time Approximation
Scheme (PTAS) for the problem and show that the same scheme serves as a Fully Polynomial
Time Approximation Scheme (FPTAS) if the number of players is a constant.

Truthful Mechanisms and Envy-freeness

In the past decade, many computer scientists especially algorithmic game theorists, have paid
heed to the area of truthful mechanism design, the task of developing algorithms for a class
of private information games which are robust to untruthfulness on the part of the players
competing in the game. The class of private information games refers to non-cooperative
settings in which some players, making use of the private piece of knowledge that they
possess, independently compete over limited resources. In so doing, they may lie about their
private information in an attempt to manipulate the game to their personal advantage. The
goal of the algorithm designer is to set up the structure of the game in such a way that it
motivates the players to reveal their true private information.

Indivisible resource allocation problems have enjoyed game-theoretic treatments. One
good example of such treatments is a mechanism design approach taken toward envy-free
allocations of indivisible goods, or more technically, the problems of Truthful Envy-free
IRA and Truthful Minimum Envy IRA. In these two settings, there exists no single entity
(such as the oracle in minimum envy and minimum envy-ratio problems of Section 1.4.3)
that keeps a record of players’ valuations. Instead, queries should be directed to each player,
in response to which they may lie to increase their benefit. The Truthful Envy-free
IRA problem is defined by the following objective and utility functions:

• Utility function: monotone or additive, private

• Objective function: Among all envy-free allocations, return the one in which all
players can maximize their utility functions only by revealing their true valuations

The Truthful Minimum Envy IRA problem is defined by:

• Utility function: monotone or additive, private

• Objective function: Among all allocations with minimum envy, return the one in
which all players can maximize their utility functions only by revealing their true
valuations
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Lipton et al. prove that the answer sets to both Truthful Envy-free IRA and
Truthful Minimum Envy IRA problems are empty, meaning that no envy-free or envy-
minimizing mechanism can be truthful [85]. According to them, his impossibility result
holds even for a more restricted case of additive utility functions.

Max-Min Allocation of Indivisible Resources

Perhaps the most well-studied concept of fairness in the context of indivisible resources is the
notion of Max-Min allocations. The research on this topic started back in early 1980’s. The
problem of Max-Min allocation of indivisible resources was studied under different names in
the earlier stages of its life. The first papers on the topic considered special, usually more
tractable, cases under the name of “scheduling jobs on parallel machines” [7, 29, 32, 104, 107],
which referred mostly to the cases of related or identical parallel machines (see Section 1.3.1
for a discussion on a general framework for scheduling problems). We will discuss these in
Section 1.4.3.

The most general case of the problem was proposed in [85] as a plausible direction for
future research, and it was first studied by Bezáková and Dani in [13]. The utility functions
are assumed to be additive, therefore for any collection of items C and an arbitrary player
i ∈ P, we have that fi(C) =

∑
j∈C vij , where vij = fi({j}) is a non-negative real number

indicating the value item j has to player i. The fairness is imposed by changing the objective
to split the set of items R into an allocation A = (A1,A2, . . . ,Am) in such a way that
mini∈P{fi(Ai)} is maximized, hence the name Max-Min IRA. Bansal and Sviridenko [10]
studied the problem under the name of Santa Claus problem. The name comes from the
following restatement of the problem: Santa Claus wants to distribute n presents between m
kids. Every present j has some arbitrary value vij to kid i. The objective is to distribute the
presents among the kids in such a way that the happiness of the least happy kid is as high
as possible. In other words, Santa’s goal is to maximize mini=1,2,...,m{

∑
j∈Ai vij}. Based

on the constraints on the values of the items, different sub-variants of the problem can be
distinguished. The following cases have been considered in the literature.

Maximizing the Minimum Completion Time on Parallel Machines

Suppose we have a system composed of some machines (e.g. engines) which can only
work, or be alive if all the machines are alive. Also, suppose that each of these machines
requires some resource (e.g. fuel) to function (stay alive). Then, one can ask how to allocate
these resources to the machines in such a way that the system stays alive for as long as
possible. Such problems have been the motivation for a class of scheduling problems known
as Maximizing the Minimum Completion Time, which can be performed on a set of
identical machines, or some parallel machines with different speeds (or sometimes referred to
as related) machines. Based on the general framework of Graham et al. (See Section 1.3.1),
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the problem of identical machines may be represented as P | |Cmin. Cmin indicates the
minimum completion time and the case of different speeds is denoted by Q | |Cmin.

The case of identical machines is when all players place the same value on each item, or
in the context of job scheduling, every job has the same processing time on all the machines.
In this case, the load of a machine i ∈M is defined as `i =

∑
j∈Ai pj , where as mentioned

before, Ai is the set of jobs allocated to machine i, and pj is the processing time of job j.
The goal is to maximize the load on the least heavily loaded machine. More precisely, the
problem of Maximizing the Minimum Completion Time on Identical Machines is
defined as follows:

• Utility function: additive, vij = pj (processing time of job j)

• Objective function: find an allocation A that maximizes mini∈M
∑
j∈Ai pj

The problem of Maximizing the Minimum Completion Time on [Related] Par-
allel Machines refers to the case where every machine i has a speed si, and therefore, the
load is defined as `i = (

∑
j∈Ai pj)/si:

• Utility function: additive, vij = pj (processing time of job j)

• Objective function: find an allocation A that maximizes mini∈M
∑

j∈Ai
pj

si

Both problems are known to be NP-complete [46]. In the following, we consider different
solution methods proposed in the literature toward this problem.

Approximations for P | |Cmax and Q | |Cmax. Deuermeyer et al. consider an LPT-
heuristic (Largest Processing Time first) for the former problem [32]. They show that ordering
the jobs in a non-increasing order and assigning each job to the least loaded machine at
the moment yields an approximation factor of no worse than 4/3 for the case of identical
machines. In [29], the approximation guarantee is further refined to (3m − 1)/(4m − 2).
Woeginger provides a PTAS for the problem of Maximizing the Minimum Completion
Time on Identical Machines [107]. Furthermore, Alon et al. consider a more general
version of the problem in [2]. While the machines are still identical in their model, the
utility functions on them are allowed to be a more general class of convex functions. The
machines are identical in the sense that they all use the same function to evaluate each
batch of jobs assigned to them. Then, they identify conditions for the utility functions
under which a PTAS for the problem of minimizing makespan exists. Their approach uses
a classic result of Lenstra [82]. Lenstra shows that any integer linear programming (ILP)
with a fixed number of variables can be solved in polynomial time. Alon et al. manage to
transform the problem into an ILP formulation with a fixed number of variables, although
their running time depends super-exponentially ((1/ε2)(1/ε2) +O (n) where n is the number
of jobs) on the inverse of the error parameter ε. Later, the running time is improved to
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2O(1/ε2+log3(1/ε)) + nO(1) by Jansen [68]. The approximation scheme of Jansen is proposed
for the more general case of Q | |Cmax problem which includes P | |Cmax as a special case.
Chen, Jansen, and Zhang show that this running time is very close to optimal by showing a
lower bound of 2O(1/ε) + nO(1) [24]. For their proof, they use the following widely accepted
hypothesis by Impagliazzo et .al:

Definition 8 (Exponential Time Hypothesis (ETH)). [66]: There is a positive real δ such
that 3-SAT with n variables and m clauses cannot be solved in time 2δn(n+m)O(1).

Then, they show that a 2O((1/ε)1−δ) + nO(1) time PTAS for P | |Cmax for any δ > 0
implies that ETH fails. Note that ETH, if true, implies the other widely-believed hypothesis
that P 6= NP.

Approximate and exact solutions for Pm | |Cmax and Qm | |Cmax. In another
research direction, people have looked at cases where m, the number of machines, is not
a part of the input, and therefore is treated as a constant. It is particularly interesting to
examine how the quality of approximations and the running time of algorithms improve
under this simplification. For this case, Horowitz and Sahni propose an FPTAS for the
case of identical machines (P | |Cmax) with the running time of O

(
nm(nm/ε)m−1) where

ε is the error parameter [64]. Lenstra, Shmoys, and Tardos improve this result after more
than a decade [83]. They give a PTAS with the running time of (n+ 1)m/εpoly(| I |) and
a space complexity polynomial in 1/ε, m, and | I |, where | I | is the size of the input7. In
[70], Jansen and Prokolab improve the running time to n(m/ε)O(m), settling the question
of finding an FPTAS for the problem raised by Lenstra et al. in [83]. A similar result is
also shown for a more general case of Rm | |Cmax. Jansen and Mastrolilli further improve
the time complexity of the FPTAS to O (n) + (1/ε)O(m) for sufficiently large values of m
(m > 1/ε)8 [69]. Chen, Jansen, and Zhang prove that any (1/ε)O(m1−δ) +nO(1) time FPTAS
for the problem for δ > 0 implies that ETH fails [24].

In a recent trend of research, some of the scientists in the field have investigated more
time-efficient exact solutions of variations of the problem. One of the problems that has
enjoyed such treatments in Pm | |Cmax, which is NP-hard to solve optimally. Nevertheless,
finding “relatively fast” (compared to naive approaches) exponential algorithms that can
solve the problem optimally is far from trivial. As an instance, mention the work of
O’Neil and Kerlin who provide an exact solution to Pm | |Cmax with the running time of
2O(√m | I |+m log | I |) [91] and a recent result by Lenté et al. who give a 2n/2 algorithm in
time complexity for the case of P2 | |Cmax (two identical parallel machines), and a 3n/2 time
algorithm for P3 | |Cmax [84]. Chen et al. provide lower bounds for this model as well [24].
They show that for the case where the processing times are bounded by O (n), an exact
algorithm of running time 2O(n1−δ) for any δ > 0 implies that ETH fails.

7The algorithm of Lenstra, Shmoys, and Tardos is in fact proposed for the broader class of unrelated
parallel machines or Rm | |Cmax.

8This result is also proposed for the more general case of Rm | |Cmax.
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Online P | |Cmax and Q | |Cmax. Azar and Epstein consider the latter problem in the
on-line setting in [7]. They assume that a sequence of jobs is dynamically scheduled on a set
of m identical machines, i.e., each job has to be allocated to a machine immediately when
considered, and this allocation cannot be modified at any future stage. In this scenario,
the entire input is not available to the algorithm at any given time. Instead, it is fed to
the algorithm as a read-once sequence. Azar and Epstein improve a previous result by
Woeginger who showed a greedy algorithm is an m-competitive algorithm for the on-line
version of Maximizing the Minimum Completion Time on [Related] Parallel
Machines [107]. The competitive ratio of an on-line algorithm is the ratio between the
worst (expected) performance of the algorithm for arbitrary input sequences compared to
the optimal off-line solution (if all the input was given to the algorithm at once). They
provide a randomized on-line algorithm which is O (

√
m logm)-competitive, and also manage

to show that any randomized on-line scheduler is at least Ω (
√
m )-competitive. For the

case of identical machines, they give a O (logF )-competitive randomized on-line algorithm,
where F is the ratio between the longest and shortest processing times of the jobs. In the
case that this ratio is a polynomial in the number of machines m, this algorithm readily
gives a O (logm)-competitive algorithm, which asymptotically matches the lower bound of
Ω (logm)-competitiveness that the authors prove for any randomized on-line scheduler on
identical machines. Finally, in a more recent work, Tan et al. have looked at the on-line
setting again, only this time under certain assumptions [104]. They consider the problem
of Maximizing the Minimum Completion Time on [Related] Parallel Machines
for a simplified setting of only two machines, one with a speed of s1 = 1, and the other one
with a speed of s2 = s > 1. In their model, the scheduler is confronted with a sequence of
independent jobs, p1, p2, . . . , pn in an on-line fashion. The characteristic that distinguishes
their model from the previous work is the assumption of ordinal data, that is, the processing
times of the jobs are not known, but the sorted order of the jobs is known in advance. The
authors of [104] provide a lower bound on the competitive ratio of any algorithm for this
problem in the format of a piecewise function of the speed ratio s. Then, they present an
optimal parametric algorithm for any given s. More precisely, they prove the following lower
bound which as the authors show, is a well-defined function.

c(s) =


2(2k−1)s
ks+2(k−1) , ak−1 6 s < bk, k > 2
2k+1
k+1 , bk 6 s < ak, k > 2

2, s > 2

where ak = 2k
k+1 and bk = 2(k−1)(2k+1)

2k2+k−2 . They also provide an algorithm that matches
these bounds.
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General Santa Claus Problem

• Utility functions: additive, item values are non-negative

• Objective function: find an allocation A that maximizes mini∈P{
∑
j∈Ai vij}

Although very similar to the problem of Make-span Minimization on Unrelated
Machines in Section 1.4.3, this problem is completely different in essence [5, 13], which
means using the techniques for minimizing the makespan would not yield any nontrivial
result for the case of Max-Min Fair Allocation problem. General Santa Claus problem
received its first treatment by Bezákova and Dani [13]. The authors mention a reduction
from Subset Sum problem to General Santa Claus problem for the special case of
two players, pointing out NP-hardness of the problem. They also use another reduction
from 3D-Matching problem to show that there exists no polynomial-time α-approximation
algorithms for α > 1/2. Then they use the same integer linear programming formulation as
[83], called the assignment LP. Here, xi, j is the indicator variable that means player i gets
item j.

max ω (1.4.1)

s.t.
∑
i∈P

xi, j = 1 ∀j ∈ R (1.4.2)

∑
j∈R

vij · xi, j > ω ∀i ∈ P (1.4.3)

xi, j ∈ {0, 1} ∀j ∈ R, ∀i ∈ P (1.4.4)

Then, they relax the integrality constraint of Equation (1.4.4) to 0 6 xi, j 6 1, and
use the same rounding technique as in [83] to get an additive factor loss of maxi, j vij in
approximation quality, which can be arbitrarily bad.

Bansal and Sviridenko revisit the problem using a stronger LP formulation [10]. They
use machine scheduling terminology, however (following the footsteps of earlier works on
the topic such as [107]), where kids correspond to machines and presents correspond to
jobs to be scheduled on these machines. The value of a present to a kid corresponds to the
processing time of a job on a machine in this new setting. The goal is to schedule jobs on
the machines in such a way that the minimum load is maximized. As before, in the setting
of scheduling we use the set of jobs, denoted by J to mean the set of items R, and the
set of machines, denoted byM interchangeably with the set of players, P. Also, instead
of values vij , we use pij to denote the processing time of a job j on a machine i. In their
new LP formulation, Bansal and Sviridenko look at all possible subsets of jobs known as
configurations. Therefore, the LP they propose is named configuration LP and is written in
the format of an exponentially large (in terms of the number of constraints) feasibility linear
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programming. To explain further, assume we are given T , the value of the objective function,
i.e., the minimum machine load that every machine should have after allocation. We can use
binary search over the range of T to get as close as desired to our target objective. Consider
a configuration C which is a subset of jobs (items). Let the size of the configuration on
machine (player) i, denoted by size(C, i), be the sum of the processing times (values) of all
the jobs (items) in C. Now, we define the notion of valid configurations.

Definition 9 (Valid Configurations). A configuration C is valid for machine i under a
given objective value T if size(C, i) > T .

The set of valid configurations for machine i under objective value T is denoted by
C(i, T ). There is a variable xi, C for every valid configuration C ∈ C(i, T ) on machine i (note
that it is not a binary variable, and one can think of it as a real-valued version of an indicator
variable). The number of such variables is potentially exponential. The configuration LP
will be defined as:

min 0 (1.4.5)

s.t.
∑

C∈C(i, T )
xi, C > 1 ∀i ∈M (or P) (1.4.6)

∑
C3j

∑
i

xi, C 6 1 ∀j ∈ J (or R) (1.4.7)

xi, C > 0 ∀i ∈M (or P) , ∀C ∈ C(i, T ) (1.4.8)

The dual of this linear programming is often used in the analyses [94], as we shall explain
in a few paragraphs. We provide the dual of the configuration LP below. Assuming dual
variables yi for 1 6 i 6 m correspond to Equation (1.4.6) and variables zj for 1 6 j 6 n

correspond to Equation (1.4.7), we write the dual as:

max
m∑
i=1

yi −
n∑
j=1

zj (1.4.9)

s.t.
∑
j∈C

zj > yi ∀i ∈M (or P) ,∀C ∈ C(i, T ) (1.4.10)

yi, zj > 0 ∀i ∈M (or P) , ∀j ∈ J (or R) (1.4.11)

The authors of [10] first show that the integrality gap of LP formulation of [13] is Ω (m).
The result holds even when all jobs have the same processing times on all machines. Then,
they turn their attention to the integrality gap of the stronger configuration LP.

Theorem 1.4.3. [10] The configuration LP of Equation (1.4.5)–Equation (1.4.8) has an
integrality gap of Ω (

√
m ) for arbitrary processing times pij.
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To achieve this, Bansal and Sviridenko demonstrate a class of problem instances in which
m, the number of players or machines, is set to be O

(
k2) for some integer k. They show that

the optimal fractional solution of the configuration LP is Ω (k) while the optimal integral
solution is 1. A solution of value OPT/m is proposed in [10] as well, where OPT is the
optimal value of T , the solution to the General Santa Claus problem. The authors
also make use of the fractional solution of configuration LP for the case of Restricted
Santa Claus problem, which will be explained briefly in the next section. To show both
approximation algorithms for the general and restricted case take polynomial time, the
configuration LP must be solvable in polynomial time in the first place. To that end, Bansal
and Sviridenko use the separation problem of the dual. They first show that the separation
problem to the dual is a regular Minimum Knapsack problem, which can be solved to any
desired precision ε in polynomial time. We bring the definition of the separation problem
here for the sake of completeness.

Definition 10 (The Separation Problem). [108] The separation problem associated
with a combinatorial optimization problem max{cx : x ∈ X ⊆ Rn} is the problem: given
x∗ ∈ Rn, is x∗ ∈ conv(X) 9? If not, find an inequality πx 6 π0 satisfied by all points in X,
but violated by the point x∗.

Since the separation problem for the dual can be solved to any arbitrary precision
in polynomial time, the ellipsoid method can solve the dual in polynomial time as well.
Therefore, one can find a feasible solution to the primal to any desired accuracy in polynomial
time.

Subsequently, Asadpour and Saberi provide an iterative rounding scheme in [6] to get
an objective value no worse than O

(
OPT√

m (log3 m)

)
, which counts as the first non-trivial

approximation algorithm for the General Santa Claus problem. They first split the
items into two sets: the ones that have value more than T√

m log3 m
are called big items, and

the rest are called small items. Then, they carry out their iterative rounding based on
a bipartite graph matching. Their rounding method ensures each player either receives a
big item or is satisfied with a bundle of small items that values a constant fraction of a
big item’s, hence the O

(
OPT√

m (log3 m)

)
approximation guarantee. There are polylogarithmic

approximation factor algorithms with quasi-polynomial running times independently by
Bateni et al. [11] and Chakrabarty et al. [21], but since the techniques used in these two
papers are mostly devised for special cases of the Santa Claus problem, we shall say
more on these results in Section 1.4.3. Finally, Saha and Srinivasan in [98] get a better
approximation factor of O

(√
log logm
m logm

)
with yet another rounding technique, which is very

close to the integrality gap of the configuration LP (see Theorem 1.4.3).
9conv(X) is the convex hull of X
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Restricted Santa Claus Problem

• Utility functions: additive, item values vij ∈ {0, vj}

• Objective function: find an allocation A that maximizes mini∈P{
∑
j∈Ai vj}

In the restricted case, for every item i ∈ R and every player j ∈ P, it is assumed that
vij ∈ {0, vi}, where vi is a positive real number. In other words, every item i has either a
fixed value vi to all those players who are interested in that item, or a value of 0 to those
players not interested in i. The same 1/2-inapproximability result of [13] holds for this
case as well. Also, the rounding technique of [10] can be used for a configuration LP in
the restricted case. In this setting, Bansal and Sviridenko provide an O

(
log log logm

log logm

)
factor

approximation algorithm [10]. Feige proves that the integrality gap of configuration LP is a
constant, although he does not provide a polynomial time algorithm to provide a constant
factor approximation of the optimal solution [37]. What he has proposed is, in fact, an
estimation algorithm. Feige himself points out the distinction between an approximation
algorithm and an estimation algorithm as follows:

“In some cases the design of approximation algorithms includes a nonconstructive
component. As a result, the algorithms become estimation algorithms rather than
approximation algorithms: they allow one to estimate the value of the optimal
solution, without actually producing a solution whose value is close to optimal.”
[38]

We should mention that hardness results on approximation algorithms remain valid even
for estimation algorithms. More to the point, estimating the optimal value of General
Santa Claus and Restricted Santa Claus problems within a factor of 1

2 cannot be
done in polynomial time unless P = NP. Recently, Haeupler et al. have given a constructive
version of Feige’s proof using the constructive proof of Lovász Local Lemma [58]. It counts as
the first constant factor approximation algorithm for Restricted Santa Claus problem,
although they do not provide any specific constant in their algorithm.

Asadpour et al. use solution concepts from 3D-Matching problem alongside config-
uration LP [5]. They first use some sufficient condition for the existence of matchings in
hypergraph by Haxell [61] to prove a conjecture proposed in [10] by Bansal and Sviridenko,
which in turn proves that the integrality gap of configuration LP is no worse than 1

3 . Then,
they propose an algorithm that achieves a 1/4-approximation solution to the Restricted
Santa Claus problem in exponential time. Their algorithm works around the notions
of big and small items as in [10] and [6]. After categorizing the items into these two sets,
they build a hypergraph-based on the solution to the configuration LP relaxation. The
hypergraph is used to find a hypergraph matching which is the equivalent of an allocation
A satisfying the condition mini∈P{

∑
j∈Ai vj} >

T
4 , where T is the optimal value, i.e., the
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objective value of the allocation that maximizes the benefit of the least lucky player. To find
the matching, they perform a local search on an alternating tree. Edmonds first introduced
the notion of alternating trees in the algorithm he proposed for maximum matching in
general graphs, known as the blossom algorithm [36]. Their local search requires exponential
time. Recently, Polacek and Svensson have managed to show that for the local search, one
just needs to consider the alternating tree to a limited height, hence cutting the running
time from exponential to quasi-polynomial time of mO(logm).

Special Cases

The following case of the Max-Min problem, called (0, 1, U)-Max-Min+, has been shown to
be as hard as the General Santa Claus problem [74]:

• Utility functions: additive, item values vij ∈ {0, 1, U} for some U > 1

• Objective function: find an allocation A that maximizes mini∈P{
∑
j∈Ai vij}

The authors of [74] provide a trade off between running time and approximation guarantee
through an algorithm that, for any given α < m/2, finds an allocation of value greater
than or equal to α · OPT/m in time nO(1)mO(α). Prior to [74], Golvin had shown a
O (
√
m )-approximation algorithm for this variant [53].

In [11], Bateni et al. consider a case where every item has a positive value for a limited
number of players:

• Utility functions: additive, any item i has value vij > 0 for some D players, 0 for
the rest

• Objective function: find an allocation A that maximizes mini∈P{
∑
j∈Ai vij}

Definition 11 (Bipartite Graph Representation). A bipartite graph representation of an
instance of the Santa Claus problem in general is a bipartite graph H = (P,R, E) in which
vertices in P correspond to players, vertices in R correspond to resources or items, and there
is an edge e = (i, j) ∈ E for i ∈ P and j ∈ R if the item j has positive value to player j.

This variant of the problem is called Bounded Degree Max-Min IRA. In the bipartite
graph representation of the problem, every item has a bounded degree of D, hence the name.
The authors show that any instance of the General Santa Claus problem can be cast as
another instance with bounded degree D = 3. For D = 2, they further divide the problem
into two sub-classes: symmetric and asymmetric. In the symmetric case, every item has
the same value for both players to whom it is connected. In the asymmetric case, it can
have different values for the two players. Bateni et al. show that the case of bounded degree
D = 2 cannot be approximated within a factor larger than 1

2 via a reduction from the 3SAT
problem, even for the symmetric sub-class [11]. They also provide a 1/4-approximation
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algorithm for the asymmetric case and give a simpler LP formulation for the general case
(General Santa Claus) called M-LP:

min 0 (1.4.12)

s.t.
∑
i∈P

xi, j 6 1 ∀j ∈ R (1.4.13)

∑
j∈R : vij =T

xi, j + zi > 1 ∀i ∈ P (1.4.14)

∑
j∈R : vij <T

vij · xi, j > zi · T ∀i ∈ P (1.4.15)

xi, j 6 zi ∀i ∈ P, j ∈ R : vij < T (1.4.16)

xi, j , zi > 0 ∀i ∈ P, j ∈ R (1.4.17)

in which, xi, j indicates the fraction of item j assigned to player i Also, zi is called the small
usage of player i and indicates how much small items contribute to the utility of player i.
Finally, T is an estimate or guess of the optimal objective value found via binary search. An
interesting feature of this formulation is that, in contrast to the configuration LP, it has a
polynomial number of variables and constraints. Building upon this new formulation, the
authors of [11] devise a polylogarithmic approximation algorithm for the general problem
that runs in quasi-polynomial time. Chakrabarty et al. have also achieved the same results.
[21].

In [86], a sub-class of the Restricted Santa Claus is considered:

• Utility functions: additive, item values vij ∈ {0, vj}, the bipartite graph representa-
tion forms an inclusion-free convex bipartite graph

• Objective function: find an allocation A that maximizes mini∈P{
∑
j∈Ai vj}

A bipartite graph representation H = (P,R, E) (or any bipartite graph for that matter)
is said to be convex bipartite, or ordered if there exists an ordering of the vertices in P such
that NH(i), the neighbourhood of every vertex i ∈ P forms an interval. By an interval
we mean a continuous sequence of the vertice in cR. H is said to be inclusion-free convex
bipartite if it is convex bipartite, and no neighbourhood NH(i) falls completely within another
one. Authors of [86] provide a 1/2-approximation algorithm for this sub-class.

Truthfulness and Max-Min

A game theoretic approach to Max-Min IRA has been taken in [13]. Similar to Section 1.4.3,
we assume that the utility functions of the players are private, meaning the allocation
algorithm cannot access the private value a player has for an item, and it must ask the player
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about the valuation. The players in return may choose to lie in order to manipulate the
algorithm into allocating them a more valuable chunk of items. This variant of the problem
is defined as follows:

• Utility functions: additive, item values are non-negative and private

• Objective function: find an allocation A that maximizes mini∈P{
∑
j∈Ai vij}, while

each player can maximize her benefit by revealing her true valuation

Bezákova and Dani show that for two players, the expected minimum of a randomized
divide-and-choose mechanism is at least OPT/2 [13]. To complement this result, they
also prove that no truthful mechanism can find the optimum allocation. For more on
divide-and-choose strategies, consult [16].

Min-Max Allocation of Indivisible Resources

For long, Min-Max scenarios have mostly been considered in the context of scheduling
problems for obvious reasons: some jobs are scheduled on a set of machines which run the
jobs in parallel. The completion time of the entire batch of jobs is the maximum completion
time or make-span among all the machines. Thereby, one direction to look at is minimizing
the maximum makespan. As usual with the job scheduling settings, we switch to our
alternative notation. In the language of the “three-field” notation of Graham et al. (see
Section 1.3.1), we will consider the following variants of the R | |Cmax problem:

General R | |Cmax

The General R | |Cmax problem was considered in [83] by Lenstra, Tardos, and Shmoys,
in one of the most cited papers in the field. The problem is defined in the following way:

• Utility functions: additive, processing times are non-negative

• Objective function: find an allocation A that minimizes maxi∈M{
∑
j∈Ai pij}

In [83], the authors use the famous assignment LP, which we mentioned in Section 1.4.3
(Equation (1.4.1)–Equation (1.4.4)). Their main result is a 2-approximation algorithm for
the problem They first solve the linear programming relaxation of the assignment LP in
polynomial time to get a fractional assignment of jobs to machines. Then, they provide a
rounding scheme for the extreme points of this LP to integral solutions. After their rounding,
the feasible integral solution obtained is within a factor of 2 of OPT , where OPT is the
optimal solution to the original (integral) General R | |Cmax problem. To complement this
result, they also show that the problem cannot be approximated to a factor better than 3

2
unless P = NP via a reduction from 3D-Matching problem. Despite being over twenty
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years old now, these results are the best approximation algorithm and hardness result ever
known. Thus, a gap of 1

2 still stands between the known boundaries of the problem today.
For the case of fixed number of machines, or Rm | |Cmax, all the approximation results

mentioned for Pm | |Cmax (see Section 1.4.3) apply to this broader model as well. As a
matter of fact, all the mentioned algorithms were designed and proposed with Rm | |Cmax
problem in mind, but they also apply to the special cases of Pm | |Cmax and Qm | |Cmax.

Restricted R | |Cmax

In the same manner that a restricted version of Santa Claus problem was defined in
Section 1.4.3, we can also define the Restricted R | |Cmax problem. We assume that jobs
can only be processed on a subset of the machines in a reasonable amount of time, and have
infinite running time on the rest:

• Utility functions: additive, processing times pij ∈ {∞, pj}

• Objective function: find an allocation A that minimizes maxi∈M{
∑
j∈Ai pj}

The previously known inapproximability factor of 3
2 for the general case also holds for

the restricted version, unless P = NP. Svensson has considered this variant of the problem
[102]. The author uses the configuration LP (Equation (1.4.5)–Equation (1.4.8)) which
has already been used for the Santa Claus problem to estimate the optimal completion
time within a factor of 33/17 + ε ≈ 1.9412 + ε for small values of ε. We note that this
algorithm is an estimation algorithm but not an approximation algorithm, the reason being
that Svensson’s algorithm heavily relies on a local search procedure that is not known to
converge in polynomial time.

Special Cases

Most of the special cases of the R | |Cmax problem put certain restrictions on the way the
jobs can be assigned to the machines. For the sake of convenience, we define the set of
eligible machines for a job as follows:

Definition 12 (The Set of Eligible Machines). For any arbitrary job j ∈ J , the set of
eligible machines for j denoted by Mj (Mj ⊆M) is a subset of machines on which j has
finite running time (or can be processed on these machines).

This definition comes in handy in the discussion of the special cases regarded in this
section. The first one is the case of Parallel Machine Scheduling with Grade-of-
Service Eligibility studied by Hwang et al. [65]. In this case, the customers make
requests for the machines, and the objective is, as with other variants of R | |Cmax problem,
to minimize the makespan. The property that is unique to this model is that the customers
are of different values to the service provider. For instance, some are considered to be silver,
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gold, or platinum members. Therefore, the service provider differentiates in the policy of
service for each of these classes of customers. The way Hwang et al. propose to implement
this differentiation is to assign a GoS (Grade-of-Service) value to both machines and jobs,
and then allow each job to be processed on only those machines that have a GoS less than
or equal to that of the job. The problem can be formally defined as:

• Utility functions: additive, for each processing time pij we have pij ∈ {∞, pj} such
that for every two jobs j, k ∈ J , either Mj ⊆Mk or Mk ⊆Mj

• Objective function: find an allocation A that minimizes maxi∈M{
∑
j∈Ai pj}

This case also arises in situations where each job has a memory requirement, and every
machine has a certain amount of memory available to offer which is inherently different
from other processors. In this case too, a total ordering of the jobs is formed in the sense
that each pair of jobs is comparable via the inclusion criterion of their corresponding set
of eligible machines. For this case, Hwang et al. provide a polynomial time approximation
algorithm with an approximation factor of no worse than 2 − 1/(m − 1) [65]. Glass and
Kellerer consider the same problem and manage to improve the approximation quality to
3/2 [49]. Finally, Ou et al. provide a PTAS for the problem [92].

Glass and Kellerer also considered a slightly different case in which a total ordering of the
job does not exist, but the inclusion of the eligible machines is still preserved [49]. In their
model, for any two jobs j, k ∈ J , one of the following holds: i) Mj ∩Mk = ∅, ii) Mj ⊆Mk,
iii) Mk ⊆ Mj . This sub-variant is referred to as the Parallel Machine Scheduling
with Nested Job Assignments problem. They propose a polynomial time algorithm that
approximates the minimum makespan within a factor of 2− 1

m and mention the question of
finding a polynomial time approximation scheme as an open problem, a question which is
addressed in [88] by Munatore, Schwarz, and Woeginger.

Ebenlendr et al. consider a very special case of the Restricted R | |Cmax where each job
can be scheduled on at most two machines [35]. They call this case the Graph Balancing
problem.

• Utility functions: additive, for each processing time pij we have pij ∈ {∞, pj} such
that for every job j ∈ J , |Mj | 6 2

• Objective function: find an allocation A that minimizes maxi∈M{
∑
j∈Ai pj}

Finding an exact solution to Graph Balancing problem is hard as there is a straight-
forward reduction from Subset Sum problem when there are only two machines in the
system. The authors show that this special case is NP-hard to approximate within a factor
better than 3

2 . Then they provide a 1.75-approximation algorithm.
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1.5 Thesis Overview

The main results of the thesis are organized into two parts. Part I discusses a computational
solution to variations of the vehicle routing problem. More specifically, Chapter 2 explains
our efforts in solving Skill Vehicle Routing Problem through a column generation technique.
These efforts lead us to a subproblem, Prize-Collecting Travelling Salesman, which is a vari-
ation of the well-known TSP. Chapter 3 demonstrates a branch-and-cut algorithm that can
solve PCTSP computationally in an efficient way. This chapter contains our most significant
contribution to the vehicle routing problem, and elaborates algorithms that we use for both
the SVRP and the PCTSP. Part II of the thesis focus on the classic Scheduling problem.
We study particular instances of the problem known as the ordered instances. In Chapter 4,
we present a Polynomial Time Approximation Scheme using dynamic programming. We
show that, with minor modifications, our algorithm works for various ordered instances. An
overview of the thesis is as follows:

Chapters 2 - A Column Generation Approach to Skill Vehicle Routing Problem:
In this chapter, we consider a variation of the vehicle routing problems known as the Skill
Vehicle Routing Problem (SVRP). We argue why a solution method based on column
generation can be useful in solving the problem to optimality. We provide a branch-and-price
algorithm for the problem and discuss that the subproblem is the PCTSP. We also show
how we can use the dual variables for generating bounds for the SVRP.

Chapter 3 - A Branch-and-Cut Algorithm for Prize Collecting Travelling Sales-
man Problem [71]: In this chapter, we provide a complete framework for solving the
PCTSP based on a branch-and-cut algorithm. At the heart of our framework lies a cutting
plane algorithm which uses two classes of cuts for improving the linear programming solution:
Generalized Subtour Elimination Constraints (GSECs) and Primitive Comb Inequalities.
We provide efficient heuristics to obtain the GSECs for the PCTSP and compare its per-
formance with an optimal separation procedure. Furthermore, we show that a heuristic
to separate the primitive comb inequalities for the TSP can be applied to separate the
primitive comb inequalities introduced for the PCTSP. We evaluate the effectiveness of these
inequalities in reducing the integrality gap for the PCTSP. We also provide a local search
heuristic to help the branching algorithm in finding effective bounds. Finally, we introduce
branching heuristics that can guide the search on obtaining feasible solutions quickly. We
compare the performance of two of the heuristics against each other, and against the generic
branch-and-bound algorithm used by CPLEX.

Chapter 4 - PTAS for Ordered Instances of the Resource Allocation Problems
[72]: We consider the problem of allocating a set I of m indivisible resources (items) to
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a set P of n customers (players) competing for the resources. Each resource j ∈ I has a
same value vj > 0 for a subset of customers interested in j, and zero value for the remaining
customers. The utility received by each customer is the sum of the values of the resources
allocated to her. The goal is to find a feasible allocation of the resources to the interested
customers such that for the Max-Min allocation problem (Min-Max allocation problem) the
minimum of the utilities (maximum of the utilities) received by the customers is maximized
(minimized). The Max-Min allocation problem is also known as the Fair Allocation problem,
or the Santa Claus problem. The Min-Max allocation problem is the problem of Scheduling
on Unrelated Parallel Machines, and is also known as the R | |Cmax problem. In this chapter,
we are interested in instances of the problem that admit a Polynomial Time Approximation
Scheme (PTAS). We show that an ordering property on the resources and the customers is
important and paves the way for a PTAS. For the Max-Min allocation problem, we start with
instances of the problem that can be viewed as a convex bipartite graph; a bipartite graph
for which there exists an ordering of the resources such that each customer is interested
in (has a positive evaluation for) a set of consecutive resources. We demonstrate a PTAS
for the inclusion-free cases. This class of instances is equivalent to the class of bipartite
permutation graphs. For the Min-Max allocation problem, we also obtain a PTAS for
inclusion-free instances. These results are not only of theoretical interest but also have
practical applications. Finally, we extend our method to cases of R | |Cmax problem in which
hierarchical assignment restrictions exist. We first provide a PTAS based on our dynamic
programming technique for instances in which the hierarchical structure is given in a form
known as the laminar families. Next, we expand it to a more general case that we call the
“extended laminar families” of sets.
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Part II

Skill Vehicle Routing Problem
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Chapter 2

A Column Generation Approach to
Skill Vehicle Routing Problem

2.1 Introduction and Problem Definition

Vehicle Routing Problem (VRP) deals with the question of routing a fleet of vehicles, typically
starting from a centralized site called the depot, to visit various service locations scattered
over a given area. It is one of the most common challenges in operations research [52] with
immediate applications to transportation. Transportation cost is a significant portion of the
total cost of a product. According to Rodrigue et. al, “ it is not uncommon for transport
costs to account for 10% of the total cost of a product” [96]. With the growing popularity of
online shopping and online ordering, the scale of the transportation problems businesses
face grows steadily as well. Manual route selection and dispatching, solely based on human
expertise, no longer can keep up with the demand. The need for automatic optimization
software is evident. Computer optimization tools have been able to make a significant impact
on transportation costs[47]. Consequently, more companies turn to computer-aided route
optimization tools each year. Most of the logistics tasks carried out on a daily basis in
courier or delivery services are closely tied to one variation of the VRP or the other. The
version we study in this thesis is referred to as the Skill Vehicle Routing Problem (SVRP),
which has applications for utility service providers and courier companies.

In SVRP, the service location, also known as customers are spread out on a two-
dimensional metric (usually Euclidean) plane. We model the travel distances between the
customers via a metric graph G = (V, E), in which V = S ∪ {r}. S is the set of customer
sites and r is the depot, where all vehicles start and end their trips. Associated with the
edges is a cost function c : E → R>0. The cost function associates a non-negative value
cuv to each arc (u, v) ∈ E proportionate to the distance between the nodes u and v. We
assume that cuu = 0 for each u ∈ V . In this variation of the VRP, every vehicle in the fleet
is associated with a driver. D represents the set of all drivers, and every driver i ∈ D has
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a particular set of skills suitable for a subset of tasks. Every customer’s demand requires
exactly one of these skills. Therefore, not all drivers can be sent to visit a given customer.
The objective is to find routes that start and end at the depot and assign drivers to them so
that:

(1) the union of all the nodes visited by the routes covers the set of customers S

(2) the driver assigned to each route has the required skill at each site she should visit

(3) the total distance travelled by all drivers is minimized

2.1.1 Related Work

Column generation has been a prominent solution technique for vehicle routing problems.
The first applications of column generation for vehicle routing problems date back to early
1990’s. Desrochers et al. use column generation in a Dantzig-Wolfe decomposition to tackle
a Vehicle Routing Problem with Time Windows (VRPTW) [31]. In this model, the distances
between the customers are given in terms of the travel time. Every customer j ∈ S is
associated with a time window [aj , bj ]. The driver should arrive before the time bj to serve
j. Also, if the driver arrives before the time window opens, she has to wait until the time aj .
In the same year, Halse implements the framework based on a Lagrangian decomposition
[60]. Lagrangian decomposition is a variable splitting technique that can be considered
as a special case of the Lagrangian relaxation. A Lagrangian relaxation algorithm for the
problem of VRPTW is due to Kohl and Madsen [76]. A series of papers in the late 1990’s
improve on the previous decomposition methods and mix them with cutting plane and
parallel algorithms. See the papers by Kohl et al. [75], Larsen [78], and Cook and Rich [26]
as examples. More recent research on the VRPTW includes combinations of Dantzig-Wolfe
decomposition and Lagrangian relaxation algorithm. [20, 41, 67, 97].

Many other variations of the VRP have also benefited from a column generation solution.
One major application is for vehicle routing problems with heterogeneous vehicles where
vehicles are different in capacity or cost they incur. We refer the readers to the work of
Choi and Tcha [25] on the lower bounds of variations of heterogeneous fleet VRP. Also Choi
and Tcha [25] and Taillard [103] provided a heuristic based on column generation for the
problem. Please consult [30] and [52] for a thorough treatment of the column generation
based methods for solving the VRP.

2.1.2 Our Contribution

We provide a solution framework based on the column generation technique. Our method
can be used to obtain exact or near-optimal solutions to the SVRP. Through SVRP, we were
introduced to the PCTSP. The major portion of the research we present in this thesis has
been carried out on exact and near-optimal solutions of PCTSP, which arises as a subproblem
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of SVRP in our column generation approach. In Chapter 3, we model and solve the PCTSP
by implementing a branch-and-cut algorithm. We demonstrate that the software is capable
of solving instances of the problem efficiently by running various experiments on standard
libraries of the VRP instances. The branching mechanism we developed can be used for the
SVRP with minor modifications. We model the SVRP problem in this chapter and lay out
the solution framework we have designed. We can solve the instances of the SVRP problem
by the software, although we should make enhancements to achieve a desirable running time.
We briefly explain some possible improvements as future work in the next chapter.

2.2 Column Generation for the SVRP

2.2.1 Preliminaries and Notation

We assume the problem instance is given as a complete (metric) graph G = (V,E), associated
costs to the edges c, and the set of drivers D. Recall that the set of vertices, V include the
set of customers S and a particular node r called the depot. As before, we let cuv denote
the cost of traveling along the edge e = (u, v). We assume that the costs satisfy the triangle
inequality; for a set of three customers u, v, and w, we have cuv + cvw > cuw. Each driver i
has a set of skills Ki and each customer j has a skill requirement qj . Driver i can service
customer j if qj ∈ Ki. We also use the following notation in the formulation we provide in
Section 2.2.2.

• T (i) is the set of all tours that can be served by driver i. In other words, the tours
in T (i) can be assigned to the driver i. For every job j ∈ T (i), the driver i has the
required skill qj to visit the site.

• zi,T is an indicator binary variable which assumes the value of one if the tour T is to
be served by driver i for some i ∈ D, and zero otherwise.

zi,T =

1 if driver i visits the vertices in the tour T

0 otherwise

• C(T ) is the cost of the tour, i.e., the sum of the costs of its edges.

As a convention, we use bold symbols to denote vectors. When dealing with a solution
of the linear programming problems, we let z denote the objective function. Also, z̄ denotes
an upper bound of z, z denote a lower bound and z∗ specifies the optimal solution. For
variables of linear programming x and y, x̂ and ŷ denote the values of the variables after
the LP problem has been solved.
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2.2.2 A Formulation using Column Generation

We use a column generation approach to obtain the formulation below.

min
∑

i,T∈T (i)
zi,T · C(T ) (2.2.1)

subject to∑
T∈T (i)

zi,T = 1 ∀i ∈ D (2.2.2)

∑
i,T∈T (i):T3j

zi,T > 1 ∀j ∈ S (2.2.3)

zi,T ∈ {0, 1} ∀ i ∈ D, ∀T ∈ T (i) (2.2.4)

We call the linear programming formulation given in Equations (2.2.1)–(2.2.3) the master
problem. The objective is to minimize the cost of all tours included in the solution. Con-
straints 2.2.2 and 2.2.3 are usually referred to as the assignment constraints. Constraint 2.2.2
forces the solution to assign any driver to exactly one tour, and Constraint 2.2.3 makes sure
that the solution covers every customer with at least one tour. Note that we are minimizing
the total cost of the selected tours. As a result, in a metric space, Constraint 2.2.3 is
equivalent to

∑
i,T∈T (i):T3j

zi,T = 1 ∀j ∈ S. (2.2.5)

The reason is that it would not be beneficial to cover a customer j ∈ S with more than one
tour due to the cost functions.

Remark 1. The linear programming formulation presented in this section is a well-known
formulation with applications to other problems such as scheduling. The formulation is known
as the configuration LP in the scheduling literature mostly for its classic application in bin
packing problems. It has a small integrality gap which makes it suitable for branch-and-bound
algorithms as well as for designing approximation algorithms. Indeed, Asadpour et al. used
an almost identical formulation to provide the first constant factor approximation algorithm
for the Santa Claus problem (see Section 1.4.3).

Note that the skill set is not explicitly mentioned, but is accounted for implicitly in
the sets T (i). Also, note that the set of all tours has exponential size. Therefore, the
integer linear programming problem we wish to solve has an exponential number of variables.
A powerful tool to deal with an LP formulation with a large number of variables is the
delayed column generation (or simply column generation) method. In this method, instead
of solving the LP with the large variable set, a smaller formulation is attempted first. The
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smaller formulation only considers a subset of the variables while keeping the same set
of constraints. Inevitably, the objective value obtained may be sub-optimal. To test the
optimality, one can search for a negative reduced cost column (variable) in the same fashion
the simplex algorithm finds a variable for pivoting. If the search is successful, one can add it
to the smaller LP formulation and iterate. If no negative reduced cost column is found, the
objective value is provably optimal. The search for a negative reduced cost column typically
amounts to solving another problem known as the subproblem. Column generation is an
effective machinery in settings where the subproblem is relatively easy to solve.

Remark 2. We may view the delayed column generation method as a branch-and-cut
algorithm performed on the dual of a given linear programming formulation. In that light,
finding a negative reduced cost column is the separation problem performed to detect violated
constraints for the dual.

In the remainder of this chapter, we argue why column generation is the right line of
attack for the SVRP. We will derive the subproblem formulation from the master problem
which happens to be a well-known problem in combinatorial optimization – the prize
collecting traveling salesman problem (PCTSP). PCTSP is the primary focus of Chapter 3
in this thesis. The operations research community has extensive experience in the Traveling
Salesman Problem and its variants. As we will demonstrate, we can leverage this experience
to develop methods capable of solving the PCTSP efficiently and effectively. These methods
are efficient in that they can construct exact solutions to the problem quickly, and are
effective since they can also provide sub-optimal solutions which can be used as bounds in
pruning the search space. Thus, we can confidently claim that column generation technique
is well-equipped for solving the master problem.

Master Problem Formulation

We write the LP relaxed formulation for the master problem as follows.

P : min
∑

i,T∈T (i)
zi,T · C(T ) (2.2.6)

subject to

−
∑

T∈T (i)
zi,T > −1 ∀i ∈ D (2.2.7)

∑
i,T∈T (i):T3j

zi,T > 1 ∀j ∈ S (2.2.8)

zi,T ∈ [0, 1] ∀i ∈ D, ∀T ∈ T (i) (2.2.9)

We also refer to this formulation as the primal. We will present the dual formulation
shortly. As the formulation implies, the goal is to minimize the cost of all the chosen tours in
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such a way that i) the skill requirements are met, ii) each site is covered by at least one tour,
and iii) each driver visits the nodes of exactly one tour (the equality in Constraint 2.2.7
can be relaxed to less than or equal, meaning that a driver should not serve more than one
tour). The Constraint 2.2.9 is relaxed to zi,T > 0 in the linear programming relaxation. We
associate dual variables αi with each constraint i ∈ D, and βj with each constraint j ∈ S.
The dual formulation of the master problem is as follows.

D : max
∑
j∈S

βj −
∑
i∈D

αi (2.2.10)

subject to ∑
j∈T

βj − αi 6 C(T ) ∀i ∈ D, ∀T ∈ T (i) (2.2.11)

αi > 0 ∀i ∈ D (2.2.12)

βj > 0 ∀j ∈ S (2.2.13)

Assume that (α̂, β̂) is the optimal solution to the dual, in which α̂ = (α̂1, α̂2, . . . , α̂|D |)
and β̂ = (β̂1, β̂2, . . . , β̂|S |) are vectors. As mentioned before, the number of variables
(columns) is exponential in the size of set S. To solve the LP relaxation of the above
formulation, we start with a number of independent columns equal to the number of rows
in the constraint matrix. To obtain the optimal set of columns, we generate columns with
negative reduced cost. Specifically, any column with negative reduced cost satisfies the
inequality C(T ) <

∑
j∈T β̂j − α̂i and can profitably enter the basis. Note how a negative

reduced cost column corresponds to a violation of Constraint 2.2.11. Finding a tour T that
satisfies this condition is the objective of the subproblem. Alternatively, we seek a tour
T for driver i ∈ D such that

∑
j∈T β̂j − C(T ) > α̂i. We accomplish this by maximizing∑

j∈T β̂j−C(T ) for each driver i ∈ D. Note that α̂i’s are constant values and we do not need
to include them in the objective function of the subproblem. By maximizing

∑
j∈T β̂j−C(T ),

we are indeed finding the constraint in the dual that is violated with the highest margin.
In fact, one can settle for finding any tour for which C(T ) <

∑
j∈T β̂j − α̂i. Such a tour

still corresponds to a negative reduced cost column which may potentially improve the
objective value should it be added to the basis. Still, there are other benefits to finding the
largest negative reduced cost in the column generation scheme which justify the effort. Most
notably, a column with the highest negative reduced cost can provide us with a dual bound.

The Dual Bound

The concept of a dual bound suggests that by optimizing the subproblem, one can modify the
dual variables to obtain a dual feasible solution, which in turn can provide us with a lower
bound for the master problem. Note that since we solve the master problem on a subset
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of variables, the corresponding (α̂, β̂) is not necessarily feasible in the dual. As we stated
earlier, a negative reduced cost column in the primal is indeed a violated constraint in the
dual. Let z∗ denote the optimal primal solution (to the master problem) and (α∗, β∗) denote
the optimal for the dual (subproblem). Also assume f(z) and g(α, β) are the objective
functions of the primal and the dual respectively. We know that g(α∗, β∗) 6 f(z∗) from
weak duality. Since g(α̂, β̂) 6 g(α∗, β∗) for any feasible solution (α̂, β̂), g(α̂, β̂) is a lower
bound for the primal. Lemma 1 shows how to obtain a dual feasible solution for our vehicle
routing problem.

Lemma 1. Let (α̂, β̂) be a dual solution for the subproblem solved on a subset of constraints.
Then, (ζ̂, β̂) is a feasible solution for the dual problem, in which ζ̂ = (ζ̂1, ζ̂2, . . . , ζ̂|D |). For
every driver i ∈ D we have:

ζ̂i =

max{
∑
j∈T β̂j − C(T )} if driver i has a negative reduced cost column T

α̂i otherwise

Proof. If driver i does not have a negative reduced cost column, then
∑
j∈T β̂j − C(T ) 6 α̂i.

Therefore, α̂i is dual feasible for i. Now, consider a driver i who has a negative reduced
cost column, meaning that a tour T ∈ T (i) exists that for which Constraint 2.2.11 is
violated. Assume that T ∗ ∈ T (i) is the tour for which

∑
j∈T∗ β̂j − C(T ∗) = ζ̂i is maximized.

Also assume T ′ is any other negative reduced cost column for i. Since the driver i has a
negative reduced cost column, then ζ̂i >

∑
j∈T ′ β̂j −C(T ′) > α̂i > 0. By rearranging the last

inequality, we also get
∑
j∈T ′ β̂j − ζ̂i 6 C(T ′). Therefore, ζ̂ satisfies both the lower bound

and upper bound conditions for the dual, and (ζ̂, β̂) is dual feasible.

For every driver i with a negative reduced cost column (a violated constraint), we increase
α̂i to ζ̂i to get a dual feasible solution while we do not change α̂i for other drivers. Since α
appear as a negative term in the objective function of the dual problem, the increase in its
value decreases the objective value of the solution. The amount of decrease is

∑
i∈D ζ̂i − α̂i.

Subproblem Formulation

The subproblem we solve to extract a negative reduced cost column is the famous Prize
Collecting Traveling Salesman Problem or PCTSP for short. PCTSP is a well-known NP-
hard problem that has received a lot of attention in the literature. We give below a common
ILP formulation of the subproblem. [89].
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max
∑
j∈S

βjyj −
∑
e∈E

cexe (2.2.14)

subject to ∑
e∈δ(i)

xe = 2yi ∀i ∈ S (2.2.15)

∑
e∈E(V )

xe 6
∑

i∈V \{k}
yi ∀k ∈ V, V ⊆ S′ (2.2.16)

yr = 1 (2.2.17)

xe ∈ {0, 1}, yj ∈ {0, 1} ∀e ∈ E,∀j ∈ S (2.2.18)

The integer variable yj is set to 1 (0) if node j ∈ S is included (not included) in the tour.
Similarly, the integer variable xe is set to 1 (0) if edge e ∈ E is included (not included) in the
tour. Note that

∑
j∈S βjyj =

∑
j∈T βj and

∑
e∈E cexe =

∑
e∈T ce = C(T ). Constraint 2.2.15

ensures that if node j is included in the tour, then two edges of the tour must be incident on
it. Constraint 2.2.16 is the generalized sub tour elimination constraint (GSEC). Constraints
of this form are used to prevent any sub-tour that does not include the root node r. Chapter 3
gives an in-depth discussion on a branch-and-cut method for solving the PCTSP.

2.3 The Branch-and-Price Framework

Here, we briefly skim the general procedure of the branch-and-price algorithm. The algorithms
described in the two chapters of this part of the thesis are branch-and-bound algorithms in
nature. They work around searching the tree formed by all possible values of the decision
variables and use bounds to prune as much of the search space as possible. The difference
between the two algorithms is in the way they obtain the lower and upper bounds. The
branch-and-price algorithm is described in Figure 2.1. The algorithm has many parts in
common with the branch-and-cut algorithm that we use for the PCTSP in Chapter 3.
Therefore, we defer a more detailed discussion of those parts to the next chapter.

The branch-and-price algorithm takes the following steps upon execution:
Step 1. Find an integral solution to the master problem (denoted by MP in the flowchart)

through some heuristic algorithm such as the local search. The objective value of any integral
feasible solution can be used as an upper bound. We let z̄ denote this upper bound.

Step 2. Generate the first LP formulation for the master problem. This formulation
is given in Section 2.2.2. The algorithm maintains a list L of unsolved problems. The
formulation then is added to L as the first node of the branching tree.

Step 3. Retrieve the front of the list L and use CPLEX to solve it. We let z∗ denote
the objective value of the optimal (fractional) solution to the LP. If the value is less than
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the lower bound, then fathom the current node. By fathoming a node, we mean we decide
not to explore its sub-tree further since we can fathom the best objective value the sub-tree
can provide by examining the bounds and z∗.

Step 4. Check if the fractional solution can be rounded to an integral one that improves
the upper bound. If so, update the lower bound and reassess the problem for fathoming.
Otherwise, continue to Step 5.

Step 5. Remove the columns that have not been in the basis for a preset number of
past rounds. We set a threshold for the number of rounds a column is not used in the basis.
These columns correspond to variables that are not effective in decreasing the objective
value. Therefore, we can remove them from the variables of the formulation for now, and if
they ever become effective, the column generation phase detects them and adds them back
to the model. In removing the variables, we take care not to remove the ones we have fixed
through branching.

Step 6. Generate columns; The column generation leads us to the subproblem, the
PCTSP, which is the subject of Chapter 3. After solving the subproblem, we obtain the
values ζ̂ = (ζ̂1, ζ̂2, . . . , ζ̂|D |). Using this vector, we can check if z∗ −

∑
ζ̂ gives a better

lower bound for the problem. If yes, we update the lower bound, denoted by z. This bound
can be used as a criterion for terminating the column generation process and moving to
the branching phase. One obvious criterion is if no more columns with negative reduced
cost columns exist. Through experimentation, we have learned that often, the solution to
the subproblem does provide the master problem with negative reduced cost columns. But
the lower bound and upper bound on z∗ are so close that the improvements we make are
insignificant. Therefore, it is beneficial to stop generating columns and go the next step in
these situations.

Step 7. If there are any variables with fractional values in the solution, choose a variable
for branching and create two new nodes P0 and P1. We set the variable to 0 in P0 and to
1 in P1. We add the two nodes P0 and P1 to the list L of the problems and go to Step 3
again. If no fractional values are left, then we fathom the node and go back to Step 3. The
algorithm terminates and reports back the incumbent (the integral solution corresponding
to the best upper bound) if the list is empty.

The Next Step

We postpone further discussions about the solution framework we have devised to Chapter 3.
In the next chapter, we go into the details of the solution method that we used for the
subproblem and provide experimental evidence to argue its efficiency. We conclude the
chapter with a summary of what we have built in these two chapters, as well as provide
some explanation on how we plan to build upon our current solution framework to tackle
real-world instances of the Skill Vehicle Routing Problem.
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Find an initial solution z̄

Initialize LP for the first MP;

Add it to the list L of nodes

Pop the front node from L;

Call it P

Solve the LP P to optimality;

obtain the objective value z
∗
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∗ ≥ z̄ ?

Round z
∗ to get z̄0;
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Remove inefficient columns;
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Figure 2.1: The Branch-and-Price Algorithm
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Chapter 3

A Branch-and-Cut Algorithm for
Prize Collecting Traveling
Salesman Problem

3.1 Introduction and Problem Definition

The Prize Collecting Traveling Salesman Problem (PCTSP) is a variant of the Traveling
Salesman Problem (TSP). Given a set of locations and a cost function for travel times
between them, The Traveling Salesman Problem asks for the cheapest tour that visits
every location exactly once. Being one of the oldest and most well-known problems in
combinatorial optimization, the TSP has inspired studies in computer science, mathematics,
chemistry, physics, and psychology among other areas, and has applications in logistics,
manufacturing, genetics, telecommunications, neuroscience, and more [4]. Throughout the
years, researchers have studied variations of the TSP. The Prize Collecting TSP is one which
is important in itself [108]. It also arises as a subproblem in column generation formulations
of various vehicle routing problems. As discussed in Chapter 2, the solution to the PCTSP
gives a column with a reduced cost.

The PCTSP comprises a complete graph G = (S, E), where S is a set of sites and E
is the set of edges. There is a special node called the depot, denoted by r. Also given is a
set a cost function c : E → R>0 which represents the travel distance between the nodes. In
addition to costs, each site has a prize associated with it. We let the function β : S → R>0

denote the prizes. The objective is to derive a tour which includes the depot and maximizes
the sum of the prizes associated with the nodes in the tour, less the cost of the tour. It
can be considered as a generalization of the TSP since the TSP is the PCTSP with a high
enough prize associated with each node.
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3.1.1 Related Work

PCTSP is an NP-hard problem and has received a lot of attention in the literature. Several
variants of the PCTSP have been studied in the literature. The version of the PCTSP we
study in this research was first introduced by Balas [8] in a more general setting to model the
scheduling of the daily activities of a steel rolling mill. In the version that Balas introduced,
a tour can profit (to the extent of a prize associated with the node) from each node it visits,
while it is penalized (to the extent of a penalty associated with the node) for every node it
does not visit. The profit/penalty for each node corresponds to the prize associated with
the node. The objective is to obtain a tour such that the total prize collected exceeds a
prescribed amount while minimizing the sum of the travel cost and penalties. The travel cost
for a tour is the sum of the distances between consecutive nodes in the tour. Balas [8] derives
the cuts for the PCTSP corresponding to the subtour elimination constraints for the TSP.
The cuts we use in this thesis include a class of constraints knows as the Generalized Subtour
Elimination Constraints (GSECs). Goemans first applied the GSECs in the context of the
Steiner tree problem [51]. See also Wolsey [108] for a precise treatment of our version of the
PCTSP. In a continuation of his work on PCTSP, Balas [9] derives, among other cuts, the
cuts corresponding to the primitive comb inequalities for the TSP. The separation heuristic
we use for these cuts is a heuristic given by Padberg and Hong [93] for detecting blossoms
for the TSP. We show that these heuristics can also be used as separation procedures for the
primitive comb inequalities for the PCTSP. We use these heuristics to obtain LP solutions
with improved integrality gap.

The first known solution procedure to solve the PCTSP exactly was a branch-and-bound
procedure [44]. Fischetti et al. also study a branch-and-cut algorithm for the symmetric
case of Generalized Traveling Salesman problem, in which the nodes are split into clusters,
and any feasible solution to the problem should cover at least one node from each cluster
[43]. The symmetric property refers to the fact that the cost of going from a node u to
another node v is the same is the cost of v to u. Furthermore, Fischetti et al. use a similar
branch-and-cut algorithm for the orienteering problem [42]. In an orienteering problem, a
prize is associated with each vertex. An optimal tour must collect the maximum prize while
keeping the travel cost below a given threshold. In more recent work, Chaves and Lorena
propose a hybrid metaheuristic for the problem and compare its performance with CPLEX
[23]. Bérubé, Gendreau, Potvin propose a branch-and-cut algorithm to solve a variant of
the PCTSP [12]. In this variant, the objective is to obtain a tour with minimum travel cost,
subject to the constraint that the total prize collected exceeds a predetermined amount.
They incorporate many valid inequalities for their variant of the PCTSP and evaluate the
performance of a branch-and-cut algorithm by introducing these inequalities.
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3.1.2 Our Contribution

Our version of the PCTSP arises directly as a subproblem in a variant of the vehicle routing
problem, called the Skill Vehicle Routing Problem [19]. In this chapter, we focus on the LP
solution procedure for this version of the PCTSP. We develop a branch-and-cut algorithm
to seek the exact solution of the problem. A local search heuristic is used to both find an
initial feasible solution as well as improve the fractional solutions obtained from the LP
relaxation of the problem. Then, we introduce a set of cuts to the setting, valid for any
feasible integral solution, to chop off some fractional solution and improve the objective
value. Furthermore, we use fast separation heuristics for both the GSECs and the primitive
comb inequalities. For the GSECs, we adapt a fast heuristic, and compare its performance
with an exact procedure, both in the quality of its solution, as well as in its running time.
For the primitive comb inequalities, we show that a well-known separation heuristic for the
TSP [93] also works as a separation procedure for the PCTSP. We also compare the GSEC
cuts with the primitive comb inequalities in their quality of solutions. Finally, we use some
branching heuristics to fix some of the integral variables when there are no more effective
cuts that can significantly improve the solution.

3.2 Linear Programming Formulation

3.2.1 Preliminaries and Notation

We let G = (S,E) denote the complete graph representing the instance of the problem, with
node r ∈ S indicating the depot which every tour must visit. Cost ce associated with each
edge e ∈ E is the Euclidean distance between the two endpoints of edge e. In the PCTSP,
the salesman may choose to visit city j ∈ S. If he does so, then he obtains a prize βj but
incurs a travel cost ce if he traverses edge e = (i, j). The salesman must start and end his
tour at node r, and maximize the total prize he collects, less the cost of the tour.

Throughout this chapter, we use x to refer to the decision variables of edges, and y and
z to refer to the decision variables of vertices. For a set of vertices V , y(V ) denotes the sum
of y’s for all the nodes of V . For simplicity, we let yv denote y({v}). For a set of vertices S
and a subset V of S, S \V represents S − V = {v : v ∈ S ∧ v /∈ V }. We say that (S, S \V )
represents a vertex cut. Also, for any two sets of vertices A and B, E(A, B) denotes the set
of edges in the cut (A, B), that is, those edges which have exactly one endpoint in A and
another in B.

3.2.2 Problem Formulation

We provide below the ILP formulation for the PCTSP [108]. In the formulation below, we
let decision variables yj be 1 if the salesman visits city j (and 0 otherwise), and xe be 1 if he
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traverses edge e (and 0 otherwise). We also let set S′ = S\{r} and E′ = E\{δ(r)}, where
δ(r) is the set of edges incident on the depot node r.

max
∑
j∈S

βjyj −
∑
e∈E

cexe (3.2.1)

subject to ∑
e∈δ(i)

xe = 2yi ∀i ∈ S (3.2.2)

∑
e∈E(V )

xe 6
∑

i∈V \{k}
yi ∀k ∈ V, V ⊆ S′ (3.2.3)

yr = 1 (3.2.4)

xe ∈ {0, 1}, yj ∈ {0, 1} ∀e ∈ E,∀j ∈ S (3.2.5)

The integer variable yl is set to 1 (0) if node l ∈ S is included (not included) in the tour.
Similarly, the integer variable xe is set to 1 (0) if edge e ∈ E is included (not included) in the
tour. Note that for a tour T selected in the ILP solution we have that

∑
j∈S βjyj =

∑
j∈T βj

and
∑
e∈E cexe =

∑
e∈T ce = C(T ). Constraint 3.2.2, known as the degree constraint, ensures

that if node l is included in the tour, then two edges of the tour must be incident on it.
Constraint 3.2.3 is the generalized subtour elimination constraint (GSEC). Constraints of
this form are used to prevent any sub tour that does not include root node r. These are
generalizations of the subtour elimination constraints for the standard traveling salesman
problem. In the traveling salesman polytope, we also need to avoid subtours as we seek
a single cycle that covers all the vertices. Since all the vertices are selected in the cycle,
inequalities of the following form are introduced:

∑
e∈E(V )

xe 6 |V | − 1 ∀V ⊆ S′ (3.2.6)

Constraint 3.2.6 is known as the Subtour Elimination Constraint (SEC). In the prize-
collecting polytope, we have the flexibility to cover only a subset of the vertices through yi
variables. Therefore, Constraint 3.2.6, although still a valid inequality, may not be tight
in the setting of the PCTSP. Balas generalized the notion of SEC to obtain the GSECs of
the form of Constraint 3.2.3 [8]. Clearly, there are an exponential number of constraints
included in the GSECs and we cannot include them all to solve the subproblem. To get
around this problem, we include these constraints as they are needed (whenever there is a
subtour that does not include node r). It is easy to detect such subtours when the decision
variables take 0/1 values. However, because we solve the LP relaxation of the subproblem,
fractional values may be assigned to the decision variables yj and xe. We outline below the
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method that can be used to detect for such sub tours (which do not include node r) when
fractional values are assigned to the decision variables.

Let the LP solution to the sub problem be given by (x∗, y∗). Then the generalized
sub tour elimination constraint is violated for a subset W ⊆ S′ of nodes if the inequality∑
e∈E′(W ) x

∗
e >

∑
l∈W\{k} y

∗
l is satisfied. Such a subset W can be extracted by solving the

integer program given by the Objective Function (3.4.1) and Constraints 3.4.2–3.4.4. We call
the problem below the separation problem for GSECs. The formulations for the separation
problem for GSECs for the PCTSP are given in Wolsey 1998 [108].

3.3 The Branch-and-Cut Algorithm

In this section, we describe different steps of the branch-and-cut algorithm. In the subsequent
sections, we will discuss each step in detail separately. Figure 3.1 depicts the flowchart of the
algorithm. In the flowchart, z∗ represents the solution of the LP relaxation of the problem,
and z is the integral solution, which we obtain every time the incumbent is updated. An
incumbent is the best feasible integral solution found so far at any stage of a run of the
algorithm. The incumbent may change either when the local search finds a better solution
or when the solution to the LP relaxation at a node is integral.

Step 1. Use a local search heuristic algorithm to create a feasible solution. A feasible
solution is a tour that contains the depot and visits a subset of the nodes exactly once,
entering with one edge and leaving with another. Note that since the problem is formulated
as a maximization, any feasible solution serves as a lower bound. The solution produced
by the local search is the first incumbent for the branch-and-cut algorithm. z denotes the
objective value of the incumbent.

Step 2. Generate the first LP relaxation of the problem. In this step, we set up
a linear programming problem with the objective function (2.2.14), the set of degree
constraints (Constraint 3.2.2), and the restriction that the solution should contain the depot
(Constraint 3.2.4). Note that Constraint 3.2.5 is replaced by

xe ∈ [0, 1], yj ∈ [0, 1] ∀e ∈ E,∀j ∈ S (3.3.1)

in the LP relaxation. We use a list L to keep track of the problems to be solved for
the branch-and-cut algorithm. The LP relaxation described here is placed in L as the first
problem.

Step 3. Retrieve the front of the list L and use CPLEX Linear Programming solver
to solve it. We let z∗ denote the optimal (fractional) solution to the LP. At any point in
the execution of the algorithm, we might get a z∗ value that is smaller than the objective
value of the incumbent denoted by z. The reason is that as we progress, we introduce more
constraints to the model and fix a subset of variables, which can significantly restrict the
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solution space. In such cases, we will not benefit from continuing this branch of the problem
since every node can be considered a relaxation of all the subsequent nodes in its subtree.
Therefore, if z∗ 6 z, we fathom the problem and repeat Step 3 if any other problem exists
in the list L. If the list L is empty, we have completed the branching and can report the
incumbent as the optimal solution.

Step 4. If z∗ > z, then check if we can improve the incumbent by performing the local
search again. The only difference with this application of the local search is that we run it
on the set of vertices whose y value is larger than a threshold. Through experimentation, we
have chosen a threshold value of 0.3. If the local search improves the incumbent, we update
the value of z, and check if z∗ 6 z once more. If z∗ 6 z, we should fathom this problem and
repeat Step 3.. Otherwise, go to Step 5.

Step 5. Remove the constraints that have not been tight in the past five rounds at this
node. We look at the slack variables after each solution of the LP relaxation at a node. If the
slacks are strictly positive, it means that the corresponding constraints have not been tight,
and therefore, do not impact the solution. We keep track of a redundancy counter for each
constraint. If the counter reaches a preset threshold of five, we remove the constraints from
the model. Constraint removal may sound counter-intuitive at first since we usually restrict
the solution space further as we move down the branch-and-cut tree while removing cuts
may relax the space. The rationale behind constraint removal is that the running time for
most of the linear programming solvers, including CPLEX that we have used in this research,
is sensitive to the number of constraints. The running time can drastically increase with the
number of constraints. Therefore, adding many constraints to a model is computationally
expensive. If these constraints happen to be redundant in the sense that they do not affect
the solution by much, one can usually benefit from removing them from the model. Our
solution will stay valid, and if any of the removed cuts becomes violated in a later iteration,
the constraint generation methods can detect it and add it back to the model. In removing
the cuts, we take care not to remove constraints corresponding to fixing variables.

Step 6. Generate cuts; detect up to 50 violated GSECs and 50 violated Primitive Comb
inequalities and add them to the model. The threshold of 50 is set to ensure we do not
add too many cuts to the model at once, which can potentially increase the number of
redundant cuts. To detect violated cuts quickly, we have adapted to heuristic algorithms
used for similar cuts of the TSP. We will explain these heuristic algorithms in Sections 3.4
and 3.5. If the heuristics find any violated cuts, we then solve the LP relaxation of this new
model and compare z∗ to z as in Step 3. Otherwise, we go to the branching step.

Step 7. If there are any variables with fractional values in the solution, choose a variable
for branching and create two new nodes P0 and P1. In P0, we set the variable to 0 and in
P1 to 1. The choice of the variable to fix hugely impacts the running time of the algorithm.
Ideally, we seek variables for branching that result in balanced branch-and-cut trees. A
balanced branch-and-cut tree has a logarithmic height, meaning that the algorithm needs to
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traverse a logarithmic number of nodes before reaching a leaf, which is a fathomed node. A
fathomed node can be of the following two types: i) either a node with an integral solution,
which can potentially update the incumbent and help with the pruning of the tree, or ii)
have a z∗ higher than the objective value of the incumbent, which means we do not need to
pursue them any further. In any case, it is desirable for us to reach the leaves faster. An
efficient heuristic for branching of the prize-collecting TSP is due to Gendreau et al. [48].
We explain this heuristic in Section 3.6. We add the two nodes P0 and P1 to the list L of
the problems and go to Step 3 again. If no fractional values are left, then we have arrived
at an integral solution. We can now fathom the node and go back to Step 3 to solve the
next problem in the list L. The algorithm terminates and reports back the incumbent if the
list is empty.

3.4 Generalized Subtour Elimination Constraints

A formulation for the separation problem for GSECs is given below.

ζk = max
∑
e∈E′

x∗ewe −
∑

j∈W\{k}
y∗j zj (3.4.1)

subject to

we 6 zi, we 6 zj ∀e = (i, j) ∈ E′ (3.4.2)

we > zi + zj − 1 ∀e = (i, j) ∈ E′ (3.4.3)

we ∈ {0, 1}, zj ∈ {0, 1}, zk = 1 ∀e ∈ E′,∀j ∈W. (3.4.4)

Constraint 3.4.3 above can be dropped because it is implied by Constraint 3.4.2 if x∗e > 0
for e ∈ E′ [108]. It turns out that the constraint matrix for the above separation problem
(after Constraint 3.4.3 is dropped) is totally unimodular. Thus, in polynomial time, we solve
the LP relaxation of the separation problem to obtain constraint(s) to introduce into the
sub problem.

3.4.1 The Modified Separation Problem for GSECs

We write the modified separation problem below.

ζk = max
∑
e∈E′

x∗ewe −
∑

j∈W\{k}
y∗j zj (3.4.5)

subject to

we 6 zi, we 6 zj ∀e = (i, j) ∈ E′ (3.4.6)

we ∈ {0, 1}, zj ∈ {0, 1}, zk = 1 ∀e ∈ E′,∀j ∈W. (3.4.7)
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Figure 3.1: The Branch-and-Cut Algorithm
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The optimal solution to the LP relaxation of the modified separation problem is integral.
This optimal solution corresponds to the subset W ⊆ S′ and node k ∈ W such that the
inequality

∑
e∈E′(W ) x

∗
e 6

∑
l∈W\{k} y

∗
l , corresponding to Constraint 3.2.3 of the sub problem

is violated. This inequality is introduced into the sub problem and the LP relaxation of the
PCTSP is again solved. This is repeated until there is no subset W ⊆ S′ and node k ∈W
such that the inequality

∑
e∈E′(W ) x

∗
e 6

∑
l∈W\{k} y

∗
l is violated.

In practice, solving an LP for each k ∈ W can be very time consuming. Therefore, a
shrinking heuristic is used to speed up the separation algorithm. The shrinking heuristic is
described below.

3.4.2 A Shrinking Heuristic for the Separation of GSECs

The shrinking heuristic we describe below helps find many violated GSECs quickly. We
generalize the heuristic developed by Crowder and Padberg [28] and Land [77] for the TSP.
Recall that S′ = S \{r} and E′ = E\{δ(r)}. In this approach, the GSEC inequalities are
transformed into the equivalent cut-set inequalities. In the following, E(V1, V2) is used to
denote the set of edges which have one endpoint in V1 and the other in V2.

∑
e∈E(V, S′ \V )

xe > 2yk ∀k ∈ V, V ⊆ S′ (3.4.8)

Note that the cut-set inequalities can be derived from Constraints 3.2.2 and 3.2.3. These
inequalities allow us to transform the problem to a network flow problem in which we seek
a minimum cut in a rather special sense. We are looking for violated cut-set constraints.
Equivalently, we wish to find a subset V ⊆ S′ of vertices for which,

∑
e=(i,j), i∈V, j∈S′ \V xe <

2yk for some k ∈ V . Alternatively, we look for a cut (V, S′ \V ) that minimizes

∑
e∈E(V, S′ \V )

xe − 2 max
k∈V
{yk}. (3.4.9)

If there exists a k for which Inequality 3.4.8 is violated, then the value of a cut that
minimizes 3.4.9 is negative. (If there is no k for which Inequality Inequality (3.4.8) is violated,
then the value of any cut that minimizes 3.4.9 is positive.) To find such a cut, we repeatedly
reduce the size of the graph by shrinking subsets of vertices into a single vertex, provided
that certain conditions are met. Indeed, the shrinking process guarantees that the vertices
shrunk into a single vertex will end up on the same shore of the minimum cut described
earlier. Consider to subsets of vertices V1, V2 ⊆ S′. Suppose that, by induction, we know
that all the vertices in V1 will end up on the same shore of the cut, and also the same holds
for all the vertices of V2. If Inequality 3.4.12 holds, there exists a minimum cut in which
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V1 and V2 belong to the same component and we can merge (shrink) them into one single
component, since we are not increasing the capacity of the cut by adding V2 to V1.

Consider two subsets, V1, V2 ⊆ S′. If Inequality 3.4.10 below holds, then subsets V1 and
V2 can be merged.

∑
e∈E(V1, S′ \V1)

xe − 2 max
k∈V1
{yk} >

∑
e∈E(V1 ∪V2, S′ \ (V1∪V2))

xe − 2 max
k∈V1 ∪V2

{yk}. (3.4.10)

We will explain this inequality using Figure 3.2.

V1

V2

S′ \ (V1 ∪ V2)

Figure 3.2: The condition for shrinking the set V2 into the set V1.

From the perspective of V1, the value of cut separating V1 from S′ \V1 is the sum of Xe

values of all the edges in the cut minus two times the maximum yk value of any node k ∈ V1

(the left-hand-side of Inequality (3.4.10)). If it were to merge with V2, then the sum of xe
values of edges in E(V1, V2) (edges going from V1 to V2) would be replaced by the sum of xe
values of edges in E(V2, S

′ \ (V1 ∪ V2)). At the same time, the maximum of the yk values is
taken over all the nodes k ∈ V1 ∪ V2. Therefore, if the left-hand-side of Inequality (3.4.10)
is no less than the right-hand-side of the same inequality, we will not increase the objective
function value of 3.4.9 by putting V1 and V2 on the same shore of the cut. Note that the same
must hold from the perspective of V2 as well, else we may increase the objective function
value for the component V2 by merging it with V1. We rewrite Inequality (3.4.10) above as
Equation (3.4.11) below.

∑
e∈E(V1, V2)

xe +
∑

e∈E(V1, S′ \ (V1 ∪V2))
xe − 2 max

k∈V1
{yk} >

∑
e∈E(V1, S′ \ (V1 ∪V2))

xe +
∑

e∈E(V2, S′ \ (V1 ∪V2))
xe − 2 max

k∈V1 ∪V2
{yk}. (3.4.11)
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Subtracting the common term
∑
e∈E(V1, S′ \ (V1 ∪V2)) xe from both sides of Inequality (3.4.11)

above, we get Inequality (3.4.12) below.

∑
e∈E(V1, V2)

xe − 2 max
k∈V1
{yk} >

∑
e∈E(V2, S′ \ (V1 ∪V2))

xe − 2 max
k∈V1∪V2

{yk}. (3.4.12)

Also, we know from Constraint 3.2.2 that

∑
e∈E(V2, S′ \ (V1 ∪V2))

xe = 2
∑
i∈V2

yi −
∑

e∈E(V1, V2)
xe − 2

∑
xe∈E(V2)

xe. (3.4.13)

Therefore, we can shrink V1 and V2 if

∑
e∈E(V1, V2)

xe >
∑
i∈V2

yi + max
k∈V1
{yk} − max

k∈V1 ∪V2
{yk} −

∑
e∈E(V2)

xe. (3.4.14)

The Inequality (3.4.14) is the basis of our shrinking heuristic. We start with the original
graph G = (S′, E′), and consider pairs of vertices for shrinking. Note that, as we proceed
with the shrinking algorithm, a vertex vi may represent a set of vertices in the original
graph G. Thus, we associate a value mi to every vertex of the graph vi which denotes the
maximum value of yk’s in the corresponding component of vi in the original graph. For
the vertices of the original graph, we set mi = yi. Now, for every edge e = (i, j) we shrink
the two endpoints vi and vj if this process would not increase the cuts values from the
perspective of each of them, meaning that we shrink vi and vj into a single super-node if

xe > yj −max{0,mj −mi}, (3.4.15)

and

xe > yi −max{0,mi −mj}. (3.4.16)

Note that the Inequality (3.4.14) can be written as

∑
e∈E(V1, V2)

xe >
∑
i∈V2

yi −∆−
∑

e∈E(V2)
xe, (3.4.17)

where ∆ = maxk∈V1∪V2{yk} − maxk∈V1{yk}. Regarding different values of ∆, two cases
might occur: i) maxk∈V1{yk} = maxk∈V1∪V2{yk}, in which case ∆ = 0, or ii) maxk∈V1{yk} <
maxk∈V1∪V2{yk}, meaning that ∆ = maxk∈V2\V1{yk} −maxk∈V1{yk}. These two cases have
been considered in the second terms on the right-hand side of Inequalities (3.4.15) and
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vi vj

xe
6 2yi − xe 6 2yj − xe

Figure 3.3: Merging to super-nodes yi and yj into a single super-node

(3.4.16). Furthermore, whenever we merge two vertices vi and vj connected via edge e into
a new vertex vi′ , we are indeed joining two components in the original graph represented by
vi and vj , connected by a cut denoted by the edge e in the shrunk graph. Therefore, we
set the new values yi′ = yi + yj − xe and mi′ = max{mi,mj}. The value mi′ denotes the
maximum value of y∗i ’s originally obtained from the LP solution. Note that yi′ shows the
capacity of the new node vi′ in some sense, i.e., half of the sum of all edge weights connected
to vi′ . This is due to the degree constraints. The sum of edges going out of the component
of yi and not into yj is 2yi − xe. Similarly, the sum of edges going out of yj and not into yi
is 2yj − xe (see Figure 3.3). Therefore, for the new capacity we have

yi′ = 1
2 (2yi − xe + 2yj − xe)

= yi + yj − xe.

We also adjust the edge weights for the newly created node, i.e., the weight of an edge
from this node to any other node u in the graph would be the sum of the weights of edges
from i and j to u. The following pseudo-code best describes our shrinking algorithm:

3.5 Primitive Comb Inequalities

3.5.1 Primitive Comb Inequalities for the TSP

To improve the quality of fractional solution to the PCTSP, valid inequalities can be
introduced. Primitive comb inequalities are a class of valid inequalities. In this section,
we study these valid inequalities for our version of the PCTSP. Later in Section 3.7, we
investigate how effective the primitive comb inequalities are in improving the quality of
fractional solutions to the PCTSP.
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Algorithm 1 The Shrinking Heuristic
Data: Graph G = (S′, E′), Edge weights w : E′ → R>0, and vertex values y : S′ → R>0

Result: The cut V that maximizes
∑
e∈E(V, S′ \V ) xe −maxk∈V {yk}

Initialize each node to be a separate component and set mi ← yi, ∀i ∈ S′
for every edge e = (i, j) in E′ do
if (xe > yi −max{0, mi −mj}) and
(xe > yj −max{0, mj −mi}) then

Merge nodes i and j into a new node `
for every node u in S′ do
if u is adjacent to i or j then

Let e′ denote the edge (`, u)
xe′ ← x(u, i) + x(u, j)

end
end
y` ← yi + yj − xe
m` ← max{mi, mj}

end
end

Formulation

Comb inequalities are valid inequalities that have been introduced successfully to obtain LP
solutions with reduced integrality gaps for the TSP. In addition to this, exact separation
algorithms for the comb inequalities have been proposed for the TSP. Because the LPs are
solved many times in a branch and bound algorithm to solve the TSP optimally, efficient
heuristics have also been proposed for the separation problem which find violated comb
inequalities.

In this section, we look at inequalities for the simplest form of such structures known
as primitive combs. A general comb consists of a set of nodes H known as the handle, and
a set of t teeth, each tooth being a set of nodes that spans out of the handle. A primitive
comb restricts each tooth to be a single edge. Primitive comb inequalities have been shown
to improve the quality of the fractional solution to the PCTSP.

Let us first look at the primitive comb inequalities for the Traveling Salesman polytope.
In what follows, x(A, B) =

∑
e=(i,j):i∈A,j∈B xe, where xe is 1 if the edge e is incorporated in

the tour, and xe is 0 otherwise.

x(H, H) +
t∑

j=1
x(Tj , Tj) 6 |H |+

t− 1
2 , (3.5.1)

where H, the handle, and Tj for j = 1, 2, . . . , t, the teeth, are sets of nodes satisfying the
following conditions [56]:

|H ∩ Tj | = |Tj \H | = 1 j = 1, . . . , t,with t > 3 odd (3.5.2)

55



Ti ∩ Tj = ∅ i, j = 1, . . . , t (3.5.3)

Padberg and Hong [93], among others, provide a heuristic separation algorithm for
primitive comb inequalities for the TSP. We refer to this as the odd-component heuristic.

Odd-Component Heuristic for TSP

In this heuristic, given an optimal LP solution x∗ to a TSP instance over a complete
graph (V,E), the graph G∗1/2 is constructed. This graph has the vertex set V and edge set
{e ∈ E : 0 < x∗e < 1}. Let the resulting graph comprise of q components, whose vertex sets
are V1, V2, . . . , Vq. For each component i, 1 6 i 6 q, the heuristic determines the subset of
edges Ti in the set δ(Vi) (the set of edges which cross the set Vi) whose LP values are 1. Ti
is thus given by Ti = {e ∈ E : x∗e = 1 ∧ e ∈ δ(Vi)}. If the cardinality of this set is odd, then
the following simple procedure determines a set that either violates the subtour inequality
for TSP, or a primitive comb inequality. If two edges in set Ti share a vertex v ∈ V \Vi,
then vertex v is included in the set Vi and the procedure is repeated until the edges in Ti are
pairwise disjoint. Such a set Vi violates the subtour inequality if |Ti| = 1, and the primitive
comb inequality if |Ti| > 3. Note that if two teeth Ti and Tj intersect outside of H, adding
the common vertex to H would get rid of exactly two teeth, therefore the parity of the teeth
of H is preserved. Therefore if a handle has odd number of teeth (which indicated either
a violated GSEC or a violated primitive comb inequality) before the removal of a pair of
teeth, it will still have an odd number of teeth afterwards.

Balas [9] shows an equivalent version of the comb inequalities are facet defining for the
Prize Collecting Traveling Salesman polytope [9]. The following section provides the details
of these comb inequalities for our version of the PCTSP.

3.5.2 Primitive Comb Inequalities for PCTSP

Formulation

Balas shows in [9] that the following inequality defines a facet of the Prize Collecting TS
polytope. Therefore Inequality (3.5.1) translates to Inequality (3.5.4) in the case of the
Prize Collecting TSP.

x(H, H) +
t∑

j=1
x(Tj , Tj) + z(H) 6 |H |+ t− 1

2 , (3.5.4)

Here, z(H) =
∑
v∈H zv, and zv is 1 if the vertex v is left out of the optimal tour (we need to

a pay a penalty for it), and zv is 0 otherwise. When compared to the formulation of the sub
problem (Objective Function 2.2.14 and Constraints 3.2.2–3.2.5), one can write yv = 1− zv

56



for all vertices v. As a result, z(H) =
∑
v∈H zv =

∑
v∈H(1− yv) = |H | − y(H). Therefore,

Inequality (3.5.4) can be written as

x(H, H) +
t∑

j=1
x(Tj , Tj)− y(H) 6 t− 1

2 , (3.5.5)

We show below that a connected component heuristic which has been used by Hong
[63] and Land [77] can be applied to separate the primitive comb inequalities introduced by
Balas for the PCTSP.

3.5.3 Odd-Component Heuristic for PCTSP

The odd-component heuristic [93] works with an equivalent formulation of the primitive
comb inequalities for the Traveling Salesman polytope:

x(δ(H)) +
t∑

j=1
x(δ(Tj)) > 3t+ 1. (3.5.6)

To be able to use the same heuristic, we first translate Balas’s inequality into a similar
form:

x(δ(H)) +
t∑

j=1
x(δ(Tj)) > 3t+ 1− 2

t∑
j=1

z(Tj).

Lemma 2. The following inequality defines a facet of the Prize Collecting TS polytope.

x(δ(H)) +
t∑

j=1
x(δ(Tj)) > 3t+ 1− 2

t∑
j=1

z(Tj).

Proof. By [9], we know that Inequality (3.5.4) is facet defining. Also, from Constraint 3.2.2,
the fractional degree of each node v is 2 · yv = 2− 2 · zv. Therefore, we can write

2 x(H, H) + x(δ(H)) =
∑
v∈H

deg(v) = 2 |H | − 2 z(H).

Thus,

x(H, H) = |H | − z(H)− 1
2 x(δ(H)).

Similarly, we have that

2 x(Tj , Tj) + x(δ(Tj)) =
∑
v∈Tj

deg(v) = 4− 2 z(Tj),
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for j = 1, . . . , t, which yields

x(Tj , Tj) = 2− z(Tj)−
1
2 x(δ(Tj)).

Therefore,

x(H, H) +
t∑

j=1
x(Tj , Tj) + z(H) =

|H | − z(H)− 1
2 x(δ(H)) +

t∑
j=1

2−
t∑

j=1
z(Tj)−

1
2

t∑
j=1

x(δ(Tj)) + z(H) =

|H | − 1
2 x(δ(H)) + 2t−

t∑
j=1

z(Tj)−
1
2

t∑
j=1

x(δ(Tj)) (3.5.7)

From Equation (3.5.7) and Inequality (3.5.4),

1
2 x(δ(H)) + 1

2

t∑
j=1

x(δ(Tj)) > 2t−
t∑

j=1
z(Tj)−

t− 1
2 .

Thus,

x(δ(H)) +
t∑

j=1
x(δ(Tj)) > 3t+ 1− 2

t∑
j=1

z(Tj).

We show below why the odd-component heuristic used by Padberg and Hong to separate
primitive comb inequalities for the TSP can be used to separate primitive comb inequalities
for the PCTSP without any modifications.

Assume that after running the odd-component heuristic on G∗1/2, a component Vi has an
odd number of teeth. We remove all non-disjoint teeth and add their common vertex to Vi.
Let the handle H be Vi. We assume H has t > 3 teeth as we are more interested in finding
violated primitive comb inequalities rather than violated GSECs. By the structure of G∗1/2,
all the outgoing edges of H have weight exactly equal to 1. Thus, x(δ(H)) = t. Consider a
tooth of H, say Tk = (uk, vk) (See Figure 3.4). Because of the degree constraints, and the
fact that the edge (uk, vk) is taking a capacity 1 from each of the two endpoints, we can
write x(δ(Tk)) = 2yuk − 1 + 2yvk − 1 = 2(1− zuk)− 1 + 2(1− zvk)− 1 = 2− 2(zuk + zvk).
Summing over all t edges and adding x(δ(H)) we get:

x(δ(H)) +
t∑

j=1
x(δ(Tj)) = 3t− 2

t∑
j=1

z(Tj) < 3t− 2
t∑

j=1
z(Tj) + 1
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This is exactly 1 short of satisfying the corresponding primitive comb inequality, therefore
any component of G∗1/2 with odd number of teeth would correspond to a violated inequality
that we can introduce as a cut.

u1 u2

ut

v1 v2

vt

2yvt − 1

2yut − 1

1 1 1

Figure 3.4: A component of G∗1/2.

In Section 3.7, we empirically analyze the performance of this heuristic alongside with
the shrinking heuristic for GSECs.

3.6 Speeding up the Algorithm

The performance of any branch-and-cut algorithm greatly depends on the measures it takes
to prune the search tree. The more nodes the algorithm can avoid, the faster it can arrive at
the optimal solution of the problem. An effective way of pruning a large portion of the tree
is to achieve bounds on the solution as fast as possible. Consider a maximization problem
for instance. As we traverse from the root of the branching tree to the leaves, we introduce
more constraints on the linear programming formulation. Therefore, any node has a higher
objective value than it’s descendants since the child nodes are the more restricted versions of
their parents. In this scenario, if we generate lower bounds on the optimal solution quickly,
we can ignore any node that has a smaller objective value than the bound. We discuss
two efficient ways of making useful lower bounds in this section. The first method is by
faster traversal of the tree from the root node to a leaf and the second one is by improving
the fractional solutions to LP relaxations of the intermediate nodes using a local search
technique.

3.6.1 The Branching Strategy

Generation of applicable bounds in a branch-and-cut algorithm greatly depends on the
branching strategy. To speed up the process, we should choose strategies that traverse the
tree down to the leaves fairly quickly. A branching strategy determines:

(1) How to choose the next node in the traversal.
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(2) Which variable to branch on.

As mentioned above, a fundamental intuition in the branching mechanism is to enable the
algorithm to reach the leaves as soon as possible. Since arriving at a node means obtaining
an integral feasible solution, such a solution can readily be used as bound for pruning other
nodes from the tree, hence speeding up the algorithm. Therefore, we avoid any method that
favors traversing the breadth of the tree first, and implement a depth-first mechanism. This
strategy treats the list of problems L as a stack. We push the new nodes P0 and P1 created
via branching to the front of L, and pop the next node to be considered from the front as
well.

The choice of the variable for branching is a key factor in how balanced the tree is and
how many levels of the tree the branch-and-cut algorithm needs to see to find the optimal.
Some of the leading publications on similar problems suggest that in the prize collecting
problems such as ours, the decision variables representing the vertices should always have
priority for branching compared to the decision variables corresponding to the edges [48].
Our experiments in this research also confirm this intuition. We implemented and compared
three branching heuristics in this thesis to verify this.

• Random Branch: Randomly pick a variable, either xe, for some e ∈ E or yv for a
v ∈ S.

• Greedy Branch: First, consider yv for all v ∈ S. Choose a variable yt that minimizes
| yk − 0.5 |. If all the y variables are integral, then do the same with xe for all e ∈ E.

• Smart Branch [48]: Consider yv for all v ∈ S first. Identify two variables y′ =
maxyk60.5{yk} and y′′ = minyk>0.5{yk}. In the set {yk : y′/2 6 yk 6 0.5 + y′′/2}
choose a variable yk with the maximum prize βk. If yk is integral for every k ∈ S, then
do the same with xe for all e ∈ E and choose a variables with the highest cost ce.

The first heuristic is a naïve way of choosing a variable for branching, and is implemented for
benchmarking purposes. The second heuristic gives priority to y variables for branching, but
only considers closeness to 0.5 as the criteria for branching. The reasoning behind it is that
the variables closer to 0 or 1 are more likely to be set to their closest integer in the following
nodes in the tree. Therefore, the half-integral variables are deemed to be the critical ones in
the branching process. Finally, the last heuristic, while also giving priority to y variables,
considers the coefficients as well. As experimental evidences show, the higher the prize of a
vertex (or the cost of an edge), the sooner it should be selected for branching.

3.6.2 The Local Search

Another way to derive a bound in the branching process is by “rounding” the fractional
solution of an LP relaxation at each node. By rounding, we mean obtaining an integral
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solution based on the fractional values that the LP solution has assigned to the variables. If
done properly, rounding can improve the incumbent by finding a better integral solution,
thus resulting in a new bound.

We should note that running a rounding algorithm at every node in the branching tree
comes with its computational cost. For this reason, we should make a trade-off between
the quality of the bound that we obtain and the running time that the algorithm needs to
round the variables. A sophisticated heuristic that produces relatively high lower bounds
and takes a long time for doing so might only slow down the branch-and-cut algorithm. For
this reason, we choose simpler local search heuristics with light computational costs that
can produce reasonably good solutions. We present the local search in Algorithm 2.

The local search starts with a tour T that only includes the depot r. Along the way, it
makes use of the following methods:

• oneOpt: Insert a new node v to the existing tour T in a location that maximizes the
net benefit. Assume the tour is given by u0, u1, . . . , uk, u0 for some k, 1 6 k 6 n− 1
where u0 = r. oneOpt finds a vertex v such that v /∈ {u0, u1, . . . , uk} and detects
the best location to insert v, i.e., indices i and i + 1, i < k, for which the net
benefit βv + cui, ui+1 − cui, v − cv, ui+1 is maximized. It then returns the new tour
u0, u1, . . . , ui, v, ui+1, . . . , uk, u0. The new tour collects the prize for v, βv, and does
not pay the cost cui, ui+1 for the former edge between nodes ui and ui+1. Instead, it
has to pay the extra costs cui, v and cv, ui+1 for the new edges connecting v to the rest
of T .

• twoOpt1: Insert two new nodes v1 and v2 into some locations in an existing tour T and
remove a node ut, 1 6 t 6 k from T to increase the net benefit. Assume the tour is given
by the nodes u0, u1, . . . , uk, u0 for some k, 1 6 k 6 n− 1 where u0 = r. twoOpt finds
v1 and v2 as well as insertion locations for them in T , and an existing node ut to remove
from the tour, hence increasing the size of the tour by one. Assume v1 is to be inserted
between the nodes ui and ui+1 and v2 is to be inserted between the nodes uj and uj+1.
It does it in such a way that the benefit βv1 +βv2 +cui, ui+1 +cuj , uj+1 +cut−1, ut +cut, ut+1

minus the cost βut + cui, v1 + cv1, ui+1 + cuj , v2 + cv2, uj+1 + cut−1, ut+1 is maximized. Note
that we make a benefit from the prizes of nodes v1 and v2, and from not including the
edges between former neighbours in the tour ui and ui+1, uj and uj+1, ut−1 and ut,
and finally ut and ut+1. We also incur a cost from loosing the benefit of node ut as
well as from having to include new edges between ui and v1, v1 and ui+1, uj and v2,
v2 and uj+1, and finally ut−1 and ut+1.

• oneForce: At the beginning of the local search, the method oneOpt may fail to add a
node to the tour T . This is the cases when the costs of adding any node to the graph

1This method should not be confused with the well-known 2-opt local search heuristic of Croes that
removes the crossovers in a tour.
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exceed the benefits. The trivial solution is a tour containing only the depot in such
scenarios. We reject single-vertex tours as possible solutions to the problem. To avoid
such solutions, we use oneForce to push at least one extra vertex to the tour T . It adds
a vertex v into the tour T = r such that the net benefit βv − 2× cr, v is maximized.
Then, it returns the new tour r, v, r.

• oneSwap: given the tour T , it checks if removing one of the vertices of T and adding a
new vertex to it (to potentially a new location) can improve the objective function. If
so, it returns the new tour. Otherwise, it returns the old tour T . Assume T is given as
u0, u1, . . . , uk, u0 for some 1 6 k 6 n− 1 where u0 = r. If the node v is to be inserted
between the nodes ui and ui+1, and node ut is to be removed, then the net benefit
would be βv + cut−1, ut + cut, ut+1 + cui, ui+1 − βut − cui, v − cv, ui+1 − cut−1, ut+1 . Note
that we benefit from the prize of node v as well as from avoiding the costs of former
edges (ut−1, ut), (ut, ut+1), and finally (ui, ui+1). We also incur a cost by loosing the
benefit of node ut and also by the cost of the new edges (ui, uv) and (uv, ui+1) that
connect v to the rest of the tour as well as the new edge between ut−1 and ut+1.

Algorithm 2 Local Search Algorithm
Data: A graph G = (S, E), the depot r ∈ S, set of costs ce, and a set of prizes βj.
Result: returns a tour T that covers the depot r
finished← FALSE
T ← {r}
while not finished do
T ← oneOpt(G, c, β)
if size(T ) > 2 then
T ← twoOpt(G, c, β)

end
if no changes to T then

if T == {r} then
T ← oneForce(G, c, β)

end
else

finished← TRUE
end

end
end
finished← size(T ) 6 2
while not finished do
T ← oneSwap(G, c, β)
if no changes to T then
finished← TRUE

end
end
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In the beginning, we use the local search on the entire set S to find the first incumbent.
Also, each time we solve the LP relaxation for a node, we run the local search on the set of
nodes {vk : yk > 0.3} to find an integral solution that is guided by the LP solution. This
solution may have a better objective value than that of the incumbent. In this case, we
update the incumbent which automatically updates the lower bound for the pruning as well.

3.7 Computational Results

We have developed a software, implementing the branch-and-cut framework. In this section,
we report on computational results from running our software on a standard library of TSP
and VRP instances. First, we report the efficacy of the two adapted heuristics for GSECs
and Primitive Comb Inequalities and analyze the behavior of the corresponding separations.
The computational results show how effective the heuristic algorithms are in cutting off
non-integral solutions of the LP. In this section, we are only solving the LP formulation
of the problem that corresponds to the root node of the branching tree. In the next set
of computational results, we run the entire branch-and-cut algorithm on various instances.
In this set, we compare the branching heuristics Greedy Branch and Smart Branch
against one another using two different depth-first traversals of the branching tree. We
also compare the running time of the runs against CPLEX ILP solver which uses a generic
branch-and-bound algorithm. The software has been implemented in C++, and the LP
was solved using CPLEX 12.5. The code was run on an Intel 2.8 GHz processor with a
maximum time limit of 14,400 seconds (4 hours). We report the results after the period of 4
hours if the execution has terminated, or report failure otherwise.

3.7.1 Instances

We have transformed a total of 42 instances out of the TSPLIB [95] library for our experiments.
Out of the 42 instances, 10 were VRP instances and 32 symmetric TSP instances. In the
VRP instances, each node is associated with a demand value. We use this demand as the
prize of covering that node. For the TSP instances, which do not come with demands, we
merely generate node prizes independently and uniformly at random in the range of 1 to the
maximum cost of that instance. The reason for instance-specific generation of the prizes
reason is to ensure that neither of the cost or prize values can dominate the other. Note
that if the prizes are significantly larger than costs, the problem reduces to a TSP, and if the
cost values dominate the prize values, the trivial solution of only picking the depot would be
optimal.
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3.7.2 Separation Heuristics

We first describe the instance that we have used. Then we discuss the experiments we
designed to test the behaviour and performance of the two heuristics, namely the shrinking
heuristic for separation of the GSECs and the odd-component heuristic for separation of the
primitive comb inequalities. We next explain how we compared these results and analyze
their relative gap with respect to the optimal integral solution whenever such a solution is
available. We summarize the results in Tables 3.1 and 3.2.

Designing the Experiments

We analyze the adapted heuristics based on three difference aspects:

(1) The solution quality.

(2) The number of cuts (violated constraints) they detect.

(3) The running time.

The major factor in the success of a heuristic is indeed if it can produce near optimal
solutions in a timely manner. Nevertheless, the number of cuts a heuristic can generate can
give us insight about how well that heuristic is adapted for a certain type of polytope. If
near optimality can be achieved with fewer cuts, we have some empirical indications that
the heuristic is well-suited for the polytope of the given problem. For this reason, we also
report the number of cuts for both the heuristics, as well as for an optimal procedure that
uses LP for separation of GSECs. In what follows, we explain the method used for making
the comparisons.
Shrinking Heuristic. To evaluate the efficacy of the shrinking heuristic, we compare them
against a procedure that uses linear programming for separation of the GSECs, that is,
a formulation that solves a cut-set equivalent of (3.4.5)–(3.4.7) for each node to find the
violated GSECs. Three parameters mentioned above are reported for the heuristic GSEC
separation, as well as the LP separation.
Odd-component Heuristic. To evaluate this heuristic, we first solve instances with the
GSEC heuristic only, and then use odd-component heuristic to find violated primitive comb
constraints. This way, we can measure how the solution quality may improve (and how
many new cuts are introduced), and weigh it against the extra time we need to spend for
running the second heuristic. The improvements are also reported in the right-most column
of Table 3.2. Also, using the Odd-Component heuristic on top of the shrinking heuristic, we
may get a few extra cuts for some instances. The number of such cuts can be seen in the
third column of Table 3.2. To gain insight as how we compare against an optimal integral
solution, we solve the ILP version of the problem using the built-in branch-and-bound
method of CPLEX alongside regular Subtour Elimination Constraints (SECs). Note that
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to separate SEC inequalities, all we need to do is to find an integral subtour in a solution,
which can be done in polynomial time using a connected component algorithm. This method
can be slow for larger instances, therefore in many cases we have not been able to solve the
ILP optimally in the time limit of 4 hours. For such instances, the gap percentages has been
left blank. Also, in Table 3.1, “t.l.” stands for too long, and is used for running times that
are greater than 14,400 seconds.

It is natural to assume the heuristics would be most beneficial for large enough instances.
As Tables 3.1 and 3.2 show, there is not much room for improvement for small instances as
usually even the linear programming formulation can come up with an integral solutions
without the aid of GSEC or primitive comb inequality constraints.

As soon as the size of the instance goes beyond 50 points, the time spent on the LP
separation shows a huge increase while the cost of heuristic separation is still relatively low.
This is not so surprising as the LP separation has to solve an entire linear programming
problem for each node of the graph. For small instances, the overhead caused by a few
extra problems is negligible, but for larger instances it can be prohibitive. Also, for the
instances for which an integral solution is available, the gap between the two heuristic
solutions combined and the optimal solution is very small. In most cases the gap is very
close to 0 and only for one instance it goes as high as 2%. In larger instances, both heuristics
perform consistently well as they introduce many cuts to the formulation and come up with
reasonable solutions while the LP separation of GSECs and the ILP formulation do not
return with a solution in the period of 4 hours.

A comparison between using GSEC heuristic separation alone and using both heuristics
together reveals that although there are cases for which the solution quality can benefit
significantly from running both heuristics instead of one, the GSEC separation seems to be
promising on its own in many cases. The relatively long extra time spent on the separation
of primitive combs results in the introduction of a few extra cuts indeed. However, the
improvement in the solution quality is not very significant. This is perhaps to be expected
since we run the primitive comb separation after all the GSEC cuts are introduced. As a
result, the LP has already closed the gap between the fractional and the optimal integral
objective value, and therefore, improvements at this point come in very small portions. In
the next set of results, we show that by using different sequences of running the heuristics,
one can speed up the running time and get the best of the two heuristics.

3.7.3 The Branching Mechanism

Now, we wish to find the exact solutions of the instances. To do so, we use a mix of different
branching heuristics and traversal rules and draw comparison between the running time of
each method. As mentioned earlier, we also use CPLEX ILP solver as a benchmark.
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LP GSEC Sep. Heuristic GSEC Sep.

Instance Obj. Cuts Time Obj. Cuts Time

eil13 3228.61 0 <1 3228.61 0 <1
ulysses22 -1964.93 16 1 -1964.93 13 <1
bayg29 -44.35 33 4 -44.35 14 <1
eil33 -2924.76 44 7 -2924.76 18 <1
att48 1358.75 0 7 1358.75 0 <1
hk48 551.65 1 7 551.65 1 <1
eil51 -4454.6 2 32 -4454.6 2 <1
st70 -6433.23 94 423 -6433.23 26 1
eilB76 -7442.17 28 964 -7442.31 11 3
eilC76 -6898.96 27 354 -6900.36 7 1
eilD76 -6774.68 33 434 -6774.74 15 2
pr76 5568.42 0 50 5568.42 0 <1
gr96 -9531.81 83 2740 -9531.81 26 2
rat99 -9260.24 80 4802 -9260.87 15 14
rd100 -10119.1 189 2501 -10119.1 35 2
eil101 -8988.51 73 1108 -8988.51 17 5
eilA101 -9160.86 60 3153 -9160.86 17 1
eilB101 -9710.61 61 1107 -9710.61 18 2
lin105 N/A t.l. -87.93 354 4371
pr107 339.84 0 238 339.84 0 <1
gr120 -10451.1 85 3367 -10451.1 31 80
gr137 -13070.5 112 4306 -13070.5 26 19
pr144 532.69 11 4677 532.69 6 <1
ch150 N/A t.l. -8891.09 75 68
pr152 984.54 13 10780 984.54 13 2
rat195 N/A t.l. -18301.7 39 972
d198 N/A t.l. -19183.9 31 3
korB200 N/A t.l. -138.68 111 7
gr202 N/A t.l. -19859.1 48 70
ts225 1296.11 0 8466 1296.11 0 14
gr229 N/A t.l. -20520.4 67 8
gil262 N/A t.l. -24784.5 96 27
a280 N/A t.l. -24933.6 60 67
lin318 N/A t.l. -1883.21 365 1906
fl417 N/A t.l. -41406.8 48 6
gr431 N/A t.l. -41751 123 823
pr439 N/A t.l. 322.41 20 70
pcb442 N/A t.l. -43489.5 142 338
d493 N/A t.l. -48934.3 43 25
p654 N/A t.l. -65478.8 71 1068
d657 N/A t.l. -64671.9 125 1162
gr666 N/A t.l. -65273.1 169 54

Table 3.1: Computational results for the GSEC heuristic separation
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Heuristic GSEC + Primitive Comb

Instance Obj. Extra Cuts Time Gap % Improv.

eil13 3228.61 0 <1 0 0
ulysses22 -1964.93 5 <1 0 0
bayg29 -44.35 0 1 0 0
eil33 -2924.76 0 1 0 0
att48 1358.75 0 1 0 0
hk48 551.65 0 1 2.01 0
eil51 -4451.36 10 1 0.03 3.24
st70 -6431.62 6 2 0 1.61
eilB76 -7441.27 4 4 0 1.04
eilC76 -6900.17 6 1 0.03 0.19
eilD76 -6773.72 7 7 0 1.02
pr76 5568.42 0 1 0 0
gr96 -9529.7 36 5 0.02 2.11
rat99 -9260.32 4 21 0.04 0.55
rd100 -10119.1 20 3 0 0
eil101 -8988.02 4 6 0.03 0.49
eilA101 -9160.59 2 2 0.01 0.27
eilB101 -9710.34 2 7 0 0.27
lin105 -87.93 0 5565 0
pr107 339.84 0 <1 0 0
gr120 -10451.1 2 185 0 0
gr137 -13068.3 10 31 0.01 2.2
pr144 532.69 0 <1 0
ch150 -8874.46 8 85 0.53 16.63
pr152 984.54 0 2 0
rat195 -18296.1 119 6567 0.09 5.6
d198 -19183.9 5 6 0 0
korB200 -138.68 0 8 0
gr202 -19858.2 38 281 0 0.9
ts225 1296.11 0 20 0 0
gr229 -20516.7 16 13 0.02 3.7
gil262 -24777 32 49 0.04 7.5
a280 -24921.1 49 122 0.02 12.5
lin318 -1842.91 94 4420 40.3
fl417 -41406.8 40 8 0
gr431 -41748.6 38 2041 0.01 2.4
pr439 322.41 0 108 0
pcb442 -43489.5 20 963 0
d493 -48934.3 39 38 0
p654 -65478.8 35 1317 0
d657 -64671.9 21 1482 0
gr666 -65266 80 113 0.03 7.1

Table 3.2: Computational results for the Primitive Comb Inequalities heuristic separation
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Fixed Deterministic

Instance Obj. ILP Time Optimal Time Gap % Optimal Time Gap %

eil13 3228.61 1 X <1 X <1
ulysses22 -1964.92 2 X <1 X <1
bayg29 -44.35 2 X <1 X <1
eil33 -2924.76 2 X <1 X <1
att48 1358.75 1 X <1 X <1
hk48 562.98 <1 X <1 X <1
eil51 -4450.18 2 X <1 X <1
st70 -6432.24 3 X 4 X <1
eilB76 -7441.65 1 X 1 X 2
eilC76 -6898.31 2 X 7 X 131
eilD76 -6774.3 2 X 8 X 8
pr76 5568.42 <1 X <1 X 1
gr96 -9527.97 6 X 46 X 262
rat99 -9256.63 6 X 223 X 253
rd100 -10119.1 11 X 2271 X 659
eil101 -8986.01 6 X 56 X 156
eilA101 -9160.25 3 X 5 X 2
eilB101 -9710.79 3 X 8 X 263
lin105 -72 t.l. X 1860 X 1717
pr107 339.84 <1 X <1 X <1
gr120 -10452.1 24 X 179 X 180
gr137 -13067.1 59 X 472 X 7061
pr144 >390.19 t.l. - t.l. 26.7% - t.l. 26.7%
ch150 -8827.78 14226 X 1166 X 2158
pr152 984.54 t.l. X 12 X 7
rat195 -18279.6 2462 - t.l. 0.3% - t.l. 6.15%
d198 -19183.3 95 X 1769 - t.l. 0.11%
kroB200 -138.68 t.l. X 17 X 13
gr202 -19859.1 32 X 9862 X 6762
ts225 1296.11 1 X <1 X <1
gr229 -20515.7 887 X 805 X 8586
gil262 -24767.6 545 X 3205 - t.l. 1.9%
a280 -24878.5 t.l. X 3520 X 10409
lin318 >-7617.46 t.l. - t.l. N/A - t.l. N/A
fl417 >-41424 t.l. - t.l. 0.06% - t.l. 0.06%
gr431 -41742.6 5180 X 2651 - t.l. 0.45%
pr439 168.6 t.l. X 17 X 24
pcb442 >-43514.9 t.l. - t.l. 0.07% - t.l. 0.08%
d493 >-48946.8 t.l. - t.l. 0.02% - t.l. 0.03%
p654 >-65493 t.l. - t.l. 0.02% - t.l. 0.02%
d657 >-64690.2 t.l. - t.l. 0.03% - t.l. 0.03%
gr666 >-65381.8 t.l. - t.l. 0.79% - t.l. 0.79%

Table 3.3: Computational results for the Smart Branch
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Figure 3.5: The comparison between the running time of CPLEX and the Branch-and-Cut algorithm
for Smart Branch heuristic with fixed branching
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Figure 3.6: The comparison between the running time of CPLEX and the Branch-and-Cut algorithm
for Smart Branch heuristic with deterministic branching
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Fixed Deterministic

Instance Obj. ILP Time Optimal Time Gap % Optimal Time Gap %

eil13 3228.61 1 X <1 X <1
ulysses22 -1964.92 2 X <1 X <1
bayg29 -44.35 2 X 1 X 1
eil33 -2924.76 2 X <1 X <1
att48 1358.75 1 X <1 X <1
hk48 562.98 <1 X <1 X <1
eil51 -4450.18 2 X 1 X <1
st70 -6432.24 3 X 5 X <1
eilB76 -7441.65 1 X 1 X <1
eilC76 -6898.31 2 X 6 X 5
eilD76 -6774.3 2 X 3 X 2
pr76 5568.42 <1 X 1 X <1
gr96 -9527.97 X 217 X 62
rat99 -9256.63 6 X 36 X 61
rd100 -10119.1 11 X 287 X 392
eil101 -8986.01 6 X 45 X 12
eilA101 -9160.25 3 X <1 X 3
eilB101 -9710.79 3 X 6 X 5
lin105 -72 t.l. X 3086 - t.l. <0.01%
pr107 339.84 <1 X <1 X 1
gr120 -10452.1 24 X 623 X 177
gr137 -13067.1 59 X 2431 X 2208
pr144 >390.19 t.l. - t.l. 26.7% - t.l. 26.7%
ch150 -8827.78 14226 X 401 X 3404
pr152 984.54 t.l. X 1 X 2
rat195 -18279.6 2462 X 8515 - t.l. 1.74%
d198 -19183.3 95 X 66 X 30
kroB200 -3151.54 t.l. X 17 X 85
gr202 -19859.1 32 X 1073 - t.l. 0.28%
ts225 1296.11 1 X 3 X <1
gr229 -20515.7 887 X 1260 X 639
gil262 -24767.6 545 X 3905 - t.l. 1.18%
a280 -24878.5 t.l. - t.l. 1.6% X 2386
lin318 >-7617.46 t.l. - t.l. N/A - t.l. N/A
fl417 >-41424 t.l. - t.l. 0.06% - t.l. 0.06%
gr431 -41742.6 5180 - t.l. 0.45% - t.l. 0.45%
pr439 168.6 t.l. X 2 X 30
pcb442 >-43514.9 t.l. - t.l. 0.07% - t.l. 0.08%
d493 >-48946.8 t.l. - t.l. 0.02% - t.l. 0.03%
p654 >-65493 t.l. - t.l. 0.02% - t.l. 0.02%
d657 >-64690.2 t.l. - t.l. 0.03% - t.l. 0.03%
gr666 >-65381.8 t.l. - t.l. 0.24% - t.l. 0.79%

Table 3.4: Computational results for the Greedy Branch
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Figure 3.7: The comparison between the running time of CPLEX and the Branch-and-Cut algorithm
for Greedy Branch heuristic with fixed branching
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Figure 3.8: The comparison between the running time of CPLEX and the Branch-and-Cut algorithm
for Greedy Branch heuristic with deterministic branching
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Designing the Experiments

We compare two different branching heuristics:

(1) Greedy Branch

(2) Smart Branch

We have also implemented a random branching method, Random Branch. As expected,
basic experiments with this branching method showed a very poor performance. Therefore,
we do not include this method in the computational results of this section. We also use two
different depth-first traversals of the branching tree:

(1) Fixed: In the first one, we always visit the node corresponding to P0 first and
recursively traverse the entire subtree. Then we move to P1 and its corresponding
subtree. Remember that P0 and P1 are the two problems creating when fixing a
variable to 0 and 1 respectively.

(2) Deterministic: In the second method of traversal, we visit the nodes based on the
value of the variable on which we are branching. Assume x denotes this variable. In
this method, we first recursively visit the subtree of P0 whenever x 6 0.5, and we visit
P1’s subtree first whenever x > 0.5.

As a result, we have a total of 5 different runs: 4 runs of the branch-and-cut algorithm
as described above and one run of the CPLEX ILP solver for comparison. We bring the
results in Tables 3.3 and 3.4. The objective value might be achieved through any of the
methods we compare in the tables. We mention it in the second column whenever it is
available. As before, “t.l.” stands for too long and indicates cases where the algorithm could
not produce the optimal in the 4 hour time window. When that happens, we compare the
best incumbent against the best lower bound of the algorithm and report in the “Gap %”
field.

For most of the cases, Fixed Smart Branch and Deterministic Smart Branch
either solve the instance to optimality or produce a very close solution, with the former
failing to find the optimum in only 9 instances. To our surprise, the Fixed Smart Branch
outperforms the Deterministic Smart Branch on many instances. Closer investigations
reveal that near the end of the branching procedure, giving priority to P0 against P1 results
in fewer infeasible nodes. The branching algorithm generates infeasible nodes when some
of the cuts already added to the node chop off the value 1 for a particular variable, but
nonetheless, the algorithm tries an assignment of 1 to it. For instance, if a variable yi has
a value 0.7 in the LP solution while yi = 1 is infeasible due to cuts, the Fixed Smart
Branch quickly resolves the matter by setting yi to 0 while the Deterministic Smart
Branch tries fixing yi to 1 first. This means that the Smart Branch favors the variables
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that should be set to 0 near the end of the traversal. A bar chart comparison between the
performance of the Smart Branch using the two traversals against CPLEX ILP solver
is presented in Figures 3.5 and 3.6. In these two figures, the y-axis represents the running
time in seconds for both algorithms. Also note that the scale of y-axis is logarithmic for
better comparison. A bar that breaks the horizontal barrier on the top means the algorithm
needed more than 4 hours to optimize the instance.

As for the Fixed Greedy Branch and Deterministic Greedy Branch, the number
of successful runs (those that find the optimal) is almost the same as their Smart Branch
counterparts, although the failure rate slightly increases. For the Greedy Branch, the
performance of the fixed and deterministic traversals is more balanced as in many cases the
deterministic outperforms the fixed traversal. As opposed to the Smart Branch, we do
not as often face a situation in which the algorithm instantiates infeasible P1 nodes near
the end of the branching procedure. Bar chart comparison between the performance of the
Greedy Branch using the two traversals against CPLEX ILP solver is also provided in
Figures 3.7 and 3.8.

3.8 Conclusion and Future Work

In this chapter, we presented the general solution framework for solving the Skill Vehicle
Routing Problem using a column generation method. The process of solving the SVRP is
a complex task that requires intricate interaction between various techniques. To be able
to solve the problem in a timely manner for larger instances, we had to break down the
framework into different components (or modules). A schematic view of these components is
given in Figure 3.9. In this figure, the dark modules are the ones that we have implemented
and tested successfully. Two of these modules, namely the separation algorithms and local
search, are suggested as topics for further research. We will shortly discuss how we plan to
extend these parts in the upcoming projects. As of this thesis, we have not implemented
any heuristics for the master problem, although we would like to emphasize the importance
of heuristic solutions for SVRP. We will discuss the future work we have planned for this
component as well.

Separation Algorithms

We considered two types of cuts in this research: the Generalized Subtour Elimination
Constraints and the Primitive Comb Inequalities. For each of them, we have adapted fast
separation heuristics from similar algorithms used in the context of TSP. Effective cuts are
crucial in the performance of any branch-and-cut algorithm. Ideally, we look for cuts that
bring the fractional solution as close as possible to the optimal integral solution so that we
do not need to test too many nodes of the branching tree. Inevitably, one should make a
compromise between the computational cost of the separation methods associated with cuts
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Figure 3.9: A Schematic View of the Solution Framework for SVRP

and the improvement they cause in the fractional solution. Our investigation has shown that
the two classes of cuts we have considered so far are good candidates for implementation.
Furthermore, we believe other types of cuts should be considered as well as a possible future
work. We plan to look into heuristic separations for Path Cover and Cycle Cover Inequalities
as the next step.

Local Search for the Subproblem

We implemented a lightweight local search algorithm to both solve the PCTSP and round its
fractional solution to a possible incumbent. Similar to the case of separation algorithms, there
is a trade-off between the time complexity of any heuristic algorithm and its efficacy. A good
feasible solution to the PCTSP can chop off a large portion of the search space. Therefore,
we suggest that more sophisticated heuristics than our local search can significantly improve
the running time of our algorithm. This local search may also be specialized to round
fractional solutions to relatively good feasible ones. We plan to empower and fine tune our
local search for that purpose in the short term and propose to investigate a tabu search in
the next steps.

Heuristics for the Master Problem

An important possible direction to take would be to consider heuristic algorithms for the
SVRP. One of our main intentions for developing exact-solution software for the SVRP was
to provide a benchmarking tool for any heuristic algorithm for the problem. In the past two
decades, heuristics have earned their place among the most reliable tools for combinatorial
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optimization problems, especially against large scale real-world problems. We wish to study
heuristic algorithm for the SVRP from two different perspective:

• as independent solution strategies for the SVRP: We have observed that even local
searches performed on small neighbourhoods produce satisfactory near-optimal solu-
tions in astonishingly faster than our best efforts with the branching framework. Our
exact-solution framework can help in this regard with providing a guideline on what
sort of ideas may be successful.

• as help for speeding up the framework: Our solution strategy can greatly benefit from
the insight that heuristics can provide to make more educated guesses in its search of
the solution space.

Fine-tuning

Finally, the program that we have developed works around a large set of parameters that
we have adjusted to the best of our knowledge at the time. These parameters, ranging
from the tolerance of degenerate solutions to the number of cuts of each sort that should be
allowed in each iteration, have a large impact on the performance. Only through extensive
experiments would we be able to adjust the software to perform at its best. We will attend
to this matter promptly by going about a systematic fine-tuning of the software.
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Part III

Ordered Instances of the
Scheduling Problem
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Chapter 4

PTAS for Ordered Instances of the
Resource Allocation Problems

4.1 Introduction and Problem Definition

In the general resource allocation problem, we are given a bipartite graph H = (I, P,E)
where the set of vertices I represents m indivisible resource items (or simply items) to
be allocated to the set P of n players (or customers). The sets I and P form the two
sets of the bipartition, and are indexed by numbers in [m] and [n] respectively. Thus,
I = {x1, x2, . . . , xm} and P = {p1, p2, . . . , pn}. Each player pj ∈ P has a utility function
valj(i) = vi > 0 for each item xi ∈ I. This represents the value of item xi for player pj . If
item xi is adjacent to player pj , then its value for her is vi > 0 (vi is a positive integer),
otherwise its value is zero. This is represented in the graph H via the edge set E. If an item
xi has a value vi > 0 to a player pj , then there exists an edge e ∈ E that connects xi to pj
in H, and we say player pj is adjacent to item xi. If there is no edge between an item xi ∈ I
and a player pj ∈ P , then the item xi has a value of zero to player pj . Allocating an item
xi ∈ I with value vi ∈ Q>0, where Q>0 is the set of positive rational numbers, to a player
adjacent to the item increases the utility of that player by vi. Our goal is to find a feasible
allocation of the resource items to the players that optimizes an objective function.

We assume there are no items of degree zero in H. If there exists such an item, we
can safely remove it from the graph since it is not accessible to any player. In a feasible
allocation (henceforth, feasible assignment) for n players, the set I is partitioned into n
subsets, where each subset is allocated to the player with the same index. In other words,
I = I1 ∪ I2 ∪ · · · ∪ In, where items in Ij are allocated to player pj ∈ P who is adjacent to
these items. Such a partition is denoted by A = (I1, I2, . . . , In).

The objective function that is optimized depends on the particular resource allocation
problem we solve. In the Max-Min allocation problem, we seek a feasible solution that
ensures that each player receives utility at least t > 0, assuming that we can guess the largest
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possible value for the parameter t. In other words, we seek a partition A = (I1, . . . , In)
such that

∑
i:xi∈Ij vi > t, ∀j ∈ [n]. A sufficiently good guess of t can be obtained by doing a

binary search. It is worth mentioning that the assignments made in the Max-Min allocation
problem do not necessarily need to be partitioning of the items, meaning that one can leave
some items unassigned. But since the goal is maximize the some of items values assigned,
restricting the assignments to cover the entire of set of items will not harm the objective
value. Therefore, to avoid further complications, we assume the assignments made are in
fact partitions of the entire set of items. On the other hand, in the Min-Max allocation
problem, we have item costs rather than item values. For instance, vi’s can be the construed
as processing times of a set of jobs and players can be processors, and we are required to
assign every job to some processor. Naturally, we wish to allocate jobs to machines such that
the overall finish time, or make-span, is minimized. Therefore, we seek a feasible solution
that ensures each player receives a utility of at most t > 0 for the smallest t possible. In
other words, we seek a partition A = (I1, . . . , In) such that

∑
i:xi∈Ij vi 6 t, ∀j ∈ [n].

In this chapter, we study cases where we can obtain PTAS for these two resource
allocation problems. We start with cases where the bipartite graph H = (I, P, E) that
models the problem is convex. A bipartite graph H = (I, P, E) with two set of vertices I
and P , is convex if there is an ordering <I of the vertices in I such that the neighbourhood
of each vertex in P consists of consecutive vertices, i.e., the neighbourhood of each vertex in
P forms an interval. Indeed, we focus on inclusion-free instances which form a subset of the
convex bipartite graphs. We will elaborate on the term inclusion-free in Section 4.2.1. Convex
bipartite graphs (henceforward referred to as convex graphs for short) were introduced in [50]
and are well known for their nice structures and both theoretical and practical properties.
Many optimization problems become polynomial-time solvable or even linear-time solvable
in convex graphs while remaining NP-hard for general bipartite graphs [17]. Convex graphs
can be recognized in linear time by using PQ-trees [17] and, moreover, the recognition
algorithms provide the ordering <I , given that the underlying graph is of course convex
[15, 57, 87].

The interval case arises naturally in energy production applications where resources
(energy) can be assigned and used within a number of successive time steps (that is the
energy produced at some time step is available only for a limited period of time corresponding
to an interval of time steps) and the goal is a fair allocation of the resources over time,
i.e., an allocation that maximizes the minimum accumulated resource we collect at each
time step. In other words, we would like to have an allocation that guarantees the energy
we collect at each time step is at least t, a pre-specified threshold. See also [100] for some
applications in on-line scheduling.
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4.1.1 Related Work

For the general Max-Min fair allocation problem, where a given item does not necessarily
have the same value for each player (i.e., every player has her own value for any item), no
“good” approximation algorithm is known. In [13], by using the natural LP formulation for
the problem and similar ideas as in [83], an additive ratio of maxi,j vij is obtained, which
can be arbitrarily bad. A stronger LP formulation, the configuration LP, is used to obtain
a solution at least opt/n in [10]. Subsequently, [6] provided a rounding scheme for this
LP to obtain a feasible solution of value no worse than O( opt√

n (log3 n)). Recently in [98], an

O(
√

log logn
n logn ) approximation algorithm was proposed, which is close to the integrality gap of

the configuration LP. On the negative side, there exists a simple 1
2 inapproximability result

[13] using the same ideas as in [83]. Due to the difficulty of the general case, subsequent
research focused more on special cases. For the restricted case of the Max-Min allocation
problem (also known as the restricted Santa Claus problem), where vij ∈ {0, vj} for i ∈ [n]
and j ∈ [m], there is an O( log log logn

log logn ) factor approximation algorithm [10]. Furthermore,
the 1

2 inapproximability result for the general case [13] carries over to this restricted case as
well.

Recently, Feige proved that the integrality gap of the configuration LP defined and
studied in [10], cannot be worse than some constant. In [5] an integrality gap of 1

5 was
shown for the same LP which was later improved to 1

4 . This implies that a 1
4 -approximation

algorithm based on rounding the configuration LP for the restricted Max-Min allocation is
possible, although no such algorithm is available yet.

The authors provide a local search heuristic with an approximation guarantee of 1
4 .

However, this heuristic was not known to run in polynomial time. Later, it was shown in [94]
that the local search can be done in nO(logn) time. In [58] the authors provided a constructive
version of Feige’s original nonconstructive argument based on Lovász Local Lemma, thus
providing the first constant factor approximation for the restricted Max-Min fair allocation
problem. They provide an α-approximation algorithm for some constant α where an explicit
value of α is not provided (but is thought to be a huge constant). Thus there is still a gap
between the 1

2 inapproximability result and the constant α approximability result in [58].
Very recently, a 13-approximation was given for the problem [3], which provides the first
constant factor polynomial time approximation algorithm for the problem for a particular
constant value. Their approach uses, in a highly non-trivial way, the local search technique
for hypergraph matching that was used in [5]. Another important aspect of this approach is
that the algorithm is purely combinatorial.

Several special cases of the Max-Min fair allocation problem have been studied. The
case where vij ∈ {0, 1,∞} is shown to be hard in [74] and a trade off between the running
time and the approximation guarantee is established. In particular, for a number α 6 |I|

2 , it
is shown how to design an α · optn -approximation algorithm in time |P |O(1)|I|O(α). In [11] the
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authors consider the case in which each item has positive utility for a bounded number of
players D, and prove that the problem is as hard as the general case for D 6 3. They also
provide a 1

2 inapproximability result and a 1
4 approximation algorithm for the asymmetric

case (where each item has two distinct non-zero values for the two players interested in
that item) when D 6 2. The authors also provide a simpler LP formulation for the general
problem and devise a polylogarithmic approximation algorithm that runs in quasipolynomial
time (and a |P |ε-approximation algorithm that runs in |P |O( 1

ε
) time, for some ε > 0). The

same result has been obtained in [21], which includes a 1
2 approximation when D 6 2, thus

matching the bound proved in [11]. In [107], the author provides a PTAS for a (very) special
case of the problem considered in this chapter, namely, when the instance graph of the
problem is a complete bipartite graph. In [86] a 1

2 -approximation algorithm was developed
for the class of instances considered here, namely for the case where the intervals for each
player are inclusion-free in the same sense introduced in this thesis. See also [88, 99] for
some other special cases that our results generalize.

The Min-Max-Allocation problem, or the R | |Cmax problem, as it is known in standard
scheduling notation, is an important class of resource allocation problems. We seek an
allocation (also known as assignment) of jobs (the resources) to machines (the players)
such that the makespan (the time by which the latest machine finishes its processing) is
minimized.

For the R | |Cmax problem, a 2-approximation algorithm based on a characterization of
the extreme point solutions of the natural linear programming relaxation of the problem is
given [83]. The authors also provide a 3

2 inapproximability result. These results have been
adapted to the Max-Min case in [13]. So far, all efforts to improve either of the bounds
have failed. In a very recent result [102], it is shown that the restricted version of R | |Cmax

(where the processing time of a job j is vj for a subset of the machines and infinity otherwise)
admits an α approximation guarantee for α strictly less than 2. This result is an estimation
result i.e., it estimates the (optimal) makespan of the restricted R | |Cmax within a factor of
α = 33

17 + ε for some arbitrary small positive ε, although no polynomial time algorithm with
such a performance guarantee is known. In [35], a 1.75 approximation algorithm is given for
the restricted R | |Cmax problem where each job can be assigned to at most 2 machines. In
this article, the authors claim that their 1.75 approximation for this restricted case is the
first one that improves the factor 2 approximation of [83] on unbounded number of machines
and jobs. Our PTAS thus provides a certain strengthening of their claim, providing the fist
natural and non-trivial instance (as in the case of a complete bipartite graph) for which a
PTAS is provided.

We note that further restrictions of this special case, where every job has degree at most
two, have been studied [80]. Thus if the underlying bipartite graph is a tree, then a PTAS
can be designed for the problem. If the processing times are in the set ∈ {1, 2}, then a
3
2 -approximation algorithm exists, which is the best possible unless P = NP. Finally, [105]
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provides better approximations for several special cases of the problem. More importantly,
it shows that the configuration LP for this restriction has an integrality gap of 2.

4.1.2 Our Contribution

We summarize our results below:

(1) We start by presenting a PTAS for the restricted Max-Min fair allocation problem when
the instance of the problem is an inclusion-free convex graph, that is, the neighborhood
of each player is an interval of items (Section 4.2). Notice that this instance of the
problem is (strongly) NP-hard, as it contains complete bipartite graphs as a special
case (each player is adjacent to all the items), which is known to be strongly NP-hard
[46].

(2) Next, we modify our approach for the Max-Min allocation problem to obtain a PTAS
for the R | |Cmax problem with inclusion-free convex graphs. (Section 4.3).

To obtain the PTAS for the instances considered in this chapter, we first use scaling
and rounding to classify the items into small and big items. Then, we prove that in a given
instance of the problem, for any assignment of a certain value, another assignment of slightly
less value but with simpler structure exists. Finally, we provide an algorithm that searches
all these simple-structured assignments.

4.2 Max-Min Allocation Problem (Santa Claus) on Convex
Graphs

As instance of the problem is given via a convex graph H = (I, P, E) and a utility function
val : I → Q>0 which associates a value vi to every item xi in I. Structural properties and
algorithms of convex graphs have received attention in the field of algorithmic graph theory.
We refer the reader to texts such as [17] and [101]. For the sake of completeness, we give a
definition of this class of graphs and introduce some notations that we will use throughout
the chapter.

4.2.1 Preliminaries and Notations

We first introduce the notation that we will use throughout this chapter.

Notation of the Chapter

Throughout the chapter, we use bold mathematical symbols to refer to vectors. Superscripts
are reserved for player indices. For simplicity, we denote the induced subgraphs of the input
convex graph H by H ′ = (I ′, P ′) for some I ′ ⊆ I and P ′ ⊆ P and refrain from explicitly
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Figure 4.1: Four types of intersecting intervals of two players

mentioning the subset of edges E′ ⊆ E. The set E′ contains all those edges of E that are
incident to at least one vertex in I ′ and at least one vertex in P ′. The underline is used for
emphasis. Finally, we use italics to highlight the terms we define in the chapter.

Preliminary Definitions

To define the class of convex graphs we first need to introduce the following property.

Definition 13 (Adjacency Property). [17] Let H = (X, Y, E) be a bipartite graph. An
ordering <X of X in H has the adjacency property if for each vertex y ∈ Y , the neighbourhood
of y in X denoted by N(y) consists of vertices that are consecutive in <X .

A convex graph is defined as follows.

Definition 14 (Convex Graph). [17] A bipartite graph H = (X, Y, E) is convex if there
exists an ordering of X or Y that satisfies the adjacency property.

In this chapter, we deal with a subclass of convex graphs known as inclusion-free convex
graphs. In this subclass, inclusion may still occur between the intervals, but it should
follow certain rules. We first explain the rules with the help of Figure 4.1. Assume that
a convex graph H = (I, P, E) is given as the input instance. Consider two players p and
q in P . Their neighbourhoods in H can either be separate (their intersection is empty),
or intersecting. If the neighbourhood of two players p and q is intersecting, four types
of intersection between the two neighbourhoods may occur. These types are depicted in
Figure 4.1. We say that two intervals are properly overlapping (Figure 4.1 (a)) if neither
of the two intervals contains the other one, or left inclusive (Figure 4.1 (b)) if one interval
contains the other and the two intervals share their left boundary, or 3) right inclusive
(Figure 4.1 (c) if one interval contains the other and the two intervals share their right
boundary, or 4) margined-inclusive (Figure 4.1 (d)) if one interval is completely contained
in the other, and the intervals do not share their boundaries. The subclass of inclusion-free
convex graphs forbids margined-inclusion while left inclusion and right inclusion may still
occur.

We define the class of inclusion-free convex graphs as follows. Given an ordering of the
items <I that satisfies the adjacency property, for any pair of players if the neighbourhood of
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one player is completely included in the neighbourhood of the other, the smaller neighbour-
hood must either contain the leftmost or the rightmost item of the bigger neighbourhood
with respect to the ordering <I . This property is sometimes referred to as the enclosure
property in the literature.

Definition 15 (Enclosure Property). Let H = (X, Y, E) be a bipartite graph. An ordering
<X of X in H has the enclosure property if for each pair of vertices y, y′ ∈ Y for which
N(y) ⊆ N(y′) in X, the vertices of N(y′) \N(y) appear consecutively in <X . We say that
the graph H as the enclosure property if such an ordering of the vertices of H exists.

As we mentioned earlier, every convex graph admits such an ordering and we can find it
in linear time. Let <I be the ordering of items in set I that satisfies the adjacency property.
For every vertex p ∈ P let [`p, rp] be the interval of the items adjacent to p. Based on the
ordering <I on I, we define the following ordering on P .

Definition 16 (Lexicographical Ordering of Players). For a given ordering <I of items
I, an ordering of players is called lexicographical if and only if a player p is ordered before
another player q whenever `p <I `q, or `p = `q and rp 6I rq (breaking ties arbitrarily), in
which rp 6I rq means either rp = rq or rp <I rq.

The adjacency property is equivalent to the the Min ordering property in bipartite
graphs and the combination of both adjacency and enclosure properties is equivalent to the
Min-Max ordering property. Here, we define these two properties.

Definition 17 (Min Ordering Property). A bipartite graph H = (X, Y, E) fulfills the Min
ordering property if there exist orderings of X and Y , <X and <Y respectively, which satisfy
the following: if for the vertices x <X x′ in X and y <Y y′ in Y , we have that xy′ ∈ E and
x′y ∈ E, then xy must also be an edge in E.

Definition 18 (Min-Max Ordering Property). A bipartite graph H = (X, Y, E) fulfills the
Min-Max ordering property if there exist orderings of X and Y , <X and <Y respectively,
which satisfy the following: if for the vertices x <X x′ in X and y <Y y′ in Y , we have that
xy′ ∈ E and x′y ∈ E, then xy and x′y′ must also be edges in E.

These properties are depicted in Figure 4.2. The two equivalencies can be derived
from the previously known results. For instance, one can show that the adjacency and the
enclosure property together results in Min-Max ordering from Theorem 5 in [62] and the
definition Min-Max ordering in [55]. Note that not all convex graphs satisfy the enclosure
(or Min-Max ordering) property. In fact, the class of convex graphs that satisfy the enclosure
property is a proper subclass of the convex class and is known to be equivalent to two famous
graph classes, the bipartite permutation graphs and the proper interval bigraphs. Therefore,
we say that Bipartite Permutation ⊂ Convex.

The following observation shows an interesting property of graphs that satisfy both the
adjacency and enclosure properties.
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p q

j i

Figure 4.2: Assume that p <I q and j <I i in the ordering <I that satisfies the adjacency property.
If the graph only has the left dotted connection between j and p, then it is said to have the min
ordering property for players p and q. If the graph has both dotted lines, then it is said to have
min-max ordering property over players p and q.

Observation 1. Assume we are given a bipartite permutation (inclusion-free convex) graph
H = (I, P, E) alongside an ordering of items <I that satisfies both the adjacency and the
enclosure properties. If I is ordered according to <I , then the lexicographical ordering of P
based on <I also satisfies both properties. In other words, when P is ordered lexicographically
based on <I , (i) the neighbourhood of every item x ∈ I forms an interval in P , and
furthermore, (ii) for every pair of items x1, x2 ∈ I, their respective neighbourhoods are either
properly overlapping, left inclusive, or right inclusive.

Proof. We first show part (i). For the sake of contradiction, assume there is an item x ∈ I
such that the neighbourhood of x in P does not form an interval. This implies that a gap
exists in the neighbourhood of x in P , meaning that there are players p′ <P p <P p′′ such
that x in adjacent to p′ and p′′ but not p. Here, <P denotes the lexicographical ordering of
payers. Since the neighbourhood of players form intervals in I, the neighbourhood of p′ can
include x in one of the three ways depicted in Figure 4.3. The dotted edges represented the
non-edges. We go through each case:
Case 1: x is in the middle of the interval of p′. As p is not adjacent to x, we first consider
the case in which `p <I x. We can conclude rp <I x since the neighbourhood of p is an
interval in I. This means that either `p = `p′ which together with the fact that rp <I r′p
(note that p′ is adjacent to x and p is not, so the right boundary of the neighbourhood of
p′ must be to the right of that of p in this case) means that p should come before p′ in
the lexicographical ordering contradicting the assumption that p′ <P p, or we have that
`p′ <I `p and rp <I r′p which is contradicting the assumption that the graph satisfies the
enclosure property (the neighbourhood of p falls completely inside that of p′). Therefore it
follows that x <I `p. In this case, since p <P p′′, we either have that `p = `p′′ or `p <I `p′′ .
In both this situations, p′′ cannot be adjacent to x, implying that the assumption of Case 1
over the neighbourhood of players is false.
Case 2: x is on the left boundary of the interval of p′. In this case, we certainly have that
x <I `p as p is lexicographically larger than p′ and not adjacent to x. As in Case 1, either
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(c) x on the Right Boundary

Figure 4.3: Different cases a gap may exist in the interval of an item x in an inclusion-free convex
graph

`p = `p′′ or `p <I `p′′ due to the lexicographical ordering. In both situations, p′′ cannot be
adjacent to x which makes Case 2 a contradiction as well.
Case 3: x is on the right boundary of the interval of p′. Again, x <I `p, as assuming
otherwise leads to a contradiction we mentioned in Case 1. Therefore, since p <P p′′, we get
the two cases as before, `p = `p′′ or `p <I `p′′ , both leading to a contradiction.

The assumption that a gap exists in the neighbourhood of x leads to contradiction in
either case. This proves part (i) of the observation. For part (ii), we assume there is an
item x whose neighbourhood is marginally included inside the neighbourhood of some other
item x′. Again, there are two cases: one in which x′ <I x, and the other x <I x′. We only
show the former as the latter follows from symmetry. Since the interval of x is entirely
inside the neighbourhood of x′ without touching any of the boundaries, there must exist
players p′ <P p <P p′′ such that p is adjacent to both x and x′, but p′ and p′′ are only
adjacent to x′, lying in the left and right side of the neighbourhood of x. Figure 4.4 depicts
the neighbourhood of players and items, with the dashed edges representing the non-edges.
Note that the neighbourhood of each of the players is an interval in I. Players p′ and p′′ are
both adjacent to x′ but not x, while player p is adjacent to x. Since x′ <I x, we conclude
that `′p <I r′p <I rp and `′′p <I r

′′
p <I rp. This contradicts with the assumption that p′′

is lexicographically greater than p, therefore the intervals of items in the set P must be
inclusion-free.

Remark 3. Note that for any bipartite permutation graph H, we know that H is bi-
convex, i.e., there is an ordering of X and Y that satisfies the adjacency property, or
Bipartite Permutation ⊂ Biconvex ⊂ Convex. Observation 1 suggest a yet stronger
property; there is an ordering of X and Y that fulfills both the adjacency and enclosure
properties.

Given a convex graphH = (I, P, E), and ordering <I of items that satisfies the adjacency
property, and a target value t, our goal is to find a t-assignment of items to players, defined
informally as follows:
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p p′′p′

x′ x

Figure 4.4: The contradictory assumption that intervals of items in the set of players P are not
inclusion-free

Definition 19 (t-assignment for the Max-Min case). A t-assignment, for any t > 0, is a
feasible assignment such that every player pj receives a set of items Ij ⊆ [`pj , rpj ] with total
value at least t.

In the Min-Max case, a t-assignment is simply a feasible assignment such that each
player (machine) receives total utility at most t.

In this chapter, we only deal with the easier case of inclusion-free instances. All the
definitions and theorems in later sections apply to the class of inclusion-free convex graphs
(unless mentioned otherwise explicitly). To the best of our knowledge, no PTAS is known
for general instances with margined-inclusive intervals, where the convex graph only satisfies
the adjacency property. Whether there exists a PTAS for convex graphs in general is an
interesting research question that we pose as an open problem.

4.2.2 Preprocessing the Instance

Given a particular instance of the problem, we first simplify the input instance. For a
positive rational number t, we may assume that the value of each item is at most t. If item
xi has value vi > t then we set vi to t without loss of generality. By a proper scaling, i.e.,
dividing each value by t, we may assume that the value of each item is in [0, 1]. Observe
that a t-assignment becomes a 1-assignment. We do a binary search to find the largest value
of t for which a t-assignment exists (in the Min-Max case we seek the smallest t such that a
t assignment exists). The binary search is carried out in the interval [0, 1

n

∑m
i=1 vi] where

0 is an absolute lower bound, and 1
n

∑m
i=1 vi is an absolute upper bound of the optimal

solution respectively (for the Min-Max case the binary search is carried out in the interval
[ 1
n

∑m
i=1 vi,

∑m
i=1 vi]).

For a subset P ′ ⊆ P of players, let N[H](P ′) be the union of the set of all neighbours of
the players in P ′ in the graph H. We let N(P ′) denote this set whenever the graph H is
implied by the context. For an interval [i, j] of items, let P [i, j] be the set of players whose
entire neighbourhood lies in [i, j], that is P [i, j] = {p ∈ P : N(p) = [`p, rp] ⊆ [i, j]}. For a
subset I ′ ⊆ I of items, let val(I ′) denote the sum of values of all the items in I ′. We note
that in every 1-assignment, for every subset P ′ ⊆ P of players, the sum of the value of items

86



in its neighbourhood should be at least |P ′|. In other words, ∀P ′ ⊆ P : val(N(P ′)) > |P ′|.
If the value of each item is 1, then this condition is the well known Hall’s condition [59],
a condition sufficient and necessary for a bipartite graph to have a perfect matching. We
consider a more general version of the 1-assignment and derive a generalized version of
Hall’s condition below. Each player p ∈ P has a demand d(p). This version contains the
1-assignment as a special case, i.e., the case where d(p) = 1 for all players p ∈ P . Also, for a
subset of players P ′ ⊆ P , let d(P ′) denote the sum of demands of all players in P ′. Now the
generalized Hall’s condition (for the Max-Min case) becomes: ∀P ′ ⊆ P : val(N(P ′)) > d(P ′).
From now on we refer to this condition as Hall’s condition. Note that this condition is
necessary to satisfy the players’ demands, but not sufficient (see Figure 4.5). Lemma 3
shows that in order to check Hall’s condition for H it suffices to check it for every interval
of items. Therefore, Hall’s condition in our setting becomes Condition 4.2.1 below:

∀ [`, r] ⊆ [1, m] : val([`, r]) > d(P [`, r]). (4.2.1)

Lemma 3. In order to check Hall’s condition for H it suffices to verify Condition 4.2.1. In
other words, it suffices to check Hall’s condition for every set of players P [`, r], [`, r] ⊆ [1, m].

Proof. Assume we are given a convex graph H. We claim that it is sufficient to check
Hall’s condition only for intervals of items, meaning that if there is any violations of Hall’s
condition, then there is at least one violation over an interval of items. In other words, we
show that there for a player P ′ for which (i) N(P ′) consists of several maximal intervals
(therefore N(P ′) is not an interval itself), if (ii) Hall’s condition is violated for P ′, then
there exists an interval of items [`, r] ⊆ I for which Condition 4.2.1 is violated.
Assume that there exist several maximal intervals J1, J2, . . . , Jt whose union gives N(P ′).
Since each player is adjacent to an interval of items, there exists a corresponding partition
of P ′ into subsets P ′1, P ′2, . . . , P ′t , such that N(P ′i ) = Ji. Since Hall’s condition is violated,
we have

val(J1) + . . . + val(Jt) = val(N(P ′)) < d(P ′) = d(P ′1) + . . . + d(P ′t)

Thus, there must exist an i, 1 6 i 6 t, for which val(Ji) = val(N(P ′i )) < d(P ′i ). Now let `
and r be the leftmost and rightmost items in Ji respectively. Since N(P ′i ) = Ji = [`, r], then
the neighbourhood of every player in P ′i should fall entirely in the interval [`, r]. Therefore,
P ′i ⊆ P ([`, r]). Thus, we conclude val([`, r]) < d(P ′i ) 6 d(P ([`, r])), which is a violation of
Condition 4.2.1 for the interval [`, r].

As a result of Lemma 3, it is sufficient to check Hall’s condition for every interval of items.
Since there are at most m2 intervals, Hall’s condition can be verified in time polynomial in
size of H.
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Figure 4.5: An instance in which Hall’s condition is satisfied for t = 1 but the optimal solution
value is not greater than 0.4. In this examples, d(p1) = d(p2) = d(p3) = 1.

Rounding the Instance

In a given instance H of the problem, we round the item values to obtain a rounded instance
H ′. For any integer k > 4, we let 1

k be the error parameter. For each instance for which
there is an optimal 1-assignment, we seek an assignment such that each player receives a set
of items with total value at least 1− 4

k+1 , k > 4.

• We call an item xi small if its value is less than or equal to 1
k . The values of small

items are not changed in H ′.

• We call an item big if its value is greater than 1
k . If the value of item xi, vi, is in the

interval ( 1
k (1 + 1

k )τ , 1
k (1 + 1

k )τ+1] for τ > 0, it is rounded to 1
k (1 + 1

k )τ+1 in H ′.

After the rounding, there are at most C = dlog k/(log(1 + 1
k ))e categories of big items,

that is items with distinct values more than 1
k . One can easily verify that C is no more than

k1.4. For 0 6 τ 6 C, let qτ = 1
k (1 + 1

k )τ . For subset I ′ of I let vs(I ′) denote the value of the
small items in I ′. The rounding process in the Min-Max case is slightly different and we
include it in the corresponding section.

4.2.3 The Algorithm for Inclusion-Free Convex Graphs

In this section, we consider the cases in which the neighbourhoods of no two players form a
pair of margined- inclusive intervals. Note that left and right inclusion may still occur in
such instances. The main result of this section is the following theorem.

Theorem 1. Let H be an instance of the problem before rounding with n players and m
items. Then for k > 4 there exists a (1− 4

k+1)-approximation algorithm for the Max-Min
allocation problem on inclusion-free convex graphs with running time O

(
(m+ n)nm2(C+1)

)
,

in which C 6 k1.4.

Our proof technique builds upon a previous work of Alon et al. [2]. In particular, we
use the notion of “input vectors” (Definition 20) in a dynamic programming algorithm that
considers the players one by one and remembers plausible allocations for them that can lead
to a (1− ε)-assignment. Input vectors are configuration vectors that indicate the number
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of available items in an instance of the problem or one of its subproblems. In their paper,
Alon et al. study complete bipartite graphs, i.e., the case where all items are available to all
players. This fact allows them to ignore the actual assignment of items to players in their
dynamic programming algorithm and only work with the configuration vectors for the set of
available items, i.e., the input vectors; once the configuration vector for an assignment of
items to a certain players is known, any set of items that matches the configuration vector
can be assigned to the player. In other words, all items of a certain size are identical to the
algorithm. Since the number of all possible input vectors is polynomial in the instance size,
they manage to provide a polynomial-time algorithm in the end.

Our work focuses on a more general case – that of inclusion-free convex graphs which
contains complete bipartite graphs as a subset. In this setting, an item may be adjacent only
to a subset of players. As a result, to identify a subproblem, we cannot simply represent
the set of available items to each player with the corresponding input vector. On the other
hand, one cannot consider all possible ways of assigning items to players since the number of
such assignments is exponential and computationally prohibitive. For the case of margined
inclusion- free instances, we prove one can still identify the subproblems from their respective
input vectors. To that end, we introduce (1−ε)-assignments of a certain structure (which we
call simple-structured assignments) and prove their existence in any instance of the problem
which admits a 1-assignment. Such assignments are defined in Definitions 21 and 25, and
shown to exist in Lemmas 4 and 5.

In this section, we assume that the convex graph H is a rounded input. For a rounded
instance, it suffices to set the constant parameter ε to 3

k . In the proof of Theorem 1, we show
how this bound guarantees a 1− 4

k+1 approximation factor for the original instance. The
dynamic programming algorithm has a forward phase and a backward phase. In the forward
phase, the algorithm checks the existence of a solution by filling up a table. During this
phase, the algorithm runs n steps, one for each player. At a given step j, it checks for feasible
(1−ε)-assignmentsA′ = (In−j+1, In−j+2, . . . , In) for players pn−j+1, pn−j+2, . . . , pn, called
partial assignments, based on the solutions of the sub-problems in the previous step (feasible
(1− ε)-assignments for players pn−j+2, . . . , pn). During the first step (j = 1), the algorithm
searches for (1 − ε)-assignments for player pn from scratch, therefore this case is treated
differently. The backward phase also has n steps. During this phase, the algorithm considers
the players in a reverse order of the forward phase, i.e., from p1 to pn, and generates the
final set of items to be allocated to each player based on the information stored in the table.

Every partial assignment of the forward phase indicates a potential assignment of items to
players1. After every such assignment, the set of available items changes, thus a subproblem
is instantiated. The induced subgraph of H on the set of available items and unsatisfied
players is called a remainder graph. The algorithm regards every remainder graph as an
instance of a subproblem of the original allocation problem. Note that the number of possible

1The assignment will be finalized once the algorithm finishes the steps of the forward phase.
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partial (1− ε)-assignments and their corresponding remainder graphs can be exponential.
Some remainder graphs may eventually result in a solution and some may not. Thus, at
each step, a naïve dynamic programming approach might need to remember the remainder
graphs, which will lead to an exponential memory (and time) complexity. By exploiting the
properties of convex graphs (specifically the Min-Max ordering) we can show that one can do
better than the naïve approach. In this section, we examine some structural properties of the
problem that allow us to find a solution for any given instance while checking a polynomial2

number of simple-structured assignments. Our dynamic programming algorithm uses input
vectors, which we introduce here.

Definition 20 (Input Vector). For a given convex graph H for an input instance with ντ big
items of size qτ for τ = 1, 2, . . . , C and small items of total value in the interval (ν0−1

k , ν0
k ],

an input vector is a configuration vector of the form ν(H) = ν = (ν0, ν1, . . . , νC).

Note that for an arbitrary input vector ν = (ν0, ν1, . . . , νC), ντ 6 m for all big items
of size qτ , 1 6 τ 6 C as there can be at most m items of a certain value. Furthermore,
ν0 is the total value of the small items in integral multiples of 1

k which has been rounded
up. Therefore, ν0 6 m since m

k is an upper bound on the total value of the small items.
As a result, there are at most mC+1 possible input vector values, which is a polynomial
in the size of the problem instance. In the rest of this chapter, we let V denote the set of
all possible input vectors. Similar to the algorithm by Alon et al., we are interested in a
dynamic programming approach that only deals with the input vectors in V rather than
the (potentially exponential) remainder graphs. Unlike the case of complete graphs, we
cannot assign items of a certain size interchangeably. However, by imposing the right set of
restrictions on the assignments we are able to retrieve (reconstruct) a remainder graph from
any input vector whose total sum of items is almost equal to the sum of values indicated by
the input vector. In particular, we wish to show the following two facts:

Fact 4.2.1. Whenever there exists an arbitrary 1-assignment of items to players for an
instance of the problem, there also exists a restricted (1− ε)-assignment.

Fact 4.2.2. Given that a 1-assignment exists for an instance of the problem, then there
also exists a polynomial time algorithm that, given the input vectors for every step (partial
assignment) of a (1− ε)-assignment, reconstructs the remainder graph of every step in such
a way that the total value of the items in each reconstructed remainder graph is

• exactly the same as that of the corresponding remainder graph in the original (and
unknown) 1-assignment for every category τ = 1, 2, . . . , C of the big items and,

• only a small fraction ε more than its counterpart in the original remainder graph for
the small items.

2In the number of players and items, but exponential in the inverse of the error parameter.
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As the first of the restrictions we impose on the assignment to obtain remainder graphs
of simpler structures, we define right-aligned assignments.

Definition 21 (Right-Aligned Assignment). For a given convex graph H, an ordering of
items <I that satisfies the adjacency property, and a lexicographical ordering of players with
respect to <I , an assignment of items to players A = (I1, I2, . . . , In) is called right-aligned
if and only if it satisfies the following properties recursively:

(1) Let pn be the last (rightmost) player in the graph. All the big items of value qτ =
1
k (1 + 1

k )τ (1 6 τ 6 C) assigned to pn are the rightmost ones with that value in
N[H](pn). Furthermore, all the small items assigned to pn are also the rightmost ones
in her neighbourhood.

(2) In the remainder graph H ′ = (I \ In, P \ pn), that is if pn and all the items assigned to
her are removed from the graph H, the rest of the assignment, A′ = (I1, I2, . . . , In−1),
is a right-aligned assignment.

(3) An empty assignment (i.e., when no players are left in the graph) is considered a
right-aligned assignment.

Next, we prove Fact 4.2.1 for the right-aligned assignments in a lemma called the
Alignment Lemma (Lemma 4). Intuitively, the lemma states that if a 1-assignment exists,
then there exists a (1− ε)-assignment with items aligned to the right, in which ε = 1

k . We
first need the following observation and definition.

Observation 2. Convex graphs have the hereditary property, meaning that every induced
subgraph of a convex graph is also convex.

This is straightforward to see. Assume that graph H = (X, Y, E) is convex. Without
loss of generality assume X has an ordering that respects the adjacency property, meaning
the neighbourhoods of members of X in Y are intervals. Regardless of how we remove nodes
from these intervals in any subgraph of H, the remaining parts of the neighbourhoods still
form intervals.

Definition 22 (Assignment Vector). For an assignment of items to the set of players
A = (I1, I2, . . . , In), and for a player pj, 1 6 j < n, let αj = ν(Hj) for j = 1, 2, . . . , n,
in which Hj = (P \ {pn, pn−1, . . . , pj+1}, I \ (In ∪ In−1 ∪ . . . ∪ Ij+1)) is the remainder
graph for player pj in the assignment A (for j = n, let Hn = H). We call the vector
αj = (αj0, α

j
1, . . . , α

j
C) the assignment vector of player pj in the assignment A. Furthermore,

let α = (α1, α2, . . . , αn) be the assignment vector for the entire assignment A.

Lemma 4 (The Alignment Lemma). Suppose there exists a 1-assignment for a given
convex graph H. Then, there also exists a minimal (1− 1

k )-right-aligned assignment for H.
Furthermore, the two assignments will have identical assignment vector.
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Proof. We let A = (I1, . . . , In) denote the 1-assignment stated in the lemma and let α be it
assignment vector. Also, we denote by Ijτ the set of big items of value qτ assigned to player
pj for 1 6 τ 6 C and by Ij0 , the set of small items allocated to pj in the assignment A. We
prove the lemma by transforming the assignment A into a minimal (1− 1

k )-right-aligned
assignment, A′ = (J1, J2, . . . , Jn). A′ is minimal in the sense that the removal of any items
from the sets J1, . . . , Jn will cause its value to drop below 1− 1

k . This task is carried out in
two independent and consecutive rounds. In round 1, the big items assigned to each player
are aligned to the right while the small items are aligned in round 2. Each round consists
of n steps, one for each player. The two rounds are independent of each other in that the
alignment of the big items in the first round has no impact on the alignment of small items
in the second round. In the following, we assume the players are ordered lexicographically
based on the ordering of items <I .

Round 1: In round 1, the big items are right-aligned in n steps, where in each step,
the big items of a single player are aligned in C micro-steps, one micro-step for each item
category. We initialize j to be n, indicating that we start with the last player, pn, and let
τ be 1. Also, let Hj denote the remainder graph at the beginning of step j. At the τ th

micro-step, we only look at items of size qτ in the graph and replace the set Ijτ with its
right-aligned counterpart J jτ . Note that according to Observation 2, the induced subgraph
on items of a certain size, say Hj

τ , forms a convex graph. We start with J jτ = Ijτ . If Ijτ is
right-aligned, i.e., all items of value qτ assigned to pj are the rightmost ones in N

Hj
τ
(pj),

then we return J jτ . If however, Ijτ is not right-aligned, there must be two items xr and xt
of the same value qτ , where xr <I xt and xr is assigned to pj , but xt is not. If xt is not
assigned to any other player, then we can simply assign it to pj instead of xr. If it is assigned
to some player p`, xr must also be connected to p`. Otherwise p` would come after pj in the
lexicographical ordering of the players. Since the two items have the same value, we use the
adjacency property to swap them in the assignment. Thus, pj gets xt and p` gets xr in the
transformed assignment J jτ . Now we have one less item out of the alignment. We continue
this process until there are no items in J jτ out of the alignment. Then we proceed to the
next micro-step by setting τ ← τ + 1. At the end of C micro-steps, we let J j be

⋃C
τ=1 J

j
τ .

Furthermore, we obtain the remainder graph Hj−1 = (I \ J j , P \ {pj}). This graph will be
the input to the next step of the alignment. We now proceed to the next step by updating
j ← j − 1. Note that the assignment vector for A′ = (J1, J2, . . . , Jn), say α′, is identical
to α on the big item coordinates since for any arbitrary player p, we did not change the
number of big items of any category assigned to p. As a result, we have not lost any solution
quality.

Round 2: In round 2, we obtain a right-aligned assignment for small items. We first
explain the procedure, and then prove its correctness. Let H0 denote the subgraph of H
that contains only small items. The neighbourhood of each player in H0 is still an interval
(by Observation 2). For j ∈ [n], let 1− wj be the total value of the big items assigned to
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player pj in the 1-assignment. Therefore, wj denotes the deficit of player pj that should be
satisfied by small items. If the demands of each player pj is set to wj for j ∈ [n], then H0

must satisfy Hall’s condition with these demands. This is due to the fact that a 1-assignment
exists in the original graph for which Hall’s condition is necessary, and that during the first
round, the values of the big items assigned to the players did not change. Following the
idea of round 1, we align the items in n steps. We start with the last player, so we let j
be n and let Ij0 denote the set of small items assigned to pj . We also let Hj

0 denote the
remainder graph at the beginning of step j. Note that val(Ij0) = wj . We replace this set
with the set of right-aligned items, J j0 , of value at least wj − 1

k . We first let J j0 be the empty
set. Then, we pick small items from the neighbourhood of pj in Hj

0 and add them to J j0 .
We continue to do this as long as val(J j0) 6 wj − 1

k . When the algorithm stops, since the
value of each small item is at most 1

k , wj −
1
k < val(J j0) 6 wj . By doing this, we ensure

that player pj gets a value strictly greater than wj − 1
k in small items, and strictly greater

than 1− 1
k in total. The remainder graph for the next step of round 2, Hj−1

0 , is obtained
by Hj−1

0 = (I \ J j0 , P \{pj}). Note that each such remainder graph is still a convex graph
because we started with a convex graph H0 and at each step, we removed items from right
to left in the ordering <I . Also note that the small coordinate of the assignment vectors of
A and A′ (α and α′ respectively) are identical too, which means α = α′. The reason is
that we packed the small items in A′ is such a way that they have the same total value as
in A when counted in integral multiples of 1

k and rounded up. We then move to the next
step by updating j ← j − 1.

To prove the correctness, we show that after each step j, 1 6 j 6 n, we can obtain a
right-aligned assignment of small items the sum of whose values is strictly greater than wj− 1

k

for player pj . Recall that we chose every J j0 (1 6 j 6 n) to be the minimal right-aligned set
of items assigned to player pj for which wj− 1

k < val(J j0) 6 wj . For the sake of contradiction,
assume that for some j, 1 6 j 6 n, we cannot provide a right-aligned assignment of small
items J j0 for which val(J j0) > wj − 1

k . Let t be the largest such index. This assumption
implies that val(N[Ht

0](pt)) 6 wt − 1
k . We let Ht,n

0 denote the induced subgraph of H0 on
players pt, pt+1, . . . , pn and the small items in their neighbourhoods. We consider the partial
right-aligned assignments of small items in Ht,n

0 represented by J t0, J t+1
0 , . . . , Jn0 , and claim

that for a subset of the players pt, pt+1, . . . pn, Hall’s condition is violated for small items
in the original graph H0. Since Hall’s condition is necessary for any feasible assignment that
fulfills the demands of players, this in turn implies that there is no 1-assignment for the
instance, which contradicts our earlier assumption. To prove this claim, we introduce the
notion of a gap in the assignment. With respect to an ordering of items <I , a gap exists in
a (partial) assignment if xj is not assigned to any player, but there exists another item xi,
such that xi < xj in <I and xi is assigned to some player. The item xj is said to be in the
gap with respect to the partial assignment. Based on this notion, we consider two cases:
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Case 1: There exists a gap in the partial assignment. Let u be the smallest index
in N[Ht,n

0 ](pt, pt+1, . . . , pn) for which item xu is in the gap for the partial right-aligned
assignment. By the choice of u, xu−1 must be assigned to a player in the set {pt, pt+1, . . . , pn}.
Let pv be that player. Note that xu /∈ N[Ht,n

0 ](pv) as otherwise xu would be assigned to pv in
the right-aligned assignment. Item xu−1 is thus the rightmost item assigned to player pv. Let
x` and xr be the left-most and the right-most items in N[Ht,n

0 ](pt, pt+1, . . . , pv) respectively
(note that r = u− 1). Then,

val([`, r]) =
∑

j ∈ [`, r] :
xj ∈ Ht,n

0

val(xj)

=
v∑
j=t

val(J j0)

6 val(J t0) +

 v∑
j=t+1

wj


6 wt −

1
k

+

 v∑
j=t+1

wj


<

v∑
j=t

d(j).

where the first inequality is due to the fact that the total value assigned to each player pj
in the right-aligned assignment is at most wj , the second inequality is due to the choice of
pt, and last inequality holds since dj = wj for all players pj . Thus, Hall’s condition is not
satisfied for the set of players pt, pt+1, . . . , pv in Ĥ.
Case 2: There are no gaps in the partial assignment. Every item inN[Ht,n

0 ](pt, pt+1, . . . , pn)
has been assigned in the partial assignment. Thus

⋃n
j=t J

j
0 = N[Ht,n

0 ](pt, pt+1, . . . , pn). Once
again, let x` and xr be the left-most and the right-most items in N[Ht,n

0 ](pt, pt+1, . . . , pv)
respectively. Similarly,

val([`, r]) =
∑
j∈[`,r]

val(xj)

6 v(J t0) +

 n∑
j=t+1

wj


6

 n∑
j=t

wj

− 1
k

<
n∑
j=t

d(j).
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p1 p2 p3

Figure 4.6: Private items can introduce challenges for the dynamic programming scheme. In the
figure, circle items are small, with a value of 1

10 , and square items are big, and have a value of 1
4 .

This implies that Hall’s condition is violated in H0 for the set of players pt, pt+1, . . . , pn.

Unfortunately, Fact 4.2.2 is not true for the right-aligned assignment restriction, as
shown in the following example.

Example 4.2.3. In the example shown in Figure 4.6, each of the circle items are considered
small items and have a value of 1

10 and each of the square items, which are called big items,
have a value of 1

4 . Now, consider two different right-aligned 1-assignments.

(1) In the first one, player p3 gets the 5 rightmost circle items in her neighbourhood as
well as the 2 rightmost square items, player p2 also gets the 5 rightmost circle items in
her neighbourhood alongside the 2 rightmost square items, and player p1 observes a
remainder graph with input vector ν = (5, 2). Fortunately for p1, all these items are in
her neighbourhood, so she can be assigned a 1-assignment as well and all the players’
demands are met.

(2) In the second assignment, player p3 gets all four square items in her neighbourhood.
Player p2 has only one choice if she is to be allocated a 1-assignment and that choice
is to get all the small circle items in her neighbourhood. At the end, player p1 is left
with a different remainder graph whose input vector is also ν = (5, 2). This time, the 5
circle items remaining are not in the neighbourhood of p1 (the 5 rightmost circle items),
so p1 has to get by with 2 square items which amount to only a 1

2 -assignment for her.

As this example shows, although we have restricted the assignments to right-aligned
ones, we still cannot uniquely retrieve the proper (i.e., the one that provides a 1-assignment
for all the players) remainder graph from the input vector. Therefore, to avoid storing
exponentially many graphs in the table M , we introduce more restrictions on the assignment.
These added restrictions ensure that both facts would hold for the final assignment.

Despite the fact that the right-aligned restriction cannot establish a one-to-one mapping
between the input vectors and remainder graphs, it takes us one step closer to such mappings.
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As illustrated by Example 4.2.3, the reason we could not find an injective relation between
the remainder graphs and the input vectors is that in some of the remainder graphs, there
exist items that are not assigned to any player, but are also not accessible to any player
who has not yet received a bundle of items. For instance, for the second assignment in
Example 4.2.3, the 5 rightmost small items appear in the remainder graph, and consequently
in the corresponding input vector, but are not in the neighbourhood of p1. We call such
items private. More formally, we define private items in the following way.

Definition 23 (Private Items). For a subgraph H ′ = (I ′, P ′) of the problem instance H, an
item x ∈ I ′ is called private if it has a degree of 1, that is, it is in the neighbourhood of only
one player in H ′. For a private item x in H ′, the player p who is adjacent to x is called the
owner of x in H ′.

Definition 24 (Stranded Items). For a subgraph H ′ = (I ′, P ′) of the problem instance H,
an item x ∈ H ′ is called stranded if it has a degree of 0, that is, it is in the neighbourhood of
no player in H ′.

The private items, if kept unassigned in the graph, can mislead the retrieval procedure
in that they appear as available items on the input vector, but become stranded items (their
degree becomes zero once the player adjacent to them is removed from the graph, in which
case they are wasted). We now define the new restricted assignments.

Definition 25 (Non-wasteful Right-Aligned Assignment). A right-aligned assignment
A = (I1, I2, . . . , In) is called a non-wasteful right-aligned assignment if none of the
remainder graphs Hj = (I \ (

⋃n
t=j+1 I

t), {p1, p2, . . . , pj}) contains a stranded item for
j = 1, 2, . . . , n− 1.

We first mention the following observation. The proof is straightforward and thus we sketch
it briefly.

Observation 3. Whenever there exists a right-aligned (1 − 1
k )-assignment for a given

instance, there also exists a non-wasteful right-aligned (1− 1
k )-assignment.

Proof. This is due to the fact that if in any right-aligned assignment, we take the unassigned
private items in the remainder graphs and allocate them to their respective owners, we can
only increase the value received by each player. Therefore, Fact 4.2.1 holds for non-wasteful
right-aligned assignments as well.

Lemma 5 proves Fact 4.2.2 for this type of restricted assignments.

Lemma 5. If there exists a non-wasteful right-aligned 1-assignment A = (I1, I2, . . . , In)
for an instance of the problem, then there exists a polynomial time algorithm that given
the original inclusion-free convex graph H and the input vectors for partial assignments
Aj = (Ij , Ij+1, . . . , In) for j = n− 1, n− 2, . . . , 1 (but not the partial assignments) can
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reconstruct the remainder graphs for every Aj in such a way that the total value of items in
each reconstructed graph is at most ε = 2

k more than the actual corresponding remainder
graph for Aj.

Proof. We prove the lemma by providing the reconstruction algorithm. The algorithm is
in fact a simple left-to-right sweep3 of the items. We prove the correctness in Claim 1.
For j = n, n − 1, . . . , 1, we generate a remainder graph after each partial assignment
Aj = (Ij , Ij+1, . . . , In), using only the input vectors. Let ν = (ν0, v1, . . . , νC) be the
input vector of the remainder graph after this partial assignment. Let Ĥ = (Î , P̂ ) denote
the remainder graph that our algorithm outputs at the end of this step. We set P̂ to be
{p1, p2, . . . , pj}. As for the set of items Î, for the big items of value qτ , τ = 1, . . . , C, we
select the left-most ντ items in the graph H and add them to Î. For small items, we select a
maximal set of left-most items whose total value is less than ν0+1

k . This method of selection
ensures that the items that have been assigned to the players thus far are right-aligned.
Furthermore, if at any point, stranded items (of degree 0) appear in the remainder graph, we
will return NULL. This ensures that private items are not left unassigned. Note that since A
is assumed to be a non-wasteful right-aligned assignment, so are all its partial assignments
as well. Next, we show the correctness of the algorithm by proving Claim 1.

Claim 1. In a given inclusion-free instance H, for a non-wasteful right-aligned partial
assignment Aj = (Ij , Ij+1, . . . , In), the set of big items in Ĥ, the remainder graph recon-
structed by the right-to-left sweep algorithm, is identical to that of the original remainder
graph of Aj, and the set of small items of Ĥ is a superset of the set of small items of the
original remainder graph. Furthermore, the sum of values for small items in Ĥ is at most 2

k

more than that of the original remainder graph.

Proof. We treat big items and small items separately.
Big items: First, we consider the induced graph on the set of big items of a certain size
qτ for some arbitrary τ = 1, . . . , C. Assume that P̂ = {p1, p2, . . . , pj} for some 1 6 j < n

(the case where j = n is trivial since the remainder graph would be the original graph H).
Also let H ′ denote the original remainder graph for Aj . For contradiction, assume that
the graphs H ′ and Ĥ are not identical when induced on the set of big items of value qτ .
Since both graph H ′ and Ĥ have the same number of items of value qτ , there must exist
items x′ and x̂ such that x′ appears in H ′, but not in Ĥ and x̂ belongs to Ĥ, but not to
H ′. This means that the item x̂ is assigned to a player px, x > j + 1 in one the earlier
partial assignments Aj+1, Aj + 2, . . . , An. The item x′ is either adjacent to a player py,
1 6 y 6 j, or it is an item of degree 0 in H ′ and Ĥ (note that players pj+1, . . . , pn do not
belong to the graphs H ′ and Ĥ). If the latter case occurs, it means that x′ is a stranded item
in H ′, contradicting the fact that H ′ is the remainder graph of a non-wasteful right-aligned

3Note that the items assigned are aligned to the right, and naturally, the remaining items in the graph
would be aligned to the left.
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py px

x̂ x′

Figure 4.7: If the set of big items of H ′ and Ĥ are not identical, a margined inclusion should exist.
The arrow indicates assignment in one of the predecessors of H ′.

assignment. In fact, when faced with a stranded item, the reconstruction algorithm returns
NULL which signals the dynamic programming algorithm to skip the current input vector as
it does not correspond to a valid remainder graph. Therefore, we can assume there exists a
player py adjacent to x′. Since y 6 j and x > j + 1, we have that py < px. By the adjacency
property, we have that x̂ ∈ N[H](py). px is not adjacent to x′ since otherwise the item x̂

assigned to her would be out of alignment. The item x′ is assigned to the player py, therefore
we conclude that rpx < rpy . Since py < px, it must be the case that `py < `px . This is a
contradiction to the assumption that there are no inclusions in H. This situation is depicted
in Figure 4.7.
Small items: Assume that the set of small items of Ĥ is not a superset of the set of small
items of H ′, meaning that an item x′ exists such that x′ belongs to H ′ but not to Ĥ. If
there exists another item x̂ such that x̂ belongs to Ĥ, but not to H ′, then, similar to the
situation in Figure 4.7, we conclude that a margined inclusion should exist in H, which
is a contradiction. Therefore, we may assume that Ĥ is a subgraph of H ′. Recall that
ν = ν(H ′) = (ν0, ν1, . . . , νC) and the sum of values of all the small items in H ′ is at most
ν0
k (including x′). The total value of small items in Ĥ is at least ν0

k by definition. This is a
contradiction since we assumed Ĥ is a subgraph of H ′. Therefore, the set of small items of
Ĥ must be a superset to that of H ′. In the proposed graph Ĥ, we selected the minimal set
of small items whose value is greater than or equal to ν0

k . Such a set may have a value as
high as ν0+1

k − ε for some small value of ε > 0 since the value of small items is less than
or equal to 1

k . The minimum total value of small items in H ′ is no less than ν0−1
k by the

definition of input vectors, hence the difference of at most 2
k . This complete the proof of the

claim.

Observation 4. Note that, as mentioned in Claim 1, the algorithm tends to overestimate
the value of small items still available in the graph by at most an additive constant factor of
2
k , but it never underestimates. Therefore when a player pj expects a bundle of small items
worth dj, she might receive dj − 2

k worth of small items instead
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Based on Observation 4, we next provide a dynamic programming algorithm that
enumerates all non-wasteful right-aligned (1− 3

k )-assignments for a rounded instanceH. From
Lemma 4 and Observation 3 one can conclude that whenever a 1-assignment exists for a given
instance of the problem, so does a non-wasteful right-aligned (1− 1

k )-assignment. Therefore,
if we only consider non-wasteful right-aligned assignments instead of all assignments, we
are still able to find an assignment with objective value at least (1 − 1

k ), provided that a
1-assignment for the instance exists in the first place. Lemma 5 and Observation 4 together
show that for any non-wasteful right-aligned assignment for an instance of the problem, an
approximation of the assignment can be retrieved, and we only loose an additive fraction
of 2

k in solution quality. Therefore, the general idea of the algorithm is to consider all the
mC+1 possible input vectors in a dynamic programming algorithm, retrieve a non-wasteful
right-aligned (1− 3

k )-assignment for each vector, and mark the feasible one. If it eventually
manages to find at least one feasible assignment for p1 (the last player considered by the
algorithm), then it reports success. Before presenting the algorithm, we first introduce two
functions that are invoked by the algorithm:

(1) retrieve: Function retrieve takes as input parameters input vector ν and player index
j, and returns remainder graph H ′ = (I ′, P ′). The graph H ′ = (I ′, P ′) that it
reconstructs is such that P ′ = (p1, p2, . . . , pj) and I ′ is formed by the left-to-right
sweep algorithm in Lemma 5 4. Function retrieve returns NULL if at any point during
reconstruction, there is at least one stranded item in the remainder graph.

(2) feasible: Function feasible takes as input parameters remainder graph H ′ and set of
items I ′, and returns either true or false. It returns true if each of the following is true:
H ′ is not NULL, set I ′ is entirely in the neighbourhood of the last player in H ′, and
the sum of item values in I ′ is at least 1− 3

k . Otherwise, Function feasible returns false.

Algorithm Assignment (for Inclusion-Free Convex Instances): Algorithm Assign-
ment uses dynamic programming to fill the entries of an n×mC+1 table, in which each row
represents a player, and each column represents an input vector (we assume an arbitrary
ordering of all valid input vectors). Let the matrix M denote this table. Each entry (j,ν) of
M is composed of two fields:

(1) M(j, ν).bit is a binary variable. If M(j, ν) is set to 1, then the input vector ν is called
marked for player pj . Otherwise, the vector ν is unmarked for player pj .

(2) M(j, ν).ptr either contains NULL or a reference to another input vector ν ′ (in the
beginning, this pointer is initialized to NULL for every entry).

4In fact, Function retrieve also needs the input inclusion-free convex graph H as the third input parameter.
To simplify notation, we omit this parameter from the function calls.
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Let νin = (ν0, ν1, . . . , νC) be the input vector for the original graph H. The algorithm
starts the forward phase with the last player pn. For every input graph ν (i.e., every column
of the table M), it forms the remainder graph Ĥ = retrieve(ν, n−1). Let Î denote the set of
items in Ĥ and also let In = I \ Î. The set In provides a potential assignment for player pn.
The algorithm checks if this assignment is a non-wasteful right-aligned (1− 3

k )-assignment for
pn using the boolean function feasible(H, In). Note that for the first step of the algorithm,
the original graph H serves as the remainder graph. We call input vector ν a successful input
vector for remainder graph H ′ and player pn if pn is the last player in H ′ and a call to the
function feasible(H ′, In) returns true. All the successful assignments are marked by setting
M(n, ν).bit = 1. For a successful input vector ν for player pn, we set M(n, ν).ptr = νin,
while for unsuccessful vectors, the value of M(n, ν).ptr is not changed. In this section, we
will not use the field ptr in the forward phase of the algorithm.

After this first iteration for player pn, the algorithm proceeds to a similar procedure
for other players. For a player pj , 1 6 j 6 n− 1, it seeks (1− 3

k )-assignments once more.
The only difference is that since the assignment should provide a (1− 3

k )-assignment for all
players pn, pn−1, . . . , pj , for every entry (j, ν) the algorithm looks at all marked entries of
the previous row, j + 1. Let M(j + 1, ν ′) be such an entry. The algorithm retrieves the
graphs Ĥ = retrieve(ν, j − 1) and Ĥ ′ = retrieve(ν ′, j). We let Î and Î ′ denote the item sets
of graph Ĥ and Ĥ ′ respectively. If the set of items Ij = Î ′ \ Î is confirmed to be an at least
(1− 3

k )-assignment for player pj by function feasible(Ĥ ′, Ij), the entry M(j, ν).bit is set to 1.
Furthermore, if M(j, ν).ptr is NULL, it is updated to ν ′ to mark this step of the assignment,
indicating that the input vector ν was achieved from a remainder graph represented by the
input vector ν ′. If the function feasible returns false, the algorithm simply moves to the next
marked entry of the previous row. This procedure continues until the algorithms either finds
a successful input vector for pj , or that there is no successful vector in the previous row. In
the former case, it reports success and moves to the backward phase in which the actual
assignment is retrieved. In the latter case, it simply reports failure. In the backward phase,
the non-wasteful right-aligned (1− 3

k )-assignment can be obtained by following the ptr back
from the last row to the first. The forward phase is given in Algorithm 3.

Remark 4. If Function feasible returns false at any stage, it may be due to any one of
the following three reasons. Either (i) the set Ij does not have enough total item value, or
(ii) there are items in set Ij which are not in the neighbourhood of player pj, or (iii) the
remainder graph Ĥ returned by retrieve contains stranded items. In each of these cases, the
input vector ν does not represent a valid vector according to the set of restrictions imposed
on the assignments. Therefore, the algorithm should ignore ν and simply move to the next
input vector.

Remark 5. If the ptr field is already assigned a value, we do not change it since for the
purpose of finding a feasible (1− 1

3)-assignments for margined-inclusive free instances, it
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is not important how we arrived at an input vector ν in the current iteration. If a vector
ν represents an assignment that satisfies players pn, . . . , pj+1, a simple retrieval procedure
that removes items from the right (as suggested in Lemma 5) can retrieve a remainder graph
that is a close enough approximation of the true remainder graph.

Remark 6. In selecting the potential assignment Ij for player pj at any iteration, we may
assign a value in excess of the target value 1 − 3

k . Because we do not wish to leave items
stranded or unaligned, the algorithm allocates every item in the difference of two consecutive
remainder graphs to the player for whom the iteration is run. Nonetheless, as we formally
discuss in Lemma 6, this is not at odds with our purpose of guaranteeing bundles of value
1− 3

k or higher in the rounded instance for every player.

The pseudocode for the algorithm is provided below. In the following, a vector ν is said
to be less than or equal to ν ′ if every entry of ν is less than or equal to its counterpart in ν ′.

Algorithm 3 Algorithm Assignment for Max-Min Inclusion-Free Instances
Data: rounded instance H.
Result: returns either a (1− 3

k )-assignment for all players in the rounded instance, or report
failure.

for every vector ν in V such that ν 6 νin do
Ĥ ← retrieve(ν, n− 1)
Î ← the set of items in Ĥ ; In ← I \ Î
if feasible(H, In) then
M(n, ν).bit← 1
if M(n, ν).ptr == NULL then
M(n, ν).ptr← νin

end
end

end
for j ← n− 1 downto 1 do

for every vector ν in V such that ν 6 νin do
for every vector ν ′ in V such that ν ′ > ν and M(j + 1, ν ′).bit == 1 do

Ĥ ← retrieve(ν, j − 1) ; Ĥ ′ ← retrieve(ν ′, j)
Î ← the set of items in Ĥ ; Î ′ ← the set of items in Ĥ ′ ; Ij ← Î ′ \ Î
if feasible(Ĥ ′, Ij) then
M(j, ν).bit← 1
if M(j, ν).ptr == NULL then
M(j, ν).ptr← ν ′

end
end

end
end

end

In Lemma 6 next, we show that Algorithm Assignment finds a (1− 3
K )-assignment in a

rounded instance if one exists. We use Observation 5 in its proof.
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Observation 5. For a given instance H, assume H ′ and H ′′ are two remainder graphs,
and that H ′ is an induced subgraph of H ′′. Let Ĥ ′ = retrieve(ν(H ′), j′) and Ĥ ′′ =
retrieve(ν(H ′′), j′′), where j′ and j′′ are the indices of the last players in H ′ and H ′′ respec-
tively. Then, Ĥ ′ is also a subgraph of Ĥ ′′.

Proof. The function retrieve preserves the set of players and the set of big items. Therefore,
to prove the claim of the observation, it is enough to show that the set of small items in
Ĥ ′ is a subset of the set of small items in Ĥ ′′. Let ν ′ = ν(H ′) be (ν ′0, ν ′1, . . . , ν ′C) and
ν ′′ = ν(H ′′) be (ν ′′0 , ν ′′1 , . . . , ν ′′C). The fact that H ′ is a subgraph of H ′′ implies that ν ′0 6 ν ′′0 ,
which means that the function retrieve has not packed more small items from the left to Ĥ ′

compared to Ĥ ′′. Therefore, the set of small items of Ĥ ′ is a subset of that of Ĥ ′′.

Lemma 6. Let H be a rounded instance of the problem with n players and m items. The
Algorithm Assignment assigns (in polynomial time) to each player a set of items with value
at least 1− 3

k if a 1-assignment exists for all players. The algorithm returns failure if no
(1− 1

k )-assignment exists for H.

Proof. From Lemma 4, we know that where there exists a 1-assignment for a rounded
instance H, there is also a right-aligned (1− 1

k )-assignment for the instance, which in turn
implies the existence of a non-wasteful right-aligned (1− 1

k )-assignment. Now, assume the
algorithm forms a bundle of items Ij to be potentially assigned to an arbitrary player pj .
The way the algorithm forms the bundles is by finding the difference in the item sets of
two remainder graphs, one before the assignment is made and one after. In doing so, it
guesses the remainder graphs from their corresponding input vectors. Further assume that
the two remainder graphs before and after assignment are H ′ an H ′′ respectively, thus H ′′

is a subgraph of H ′. Also, the remainder graphs guessed by the function retrieve are Ĥ ′

and Ĥ ′′. Based on Observation 5, Ĥ ′′ is also a subgraph of Ĥ ′. In a worst case scenario,
the function retrieve may guess the total value of small items in Ĥ ′′ to be at most 2

k more
than the actual value (the value of small items in H ′′), while it guesses the same quantity
correctly for Ĥ ′ (that is, equal to the total sum of small item values in H ′). This means
that the difference set Ij would have 2

k less in small items values than the right-aligned
(1− 1

k )-assignment implied by the original remainder graphs H ′ and H ′′. Thus, the set Ij

results in a (1 − 3
k )-assignment for player pj . Therefore, for every possible non-wasteful

right-aligned (1− 1
k )-assignment to players, the algorithm considers a non-wasteful right-

aligned (1− 3
k )-assignment instead. Since the existence of the former results in the existence

of the latter, Algorithm Assignment is guaranteed to find a (1− 3
k )-assignment to players if

a (1− 1
k )-assignment exists. On the other hand, when the algorithm reports failure, we can

be certain that a (1− 1
k )-assignment does not exist, since otherwise our algorithm would be

able to find a slightly worse non-wasteful right-aligned (1− 3
k )-assignment that is guaranteed

to exist.

102



Now we can prove Theorem 1.

Proof of Theorem 1. Each player receives a set of items with value at least 1 − 3
k for the

rounded instance (see Lemma 6). Each item value is rounded up by at most a multiplicative
factor of 1+ 1

k . Therefore each player receives a set of items with value at least (1− 3
k )/(1+ 1

k ) =
1− 4

k+1 of the optimal. The two inner for loops of Algorithm Assignment take m2(C+1). The
outer loop is run for n players, and finding the remainder graphs and potential bundles need a
time of O (m+ n).Thus, the Algorithm Assignment runs in time O

(
(m+ n)nm2(C+1)

)
.

4.3 Min-Max Allocation Problem (R | |Cmax) On Convex Graphs

In this section, we will show that an adaptation of the techniques used in the previous
sections, will give us a PTAS for the Min-Max fair allocation of jobs to machines in a
Min-Max allocation problem. Most of the techniques used in this section are very similar to
those of Section 4.2, therefore we treat the proofs more concisely here, only highlighting the
modifications and changes.

4.3.1 Problem Definition and Preliminaries

As in instance of this problem, we are given a set M = {M1, M2, . . . , Mm} of identical
machines or processors and a set J = {J1, J2, . . . , Jn} of jobs. Each job Jj has a same
processing time pj on a subset of machines and it has processing time ∞ on the rest of
the machines. The goal is to find an assignment of the (entire set of) jobs to the machines
A = (J1, J2, . . . , Jm), such that the maximum load among all the machines is minimized.
Formally, we are given a convex graph H = (M, J, E) where M is a set of machines and J
is a set of jobs, and E denotes the edge set. There is an edge in E between a machine and a
job if the job can be executed on that machine. Also given is a utility function p : J → Q>0

which assigns a processing time to each job. With slight abuse of notation, we write p(Jj)
as pj for short, and job Jj requires pj units of processing time to run to completion on any
machine Mi, provided that there exists an edge between Jj and Mi in the set E. If the edge
does not exist, the processing time of Jj on Mi is not bounded.

Similarly as before, we assume that the input bipartite graph H satisfies the adjacency
and the enclosure properties, i.e., is an inclusion-free convex graph. In other words, we
assume that we have an ordering <J of jobs (which orders the jobs as J1, J2, ..., Jn ) such
that each machine can execute consecutive jobs (an interval of jobs). More formally, we
denote the interval of job Ji by [`i, ri]. We assume that Ji is before Jj and write Ji <J Jj
whenever `i < `j or `i = `j , ri 6 rj .Based on <J , an ordering of jobs that satisfies the
adjacency property, we define a lexicographical ordering of the machines in the same manner
as Section 4.2. Also as before, we may assume that 0 6 pi 6 1 by scaling down the processing
time values.
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Remark 7. Similar to the case of Max-Min allocations, if the input convex graph H is
inclusion-free, meaning that it satisfies the enclosure property as well as the adjacency
property, then not only the neighbourhood of every machines is an interval of jobs, but also
every job is adjacent to a consecutive set of machines. More precisely, given the ordering
of jobs <J that satisfies the adjacency and enclosure property and assuming that the set of
machines M is ordering lexicographically based on <J , then the neighbourhood of each job
Jj ∈ J forms an interval in the set M . This can be seen as a consequence of Observation 1.

Hall’s Condition: Hall’s condition needs to be slightly modified for the case of Min-Max
allocations. For subset J ′ of jobs let w(J ′) and ws(J ′) be the sum of the processing times of
all jobs and small5 jobs in J ′ respectively. Also let N[H](J ′) (or N(J ′) when the graph H ′ is
implied by context) denote the neighbourhood of the subset of jobs J ′ in M . A necessary
condition for having a maximum load which is at most 1 is that for every subset J ′ of
machines w(J ′) 6 |N(J ′)|. More generally, assume each machine Mi, 1 6 i 6 m, has a
maximum allowable load denoted by a(Mi). Also, for a subset of machines M ′, let a(M ′) be
the sum of allowable loads of all the machines in M ′. Then, Hall’s condition for the Min-Max
allocation problem states that in order to have an assignment in which every machine has a
load below its allowable maximum, it is necessary to have w(J ′) 6 a(N(J ′)) for every subset
of jobs J ′. For the case of Max-Min allocations on inclusion-free graphs, we only need to
check this condition for every interval of machines.

Lemma 7. In order to check Hall’s condition for Min-Max allocations in an inclusion-free
graph H, it is enough to check the following condition:

∀ [`, r ] ⊆ [1, m] : w(J ([`, r])) 6
r∑
i=`

a(Mi) (4.3.1)

in which J ([`, r]) denotes the set of jobs whose entire neighbourhood of machines falls in
the interval [`, r]. We refer to Condition 4.3.1 as Hall’s condition for Min-Max allocations.

Proof. The proof mostly follows the proof of Lemma 3 except for the fact that it uses the
property mentioned in Remark 7. Assume we are given an inclusion-free convex graph H.
As before, we show that there exists a subset of the jobs J ′ for which (i) N(J ′) is not an
interval and therefore can be represented as the union of several maximal intervals, and (ii)
Hall’s condition is violated if and only if there exists an interval of machines [`, r] for which
Condition 4.3.1 is violated.
⇒: Assume that w(J ′) > a(N(J ′)) and that there exist several maximal intervals of machines
N1, N2, . . . , Nt whose union givesN(J ′). Since each job is adjacent to an interval of machines
by Remark 7, there exists a corresponding partition of J ′ into subsets J ′1, J ′2, . . . , J ′t, such
that N(J ′i) = Ni. Since Hall’s condition is violated, we have

5We use definitions for small and big jobs similar to the definitions for small and big items in Section 4.2.2.
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a(N1) + . . . + a(Nt) = a(N(J ′)) < w(J ′) = w(J ′1) + . . . + w(J ′t)

Thus, there must exist an i, 1 6 i 6 t, for which a(Ni) = a(N(J ′i)) < w(J ′i). Let ` and r
be the leftmost and rightmost machines in N(J ′i). We have that a(N(J ′i)) =

∑r
i=` a(Mi) <

w(J ′i) 6 w(J ([`, r])) since w(J ′i) ⊆ w(J ([`, r])).
⇐: Assume that Condition 4.3.1 is violated for an interval of machines [`, r] ⊆ [1, m],
meaning that w(J ([`, r])) >

∑r
i=` a(Mi). Let J ′ be J ([`, r]). Then, N(J ′) ⊆ [`, r] since

otherwise it means there exists a job in J ′ = J ([`, r]) whose neighbourhood stretches beyond
the interval [`, r], contradicting the definition of J ([`, r]). Therefore w(J ′) >

∑r
i=` a(Mi) >

a(N(J ′)). Therefore, Hall’s condition is violated for the set J ′.

Rounding the Instance

Before running the algorithm on the instance, we round the processing times of jobs based
on an input error parameter k. First of all, by properly scaling the values we assume every
job has a processing time less than or equal to one. We say a job is small if its processing
time is less than or equal to 1

k after scaling, and we say a job is big if its processing time
is strictly larger than 1

k . As opposed to the Max-Min case, we round down the processing
times for big jobs for the Min-Max case. Thus, if pj , the processing time of job Jj , is in the
interval [ 1

k (1 + 1
k )i, 1

k (1 + 1
k )i+1), then it is replaced by 1

k (1 + 1
k )i. Using this method, we

obtain at most C = d log k
log(1+ 1

k
)e distinct processing times for big jobs (each of which is more

than 1
k , the maximum processing time for small jobs). For 1 6 τ 6 C, let qτ = 1

k (1 + 1
k )τ .

Each qτ , 1 6 τ 6 C, denotes the rounded processing time of category τ of big jobs.

4.3.2 The Algorithm for Inclusion-Free Convex Graphs

The main theorem of this section is the following.

Theorem 2. Let H be an instance of the problem before rounding with n jobs and m

machines. Then, for k > 4 there exists a (1 + 4
k + 3

k2 )-approximation algorithm for the
Min-Max allocation problem on inclusion-free convex graphs with the running time of
O
(
(m+ n)mn2(C+1)

)
in which C 6 k1.4.

To show this result, we borrow from the techniques used in Section 4.2 extensively. We use
the notions of t-assignment, input vector, assignment vector, and right-aligned assignments
in the same sense as we did for the Max-Min allocations (jobs are allocated to machines
here, instead of items to players). We modify the definition of input vectors slightly for
Min-Max allocations below.

Definition 26 (t-assignment for the Min-Max case). A t-assignment, for any t > 0, is a
feasible assignment such that every machine Mi receives a set of jobs J i ⊆ [`Mi , rMi ] with
total processing time at most t.

105



Definition 27 (Input Vector). For a given convex graph H for an input instance with ντ
big jobs of processing time qτ for τ = 1, 2, . . . , C and small jobs of total processing time in
the interval [ ν0

k ,
ν0+1
k ), an input vector is a configuration vector of the form ν(H) = ν =

(ν0, ν1, . . . , νC).

Then, we can prove the following alignment lemma.

Lemma 8 (The Alignment Lemma for Min-Max Allocations). Suppose there exists a
1-assignment for a given convex graph H. Then, there also exists a maximal (1 + 1

k )-
right-aligned assignment for H. Furthermore, the two assignments will have an identical
assignment vector.

Proof. We assign the jobs in two rounds and make use of the adjacency property. During
the first round, the big jobs are aligned to the right in the same manner as Lemma 4. In
doing so, we do not change the assignment vector since the same number of big jobs as
the 1-assignment are allocated to the machines. During the second round, we assign the
small items. The only difference between the assignment of jobs and the assignment of items
is that we would prefer to allocate as many jobs as possible to a machine as long as the
make-span is below the threshold of 1 + 1

k . Therefore, we pack maximal sets of small jobs
and assign them to the machines. Due to the way the assignment vectors are defined, we
still have not changed the vector after this phase.

By the problem definition, we are not allowed to have stranded jobs in the Min-Max
allocation problem. Therefore, every right-aligned assignment that we make is also a
non-wasteful right-aligned assignment. The following two facts hold for any non-wasteful
right-aligned assignment of jobs to machines.

Fact 4.3.1. Whenever there exists an arbitrary 1-assignment of jobs to machines for an
instance of the problem, there also exists a restricted (1 + ε)-assignment, in the sense that
all the jobs assigned are restricted to be aligned to the right.

Fact 4.3.2. Given that a 1-assignment exists for an instance of the problem, there also exists
a polynomial time algorithm that, given the input vectors for every step (partial assignment)
of a (1 + ε)-assignment, reconstructs the remainder graph of every step in such a way that
the total processing time of the jobs in each reconstructed remainder graphs is

• exactly the same as that of the corresponding remainder graph in the original (and
unknown) 1-assignment for every category τ = 1, 2, . . . , C of big jobs and,

• only a small fraction ε less than its counterpart in the original remainder graph for
small jobs.

While Lemma 8 verifies Fact 4.3.1 for non-wasteful right-aligned assignments, the follow-
ing lemma ensures that Fact 4.3.2 also holds for these types of assignments.
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Lemma 9. If there exists a non-wasteful right-aligned 1-assignment A = (J1, J2, . . . , Jm)
for an instance of the problem, then there exists a polynomial time algorithm that, given
the original inclusion-free convex graph H and the input vectors for partial assignments
Aj = (J j , J j+1, . . . , Jm) for j = m− 1, m− 2, . . . , 1 (but not the partial assignments), can
reconstruct the remainder graphs for every Aj in such a way that the total processing time
of jobs in each reconstructed graph is at most ε = 2

k less the actual corresponding remainder
graph for Aj.

Proof. The proof uses a left-to-right sweep again. We do not provide the details here since
it is identical to the proof of Lemma 5, except for the way small jobs are chosen in the
reconstruction process. For small jobs, we select a minimal set of left-most jobs whose
total processing time in greater than ν0−1

k and add them to the remainder graph. Since the
processing time of each small job is less than 1

k , this ensures that the sum of processing
times of the jobs we choose in the reconstructed remainder graph is less than or equal to
that of the original remainder graph, but the deficit is not more than 1

k . The rest of the
proof follows the proof of Lemma 5.

Algorithm Assignment (for the Min-Max Problem on Inclusion-Free Convex
Instances): Algorithm Assignment for the Min-Max allocation problem is a dynamic
programming algorithm similar to the algorithm given in Section 4.2. Again we make use of
two utility functions, namely the reconstruction function retrieve and the boolean function
feasible. Function retrieve reconstructs a remainder graph based on an input vector and
a player index which potentially has slightly less total processing time than the original
remainder graph of a partial assignment, and function feasible checks whether a given
assignment of jobs is feasible in a remainder graph and does not leave any stranded jobs
behind. Using these functions, the algorithm fills in the entries of a m×nC+1 table T . Each
entry (i, ν) of the table has two fields:

(1) T (i, ν).bit: this binary value is set to 1 if the input vector ν is marked for machine i,
and set to 0 otherwise.

(2) T (i, ν).ptr: contains either NULL or a reference to another input vector ν ′ in the
previous row, intended for use in the backward phase of the algorithm where an actual
assignment of the jobs to the machines is retrieved from the table T .

The algorithm is given in Algorithm 4

Lemma 10. Let H be a rounded instance of the problem with n jobs and m machines.
Algorithm Assignment assigns (in polynomial time) to each machine a set of jobs with value
at most 1 + 3

k if a 1-assignment exists for all machines. The algorithm returns failure if no
(1 + 1

k )-assignment exists for H.
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Algorithm 4 Algorithm Assignment for Min-Max Inclusion-Free Instances
Data: rounded instance H.
Result: returns either a (1 + 3

k )-assignment for all machines in the rounded instance, or
report failure.

for every vector ν in V such that ν 6 νin do
Ĥ ← retrieve(ν, m− 1)
Ĵ ← the set of jobs in Ĥ ; Jm ← J \ Ĵ
if feasible(H, Jm) then
T (m, ν).bit← 1
if T (m, ν).ptr == NULL then
T (m, ν).ptr← νin

end
end

end
for i← m− 1 downto 1 do

for every vector ν in V such that ν 6 νin do
for every vector ν ′ in V such that ν ′ > ν and T (i+ 1, ν ′).bit == 1 do

Ĥ ← retrieve(ν, i− 1) ; Ĥ ′ ← retrieve(ν ′, i)
Ĵ ← the set of jobs in Ĥ ; Ĵ ′ ← the set of jobs in Ĥ ′ ; J i ← Ĵ ′ \ Ĵ
if feasible(Ĥ ′, J i) then
T (i, ν).bit← 1
if T (i, ν).ptr == NULL then
T (i, ν).ptr← ν ′

end
end

end
end

end
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Proof. By Lemma 8, a (1 + 1
k )-assignment exists whenever there is a 1-assignment for the

problem instance. Using the retrieve function, we may guess the remainder graph of any of
the partial assignments to have a deficiency in total processing time which is no more than
2
k when compared to the original remainder graph. This together with the error caused by
the alignment imply the total sum of processing times of the jobs assigned to each machine
is at most 3

k more than the same value in the 1-assignment (if a successful assignment is
identified). It is also straightforward to see that whenever there exists no (1 + 1

k )-assignment
for the instance, the algorithm fails to recover a feasible assignment for a machine, resulting
in a failure report. This completes the correctness proof of the Algorithm Assignment.

In the last part, we prove Theorem 2 using the lemmas in this section.

Proof of Theorem 2. First we discuss the approximation guarantee. Through alignment and
reconstruction of the remainder graphs, we may pack an extra 3

k units of processing time in
the bundle of jobs assigned to a machine. This extra value is magnified by a multiplicative
factor of 1 + 1

k in the rounded instance. Therefore, the approximation guarantee would be
(1 + 3

k ) · (1 + 1
k ) = 1 + 4

k + 3
k2 . We now discuss the running time of the algorithm. The two

inner loops of the Algorithm Assignment take a combined total time of n2(C+1) while the
outer loop runs once for each machine for a total of m times. Retrieving the remainder
graph can be done in O (m+ n), hence the running time is O

(
(m+ n)mn2(C+1)

)
in total.

The correctness is already shown in Lemma 10.

4.4 Extensions to Other Ordered Instances

In this section, we discuss other types of ordered instances solvable using a similar dynamic
programming technique as in the previous sections. The ordered instances we consider here
can be regarded as an extension of the notion of laminar families. To explain the results, we
first introduce the laminar families of sets and present a PTAS for the R | |Cmax problem
over ordered instances defined by them. Then, we define an extension of the laminar families
and show how to apply the method for them.

4.4.1 Laminar Families of Sets

Definition 28 (Laminar Family of Sets). A family L of sets over a ground set of elements
U = {e1, e2, . . . , en} is called a laminar family of sets if for every two distinct members L1

and L2 we have one of the following conditions:

• L1 ∩ L2 = ∅

• L1 ⊆ L2

• L2 ⊆ L1
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For any two members of a laminar family, either they are disjoint, or one is a subset
of another. Now, consider an instance of a restricted R | |Cmax problem given by the set
of machines M = {M1, M2, . . . , Mm} and the set of jobs J = {J1, J2, . . . , Jn}. In this
section, we provide a PTAS for the problem when the family of neighbourhoods of the
machines, {N(M1), N(M2), . . . , N(Mm)}, forms a laminar family over the set of jobs J .
As a reminder, we should mention that in the restricted R | |Cmax problem we are also
given a bipartite graph H = (M, J, E). A job Jj has a fixed processing time pj for all the
machines connected to it in H and a processing time of ∞ for the rest. In this sense, the
neighbourhoods of machines show the set of jobs that they are capable of processing.

Laminar families of sets are known to represent hierarchies among sets. We can depict
these hierarchies in the form of forests. Example 4.4.1 shows one such hierarchical structure.

Example 4.4.1. Consider the ground set to be the set of eight jobs J = {J1, J2, . . . , J8}.
Also, consider a set of eight machines with the following neighbourhoods:

• N(M1) = {J1, J2, J3, J4, J5, J6, J7, J8}

• N(M2) = {J1, J2, J3, J4, J5, J6}

• N(M3) = {J7}

• N(M4) = {J4}

• N(M5) = {J1, J2, J3}

• N(M6) = {J5}

• N(M7) = {J1}

• N(M8) = {J2}

Every two neighbourhoods follow the rules of laminar families. Any neighbourhood that does
not contain the neighbourhood of any other machine represents a leaf in this forest. For
this example, the leaves are the neighbourhoods of M3, M4, M6, M7, and M8. Now we can
remove the leaves from the family and recursively complete every tree in this forest in a
bottom-up fashion. Figure 4.8 depicts the tree for the neighbourhoods above.

The main theorem in this section is Theorem 3.

Theorem 3. Let H be an instance of the problem before rounding with n jobs and m

machines. Then, for k > 2 there exists a (1 + 2
k + 1

k2 )-approximation algorithm for the
Min-Max allocation problem when the neighbourhoods of the machines form a laminar family.
The running time is O

(
m(n+ 1)n2C+2

)
in which C 6 k1.4.
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Figure 4.8: A Hierarchical Representation of a Laminar Family

We provide a dynamic programming algorithm to prove Theorem 3 6. Assume, as before,
we have guessed a target value t for the makespan on every machine. Our objective is to
find a t-assignment as defined in Section 4.3.2. That is, assign jobs to the machines in
such a way that the makespan for every machine is below t. We use the same rounding
method as in Section 4.3.1. The processing times are also normalized, so we are interested
in a 1-assignment rather than a t-assignment. We also assume that we are given the forest
representation of the neighbourhoods. F denotes this representation. Every vertex of F
is a machine whose neighbourhood in the set J contains the neighbourhoods of all other
machines in its subtree. Note that we can create the forest in polynomial time from the
neighbourhoods. We handle each tree of the forest separately. We first describe the intuition
behind the algorithm and then, provide the detail.

We first draw a comparison between the PTAS for Min-Max problem on bipartite
permutation graphs presented in Section 4.3.2 and the one we show in this section for
laminar families of machine neighbourhoods. For convex graphs, we need to take certain
measures for assigning the jobs to ensure we can recreate a close approximation of the
remainder graphs later on. For instance, we start the assignment process from the right-most
player and only consider non-wasteful right-aligned assignments. The PTAS for laminar
families differs from the one for convex graphs in the way remainder graphs are treated. If we
carry on the allocations in a particular order, storing remainder graphs (or retrieving them
based on a given input vector) becomes redundant. We explain this further in Observation 6.

Observation 6. To retrieve a remainder graph that corresponds to a given input vector
ν = (ν0, ν1, . . . , νC), we can select any arbitrary remainder graph that respects the vector ν.
By respecting the vector we mean the number of big items in the graph should match ντ ’s

6An algorithm of a similar nature is due to Schwarz [99].
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for τ = 1, 2, . . . , C and the total value of small items rounded down to the closest integer
multiple of 1

k should be ν0.

Proof Sketch. Consider a leaf machine w and assume we have identified a set of input vectors
{ν1, ν2, . . . ,νt} for t 6 mC+1 that admit a (1 + 1

k )-assignment for w. As a reminder, these
vectors indicate the number of remaining items after making a successful (1 + 1

k )-assignment
to w (we use the terms “successful assignment” and “successful input vector” in the same
sense as in previous sections). For any vector νi, let αi = νinw −νi be the vector correspond-
ing to the (1 + 1

k )-assignment. The assignments of jobs to w only affect the predecessors of w
in the tree. By definition of laminar families, all the predecessor of w have access to all items
in the neighbourhood of w (and possibly more). Therefore, the order by which the jobs are
assigned to w does not matter as long as the number of jobs matches those indicated in an
αi. Therefore, one can choose any remainder graph that respects the corresponding input
vector7. Inductively, we remove the leaves once we find their successful assignments and
continue the process on the reduced tree.

Algorithm Assignment (for the Min-Max Problem on Laminar Families): The
dynamic programming algorithm receives the root node of a tree from the forest as input
and visits the players (machines) in a depth-first order. It then fill the elements of a matrix
T (j, ν), for every j ∈ J and every vector ν in V. The matrix T indicates the successful
assignments and is the return value of the algorithm. It is a simplified version of the matrix
in Section 4.3.2 as it is simply a zero-one matrix. We do not make the use of the ptr field
since, as explained in Observation 6, the retrieval of remainder graphs for laminar families
is straightforward. Let 0 = (0, 0, . . . , 0) ∈ V be the input vector specifying no available
jobs. At the end of the computation, if T (r, 0) is 1, the algorithm returns the matrix T and
indicates a successful assignment to the root node r (hence recursively, to all the machines)
that leaves no jobs behind. If T (r, 0) is 0, it returns failure.

For every node w of the tree, we store an array U(w, ν) for all ν ∈ V. U is a zero-one
matrix with rows corresponding to the machines and columns corresponding to vectors in V .
For a given machines w, the corresponding row in U indicates every possible input vector
(or equivalently, the number of items that may be available) after we make some successful
assignments to the children of w. We also keep an input vector νinw for every node w. Note
that the rows of both matrices T and U are indexed by the nodes of the tree.

The main idea of the algorithm is first to find the possible input vectors for every node
after the assignments for the children are computed recursively. Then, for every possible
input vector, iterate over all assignments vectors, find the successful ones and mark the
corresponding entries of the matrix T . We now discuss how the algorithm fills the entries of
U . For a leaf node w, the only 1 in the wth row of U is in U(w, νinw). For an intermediate

7Alon et al. use this fact in their PTAS for the case of complete graphs [2] .
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node w, U(w, νinw) is the first entry we set to 1. Note that not assigning any jobs to the
children of w is still a successful assignment (although it wastes the computational power of
some machines, it keeps their makespan below the target). Then, we consider the children
of w one by one in a recursive function call, find their successful input vectors, and mark
them in the matrix T . Based on the marked entries of T , we can update the bit vector
U(w, ν) of all possible input vectors for w. This is done in the function aggregate. In the
next paragraphs, we explain all the utility functions called by the Algorithm Assignment.

• aggregate: The algorithm calls this function only for intermediate nodes of the tree.
After recursively finding successful input vectors of the children (stored in T ), the
function aggregate first computes the assignment vectors corresponding to the successful
assignments by comparing the input vector of the child with vectors marked in T .
Then, it deducts the assignment vectors from the possible input vectors of U . Note
that at the beginning, the only possible input vector stores in U for a machine w
is νinw , which assumes the availability of all jobs in the neighbourhood of w. As
successful assignments to children are found, the algorithm gradually expands the set
of possible input vectors by marking entries of U . (see Algorithm 6).

• feasible: This is a simpler version of the feasible function we used in Section 4.3.2.
Since we do not store the remainder graphs anymore, we only need to check whether
the total processing time for the set of jobs J does not exceed 1 + 1

k . If so, the function
feasible returns true. Otherwise, it returns false.

• parent: Receives a node (machine) w and returns its parent node in the tree.

After updating the matrix U , we find successful assignments for every possible input
vector of w marked in U (the two nested for loops). This is done by checking every po-
tential assignment vector α = ν − ν ′ where ν is a possible input vector for w before the
assignment and ν ′ is a possible remainder vector after the assignment. Let the vector α

be (α0, α1, . . . , αC). For each category τ , 1 6 τ 6 C, of big jobs in α, we choose a set of
big items of size qτ and cardinality ατ . For the small jobs, we greedily add them to the
set J as long as their total processing time is strictly less than α0

k . Since the processing
time for every small job is at most 1

k this does not increase the makespan by more than 1
k

from 1. Eventually, a successful assignment for the instance should be able to assign all the
items while keeping the makespan below 1 + 1

k . Since the root of the tree is adjacent to all
jobs, it can select any jobs left behind by its children, subject to the makespan constraint.
Therefore, at the end of the computation, the algorithm checks T (r, 0). This entry indicates
if an assignment of jobs to the root node r and all its children exists that i) respects the
makespan constraint, and ii) leaves no items unassigned. If so, success is returned.

Now, we prove the correctness of the Algorithm Assignment.
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Algorithm 5 Algorithm Assignment for Laminar Families
Data: rounded instance H, the root node r for a tree in F .
Result: returns either a (1 + 1

k )-assignment for all machines in the rounded instance, or
report failure.

let νinr denote the input vector for r
U(r, νinr)← 1
for every child w of r do

let νinw be the input vector for w
recursively run Algorithm Assignment(H, w) and update T
aggregate(U, T, r)

end
for every vector ν in V such that U(r, ν) == 1 do

for every vector ν ′ in V such that ν ′ 6 ν do
J ← the set of jobs in ν − ν ′

if feasible(J) then
T (r, ν ′)← 1

end
end

end
if parent(r) == NULL ∧ T (t, 0) == 0 then

return NULL
end
return T

Algorithm 6 aggregate Function Called by Algorithm Assignment
Data: matrix U , matrix T , a node w
Result: updates the wth row of matrix U based on the same row in T .
for every vector ν ∈ V for which T (w, ν) == 1 do

α← νinw − ν
for every vector ν ′ ∈ V for which U(w, ν ′) == 1 do

ν ′′ ← ν ′ −α
U(w, ν ′′)← 1

end
end
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Lemma 11. Assume given is an instance of the R | |Cmax problem on laminar families that
admits a 1-assignment. Algorithm Assignment (Algorithm 5) reports success if and only if it
finds an assignment that assigns jobs to the machines such that i) the maximum makespan
among all machines is 1, ii) all jobs are assigned.

Proof. It is straightforward to see if the algorithm reports success, then the assignment
found by the algorithm satisfies the two conditions of the lemma. This is true because it
only marks the input vectors corresponding to assignments that have a makespan below the
threshold of 1 + 1

k and it only reports success if all jobs are assigned.
For the other direction, we use induction. For a leaf node w, if a 1-assignment exist,

then so there is a (1 + 1
k )-assignment. The algorithm checks all possible vectors for such

assignments and finds one as a successful one. Now, assume w is an intermediate node
of the tree. Inductively assume that all assignments satisfying the two conditions have
been found for the children of w. By Observation 6, the jobs in these assignments can be
selected arbitrarily from the neighbourhoods of the children, not affecting the assignment to
w. So, the algorithm only needs to look at all possible ways of combining the assignments
to children, find out what the input vectors for the set of available items for w are after
each combination, and then look for a successful assignment as if w is a leaf node. The total
number of input vectors for all possible ways to combine these assignments is polynomial as
it is no more than mC+1. The function aggregate finds all these vectors. Then, the algorithm
can detect (1 + 1

k )-assignments for w in a similar way it does for the leaves.

Proof of Theorem 3. The correctness is shown in Lemma 11. We discuss the time complexity
here. The algorithm performs a depth-first search on the tree of machines. For each
node, Algorithm Assignment is called once and the function aggregate is also called once.
Therefore, the running time would be m · (O (time complecity of Algorithm Assignment) +
O (time complexity of aggregate)). The major time of Algorithm Assignment for a node is
spent in the two nested for loops. The time complexity for them is n2(C+1) ×O (feasible).
The function feasible scans the jobs at most once, so it time complexity is O (n). The function
aggregate has a pair of nested for loops as well. The running time of them isO

(
n2(C+1)

)
. The

total running time of the algorithm is O
(
m · (n · n2(C+1) + n2(C+1))

)
= O

(
m(n+ 1)n2C+2

)
.

As for the approximation factor, the algorithm finds a (1 + 1
k )-assignment for the rounded

case. We must account for the fact that the processing times have been rounded down.
Therefore, the approximation guarantee of the algorithms is (1+ 1

k )×(1+ 1
k ) = 1+ 2

k + 1
k2 .

4.4.2 Extended Laminar Families of Sets

We define the “extended laminar family” of sets as follows:
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M1 M2 M3M ′1 M ′2 M ′3

Figure 4.9: Extended laminar families of neighbourhoods.

Definition 29 (Extended Laminar Family of Sets). A family L of sets over a ground set of
elements U = {e1, e2, . . . , en} is called an extended laminar family of sets if for every two
distinct members L1 and L2 we have one of the following conditions:

• L1 ∩ L2 = ∅

• L1 ⊆ L2

• L2 ⊆ L1

• L1 \L2 6= ∅ and L2 \L1 6= ∅, L1 and L2 satisfy the enclosure property, and for every
L′ ⊆ L1 and every L′′ ⊆ L2 we have that L′ ∩ L′′ = ∅.

First, note that the extended laminar family of sets has the laminar family as its special
case. If no two sets L1 and L2 are of the form of the last condition, then family becomes
laminar. In this section, we assume that the neighbourhoods of the machines from an
extended laminar family. An instance of this problem is shown in Example 4.4.2.

Example 4.4.2. As shown in Figure 4.9, machines M1, M2, and M3 overlap each other
while satisfying the enclosure property. A sequence of machines, M ′1, M ′2, and M ′3 have their
neighbourhoods entirely contained in the neighbourhood of M2. They also overlap and satisfy
the enclosure property. But note that they do not intersect with any of the neighbourhoods of
M1, M3, or any other neighbourhood entirely within N(M1) and N(M3).

Similar to laminar families, extended laminar families can also be represented with
forests. The main difference is that in a forest representation of an extended laminar family
of sets, each node does not necessarily map to a single machine. Instead, it may represent a
sequence of the machines that overlap and satisfy the enclosure property. Lemma 12 shows
that the recognition algorithm for this class of instances is polynomial time.

Lemma 12. Given a bipartite graph H = (X, Y, E), there is an algorithm that, in polyno-
mial time, can determine whether or not the neighbourhoods of the vertices of X in Y form
an extended laminar family of sets.
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Proof. For any two vertices x1 and x2, N(x1) and N(x2) satisfy the adjacency property.
The reason is that either N(x1) and N(x2) do not intersect at all, in which case they respect
the adjacency property, or they intersect in one of the two ways: i) one is entirely contained
in the other, in which case they satisfy the adjacency property although they violate the
enclosure property, or ii) they partially intersect, in which case they satisfy the enclosure
property by the definition of the extended laminar families. Therefore, the entire graph
H satisfies the adjacency property and is a convex graph. There exist a linear recognition
algorithm for the convex graph that can produce the intervals [17]. We run the algorithm on
the graph H. If it rejects it as a convex graph, then it cannot be an extended laminar family
of sets. Therefore we reject it too. If the algorithm accepts the graph H, then it returns the
neighbourhoods as intervals. We iterate over vertices of X in the lexicographical ordering
we defined for convex graphs in Section 4.2.1. For a vertex x, we find the right-most point
of any interval entirely inside N(x). Let r show the corresponding index. We also find the
left-most point of any interval partially overlapping N(x) whose left end is not to the right
of the right end of N(x) (comes after x in the lexicographical ordering). Let ` denote this
index. If ` < r, then we stop and report rejection. Otherwise, we continue to the next vertex
x in the ordering. If we do not reject by the last vertex in X, we report acceptance. It is
straightforward to see that the algorithm rejects the graph H only if there is a violation of
the four conditions of the extended laminar families. Also, the calculations of r and ` can
be done in time linear in |Y |. Therefore, the algorithm runs in polynomial time.

According to Lemma 12, we can identify extended laminar families among the neigh-
bourhoods of the machines. With minor modifications to the recognition algorithm, we
can also get the forest representation. In this representation, each node may indicate a
set of machines whose overlapping neighbourhoods satisfy the adjacency property. We call
such a set the batch of a node. For a machine Mi, the set of children of Mi is a minimal
set of machines whose neighbourhoods are entirely within that of Mi. By minimal set, we
mean minimal subject to inclusion. Therefore if N(Mk) ⊂ N(Mj) and N(Mj) ⊂ N(Mi), we
only count Mj as a child of Mi, with Mk being a grandchild of Mi. Based on the forest
representation, we provide a PTAS in Algorithm 7.

Remark 8. Note that for the laminar families of sets, every node of the tree w represents a
machine. Therefore we could use the label w both to refer to the node and to the machine it
represents. In the extended laminar family setting, a node represents a batch of machines.
Therefore, we use labels to refer to either the nodes of the tree or batches of the machines,
while reserving M for the individual machines.

Algorithm Assignment (for the Min-Max Problem on Extended Laminar Fami-
lies): The algorithm resembles Algorithm 5 for the most part. The difference is in finding
successful assignments for the nodes once the assignments for children are computed re-
cursively. In this setting, every node may include a set of neighbourhoods that satisfy the
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Algorithm 7 Algorithm Assignment for Extended Laminar Families
Data: rounded instance H, the root node r for a tree in F .
Result: returns either a (1 + 3

k )-assignment for all machines in the rounded instance, or
report failure.

let νinr denote the input vector for the neighbourhoods of all the machines in r
U(r, νinr)← 1
for every machine w of r do

let νinw be the input vector for the neighbourhoods of all the machines in w
recursively run Algorithm Assignment(H, w) and update T
aggregate(U, T, r)

end
for every vector ν in V such that U(r, ν) == 1 do

run Algorithm 4 on the set of machines in r and update T
end
if parent(r) == NULL ∧ T (t, 0) == 0 then

return NULL
end
return T

enclosure property. Instead of just looking at every vector in V for every marked input vector
in U , we now make a call to Algorithm 4 which solves the problem on intervals respecting
the enclosure property. The function aggregate is similar to Algorithm 6.

Theorem 4. Let H be an instance of the problem before rounding with n jobs and m

machines. Then, for k > 4 there exists a (1 + 4
k + 3

k2 )-approximation algorithm for the Min-
Max allocation problem when the neighbourhoods of the machines form an extended laminar
family. The running time is O

(
mn2(C+1) · (1 +mnC+1 + nC+2)

)
in which C 6 k1.4.

Proof. The correctness of the algorithm follows from the correctness of the two algorithms
it is based on, namely Algorithm 4 and Algorithm 5. By the definition of extended
laminar families, the allocation of jobs to children of a machine Mi does not affect the
other machines in the batch of Mi. Therefore, we can first allocate jobs to the children
via a depth first search as in the case of laminar families. When have dealt with all
the children of a batch of machines, we proceed as in the case of bipartite permutation
graphs. The running time is a mixture of the two time complexities. For every node of
the forest, Algorithm Assignment and the function aggregate are called once each. The
time complexity of aggregate is as before, but the most significant term in the running
time of the Algorithm Assignment has changed. For every vector ν ∈ V, Algorithm 4
may be called. Therefore, the running time of the second for loop of Algorithm 7 is
O
(
nC+1 · (m+ n)n2(C+1)

)
= O

(
(m+ n)n3(C+1)

)
. The total time complexity of the al-

gorithm is O
(
m · (n2(C+1) + (m+ n)n3(C+1))

)
= O

(
mn2(C+1) · (1 +mnC+1 + nC+2)

)
. Fi-

nally, the approximation ratio is the maximum of that of laminar families and the bipartite
permutation graphs, which is 1 + 4

k + 3
k2 .
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Remark 9. The extended laminar family of sets defines a large spectrum of instances with
laminar families on one end and the bipartite permutation graphs on the other. In fact, the
most extreme case of laminar families is the nested neighbourhoods of machines with a simple
chain as its forest representation. We defined this family to better understand the complexity
of the scheduling problem. Eventually, we seek a dichotomy for the “easy” instances of the
problem. In Section 4.5, we will discuss the idea of a dichotomy briefly.

4.5 Conclusion and Future Work

In all instances of the problem considered in this chapter, a proper ordering has played an
important role. We conjecture that a dynamic programming algorithm similar to the one
used in this research provides a PTAS for the case of margined-inclusive intervals. However,
we do not know a dichotomy classification for the instances of the problem that admit a
PTAS. We ask for a dichotomy of the following form. If H belongs to class X of bipartite
graphs, then there is a PTAS for Max-Min allocation problem. Otherwise, there is no
PTAS. Towards finding that dichotomy, we suggest at other ordered instance of the resource
allocation problems. Besides settling the case for the convex graphs, we propose studying
trivially perfect bigraphs and circular arc graphs.
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Appendix A

The Code Summary

A.1 Major Classes and Functions

The branch-and-cut algorithm of Chapter 3 has been implemented in C++ using the IBM
CPLEX ILOG library. In this appendix, we mention some of the central classes used in the
code as well as the main functions in each class. The description is given in the form of a
summarized header file of each class alongside C++ comments for explanation. The source
code for the software is publicly available at https://github.com/KamyarK/SVRP.

A.1.1 The Solver Class

class Solver {
// This class is the driver of the code. It has functionality for both
// running the column generation algorithm on an LP relaxation of the
// Skill Vehicle Routing Problem (SVRP), or run the entire branch-and-cut
// algorithm for the Prize Collecting Travelling Salesman Problem (PCTSP)
// for a driver and the set of customers that the driver can service.

public:
void readFile();

// This function reads the input file given to the main program
// as an argument and stored in the private data member ‘filename’.

double MST(vector<int> subset);
// This function computes a Minimum Spanning Tree (MST) on the
// set of the nodes in the graph indicated by the vector ‘subset’.

void printSubsets(int subset_num);
// This function outputs the list of all subsets (columns) currently
// used in the column generation model. The input variable to the
// function, ’subset_num’, indicated the number of such columns.
// Also, these columns are stores in the private data member
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// ‘service_subsets’.

double Optimize();
// This function runs the column generation algorithm for the
// instance of the SVRP given in ’filename’. It may instantiate
// an instance of the class ’PTSP’ in order to solve the subproblem
// and obtain a better column generation bound.

void PCTSP(int wn);
// This function instantiates an instance of the class ’PTSP’ for
// a given driver, ’wn’, and the set of nodes to whom this driver cab
// provide service.

inline void printResults(const time_t &beginInterval, const double
&objVal, const double &bestLowerBound, const double &Round);

// This function outputs the best lower and upper bounds found for
// a node in the column generation algorithm together with the
// elapsed time.

private:
char *filename, *logfile;

// The input file and the log file.

bool serviceable[MAX_WORKER][MAX_JOB];
// Shows whether the job is serviceable by the driver.

vector< vector<int> > service_subsets;
// Stores the current columns.

inline void checkExpand(int subset_num);
// This function doubles the size of the columns if the capacity is
// reached. Note that the physical address of the data changes in
// the processed.

};

A.1.2 The GraphUtil Class

class GraphUtil {
// This class provides some utility functions for processing the graphs
// that the software encounters in solving SVRP or PCTSP.

public:
std::list<std::list<int> > components();

// This function returns the connected components of the instance
// of the ’GraphUtil’ class represented by ’*this’.

128



std::list<std::list<int> > shrink(const bool verbose);
// This function implements the shrinking heuristic on the instance
// and returns the components after the graph is shrunk. The Boolean
// variable ’verbose’ indicates to the function whether or not it
// should produce messages along the way for debugging purposes.

double GW_PTSP(std::vector<int> &tree, double *treeMat);
// This functions implements the algorithm by Hedge, Indyk, and
// Schmidt for the Prize Collecting Steiner Tree Problem (PCSTP)
// using Goemans and Williamson scheme. This method is a heuristic
// approach to solving the PCSTP.

double LS_PTSP(std::vector<int> &cycle, double *cycleMat);
// This function implements a local search heuristic for the PCTSP.
// It makes calls to some utility functions, namely ’forceOne’,
// ’oneOpt’, ’twoOpt’, and ’oneSwap’.

void printComp(std::list< std::list<int> > l);
// This function outputs the connected components represented by
// the input variable ’l’.

int num_component(std::list< std::list<int> > l);
// This function counts the number of active components of the graph
// represented by the input variable ’l’. By active, we mean those
// components that are not single nodes and do not contain the depot.

private:
void StrongPrune(double *treeMat, double *NW, bool *visited, int v);

// This function implements the strong pruning required by the
// function ’GW_PTSP’.

void removeTree(double *treeMat, int r);
// This function implements the removal phase of ’GW_PTSP’.

double shortcut(double *treeMat, bool *visited, int r);
// This function finds the shortcuts in a given tour and modifies
// it to avoid repeated nodes.

bool forceOne(std::vector<int> &subset_mat, double *cycleMat,
std::list<int> &cycle, double &tourCost);

// This function forces the tour to pick at least one node.

double oneOpt(std::vector<int> &subset_mat, double *cycleMat,
std::list<int> &cycle, double &tourCost);

// This function adds one most beneficial node to a given tour.

double twoOpt(std::vector<int> &subset_mat, double *cycleMat,
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std::list<int> &cycle, double &tourCost);
// This function adds two nodes to a given tour and removes one in
// a greedy manner to maximize the net benefit.

double oneSwap(std::vector<int> &subset_mat, double *cycleMat,
std::list<int> &cycle, double &tourCost);

// This function swaps an existing node of the given tour with an
// uncovered node in a greedy manner to maximize the net benefit.

};

A.1.3 The ISubProblem Class

class ISubProblem {
// This class is abstract base class for the PCTSP, the subproblem of the
// column generation method. This class dictated to all sub-classes to
// implement the member function ’Optimize’.

public:
virtual double Optimize(vector<int> &subset_mat, double& tourCost, double
&interval, const OPT_TYPE &optType, const Params params) = 0;

// This function is purely virtual. It specifies the layout of any
// ’Optimize’ function to be implemented in the sub-classes.

protected:
int worker_no;

// The driver ID .

int num_worker;
// The number of the drivers.

int num_job;
// The number of the clients.

bool *serviceable;
// Shows whether the job is serviceable by the driver.

double *cost;
// Stores the distance c_{ij} between the nodes i and j.

double *benefit;
// Stores the prizes or beta values for nodes.

};

A.1.4 The PTSP Class
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class PTSP: public ISubProblem {
// This class inherits from the abstract base class ’ISubProblem’ and
// implements the optimize function that can be used in different modes:
// 1) to use the branch-and-cut to solve the PCTSP,
// 2) to solve an LP relaxation of a node of the branch-and-cut tree,
// 3) to use CPLEX ILP solver to solve PCTSP,
// 4) to solve PCTSP using a local search heuristic algorithm.

public:
double Optimize(vector<int> &subset, double &tourCost, double &interval,
const OPT_TYPE &optType, const Params params);

// This function implements the ’Optimize’ function required by the
// super-class ISubProblem. Based on the value of ’OPT_TYPE’, one of
// the four solutions mentioned above are attempted.

private:
double Optimize_Branch_and_Cut(vector<int> &subset, double &tourCost,
double &interval, const Params params);

// This function uses the branch-and-cut algorithm to solve PCTSP
// to optimality. The tour cost and the time spent in this portion
// of the code are returned in ’tourCost’ and ’interval’
// respectively.

double Optimize_LP(vector<int> &subset, double &tourCost, double
&interval, const Params params);

// This function uses the CPLEX to solve the LP relaxation of PCTSP.
// The tour cost and the time spent in this portion of the code are
// returned in ’tourCost’ and ’interval’ respectively.

double Optimize_ILP(vector<int> &subset, double &tourCost, double
&interval);

// This function uses the CPLEX ILOG ILP solver to solve PCTSP
// to optimality. The tour cost and the time spent in this portion
// of the code are returned in ’tourCost’ and ’interval’
// respectively.

double Heuristic(vector<int> &subset, double &tourCost, double
&interval);

// This function uses a local search heuristic algorithm to solve
// PCTSP. The tour cost and the time spent in this portion of the
// code are returned in ’tourCost’ and ’interval’ respectively.

int Separate_SEC(IloModel &model, IloNumVarArray &x, IloNumVarArray &y,
IloNumArray &xVals, IloNumArray &yVals, IloRangeArray &con, const
vector<int> &realIndex, int num_servable, int &poolSize, IloRangeArray
&poolOfConstraints, Branch_and_CutNode &P);

// This function takes an integral solution returned by the CPLEX
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// model and uses connected components algorithms to find violated
// Subtour Elimination Constraints (SECs). For memory management
// reasons in the branch-and-cut algorithm, all the constraints
// are added to a pool of constraints instead of the CPLEX model.

int SEC(IloModel &model, IloNumVarArray &x, IloNumVarArray &y, const
vector<int> &realIndex, double *edgeMat, int num_servable);

// Similar to the above function, but used outside the branch-and-cut
// algorithm, e.g. in the LP relaxation of the PCTSP.

int Separate_LP_GSEC(IloModel &model, IloNumVarArray &x, IloNumVarArray
&y, IloNumArray &xVals, IloNumArray &yVals, IloRangeArray &con, const
vector<int> &realIndex, int num_servable, int &poolSize, IloRangeArray
&poolOfConstraints, Branch_and_CutNode &P);

// This function takes a fractional solution and solves some LP
// problems to find violated Generalized Subtour Elimination
// Constraints (GSECs). For memory management
// reasons in the branch-and-cut algorithm, all the constraints
// are added to a pool of constraints instead of the CPLEX model.

int Separate_LP_GSEC(IloModel &model, IloNumVarArray &x, IloNumVarArray
&y, IloNumArray &xVals, IloNumArray &yVals, const vector<int> &realIndex,
int num_servable);

// Similar to the above function, but used outside the
// branch-and-cut.

int GSEC(IloModel &model, IloNumArray &xVals, IloNumArray &yVals, const
vector<int> &realIndex, int num_edges, int num_servable, list< list<int>
> &l);

// This function calls the appropriate LP separation function based
// on the method of optimization, receives back the list of violated
// GSECs, and adds them to the CPLEX model.

int Separate_heuristic_GSEC(IloModel &model, IloNumVarArray &x,
IloNumVarArray &y, IloNumArray &xVals, IloNumArray &yVals, IloRangeArray
&con, const vector<int> &realIndex, int num_servable, bool tempVerbose,
int &poolSize, IloRangeArray &poolOfConstraints, Branch_and_CutNode &P);

// This function takes a fractional solution and uses the shrinking
// heuristic algorithm to find violated GSECs. For memory management
// reasons in the branch-and-cut algorithm, all the constraints
// are added to a pool of constraints instead of the CPLEX model.

int Separate_heuristic_GSEC(IloModel &model, IloNumVarArray &x,
IloNumVarArray &y, IloNumArray &xVals, IloNumArray &yVals, const
vector<int> &realIndex, int num_servable, bool tempVerbose);

// Similar to the above function, but used outside the
// branch-and-cut.
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int GSEC_heuristic(const IloNumArray &xVals, const IloNumArray &yVals,
const vector<int> &realIndex, int num_servable, list< list<int> > &l,
const bool verbose);

// This function calls the appropriate heuristic separation function
// based on the method of optimization, receives back the list of
// violated GSECs, and adds them to the CPLEX model.

int Separate_heuristic_Blossoms(IloModel &model, IloNumVarArray &x,
IloNumVarArray &y, IloNumArray &xVals, IloNumArray &yVals, IloRangeArray
&con, const vector<int> &realIndex, int num_servable, int &poolSize,
IloRangeArray &poolOfConstraints, Branch_and_CutNode &p);

// This function takes a fractional solution and uses the
// odd-component heuristic algorithm to find violated Primitive Comb
// Inequalities. For memory management reasons in the branch-and-cut
// algorithm, all the constraints are added to a pool of constraints
// instead of the CPLEX model.

int Separate_heuristic_Blossoms(IloModel &model, IloNumVarArray &x,
IloNumVarArray &y, IloNumArray &xVals, IloNumArray &yVals, const
vector<int> &realIndex, int num_servable);

// Similar to the above function, but used outside the
// branch-and-cut.

int Blossom_heuristic(const IloNumArray &xVals, const IloNumArray &yVals,
const vector<int> &realIndex, int num_servable, list<blossom> &l);

// This function calls the appropriate heuristic separation function
// based on the method of optimization, receives back the list of
// violated Primitive Comb Inequalities, and adds them to the CPLEX
// model.

void branchOnX(IloModel &model, IloNumVarArray &x, IloNumArray &xVals,
IloRangeArray &con, const vector<int> &realIndex, int &problemCount, int
num_servable, int &poolSize, IloRangeArray &poolOfConstraints,
Branch_and_CutNode &P, list<Branch_and_CutNode> &Problems);

// This function receives a fractional solution and makes a call to
// the function ’chooseX’. After receiving the ’x’ chosen variable,
// it creates two subproblems, one for ’x = 0’ and the other for
// ’x = 1’. Then, it adds the problems to the queue of remaining
// problems to be solved, based on the mode of traversal.

void branchOnY(IloModel &model, IloNumVarArray &y, IloNumArray &yVals,
IloRangeArray &con, const vector<int> &realIndex, int &problemCount,
int &poolSize, IloRangeArray &poolOfConstraints, Branch_and_CutNode &P,
list<Branch_and_CutNode> &Problems);

// This function receives a fractional solution and makes a call to
// the function ’chooseY’. After receiving the ’y’ chosen variable,
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// it creates two subproblems, one for ’y = 0’ and the other for
// ’y = 1’. Then, it adds the problems to the queue of remaining
// problems to be solved, based on the mode of traversal.

int chooseX(IloNumArray &xVals, int &num_servable, const vector<int>
&realIndex, Branch_and_CutNode &P);

// This function chooses an ’x’ variable based on the model of
// branching and returns it.

int chooseY(IloNumArray &yVals, const vector<int> &realIndex,
Branch_and_CutNode &P);

// This function chooses an ’y’ variable based on the model of
// branching and returns it.

int randomBranchOnX(IloNumArray &xVals, int &num_servable, const
vector<int> &realIndex, Branch_and_CutNode &P);

// This function implements the ’Random Branch’ mode of branching
// on ’x’ variables, choosing any random ’x’.

int randomBranchOnY(IloNumArray &yVals, const vector<int> &realIndex,
Branch_and_CutNode &P);

// This function implements the ’Random Branch’ mode of branching
// on ’y’ variables, choosing any random ’y’.

int greedyBranchOnX(IloNumArray &xVals, int &num_servable, const
vector<int> &realIndex, Branch_and_CutNode &P);

// This function implements the ’Greedy Branch’ mode of branching
// on ’x’ variables, choosing any ’x’ with a value closest to 0.5.

int greedyBranchOnY(IloNumArray &yVals, const vector<int> &realIndex,
Branch_and_CutNode &P);

// This function implements the ’Greedy Branch’ mode of branching
// on ’y’ variables, choosing any ’y’ with a value closest to 0.5.

int smartBranchOnX(IloNumArray &xVals, int &num_servable, const
vector<int> &realIndex, Branch_and_CutNode &P);

// This function implements the ’Smart Branch’ mode of branching
// on ’x’ variables. This is due to Gendreau et al.

int smartBranchOnY(IloNumArray &yVals, const vector<int> &realIndex,
Branch_and_CutNode &P);

// This function implements the ’Smart Branch’ mode of branching
// on ’y’ variables. This is due to Gendreau et al.

void makeGraph(double *edgeMat, double *vertices);
// This function generates an empty graph based on ’*this’. This is
// done by filling the elements of the edge matrix ’*edgeMat’ and
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// the vertices in ’*vertices’.

void makeGraph(double *edgeMat, double *vertices, IloNumArray &yVals,
const vector<int> &realIndex);

// This function generates graph based on ’*this’ and ’y’ values.
// This is done by filling the elements of the edge matrix ’*edgeMat’
// and the vertices in ’*vertices’.

inline bool isSolutionIntegral(const IloNumArray &xVals, const
IloNumArray &yVals, const vector<int> &realIndex, int num_servable);

// This function returns true if both ’x’ and ’y’ values are
// integral.

inline bool isXIntegral(const IloNumArray &xVals, const vector<int>
&realIndex, int num_servable);

// This function returns true if ’x’ values are integral.

inline bool isYIntegral(const IloNumArray &yVals, const vector<int>
&realIndex);

// This function returns true if ’y’ values are integral.

inline void updateConstraints (IloRangeArray &con, const IloRangeArray
&poolOfConstraints, Branch_and_CutNode &P);

// This function updates the list of constraints of a node in the
// branch-and-cut tree after new violated cuts are detected and
// introduced in the pool of constraints.

};
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