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Abstract

Traffic congestion continues to be a major problem in large cities around the world and a
source of frustration for drivers. Previous studies show that providing drivers with real-time
traffic information will help them make better route planning and avoid congestion. In this
research, we examine the use of data-driven natural language generation (NLG) techniques
to automatically generate tweets from traffic incident data. From the task of automatic
tweet generation, we discuss and propose a design of a traffic notification system that can
deliver personalized and location-relevant real-time traffic information to drivers. The do-
main of our NLG work is novel with respect to the previous work in different domains
including weather forecasts, educational reports and clinical reports. We evaluate the auto-
matic generated tweets using BLEU-4. Our experimental results show that a well-prepared
training corpus is important for better quality output, however, it is currently limited in
traffic-related domains.

Keywords: automatic tweet generation, natural language generation, traffic incidents
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Chapter 1

Introduction

Natural Language Generation (NLG) is a task of Natural Language Processing (NLP) that
generates natural language from a machine representation (e.g., structured data, logic form,
etc.). The generated texts are intended to be readable and understandable by humans.
Their applications include text summarization, automatic generation of reports and help
messages, and virtual assistance where a machine can assist and communicate with humans
through natural languages.

In this research, we present an NLG system that we first introduced in [43] that can
generate tweet messages from structured data about traffic incidents. We examine different
traffic related datasets and NLG techniques and explain why data-driven approaches are
useful in automatic traffic notification generation applications. We also discuss and propose
a traffic notification system that can generate personalized tweets messages for users based
on their preferences and locations.

1.1 Motivation

Traffic congestion continues to be a major problem in large cities around the world, and
a source of frustration for commuters, commercial drivers, tourists, and even occasional
drivers.

Current efforts to reduce congestion and frustration often involve providing road users
with real-time traffic information to help estimate travel time accurately, resulting in better
route planning and travel decisions [44]. Previous studies show that provision of real-time
traffic information affects route-choice behavior of drivers and also helps alleviate congestion
[44] [13] [15]. The different channels to deliver traffic information include variable-message
signs (VMS), radio, smart navigation devices and social networks. Information from VMS,
radio and social networks is delivered as messages which consist primarily of natural lan-
guage. When delivered on smart navigation devices, information is presented with colour
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and icons on interactive maps; for example, congested road segments are usually in red
while clear road segments are in green 1.

Text and audio messages associated with radio and social network channels are mainly
human-generated. The information sources for these messages mainly utilize the same data
used by smart navigation devices in conjunction with camera images, eye-witness reports
and other sources, which collectively require substantial effort and time. Although several
social network channels may use computer programs (i.e., “bots”) to generate messages
automatically from a data source, these messages are constructed with strict templates
which are perceived by users as cold, distant and unnatural.

In this thesis, we present a system that can automatically generate tweets about traffic
incidents. Our system is developed based on data-driven NLG techniques where natural
language corpora are used to train the machine so that it can generate more natural texts.

1.2 Our approach

We focus on a generation system that can be applied to different types of traffic datasets
(road closures, road incidents, traffic flow, etc.). We use an existing alignment model [23]
to learn the semantic correspondences between traffic data and its textual description.
Konstas’s concept-to-text generation approach [19] is used for the automatic generation of
tweets to be ultimately incorporated into a real-time system.

Overall, we choose a data-driven approach since it is location independent. Different
cities have different kinds of traffic data and information about road closures, road inci-
dents and road conditions; each with different kinds of data structures. With a data-driven
approach, we can handle different datasets without changing the model structure, incor-
porating it into an end-to-end system with surface realization and content planning in one
model. Otherwise, template-based approaches require the construction of templates and
rules that are domain dependent and location dependent. They are therefore not flexible
enough to apply to different datasets.

We construct our training corpora from data provided by the CVST portal 2. We also
explore other traffic related datasets that can be used to train our system. However, using
such data is restricted as discussed in Section 3.2.

Using the constructed corpora, we apply a semantic alignment model (Section 4.1) to
learn the semantic correspondences between data records and their textual descriptions in
the tweets. Then, we apply a model for concept-to-text generation (Section 4.2) to generate
tweets about traffic incidents from given records. However, our system’s output is not
limited to tweet generation. Output can be personalized, for example, as a virtual assistant,

1Google Maps uses this colour code as described in https://support.google.com/maps/answer/
3092439?hl=en&rd=1

2http://portal.cvst.ca
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to generate traffic notifications for users based on their driving routines incorporating daily
routes, departure and arrival times, and specific locations. Previous work on capturing users’
locations and route prediction (Section 4.3) can be applied to select only the potentially
user-interested traffic information and deliver it to the drivers.

The evaluation of automatically generated tweets can be approached from several per-
spectives. Evaluation in the context of the task outlined above can involve human subjects,
looking at metrics such as the usefulness of the tweets (using rating criteria like those in
rating the helpfulness of reviews or comments), and the quality of the tweets (involving
fluency and readability). Detailed human evaluation of the tweets is beyond the scope of
this research. We focus on automated techniques in the evaluation of the automatically
generated tweets, given that we have a reference of generated texts. To evaluate our mod-
els, we build on BLEU-4, a standard evaluation metric used in the Machine Translation
community [19].

We make several contributions in this thesis. We introduce an NLG system that auto-
matically generates personalized and location-relevant traffic notifications to drivers based
on structured data about traffic. Our proposed system consists of three main models: the
generation model, the location-based user model and the content-preference model. We
examine the use of an existing generation model applied to a novel domain: automatic
tweet generation about traffic incidents. Different traffic-related datasets are investigated
and discussed their opportunities and obstacles to be used as the training corpora for the
generation model. We use a data-driven approach that is location dependent and domain
dependent, therefore, applicable to different traffic datasets from different cities. Finally,
we evaluate the generated tweets using the BLEU-4 score. The experimental results show
that a well-prepared training corpus is important for better quality output, however, it is
currently limited in traffic-related domains.

1.3 Thesis outline

This thesis is structured into six chapters. In Chapter 2, we provide an overview of NLG
systems, examples of those systems and the task of automatic tweet generation. Chapter 3
defines the task of generating text from structured data. In this chapter, we also explore
different traffic-related datasets and explain how we collect and construct our corpora.
In Chapter 4, we explain the design of our traffic notification system and provide details
about each model in the system. The implementation and experimental results of our work
are presented in Chapter 5. Finally, Chapter 6 provides a conclusion to our thesis and a
discussion about several interesting aspects for future research.
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Chapter 2

Background

In this chapter, we provide a definition of NLG systems, looking at the tasks included and
how to categorize these systems. We also discuss some examples of different NLG systems
in two main categories: text-to-text and data-to-text systems. Finally, we provide an
overview of previous work on automatic tweet generation.

2.1 NLG Systems

According to Stent et al. [41], NLG systems are systems that produce human language
artifacts including speech, text, and language-rich multimedia presentations. NLG systems
differ in the types of input and output they take and produce, and the degree of interactivity
they support. All end-to-end NLG systems include three main tasks:

• Content-selection: determination of “what to say” by making choices and decisions
on which content should be selected for generation.

• Surface-realization: determination of “how to say it” including tasks such as assigning
content to media, arranging the content or choosing the right vocabularies to use.

• Production: presentation or performance of the generated material which in the case of
an embodied conversational agent may include production of body postures, gestures
and sign language.

Stent et al. categorize NLG systems based on their input and output. With respect to
the types of input, there are two categories: text-to-text which accepts text as input and
data-to-text which accepts data or non-linguistic information as input. There are three
categories based on the types of output: systems that produce language only (including
text and speech), those that produce multimedia presentations and those that generate
the behavior of embodied conversational agents.
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2.1.1 Text-to-text systems

Text-to-text NLG systems accept text as input and produce a different text output depend-
ing on the applications and the readers. Some applications belonging to this category are
text summarization, dialogue systems and automatic question generation.

The MATCH dialogue system [12, 45] is an NLG system that gives users restaurant rec-
ommendations. It can understand users’ speech commands and based on that input, decides
which restaurants should be recommended (content-selection), then generates the recom-
mendation or summarizing text about those restaurants (surface-realization) and presents
the results to users through speech or visual presentation. They build a multi-attribute de-
cision model that ranks restaurants based on different attributes such as food quality, cost,
decor, service, food type and neighborhood. Each user has a different weight vector for these
attributes, depending on the user’s preferences. The list of restaurants in the database that
matches a user’s query is sorted based on the scores returned by the multi-attribute decision
model. To present the results to users, they define three strategies: recommending one of
a selected set of restaurants, comparing three or more selected restaurants and summariz-
ing a selected set of restaurants. In the first strategy, the restaurant with the highest score
ranked by the decision model is selected. Among its attributes, their algorithm only chooses
outliers (e.g., the recommended restaurant’s attributes that are significantly different from
other restaurants from the list) and lexicalizes them. The idea is to present users with only
the attributes that make a restaurant outstanding from the list. When comparing different
restaurants, they also have similar algorithms to select which restaurants and which at-
tributes to compare. In the summarizing strategy, they first find which attributes have the
same values and those that do not. Then, the system simply states the ways in which the
restaurants are similar or different. Figure 2.1 shows an example dialogue with MATCH
system.

Lindberg et al. develop an automatic question generation system that generates ques-
tions related to the input documents [26]. The system is useful in on-line and distance learn-
ing applications where a self-learner can quickly review his or her knowledge by answering
automatically generated questions. It can also help reduce the effort of the instructors in
preparing questions and quizzes. Their system utilizes semantic role labeling (SRL) together
with a set of pre-defined question templates to generate meaningful and fluent questions.
The original document is first pre-processed and split into sentences. Each source sentence
is tokenized and annotated with different syntax and semantic information such as POS
tags, named entities, lemmata, and its SRL parse. This information is then used to extract
predicated frames which are mapped into a pre-constructed template. Finally, role words
are filled into variable slots in the template using a set of predicated filters and modifiers.
Table 2.1 shows an example of an input sentence (S), selected templates (T) and output
questions (Q) of the system.
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U1 “show Italian restaurants in the West Village”

S1 [zooms to the West Village, displays Italian restaurants.]

U2 [circles some highlighted restaurants and says “summa-
rize”.]

S2 “The 3 restaurants have the same price range of 28 to
33 dollars. They differ in food quality and decor.”

U3 [circles a selection of restaurants and says “compare”]

S3 “Among the selected restaurants, the following offer ex-
ceptional overall value. Uguale’s price is 33 dollars. It
has excellent food quality and good decor. Da Andrea’s
price is 28 dollars. It has very good food quality and
good decor. John’s Pizzeria’s price is 20 dollars. It has
very good food quality and mediocre decor.”

U4 [writes word “recommend” ]

S4 “Uguale has the best overall value among the selected
restaurants. Uguale’s price is 28 dollars.”

Figure 2.1: Example dialogue with MATCH system [45].

In addition to the above applications, automatic text summarization systems incorpo-
rating NLG are used in many contexts. Giving text documents as input, these systems can
summarize them into one or two sentences that contain the main ideas of the original docu-
ments. SweSum is a text summarization system that scores all the sentences in the document
and picks the top scoring (most important) sentence for generation [9]. Sankarasubrama-
niam et al. develop a text summarization system using knowledge source from Wikipedia
[37]. The system uses Wikipedia as an additional knowledge source to extract and map
concepts in input sentences. It then ranks the concepts and generates summary sentences
covering the important concepts. Users can also generate longer summaries incrementally
if the generated text is not detailed enough. There are also other text summarization prod-
ucts available publicly online such as OpenTextSummarizer 1, TextSummarization.net 2 or
AutoSummarizer.com 3.

2.1.2 Data-to-text systems

Data-to-text systems include all NLG applications that start from non-linguistic inputs.
These inputs can be images, logic forms, databases or a combination of these sources. The

1https://www.splitbrain.org/services/ots
2http://textsummarization.net/text-summarizer
3http://autosummarizer.com/
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S As recently as 12,500 years ago, the Earth was in the midst of a
glacial age referred to as the Last Ice Age

T How would you describe [A2 -lp misc]?
Q How would you describe the Last Ice Age?
T Summarize the influence of [A1 -lp !comma !nv] on the environ-

ment.
Q Summarize the influence of a glacial age on the environment.
T What caused [A2 -lp !nv misc]? ## [A0 null]
Q What caused the Last Ice Age?

Table 2.1: Example input sentence, templates and output questions of Lindberg et al.’s
automatic question generation system [26].

output is usually the textual description of the given data such as: an image description,
data summarization and a description.

Automatic image description generation is a task involving both Computer Vision and
NLG research. Techniques developed in Computer Vision can extract objects and their
attributes in the images. Then, the output can be used by NLG systems to generate the
textual descriptions. Some examples of these systems are [46] and [5]. Yang et al. [46]
utilize previously developed image detection algorithms to extract objects N , actions V,
scenes S and prepositions P from a given test image I. From a set of detected objects
Nk = {n1, n2, ..., ni} in I, they train a language model Lm to estimate Pr(v | Nk), the verb
v given the objects Nk; Pr(s | n, v), the predicted scene given the object and verb; and
Pr(p | s), the predicted preposition given the scene. The process is repeated for all n, v, s, p
in order to find the most likely quadruplet: T ∗ = {n∗, v∗, s∗, p∗} that makes up the core
sentence structure. From the selected structure T , a sentence is generated based on several
pre-defined rules and templates. Similarly, Fang et al. [5] develop a set of word detectors to
detect words from given images. Their word detectors are built to detect all the words in
the vocabulary that can be used to describe the given image. The next step is to arrange all
the detected words to form a complete sentence. A language model is trained to estimate
the probability of a word wl conditioned on the preceding words w1, w2, ..., wl−1, as well
as the set of words with high likelihood detections that have not been chosen. They use a
beam search decoder for the generation process and then re-rank the candidate sentences.

Other systems generate reports and texts from a database such as [16], [7], ILEX [31]
and M-PIRO [11]. Their domains are varied from museum exhibit descriptions [31] [11] to
educational reports [3] [35], weather forecasts and weather reports [16] [6] [34] [19], technical
documentations [36], sport news and summaries [8] [1] [19], and nursing and clinical reports
[7] [10] [33]. Table 2.2 is an example of Konstas’s data-to-text generation system [19] applied
to the weather forecast domain.
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Although the results from previous work are promising and some proven to be better
than human-generated content, they still have limitations. Most current approaches are
based on very specific rules or grammars. In the domain of weather forecasts, Ramos-
Soto et al. define a set of operators for each weather prediction variables (e.g., sky state,
wind, temperature, etc.) [34]. Each of these operators is responsible for generating partial
linguistic descriptions for given variables. Then, pre-defined templates or rules are applied
to generate the completed sentences. Similarly, GameRecapper — an NLG system that
generates soccer game summaries in Portuguese — uses pre-constructed templates to apply
to the input data and generate output sentences [1]. To compose these rules and templates,
expert knowledge is usually required. Therefore, adapting these systems to a different
dataset or domain usually requires re-designing the entire system.

On the other hand, data-driven techniques are applicable to different domains [23, 2,
17, 19]. These approaches define probabilistic models that can be trained to learn the
patterns and hidden alignments between data and text, thereby avoiding the construction
of rules and grammars that require domain-specific knowledge. Liang et al. [23] present
an approach modeling the hidden correspondence alignment between a world state and its
textual description. Built from the work of Liang et al., Angeli et al. [2] propose a unified
content selection and surface realization generation system. Their generation process is a
sequence of local decisions. They first choose which records in the database to talk about,
then which fields of those records to mention, and finally which words to use to describe
the chosen fields. Even though their generation model is domain-independent, in order to
guarantee fluent output, they apply domain-specific constrains in the template extraction
steps of the surface realization component. Konstas recasts Liang et. al’s alignment model
into a set of context free grammar (CFG) rules that capture the inherent structure of the
input [19]. Then, he treats the generation process as a parsing problem using the pre-defined
CFG rules. His generation model does not require domain-specific knowledge, therefore, it
is applicable to different domains. To ensure the fluency of output, he intersects his model
with external linguistically motivated models including a language model and a dependency
model.

2.2 Automatic tweet generation

Recent work in automatic tweet generation focuses on the tasks of automatic text summa-
rization and topic classification, thus, it can be categorized as text-to-text NLG.

With the goal of generating tweet messages recapping the contents of government doc-
uments, Loli and Krestel [28] present an NLG system utilizing different text processing
techniques including content grouping, topic classification and text summarization. Their
system first obtains documents from the city’s open-data archives and stores them in an
internal database. Then, each document is analyzed, classified, and linked to previously

8



Input

Temperature
Time Min Mean Max
06-21 32 39 46

Cloud Sky Cover
Time Percent (%)
06-21 75-100

Wind Speed
Time Min Mean Max
06-21 6 7 10

Wind Direction
Time Mode
06-21 SE

Output Mostly cloudy, with a high near 46. South southeast wind
between 6 and 10 mph.

Table 2.2: Example input and output of Konstas’s system in weather forecast domain [19].

obtained documents. The expected “interestingness” of each document is also predicted
based on its type, content, and relation to other documents. Any documents classified as
“interesting” are then chosen to be posted on to Twitter. Each tweet is a short summary of
the original document with a link to the full document. The hash-tags are also generated
automatically using a Support Vector Machine model in order to address the topic of the
original document for easily grouping and searching.

Lloret and Palomar [27] apply a similar idea — using text summarization frameworks
— in the task of generating Twitter headlines for journal articles. They construct their
own corpus containing articles from 10 pre-selected English and Spanish newspaper online
websites. They keep only the body of each article and remove other unnecessary informa-
tion. They also collect the tweets associated with each article in the corpus. Each tweet
consists the headline of the article and the link to it. Then, they use six state-of-the-art
text summarizers to generate summary sentences for each article. Any sentences that are
longer than a tweet’s limit of 140 characters are removed. Finally, the tweets generated
by different systems are evaluated in terms of quantity (using ROUGE metrics [25]) and
quality (performing a user survey). Their study compares different frameworks and shows
that text summarization systems can produce indicative tweets — they can recap the main
ideas of original documents, however, these tweets might not be interesting from a human
perspective.

Instead of generating full tweet sentences, Krokos and Samet [20] utilize several senti-
ment analysis and classification methods in their approach to automatically discover and
generate hash-tags for tweets that do not have user-generated hash-tags. First, tweets are
collected from a pre-selected set of users. Words are extracted from tweets and their as-
sociated websites if the tweets contain links to websites. Different features are computed
including TF-IDF (Term frequency - Inverse Document Frequency), sentiment, emotion
and geo-location (phyciscal location of the tweet). TF-IDF is computed for each extracted
word. Details of the computation are described in [20]. The value of TF-IDF indicates the
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importance of the word. The idea is that the more frequently the word appear, it is likely
more important. However, the score will be penalized if that word appears in different
documents since it could be a general word (e.g., “the”). Using extracted features, they
train different classifiers in order to assign appropriate hash-tags to tweets.

In contrast to previous works based on text summarization techniques, Sidhaye and
Cheung conclude that applying extractive summarization methods to generate tweets could
be a limitation [39]. They first collect tweets that have links to the original articles. Then,
text and information from both tweets and their articles are extracted. They calculate
different metrics and statistics between the contents of the tweets and their articles such
as exact match, percentage match and longest common subsequence match. The results of
their experiments show that only a portion of the tweets can be recovered from the articles
they link to.

2.3 Summary

In the previous sections, we provided background on NLG systems including some exam-
ples of previously developed systems in two main categories: text-to-text and data-to-text.
Then, we discussed previous studies related to our work – automatic tweet generation.
Current work in the domain focuses on generating tweets summarizing a document (e.g.,
government documents or journal articles); thus, can be categorized as a text-to-text sys-
tem. Our work focuses on another aspect where tweets are constructed from structured
data, and in our case the data can come from a real-time web application. As discussed,
our generation task belongs to the category of data-to-text, also known as concept-to-text
or as linguistic description of data generation.
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Chapter 3

Traffic data

In this chapter, we introduce the task definition. With the task definition in hand, we
explore and discuss how different available traffic-related datasets can or cannot be used to
train the system.

3.1 The traffic task definition

A data entry d consists of a set of records r = {r1, r2, ..., rn}. Each record ri is described
with a record type ri.t, 1 ≤ i ≤| r |, and a set of fields f . Each field fj ∈ f , 1 ≤ j ≤| f |, has
a field type fj .t and a value fj .v.

A scenario in the training corpus is a pair of (d,w) where w is the text describing the
data entry d. Figure 3.1 is an example of a scenario in the traffic incident domain. In this
scenario, d is a data entry about a traffic incident with 8 records having 6 possible record
types: Main road, Reference road name, Lane, Condition, Reason and Incident
Type. There are 2 records having record type Lane and 2 records with record type Inci-
dent Type. Record type Main road is described through 2 fields: Name and Direction
with values “401” and “Eastbound” respectively. Other record types only have one field
associated with each of them. The textual description w of d is a tweet mentioning that
traffic incident.

Our goal is to train a model that represents the hidden alignments between data entry
d and the observed text w in the training corpus. Then, the trained model that captures
the alignment is used to generate text g from a new entry d which is not contained in the
training corpus.
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Data d
Main road

Name Direction

401 EB

Reference road name

Value

James Snow Pkwy

Lane

Value

Centre lanes

Lane
Value

Collectors

Condition
Value

Bad traffic

Reason
Value
Collision

Incident Type
Value
Debris

Incident Type
Value
Accident

Text w COLLISION: #hwy401 eb b/w James Snow & scales #milton: 2 vehicles block-
ing centre lane. Debris on roadway

Figure 3.1: Example of a scenario in the traffic incident domain. Data entry d consists
of 8 records belonging to 6 record types: Main road, Reference road name, Lane,
Condition, Reason and Incident Type. Record type Main road is described through
2 fields: Name and Direction while other record types only have one field associated with
each of them. The textual description w of d is a tweet mentioning that traffic incident.

3.2 Traffic-related Datasets

There are various types of traffic-related data including traffic flow, traffic incidents, road
construction and road closures. Such data is usually available through different map and
road navigation APIs. Tom Tom Traffic1, Google Maps2 and Bing Maps3 are a few examples
of map APIs that provide traffic flow data showing vehicles’ speeds on road segments. These
data are often used in navigation devices to help users avoid traffic congestion. Besides the
popular and widely used map APIs, there are also other parties which collect and develop
their own data; however, these data are usually limited within a city or a region. For
example, Translink’s Real-time Traffic Map 4 provides real-time traffic status for the Metro
Vancouver Area, in British Columbia, Canada or CBC’s Toronto Live Traffic Map 5 provides
similar information for the Metro Toronto Area, in Ontario, Canada. Road construction,
road closures and traffic incidents data are published through governments’ open datasets.
However, they are usually historical data and not available for real-time applications.

Despite the wide availability of traffic-related data, most of the data are only useful for
visualization purposes since they lack the corresponding textual descriptions. A few of the
data sources have a short description associated with each data entry such as the Dublin

1http://developer.tomtom.com/
2https://developers.google.com/maps/
3https://www.bingmapsportal.com/
4http://www.translink.ca/en/Getting-Around/Driving/Real-Time-Traffic-Map.aspx
5http://www.cbc.ca/toronto/features/traffic/
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City Council’s road works and maintenance dataset 6 and Bing Maps’ Traffic Incidents 7.
However, the textual description is either more detailed than the data entry or not detailed
enough to cover all essential information from the data entry. For instance, Figure 3.2 is
an example entry in the Dublin City Councils’ road works and maintenance dataset. The
textual description (Work Description) of the data entry is too short and does not describe
other essential information in the data entry such as location and time of the resurfacing
work. On the other hand, Figure 3.3 shows a record in Bing Maps’ Traffic Incidents where
the description contains information that cannot be inferred from the data entry such as
the street names.

X Co-ordinate: 310,089.810
Y Co-ordinate: 233,321.270

_id: 40
Asset Type: Roadway

Final Actual Area:
Completion Date: 2011-03-12T00:00:00

Title: Kylemore Rd/Walkinston Ave
Status of Works: Complete

Contractors Name: Siac Bituminous Products Ltd
Item Type: Item

Road Classification: Traffic Impact 4
Path: roadsandtraffic/WorksProg/Lists/Works Programme Listing

Roads Listing:
KYLEMORE ROAD BALLYFERMOT DUBLIN 10; #2211;
#WALKINSTOWN AVENUE WALKINSTOWN DUBLIN 12;
#3950

Electoral Area: South East
Re-Surfacing Materials: Bituminous;#2

Surface Type: Bituminous;#2
Work Description: Resurfacing

Figure 3.2: Example record in the Dublin City Council’s road works and maintenance
dataset. The Work Description field does not describe essential information such as where
and when the resurfacing work was.

3.3 CVST Dataset

The CVST project is an open platform that supports smart transportation applications
[42] by providing Application Programming Interfaces (APIs) for different traffic-related
datasets of the greater Toronto area including traffic cameras and sensors, road closures
and incidents, public transportation and tweets. We use two datasets collected from the
CVST APIs, road incidents and Twitter traffic reports, to construct our first corpus. The
other corpus is constructed from the newly developed version of the Twitter traffic report

6https://data.dublinked.ie/dataset/roads-maintenance-annual-works-programme
7https://msdn.microsoft.com/en-us/library/hh441726.aspx
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{
"__type":"TrafficIncident:http:\/\/schemas.microsoft.com\/search\/local\/ws\/rest\/v1",
"point":{

"type":"Point",
"coordinates":[38.85135, -94.34033]

},
"congestion":"",
"description":"MO-150 is closed between 5th Ave S and Court Dr - construction",
"detour":"",
"end":"\/Date(1310396400000)\/",
"incidentId":210546697,
"lane":"",
"lastModified":"\/Date(1309391096593)\/",
"roadClosed":true,
"severity":3,
"start":"\/Date(1307365200000)\/",
"type":9,
"verified":true

}

Figure 3.3: Example record in the Bing Maps’ Traffic Incidents. Street names included in
the description cannot be inferred from the data entry.

API. Details about how we collect and construct the corpora are provided in the following
sections.

3.3.1 Road incidents

The road incidents dataset has details about traffic incidents such as time, location, type
and reason. Each road incident has a short textual description describing the incident.
Figure 3.4 shows two examples of data records from the road incidents dataset. The bold
texts at the top of each example are the textual description of the structured data below.

Even though there are textual descriptions associated with every data record, this
dataset by itself is not ideal for training the models. In the first record (Figure 3.4a)
the information in the textual description can be easily inferred from the structured data.
On the other hand, in the second record (Figure 3.4b), the textual description contains no
information included in the structured data and vice versa. In addition, the textual descrip-
tions in the road incidents data seem to follow a pre-defined template. Therefore, additional
information in the structured data, Lanes Affected in the first record, will never appear
in the textual description.

3.3.2 Twitter traffic reports

The Twitter traffic report dataset contains basic information about the incident and its
related tweets. The tweets are collected from different Twitter users and analyzed by
a credit-based evolutionary algorithm to identify trustable data sources [42]. Figure 3.5
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(a) In this example, information in the tex-
tual description can be inferred from the
structured data.

(b) In this example, information in the tex-
tual description cannot be inferred from the
structured data.

Figure 3.4: Examples of data records from the road incident dataset.

shows two examples of data records from the Twitter traffic report dataset. As shown, the
information about road incidents included in the records is limited with only basic fields
such as type of incident, traffic condition and affected lanes. Therefore, using the Twitter
traffic report dataset in conjunction with the road incident dataset described above could
establish a reasonable corpus for training purposes. In the next section, we explain how we
match records from the two datasets to construct a corpus of road incidents and tweets.

(a)

(b)

Figure 3.5: Examples of data records from the Twitter traffic report dataset.
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3.3.3 Duo corpus: Matching road incidents with tweets

The Twitter traffic report dataset lacks essential information about incidents such as street
names and directions. Therefore, we need to collect this missing information from the
road incident dataset. By matching times and locations of records in the two datasets, we
construct a parallel corpus of traffic incidents with their related tweets. However, the times
and locations from the two datasets are not always exactly matched. Therefore, we allow
variations when matching these values. We consider two incidents from two datasets to be
matched if:

• the events’ locations are within 100 meters from each other,

• and the events’ start times are within 90 minutes of each other

Note that we can choose different values for the above criteria. However, relaxing
or tightening the conditions could potentially match the records incorrectly. In fact, we
compute how long each incident lasts using the event start and event end field in the data
and find out that 95% of the incidents in the dataset last less than 90 minutes.

Figure 3.6 shows an example of a record in our corpus constructed from the two datasets.
On the left column, we have two records received from the two APIs: traffic incident (on
the top) and Twitter traffic report. Even though both events happen in the same location
(Highway 401 and Morningside Avenue), the values of longitude and latitude in the two
records are not matched. Using those values, we are able to compute the approximate
distance between the two locations. In this example, the two locations are approximately
25 meters away from each other. Similarly, using the “eventStart” field from the traffic
incident record and the “starttime” field from the Twitter traffic report record, we know
that the two records start within 16 minutes of each other. Since the criteria are satisfied,
the two records are matched into a single record as shown on the right column.

The data is collected from January 2015 to May 2016. There are 27,795 records in the
road incident dataset and 13,134 records with 13,667 tweets in the Twitter traffic report
dataset (some records have more than one associated tweet). After matching the two
datasets using the described rules, we have a corpus of 1,388 incidents and 2,829 tweets.
The tweets are crawled from Twitter and generated by both humans and machines. For the
rest of the thesis, we use the term “Duo corpus” to refer to this corpus.

3.3.4 Single corpus: New version of Twitter traffic reports API

In addition to the above corpus, we collect another dataset from a newer version of the
CVST’s Twitter traffic report API. The new API is not yet published through the CVST
portal. However, with the assistance of the author, we are able to access the new API and
construct another corpus. We call this corpus the “Single corpus” for all remaining sections
in the thesis.
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Traffic incident record

{
"type": "unplanned",
"longitude": -79.196896,
"latitude": 43.796284,
"highway": "401",
"direction": "Eastbound",
"referenceRoad": "MORNINGSIDE AVE",
"lanes": "LEFT SHOULDER AND 1 LEFT LANE(S)",
"stream": "Collector(s)",
"reason": "collision",
"eventStart": "2015-02-02 20:33:00",
"eventEnd": null,
"lastUpdated": null

}

Twitter traffic report record

{
"longitude": -79.1972079,
"latitude": 43.7962881,
"incident": ["accident"],
"lanes": ["collectors"],
"condition": ["tow_truck"],
"starttime": "2015-02-02 20:49:00",
"endtime": "2015-02-02 20:59:00",
"tweets": [

"COLLISION: #Hwy401 EB collectors ramp to
Morningside Ave: Single vehicle into the ditch",
"COLLISION: #Hwy401 EB collectors at
Morningside Ave: Single vehicle into the right
ditch, tow truck at scene."

]
}

Matched record

{
"Incident": {

"Conditions": ["tow_truck"],
"Reason": "collision",
"Type": ["accident"]

},
"Location": {

"Direction": "Eastbound",
"Lanes": ["collectors"],
"Main road": "401",
"Reference road": "MORNINGSIDE AVE"

},
"Twitter messages": [

"COLLISION: #Hwy401 EB collectors ramp to
Morningside Ave: Single vehicle into the ditch.",
"COLLISION: #Hwy401 EB collectors at
Morningside Ave: Single vehicle into the
right ditch, tow truck at scene."

]
}

Figure 3.6: Example of matching two records from the traffic incident dataset and Twitter
traffic report dataset. The left column shows two individual records before matching. Since
both events’ start times are within 16 minutes of each other and the locations are 25 meters
away from each other, they are matched into a single record on the right column.
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{
"truncated": false,
"text": "QEW CLEAR ---- EB - past CAWTHRA - stalled vehicle off to the RSH

(police & tows on scene w/ flashing lights)",
"analysis": {

"confidence": "precise",
"lane_effects": {

"right_shoulder": ["RSH"]
},
"locations": {

"confidence": "precise",
"main": {

"name": "qew",
"dir": ["EB"]

},
"geo": {

"lat": "43.5827969",
"lon": "-79.5838117"

},
"cross": {

"name": "Cawthra Road"
}

},
"incidents": {

"incident_end": ["CLEAR"],
"disabled_vehicle": ["DISABLE"]

},
"conditions": {

"EMS": ["POLICE"],
"tow_truck": ["TOW"]

},
"rpt_type": "incident"

},
"tweet_id": "649533333139947520",
"user.name": "Trafficnet.ca",
"timestamp": "Thu, 01 Oct 2015 10:36:29 -0000",
"user.screen_name": "TRAFFIC_Toronto",
"user.label": "media"

}

Figure 3.7: Example of results returned from the new API.
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The data source of the new corpus is not different from the two datasets above. However,
it provides easier access to the data and the analysis results of the credit-based algorithm
[42]. As shown in Figure 3.7, each data entry returned from the new API contains a pair
of traffic incident information and its related tweet. Therefore, it is not necessary to apply
the matching method described in the previous section. In addition, each entry is included
with the analysis results of the credit-based algorithm that tells whether the accuracy
of information is “precise”, “medium” or “low” (in the “confidence” field of the result).
Moreover, the information about the traffic incident in the new API is more detailed with
some additional fields and values that are not supported in the older API such as “EMS”
and its values including “POLICE”, “EMS” and “FIRE_CREWS”.

In order to prevent duplicated tweets (tweets that are retweeted from main sources),
we only collects tweets from major users such as “OPP GTATraffic”, “OntarioRoads”,
“680NEWStraffic”, “TRAFFIC Toronto”, “TO DVP”, “TRAFFIC Toronto” and “TO Gar-
diner LS”. We also keep only records with high confidence (more trustable) from the results
analyzed by the credit-based algorithm. Overall, we collected data from September 2015 to
June 2016 consisting of around 11,000 records.

3.3.5 Data pre-processing

Before using the data provided from the CVST APIs to construct our copora, we first scan
through the data to remove duplicated tweets. We also remove extra words and tokens in
the tweets that cannot be mapped to any records or fields in the data entries. The idea is
to reduce the alignment noise which could be generated by the additional information in
the tweet that does not appear in the structured data. We remove hyperlinks and tagged
tweet usernames (tokens begin with the “@” character).

We also re-structure the data d returned from the APIs into set of records and fields.
The data structures of the Duo corpus and the Single corpus are shown in Table 3.1 and
Table 3.2 respectively.

3.4 Summary

In this chapter, we formalized the task of tweet generation from structured data about
traffic incidents and provide notations used throughout the rest of the thesis. Then, we
investigated different types of traffic-related datasets currently available. We explained the
reason why most of these datasets are not suitable to use for our task. Finally, we provided
information about the CVST APIs and how we constructed our corpora from these APIs.
We have two corpora: the Duo corpus constructed by matching records from the traffic
incident API and Twitter traffic report API and the Single corpus using data collected from
the new version of the Twitter traffic report API.
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Record types Fields Example values

Main road
Name “401”, “400”, “QEW”, ...

Direction “NB”, “SB”, “WB”, “EB”

Reference road Name
“Keele Street”, “Markham Road”, “Dufferin
Street”, ...

Lanes Value “right_lanes”, “left_lanes”, “centre_lane”, ...

Stream Value “collector(s)”, “collector off-ramp”, “express”,...

Condition Value “bad_traffic”, “road_open”, “road_closure”...

Reason Value
“collision”, “disabled_vehicle”, “emer-
gency_roadwork”...

Type Value “problem”, “debris”, “accident”...

Table 3.1: The structure of data d in the Duo corpus.

Record types Fields Example values

Main road
Name “401”, “400”, “QEW”, ...

Direction “NB”, “SB”, “WB”, “EB”

Reference road name Value
“Morningside Avenue”, “Markham Road”,
“Salem Road”, ...

Lanes
Name “right_lanes”, “left_lanes”, “centre_lane”,

...

Count 1, 2, 3

Condition Value “bad_traffic”, “road_open”, “tow_truck”...

Incident
Value “accident_crash”, “disabled_vehicle”, “de-

bris”,...

Table 3.2: The structure of data d in the Single corpus.
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Chapter 4

Traffic notification system

We design a traffic notification system having a location-based user model to predict a user’s
routes and deliver real-time notifications if traffic incidents occur, and a content-preference
model to deliver only information that the user prefers. Figure 4.1 shows the design of our
proposed system, parts of which we have implemented and evaluated in Chapter 5. The
GPS location of a user is processed through the location-based user model. It predicts
a ranked list of routes and destinations the user could take. Concurrently, live stream
of traffic incidents is collected and forwarded to the location-relevant information filter.
This component applies a location filter on the traffic incident data based on the predicted
user’s routes and destinations. The output is the data scenarios of traffic incidents that
happen on or nearby the routes the user may take. Simultaneously, based on the user’s
preferences, the content-preference model forwards the corresponding parameters to the
generation model. Next, using the parameters given by the content-preference model and
the traffic incident information, the generation model composes short messages describing
nearby traffic incidents. Finally, these messages are sent to users as textual or speech
notifications using a text-to-speech system.

In the following sections, we describe how the generation model is constructed using a
data-driven approach. In the scope of this thesis, we only implemented the generation model
in order to automatically generating tweets about traffic incidents. Note that the other two
models have not yet been implemented. However, we provide an overview discussion of
previous work on location-based user models and how they can be applied to our traffic
notification system. Finally, we consider different issues with the content-preference model
and explain why it should be a separate component in our system.
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Figure 4.1: Design of the traffic notification system that provides location-relevant traffic
information for road users.

4.1 The alignment model

Liang et al. [23] introduce a hierarchical semi-Markov model to learn the correspondences
between a world state and an unsegmented stream of text. Their approach is a generative
process with three main components:

• Record choice: choose a sequence of records r = (r1, ..., r|r|) where each ri ∈ d and
has a record type ri.t. The choice of consecutive records depends on their types.

• Field choice: for each chosen record ri, select a sequence of fields fi = (fi1, ..., fi|fi|)
belonging to that record.

• Word choice: for each chosen field fij , choose a number cij > 0 and generate a
sequence of cij words.

The words emitted by chosen fields and records are concatenated to generate the textual
description of the world state. In our application, a world state is structured data describing
a traffic incident. Each traffic incident has one or more associated textual descriptions
(tweets).

The processes of choosing which records, fields and words described above is modeled
as a hierarchy of Markov chains. The graphical model presentation is shown in Figure 4.2.
The first layer of the model is the record choice, a Markov chain of records conditioned on
record types: given a record type, the next record is chosen uniformly in the set of records
with that type. The intention is to capture the two types of regularities in the discourse
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Figure 4.2: Graphical model representing Liang et al.’s alignment model. Records are chosen
and ordered from d. Then, fields are chosen for each record. Finally, words are chosen for
each field. The set of records d and the words w are observed, while (r, f , c) are latent
variables to be inferred [23].

structure of language, salience and coherence [23]. Formally:

p(r | d) =
|r|∏

i=1
p(ri.t | ri−1.t)

1
| s(ri.t) |

(4.1)

where s(ri.t) is the set of records in d that has record type ri.t and r0.t is the START record
type. The model also includes a special NULL record type responsible for generating text
that does not belong to any record types in the structured data d. Analogously, the field
choice model is a Markov chain of fields conditioned on the choice of records:

p(f | r) =
|r|∏

i=1

|fi|∏
j=1

p(fij | fi(j−1)) (4.2)

Two special fields — START and STOP — are also implemented to capture the transitions
at the boundaries of the phrases. In addition, each record type has a NULL field aligned
to words that refer to that record type in general. The final step of the process is the word
choice model where words are generated from the choice of records and fields. Specifically,
for each field fij , we generate a number of words cij , chosen uniformly. Then the words w
are generated conditioned on the field f .

p(w | r, f , c,d) =
|w|∏
k=1

pw(wk | r(k).tf(k), r(k).vf(k)) (4.3)

where r(k) and f(k) are the record and field responsible for generating word wk at position
k, determined by the segmentation c:

∑|r|
i=1

∑|fi|
j=1 cij =| w |; and pw(wk | t, v) is the
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distribution of words given a field type t and field value v. The model supports three
different field types. Depending on the field types, Liang et al. define different methods for
generating words:

• Integer type: generate the exact value, rounding up, rounding down and adding or
subtracting unexplained noise ε+ or ε−

• String type: generate a word chosen uniformly from those in the field value

• Categorical type: maintain a separate multinomial distribution over words for each
field value in the category.

An example output of the model for the text “Gardiner Expressway EB at Don Valley
Parkway: left lane blocked due to collision. Police on scene.” is shown in Figure 4.3. The
top row contains the records in the structured data d selected by the model. The subscripts
next to each record type name indicate the record tokens belong to that record type. In
this example, there are two records belonging to record type condition: condition1 and
condition2. The second row contains selected fields for each record and their associated
values. The special field NULL is mapped to words that are not directly referred to the
values of fields and records in the data, such as “at”, “:”, “due to”, “.” and “on scene.”.
Finally, the last row contains the segmentation and alignment of text produced by the
model.

Records: main_road1
name=gardiner direction=eb

Gardiner Expressway EB at

ref_road_name1
value=dvp

Don Valley Parkway :
Fields:
Text:

Records: lane1

value=left_lanes
left lane

condition1

value=bad_traffic_blocked
blocked

incident1

value=accident_collision
due to collision .

Fields:
Text:

Records: condition2

value=ems_police
Police on scene.

Fields:
Text:

Figure 4.3: Example output of the alignment model for a tweet about traffic incident.

Liang et al.’s alignment model [23] is able to find the alignment between the text and
the structured data. However, it is not designed for actual text generation itself. The
generation model that we are going to present in the next section applies the idea of the
discussed alignment model to generate texts given structured data.

4.2 The generation model

Konstas [19] recasts an earlier model [23] into a set of context-free grammar (CFG) rules. To
capture word-to-word dependencies during the generation process, he added more rules to
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GCS 1. S → R(start) [Pr = 1]
2. R(ri.t)→ FS(rj , start) R(rj .t)

[
P (rj .t | ri.t) 1

|s(rj .t)|

]
3. R(ri.t)→ FS(rj , start)

[
P (rj .t | ri.t) 1

|s(rj .t)|

]
4. FS(r, r.fi)→ F(r, r.fj)FS(r, r.fj) [P (fj | fi)]
5. FS(r, r.fi)→ F(r, r.fj) [P (fj | fi)]
6. F(r, r.f)→ W(r, r.f)F(r, r.f) [P (w | w−1, r, r.f)]
7. F(r, r.f)→ W(r, r.f) [P (w | w−1, r, r.f)]

GSURF 8. W(r, r.f)→ α [P (α | r, r.f, f.t, f.v, f.t = cat, null)]
9. W(r, r.f)→ gen(f.v) [P (gen(f.v).mode | r, r.f, f.t = int)×

P (f.v | gen(f.v).mode)]
10. W(r, r.f)→ gen_str(f.v, i) [Pr = 1]

Table 4.1: Grammar rules used for generation with their corresponding weights.

emit a chain of words, rather than words in isolation. Table 4.1 shows his defined grammar
rules with their corresponding weights. There are two groups of rules, GCS and GSURF .
The first group is the set of rules responsible for content selection while the latter one is
the set of surface realization rules.

The first rule, rule (1), in the grammar expands from a start symbol S to a special
START record R(start). Then, the chain of two consecutive records, ri and rj is defined
through rule (2) and (3). Their weight is the probability of emitting record type rj .t given
record ri.t and corresponds to the record choice model of Liang et al. [23]. Equivalently,
rule (4) and (5) define the chain of two consecutive fields, fi followed by fj , and their weight
corresponds to the field choice model. Rule (6) and (7) are added to specify the expansion of
the field to a sequence of words. Their weight is the bigram probability of the current word
given its previous word, the current record and field. Finally, rules (8)-(10) are responsible
for generating words. If the field type is categorical (denoted as cat) or NULL (denoted as
null), rule (8) is applied to generate a single word α in the vocabulary of the training set.
Its weight is the probability of seeing α, given the current record, field and cat or null field
type. Rule (9) is applied if the field type is integer (denoted as int). gen(f.v) is a function
that accepts the field value (an integer) as its input and return an integer using one of
the six methods described by Liang et al. [23]. P (gen(f.v).mode | r, r.f, f.t = int) is the
multinomial distribution over the six integer generation function choices given the record
field f . P (f.v | gen(f.v).mode) is the geometric distribution of noise ε+ and ε− if adding
or substracting noise generation functions are chosen. It equals 1 otherwise. The weight of
rule (9) is the product of P (gen(f.v).mode | r, r.f, f.t = int) and P (f.v | gen(f.v).mode).
In words, we first choose which method to generate the integer value, then generate that
value according to the chosen method. Rule (10) is responsible for generating a word for
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Items: [A, i, j]
R(A→ B)
R(A→ BC)

Axioms: [W, i, i+ 1] : s W → gi+1, gi+1 ∈ {α, gen(), gen_str()}

Inference rules:

(1) R(A→ B) : s[B, i, j] : s1
[A, i, j] : s · s1

(2) R(A→ BC) : s[B, i, k] : s1[C, k, j] : s2
[A, i, j] : s · s1 · s2

Goal: [S, 0, N ]

Table 4.2: The basic decoder deductive system.

string-type field. gen_str(f.v, i) is a function that simply returns the ith word of the string
in the field value f.v.

Figure 4.4 is an example of applying the defined grammar rules for the scenario in Figure
4.3. We only show the partial tree for the trimmed text in that scenario — “Gardiner
Expressway EB at Don Valley Parkway :”. Note that there are other derivation trees for
the given text, the tree shown in Figure 4.4 is just one of them.

After defining the grammar rules, Konstas [19] treats the generation problem as a parsing
problem using the CFG rules. He uses a modified version of the CYK algorithm [14, 48]
to find the best text w given a structured data entry d. His basic decoder is presented
as a deductive proof system [38] in Table 4.2. In his basic decoder, items take two forms:
[A, i, j] — indicating a non-terminal A span from position i to j in the generated text — and
R(A → B) or R(A → BC) — corresponding to any rules in content selection production
rules GCS that have one or two non-terminals on the right hand side. Axioms are generated
words using surface realization rules GSURF . The inference rules follow two forms: one for
grammar rules with one non-terminal on the right hand side and one for grammar rules
with two non-terminals on the right hand side. For example, in Table 4.2, the first inference
rule (1) combines two items, production rule R(A→ B) with weight s and a generated span
[B, i, j] — non-terminal B spans from i to j — with weight s1 to create a new span [A, i, j]
— non-terminal A spans from i to j — with weight s · s1. Similarly, the second inference
rule (2) combines three items, rule R(A→ BC) with weight s, two smaller generated spans
[B, i, k] with weight s1 and [C, k, j] with weight s2 to create a larger span [A, i, j] with
weight s · s1 · s2. The goal of the system is the special item [S, 0, N ] where S is the root
node of the grammar and N is the length of the generated text.

The decoding process works in a bottom-up fashion. It starts with choosing N — the
length (number of words) of the output text. We will discuss how to choose value N in a
later section. Then, for each position i in the output text, it searches for the best scoring
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Figure 4.4: One of the derivation trees using the grammar in Table 4.1 for the text “Gar-
diner Express EB at Don Valley Parkway”. In this figure, we use “mr” as a shorthand for
“main_road” and “rrn” as a shorthand for “reference_road_name”.
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1: function DECODE(GGEN , d, N)
2: for i← 0...N do
3: for all r ∈ d : W ← gi+1 ∈ GSURF do
4: chart[W, i, i+ 1]← [W, i, i+ 1] : s
5: bp[W, i, i+ 1]→ gi+1
6: end for
7: end for
8: for l← 2...N do
9: for all i, k, j so that j − i = l and i < k < j do
10: for all items [B, i, j] or [B, i, k], [C, k, j] inferrable from chart and rules r ∈

GCS do
11: if r is of the form A→ B then
12: chart[A, i, j]← max(chart[B, i, j]× P (r))
13: bp[A, i, j]← argmax([B, i, j] : s1 × P (r))
14: end if
15: if r is of the form A→ BC then
16: chart[A, i, j]← max(chart[B, i, k]× chart[C, k, j]× P (r))
17: bp[A, i, j]← argmax([B, i, k] : s1 × [C, k, j] : s2 × P (r))
18: end if
19: end for
20: end for
21: end for
22: end function

Figure 4.5: Konstas’s Viterbi search for the basic decoder

item that spans from i to i+ 1 (one single word). Next, items are visited and combined in
order for larger spans until it reaches the goal item [S, 0, N ] — symbol S spans from position
0 to N . The search process is implemented as a Viterbi search as shown Figure 4.5. Lines
2-7 are the first step of the decoding process where the best scoring items spanning from i

to i+1 for each single position in the output are chosen. Lines 8-21 are the next step where
smaller spans are grouped into larger spans until it reaches the largest possible spans (from
0 to N). Lines 11-14 group items according to any rules with one non-terminal on the right
hand side, following the form A→ B while lines 15-18 group items according to rules with
two non-terminals on the right hand side, following the form A→ BC.

The basic decoder always chooses the best scoring item during the parsing process.
Konstas [19] extends the basic decoder with the k-best decoder in which a list of k-best
derivations will be kept for each item. The extension significantly improves the output
quality by avoiding local optima. He also intersects the grammar rules with a tri-gram
language model and a dependency model to ensure fluency and grammaticality of the output
text. Details of his decoders are explained in [19].

As it stands, the grammar rules in Konstas [19]’s generation model are defined to nat-
urally capture the structure of the input data. Therefore, they can be applied to any data
that is structured from the sets of records and fields. In Konstas [19]’s experiments, he ran
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his model on different datasets belonging to different domains: weather forecast (Weather-
Gov), robot soccer game commentaries (RoboCup), air travel (ATIS) and troubleshooting
(WinHelp). Therefore, we can also apply this model to different traffic data in different
cities without changing the model structure.

4.3 Location-based user model

There has been a wide range of work on location-based user models, learning and predicting
users’ routes and destinations. These tasks involve some uncertainties. Much work relies
on GPS signal data to identify a user’s location and may not be accurate. In addition,
intended destinations are not always certain since they may be affected by factors such as
weather, traffic, day of week, and time of day. Due to many uncertainties arising from the
tasks, most systems build probabilistic models to identify and predict users’ locations.

The comMotion system [29, 30] uses pattern recognition techniques to learn users’ pat-
terns of traveling and frequent destinations. These frequent locations can be added or
removed manually by users using the graphical or speech interface. Their algorithm to de-
tect a frequent location follows a simple idea. GPS signal is usually lost within a building.
Therefore, the system recognizes locations where GPS signal is lost. After losing signal
within a given radius on three different occasions, the agent infers that this must be a
building and marks it as a salient location. It is later prompted to be confirmed by the
user if this is a frequent location. Each frequent location is assigned to a to-do list which
is displayed or reminded whenever the user travels to this location. Items in to-do lists are
not necessary texts and can be recorded audio.

Krumm et al. [21] present a model that predicts the destinations and future routes
drivers take. In their work, the map is modelled as a directed graph where road intersec-
tions are vertices and road segments connecting these intersections are edges. From a start
location, the candidate destinations are all road intersections reachable within 60 minutes
of driving. Their goal is to compute a destination probability of each candidate intersec-
tion – the higher the probability means the more likely the destination is. They develop
a probabilistic model that estimates the destination probability of a candidate given the
current trip (all the intersections have been passed). After collecting a list of candidate
destinations and their probabilities, route probabilities are computed by summing all des-
tination probabilities along the fastest routes. With this approach, a corpus of the driver’s
regular routes is not necessary since the prediction is assessed on a per trip basis. Figure
4.6 is an example of the system prediction results. The vehicle’s trip starts in the lower
right of the map with the complete trip shown as the black line. The intersections along
the partially travelled route are shown as grey dots. The most recent passed intersection is
occurring about halfway along the complete trip. The small shaded dots show the candidate
destinations. Their transparency is inversely proportional to their probability. Most of the

29



destinations have been essentially eliminated, because the driver has passed up multiple
opportunities to drive to them. The remaining destination candidates are grouped ahead
of the driver around the remainder of the trip.

Figure 4.6: An example of Krumm et al. system’s prediction results [21]. The start location
is in the lower right of the map. The black line shows the complete trip, and the grey
circles show the intersections along the partial travelled route. Destinations with higher
probabilities are shaded darker.

Simons et al. [40] also use the same technique as Krumm et al. [21] to model the
road map. They present a basic Hidden Markov Model (HMM) with states being pairs
s =< l, g > where l is a link (a directed edge connecting two intersections in the road
map) and g is a goal (destination). The transition probability from state sj =< lj , gj >

to si =< li, gi > is defined as: p(si | sj) = p(gi | li) × p(li | sj). In other words, given the
current state, we predict the next state by first predicting the next link the driver will go
to, then predict the next destination given that link. However, the basic model does not
take into account other factors such as day of week or time of travel. They extend the basic
decoder by considering those factors into each state s =< l, g, f1, f2, ..., fn > where fi is the
ith additional factor.
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Liao et al. [24] developed a more sophisticated model with the ability to infer the
user’s mode of transportation. The user’s activities are estimated by a Bayesian network
model with three levels. The lowest level estimates the person’s location (including person’s
location and the location of the person’s car), velocity and transportation mode from GPS
measurements. The transportation mode can take on four different values {BUS, FOOT,
CAR, BUILDING} and influences the motion velocity. The middle level represents the
person’s next goal or predicting destination and the current trip segment. A trip segment
is defined by the start and end location, and the mode of transportation user takes during
that segment. Finally, the highest level, denoted the novelty mode, indicates whether the
user is currently behaving normally, doing something novel, or making a transportation
error.

Despite differences in the design and the complexity of the tasks, current location-based
user models have one common goal of predicting users’ future routes and ultimately, the
application of location-relevant information delivery. With a user’s location or GPS signal
as the input, these models can predict the user’s next locations or routes. As in Figure
4.1, the predicted future routes are forwarded to a location-relevant information filter. This
component simply checks whether there are traffic incidents occurring on or nearby the
user’s future routes and send this information to the generation model. It can be more
advanced with the ability to rank the impacts of the traffic incidents and filter out minor
incidents that do not affect travel times or route choice decision. For example, if there are
two incidents close to each other (e.g., happening on the same road segment) and both
cause traffic congestion, the driver might only need to know about one of them since the
knowledge of the another one might not affect the driver’s decision to take an alternative
route.

4.4 Content-preference model

Besides the provision of location-relevant information, it is more helpful if a user can select
which types of traffic information should be used in the notifications. For example, detour
information is useful for a driver who does not know about the roads in the area. It could
be however considered distracting from a perspective of a commuter who knows every street
in the neighborhood. In that circumstance, the commuter might be only interested in the
location and the cause of the incident since he or she can decide which alternative routes
to take using his or her own knowledge about the area. The content-preference model is
responsible for selecting which information should be notified to the users based on their
profiles and preferences. It is actually the content selection step in an NLG system. In
Konstas’s generation model [19], the step is integrated into the grammar rules, therefore,
it is not obvious to implement such features into his model. In this section, we will discuss
different issues and solutions for the content-preference model.
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We first start with a simple solution to the problem using the same idea of Konstas where
he intersects external models (i.e., language model and dependency model) to the grammar
to ensure fluent output. During the generation process, these external models score the
generated texts. Then, the scores are used together with the grammar rule weights to select
the best candidates for generation. We can apply the same approach and construct a content
preference model that accepts a set of selected records and fields as input and returns a score
weighting how much the selected information matches with the user preferences. Then, this
score is used to rank the candidates, together with the grammar rule weights and scores
from other external models. However, this method also has some limitations. First, since
the generation process works in a bottom-up fashion, the model can only score the generated
sentence at later steps of the process where emitted words and fields are already selected
and formed into records. Therefore, undesired information is not pruned out during the
early steps and could use up spots of more potential candidates in the search space. Second,
if we use cube-pruning to reduce the complexity of the decoding algorithm, we have the
assumption that the scoring function is a monotonic function [4]. However, adding the score
of the content-preference model into the grammar could potentially make the assumption
invalid.

A more acceptable approach is to look at the grammar rules and modify them to support
the content-preference model. As in Table 4.1, Konstas’s CFG contains two separate groups:
GCS for content-selection and GSURF for surface-realization. If we integrate the content-
preference model into rules in GCS group, we may capture user preferences on which records,
fields and their orders should be chosen to generate the personalized notifications. Rule (2)
and (3) in Table 4.1 are responsible for record choices. We can add another variable u to
indicate the user profile into the rule weights as follows:

2. R(ri.t)→ FS(rj , start) R(rj .t)
[
P (rj .t | ri.t, u) 1

|s(rj .t)|

]
3. R(ri.t)→ FS(rj , start)

[
P (rj .t | ri.t, u) 1

|s(rj .t)|

]
With this modification, choosing which record type to mention next is conditioned on

the previous record type and the user profile u. Depending on the level of personalisation,
we can apply the same modification to other rules such as field choices:

4. FS(r, r.fi)→ F(r, r.fj) FS(r, r.fj) [P (fj | fi, u)]
5. FS(r, r.fi)→ F(r, r.fj) [P (fj | fi, u)]

We can also apply the modification to word choices and GSURF rules with the idea
that each user may prefer different words and vocabularies to talk about the records and
fields. However, this modification also increases the number of parameters of the model,
makes it more complicated and could potentially impact the performance. We also need to
formalize all the real world factors determining the user preferences (e.g., driving experience,
knowledge about the area, etc.) into the variable u.
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Inheriting the discussed idea into our system design, we separate the content-preference
model from the generation model and turn it into an individual component in order to
maintain the simplicity of the generation model. As depicted in Figure 4.1, based on the
user preferences, the content-preference model provides the generation model its parameters
(CFG rule weights). Then, the generation model uses the provided weights and its pre-
defined CFG rules to generate the output texts. By making the content-preference model a
separate component, we also allow more advanced control over which records and fields to be
chosen based on not only user profile but also other factors such as historical notifications.
For example, a traffic incident causing road closures could be sent to the driver. Later
on, this incident is resolved and the roads are open again. The driver may want to know
about the update of this incident. However, information such as the reason of the incident
is no longer of interest to the driver since he already knew about the incident from the
last notifications. On the other hand, the driver is only interested in the update status of
the roads — from closed to open. If we integrate all the factors affecting the choice of the
records and fields into the generation model, it will make the model very complicated with
a large number of variables and parameters.

The details of how to build such content-preference model is beyond the scope of this
research. Since building the content-preference model requires the collection of additional
data, we decided to leave this for future work.

4.5 Summary

We have proposed a design of a traffic notification system that delivers personalized and
location-relevant notifications about real-time traffic incidents. The system consists of the
generation model, the location-based user model and the content-preference model. We
explained how these models work and function in our system. Moreover, we described how
the generation model is constructed using a data-driven approach, discussed previous work
on location-based user models and considered different issues with the content-preference
model.
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Chapter 5

Experimental results

5.1 Implementation and training

As discussed in the previous chapter, the scope of this thesis does not include the detail
implementation of the location-based user model and the content-preference model since
additional training data is required. We implemented the k-best decoder version of Konstas’s
generation model since it is shown to outperform the basic decoder in Konstas’s experiments
[19]. In addition, a tri-gram language model is intersected with the grammar to ensure fluent
output. With this extension, the scores used to rank the candidates in the k-best lists are
computed using both grammar rule weights and language model scores. As presented by
Chiang [4] and Konstas [19], the running time of the intersection algorithm is too slow to
use in practice. Therefore, we follow Chiang’s suggestion [4] and apply cube-pruning in the
implementation of the decoder to help reducing the complexity of the algorithm. In our
implementation, we stop adding new candidates to the k-best list if we already have enough
k candidates or there are no more candidates to consider. Details of how cube-pruning
works are explained in [4] and [19]. We also consider adding a dependency model as in
Konstas’s implementation, however, we believe that this will not help improve the output
quality because of two reasons:

• We are working on tweets in which there is a lot of variability of vocabulary across
documents (e.g., use of different shorthand, special characters and tokens). There-
fore, using a dependency model trained on a standard corpus is not suitable for the
application and may cause inaccurate results.

• In Konstas’s experiments, it is shown that adding the dependency model does not
help improve the output quality in most of the cases.

Even though we can address the first issue by using a tweet dependency parser such as [18],
from our observation, using the language model alone is good enough to generate fluent
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Figure 5.1: Log likelihood of the data in the two corpora during the training iterations
using EM algorithm.

and grammatical English texts. The usage of other external models could be investigated
further in the future.

In order to learn the grammar weights, we estimate them using an Expectation Maxi-
mization (EM) algorithm. Given a training set where each scenario is a pair of structured
data d and its corresponding textual description w, we maximize the marginal likelihood
of our data, summing out the latent variables including records r and their fields f :

max
θ

∏
(w,d)

∑
r,f
p(r, f ,w | d; θ) (5.1)

where θ are the parameters of the model including all the multinomial distributions and
weights of grammar rules. The EM algorithm iteratively switches between the E-step and
the M-step. In the E-step, the expected counts for the rules are computed. In the M-step,
we optimize θ by normalizing the counts computed in the E-step. We initialize EM with
a uniform distribution for each multinomial distribution. The algorithm is run in approx-
imately 35 iterations until the marginal likelihood of data is unimproved. In addition, we
also experiment with different initialization settings for the EM algorithm (e.g., initializ-
ing with random perturbation around the uniform distribution). The variance of the data
marginal likelihood for these experiments is quite small (around 0.006). Figure 5.1 shows
the log likelihood of the data in the two corpora during the training iterations using the
EM algorithm.

We use the Natural Language Toolkit (NLTK) 3.0 1 for the implementation of the
language models. NLTK provides standardized and stable implementations of different
utilities and functions widely used in natural language processing tasks. The tweets are

1http://www.nltk.org/
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tokenized using the TweetTokenizer 2 in the NLTK’s tokenizer package. Then we use
the utility functions and the ConditionalFreqDist 3 class provided by NTLK to construct
and encode the conditional probabilities in the language models. We also apply additive
smoothing with δ = 0.1 in the language models. See Appendix A for all the functions,
classes and utilities we used in NLTK.

To determineN — the length of output text — prior to generation, Konstas implemented
a linear regression model that predicts the value for each data entry d. The input to the
regression model is a flattened version of the structured data with features being record-field
pairs. We also apply the same idea. In our linear regression model, the feature values are
values of the record-field pairs. We use one-hot encoding for record-field values that are not
numerical.

To address Twitter’s limitation of tweet length (140 characters), we implement a straight-
forward solution. First, the best candidate (in the k-best list) returned by the decoder is
checked against the requirement. If its length is less than or equal to 140 characters, it
is selected as the final output. Otherwise, the next best candidate is selected and verified
if it meets the length requirement. The process is repeated until a candidate with the
required length is found. However, the process stops early if none of the top 10% of the
best candidates in the k-best list satisfies the length requirement 4. In this case, instead
of trying to generate an output sentence with N words, we decrease N and search for the
best candidate with length N − 1. Note that the decoder works in a bottom-up fashion,
therefore, the candidates with length N − 1 are easily retrievable from chart[S, 0, N − 1]
without running the decoding process again. Analogously, we repeat the tweet length check
for the shorter candidates until the final output is found. There are other solutions can be
considered to address the issue with tweet length, such as modifying the CFG rules and
running the decoding algorithm in a character-based fashion. However, we want to simplify
the solution since our ultimate goal is a traffic notification system in which Twitter’s length
limitation might not be applied.

5.2 Evaluation metric

Previous work on NLG systems uses different evaluation techniques including common au-
tomatic metrics such as ROUGE [25], BLEU [32] or METEOR [22] and human evaluation.
Human evaluation usually takes a substantial amount of time and effort to conduct while
automatic evaluation methods are cheaper. Some of the automatic metrics are proven to
be correlated with human judgement on specific tasks.

2http://www.nltk.org/api/nltk.tokenize.html#nltk.tokenize.casual.TweetTokenizer
3http://www.nltk.org/api/nltk.html#nltk.probability.ConditionalFreqDist
4We can repeat the process for all the k-best candidates. However, in order to prevent choosing a bad

candidate at the bottom of the list, we stop the process early.
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BLEU [32] is widely used in Machine Translation community to evaluate a text against
a set of gold standards, usually generated by human. The score ranges from 0.0 to 1.0
(or 0% to 100%) indicating how close the translation sentence is to the reference sentences.
BLEU is a precision-based metric in which it compares n-grams of the candidate with the n-
grams of the reference translation and counts the number of matches. The higher number of
matches designates the better translation. However, instead of using the standard precision
measure, BLEU uses a modified precision to prevent cases where the candidate contains
repeated words or phrases in the references, resulting in a very high precision but improbable
translation. Details about BLEU are provided in [32].

ROUGE [25] stands for Recall-Oriented Understudy for Gisting Evaluation and is usu-
ally used to evaluate text summarization system. ROUGE includes different metrics such as
ROUGE-N, ROUGE-L, ROUGE-W, ROUGE-S and ROUGE-SU. Similar to BLEU, but us-
ing recall instead of precision, ROUGE-N is an n-gram recall between a candidate summary
and a set of reference summaries. ROUGE-L is based on the longest common subsequence
(LCS) of the two summaries. The idea is to treat each sentence as a sequence of words. If two
sentences have longer LCS, they are more similar. ROUGE-W is extended from ROUGE-L
to be able to reward sentences with the consecutive matches in the LCS. ROUGE-S is a
skip-bigram co-occurrence measure. Skip-bigram is any pair of words in their sentence or-
der, allowing for arbitrary gaps. ROUGE-S measures the overlap of skip-bigrams between
a candidate translation and a set of reference translations. However, there are cases when
two sentences are similar but have a ROUGE-S score of 0 (e.g., “police killed the gunmen”
and “gunmen the killed police”). To give credit to sentences in these cases, ROUGE-S is
extended to ROUGE-SU by adding unigram as a counting unit.

Developed after BLEU to address some of its observed weaknesses, METEOR [22] is
based on an explicit word-to-word matching between the candidate translation and one or
more reference translations. Given two sentences to compare – a candidate and a reference
translation – METEOR creates a mapping between unigrams of the two strings: every
unigram in each string maps to zero or one unigram in the other string and to no unigrams
in the same string. There are different modules to list all possible mappings between
two strings. Each of them uses different criteria to create the mapping. For example,
the “exact” module that maps two unigrams if they are same; the “porter stem” module
that maps two unigrams if they are the same after they are stemmed using the Porter
stemmer (e.g., “computers” maps to both “computers” and to “computer”); or the “WN
synonymy” module that maps two unigrams if they are synonyms of each other. The details
of how to compute METEOR score from the unigram matches are explained in [22]. Using
this approach, METEOR is able to score two similar translations that use synonyms or
paraphrases.

Lloret and Palomar [27] and Sankarasubramaniam et al. [37] evaluate their system
automatically using ROUGE, while Yatskar et al. [47] use the BLEU score. On the other
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hand, Fang et al. [5] evaluate their system using all of the above metrics including ROUGE,
BLEU and METEOR. If we look at work most similar to ours, we see that Konstas [19]
evaluates his concept-to-text generation system using BLEU and METEOR scores.

The evaluation of automatically generated tweets in our work can be approached from
several perspectives. Evaluation in the context of the task outlined in Figure 4.1 can involve
human subjects, looking at metrics such as the usefulness of tweets (using rating criteria like
those in rating the helpfulness of reviews or comments), and the quality of tweets (involving
fluency and readability). Detailed human evaluation of the tweets is beyond the scope of
the current research. Our plan is to focus on automated techniques in the evaluation of
the automatically generated tweets, given that we have a reference of generated texts. To
evaluate our models, we use the BLEU-4 score, a standard evaluation metric used in the
Machine Translation community [19]. We use the implementation of BLEU provided by the
NLTK. We also consider using METEOR. However, in the application of tweet generation
and the domain of traffic incident data, it is necessary to construct an additional paraphrase
table of vocabularies used (e.g., “sb” is a synonym of “southbound”, “hwy” is a synonym
of “highway”, etc.). Therefore, we leave this for future work.

To evaluate the automatically generated tweets, we split our corpora into training sets
and test sets. We use the training sets to train the model and perform the evaluation on
the test sets. For each input scenario in the test sets, the trained k-best decoder returns a
k-best list of generated texts, ranked by both grammar weights and language model scores.
We picked the first result from the k-best results to compute its BLEU-4 score against
the reference texts. If the first result is longer than 140 characters, we have an additional
process to pick another result (as described in Section 5.1) to evaluate. In addition, we also
report the BLEU-4 score for the oracle results. The oracle results are generated texts in
the final k-best lists that have the best BLEU-4 score against the their reference texts.

5.3 Experiments

5.3.1 Experiment 1

In the first experiment, we split the corpora into a training set and test set randomly. We
use 95% of the data for training and 5% for testing. For the Single corpus, the training set
contains 10,785 records of traffic incidents, while the test set consists of 568 records. For the
Duo corpus, the training set and the test set contains 1,219 and 68 records respectively. We
use different values of k for our k-best decoder: k = 10, k = 20 and k = 50. We also tried
other values of k, however, the scores do not improve with k > 50. We run the experiment
three times and report the average scores of three times. Table 5.1 shows the results of our
experiment. As disccused in Section 5.2, we report two types of scores: the BLEU-4 score
for the one-best results (the top results in the k-best lists) and the oracle results (generated
texts that have highest BLEU-4 scores against their reference texts).
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Value of k
Duo corpus Single corpus

One-best Oracle One-best Oracle

10 10.01 10.17 15.96 16.3

20 9.79 10.42 16.99 17.7

50 10.76 11.04 17.39 18.34

Table 5.1: Results (BLEU-4 scores) of experiment 1.

With higher k, we are able to get better scores. However, the overall scores are not
high. There are various reasons, mainly because of the inaccurate alignments between the
structured data and the tweets caused by noise in the training dataset.

First, each Twitter user has a different writing style. For example, “680 NEWS Traffic”
mentions the direction of the main road followed by its name (e.g., “EB 401”) while “OPP
GTA Traffic” expresses the same information in the opposite way (e.g., “#Hwy401 EB”).
Moreover, they also have different vocabularies to describe the traffic incidents. “OPP
GTA Traffic” uses hash-tags for the main road names while “680 NEWS Traffic” does not.
“680 NEWS Traffic” and “OPP GTA Traffic” use abbreviations for road direction (e.g.,
“SB” for “southbound”) while “Ontario Roads” and “Traffic Toronto” use the full forms.
Table 5.2 shows some example tweets from different users. The EM algorithm updates the
parameters to maximize the marginal likelihood of the data. Therefore, depending on which
writing style the majority of tweets belong to, utilizing the learnt parameters could result in
generated tweets with the combination of all the writing styles or some writing styles that
are dominating in the training data. On the other hand, since the scenarios in the test set
do not always have multiple reference tweets from different users, the candidates and their
references could belong to different writing styles. Evaluating these tweets against their
references in different writing styles makes their BLEU scores lower.
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Users Example tweets

680 NEWS Traffic SB DVP ramp to York Mills is closed due to a collision. Emerg on
scene.

COLLISION: EB 401 in the express, East of Islington. Left lane
blocked, slow from approaching Kipling. More on the ones!

Problems on the WB 401 ramp to NB 400 - A collision is blocking
the top of the ramp but you can still access the NB 400 from the
WB 401.

OPP GTA Traffic COLLISION: #Hwy401 EB off ramp to Leslie - Single vehicles par-
tially blocking left lane of ramp

UPDATE: #Hwy401 WB is CLOSED at Hespler #Cambridge for
vehicle removal and debris clearing

CLEARED: #Hwy400 NB before Steeles: Vehicle towed from road-
way

Ontario Roads *-CLR-* 401 Eastbound [ HWY 427 - ] - Other ...

*-NEW-* 401 Eastbound COLLECTOR Off-ramp [ - LESLIE
STREET ] - Collision ...

*-NEW-* 401 Eastbound Transfer [ Eastbound Warden Express to
Collector - ] - Collision ...

Traffic Toronto Toronto - northbound Don Valley Pky at Don Mills Rd collision
blocking three left lanes - CLEAR

Mississauga - eastbound Hwy-407 Etr at 401 stalled vehicle in the
right hand lane - CLEAR

Toronto - northbound Don Valley Pky at Don Mills Rd collision
blocking three left lanes

Table 5.2: Example tweets from different users. Each user has a different style of writing
their own tweets.
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# Weight Distribution Top-5 scoring items

1 P (ri.t | START) incident_type, main_road, ref_road, stream,
NULL

2 P (ri.t | main_road) ref_road, stream, main_road, incident_type,
condition

3 P (ri.t | ref_road) ref_road, lane, reason, incident_type, NULL

4 P (fi.t | main_road.START) direction, road_name, NULL, STOP

5 P (fi.t | main_road.name) direction, STOP, name, NULL

6 P (fi.t | main_road.direction) STOP, direction, name, NULL

7 P (α | main_road, direction,wb) “401”, “wb”, “west”, “/”, “b”

8 P (α | lane, value, right_lanes) “right”, “lane”, “the”, “blocking”, “,”

9 P (α | condition, value, ems) “on”, “.”, “emergency”, “services”, “and”

10 P (α | incident_type, value,maintenance) “to”, “maintenance”, “.”, “crew”, “,”

(a) Duo corpus

# Weight Distribution Top-5 scoring items

1 P (ri.t | START) main_road, NULL, incident, condition,
ref_road_name

2 P (ri.t | main_road) ref_road_name, lane, main_road, condi-
tion, NULL

3 P (ri.t | ref_road_name) ref_road_name, incident, lane, condition,
main_road

4 P (fi.t | main_road.START) name, direction, NULL, STOP

5 P (fi.t | main_road.name) STOP, direction, name, NULL

6 P (fi.t | main_road.direction) STOP, direction, name, NULL

7 P (α | main_road, direction, sb) “sb”, “southbound”, “#hwy400”,
“#hwy427”, “#hwy404”

8 P (α | lane, name, right_lanes) “right”, “lane”, “the”, “in”, “hand”

9 P (α | condition, value, ems_police) “police”, “.”, “on”, “scene”, “...”

10 P (α | incident, value,maintenance_roadwork) “roadwork”, “emergency”, “-”, “...”, “]”

(b) Single corpus

Table 5.3: Top 5-scoring items of the multinomial distributions for some of the grammar
rules in the experiment 1.
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The second reason is the unbalanced number of records in the corpora. Since the ma-
jority of traffic incidents in the corpora happen on highways such as “401”, “400” and
“427”, the number of main_road record types with these values are overwhelming in
the corpus. This introduces noise in the alignment model, especially when it is trained
in an unsupervised fashion. Table 5.3 shows examples of the top scoring items of the
multinomial distributions for some of the grammar rules trained with the Duo corpus and
the Single corpus respectively. In the top 5-scoring items for the mulnomial distribution
P (α | main_road, direction,wb) in the Duo corpus (row 7 of Table 5.3a), “401” is the highest
scoring item while the correct word – “wb” – is the second highest scoring item. Similarly,
for the multinomial distribution P (α | main_road,direction, sb) in the Single corpus, we
also have noise where highway names (i.e., “#hwy400”, “#hwy427” and “#hwy404”) are
also in the top 5-scoring item (row 7 of Table 5.3b).

Finally, the amount of information in the structured data d is usually limited compared
to the information contained in the tweets. Figure 5.2 shows two examples of scenarios
where tweets contain more details than the structured data. Detour information is missing
in the structured data of both examples. In the second example (Figure 5.2b), there are two
traffic incidents are mentioned in the tweets: the first incident happens at Highway 427 and
Highway 407, in the middle lane, and the second incident is at Highway 427 and Highway
409, in the right lane. However, the information in the structured data indicates that the
traffic incident happens at Highway 427 and Highway 407, in the right lane. Although
the alignment model introduces a special NULL record type and NULL field to map to
the missing information, the limited and incorrect data also produce noise in learning the
multinomial distributions.
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Data d
Main road

Name Direction

401 EB

Reference road name

Value

Bayview Avenue

Lane
Name Count
Express 1

Lane
Name Count

Right lanes 2

Lane
Name Count

Collectors 1

Condition

Value

Bad traffic - Blocked

Condition

Value

EMS - EMS

Incident

Value

Accident - Collision

Text w Collision EB 401 east of Bayview express blocks the 2 right lanes.
Emerg on scene. Back up from east of the Allen

(a) In this example, detour information included in the tweet is missing in the structured
data.

Data d
Main road

Name Direction

427 SB

Reference road name

Value

407

Lane
Name Count

Right lanes 1

Incident
Value

Problem - Problem

Text w 2nd problem SB 427 approaching HWY 407 in the middle lane. And
on going problem appr HWY 409 in the right lane. Back up from
Zenway!

(b) In this example, the tweet talks about two traffic incidents. However, the structured
data only has information about the reference road of the first incident (i.e., “407”) and
affected lane of the second incident (i.e., “Right lanes”). Detour information is also missing
in the structured data.

Figure 5.2: Examples of scenarios where structured data does not have all information
mentioned in tweets.

Figure 5.3 shows two examples of tweets generated by our k-best decoder in experiment
1, with k = 50. In the first example (Figure 5.3a), as discussed above, the generated tweet
g follows a combination of different writing styles from major users in the training data:
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“OPP GTA Traffic” that starts the sentence with “TRAFFIC HAZARD:”, uses a hash-tag
for the main road name and mentions road direction after road name; and “Ontario Roads”
that puts the reference road name between two square brackets (i.e., “[” and “]”). However,
there is only one reference tweet w by “680 NEWS Traffic” for this scenario. The reference
tweet mentions road direction before road name and does not use a hash-tag for the main
road name. In this example, even though the generated text g might look good in a human
perspective, the BLEU-4 score is only 18.81.

The second example (Figure 5.3b) is the case where the decoder generates incorrect
information because of alignment noise. We extract some of the examples in Table 5.3b
and put them into Table 5.4 to help the reader easily follow the discussion. As discussed
above, the number of traffic incidents on southbound Highway 427 and Highway 400 are
significantly larger than other locations. Therefore, the alignment model “thinks” that
words such as “#hwy427” and “#hwy400” should be aligned to the direction field of
main_road record (as shown in row 4 of Table 5.4). This leads to the inaccurate alignments
of the higher levels — the order of fields in main_road record. According to the weight
distribution of P (fi.t | main_road.START) in Table 5.4 (row 1), to talk about main_road
record, we can start with the name field or direction field. However, when we choose either
one of them, the next field should be a STOP field (shown in the distributions in row 2 and
3 of Table 5.4). It means that the decoder prefers to talk about either the direction field
or the name field when mentioning a main_road record. In this example, it chooses to
talk about the direction field and emits two words “#Hwy427” and “SB” given the value
of the field is “SB”. Even though in the candidate sentences, “#Hwy400” is also chosen, the
score is slightly lower than “#Hwy427”.

# Weight Distribution Top-5 scoring items

1 P (fi.t | main_road.START) name, direction, NULL, STOP

2 P (fi.t | main_road.name) STOP, direction, name, NULL

3 P (fi.t | main_road.direction) STOP, direction, name, NULL

4 P (α | main_road,direction, sb) “sb”, “southbound”, “#hwy400”, “#hwy427”,
“#hwy404”

Table 5.4: Top 5-scoring items of the multinomial distributions for some of the grammar
rules in the experiment 1 extracted from Table 5.3b.

Overall, training the model parameters in an unsupervised fashion with a training corpus
with inaccurate and missing data could leads to several issues as discussed. To clarify
our assumptions, we perform another experiment. Details of the second experiment are
discussed in the next section.
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Data d
Main road

Name Direction

401 EB

Reference road name

Value

Warden Avenue

Lane
Name Count
Express 1

Lane
Name Count

Right lanes 1

Condition

Value

Bad traffic - Blocked

Condition

Value

EMS - EMS

Incident

Value

Fire - Fire

Generated g TRAFFIC HAZARD: #Hwy401 EB at Warden Ave - ] - vehicle
in the right lane. Emerg on scene.

Reference w UPDATE: Vehicle fire EB 401 approaching Warden express,
blocking the right lane - emerg on scene.

(a) Generated tweet g following different writing styles from majority Twitter users such
as “OPP GTA Traffic” and “Ontario Roads” is evaluated against reference tweet w of “680
NEWS Traffic”.

Data d
Main road

Name Direction

400 SB

Reference road name

Value

Steeles Avenue

Condition
Value

Bad traffic - Blocked

Incident
Value

Disabled vehicle - Disabled

Generated g TRAFFIC HAZARD: #Hwy427 SB - at Steeles Avenue - ] -
disabled vehicle.

Reference w TRAFFIC HAZARD: #Hwy400 SB at Steeles Avenue - disabled
dump truck blocking the on ramp. MTO advised.

(b) Because of alignment noise, the k-best decoder generates tweet with incorrect infor-
mation — “#Hwy427” instead of “#Hwy400”.

Figure 5.3: Examples of tweets generated by our k-best decoder in experiment 1 with
k = 50.
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5.3.2 Experiment 2

In the second experiment, instead of using all scenarios in the corpora, we train the model
using only scenarios with tweets from specified users. We choose two users, “680 NEWS
Traffic” and “Ontario Roads”, in this experiment. These users have the majority of tweets
in our corpora. Table 5.5 shows the number of tweets of some major users in our corpora.

Users
Duo corpus Single corpus

Number of tweets Percentage Number of tweets Percentage

OPP GTA Traffic 90 2.6% 6132 35.9%

680 NEWS Traffic 779 22.8% 3484 20.4%

Ontario Roads 413 12.1% 2073 12.1%

TRAFFIC Toronto 233 6.8% 3057 17.9%

Table 5.5: The number of tweets of some majority users and their percentage in our corpora.

As shown in Table 5.2, tweets written by “Ontario Roads” follow a pre-defined template
and are likely automatically generated by machine using a template-based approach. The
tweets begin with a status indicating whether the traffic incident is newly occurred (e.g., “*-
NEW-*”) or already resolved (e.g., “*-CLR-*”). After that, main road names and directions
are mentioned, followed by reference names. The reference road names are placed between
a pair of square brackets (e.g., “[ HWY 427 - ]”). Finally, other information about the
incidents such as incident type, reason or condition is included and separated with the
location by a dash (i.e., “-”). On the other hand, “680 NEWS Traffic” does not have a
specific template for writing the tweets. They can start with mentioning the location or the
type of the incidents. In addition, the tweets usually contain more information about the
traffic incidents than those included in the structured data.

Duo corpus Single corpus

680 NEWS Traffic
Training set 418 2774

Test set 22 146

Ontario Roads
Training set 249 1397

Test set 13 74

Table 5.6: Number of scenarios in training set and test set for each corpus in experiment 2

Similar to experiment 1, we split the filtered corpora into a training set and test set
randomly. The number of scenarios in the training set and test set of the two filtered
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corpora in experiment 2 are shown in Table 5.6. We run the experiment three times with
k = 50 and report the average score in Table 5.7.

One-best Oracle

Duo corpus
680 NEWS Traffic 26.26 29.12

Ontario Roads 65.04 70.86

Single corpus
680 NEWS Traffic 15.8 18.45

Ontario Roads 57.36 65.08

Table 5.7: Results (BLEU-4 scores) of experiment 2.

As expected, since the tweets written by “Ontario Roads” follow a specific template, it
is easier for the alignment model to learn the parameters maximizing the data’s marginal
likelihood. With a more accurate alignment and parameters, the k-best decoder is able to
generate tweets similar to the original ones. Note that the amount of information provided in
the structured data and tweets written by “Ontario Roads” is almost equivalent, therefore,
producing less noise when training the model in an unsupervised fashion. On the other
hand, usually including additional information and being written using different sentence
structures, tweets by “680 NEWS Traffic” are more unpredictable. This explains the lower
score in the experiment with tweets by “680 NEWS Traffic”. With the Duo corpus, we are
able to get a higher score than the Single corpus. However, the quality of generated tweets
is not actually better. In fact, the score is higher because we only have a small amount of
scenarios in the test set of the Duo corpus (only 22 scenarios).

Data d
Main road

Name Direction

401 WB

Reference road name

Value

410

Incident

Value

Debris - Debris

Lane
Name Count

Collectors 1

Generated g *-* 401 westbound collector (s) [ hwy 410 - ] - Debris ...

Reference w *-NEW-* 401 westbound collector off-ramp [ - hwy 410 ] - Debris ...

Figure 5.4: Example of a generated tweet in experiment 2 with training data extracted
from the Single corpus containing tweets from “Ontario Roads” only. We use k = 50 in this
experiment.
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Examples of generated tweets in experiment 2 are shown in Figure 5.4 and 5.5. In Figure
5.4, when the model is trained with only tweets by “Ontario Roads”, it easily captures the
structure of the template and is able to generate a tweet g very similar to the reference w.
The extra information about the status of the incident – whether it is newly occurred or
already resolved – cannot be generated since it is not included in the structured data d. In
the case of training with tweets by “680 NEWS Traffic”, Figure 5.5a is an example where
the k-best decoder successfully generate a meaningful tweet. The generated tweet contains
all the information provided in the structured data. However, the type of incident (i.e.,
“collision”) included in the generated tweet is caused by noise in the alignment. Specifically,
since most of the traffic incidents in the training data are associated with vehicle collisions,
the model thinks that “collision” is a general word of main_road record type and aligns
word “collision” to the NULL field of main_road record. Therefore, the word is emitted
in this example. In another example shown in Figure 5.5b, we face a different issue with the
generated tweet where pieces of information are repeated: the location of the incident (e.g.,
“SB DVP South of Don Mills”) and the status informing that the incident is resolved (e.g.,
“collision cleared”). Since the amount of information in the structured data d is limited
(only 4 records) while the predicted output length is too long, the same information has to
be chosen repeatedly for generation. In this case, the linear regression model fails to predict
the reasonable output length given the structured data d because tweets by “680 NEWS
Traffic” are usually long and contain extra information.

48



Data d
Main road

Name Direction

401 EB

Reference road name

Value

Weston Road

Lane

Name Count

Express 1

Incident
Value

Disabled vehicle - Disabled

Condition
Value

Bad traffic - Blocked

Condition
Value

Tow truck

Generated g Collision EB 401 approaching Weston Express, a lane is blocked with a
stalled vehicle. Tow on scene

Reference w Stalled vehicle EB 401 East of Weston Express blocks the 2nd lane from
the right. Tow on scene

(a)

Data d
Main road

Name Direction

DVP SB

Reference road name

Value

Danforth Avenue

Incident
Value

Incident end - Clear

Condition
Value

Bad traffic - Delay

Generated g SB DVP South of Don Mills, collision cleared from the SB DVP South of
Don Mills, collision cleared from the SB DVP South of Don Mills

Reference w CLEAR NOW... it’s gone!! Still a significant delay heading SB DVP to
Don Mills as a result

(b)

Figure 5.5: Examples of generated tweets in experiment 2 with training data extracted from
the Single corpus, contains tweets from “680 NEWS Traffic” only. We use k = 50 in this
experiment.

5.3.3 Summary

In the first experiment, we trained and tested the model using all tweets from the two
corpora. The resulting BLEU-4 scores ranged from 9.79 to 10.76 with the Duo corpus
and from 15.96 to 17.39 with the Single corpus depending on the value of k (Table 5.1).
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We analyzed the results and believe that the inaccurate alignment parameters are the main
causes of the poor results. Since each Twitter user has different writing styles (e.g., the order
of mentioning records and fields), noise is produced during the training process. Noise also
originated from the in-equivalence of the amount of information in the structured data and
the tweets: tweets usually contains more details about traffic incidents than structured data
does. Moreover, by using BLEU as an automatic evaluation metric, we cannot capture the
usage of different vocabularies by different users. Therefore, the scores are penalized when
the number of reference tweets are limited.

In the second experiment, to reduce the noise affecting the accuracy of the alignment
model, we trained and tested the model using only tweets by specific users. Tweets by
“Ontario Roads” follow a template and contain sufficient traffic incident details included in
the structured data. Therefore, using these tweets to train and test the model eliminated
most of the noise and resulted in a better BLEU-4 score, ranging from 57.36 to 65.04 (Table
5.7). On the other hand, tweets by “680 NEWS Traffic” are likely generated by human and
do not follow any specific order of mentioning records and fields. They also usually contain
more information covered in the structured data. Training and testing using these tweets
resulted in a lower BLEU-4 score, ranging from 15.8 to 26.26 (Table 5.7). Even though not
directly comparable, our BLEU-4 scores are not far from to Konstas’s results using other
different datasets that range from 24.88 to 38.26 [19].

Finally, one issue that appears in both experiments affecting the alignment accuracy
is the unbalanced the training data. For example, most of the traffic incidents are vehicle
collisions; and most of them happen on major highways such as Highway 401, 400 and 427.
Since there are not enough scenarios belonging to other minor values in the training data,
the EM algorithm cannot compute the expected counts and probabilities correctly for those
records and fields. It makes the model incorrectly align phrases and words in the observed
tweets w to the records and fields in the structured data d. For example, “collision” is
aligned to the NULL field of main_road record type or “#hwy404” is aligned to the
direction field of main_road record type as discussed in previous sections. The issue can
be prevented by using a better training data or manually annotating the training data with
the correct alignments.
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Chapter 6

Conclusion and Future work

Traffic congestion continues to be a major problem for large cities around the world despite
current management efforts. Provision of real-time traffic information helps drivers make
better route planning and avoid congestion. It also helps alleviate congested flows by
distributing vehicles to alternative routes.

There are different types of traffic related data including traffic flows, road closures,
road constructions and traffic incidents. We explored different currently available traffic
datasets, each has different structures and information. However, most are suitable for
visualization purposes since they lack the linguistic descriptions associated with the data.
The CVST APIs provide easy access to real-time traffic incident data in the greater Toronto
area together with the tweets mentioning them. We constructed two corpora using different
versions of the APIs. Each scenario in the training corpus is a pair of structured data about
traffic incidents and its related tweets. The tweets are crawled from Twitter and written by
different Twitter users including human-generated and machine-generated tweets.

We proposed a design of a traffic notification system that provides personalized and
location-relevant notifications about traffic incidents to road users. Our system consists
of the location-based user model, the generation model and the content-preference model.
Current research on a location-based user model focuses on the location-relevant information
delivery, therefore, can be applicable to our system design. For the generation model, we
used and implemented a data-driven approach to automatically generate tweets about traffic
incidents since it is applicable to different types of traffic datasets without any domain-
specific knowledge and redesigning or reconstructing of rules and templates in the system.
In addition, different issues with the content-preference model are discussed. By considering
different usage scenarios and applications, we provided explanations to the question of why
the content-preference model should be a separate component in our system.

We performed two experiments with the constructed corpora and our implementation
of Konstas’s generation model [19]. Even though the data from CVST APIs is the most
appropriate data we are able to collect, it still has different issues causing noise when training
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the alignment parameters. We were able to clarify the causes of this noise and reduce some
of it by performing experiment 2 that resulted in the improvement of BLEU-4 scores.

The preliminary results show that it is possible to generate real-time tweets for inclusion
in a real-time traffic notification system, using techniques that are otherwise applicable to
different domains and datasets. However, further work needs to be done in order to improve
the system output. It would be very useful to have a better corpus of traffic data with
structured data and associated textual descriptions to train the data-driven approaches. If
the model is trained in an unsupervised fashion, the amount of information covered in the
structured data and its textual description must be equivalent to prevent alignment noise.
Alternatively, manual annotation with the correct alignment could help prevent inaccuracy.

Given the relatively constrained domain, template based models could be used with the
data-driven approach introduced in this thesis. A template approach requires a different
set of patterns and rules for each traffic data type, but integrating techniques involving
semantic role labels [26] may assist in applying the approach to different datasets and
different locations.

With respect to the ultimate goal of a personalized traffic notification system in Fig-
ure 4.1, we have only addressed the surface of the issues concerning personalized tweets.
Further work needs to be done based on the discussion of the location-based user model
and content-preference model in order to build a complete personalized traffic notification
system. Especially, additional data is required to train and evaluate these user models.

Finally, we needs to consider issues related to evaluation techniques. As discussed, the
BLEU score is widely used in the community, thus, is a good metric to use to compare
different systems. But, it cannot capture the variation of vocabularies and paraphrases.
Using METEOR can solve the issue but that requires the construction of the paraphrase
table if it is applied to tweets. In addition, human evaluation is also an important aspect
because it can determine the usefulness of the system. Conducting human evaluation of
the real-time traffic notification system should be considered carefully as we do not want
to distract the drivers while they are driving. With the availability of current technology,
most of the professional drivers are equipped with tablets or similar touch-screen monitor
devices in their vehicles. We can utilize these already equipped systems to establish the
evaluation of the automatically generated real-time traffic notifications. The notification
can be displayed on the screen or spoken through a text-to-speech system. Participating
drivers can quickly vote whether a notification is useful or not by a single action (e.g., touch
on the notification to indicate that it is useful or swipe to ignore unhelpful information)
without being distracted.
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Appendix A

NLTK Usage

The following table summarizes all the NLTK’s functions, classes and utilities with their
usage in order to implement the k-best decoder and the evaluation described in our work.

Name Documentation URL Usage

TweetTokenizer http://www.nltk.
org/api/nltk.
tokenize.html#nltk.
tokenize.casual.
TweetTokenizer

Tokenize the tweets in the
data.

NLTK Utilities - Bigrams http://www.nltk.
org/api/nltk.html#
nltk.util.bigrams

Extract bigrams from a se-
quence of tweets’s tokens in
order to build the language
model.

NLTK Utilities - Trigrams http://www.nltk.
org/api/nltk.html#
nltk.util.bigrams

Extract trigrams from a se-
quence of tweets’s tokens in
order to build the language
model.

ConditionalFreqDist http://www.nltk.
org/api/nltk.html#
nltk.probability.
ConditionalFreqDist

Encode the conditional
probabilities in the lan-
guage model.

NLTK Translate - BLEU score http://www.nltk.
org/api/nltk.
translate.html#
nltk.translate.
bleu_score.corpus_
bleu

Compute BLEU-4 scores in
the evaluation.
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