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Abstract

Which doctors prescribe which drugs to which patients? Who upvotes which answers on
what topics on Quora? Who has followed whom on Twitter/Weibo? These relationships are
all visible in data, and they all contain a wealth of information that could be extracted to be
knowledge/wisdom. Statistical Relational Learning (SRL) is a recent growing field which
extends traditional machine learning from single-table to multiple inter-related tables. It
aims to provide integrated statistical analysis of heterogeneous and interdependent complex
data. In the thesis, I focus on modelling the interactions between different attributes and the
link itself for such complex heterogeneous and richly interconnected data. First, I describe
the FactorBase system which combines advanced analytics from statistical-relational ma-
chine learning (SRL) with database systems. Within FactorBase, all statistical objects are
stored as first-class citizens as well as raw data. This new SQL-based framework pushes the
multi-relational model discovery into a relational database management system. Secondly,
to solve the scalability issue of computing cross-table sufficient statistics, a new Virtual
Join algorithm is proposed and implemented in FactorBase. Bayesian networks (BNs) and
Dependency Networks (DNs) are two major classes of SRL. Thirdly, I utilize FactorBase
to extend the state-of-the-art learning algorithm for BN of generative modelling with link
uncertainty. The learned model captures correlations between link types, link features, and
attributes of nodes, simultaneously. Finally, a fast hybrid approach is proposed for instance
level discriminative learning of DNs with competitive predictive power but substantially
better scalability.

Keywords: Statistical Relational Learning(SRL); Multi-Relational Database; FactorBase;
Sufficient Statistics; Log-Linear Model; Bayesian networks (BNs); Dependency Networks
(DNs); Link Analysis; Generative Modelling; Discriminative Learning.
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Chapter 1

Introduction

Many real world datasets are relational and most real world applications are characterized
by the presence of uncertainty and complex relational structures (see an example in Figure
1.1 of the domain of online social media). Using interconnected information as the input
provides a richer knowledge to the machine and helps the process of learning. The domains
often consist of a variety of object types; the interactions between these objects can be linked
into multiple types as well. A university network may consist of several kinds of object
like students, professors and courses, as well as the interactions, such as teaching, course
registration or research assistant relationship. Similar types of instances are ubiquitous,
from online social media to scientific research publication networks, public health care
systems, and to electrical power grids, and so on. To tackle the interesting yet critical
problem of modelling such heterogeneous data, appropriate care must be taken due to the
correlations of features and/or different kinds of links [84]: attributes of linked objects
are often correlated, and links are more likely to exist between objects that share similar
attributes. In the thesis, I focus on modelling the interactions between different attributes
and the link itself for complex heterogeneous and richly interconnected data.

1.1 Multi-Relational Data Representation

The choice of an appropriate representation is an important issue which has a significant
impact on the quality of the statistical inferences that can be made. The structure of inter-
related/relational data presents an opportunity for objects to carry additional information
via their links and enables the model to show correlations among objects and their rela-
tionships. With the current surroundings, the general entity and relationship (ER) diagram
from the database community is a powerful and expressive representation of the complex
real-world interactions between multiple kinds of objects and links in diverse domains. Ad-
ditionally techniques provided by the relational database management system(RDBMS) can
be leveraged for manipulating data as well as models.

1



Figure 1.1: Example of interconnected online social media.

In the following chapters, I will assume the format data is represented as an ER diagram.
A standard relational schema contains a set of tables, each with key fields, descriptive
attributes, and possibly foreign key pointers. The tables in the relational schema can be
divided into entity tables and relationship tables [88, Ch.2.2]. An ER diagram shows entity
sets as boxes, relationships between entities as diamonds, and attributes as ovals.

Figure 1.2 shows a relational diagram for a database related to a university which
contains three objects or entity tables: Student, Course, and Professor , and two relationship
tables; Registration with foreign key pointers to the Student and Course tables whose tuples

2



Figure 1.2: A relational ER Design. Registration and RA are many-to-many relationships.

indicate which students have registered in which courses and RA with foreign key pointers to
the Student and Professor tables whose tuples indicate the RAship of students for professors.
Relationships refer to their related objects using reference slots. Each table in the relational
database is seen as a class that has some descriptive attributes. A database instance
specifies the tuples contained in the tables of a given database schema. Figure 1.3 is an
instance for the schema in Figure 1.2.

1.2 Log-linear Template Models for Relational Data

As illustrated in Figure 1.4, statistical relational learning (known as SRL) is a recent growing
field. It is the intersection of artificial intelligence, machine learning and database systems.
SRL extends traditional machine learning from single-table to multiple inter-related tables.
It aims to provide integrated statistical analysis of the complex data sources. The extensive
survey by Kimmig et al. [45] shows that SRL models can be viewed as log-linear models
based on “parametrized factor” as follows. Par-factor stands for “parametrized factor”. A
par-factor represents an interaction among parametrized random variables, or par-RVs for
short. In this section, I review the background knowledge from log-linear models to motivate
my thesis work. In section 1.2.1, I show the Parametrized Bayesian Network as one example
among the SRL models and introduce the structure learning algorithm in section 1.2.2. In
the following chapters of my thesis, I consider “Bayesian Network” and “Bayes Net” the
same term, and I use them interchangeablely.

The concept of a parametrized random variable (par-RV) marries logical-relational no-
tation to a statistical concept. I employ the following notation for par-RVs [45, 2.2.5].
Constants are expressed in lower-case, e.g. joe, and are used to represent entities. A type
is associated with each entity, e.g. joe is a person. A first-order variable is also typed, e.g.
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Figure 1.3: Database Instance based on Figure 1.2.

Figure 1.4: SRL is the intersection of artificial intelligence (AI), machine learning (ML) and
database systems (DB). Parametrized Bayesian Network is one the SRL models that can
be viewed as log-linear models.

4



Person denotes some member of the class of persons. A functor maps a tuples of entities
to a value. I assume that the range of possible values is finite. An atom is an expression
of the form r(τ1, . . . , τa) where each τi is either a constant or a first-order variable. If all
of τ1, . . . , τa are constants, r(τ1, . . . , τa) is a ground atom or random variable (RV), other-
wise a first-order atom or a par-RV. A par-RV is instantiated to an RV by grounding, i.e.
substituting a constant of the appropriate domain for each first-order variable.

A par-factor is a pair Φ = (A,Ψ), where A is a set of par-RVs, and Ψ is a function from
the values of the par-RVs to the non-negative real numbers.1 Intuitively, a grounding of a
par-factor represents a set of ground random variables that interact with each other locally.
SRL models use parameter tying, meaning that if two groundings of the same par-factor are
assigned the same values, they return the same factor value. A set of parfactors F defines a
joint probability distribution over the ground par-RVs as follows. Let I(Φi) denote the set
of all ground par-RVs in par-factor Φi. Let x be a joint assignment of values to all ground
random variables. Notice that this assignment determines the values of all ground atoms.
An assignment X = x is therefore equivalent to a single database instance. The probability
of a database instance is given by the log-linear equation [45, Eq.7]:

P (X = x) = 1
Z

∏
Φi∈F

∏
A∈I(Φi)

Ψi(xA) (1.1)

where xA represents the values of those variables in A that are necessary to compute Ψi.
Equation 1.1 can be evaluated, without enumerating the ground par-factors, as follows.
(1) For each par-factor, for each possible assignment of values, find the number of ground
factors with that assignment of values. (2) Raise the factor value for that assignment to the
number of instantiating factors. (3) Multiply the exponentiated factor values together. The
number (2) of ground factors with the same assignment of values is known as a sufficient
statistic.

1.2.1 Examples: Parametrized Bayesian Network

SRL has developed a number of formalisms for describing par-factors [45]. First-order
probabilistic graphical models are popular both within SRL and the database community
[45, 91]. The model structure is defined by edges connecting par-RVs. For instance, a
parametrized Bayesian network structure is a directed acyclic graph (DAG) whose
nodes are par-RVs. Figure 1.5 shows a Bayesian network for a University domain. The
schema for the university domain is given in Figure 1.2. This schema features only one
relationship for simplicity; FactorBase learns a model for any number of relationships.
While I describe FactorBase abstractly in terms of par-factors, for concreteness I illustrate

1A par-factor can also include constraints on possible groundings.
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Figure 1.5: (a) Bayesian network for the University domain. I omit the Registration re-
lationship for simplicity. The network was learned from the University dataset [67]. (b)
Conditional Probability Table Capability(P,S)_CPT , for the node Capability(P,S). Only
value combinations that occur in the data are shown. This is an example of a factor table.
(c) Contingency Table Capability(P,S)_CT for the node Capability(P,S) and its parents.
Both CP and CT tables are stored in an RDBMS.
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it using Bayesian networks. The system takes as input a database instance like that shown
in Figure 1.3, and produces as output a graphical model like that shown in Figure 1.5 (a).

A par-factor in a Bayesian network is associated with a family of nodes [45, Sec.2.2.1].
A family of nodes comprises a child node and all of its parents. For example, in the BN of
Figure 1.5, one of the par-factors is associated with the par-RV set

A = {Capability(P,S),Salary(P,S),RA(P,S)}.

For the database instance of Figure 1.3, there are 3× 3 = 9 possible factors associated with
this par-RV, corresponding to the Cartesian product of 3 professors and 3 students. The
value of the factor φ is a function from an assignment of family node values to a non-negative
real number. In a Bayesian network, the factor value represents the conditional
probability of the child node value given its parent node values. These conditional
probabilities are typically stored in a table as shown in Figure 1.5(b). This table represents
therefore the function φ associated with the family par-factor. Assuming that all par-RVs
have finite domains, a factor can always be represented by a factor table of the form
Figure 1.5(b): there is a column for each par-RV in the factor, each row specifies a joint
assignment of values to a par-RV, and the factor column gives the value of the factor for
that assignment (cf. [45, Sec.2.2.1]).

The sufficient statistics for the Capability(P,S) family can be represented in a contin-
gency table as shown in Figure 1.5(c). For example, the first row of the contingency table
indicates that the conjunction Capability(P,S) = n/a,Salary(P,S) = n/a,RA(P,S) = F
is instantiated 203 times in the University database (publicly available at [67]). This means
that for 203 professor-student pairs, the professor did not employ the student as an RA
(and therefore the salary and capability of this RA relationship is undefined or n/a).

1.2.2 SRL Structure Learning

Algorithm 1 shows the generic format of a statistical-relational structure learning algorithm
(adapted from [45]). The instantiation of procedures in lines 2, 3, 5 and 8 determines the
exact behavior of a specific learning algorithm. The structure algorithm carries out a
local search in the hypothesis space of graphical relational models. A set of candidates is
generated based on the current model (line 3), typically using a search heuristic. For each
candidate model, parameter values are estimated that maximize a model selection score
function chosen by the user (line 5). A model selection score is computed for each model
given the parameter values, and the best-scoring candidate model is selected (line 7).
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Algorithm 1: Structure learning algorithm (instantiation of procedures in lines 2, 3,
5 and 8 determines exact behaviour)
Input: Hypothesis space H (describing graphical models), training data D

(assignments to random variables), scoring function score (·, D)
Output: A graph structure G representing par-factors.
1: G← ∅
2: while continue(G, H, score (·, D) ) do
3: R ← refineCandidates(G,H)
4: for each R ∈ R do
5: R← learnParameters(R,score (·, D))
6: end for
7: G← argmaxG′∈R∪{G} score(G′, D)
8: end while
9: return G

1.3 Related Work

I design the FactorBase system which combines advanced analytics from multi-relational or
statistical-relational machine learning (SRL) with database systems. This new SQL-based
framework uses the RDBMS to manage the learned model as first-class citizen and the
relational data so that one can leverage the RDBMS to support the multi-relational model
discovery. In chapter 2, I will discuss the system design details and show how it supports
model discovery algorithms that follow Algorithm 1. Figure 2.1 outlines the system com-
ponents and dependencies among them. The design space for combining machine learning
with data management systems offers a number of possibilities, several of which have been
explored in previous and ongoing research. I selectively review the work most relevant to my
research and the FactorBase system. Figure 1.6 provides a graphical illustration of where
FactorBase is located with respect to other works.

1.3.1 Single-Table Machine Learning

Most machine learning systems, such as Weka or R, support learning from a single table
or data matrix only. The single-table representation is appropriate when the data points
represent a homogeneous class of entities with similar attributes, where the attributes of
one entity are independent of those of others [45]. The only way a single-table system can
be applied to multi-relational data is after a preprocessing step where multiple interrelated
tables are converted to a single data table. When the learning task is classification, such
preprocessing is often called propositionalization [45]. This “flattening” of the relational
structure typically involves information loss.

RDBMS Learning Leveraging RDBMS capabilities through SQL programming has been
explored for a variety of single-table learning tasks. This is the unifying idea of the recent
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Figure 1.6: A tree structure for related work in the design space of machine learning × data
management.

MADLib framework [34]. An advantage of the MADLib approach that is shared by Fac-
torBase is that in-database processing avoids exporting the data from the input database.
The Apache Spark [10] framework includes MLBase and SparkSQL that provide support
for distributed processing, SQL, and automatic refinement of machine learning algorithms
and models [48]. Other RDBMS applications include gathering sufficient statistics [26], and
convex optimization [18]. The MauveDB system [14] emphasizes the importance of several
RDBMS features for combining statistical analysis with databases. As in FactorBase,
this includes storing models and associated parameters as objects in their own right, and
using the view mechanism to update statistical objects as the data change. A difference
is that MauveDB presents model-based views of the data to the user, whereas FactorBase
presents views of the models to machine learning applications.
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RDBMS Inference Wong et al. applied SQL operators such as the natural join to
perform log-linear inference with a single-table graphical model [93] stored in an RDBMS.
Monte Carlo methods have also been implemented with an RDBMS to perform inference
with uncertain data [38, 92]. The MCDB system [38] stores parameters in database tables
like FactorBase.

Parameter Server (PS) paradigm For scaling up machine learning to large datasets
and complex problems, distributed optimization and inference mechanism have been in-
creasingly popular and a variety of approaches have been proposed [5]. Several related
systems, including open source projects have been implemented at Google [13], Yahoo [2]
and Petuum [35]. The PS framework (globally shares the parameters by scheduling the
workload of storing and updating large volume of parameters to distributed servers) was
first introduced by Smola et al [83] and it has proliferated in both industrial and academic
research communities [51]. There are also some critical issues arised as it moves forward
[95]. The PS paradigm could be considered as general-purpose framework, it focuses on
improving the “systems” code (notably, communication and synchronization protocols for
model state) to increase the efficiency of machine learning algorithms [11]. In contrast, the
FactorBase System combines both systems code improvements and algorithmic learning
improvements tailor-made for log-linear model of multi-relational data. The PS paradigm
can be used to perform inference on the log-linear template model once it is learned, and
potentially it could be integrated into Model Manager as introduced in section 2.4.

1.3.2 Multi-Relational Learning

For overviews of multi-relational learning please see [23, 15, 45]. Most implemented systems,
such as Aleph and Alchemy, use a logic-based representation of data derived from Prolog
facts, that originated in the Inductive Logic Programming community [17].

RDBMS Learning The ClowdFlows system [50] allows a user to specify a MySQL
database as a data source, then converts the MySQL data to a single-table representa-
tion using propositionalization. Singh and Graepel [82] present an algorithm that analyzes
the relational database system catalog to generate a set of nodes and a Bayesian network
structure. This approach utilizes SQL constructs as a data description language in a way
that is similar to the schema analyzer which will be introduced in section 2.2. Differences
include the following. (1) The Bayesian network structure is fixed and based on latent
variables, rather than learned for observable variables only, as in the case study. (2) The
RDBMS is not used to support learning after random variables have been extracted from
the schema.

Qian et al. [70] discuss work related to the contingency table problem and introduce
contingency table algebra. Their paper focuses on a Virtual Join algorithm for computing
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sufficient statistics that involve negated relationships. They do not discuss integrating
contingency tables with other structured objects for multi-relational learning.

RDBMS Inference Database researchers have developed powerful probabilistic inference
algorithms for multi-relational models. The BayesStore system [91] introduced the principle
of treating all statistical objects as first-class citizens in a relational database as FactorBase
does. The Tuffy system [61] achieves highly reliable and scalable inference for Markov Logic
Networks (MLNs) with an RDBMS. It leverages inference capabilities to perform MLN
parameter learning. RDBMS support for local search parameter estimation procedures,
rather than closed-form maximum-likelihood estimation, has also been explored [18, 61, 60].

1.4 Contributions

Within this section, I highlight the contributions of my thesis evaluated with respect to
scalability, quality and other performance criterion (e.g. preprocessing time, usefulness) as
follows.

FactorBase In chapter 2, I describe the FactorBase system which combines advanced an-
alytics from multi-relational or statistical-relational machine learning (SRL) with database
systems. This new SQL-based framework pushes the multi-relational model discovery into a
relational database management system. Empirical evaluation shows significant scalability
advantages from utilizing the RDBMS capabilities: Both structure and parameter learn-
ing scale well to millions of data records, beyond what previous multi-relational learning
systems can achieve. This work has been reported in [68, 69].

Cross-table Sufficient Statistics For most of the learning task, the scalability bot-
tleneck is to compute the cross-table sufficient statistics. In chapter 3, I propose and
implemente in FactorBase a new Virtual Join algorithm to tackle this problem. Empiri-
cal evaluation demonstrates the scalability of the algorithm and illustrates how access to
sufficient statistics for both positive and negative relationships enhances feature selection
and rule mining. This provides the evidence of the statistical quality and usefulness of the
sufficient statistics computed by the Virtual Join algorithm. This work has been reported
in [70, 71].

Generative modelling with Link Uncertainty I incorporate the FactorBase system
to tackling challenge applications. In chapter 4, I utilize FactorBase system as a pre-
counting approach on gathering sufficient statistics to extend the state-of-the-art learning
algorithm for Bayes net generative modelling of multiple links considering link uncertainty.
The extended algorithm supports to capture simultaneous correlations between link types,
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link features, and attributes of nodes. This type of model supports queries like, “What
fraction of the grades are awarded to highly intelligent students?” The empirical study
illustrates the usefulness of the proposed model with respect to find additional correlations
among different types of links. This work has been reported in [66, 71].

Instance Level Discriminative Learning Bayes nets and Dependency networks (DNs)
are two major classes of Statistical Relational Learning (SRL). In chapter 5, I propose a
fast scalable hybrid approach for instance level discriminative learning of DNs. This type of
model supports queries like, “What is the probability of Jack being a highly intelligent stu-
dent given the grades of his registered courses?” The experiment shows that the predictive
power with respect to statistical accuracy of the model learned with the hybrid learning al-
gorithm is competitive with those from state-of-the-art function gradient boosting methods
but scales substantially better than the boosting methods. This work has been reported in
[80, 81].

1.5 Thesis Organization

The organization of this thesis is as follows. First, in Chapter 1, I review the background
from multi-relational data representation of log-linear models and structure learning to mo-
tivate my thesis work, followed by related works in the field. And then I describe the design
principles and key components of FactorBase system in Chapter 2. The new Virtual Join
algorithm for cross-table sufficient statistics computation to tackle the learning bottleneck
is introduced in Chapter 3. Following in Chapter 4 and Chapter 5, I conduct the usefulness
evaluation of the system with generative and discriminative modelling, respectively. Finally,
Chapter 6 concludes this thesis, identifies limitations of the proposed system and methods,
and discusses possible directions for future work.
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Chapter 2

FactorBase: a new SQL-based
framework for multi-relational
model discovery

The system described in this chapter combines advanced analytics from multi-relational or
statistical-relational machine learning (SRL) with database systems. The power of combin-
ing machine learning with database systems has been demonstrated in several systems[34,
48, 14]. The novel contribution of FactorBase is supporting machine learning for multi-
relational data, rather than for traditional learning where the data are represented in a
single table or data matrix. I discuss new challenges raised by multi-relational model learn-
ing compared to single-table learning, and how FactorBase solves them using the resources
of SQL (Structured Query Language). The name FactorBase indicates that the system
supports learning factors that define a log-linear multi-relational model [45]. Supported
new database services include constructing, storing, and transforming complex statisti-
cal objects, such as factor-tables, cross-table sufficient statistics, parameter estimates, and
model selection scores. My argument is that relational algebra can play the same role for
statistical-relational learning that linear algebra does for traditional single-table machine
learning: a unified language for both representing and computing with statistical-relational
objects.

2.1 Introduction

FactorBase is the first system that leverages relational query processing for learning a multi-
relational log-linear graphical model. Whereas the in-database design philosophy has been
previously used for multi-relational inference, I am the first to adapt it for multi-relational
model structure learning. The experiments show that FactorBase pushes the scalability
boundary: Learning scales to databases with over 106 records, compared to less than 105
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Figure 2.1: System Flow. All statistical objects are stored as first-class citizens in a DBMS.
Objects on the left of an arrow are utilized for constructing objects on the right. Statistical
objects are constructed and managed by different modules, shown as boxes.

for previous systems. At the same time it is able to discover more complex cross-table
correlations than previous SRL systems. I report experiments that focus on two key services
for an SRL client: (1) Computing and caching sufficient statistics, (2) computing model
predictions on test instances. For the largest benchmark database, the system handles 15M
sufficient statistics. SQL facilitates block-prediction for a set of test instances, which leads
to a 10 to 100-fold speedup compared to a simple loop over test instances.

Pushing the graphical model inside the database allows us to use SQL as a high-level
scripting language for SRL, with the following advantages.

1. Extensibility and modularity, which support rapid prototyping. SRL algorithm de-
velopment can focus on statistical issues and rely on a RDBMS for data access and
model management.

2. Increased scalability, in terms of both the size and the complexity of the statistical
objects that can be handled.

3. Generality and portability: standardized database operations support “out-of-the-
box” learning with a minimal need for user configuration.

Chapter Organization I first provide an overview of the system components and the
work flow in Figure 2.1. And for each component, I describe how the component is con-
structed and managed inside an RDBMS using SQL scripts and the SQL view mechanism.
I show how the system manages sufficient statistics and test instance predictions in a block
access way. The evaluation section demonstrates the scalability advantages of in-database
processing.

2.2 The Random Variable Database

Statistical-relational learning requires various metadata about the par-RVs in the model.
These include the following.
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Domain the set of possible values of the par-RV.

Types Pointers to the first-order variables in the par-RV.

Data Link Pointers to the table and/or column in the input database associated with the
par-RV.

Figure 2.2: The metadata about attributes represented in VDB database tables. Left:
The table AttributeColumns specifies which tables and columns contain the functor values
observed in the data. The column name is also the functor ID. Right: The table Domain
lists the domain for each functor.

The metadata must be machine-readable. Following the in-database design philosophy,
I store the metadata in tables so that an SRL algorithm can query it using SQL. The schema
analyzer uses an SQL script that queries key constraints in the system catalog database and
automatically converts them into metadata stored in the random variable database V DB.
In contrast, existing SRL systems require users to specify information about par-RVs and
associated types. Thus FactorBase utilizes the data description resources of SQL to facilitate
the “setup task” for relational learning [90]. Here, I illustrate the general principles with
the ER diagram of the University domain (Figure 1.2).1

The translation of an ER diagram into a set of functors converts each element of the
diagram into a functor, except for entity sets and key fields [32]. Table 2.1 illustrates this

1A full description is available [79].
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Table 2.1: Translation from an ER Diagram to Par-RVs

ER Diagram Example par-RV equivalent
Entity Set Student, Course S,C
Relationship Set RA RA(P ,S)
Entity Attributes intelligence, ranking Intelligence(S), Ranking(S)
Relationship Attributes capability, salary Capability(P,S), Salary(P,S)

translation. In terms of database tables, attribute par-RVs correspond to columns. Rela-
tionship par-RVs correspond to tables, not columns. Including a relationship par-RV in a
statistical model allows the model to represent uncertainty about whether or not a relation-
ship exists between two entities [45]. The values of descriptive attributes of relationships
are undefined for entities that are not related. I represent this by introducing a new con-
stant n/a in the domain of a relationship attribute [55]; see Figure 2.2 (right). Table 2.2
shows the schema for some of the tables that store metadata for each relationship par-RV,
as follows. par-RV and FO-Var are custom types.

Relationship The associated input data table.

Relationship_Attributes Descriptive attributes associated with the relationship and
with the entities involved.

Relationship_FOVariables The first-order variables contained in each relationship par-
RV.2

Table 2.2: Selected Tables In the Variable Database Schema.

Table Name Column Names
Relationship RVarID: par-RV, TABLE_NAME: string
Relationship_Attributes RVarID: par-RV, AVarID: par-RV, FO-ID: FO-Var
Relationship_FOvariables RVarID: par-RV, FO-ID: FO-Var, TABLE_NAME: string

While I have described constructing the variable database for an ER model, different
structured data models can be represented by an appropriate first-order logic vocabulary
[45], that is, an appropriate choice of functors. For example, in a star schema, facts can
be represented in the form f(D1, . . . ,Dk), where the first-order variable Di ranges over the
primary key of dimension table i. Attributes of dimension i can be represented by a unary
functor a(Di). FactorBase can perform structure learning for different data models after
the corresponding data format has been translated into the VDB format.

2The schema assumes that all relationships are binary.

16



2.3 The Count Manager

The count database CDB stores a set of contingency tables. Contingency tables represent
sufficient statistics as follows [57, 70]. Consider a fixed list of par-RVs. A query is a set of
(variable = value) pairs where each value is of a valid type for the variable. The result
set of a query in a database D is the set of instantiations of the logical variables such that
the query evaluates as true in D. For example, in the database of Figure 1.3 the result set
for the query RA(P,S) = T, Capability(P,S) = 3 , Salary(P,S) = high is the singleton
{〈jack, oliver〉}. The count of a query is the cardinality of its result set.

Every set of par-RVs V ≡ {V1, . . . , Vn} has an associated contingency table (CT )
denoted by CT (V). This is a table with a row for each of the possible assignments of
values to the variables in V, and a special integer column called count. The value of the
count column in a row corresponding to V1 = v1, . . . , Vn = vn records the count of the
corresponding query. Figure 1.5 (b) shows a contingency table for the par-RVs RA(P,S),
Capability(P,S), Salary(P,S). The value of a relationship attribute is undefined for entities
that are not related. Following [72], I indicate this by writing capability(P,S) = n/a for a
reserved constant n/a. The assertion capability(P,S) = n/a is therefore equivalent to the
assertion that RA(P,S) = F. A conditional contingency table, written

ct(V1, . . . , Vk|Vk+1 = vk+1, . . . , Vk+m = vk+m)

is the contingency table whose column headers are V1, . . . , Vk and whose rows comprise the
subset that match the conditions to the right of the | symbol. I assume that contingency
tables omit rows with count 0.

The contingency table problem is to compute a contingency table for par-RVs V
and an input database D. This is one of the key issues that most of the learning time is
taken up. To improve scalability, computing sufficient statistics needs to be feasible for
cross product sizes in the millions or more. I will introduce one Virtual Join method in
chapter 3, which is a good solution that computes sufficient statistics without materializing
table joins.

2.4 The Model Manager

The Model Manager provides two key services for statistical-relational structure learning:

1. Estimating and storing parameter values (line 5 of Algorithm 1).

2. Computing one or more model selection scores (line 7 of Algorithm 1).

FactorBase uses a store+score design for these services, which is illustrated in Figure 2.3. A
model structure table represents a candidate model. When a candidate model structure
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is inserted, a view uses the sufficient statistics from a contingency table to compute a table of
parameter values. Another view uses the parameter values and sufficient statistics together
to compute the score for the candidate model. In this store+score design, the RDBMS
provides model selection scores as a service to the SRL client. In many industrial scenarios
(e.g. topic modeling: given a large collection of documents, infer the topics contained in
each document), one need to deal with very big model containing millions to billions of
parameters, the PS paradigm is a very promising approach which could be integrated into
the Model Manager [51].

Model Structure 

Parameters Model Score 

Contingency Table 

StStructructurStStructructurStStructructurStStructructurStStructructurStStructructurStSt ctctStStStSt

memetetersmemetetersmemetetersmemeteters

Figure 2.3: Dependencies Among Key Components of the Model Manager.

2.4.1 The MDB Schema

The relational schema for the Models Database is shown in Table 2.3. The @par-RVID@
parameter refers to the ID of a par-RV, for instance Capability(P,S). The model manager
stores a set of factor tables (cf. Section 1.2.1). In a graphical model, each factor is defined
by the local topology of the model template graph. For concreteness, I illustrate how
factor tables can be represented for Bayesian networks. The graph structure can be stored
straightforwardly in a database table BayesNet whose columns are child and parent. The
table entries are the IDs of par-RVs. An entry such as (Capability(P,S),Salary(P,S))
means that Capability(P,S) is a child of Salary(P,S). For each node, the MDB manages
a conditional probability table. This is a factor table that represents the factor associated
with the node’s family (see Figure 2.4(b)).

In a Bayesian network, model selection scores are decomposable. This means that there
is a local score associated with each family, such that the total score for the BN model is
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P in Professor

S in Student

Figure 2.4: (a) Bayesian network for the University domain. I omit the Registered rela-
tionship for simplicity. The network was learned from the University dataset [67]. (b)
Conditional Probability table Capability(P,S)_CPT , for the node Capability(P,S). Only
value combinations that occur in the data are shown. This is an example of a factor table.
(c) Contingency Table Capability(P,S)_CT for the node Capability(P,S) and its parents.
Both CP and CT tables are stored in an RDBMS.

the sum of the local scores. For each family, the local score is stored in the Scores table
indexed by the family’s child node.

2.4.2 Parameter Manager

Deriving predictions from a model requires estimating values for its parameters. Maximizing
the data likelihood is the basic parameter estimation method for Bayesian networks. The
maximum likelihood estimates equal the observed frequency of a child value given its parent
values.

Table 2.3: The main tables in the Models Database MDB. For a Bayesian network, the
MDB stores its structure, parameter estimates, and model selection scores.

BayesNet(child:par-RV,parent:par-RV)
@par-RVID@_CPT(@par-RVID@:par-RV,parent1:par-RV,. . . ,parentk:par-RV,cp:real)
Scores(child:par-RV,loglikelihood:real,#par:int,aic:real)
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SQL Implementation of Conditional Probability Tables With Natural Join. Given the
sufficient statistics in a contingency table, a conditional probability table containing the
maximum likelihood estimates can be computed by aggregation using SQL. As shown
in Figure 2.4(b)3, the conditional probability table Capability(P,S)_CPT , for the node
Capability(P,S) is computed as below.

SELECT count/temp.parent_count as CP,

capability(P,S), RA(P,S), salary(P,S)

FROM capability(P,S)_CT

NATURAL JOIN

(SELECT sum(Count) as parent_count,

RA(P,S), salary(P,S)

FROM capability(P,S)_CT

GROUP BY RA(P,S), salary(P,S) ) as temp

2.4.3 Model Score Computation

A typical model selection approach is to maximize the likelihood of the data, balanced by
a penalty term. For instance, the Akaike Information Criterion (AIC) is defined as follows

AIC (G,D) ≡ ln(P
Ĝ

(D))− par(G)

where Ĝ is the BN G with its parameters instantiated to be the maximum likelihood esti-
mates given the database D, and par(G) is the number of free parameters in the structure G.
The number of free parameters for a node is the product of (the possible values for the par-
ent nodes) × (the number of the possible values for the child node -1). Given the likelihood
and the number of parameters, the AIC column is computed as AIC = loglikelihood − par .
Model selection scores other than AIC can be computed in a similar way given the model
likelihood and number of parameters.

Parameter Number Computation To determine the number of parameters of the child
node @parVar-ID@, the number of possible child and parent values can be found from the
VDB.Domain table in the Random Variable Database.

Likelihood Computation As explained in Section 1.2, the log-likelihood can be com-
puted by multiplying the instantiation counts of a factor by its value. Assuming that
instantiation counts are represented in a contingency table and factor values in a factor
table, this multiplication can be elegantly performed using the Natural Join operator. For
instance, the log-likelihood score associated with the Capability(P,S) family is given by
the SQL query below.

3Same as Figure 1.5.
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SELECT Capability(P,S), SUM(CPT.cp * CT.count) AS loglikelihood

FROM MDB.Capability(P,S)_CPT as CPT

NATURAL JOIN CDB.Capability(P,S)_CT as CT

The aggregate computation in this short query illustrates how well SQL constructs
support complex computations with structured objects. This completes the description of
how the modules of FactorBase are implemented using SQL. I next show how these modules
support a key learning task: computing the predictions of an SRL model on a test instance.

2.5 Test Set Predictions

Computing probabilities over the label of a test instance is important for several tasks.

1. Classifying the test instance, which is one of the main applications of a machine
learning system for end users.

2. Comparing the class labels predicted against true class labels is a key step in several
approaches to model scoring [45].

3. Evaluating the accuracy of a machine learning algorithm by the train-and-test paradigm,
where the system is provided a training set for learning and then one test its predic-
tions on unseen test cases.

I first discuss how to compute a prediction for a single test case, then how to compute
an overall prediction score for a set of test cases. Recall that log-linear equation 1.1 is as
follows [45, Eq.7]:

P (X = x) = 1
Z

∏
Φi∈F

∏
A∈I(Φi)

Ψi(xA)

where xA represents the values of those variables in A that are necessary to compute Ψi.
Class probabilities can be derived from above Equation as follows. Let Y denote a

ground par-RV to be classified, which I refer to as the target variable. For example,
a ground atom may be Intelligence(jack). In this example, I refer to jack as the target
entity. Write X−Y for a database instance that specifies the values of all ground par-RVs,
except for the target, which are used to predict the target node. Let [X−Y , y] denote the
completed database instance where the target node is assigned value y. The log-linear model
uses the likelihood P ([X−Y , y]) as the joint score of the label and the predictive features.
The conditional probability is proportional to this score:

P (y|X−Y) ∝ P ([X−Y , y]) (2.1)

where the joint distribution on the right-hand side is defined by Equation 1.1, and the scores
of the possible class labels need to be normalized to define conditional probabilities.
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Table 2.4: SQL queries for computing target contingency tables supporting test set predic-
tion. <Attribute-List> and <Key-Equality-List> are as in Figure 3.2.

Access SELECT WHERE GROUP BY
Single COUNT(*) AS count,

<Attribute-List>, S.sid
<Key-Equality-List>
AND S.s_id = jack

<Attribute-List>

Block COUNT(*) AS count,
<Attribute-List>, S.sid

<Key-Equality-List> <Attribute-
List>, S.sid

SQL Implementation of the Log-Linear Classification Score The obvious approach to
computing the log-linear score would be to use the likelihood computation of Section 2.4.3 for
the entire database. This is inefficient because only instance counts that involve the target
entity change the classification probability. For example, if jack is the target entity, then
the grades of jill do not matter. This means that I need only consider query instantiations
that match the appropriate logical variable with the target entity (e.g., S = jack). I
show how the log-likelihood computation of Section 2.4.3 can be adapted to compute a
log-linear classification score for a set of target entities. This illustrates how the modularity
of FactorBase supports reusing its components for different tasks.

For a given set of random variables, target entity instantiation counts can be represented
in a contingency table that I call the target contingency table. Figure 2.5 shows the
format of a contingency table for target entities Jack resp. Jill.

Assuming that for each node with ID @parRVID@, a target contingency table named
CDB.target_@parRVID@_CT has been built in the Count Database CDB, the log-likelihood
SQL is as in Section 2.4.3. For instance, the contribution of the Capability(P,S) family is
computed by the SQL query shown, but with the contingency table jack_Capability(P,S)_CT
in place of Capability(P,S)_CT. The new problem is finding the target contingency table.
SQL allows us to solve this easily by restricting counts to the target entity in the WHERE
clause. To illustrate, suppose I want to modify the contingency table query of Figure 3.2
to compute the contingency table for S = jack. I add the student id to the SELECT
clause, and the join condition S.s_id = jack to the WHERE clause; see Table 2.4.4 The
FROM clause is the same as in Figure 3.2. The metaquery of Figure 3.2 is easily changed
to produce these SELECT and WHERE clauses. The details of metequery will be discussed
in section 3.3.1.

Next consider a setting where a model is to be scored against an entire test set.
This occurs for instance in the standard cross-validation computation for model scoring.
For concreteness, suppose the problem is to predict the intelligence of a set of students
Intelligence(jack), Intelligence(jill), Intelligence(student3 ), . . . , Intelligence(studentm). An
obvious approach is to loop through the set of test instances, repeating the likelihood query

4Omit apostrophes for readability.
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sid Count Cap.(P,S) RA(P,S) Salary(P,S) 
Jack 5 N/A N/A F 
Jack 5 4 high T 
…. …. …. …. …. 

Target Contingency Tables 

sid Count Cap.(P,S) RA(P,S) Salary(P,S) 
Jill 3 N/A N/A F 
Jill 7 4 high T 
… …. …. …. …. 

jill_Capability_(P,S)_CT 

jack_Capability_(P,S)_CT 

Figure 2.5: Target contingency tables for target = Jack and for target = Jill.

above for each single instance. Instead, SQL supports block access where I process the
test instances as a block. Intuitively, instead of building a contingency table for each test
instance, I build a single contingency table that stacks together the individual contingency
tables (Figure 2.5). Blocked access can be implemented in a beautifully simple manner in
SQL: I simply add the primary key id field for the target entity to the GROUP BY list; see
Table 2.4.

2.6 Evaluation

The experimental study describes how FactorBase can be used to implement a challeng-
ing machine learning application: Constructing a Bayesian network model for a relational
database. Bayesian networks are a good illustration of typical challenges and how RDBMS
capabilities can address them. I will explain the learning details in chapter 4. In the ex-
periments I followed a pre-counting approach where the count manager constructs a joint
contingency table for all par-RVs in the random variable database.

Code was written in MySQL Script and Java, JRE 1.7.0. and executed with 8GB of
RAM and a single Intel Core 2 QUAD Processor Q6700 with a clock speed of 2.66GHz
(no hyper-threading). The operating system was Linux Centos 2.6.32. The MySQL Server
version 5.5.34 was run with 8GB of RAM and a single core processor of 2.2GHz. All code
and datasets are available on-line [67].
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2.6.1 Datasets

I used six benchmark real-world databases. For detailed descriptions and the sources of
the databases, please see [67] and the references therein. Table 2.5 summarizes basic infor-
mation about the benchmark datasets. IMDb is the largest dataset in terms of number of
total tuples (more than 1.3M tuples) and schema complexity. It combines the MovieLens
database5 with data from the Internet Movie Database (IMDb)6 following [63]. Table 2.5
provides information about the number of par-RVs generated for each database. More
complex schemas generate more random variables.

Table 2.5: Datasets characteristics.
#Tuples = total number of tuples over all tables in the dataset.

Dataset #Relationship
Tables/ Total # par-RV #Tuples

Movielens 1 / 3 7 1,010,051
Mutagenesis 2 / 4 11 14,540
UW-CSE 2 / 4 14 712
Mondial 2 / 4 18 870
Hepatitis 3 / 7 19 12,927
IMDb 3 / 7 17 1,354,134

2.6.2 Results

Table 2.6 reports the number of sufficient statistics for constructing the joint contingency
table. This number depends mainly on the number of par-RVs. The number of sufficient
statistics can be quite large, over 15M for the largest dataset IMDb. Even with such large
numbers, constructing contingency tables using the SQL metaqueries is feasible, taking just
over 2 hours for the very large IMDb set. The number of Bayesian network parameters
is much smaller than the number of sufficient statistics. The difference between the num-
ber of parameters and the number of sufficient statistics measures how compactly the BN
summarizes the statistical information in the data.

Table 2.6 shows that Bayesian networks provide very compact summaries of the data
statistics. For instance for the Hepatitis dataset, the ratio is 12, 374, 892/569 > 20, 000.
The IMDb database is an outlier, with a complex correlation pattern that leads to a dense
Bayesian network structure.

Table 2.7 shows that the graph structure of a Bayesian network contains a small num-
ber of edges relative to the number of parameters. The parameter manager provides fast

5www.grouplens.org, 1M version
6www.imdb.com, July 2013
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Table 2.6: Count Manager: Sufficient Statistics and Parameters

Dataset # Database
Tuples

# Sufficient
Statistics (SS)

SS
Computing
Time (s)

#BN
Parameters

Movielens 1,010,051 252 2.7 292
Mutagenesis 14,540 1,631 1.67 721
UW-CSE 712 2,828 3.84 241
Mondial 870 1,746,870 1,112.84 339
Hepatitis 12,927 12,374,892 3,536.76 569
IMDb 1,354,134 15,538,430 7,467.85 60,059

maximum likelihood estimates for a given structure. This is because computing a local
contingency table for a BN family is fast given the joint contingency table.

Table 2.7: Model Manager Evaluation

Dataset # Edges in
Bayes Net

# Bayes Net
Parameters

Parameter
Learning
Time (s)

Movielens 72 292 0.57
Mutagenesis 124 721 0.98
UW-CSE 112 241 1.14
Mondial 141 339 60.55
Hepatitis 207 569 429.15
IMDb 195 60,059 505.61

Figure 2.6 compares computing predictions on a test set using an instance-by-instance
loop, with a separate SQL query for each instance, v.s. a single SQL query for all test
instances as a block (Table 2.4).

Table 2.8: # of Test Instances

Dataset Movielens Mutagenesis UW-CSE Mondial Hepatitis IMDb
#instance 4,742 3,119 576 505 2,376 46,275

Table 2.8 specifies the number of test instances for each dataset. I split each benchmark
database into 80% training data, 20% test data. The test instances are the ground atoms of
all descriptive attributes of entities. The blocked access method is 10-100 faster depending
on the dataset. The single access method did not scale to the large IMDb dataset (timeout
after 12 hours).

Table 2.9 reports result for the complete learning of a Bayesian network, structure and
parameters. It benchmarks FactorBase against functional gradient boosting, a state-of-the-
art multi-relational learning approach [58]. MLN_Boost learns a Markov Logic Network,
and RDN_Boost a Relational Dependency Network. I used the Boostr implementation
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Figure 2.6: Times (s) for Computing Predictions on Test Instances. The right red column
shows the time for looping over single instances using the Single Access Query of Table 2.4.
The left blue column shows the time for the Blocked Access Query of Table 2.4.

Table 2.9: Learning Time Comparison (sec) with other statistical-relational learning sys-
tems. NT = non-termination

Dataset RDN_Boost MLN_Boost FB-Total FB-Count
MovieLens 5,562 N/T 1.12 0.39
Mutagenesis 118 49 1 0.15
UW-CSE 15 19 1 0.27
Mondial 27 42 102 61.82
Hepatitis 251 230 286 186.15
IMDb N/T N/T 524.25 439.29

[44]. To make the results easier to compare across databases and systems, I divide the total
running time by the number of par-RVs for the database (Table 2.5).

Table 2.9 shows that structure learning with FactorBase is fast: even the large complex
database IMDb requires only around 8 minutes/par-RV. Compared to the boosting methods,
FactorBase shows excellent scalability: neither boosting method terminates on the IMDb
database, and while RDN_Boost terminates on the MovieLens database, it is almost 5,000
times slower than FactorBase. Much of the speed of my implementation is due to quick
access to sufficient statistics. As the last column of Table 2.9 shows, on the larger datasets
FactorBase spends about 80% of computation time on gathering sufficient statistics via the
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count manager. This suggests that a large speedup for the boosting algorithms could be
achieved if they used the FactorBase in-database design.

I do not report accuracy results because predictive accuracy is not the focus of this
chapter. On the standard conditional log-likelihood metric, as defined by Equation 2.1, the
model learned by FactorBase performs better than the boosting methods on all databases.
This is consistent with the results of previous studies [76]. FactorBase leverages RDBMS
capabilities for scalable management of statistical analysis objects. It efficiently constructs
and stores large numbers of sufficient statistics and parameter estimates. The RDBMS
support for statistical-relational learning translates into orders of magnitude improvements
in speed and scalability.

2.7 Conclusion

Compared to traditional learning with a single data table, learning for multi-relational data
requires new system capabilities. In this chapter I described FactorBase, a system that
leverages the existing capabilities of an SQL-based RDBMS to support statistical-relational
learning. Representational tasks include specifying metadata about structured first-order
random variables, and storing the structure of a learned model. Computational tasks include
storing and constructing sufficient statistics, and computing parameter estimates and model
selection scores. I showed that SQL scripts can be used to implement these capabilities,
with multiple advantages. These advantages include: 1) Fast program development through
high-level SQL constructs for complex table and count operations. 2) Managing large and
complex statistical objects that are too big to fit in main memory. For instance, some
of the benchmark databases require storing and querying millions of sufficient statistics.
Empirical evaluation on six benchmark databases showed significant scalability advantages
from utilizing the RDBMS capabilities: Both structure and parameter learning scaled well
to millions of data records, beyond what previous multi-relational learning systems can
achieve.
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Chapter 3

Computing Multi-Relational
Sufficient Statistics for Large
Databases

Relational databases contain information about attributes of entities, and which relation-
ships do and do not hold among entities. To make this information accessible for knowledge
discovery requires computing sufficient statistics. Whereas sufficient statistics with positive
relationships only can be efficiently computed by SQL joins of existing database tables, a
table join approach is not feasible for negative relationships. Negative relationships con-
cern the nonexistence of a relationship. This is because people would have to enumerate
all tuples of entities that are not related (consider the number of user pairs who are not
friends on Facebook). The cost of the enumeration approach is close to materializing the
Cartesian cross product of entity sets, which grows exponentially with the number of entity
sets involved. It may therefore seem that sufficient statistics with negative relationships
can be computed only for small databases.

Within this chapter, I describes a new dynamic programming algorithm for computing
cross-table sufficient statistics that may contain any number of positive and negative re-
lationships. I show that on the contrary, assuming that sufficient statistics with positive
relationships are available, extending them to negative relationships can be achieved in a
highly scalable manner, which does not depend on the size of the database.

3.1 Introduction

3.1.1 Virtual Join Approach

My approach to this problem introduces a new Virtual Join operation. A Virtual Join
algorithm computes sufficient statistics without materializing a cross product [94]. Sufficient
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statistics can be represented in contingency tables [57]. The Virtual Join operation is a
dynamic programming algorithm that successively builds up a large contingency table from
smaller ones, without a need to access the original data tables. I refer to it as the Möbius
Join since it is based on the Möbius extension theorem [78].

I introduce algebraic operations on contingency tables that generalize standard rela-
tional algebra operators. I establish a contingency table algebraic identity that reduces
the computation of sufficient statistics with k + 1 negative relationships to the computa-
tion of sufficient statistics with only k negative relationships. The Möbius Join applies the
identity to construct contingency tables that involve 1, 2, . . . , ` relationships (positive and
negative), until I obtain a joint contingency table for all tables in the database. A theoret-
ical upper bound for the number of contingency table operations required by the algorithm
is O(r log r), where r is the number of sufficient statistics involving negative relationships.
In other words, the number of table operations is nearly linear in the size of the required
output.

3.1.2 Evaluation

I evaluate the scalability of my Möbius Join algorithm by computing contingency tables for
seven real-world databases. The observed computation times exhibit the near-linear growth
predicted by the theoretical analysis. They range from two seconds on the simpler database
schemas to just over two hours for the most complex schema with over 1 million tuples from
the IMDb database.

Given that computing sufficient statistics for negative relationships is feasible, the re-
mainder of the experiments evaluate their usefulness. These sufficient statistics allow statis-
tical analysis to utilize the absence or presence of a relationship as a feature. The benchmark
datasets provide evidence that the positive and negative relationship features enhance dif-
ferent types of statistical analysis, as follows.

1. Feature selection: When provided with sufficient statistics for negative and positive
relationships, a standard feature selection method selects relationship features for
classification.

2. Association Rule Mining: A standard association rule learning method includes many
association rules with relationship conditions in its top 20 list.

Contributions My main contributions are as follows.

1. A dynamic program to compute a joint contingency table for sufficient statistics that
combine several tables, and that may involve any number of positive and negative
relationships.
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2. An extension of relational algebra for contingency tables that supports the dynamic
program conceptually and computationally.

Chapter Organization The main part of the chapter describes the dynamic programming
algorithm for computing a joint contingency table for all random variables. I define the
contingency table algebra. A complexity analysis establishes feasible upper bounds on
the number of contingency table operations required by the Möbius Join algorithm. I
also investigate the scalability of the algorithm empirically. The final set of experiments
examines how the cached sufficient statistics support the analysis of cross-table dependencies
for different learning and data mining tasks.

3.2 Background and Notation

As described in section 2.2, I assume a standard relational schema containing a set of
tables, each with key fields, descriptive attributes, and possibly foreign key pointers. A
database instance specifies the tuples contained in the tables of a given database schema,
see Figure 1.2 and 1.3. I also adopt the function-based notation from section 2.2.

The functor formalism is rich enough to represent the constraints of an entity-relationship
schema via the following translation: Entity sets correspond to populations, descriptive
attributes to functions, relationship tables to relationships, and foreign key constraints
to type constraints on the arguments of relationship predicates. Table 2.1 illustrates this
translation, distinguishing attributes of entities (1Attributes) and attributes of relationships
(2Attributes).

3.2.1 Related Work

Sufficient Statistics for Single Data Tables Several data structures have been pro-
posed for storing sufficient statistics defined on a single data table. One of the best-known
are ADtrees [57]. An ADtree provides a memory-efficient data structure for storing and
retrieving sufficient statistics once they have been computed. In this chapter, I focus on
the problem of computing the sufficient statistics, especially for the case where the relevant
rows have not been materialized. Thus ADtrees and contingency tables are complemen-
tary representations for different purposes: contingency tables support a computationally
efficient block access to sufficient statistics, whereas ADtrees provide a memory efficient
compression of the sufficient statistics. An interesting direction for future work is to build
an ADtree for the contingency table once it has been computed.

Relational Sufficient Statistics Schulte et al. review previous methods for computing
statistics with negative relationships [78]. They show that the fast Möbius transform can be
used in the case of multiple negative relationships. Their evaluation considered only Bayes
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net parameter learning with only one relationship. I examined computing joint sufficient
statistics over the entire database. Other novel aspects are the ct-table operations and using
the relationship chain lattice to facilitate dynamic programming.

3.2.2 Review of Contingency Table

Here I review the contingency table representation of sufficient statistics which was in-
troduced in section 2.3. Consider a fixed list of random variables. A query is a set
of (variable = value) pairs where each value is of a valid type for the random variable.
The result set of a query in a database D is the set of instantiations of the first-order
variables such that the query evaluates as true in D. For example, in the database of Fig-
ure 1.3 the result set for the query (intelligence(S) = 2 , rank(S) = 1 , popularity(P) = 3 ,
teachingability(P) = 1 , RA(P,S) = T ) is the singleton {〈kim, oliver〉}. The count of a
query is the cardinality of its result set.

For every set of variables V = {V1,. . . , Vn} there is a contingency table ct(V). This is
a table with a row for each of the possible assignments of values to the variables in V, and a
special integer column called count. The value of the count column in a row corresponding
to V1 = v1, . . . , Vn = vn records the count of the corresponding query. A conditional
contingency table, written

ct(V1, . . . , Vk|Vk+1 = vk+1, . . . , Vk+m = vk+m)

is the contingency table whose column headers are V1, . . . , Vk and whose rows comprise the
subset that match the conditions to the right of the | symbol. I assume that contingency
tables omit rows with count 0.

3.2.3 Relational Contingency Table

Many relational learning algorithms take an iterative deepening approach: explore correla-
tions along a single relationship, then along relationship chains of length 2, 3, etc. Chains
of relationships form a natural lattice structure, where iterative deepening corresponds to
moving from the bottom to the top. The Möbius Join algorithm computes contingency
tables by reusing the results for smaller relationships for larger relationship chains.

A relationship variable set is a chain if it can be ordered as a list [R1(τ 1), . . . , Rk(τ k)]
such that each relationship variable Ri+1(τ i+1) shares at least one first-order variable with
the preceding terms R1(τ 1), . . . , Ri(τ i). All sets in the lattice are constrained to form a
chain. For instance, in the University schema of Figure 1.2, a chain is formed by the two
relationship variables

Registration(S,C),RA(P,S).
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If relationship variable Teaches(P,C) is added, I may have a three-element chain

Registration(S,C),RA(P,S),Teaches(P,C).

The subset ordering defines a lattice on relationship sets/chains. Figure 3.1 illustrates the
lattice for the relationship variables in the university schema. For reasons that I explain
below, entity tables are also included in the lattice and linked to relationships that involve
the entity in question.

Figure 3.1: A lattice of relationship sets for the university schema of Figure 1.2. The Möbius
Join constructs contingency table tables for each relationship chain for each level ` of the
lattice. I reference the lines of the pseudo-code in Algorithm 3.

With each relationship chain R (Rchain for short) is associated a ct-table ctR. The
variables in the ct-table ctR comprise the relationship variables in R, and the unary/binary
descriptive attributes associated with each of the relationships. To define these, I introduce
the following notation (cf. Table 2.1).

• 1Attributes(A) denotes the attribute variables of a first-order variable A collectively
(1 for unary).

• 1Attributes(R) denotes the set of entity attribute variables for the first-order variables
that are involved in the relationships in R.

• 2Attributes(R) denotes the set of relationship attribute variables for the relationships
in R (2 for binary).

• Atts(R) ≡ 1Attributes(R) ∪ 2Attributes(R) is the set of all attribute variables in the
relationship chain R.
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In this notation, the variables in the ct-table ctR are denoted as R∪Atts(R). The goal
of the Möbius Join algorithm is to compute a contingency table for each chain R. In the
example of Figure 3.1, the algorithm computes 10 contingency tables. The ct-table for the
top element of the lattice is the joint ct-table for the entire database.

3.3 Computing Contingency Tables For Positive Relation-
ships

If a conjunctive query involves only positive relationships, then it can be computed using
SQL’s count aggregate function applied to a table join. This is relatively easy for a fixed set
of par-RVs; the challenge is a general construction that works for different sets of par-RVs.

For a fixed set, a contingency table can be computed by an SQL count(*) query of the
form

CREATE VIEW CT-table AS
SELECT COUNT(*) AS count, <VARIABLE-LIST>
FROM <TABLE-LIST>
GROUP BY <VARIABLE-LIST>
WHERE <Join-Conditions>

To illustrate, I also show one concrete SQL query for computing the positive relationship
part of the ct-table for the RA(P,S) chain.

CREATE VIEW ctT AS
SELECT COUNT(*) as count,
s.ranking, s.intelligence, p.popularity, p.teachingability, RA.capability, RA.salary
FROM professor p, student s, RA
WHERE RA.p_id = professor.p_id and RA.s_id = student.s_id
GROUP BY s.ranking, s.intelligence, p.popularity, p.teachingability,
RA.capability, RA.salary

3.3.1 Metaquery

For the general construction, I describe how the contingency table problem can be solved
using SQL with metaqueries. The FactorBase uses SQL itself to construct the count-
conjunction query. I refer to this construction as an SQL metaquery. Thus an SQL
metaquery maps schema information to the components of another SQL query.

I represent a count(*) query in four kinds of tables: the Select, From, Where and Group
By tables. Each of these tables lists the entries in the corresponding count(*) query part.
The Select table lists the entries in the Select clause of the target query, the From table
lists the entries in the From clause, and similar for Where and Group By tables. Given
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the four metaquery tables, the corresponding SQL count(*) query can be easily constructed
and executed in an application to construct the contingency table.

Given a list of par-RVs as input, the metaquery tables are constructed as follows from
the metadata in the database VDB as described in section 2.2.

FROM LIST Find the tables referenced by the par-RV’s. A par-RV references the entity
tables associated with its first-order variables (see VDB.Relationship_FOvariables).
Relational par-RV’s also reference the associated relationship table (see VDB.Relationship).

WHERE LIST Add join conditions on the matching primary keys of the referenced tables
in the WHERE clause. The primary key columns are recorded in VDB.

SELECT LIST For each attribute par-RV, find the corresponding column name in the
original database (see VDB.AttributeColumns). Rename the column with the ID of
the par-RV. Add a count column.

GROUP BY LIST The entries of the Group By table are the same as in the Select table
without the count column.

Metaqueries Entries

CREATE VIEW Select_List AS 

SELECT   RVarID, CONCAT(‘COUNT(*)',' as "count"') AS Entries  

FROM      VDB.Relationship

UNION DISTINCT 

SELECT   RVarID, AVarID AS Entries  

FROM       VDB.Relationship_Attributes;

COUNT(*) as “count"

`Popularity(P)` 

`Teachingability(P)` 

`Intelligence(S)`

`Ranking(S)` 

CREATE VIEW From_List AS 

SELECT     RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries 

FROM    VDB.Relationship_FOvariables

UNION DISTINCT 

SELECT     RVarID, CONCAT('@database@.',TABLE_NAME) AS Entries

FROM    VDB.Relationship;

@database@.prof AS P

@database@.student AS S

@database@.RA AS `RA`

CREATE VIEW Where_List AS 

SELECT 

RVarID, CONCAT(RVarID,'.',COLUMN_NAME,' = ',

FO-ID,'.', REFERENCED_COLUMN_NAME) AS Entries 

FROM   VDB.Relationship_FOvariables;

`RA`.p_id = P.p_id

`RA`.s_id =S.s_id

Figure 3.2: Example of metaquery results based on university database and the par-RV
metadata (Table 2.2).

Figure 3.2 shows an example of a metaquery for the university database. This metaquery
defines a view that in turn defines a contingency table for the random variable list associated
with the relationship table RA. This list includes the entity attributes of professors and of
students, as well as the relationship attributes of the RA relationship. The Bayesian network
of Figure 1.5 was learned from this contingency table. The contingency table defined by
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the metaquery of Figure 3.2 contains only rows where the value of RA is true. Even more
efficient than SQL count queries is the Tuple ID propagation method which could be used
for computing query counts with positive relationships only [94].

In the next section I assume that contingency tables for positive relationships only have
been computed already, and consider how such tables can be extended to full contingency
tables with both positive and negative relationships (e.g, RA is true and RA is false).

3.4 Computing Contingency Tables For Negative Relation-
ships

I describe a Virtual Join algorithm that computes the required sufficient statistics without
materializing a cross product of entity sets.

1. I introduce an extension of relational algebra that I term contingency table algebra.
The purpose of this extension is to show that query counts using k + 1 negative
relationships can be computed from two query counts that each involve at most k
relationships.

2. A dynamic programming algorithm applies the algebraic identify repeatedly to build
up a complete contingency table from partial tables.

3.4.1 Contingency Table Algebra

I introduce relational algebra style operations defined on contingency tables.

Unary Operators

Selection σφct selects a subset of the rows in the ct-table that satisfy condition φ. This is
the standard relational algebra operation except that the selection condition φ may
not involve the count column.

Projection πV1,...,Vk
ct selects a subset of the columns in the ct-table, excluding the count

column. The counts in the projected subtable are the sum of counts of rows that
satisfy the query in the subtable. The ct-table projection πV1,...,Vk

ct can be defined
by the following SQL code template:

SELECT SUM(count) AS count, V1, . . . , Vk

FROM ct
GROUP BY V1, . . . , Vk

Conditioning χφct returns a conditional contingency table. Ordering the columns as
(V1, . . . , Vk, . . . , Vk+j), suppose that the selection condition is a conjunction of values
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of the form
φ = (Vk+1 = vk+1, . . . , Vk+j = vk+j).

Conditioning can be defined in terms of selection and projection by the equation:

χφct = πV1,...,Vk
(σφct)

Binary Operators

I use V, U in SQL templates to denote a list of column names in arbitrary order. The
notation ct1.V = ct2.V indicates an equijoin condition: the contingency tables ct1 and ct2

have the same column set V and matching columns from the different tables have the same
values.

Cross Product The cross-product of ct1(U), ct2(V) is the Cartesian product of the
rows, where the product counts are the products of count. The cross-product can be
defined by the following SQL template:

SELECT
(ct1.count ∗ ct2 .count) AS count, U, V
FROM ct1, ct2

Addition The count addition ct1(V) + ct2(V) adds the counts of matching rows, as in
the following SQL template.

SELECT ct1.count+ct2.count AS count, V
FROM ct1, ct2

WHERE ct1.V = ct2.V

If a row appears in one ct-table but not the other, I include the row with the count
of the table that contains the row.

Subtraction The count difference ct1(V) − ct2(V) equals ct1(V) + (−ct2(V)) where
−ct2(V) is the same as ct2(V) but with negative counts. Table subtraction is defined
only if (i) without the count column, the rows in ct1 are a superset of those in ct2,
and (ii) for each row that appears in both tables, the count in ct1 is at least as great
as the count in ct2.

Implementation

The selection operator can be implemented using SQL as with standard relational algebra.
Projection with ct-tables requires use of the GROUP BY construct as shown in section 3.4.1
[Unary Operators].
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For addition/subtraction, assuming that a sort-merge join is used [88], a standard analy-
sis shows that the cost of a sort-merge join is size(table1 )+size(table2 )+ the cost of sorting
both tables.

The cross product is easily implemented in SQL as shown in section 3.4.1 [Binary Op-
erators]. The cross product size is quadratic in the size of the input tables.

3.4.2 Lattice Computation of Contingency Tables

This section describes a method for computing the contingency tables level-wise in the
relationship chain lattice. I start with a contingency table algebra equivalence that allows
us to compute counts for rows with negative relationships from rows with positive relations.
Following [57], I use a “don’t care” value ∗ to indicate that a query does not specify the
value of a node. For instance, the query R1 = T, R2 = ∗ is equivalent to the query R1 = T.

Algorithm 2: The Pivot function returns a conditional contingency table for a set of
attribute variables and all possible values of the relationship Rpivot , including Rpivot =
F. The set of conditional relationships R = (Rpivot, . . . , R`) may be empty in which
case the Pivot computes an unconditional ct-table.
Input: Two conditional contingency tables

ctT := ct(Vars, 2Attributes(Rpivot)|Rpivot = T,R = T) and
ct∗ := ct(Vars|Rpivot = ∗,R = T) .

Precondition: The set Vars does not contain the relationship variable Rpivot nor any
of its descriptive attributes 2Attributes(Rpivot).;
Output: The conditional contingency table

ct(Vars, 2Attributes(Rpivot),Rpivot |R = T) .
1: ctF := ct∗ − πVarsctT.

{Implements the algebra Equation 3.1 in proposition 1.}
2: ct+

F := extend ctF with columns Rpivot everywhere false and 2Attributes(Rpivot)
everywhere n/a.

3: ct+
T := extend ctT with columns Rpivot everywhere true.

4: return ct+
F ∪ ct+

T

Proposition 1. Let R be a relationship variable and let R be a set of relationship variables.
Let Vars be a set of variables that does not contain R nor any of the 2Attributes of R. Let
X1, . . . , Xl be the first-order variables that appear in R but not in Vars, where l is possibly
zero. Then I have

ct(Vars ∪ 1Attributes(R)|R = T,R = F) = (3.1)

ct(Vars|R = T,R = ∗)× ct(X1 )× · · · × ct(Xl)

− ct(Vars ∪ 1Attributes(R)|R = T,R = T ).

37



Figure 3.3: Top: Equation (3.1) is used to compute the conditional contingency table ctF =
ct(1Attributes(R)|R = F). (Set Vars = ∅, R = RA(P,S), R = ∅). Bottom: The Pivot
operation computes the contingency table ctRA(P,S) for the relationship RA(P,S) := Rpivot.
The ct-table operations are implemented using dynamic SQL queries as shown. Lists of
column names are abbreviated as shown and also as follows. CL(ct∗) = CL(temp) =
CL(ctF ), CL(ct) = CL(ct+

F ) = CL(ct+
T). I reference the corresponding lines of Algorithms 2

and 3.

If l = 0, the equation holds without the cross-product term.

Proof. The equation

ct(Vars ∪ 1Attributes(R)|R = T,R = ∗) = (3.2)

ct(Vars ∪ 1Attributes(R)|R = T,R = T )+

ct(Vars ∪ 1Attributes(R)|R = T,R = F)
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holds because the set Vars ∪ 1Attributes(R) contains all first-order variables in R.1 Equa-
tion (3.2) implies

ct(Vars ∪ 1Attributes(R)|R = T,R = F) = (3.3)

ct(Vars ∪ 1Attributes(R)|R = T,R = ∗)−

ct(Vars ∪ 1Attributes(R)|R = T,R = T).

To compute the ct-table conditional on the relationship R being unspecified, I use the
equation

ct(Vars ∪ 1Attributes(R)|R = T,R = ∗) = (3.4)

ct(Vars|R = T,R = ∗)× ct(X1 )× · · · × ct(Xl)

which holds because if the set Vars does not contain a first-order variable of R, then the
counts of the associated 1Attributes(R) are independent of the counts for Vars. If l = 0,
there is no new first-order variable, and Equation (3.4) holds without the cross-product
term. Together Equations (3.3) and (3.4) establish the proposition.

Figure 3.3 illustrates Equation (3.1). The construction of the ctF table in Algorithm 2
provides pseudo-code for applying Equation (3.1) to compute a complete ct-table, given
a partial table where a specified relationship variable R is true, and another partial table
that does not contain the relationship variable. I refer to R as the pivot variable. For
extra generality, Algorithm 2 applies Equation (3.1) with a condition that lists a set of
relationship variables fixed to be true. Figure 3.3 illustrates the Pivot computation for the
case of only one relationship. Algorithm 3 shows how the Pivot operation can be applied
repeatedly to find all contingency tables in the relationship lattice.

Initialization. Compute ct-tables for entity tables. Compute ct-tables for each single
relationship variable R , conditional on R = T. If R = ∗, then no link is specified between
the first-order variables involved in the relation R. Therefore the individual counts for each
first-order variable are independent of each other and the joint counts can be obtained by
the cross product operation. Apply the Pivot function to construct the complete ct-table
for relationship variable R.

Lattice Computation. The goal is to compute ct-tables for all relationship chains of
length > 1. For each relationship chain, order the relationship variables in the chain ar-
bitrarily. Make each relationship variable in order the Pivot variable Ri. For the current
Pivot variable Ri, find the conditional ct-table where Ri is unspecified, and the subsequent
relations Rj with j > i are true. This ct-table can be computed from a ct-table for a shorter
chain that has been constructed already. The conditional ct-table has been constructed al-

1I assume here that for each first-order variable, there is at least one 1Attribute, i.e., descriptive attribute.
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Algorithm 3:Möbius Join algorithm for Computing the Contingency Table for Input
Database.
Input: A relational database D; a set of variables
Output: A contingency table that lists the count in the database D for each

possible assignment of values to each variable.
1: for each first-order variables X do
2: compute ct(1Attributes(X)) using SQL queries.
3: end for
4: for each relationship variable R do
5: ct∗ := ct(X)× ct(Y ) where X,Y are the first-order variables in R.
6: ctT := ct(1Attributes(R)|R = T) using SQL joins.
7: Call Pivot(ctT, ct∗) to compute ct(1Attributes(R), 2Attributes(R),R).
8: end for
9: for Rchain length ` = 2 to m do

10: for each Rchains R = R1, . . . , R` do
11: Current_ct := ct(1Attributes(R1 , . . . ,R`), 2Attributes(R1 , . . . ,R`)|R1 =

T, . . . ,R` = T) using SQL joins.
12: for i = 1 to ` do
13: if i equals 1 then
14: ct∗ := ct(1Attributes(R2 , . . . ,R`), 2Attributes(R2 , . . . ,R`)|R1 = ∗,R2 =

T, . . . ,R` = T)× ct(X) where X is the first-order variable in R1, if any, that
does not appear in R2, . . . , R` {ct∗ can be computed from a ct-table for a
Rchain of length `− 1.}

15: else
16: 1Attributes ī := 1Attributes(R1 , . . . ,Ri−1 ,Ri+1 , . . . ,R`).
17: 2Attributes ī := 2Attributes(R1 , . . . ,Ri−1 ,Ri+1 , . . . ,R`).
18: ct∗ := ct(1Attributes ī , 2Attributes ī ,R1 , . . . ,Ri−1 )|Ri = ∗,Ri+1 = T, . . . ,R` =

T)× ct(Y ) where Y is the first-order variable in Ri, if any, that does not
appear in R.

19: end if
20: Current_ct := Pivot(Current_ct, ct∗).
21: end for{Loop Invariant: After iteration i, the table Current_ct equals

ct(1Attributes(R1 , . . . ,R`), 2Attributes(R1 , . . . ,R`),R1 , . . . ,Ri |Ri+1 =
T, . . . ,R` = T)}

22: end for{Loop Invariant: The ct-tables for all Rchains of length ` have been
computed.}

23: end for
24: return the ct-table for the Rchain involves all the relationship variables.

ready, where Ri is true, and the subsequent relations are true (see loop invariant). Apply
the Pivot function to construct the complete ct-table, for any Pivot variable Ri, conditional
on the subsequent relations being true.
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Presentation Title At Venue 

lines Operation Resulting ct-table 

  11    Reg(S,C) = T, RA(P,S) = T   Current_ct 

  13-14    i = 1,  Reg(S,C) = *, RA(P,S) = T    ct* 

  20    PIVOT   Current_ct 

  16-18    i = 2,  RA(P,S) = *    ct* 

  20   PIVOT     Final ct-table for Reg(S,C),RA(P,S) 

Figure 3.4: Illustrates the relationship chain loop of Algorithm 3 (lines 11-21) for the chain
R = Reg(S,C),RA(P,S). This loop is executed for each relationship chain at each level.

3.4.3 Complexity Analysis

The key point about the Möbius Join (MJ ) algorithm is that it avoids materializing the
cross product of entity tuples. The algorithm accesses only existing tuples, never constructs
nonexisting tuples. The number of ct-table operation is therefore independent of the number
of data records in the original database. The Virtual Join algorithm scales well with the
number of rows, but not with the number of columns and relationships in the database.
This limitation stems from the fact that the contingency table size grows exponentially with
the number of random variables in the table.

I bound the total number of ct-algebra operations performed by the Möbius Join al-
gorithm in terms of the size of its output: the number of sufficient statistics that involve
negative relationships.

Proposition 2. The number of ct-table operations performed by the Möbius Join algorithm
is bounded as

#ct_ops = O(r · log2 r)

where r is the number of sufficient statistics that involve negative relationships.

To analyze the computational cost, I examine the total number of ct-algebra operations
performed by the Möbius Join algorithm. I provide upper bounds in terms of two param-
eters: the number of relationship nodes m, and the number of rows r in the ct-table that
involve negative relationships. For these parameters I establish that

#ct_ops = O(r · log2 r) = O(m · 2 m).

This shows the efficiency of the algorithm for the following reasons. (i) Since the time cost
of any algorithm must be at least as great as the time for writing the output, which is as
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least as great as r, the Möbius Join algorithm adds at most a logarithmic factor to this
lower bound. (ii) The second upper bound means that the number of ct-algebra operations
is fixed-parameter tractable with respect to m.2 In practice the number m is on the order
of the number of tables in the database, which is very small compared to the number of
tuples in the tables.

Derivation of Upper Bounds. For a given relationship chain of length `, the Möbius
Join algorithm goes through the chain linearly (Algorithm 3 inner for loop line 12). At
each iteration, it computes a ct∗ table with a single cross product, then performs a single
Pivot operation. Each Pivot operation requires three ct-algebra operations. Thus overall,
the number of ct-algebra operations for a relationship chain of length ` is 6 · ` = O(`). For
a fixed length `, there are at most

(m
`

)
relationship chains. Using the known identity3

m∑
`=1

(
m

`

)
· ` = m · 2m−1 (3.5)

I obtain the O(m · 2m−1) = O(m · 2m) upper bound.
Here I give a quick proof of the identity (3.5).

Proof. With the Binomial theorem, for any non-negative integers l,m, the binomial formula
of two variables a, b is

f(a, b) =
m∑
`=0

(
m

`

)
· am−` · b` = (a+ b)m.

Suppose I substitute a with one, for any b, I have

f(1, b) =
m∑
`=0

(
m

`

)
· b` = (1 + b)m.

And then I could compute the partial derivative with respect to b

f ′b(1, b) =
m∑
`=1

(
m

`

)
· ` · b`−1 = m · (1 + b)m−1.

By substituting b with one, we end the proof

f ′b(1, 1) =
m∑
`=1

(
m

`

)
· ` · 1`−1 =

m∑
`=1

(
m

`

)
· ` = m · (2)m−1.

2For arbitrary m, the problem of computing a ct table in a relational structure is #P-complete [16,
Prop.12.4].

3math.wikia.com/wiki/Binomial_coefficient, Equation 6a
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For the upper bound in terms of ct-table rows r, I note that the output ct-table can
be decomposed into 2m subtables, one for each assignment of values to the m relationship
nodes. Each of these subtables contains the same number of rows d , one for each possible
assignment of values to the attribute nodes. Thus the total number of rows is given by
r = d · 2m. Therefore I have m · 2m = log2(r/d) · r/d ≤ log2(r) · r. Thus the total number of
ct-algebra operations is O(r · log2(r)).

From this analysis I see that both upper bounds are overestimates. (1) Because rela-
tionship chains must be linked by foreign key constraints, the number of valid relationship
chains of length ` is usually much smaller than the number of all possible subsets

(m
`

)
. (2)

The constant factor d grows exponentially with the number of attribute nodes, so log2(r) · r
is a loose upper bound on log2(r/d) · r/d. I conclude that the number of ct-algebra oper-
ations is not the critical factor for scalability, but rather the cost of carrying out a single
ct-algebra operation. In the benchmark datasets, the number of sufficient statistics was
feasible, as I report below. In Section 3.7 below I discuss options in case the number of
sufficient statistics grows too large.

Table 3.1: Notations for time complexity analysis

number of relationship tables m

number of entity tables k

size of entity table rows (domain) n

size of relationship table rows j

number of attribute columns (predicates) c

number of values per attributes v

number of sufficient statistics for true relationships only s = vc ∗m
number of sufficient statistics for positive and negative relationships ss = vc ∗m ∗ 2m
time complexity of Virtual Join algorithm with respect to s O(s ∗ (2m − 1))
number of rows for all cross table join cp = nk ∗ jm
the compression ratio of cp over ss cr = cp

ss

Time Complexity Analysis in terms of input raw database. The Virtual Join
algorithm scales well with the number of rows, but not with the number of columns and
relationships in the database. This limitation stems from the fact that the contingency
table size grows exponentially with the number of random variables in the table.

To analysis the time complexity in terms of the input raw database with multiple tables, I
introduce the notations for some important parameters (cf. Table 3.1). Let s be the number
of sufficient statistics where all relationship variables are true. For instance, if there are
c attributes, the number of values per attributes is v, then s = vc ∗ m. The number of
sufficient statistics for the whole input database with positive and negative relationships
can be represented as

ss = vc ∗m ∗ 2m.
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Then I have
r = vc ∗m ∗ (2m − 1) = s ∗ (2m − 1),

since there are 2m − 1 combinations of relationship values with at least one negative rela-
tionship. So the time complexity of Virtual Join algorithm with respect to s is

O(s ∗ (2m − 1)).

The experiments in section 3.5.2 will demonstrate the compression ratio cr is an important
parameter as well. Give the notations in Table 3.1, I establish that

cr = cp

ss
= nk ∗ jm

vc ∗ 2m .

These numbers align into two independent computational spaces. Generally the higher
the compression ratio, the higher the time savings. However, if the compression ratio is
unusually low, so materializing the cross-product was faster. For further depth analysis of
how cr will affect the performance of the Virtual Join algorithm, I leave it to future work.

3.5 Evaluation of Contingency Table Computation: Scalabil-
ity

3.5.1 Datasets

I used seven benchmark real-world databases. For detailed descriptions and the sources of
the databases, please see reference [76]. Table 3.2 summarizes basic information about the
benchmark datasets. A self-relationship relates two entities of the same type (e.g. Borders
relates two countries in Mondial). Random variables for each database were defined as
described in Section 3.2 (see also [76]). IMDb is the largest dataset in terms of number of
total tuples (more than 1.3M tuples) and schema complexity. It combines the MovieLens
database4 with data from the Internet Movie Database (IMDb)5 following [63].

3.5.2 Joint Contingency Tables With Negative Relationships

In this subsection I compare two different approaches for constructing the joint contingency
tables for all variables together, for each database: the Möbius Join algorithm (MJ)
vs. materializing the cross product (CP) of the entity tables for each first-order
variable (primary keys). Cross-checking the MJ contingency tables with the cross-product
contingency tables confirmed the correctness of the implementation. Figure 3.5 shows the

4www.grouplens.org, 1M version
5www.imdb.com, July 2013
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Figure 3.5: Excerpt from the joint contingency table for the university database of Fig-
ure 1.3.

Table 3.2: Datasets characteristics.
#Tuples = total number of tuples over all tables in the dataset.

Dataset #Relationship
Tables/ Total

#Self
Relationships #Tuples #Attributes

Movielens 1 / 3 0 1,010,051 7
Mutagenesis 2 / 4 0 14,540 11
Financial 3 / 7 0 225,932 15
Hepatitis 3 / 7 0 12,927 19
IMDb 3 / 7 0 1,354,134 17
Mondial 2 / 4 1 870 18
UW-CSE 2 / 4 2 712 14

joint contingency table for the university database. The value of a relationship attribute is
undefined for entities that are not related.

Table 3.3 compares the time and space costs of the MJ vs. the CP approach. The cross
product was materialized using an SQL query. The ratio of the cross product size to the
number of statistics in the ct-table measures how much compression the ct-table provides
compared to enumerating the cross product. It shows that cross product materialization
requires an infeasible amount of space resources. The ct-table provides a substantial com-
pression of the statistical information in the database, by a factor of over 4,500 for the
largest database IMDb.

Computation Time. The numbers shown are the complete computation time for all
statistics. For faster processing, both methods used a B+ tree index built on each column in
the original dataset. The MJ method also utilized B+ indexes on the ct-tables. I include the
cost of building these indexes in the reported time. The Möbius Join algorithm returned a
contingency table with negative relationships in feasible time. On the biggest dataset IMDb
with 1.3 million tuples, it took just over 2 hours.
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Table 3.3: Constructing the contingency table for each dataset.
M = million. N.T. = non-termination. Compress Ratio = CP-#tuples/#Statistics.
Computation times are given in seconds.

Dataset MJ-time(s) CP-time(s) CP-#tuples #Statistics Compress
Ratio

Movielens 2.70 703.99 23M 252 93,053.32
Mutagenesis 1.67 1096.00 1M 1,631 555.00
Financial 1421.87 N.T. 149,046,585M 3,013,011 49,467,653.90
Hepatitis 3536.76 N.T. 17,846M 12,374,892 1,442.19
IMDb 7467.85 N.T. 5,030,412,758M 15,538,430 323,740,092.05
Mondial 1112.84 132.13 5M 1,746,870 2.67
UW-CSE 3.84 350.30 10M 2,828 3,607.32

The cross product construction did not always terminate, crashing after around 4, 5,
and 10 hours on Financial, IMDb and Hepatitis respectively. When it did terminate, it took
orders of magnitude longer than the MJ method except for the Mondial dataset. Generally
the higher the compression ratio, the higher the time savings. On Mondial the compression
ratio is unusually low, so materializing the cross-product was faster.

3.5.3 Contingency Tables with Negative Relationships vs. Positive Rela-
tionships Only

In this section I compare the time and space costs of computing both positive and
negative relationships, vs. positive relationships only. I use the following terminology.
Link Analysis On refers to using a contingency table with sufficient statistics for both
positive and negative relationships. An example is table ct in Figure 3.3. Link Analysis
Off refers to using a contingency table with sufficient statistics for positive relationships
only. An example is table ct+

T in Figure 3.3. Table 3.4 shows the number of sufficient
statistics required for link analysis on vs. off. The difference between the link analysis on
statistics and the link analysis off statistics is the number of Extra Statistics.

The Extra Time column shows how much time the MJ algorithm requires to compute
the Extra Statistics after the contingency tables for positive relationships are constructed
using SQL joins.

As Figure 3.6 illustrates, the Extra Time stands in a nearly linear relationship to the
number of Extra Statistics, which confirms the analysis of Section 3.4.3. Figure 3.7 shows
that most of the MJ run time is spent on the Pivot component (Algorithm 2) rather than
the main loop (Algorithm 3). In terms of ct-table operations, most time is spent on sub-
traction/union rather than cross product.
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Table 3.4: Number of Sufficient Statistics for Link Analysis On and Off.
Extra Time refers to the total MJ time (Table 3.3 Col.2) minus the time for computing the
positive statistics only.

Dataset Link On Link Off #extra statistics extra time (s)
MovieLens 252 210 42 0.27
Mutagenesis 1,631 565 1,066 0.99
Financial 3,013,011 8,733 3,004,278 1416.21
Hepatitis 12,374,892 2,487 12,372,405 3535.51
IMDb 15,538,430 1,098,132 14,440,298 4538.62
Mondial 1,746,870 0 1,746,870 1112.31
UW-CSE 2,828 2 2,826 3.41

Figure 3.6: Möbius Join Extra Time (s)

3.6 Evaluation of Statistical Applications: Usefulness

I evaluate the usefulness on two different types of cross-table statistical analysis: feature
selection and association rule mining.
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Figure 3.7: Breakdown of MJ Total Running Time

3.6.1 Feature Selection

For each database, I selected a target for classification, then used Weka’s CFS6 feature
subset selection method (Version 3.6.7) to select features for classification [28], given a con-
tingency table. The idea is that if the existence of relationships is relevant to classification,
then there should be a difference between the set selected with link analysis on and that
selected with link analysis off. I measure how different two feature sets are by 1-Jaccard’s
coefficient:

Distinctness(A,B) = 1 − A ∩ B
A ∪ B .

Table 3.5: Selected Features for Target variables for Link Analysis Off vs. Link Analysis
On. Rvars denotes the number of relationship features selected.

Dataset Target variable
# Selected Attributes

DistinctnessLink
Analysis

Off

Link Analysis On
/ Rvars

MovieLens Horror(M) 2 2 / 0 0.0
Mutagenesis inda(M) 3 3 / 0 0.0
Financial balance(T) 3 2 / 1 1.0
Hepatitis sex(D) 1 2 / 1 0.5
IMDb avg_revenue(D) 5 2 / 1 1.0
Mondial percentage(C) Empty CT 4 / 0 1.0
UW-CSE courseLevel(C) 1 4 / 2 1.0

Distinctness measures how different the selected feature subset is with link analysis on
and off, on a scale from 0 to 1. Here 1 = maximum dissimilarity. Table 3.5 compares the

6The Correlation Feature Selection (CFS) measure evaluates subsets of features on the basis of the
following hypothesis: “Good feature subsets contain features highly correlated with the classification, yet
uncorrelated to each other”[29].
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feature sets selected. In almost all datasets, sufficient statistics about negative relationships
generate new relevant features for classification. In 4/7 datasets, the feature sets are disjoint
(coefficient = 1). For the Mutagenesis and MovieLens data sets, no new features are selected.

3.6.2 Association Rules

A widely studied task is finding interesting association rules in a database. I considered
association rules of the form body → head, where body and head are conjunctive queries.
An example of a cross-table association rule for Financial is

statement_freq.(Acc) = monthly → HasLoan(Acc,Loan) = T.

I searched for interesting rules using both the link analysis off and the link analysis on
contingency tables for each database. The idea is that if a relationship variable is rele-
vant for other features, it should appear in an association rule. With link analysis off, all
relationship variables always have the value T, so they do not appear in any association
rule. I used Weka’s Apriori7 implementation to search for association rules in both modes.
The interestingness metric was Lift8. Parameters were set to their default values. Table 3.6
shows the number of rules that utilize relationship variables with link analysis on, out of the
top 20 rules. In all cases, a majority of rules utilize relationship variables, in Mutagenesis
and IMDb all of them do.

Table 3.6: Number of top 20 Association Rules that utilize relationship variables.

Dataset MovieLens Mutagenesis Financial Hepatitis IMDb Mondial UW-CSE
# rules 14/20 20/20 12/20 15/20 20/20 16/20 12/20

3.7 Conclusion

Utilizing the information in a relational database for statistical modelling and pattern min-
ing requires fast access to multi-relational sufficient statistics, that combine information
across database tables. I presented an efficient dynamic program that computes sufficient
statistics for any combination of positive and negative relationships, starting with a set
of statistics for positive relationships only. My dynamic program performs a Virtual Join
operation, that counts the number of statistics in a table join without actually constructing
the join. I showed that the run time of the algorithm is O(r log r), where r is the number of
sufficient statistics to be computed. The computed statistics are stored in contingency ta-
bles. I introduced contingency table algebra, an extension of relational algebra, to elegantly

7Apriori heuristic: if any length k pattern is not frequent in the database, its length (k + 1) super-pattern
can never be frequent [1]

8Let X be an item-set, and X → Y be an association rule. The Lift value of this rule is defined as the
ratio of the observed support to that expected if X and Y were independent.
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describe and efficiently implement the dynamic program. Empirical evaluation on seven
benchmark databases demonstrated the scalability of the algorithm; I compute sufficient
statistics with positive and negative relationships in databases with over 1 million data
records. The experiments illustrated how access to sufficient statistics for both positive and
negative relationships enhances feature selection and rule mining.

While I have focused on statistical analysis, one potential application is to complement
the traditional ETL (extraction/transformation/loading) tasks [31]. The ETL + single table
machine learning training based model can take advantage of the extra sufficient statistics by
incorporating both positive and negative relationships. This could reduce the information
loss caused by propositionalization process as well. The computationally efficient block
access to sufficient statistics is beneficial to learning tasks (e.g., classification) as long as
the classifier accepts the weights of the instances as input. For instance, the contingency
tables can be loaded directly into decision tree learner of Weka.
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Chapter 4

Learning Bayes Nets for Relational
Data With Link Uncertainty

Classic AI research established a fundamental distinction between two types of probabili-
ties associated with a relational structure [30, 4]. Class-level probabilities also called type
1 probabilities are assigned to the rates, statistics, or frequencies of events in a database.
These concern classes of entities (e.g., students, courses, users) rather than the specific enti-
ties. Instance-level probabilities also called type 2 probabilities are assigned to specific, non-
repeatable events or the properties of specific entities. Syntactically, class-level probabilities
are assigned to formulas that contain 1st-order variables (e.g., P (Flies(X)|Bird(X) = 90 %,
or “birds fly” with probability 90%), whereas instance-level probabilities are assigned to
formulas that contain constants only (e.g., P (Flies(tweety) = 90 %). Within in this chapter
I focus on the class-level probabilities and will discuss the instance-level probabilities in
chapter 5.

4.1 Background

Standard machine learning techniques are applied to data stored in a single table, that is, in
nonrelational, propositional, or “flat” format [56]. Relational data introduces new machine
learning problem, building a model that can answer generic statistical queries about classes
of individuals in the database [24]. The field of SRL aims to extend machine learning
algorithms to relational data [22, 12]. Building a generative statistical model for the variables
in an application domain [22] is one of the major tasks. The generative statistical model
class studied in this chapter are extensions of Bayes nets (BNs) for relational structures.

Examples of such class-level queries include: 1), In a social network, a class-level query
may be “what is the percentage of friendship pairs where both are women?” 2), In a Uni-
versity database,“What fraction of the grades are awarded to highly intelligent students?”
3), A movie database example would be “what is the percentage of male users who have
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given a high rating to an action movie?” As the examples illustrate, class-level probabilities
concern the proportion, or rate of generic events and conditions, rather than the attributes
and links of individual entities. There are several applications of class-level models:

Statistical first-order Patterns. AI research into combining first-order logic and prob-
ability investigated in depth the representation of statistical patterns in relational
structures [30, 4]. Often such patterns can be expressed as generic statements about
the average member of a class, like “intelligent students tend to take difficult courses”.

Knowledge Discovery Dependencies provide valuable insights in themselves. For in-
stance, a web search manager may wish to know whether if a user searches for a video
in Youtube for a product, they are also likely to search for it on the web.

Relevance Determination Once dependencies have been established, they can be used as
a relevance filter for focusing further network analysis only on statistically significant
associations. For example, the classification and clustering methods of Sun and Han
[84] for heterogeneous networks assume that a set of “metapaths” have been found
that connect link types that are associated with each other.

Query Optimization The Bayes net model can also be used to estimate relational statis-
tics, the frequency with which statistical patterns occur in the database [77]. This
kind of statistical model can be applied for database query optimization [24].

4.2 Approach and Contribution

Algorithms of structure learning for directed graphical models with link uncertainty have
been previously described [21]. However to my best knowledge, no implementations of
such structure learning algorithms for directed graphical models are available. The system
FactorBase builds on the state-of-the-art Bayes net learner for relational data. Implementa-
tions exist for other types of graphical models, specifically Markov random fields (undirected
models) [15] and dependency networks (directed edges with cycles allowed) [58]. Structure
learning programs for Markov random fields are provided by Alchemy [15] and Khot et al
[44]. Khot et al. use boosting to provide a state-of-the-art dependency network learner.
None of these programs are able to return a result on half of the datasets because they are
too large. I restrict the scope of this chapter to directed graphical models and do not go
further into undirected model. For an extensive comparison of the learn-and-join Bayes net
learning algorithm with Alchemy please see [76].

As introduced in section 1.2.1, I focus on building a Bayes net model for relational
data, using the Parametrized Bayes nets (PBNs) in this chapter. The nodes in a PBN are
constructed with functors and first-order variables (e.g., gender(X) may be a node).
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Contributions Scalable analysis for relational data with multiple link types is a challeng-
ing problem. In this chapter, I describe a method for learning a Bayes net that captures
simultaneously correlations between link types, link features, and attributes of nodes. My
method conducts bottom-up search through the lattice of table joins hierarchically. De-
pendencies (Bayes net edges) discovered on smaller joins are propagated to larger joins.
The different table joins integrate information about the presence or absence of relation-
ships across multiple tables. This is an extension of the current state-of-the-art Bayes net
learning algorithm for relational data with multiple links given link uncertainty[76].

Such a Bayes net provides a succinct graphical representation of complex statistical-
relational patterns. Previous work on learning Bayes nets for relational data was restricted
to correlations among attributes given the existence of links [76]. The larger class of
correlations examined in my new approach includes two additional kinds:

1. Dependencies between different types of links.

2. Dependencies among node attributes given the absence of a link between the nodes.

4.3 Bayes Nets for Relational Data

I review some key concepts of the Bayes Nets as I discussed in the section 1.2.1. A Bayes
Net (BN) is a directed acyclic graph (DAG) whose nodes comprise a set of random
variables and conditional probability parameters. For each assignment of values to the
nodes, the joint probability is specified by the product of the conditional probabilities,
P (child|parent_values). A Parametrized random variable is of the form f(X1, . . . , Xa),
where the populations associated with the variables are of the appropriate type for the func-
tor. A Parametrized Bayes Net (PBN) is a Bayes net whose nodes are Parametrized
random variables [65], e.g, Figure 4.11. If a Parametrized random variable appears in a
Bayes net, I often refer to it simply as a node.

4.4 Bayes Net Learning With Link Correlation Analysis

Constructing a Bayes Net (BN) for a relational database is very challenging. For single-table
data, Bayes Net learning has been considered as a benchmark application for precomputing
sufficient statistics [57, 54]. Given an assignment of values to its parameters, a Bayes Net
represents a joint distribution over both attributes and relationships in a relational database.

To learn correlations between link types, I need to provide the Bayes net with data
about when links are present and when they are absent. FactorBase extends the previously
existing learn-and-join method (LAJ), which is the state-of-the-art for Bayes net learning
in relational databases [76] to support the analysis with link uncertainty. The LAJ method

1Repeat the Figure 2.4 for easy review.
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Figure 4.1: (a) Bayesian network for the University domain. I omit the Registered rela-
tionship for simplicity. The network was learned from the University dataset [67]. (b)
Conditional Probability table Capability(P,S)_CPT , for the node Capability(P,S). Only
value combinations that occur in the data are shown. This is an example of a factor table.
(c) Contingency Table Capability(P,S)_CT for the node Capability(P,S) and its parents.
Both CP and CT tables are stored in an RDBMS.

takes as input a contingency table for the entire database, so I can apply it with both link
analysis on and link analysis off to obtain two different BN structures for each database.

The experiment in section 4.5 is the first evaluation of the LAJ method with link analysis
on. I use the LAJ implementation provided by system FactorBase. I score all learned graph
structures using the same full contingency table with link analysis on, so that the scores are
comparable. The idea is that turning link analysis on should lead to a different structure
that represents correlations, involving relationship variables, that exist in the data.

4.4.1 Hierarchical Search: learn-and-join method (LAJ)

The key idea of the LAJ algorithm can be explained in terms of the table join lattice
illustrated in Figure 4.22. The user chooses a single-table Bayes net learner. The learner
is applied to table joins of size 1, that is, regular data tables. Then the learner is applied
to table joins of size s, s + 1, . . ., with the constraint that larger join tables inherit the

2Repeat the Figure 3.1 for easy review.
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Figure 4.2: A lattice of relationship sets for the university schema of Figure 1.2. The arrows
indicate the direction of edge propagation from lower level to upper level.

absence or presence of learned edges from smaller join tables. These edge constraints are
implemented by keeping a global cache of forbidden and required edges.

Recall that the (natural) join of two or more tables, written T1 on T2 · · · on Tk is a new
table that contains the rows in the Cartesian products of the tables whose values match on
common fields. A table join corresponds to logical conjunction [88]. Say that a join table
J is a subjoin of another join table J ′ if J ′ = J on J∗ for some join table J∗. If J is a
subjoin of J ′, then the fields (columns) of J are a subset of those in J ′. The subjoin relation
defines the table join lattice. The moral of the learn-and-join algorithm is that join tables
should inherit edges between descriptive attributes from their subjoins. This gives rise to
the following constraints for two attributes X1, X2 that are both contained in some subjoin
of J .

1. X1 and X2 are adjacent in a BN BJ for J if and only if they are adjacent in a BN for
some subjoin of J .

2. if all subjoin BNs of J orient the link as X1 → X2 resp. X1 ← X2, then BJ orients
the link as X1 → X2 resp. X1 ← X2.

Algorithm 4 provides pseudocode for the previous learn-and-join algorithm (LAJ) [75].
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Examples. Consider the lattice shown in Figure 4.2. Suppose that the Bayes net asso-
ciated with the relationship Registration(S,C) contains an edge

difficulty(C)→ intelligence(S).

Then the edge difficulty(C)→ intelligence(S) must be present in the Bayes net associated
with the larger relationship set Registration(S,C), Teaches(P,C). If the edge is contained
in neither of the graphs associated with Registration(S,C), and Teaches(P,C), it must not
be present in the graph associated with the Registration(S,C), Teaches(P,C).

Schema Invariance. The same data set may be represented under different ER schemas
for various reasons, such as efficiency, data quality, and usability. Some relational learning
algorithms tend to vary quite substantially over the choice of schema, which complicates
their off-the-shelf application [64]. I circumvent the limitations of classical likelihood mea-
sures by using a relational pseudo-likelihood measure for Bayes nets [74]. The pseudo
likelihood is equivalent to an expression defined in terms of a single (hyper) population has
the important consequence that it is invariant under syntactic equivalence transformations
of the database. For instance, database normalization operations may move information
about a descriptive attribute from one table to another [40]. Thus, the objective function
of the struture learning algorithm shown in Algorithm 4 is schema invariant.

Algorithm 4: Pseudocode for previous Learn-and-Join Structure Learning for Lattice
Search.

Input: Database D with E1, ..Ee entity tables, R1, ...Rr Relationship tables,
Output: Bayes Net for D
Calls: PBN: Any propositional Bayes net learner that accepts edge constraints and a single table of
cases as input.
Notation: PBN(T,Econstraints) denotes the output DAG of PBN. Get-Constraints(G) specifies a new
set of edge constraints, namely that all edges in G are required, and edges missing between variables in
G are forbidden.

1: Add descriptive attributes of all entity and relationship tables as variables to G. Add a boolean
indicator for each relationship table to G.

2: Econstraints = ∅ [Required and Forbidden edges]
3: for m=1 to e do
4: Econstraints += Get-Constraints(PBN(Em , ∅))
5: end for
6: for m=1 to r do
7: Nm := natural join of Rm and entity tables linked to Rm

8: Econstraints += Get-Constraints(PBN(Nm, Econstraints))
9: end for

10: for each Ni and Nj with a foreign key in common do
11: Kij := join of Ni and Nj

12: Econstraints += Get-Constraints(PBN(Kij , Econstraints))
13: end for
14: return Bayes Net defined by Econstraints.
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4.4.2 Extend LAJ for Multiple Links

To extend the learn-and-join algorithm for multiple link analysis, I replace the natural
join in line 7 by the extended join (more precisely, by the contingency table derived from
both positive relationship and negative relationship computed in section 3.4). The natural
join contains only tuples that appear in all relationship tables. Compared to the joint
contingency table, this corresponds to considering only rows where the par-Var (I also refer
such as link indicator) have the value T (e.g. RA(P ,S) = T).

When the propositional Bayes net learner is applied to such a table, the link indicator
variable appears like a constant. Therefore the BN learner cannot find any correlations
between the link indicator variable and other nodes, nor can it find correlations among
attributes conditional on the link indicator variable being F. Thus the previous LAJ al-
gorithm finds only correlations between entity attributes conditional on the existence of a
relationship. In sum, hierarchical search with link correlations can be described as follows.

1. Run the previous LAJ algorithm (Algorithm 4) using natural joins.

2. Starting with the constraints from step 1, run the LAJ algorithm where joint contin-
gency table replace natural joins. That is, for each relationship set shown in the lattice
of Figure 4.2, apply the single-table Bayes net learner to joint contingency table for
the relationship set.

4.5 Evaluation

I used the same FactorBase system configurations with previous chapters. For the parameter
learning of the PBN, I utilize the Parameter Manager in section 2.4.2. I also make the
standard assumption that the database is complete [15, 43]: For each individual (node)
observed, the database lists its attributes, and for each pair of observed individuals (nodes),
the database specifies which links hold between them. As of the single-table Bayes Net
learner, I made use of the following implementation: GES search [9] with the BDeu score as
implemented in version 4.3.9-0 of CMU’s Tetrad package (structure prior uniform, ESS=10;
[87]).

I used seven benchmark real-world databases as shown in Table 4.1. For detailed descrip-
tions and the sources of the databases, please refer to Table 3.2 in section 3.5. I compared
the following settings utilizing different setting:

1. The extended LAJ method with link correlations off (Algorithm 4 utilizing natural
joins).

2. The extended LAJ method that has the potential to find link correlations (Algorithm 4
utilizing join contingency tables).
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Table 4.1: Datasets characteristics.
#Tuples = total number of tuples over all tables in the dataset.

Dataset #Relationship
Tables/ Total

#Self
Relationships #Tuples #Attributes

Movielens 1 / 3 0 1,010,051 7
Mutagenesis 2 / 4 0 14,540 11
Financial 3 / 7 0 225,932 15
Hepatitis 3 / 7 0 12,927 19
IMDb 3 / 7 0 1,354,134 17
Mondial 2 / 4 1 870 18
UW-CSE 2 / 4 2 712 14

4.5.1 Structure Learning Times

Table 4.2 provides the model search time for structure learning with link analysis on and
off. Given the sufficient statistics structure learning is fast, even for the largest contingency
table IMDb (less than 10 minutes run-time). With link analysis on, structure learning
takes more time as it processes more information. As expected in both modes, the run-time
for building the contingency tables (refer to the Table 3.3 in section 3.5.2) dominates the
structure learning cost. For the Mondial database, there is no case where all relationship
variables are simultaneously true, so with link analysis off the contingency table is empty.

Table 4.2: Model Structure Learning Time in seconds.

Dataset Link Analysis On Link Analysis Off
Movielens 1.53 1.44
Mutagenesis 1.78 1.96
Financial 96.31 3.19
Hepatitis 416.70 3.49
IMDb 551.64 26.16
Mondial 190.16 N/A
UW-CSE 2.89 2.47

4.5.2 Statistical Scores

I report two model metrics, the log-likelihood score, and the model complexity as measured
by the number of parameters. The log-likelihood is denoted as L(Ĝ,d) where Ĝ is the BN
G with its parameters instantiated to be the maximum likelihood estimates given the dataset
d, and the quantity L(Ĝ,d) is the log-likelihood of Ĝ on d. I use the relational log-likelihood
score defined in [74], which differs from the standard single-table Bayes net likelihood only
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by replacing counts by frequencies so that scores are comparable across different nodes and
databases. To provide information about the qualitative graph structure learned, I report
edges learned that point to a relationship variable as a child. Such edges can be learned only
with link analysis on. I distinguish edges that link relationship variables—R2R—and that
link attribute variables to relationships—A2R. For instance, in the most intuitive Financial
dataset, there are two R2R edges and nine A2R edges, as shown in Figure 4.3. And for
the IMDb dataset, eleven A2R edges were captured in the learned BN struture with link
analysis on which is shown in Figure 4.4.

Figure 4.3: The learned Bayes Net for Financial dataset with link analysis on.
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Figure 4.4: The learned Bayes Net for IMDb dataset with link analysis on.

Structure learning can use the new type of dependencies to find a better, or at least
different, trade-off between model complexity and model fit. On two datasets (IMDb and
Financial), link analysis leads to a superior model that achieves better data fit with fewer
parameters. These are also the datasets with the most complex relational schemas (see
Table 4.1). On IMDb in particular, considering only positive links leads to a very poor
structure with a huge number of parameters. On four datasets, extra sufficient statistics
lead to different trade-offs: On MovieLens and Mutagenesis, link analysis leads to better
data fit but higher model complexity, and the reverse for Hepatitis and UW-CSE.

4.6 Conclusion

The model described in this chapter captures a wider class of correlations that involve
uncertainty about the link structure. I extend the state-of-the-art algorithm for learning
correlations among link types and node attributes in relational data that represent com-
plex heterogeneous network with many attributes and link types. The link correlations
are represented in a Bayes net structure. This provides a succinct graphical way to dis-
play relational statistical patterns and support powerful probabilistic inferences. Statistical
measures indicate that Bayes net methods succeed in finding relevant correlations.
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Table 4.3: Comparison of Statistical Performance of Bayesian Network Learning.

Movielens log-likelihood #Parameter R2R A2R
Link Analysis Off -4.68 164 0 0
Link Analysis On -3.44 292 0 3

Mutagenesis log-likelihood #Parameter R2R A2R
Link Analysis Off -6.18 499 0 0
Link Analysis On -5.96 721 1 5

Financial log-likelihood #Parameter R2R A2R
Link Analysis Off -10.96 11,572 0 0
Link Analysis On -10.74 2433 2 9

Hepatitis log-likelihood #Parameter R2R A2R
Link Analysis Off -15.61 962 0 0
Link Analysis On -16.58 569 3 6

IMDb log-likelihood #Parameter R2R A2R
Link Analysis Off -13.63 181,896 0 0
Link Analysis On -11.39 60,059 0 11

Mondial log-likelihood #Parameter R2R A2R
Link Analysis Off N/A N/A N/A N/A
Link Analysis On -18.2 339 0 4

UW-CSE log-likelihood #Parameter R2R A2R
Link Analysis Off -6.68 305 0 0
Link Analysis On -8.13 241 0 2
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Chapter 5

Instance Level Learning of
Relational Dependency Networks

Learning graphical models is one of the main approaches to extending machine learning
for relational data. Two major classes of graphical models are Bayesian networks (BNs)
[62] and dependency networks (DNs) [33]. In chapter 4, I discussed the generative mod-
eling with Bayes net by learning a model of the joint probability distribution of all input
random variables. Dependency networks are well suited for the task of discriminative pre-
dicting preferences such as classification problem to predict the label y given all inputs x.
In this chapter, I describe a new approach for instance level dependency networks learning:
first learn a Bayes net, then convert that network to a dependency network. This hybrid
approach combines the speed of learning Bayes net with the advantages of dependency
network inference for relational data. The experiments show that the hybrid learning algo-
rithm can produce dependency networks for large and complex databases, up to one million
records and 19 predicates. The predictive accuracy of the resulting networks is competitive
with those from state-of-the-art function gradient boosting methods but scales substantially
better than the boosting methods.

5.1 Introduction

The hybrid approach combines different strengths of Bayesian networks and dependency
networks for relational learning. The special strength of Bayesian networks is scalability
in learning [59, Sec.8.5.1],[42]. Bayesian networks offer closed-form parameter estimation
via the maximum likelihood method, and therefore closed-form model evaluation. Model
evaluation is the computationally most expensive part of relational learning, as it requires
combining information from different related tables, which involves expensive table joins.

In contrast, a strength of relational dependency networks is that they support inference
in the presence of cyclic dependencies[59, 58]. Cyclic dependencies occur when a relational
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Figure 5.1: A Bayesian/dependency template network (top) and the instantiated inference
graphs (bottom). By convention, predicates (Boolean functors) are capitalized. Edges from
the BN template are solid blue, while edges added by the BN-to-DN transformation are
dashed black. The edge set in the DN comprises both solid and dashed arrows. Note that
although the template BN (top) is acyclic, its instantiation (bottom) features a bi-directed
edge between gender(bob) and gender(anna).

dataset features auto-correlations, where the value of an attribute for an individual depends
on the values of the same attribute for related individuals. Figure 5.1 provides an example.
It is difficult for Bayesian networks to model auto-correlations because by definition, the
graph structure of a Bayesian network must be acyclic [16, 86, 25]. Because of the im-
portance of relational auto-correlations, dependency networks have gained popularity since
they support reasoning about cyclic dependencies using a directed graphical model.

These advantages of the hybrid approach are specific to relational data. For proposi-
tional (i.i.d.) data, which can be represented in a single table, there is no problem with
cyclic dependencies, and the acyclic constraint of Bayesian networks can actually make prob-
abilistic inference more efficient [37]. Also, the closed-form model evaluation of Bayesian
networks is relatively less important in the single-table case, because iterating over the
rows of a single data table to evaluate a dependency network is relatively fast compared
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to iterating over ground atoms in the relational case, where they are stored across several
tables.

My approach extends the moralization approach to relational structure learning, which
learns an undirected Markov model by first learning a Bayesian network structure, then
converts the network structure to a Markov logic structure, without parameters [42, 76].
That approach also combines the scalable learning of Bayesian networks with the support
undirected models offer for inference with auto-correlation. The present work extends this
by also computing the dependency network parameters from the learned Bayesian network.
The previous work used only the Bayesian network structure. The theoretical analysis shows
that the learned dependency networks provide different predictions from Markov networks.

Contributions I make three main contributions:

1. A faster approach for learning relational dependency networks: first learn a Bayesian
network, then convert it to a dependency network.

2. A closed-form log-linear discriminative model for computing the relational dependency
network parameters from Bayesian network structure and parameters.

3. Necessary and sufficient conditions for the resulting network to be consistent, de-
fined as the existence of a single joint distribution that induces all the conditional
distributions defined by the dependency network [33].

5.2 Bayesian Networks and Relational Dependency Networks

I review dependency networks and their advantages for modelling relational data. I assume
familiarity with the basic concepts of Bayesian networks [62].

5.2.1 Dependency networks and Bayesian networks

The structures of both Bayesian networks and dependency networks are defined by a di-
rected graph whose nodes are random variables. Bayesian networks must be acyclic, while
dependency networks may contain cycles, including the special case of bi-directed edges.
For both networks, the parameters are conditional distributions over the value of a node
given its parents. The two types differ in the influence of a node’s children, however. In
a Bayesian network, a node is only independent of all other nodes given an assignment of
values to its parents, its children, and the co-parents of its children, whereas in a depen-
dency network a node is independent given an assignment of values to only its parents.
In graphical model terms, the Markov blanket of a node in a dependency network, the
minimal set of nodes such that assigning them values will make this node independent of
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the rest of the network, is simply its parents.1 For a Bayesian network, the Markov blanket
is the node’s parents, children, and the co-parents of its children.

Consequently, a conditional probability in a dependency network effectively specifies
the probability of a node value given an assignment of values to all other nodes. Follow-
ing Heckerman et al. [33], I refer to such conditional probabilities as local probability
distributions.

5.2.2 Relational Dependency Networks

As described in section 1.2, I present the relational case using the parametrized random
variable notation [45]. Relational dependency networks [59] extend dependency networks
to model distributions over multiple populations. A functor is a symbol denoting a function
or predicate. Each functor has a set of values (constants) called the domain of the functor.
Functors with boolean ranges are called predicates and their name is capitalized. I consider
only functors with finite domains. An expression f(τ1, . . . , τk), where f is a functor and each
τi is a first-order variable or a constant, is a Parametrized Random Variable (PRV).

A directed acyclic graph whose nodes are PRVs is a parametrized Bayesian network
structure, while a general (potentially cyclic) directed graph whose nodes are PRVs is
a relational dependency network structure (RDN). A Bayesian network structure
or relational dependency network structure augmented with the appropriate conditional
probabilities is respectively a Bayesian network template or relational dependency
network template. Note that the RDN templates that I define in this chapter have the
same Markov blanket as the Bayesian network templates from which they are derived but a
different edge structure and probabilities. Algorithm 5, defined in Section 5.3, converts the
probabilities of the Bayesian template to their counterparts in the relational dependency
template.

RDNs extend dependency networks from i.i.d. to relational data via knowledge-based
model construction [59]: The first-order variables in a template RDN graph are instantiated
for a specific domain of individuals to produce an instantiated or ground propositional DN
graph, the inference graph. Figure 5.1 gives a dependency network template and its
inference graph. Given an edge in the template RDN, instantiating both the parent and
the child of the edge with the same grounding produces an edge in the inference graph. An
example local probability distribution for the graph in Figure 5.1 (abbreviating functors) is

P (g(anna)|g(bob),CD(anna),F(anna, bob),F(bob, anna),F(anna, anna)).

Language Bias. The general definition of a parametrized random variable allows PRVs
to contain constants as well as population variables. Another language extension is to

1For this reason Hofmann and Tresp originally used the term “Markov blanket networks” for dependency
networks [36].
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Algorithm 5: Computing Features and Weights for Template Dependency Network.

Input: Template Bayesian Network B (Structure and Parameters)
Output: A List of Relevant Features; a Weight for each Feature
1: for each target node T do
2: initialize Feature_Weight_List(T ) as the empty list
3: for each U in {T ∪ Ch(T )} do
4: for each value u of the child node U do
5: for each vector of parent values ~upa do
6: Feature F := (U = u,Pa(U) = ~upa)
7: FeatureWeight w := ln θ(U = u|Pa(U) = ~upa)
8: if the Feature F does not contain a false relationship other than T then
9: add (F,w) to Feature_Weight_List(T )

10: end if
11: end for
12: end for
13: end for
14: end for
15: return Feature_Weight_List(T )

allow parametrized random variables to be formed with aggregate functions, as described
by Kersting and deRaedt [41]. For example, it is possible to use a functor that returns
the number of friends of a generic person A. The main contribution of this paper, the
relational BN-to-DN conversion method, can be used whether the parametrized random
variables contain constants, aggregates, or only first-order variables. A common restriction
to simplify model structure learning is to exclude constants (e.g. [20, 15]). Friedman et al.
investigated learning directed graphical models with aggregate functions [20].

5.3 Learning Relational Dependency Networks via Bayesian
Networks

The algorithm for rapidly learning relational dependency networks (Figure 5.2) begins with
any relational learning algorithm for Bayesian networks. Using the resulting Bayesian net-
work as a template, I then apply a simple, fast transformation to obtain a relational de-
pendency template. Finally I apply a closed-form computation to derive the dependency
network inference graph parameters from the Bayesian structure and parameters.

5.3.1 BN-to-DN structure conversion

Converting a Bayesian network structure to a dependency network structure is simple:
for each node, add an edge pointing to the node from each member of its BN Markov
blanket [33]. The result contains bidirectional links between each node, its children, and
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Figure 5.2: The program flow for computing local probability distributions from a template
Bayesian network. Features and weights are computed from the Bayesian network. Feature
function values are computed for each query.

its co-parents (nodes that share a child with this one). This is equivalent to the standard
moralization method for converting a BN to an undirected model [15], except that the
dependency network contains bi-directed edges instead of undirected edges. Bidirected
edges have the advantage that they permit assignment of different parameters to each
direction, whereas undirected edges have only one parameter.

5.3.2 BN-to-DN parameter conversion

For propositional data, converting Bayesian network parameters to dependency network
parameters is simple: apply the standard BN product formula and solve for the local prob-
ability distributions given Bayesian network parameters [72, Ch.14.5.2]. A family com-
prises a node and its parents. A family configuration specifies a value for a child node
and each of its parents. For example, in the template of Figure 5.1 (top), one family is
gender(A),Friend(A,B), gender(B) and one of its eight possible configurations is

gender(A) = M,Friend(A,B) = T, gender(B) = M.
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The Markov blanket of a target node comprises multiple families, one each for the target
node and each of its children, so an assignment of values to the target’s Markov blan-
ket defines a unique configuration for each family. Hence in the propositional case the
Markov blanket induces a unique log-conditional probability for each family configuration.
The probability of a target node value given an assignment of values to the Markov blan-
ket is then proportional to the exponentiated sum of these log-conditional probabilities [72,
Ch.14.5.2].

With relational data, however, different family configurations can be simultaneously in-
stantiated, multiple times. I generalize the propositional log-linear equation for relational
data by replacing the unique log-conditional probability with the expected log-conditional
probability that results from selecting an instantiation of the family configuration uni-
formly at random. The probability of a target node value given an assignment of values
to the Markov blanket is then proportional to the exponentiated sum of the expected log-
conditional probabilities. I describe the resulting closed-form equation in the next section.

5.4 The Log-linear Proportion Equation

I propose a log-linear equation, the log-linear proportion equation (lower right box of
Figure 5.2), for computing a local probability distribution for a ground target node, T ∗,
given (i) a target value t for the target node, (ii) a complete set of values Λ∗ for all ground
terms other than the target node, and (iii) a template Bayesian network. The template
structure is represented by functions that return the set of parent nodes of U , Pa(U), and
the set of child nodes of U , Ch(U). The parameters of the template are represented by
the conditional probabilities of a node U having a value u conditional on the values of its
parents, θ(U = u|Pa(U) = ~upa). A grounding γ substitutes a constant for each member of
a list of first-order variables, {A1 = a1, . . . ,Ak = ak}. Applying a grounding to a template
node defines a fully ground target node: gender(A){A = sam} = gender(sam). These are
combined in the following log-linear equation to produce a local probability distribution:

Definition 1 (The Log-Linear Proportion Equation).

P (T ∗ = t|Λ∗) ∝ exp∑
U

∑
u,~upa

[ln θ(U = u|Pa(U) = ~upa)] · pr [γ;U = u,Pa(U) = ~upa;T ∗ = t,Λ∗]
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where

U varies over {T} ∪ Ch(T );

the singleton value u varies over the range of U ;

the vector of values ~upa varies over the product of the ranges of U ′s parents,

constrained to value t for occurrences of T ;

T ∗ = Tγ is is the target grounding of template node T ;

and pr is the feature function, the family proportion.

The family proportion pr is computed as follows:

1. For a given family configuration (U = u,Pa(U) = ~upa), let the family count

n [γ;U = u,Pa(U) = ~upa;T ∗ = t,Λ∗]

be the number of instantiations that (a) satisfy the family configuration and the
ground node values specified by T ∗ = t,Λ∗, and (b) are consistent with the equality
constraint defined by the grounding γ.

2. The relevant family count nr is 0 if the family configuration contains a false rela-
tionship (other than the target node), else equals the family count. It is common in
statistical-relational models to restrict predictors to existing relationships only [21, 72].

3. The family proportion is the relevant family count, divided by the total sum of all
relevant family counts for the given family:

pr [γ;U = u,Pa(U) = ~upa;T ∗ = t,Λ∗] =
nr [γ;U = u,Pa(U) = ~upa;T ∗ = t,Λ∗]∑

u′,~u′
pa

nr
[
γ;U = u′,Pa(U) = ~u′pa;T ∗ = t,Λ∗

]
In the experiments, family counts and proportions are computed using exact counting

methods (see Section 5.4.3 below).

5.4.1 Example and Pseudocode

Table 5.1 illustrates the computation of these quantities for predicting the gender of a new
test instance (sam). Algorithm 5 shows pseudocode for the closed-form transformation of
Bayesian network structure and parameters into features and weights for the dependency
network. Algorithm 6 shows pseudocode for computing the scores defined by the log-linear
Equation (1), given a list of weighted features and a target query.

The inner sum of Equation (1) computes the expected log-conditional probability for a
family with child node U , when I randomly select a relevant grounding of the first-order
variables in the family.
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Algorithm 6: Computing local probability distributions, the parameters of the In-
ference Dependency Network.
Input: Feature-Weight List of Dependency Network, Query P (T ∗ = t|Λ∗) =?. T is a

template node, T ∗ = Tγ is the target grounding.
Output: Normalized log-linear score
1: initialize score(T ∗ = t) := 0
2: for each Feature F = (U = u,Pa(U) = ~upa) in Feature_Weight_List(T ) do
3: Let w be the weight listed for feature F
4: {Next compute feature function.}
5: RelFamCnt(F) := nr [γ; U = u,Pa(U) = ~upa;T ∗ = t,Λ∗]
6: TotalRelFamCnt(U ) :=

∑
u′,~u′pa

nr
[
γ; U = u′,Pa(U) = ~u′pa;T ∗ = t,Λ∗

]
7: FamilyProportion pr(F ) := RelFamCnt(F)/TotalRelFamCnt(U )
8: score(T ∗ = t) += pr · w
9: end for

10: return Normalized scores for target node.

5.4.2 Discussion and Motivation

I discuss the key properties of the local distribution model, Equation (1).

Log-Linearity. The survey by Kimmig et al. [45] shows that most statistical-relational
methods define log-linear models. The general form of a discriminative log-linear model
[85] is that the conditional probability of a target variable value given input variable values
is proportional to an exponentiated weighted sum of feature functions. A feature function
maps a complete assignment of ground node values (= target value + input variables)
to a real number. Khazemi et al. have shown that many relational aggregators can be
represented by a log-linear model with suitable features [39]. Equation (1) instantiates
this well-established log-linear schema as follows: The features of the model are the family
configurations (U = u,Pa(U) = ~upa) where the child node is either the target node or
one of its children. The feature weights are the log-conditional BN probabilities defined
for the family configuration. The input variables are the values specified for the ground
(non-target) nodes by the conjunction Λ∗. The feature functions are the family proportion
pr. Like other log-linear relational models, Equation 1 enforces parameter tying, where
different groundings of the same family configuration receive the same weight [45].

Standardization. Using proportions as feature functions has the desirable consequence
that the range of all feature functions is standardized to [0,1]. It is well-known that the
number of instantiation counts in relational data can differ for different families, depending
on the population variables they contain. This ill-conditioning causes difficulties for log-
linear models because families with more population variables can have an exponentially
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Table 5.1: Applying the log-linear proportion equation with the Bayesian network of Fig-
ure 5.1 to compute P (gender(sam) = W|Λ∗) and P (gender(sam) = M|Λ∗). Each row
represents a feature/family configuration. For the sake of the example I suppose that the
conjunction Λ∗ specifies that Sam is a coffee drinker, has 60 male friends, and 40 female
friends. CP is the conditional probability BN parameter of Figure 5.1 and w ≡ ln(CP ).

Child
Value u Parent State ~upa CP w pr w × pr

g(sam) = W g(B) = W,
F (sam,B) = T 0.55 −0.60 0.4 −0.24

g(sam) = W g(B) = M,
F (sam,B) = T 0.37 −0.99 0.6 −0.60

CD(sam) = T g(sam) = W 0.80 −0.22 1.0 −0.22
CD(sam) = F g(sam) = W 0.20 −1.61 0.0 0.00
Sum (exp(Sum) ∝ P (gender(sam) = W|Λ∗)) −1.06

g(sam) = M g(B) = W,
F (sam,B) = T 0.45 −0.80 0.4 −0.32

g(sam) = M g(B) = M,
F (sam,B) = T 0.63 −0.46 0.6 −0.28

CD(sam) = T g(sam) = M 0.60 −0.51 1.0 −0.51
CD(sam) = F g(sam) = M 0.40 −0.92 0.0 0.00
Sum (exp(Sum) ∝ P (gender(sam) = M|Λ∗)) −1.11

higher impact on the score prediction [53]. Intuitively, counts tacitly conflate number of
instantiations with degree of information. Proportions avoid such ill-conditioning.

Generalizing the Propositional Case. A useful general design principle is that rela-
tional learning should have propositional learning as a special case [49, 46]: When I apply
a relational model to a single i.i.d. data table, it should give the same result as the propo-
sitional model. Equation 1 satisfies this principle. In the propositional case, an assignment
of values to all nodes other than the target node specifies a unique value for each fam-
ily configuration. This means that all the family counts nr are either 0 or 1, hence all
relevant proportions pr are 0 or 1, depending on whether a family configuration matches
the query or not. For a simple illustration, consider the edge gender(A) → CoffeeDr(A).
Since this edge concerns only the Person domain associated with the single population
variable A, I may view this edge as a propositional subnetwork. Suppose the query is
P (gender(sam) = W|CoffeeDr(sam) = T). The only family configurations with nonzero
counts are gender(sam) = W (count 1) and CoffeeDr(sam) = T), gender(sam) = W (count
1). Equation (1) gives

P (g(sam) = W|CD(sam) = T) ∝

exp{lnP (g(sam) = W) + ln P(CD(sam) = T)|g(sam) = W)}.
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This agrees with the propositional BN formula for a local conditional probability, which
is the product of the BN conditional probabilities for the target node given its children,
and the target node’s children given their parents. This formula can be derived from the
BN product rule for defining a joint probability [72, Ch.14.5.2]. In the simple two-node
example, it can be derived immediately from Bayes’ theorem:

P (g(sam) = W|CD(sam) = T) ∝

P (CD(sam) = T)|g(sam) = W)× P(g(sam) = W),

which agrees with the solution above derived from Equation (1). It may seem surprising that
in predicting gender given coffee drinking, the model should use the conditional probability
of coffee drinking given gender. However, Bayes’ theorem states that P (X|Y ) is proportional
to P (Y |X). In the example, given that the BN model specifies that women are more likely
to be coffee drinkers than men, the information that Sam is a coffee drinker raises the
probability that Sam is a woman.

5.4.3 Complexity of Algorithms 5 and 6

The loops of Algorithm 5 enumerate every family configuration in the template Bayesian
network exactly once. Therefore computing features and weights takes time linear in the
number of parameters of the Bayesian network.

Evaluating the log-linear equation, as shown in Algorithm 6, requires finding the number
of instantiations that satisfy a conjunctive family formula, given a grounding. This is an
instance of the general problem of computing the number of instantiations of a formula in a
relational structure. Computing this number is a well-studied problem with highly efficient
solutions [89, 78].

A key parameter is the number m of first-order variables that appear in the formula.
A loose upper bound on the complexity of counting instantiations is dm, where d is the
maximum size of the domain of the first-order variables. Thus counting instantiations has
parametrized polynomial complexity [19], meaning that if m is held constant, counting
instantiations requires polynomially many operations in the size of the relational structure
(i.e., the size of T ∗ = t,Λ∗ in Equation (1)). For varying m, the problem of computing the
number of formula instantiations is #P-complete [16, Prop.12.4].

5.5 Consistency of the Derived Dependency Networks

A basic question in the theory of dependency networks is the consistency of the local prob-
abilities. Consistent local probabilities ensure the existence of a single joint probability
distribution p that induces the various local conditional probability distributions P for each
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node
P (T ∗ = t|Λ∗) ∝ p(T ∗ = t,Λ∗)

for all target nodes T ∗ and query conjunctions Λ∗ [33].
I present a precise condition on a template Bayesian network for its resulting depen-

dency network to be consistent and the implications of those conditions. I define an edge-
consistent template Bayesian network to be a network for which every edge has the
same set of population variables on both nodes.

Theorem 1. A template Bayesian network is edge-consistent if and only if its derived
dependency network is consistent.

The proof of this result is complex, so I present it in an appendix. Intuitively, in a
joint distribution, the correlation or potential of an edge is a single fixed quantity, whereas
in Equation (1), the correlation is adjusted by the size of the relational neighbourhood of
the target node, which may be either the child or the parent of the edge. If the relational
neighborhood size of the parent node is different from that of the child node, the adjustment
makes the conditional distribution of the child node inconsistent with that of the parent
node. The edge-consistency characterization shows that the inconsistency phenomenon is
properly relational, meaning it arises when network structure contains edges that relate
parents and children from different populations.

The edge-consistency condition required by this theorem is quite restrictive: Very few
template Bayesian networks will have exactly the same set of population variables on both
sides of each edge.2 Therefore relational template Bayesian networks, which have multiple
population variables, will most often produce inconsistent dependency networks. Previous
work has shown that dependency networks learned from data are almost always inconsistent
but nonetheless provide accurate predictions using ordered pseudo-Gibbs sampling [33, 59,
52] or Generative Stochastic Networks [6, Sec.3.4].

5.6 Empirical Evaluation: Design and Datasets

There is no obvious baseline method for the RDN learning method because mine is the
first work that uses the approach of learning an RDN via a Bayesian network. Instead I
benchmark against the performance of a different approach for learning RDNs, which uses
an ensemble learning approach based on functional gradient boosting. Boosted functional
gradient methods have been shown to outperform previous methods for learning relational
dependency networks [43, 58].

2A commonly used weaker condition is range-restriction: that the population variables in the child node
should be contained in the population variables of its parents [41], but not vice versa as with edge-consistency.
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Datasets I used six benchmark real-world databases with the FactorBase system. Sum-
mary statistics are given in Table 5.2. For more details please see the references in [76].

Methods Compared Functional gradient boosting is a state-of-the-art method for apply-
ing discriminative learning to build a generative graphical model. The local discriminative
models are ensembles of relational regression trees [43]. Functional gradient boosting for
relational data is implemented in the Boostr system [44]. For functors with more than two
possible values, I followed [43] and converted each such functor to a set of binary predicates
by introducing a predicate for each possible value. I compared the following methods:

RDN_Bayes my method: Learn a Bayesian network, then convert it to a relational de-
pendency network.

RDN_Boost The RDN learning mode of the Boostr system [58].

MLN_Boost The MLN learning mode of the Boostr system. It takes a list of target
predicates for analysis. I provide each binary predicate in turn as a single target
predicate, which amounts to using MLN learning to construct an RDN. This RDN
uses a log-linear model for local probability distributions that is derived from Markov
Logic Networks.

I used the default Boostr settings. I experimented with alternative settings but they did
not improve the performance of the boosting methods.

Prediction Metrics I follow [43] and evaluate the algorithms using conditional log like-
lihood (CLL) and area under the precision-recall curve (AUC-PR). AUC-PR is appropriate
when the target predicates features a skewed distribution as is typically the case with rela-
tionship predicates. For each fact T ∗ = t in the test dataset, I evaluate the accuracy of the
predicted local probability P (T ∗ = t|Λ∗), where Λ∗ is a complete conjunction for all ground
terms other than T ∗. Thus Λ∗ represents the values of the input variables as specified by the
test dataset. CLL is the average of the logarithm of the local probability for each ground
truth fact in the test dataset, averaged over all test predicates. For the gradient boosting
method, I used the AUC-PR and likelihood scoring routines included in Boostr.

Both metrics are reported as means and standard deviations over all binary predicates.
The learning methods were evaluated using 5-fold cross-validation. Each database was
split into 5 folds by randomly selecting entities from each entity table, and restricting the
relationship tuples in each fold to those involving only the selected entities (i.e., subgraph
sampling [76]). The models were trained on 4 of the 5 folds, then tested on the remaining
one.
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Table 5.2: Learning Time. The total learning time for constructing a relational dependency
network from an input database. Only partial boosting learning times are reported for the
larger databases MovieLens(1M) and IMDb—see text for details. Spread is reported as
coefficient of variation (CV—standard deviation / mean). PRV = Parametrized Random
Variable.

RDN_Bayes RDN_Boost MLN_Boost
Dataset kTuple PRVs (s) CV (s) CV (s) CV
UW 0.6 14 14 0.00 237 0.06 329 0.16
Mondial 0.9 18 1836 0.07 369 0.06 717 0.05
Hepatitis 11.3 19 5434 0.01 6648 0.02 3197 0.04
Mutagenesis 24.3 11 11 0.00 1342 0.04 1040 0.02
MovieLens(0.1M) 83.4 7 8 0.07 3019 0.04 3292 0.01
MovieLens(1M) 1010.1 7/6 8 0.09 32230 0.04 25528 0.04
IMDb 15538.4 17/13 9346 0.22 78129 0.04 29704 0.03

5.7 Results

I report learning times and accuracy metrics. In addition to these quantitative assessments,
I inspect the learned models to compare the model structures. Finally I make suggestions
for combining the strenghts of boosting with the strengths of Bayesian network learning.

5.7.1 Learning Times

Table 5.2 shows learning times for the methods. The Bayesian network learning simulta-
neously learns a joint model for all parametrized random variables (PRVs). Recall that
Boolean PRVs are predicates. For the boosting method, I added together the learning
times for each target PRV. On MovieLens(1M), the boosting methods take over 2 days to
learn a classifier for the relationship B_U2Base, so I do not include learning time for this
predicate for any boosting method. On the largest database, IMDb, the boosting meth-
ods cannot learn a local distribution model for the three relationship predicates with my
system resources, so I only report learning time for descriptive attributes by the boosting
methods. Likewise, the accuracy results in Tables 5.3 and 5.4 include only measurements
for descriptive attributes on the datasets IMDb and MovieLens(1M).

Consistent with other previous experiments on Bayesian network learning with rela-
tional data [42, 76], Table 5.2 shows that RDN_Bayes scales very well with the number
of data tuples: even the MovieLens dataset with 1 M records can be analyzed in seconds.
RDN_Bayes is less scalable with the number of PRVs, since it learns a joint model over all
PRVs simultaneously, although the time remains feasible (1–3 hours for 17–19 predicates;
see also [76]). By contrast, the boosting methods scale well with the number of predicates,
which is consistent with findings from propositional learning [33]. Gradient boosting scales
much worse with the number of data tuples.
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Table 5.3: Conditional Log-Likelihood: Mean (top), Std. Dev. (bottom)

MovieLens
Method UW Mond. Hepa. Muta. (0.1M) (1M) IMDb
RDN_Boost -0.30 -0.48 -0.48 -0.36 -0.50 -0.22 -0.49
MLN_Boost -0.14 -0.40 -0.49 -0.23 -0.50 -0.23 -0.49
RDN_Bayes -0.01 -0.25 -0.39 -0.22 -0.30 -0.28 -0.51
RDN_Boost 0.02 0.03 0.01 0.02 0.01 0.00 0.00
MLN_Boost 0.01 0.05 0.01 0.02 0.01 0.00 0.00
RDN_Bayes 0.00 0.06 0.10 0.07 0.00 0.00 0.00

Table 5.4: Area Under Precision-Recall Curve: Mean (top), Std. Dev. (bottom).

MovieLens
Method UW Mond. Hepa. Muta. (0.1M) (1M) IMDb

RDN_Boost 0.42 0.27 0.55 0.71 0.50 0.88 0.63
MLN_Boost 0.68 0.44 0.55 0.86 0.50 0.88 0.63
RDN_Bayes 0.89 0.79 0.55 0.50 0.65 1.00 0.85
RDN_Boost 0.00 0.00 0.01 0.02 0.01 0.00 0.01
MLN_Boost 0.01 0.04 0.01 0.04 0.01 0.00 0.01
RDN_Bayes 0.00 0.07 0.11 0.10 0.02 0.00 0.00

5.7.2 Accuracy

Whereas learning times were evaluated on all PRVs, unless otherwise noted, I evaluate accu-
racy on all the binary predicates only (e.g., gender ,Borders) because the boosting methods
are based on binary classification. By the conditional likelihood metric (Table 5.3), the
Bayesian network method performs best on four datasets, comparably to MLN_Boost on
Mutagenesis, and slightly worse than both boosting methods on the two largest datasets. By
the precision-recall metric (Table 5.4), the Bayesian network method performs substantially
better on four datasets, identically on Hepatitis, and substantially worse on Mutagenesis.

Combining these results, for most of the datasets the Bayesian network method has
comparable accuracy and much faster learning. This is satisfactory because boosting is a
powerful method that achieves accurate predictions by producing a tailored local model for
each target predicate. By contrast, Bayesian network learning simultaneously constructs a
joint model for all predicates, and uses simple maximum likelihood estimation for parameter
values. I conclude that Bayesian network learning scales much better to large datasets, and
provides competitive accuracy in predictions.

5.7.3 Comparison of Model Structures

Boosting is known to lead to very accurate classification models in general [7]. For proposi-
tional data, a Bayesian network classifier with maximum likelihood estimation for parameter
values is a reasonable baseline method [27], but I would expect less accuracy than from a
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boosted ensemble of regression trees. Therefore the predictive performance of the RDN
models is not due to the log-linear equation (1), but due to the more powerful features
that Bayesian network learning finds in relational datasets. These features involve longer
chains of relationships than I observe in the boosting models.3 The ability to find complex
patterns involving longer relationship chains comes from the lattice search strategy, which
in turn depends on the scalability of model evaluation in order to explore a complex space
of relationship chains. Table 5.5 reports results that quantitatively confirm this analysis.

Table 5.5: Difference in Markov blankets between RDN_Bayes and RDN_Boost. ∆x =
(x for RDN_Bayes - x for RDN_Boost). RDN_Bayes predicts a target more successfully
because it uses more predicates and those predicates contain more first-order variables.

Database Target ∆ Predicates ∆ Vars. ∆ CLL ∆ AUC-PR
Mondial religion 11 1 0.58 0.30
IMDb gender 4 2 0.30 0.68
UW-CSE student 4 1 0.50 0.55
Hepatitis sex 4 2 0.20 0.25
Mutagenesis ind1 5 1 0.56 0.22
MovieLens gender 1 1 0.26 0.26

For each database, I selected the target PRV where RDN-Bayes shows the greatest
predictive advantage over RDN-Boost (shown as ∆ CLL and ∆ AUC-PR). I then compute
how many more PRVs the RDN-Bayes model uses to predict the target predicate than the
RDN-Boost model, shown as ∆ Predicates. This number can be as high as 11 more PRVs
(for Mondial). I also compare how many more population variables are contained in the
Markov blanket of the RDN-Bayes model, shown as ∆ Variables. In terms of database
tables, the number of population variables measures how many related tables are used for
prediction in addition to the target table. This number can be as high as 2 (for IMDb
and Hepatitis). To illustrate Figure 5.3 shows the parents (Markov blanket) of target node
gender(U) from IMDb in the RDN-Boost and RDN-Bayes models. The RDN-Bayes model
introduces 4 more parents and 2 more variables, Movie and Actor . These two variables
correspond to a relationship chain of length 2. Thus BN learning discovers that the gender
of a user can be predicted by the gender of actors that appear in movies that the user has
rated.

3Kok and Domingos emphasize the importance of learning clauses with long relationship chains [47].
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Figure 5.3: The parents of target gender(U) in the models discovered by RDN_Boost (left)
and RDN_Bayes (right). The RDN-Bayes model discovers that the gender of a user can be
predicted by the gender of actors that appear in movies that the user has rated.

5.8 Conclusion

Relational dependency networks offer important advantages for modelling relational data.
They can be learned quickly by first learning a Bayesian network, then performing a closed-
form transformation of the Bayesian network to a dependency network. The key question
is how to transform BN parameters to DN parameters. I introduced a relational general-
ization of the standard propositional BN log-linear equation for the probability of a target
node conditional on an assignment of values to its Markov blanket. The new log-linear
equation uses a sum of expected values of BN log-conditional probabilities, with respect
to a random instantiation of first-order variables. This is equivalent to using feature in-
stantiation proportions as feature functions. The main theorem provided a necessary and
sufficient condition for when the local log-linear equations for different nodes are mutu-
ally consistent. On six benchmark datasets, learning RDNs via BNs scaled much better
to large datasets than state-of-the-art functional gradient boosting methods, and provided
competitive accuracy in predictions.
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Chapter 6

Conclusion and Future Work

In this chapter, I summarize the system, algorithms, models and results discussed in my
thesis, and I list the future directions which I am planning to work on as follows:

FactorBase System In chapter 2, I described FactorBase, a system that leverages the
existing capabilities of an SQL-based RDBMS to support statistical-relational learning with
respect to representational tasks and computational tasks. While FactorBase provides good
solutions for each of these system capabilities in isolation, the ease with which large complex
statistical-relational objects can be integrated via SQL queries is a key feature. Because
information about random variables, sufficient statistics, and models is all represented in
relational database tables, a machine learning application can access and combine the in-
formation in a uniform way via SQL queries.

While my implementation has used simple SQL plus indexes, there are opportunities for
optimizing RDBMS operations for the workloads required by statistical-relational structure
learning. These include view materialization and the key scalability bottleneck of computing
multi-relational sufficient statistics. NoSQL databases can exploit a flexible data representa-
tion for scaling to very large datasets. However, SRL requires count operations for random
complex join queries, which is a challenge for less structured data representations.

Another important goal is a single end-to-end RDBMS package for both learning and
inference that integrates FactorBase with inference systems such as BayesStore, Tuffy and
DeepDive [73]. This end-to-end package will be much more friendly for the consumers with-
out much relational learning background. The Spark SQL module offers tighter integration
between relational processing and a highly extensible optimizer tailored for the complex
queries [3]. Porting FactorBase system to Spark implementation would enhance the ability
of Count Manager for processing very large-scale data sets which are beyond the capability
of single RDBMS. Another advantage of a Spark implementation is that Spark leverages
Hadoop, which is distributed file system framework for very large data sets. However, the
current performance bottleneck for computing sufficient statistics is main memory not ex-
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ternal memory. On the other hand, incorporating the PS paradigm within Model Manager
would support the distributed parameter learning for many industrial scenarios (e.g., one
need to deal with very big model containing millions to billions of parameters) [51].

Sufficient Statistics across Multiple Relationships As described in Chapter 3, the
Virtual Join algorithm efficiently computes query counts which may involve any number of
positive and negative relationships. These sufficient statistics support a scalable statistical
analysis of associations among both relationships and attributes in a relational database.
The Virtual Join algorithm scales well with the number of rows, but not with the number
of columns and relationships in the database. This limitation stems from the fact that
the contingency table size grows exponentially with the number of random variables in the
table.

I applied the algorithm to construct a large table for all variables in the database. I
emphasize that this is not the only way to apply the algorithm. The algorithm efficiently
finds cross-table statistics for any set of variables, not only for the complete set of all
variables in the database. An alternative for using counting for relational model searches
is to apply the Virtual Join only up to a pre-specified relatively small relationship chain
length which could be determined by a learning algorithm or specified by the user. Another
possibility is to use post-counting [54]: Rather than pre-compute a large contingency table
prior to learning, compute many small contingency tables for small subsets of variables on
demand during learning. In a post-counting approach, generating a contingency table for a
target set of variables is a service that can be called dynamically during the execution of a
learning program.

While I have focused on statistical analysis, another potential application is in proba-
bilistic first-order inference [65, 8]. Such inferences often require sufficient statistics with
regard to counting the satisfied groundings of a first-order formula defined with respect to
one or more specified individuals (e.g., the number of user Jack ′s male friends). The Virtual
Join algorithm could be applied to compute sufficient statistics for specified individuals. In
addition, the traditional ETL + single table machine learning training based model can
take advantage of the sufficient statistics to gain better performance.

Generative Modelling with Link Uncertainty I discussed two kinds of modelling
approach: class-level generative modelling and instance-level discriminative learning in the
context of relational data in chapter 4 and chapter 5, respectively. The generative modeling
with Bayes net learns a model of the joint probability distribution of all input random
variables. This type of model supports class-level queries like, “What fraction of the grades
are awarded to highly intelligent students?” The model described in Chapter 4 captures
a wider class of correlations that involve uncertainty about the link structure for complex
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heterogeneous network with many attributes and link types. By capturing the relevant
correlations, the model achieves better data fit on standard statistical metrics.

Instance Level Discriminative Learning Dependency networks are well suited for the
task of discriminative learning such as classification problem to predict the label y given all
inputs x. This type of model supports instance-level queries like, “What is the probability
of Jack being a highly intelligent student given the grades of his registered courses?” As
introduced in chapter 5, the hybrid approach combines the speed of learning Bayes net
with the advantages of dependency network inference for relational data. Empirical experi-
ments showed the predictive accuracy and scalability of my BN-to-DN hybrid discriminative
learning algorithm. The state-of-the-art boosting approach to constructing a dependency
network by learning a collection of discriminative models is very different from learning
a Bayesian network. There are various options for hybrid approaches that combine the
strengths of both, for instance:

1. Fast Bayesian network learning can be used to select features. Discriminative learning
methods should work faster restricted to the BN Markov blanket of a target node.

2. The Bayesian network can provide an initial dependency network structure. Gradient
boosting can then be used to fine-tune local distribution models.

Integrated Statistical Analysis for Complex Heterogeneous Data Many real world
datasets are relational and most real world applications are characterized by the presence of
uncertainty and complex relational structures. In the thesis, I focus on statistical modelling
of the interactions between different descriptive attributes and the link itself for complex
heterogeneous and richly interconnected data. The SQL-based FactorBase system provides
integrated statistical analysis out-of-the-box for challenging applications on two folds: the
class-level generative modelling with Bayes net and the instance-level discriminative learn-
ing with relational dependency networks. All statistical objects are stored as first-class
citizens as well as raw data; one can access and combine the information in a uniform way
via SQL queries. The Virtual Join algorithm solves the scalability bottleneck for using
cross-table sufficient statistics in relational model searching. The model captures a wider
class of correlations that involve uncertainty about the link structure.
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Appendix A

Proof of Consistency
Characterization

This appendix presents a proof of Theorem 1. The theorem says that a dependency network
derived from a template Bayesian network is consistent if and only if the Bayesian network
is edge-consistent. I begin by showing that Bayesian network edge-consistency is sufficient
for dependency network consistency. This is the easy direction. That edge-consistency is
also necessary requires several intermediate results.

A.1 Edge-Consistency is Sufficient for Consistency

Edge consistency entails that each grounding of a node determines a unique grounding of
both its parents and its children in the Bayesian network. Thus the ground dependency
network is composed of disjoint dependency networks, one for each grounding. Each of the
ground disjoint dependency networks is consistent, so a joint distribution over all can be
defined as the product of the joint probabilities of each ground dependency network. The
formal statement and proof is as follows.
Proposition 3. If a template Bayesian network is edge-consistent, then the derived depen-
dency network is consistent.

Proof. Heckermann et al. [33] showed that a dependency network is consistent if and only if
there is a Markov network with the same graphical structure that agrees with the local con-
ditional distributions. I argue that given edge-consistency, there is such a Markov network
for the derived dependency network. This Markov network is obtained by moralizing and
then grounding the Bayesian network [15]. Given edge-consistency, for each ground target
node, each family of the ground target node has a unique grounding. Thus the relevant
family counts are all either 1 or 0 (0 if the family configuration is irrelevant). The Markov
network is now defined as follows: Each grounding of a family in the template Bayesian
network is a clique. For an assignment of values U∗ = u,Pa(U)∗ = ~upa to a ground family,
the clique potential is 1 if the assignment is irrelevant, and θ(U = u|Pa(U) = ~upa) otherwise.
It is easy to see that the conditional distributions induced by this Markov network agree
with those defined by Equation 1, given edge-consistency.
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A.2 Edge-Consistency is Necessary for Consistency

This direction requires a mild condition on the structure of the Bayesian network: it must
not contain a redundant edge [62]. An edge T1 → T2 is redundant if for every value of
the parents of T2 excluding T1, every value of T1 is conditionally independent of every
value of T2. Less formally, given the other parents, the node T1 adds no probabilistic
information about the child node T2. Throughout the remainder of the proof, I assume
that the template Bayesian network contains no redundant edges. The proof is based on
establishing the following theorem.

Theorem 2. Assume that a template BN contains at least one edge e1 such that the parent
and child do not contain the same set of population variables. Then there exists an edge e2
(which may be the same as or distinct from e1) from parent T1 to child T2, ground nodes T ∗1
and T ∗2 , and a query conjunction Λ∗ such that: the ground nodes T ∗1 and T ∗2 have mutually
inconsistent conditional distributions θ(T ∗1 |Λ∗) and θ(T ∗2 |Λ∗) as defined by Equation 1.

The query conjunction Λ∗ here denotes a complete specification of all values for all ground
nodes except for T ∗1 and T ∗2 . Theorem 2 entails the necessity direction of Theorem 1 by
the following argument. Suppose that there is a joint distribution p that agrees with the
conditional distributions of the derived dependency network. Then for every query con-
junction Λ∗, and for every assignment of values t1 resp. t2 to the ground nodes, I have that
p(T ∗1 = t1|T ∗2 = t2,Λ∗) and p(T ∗2 = t2|T ∗1 = t1,Λ∗) agree with the log-linear equation 1.
Therefore, the conditional distributions p(T ∗1 |T ∗2 ,Λ∗) and p(T ∗2 |T ∗1 ,Λ∗) must be mutually
consistent. Theorem 2 asserts that for every (non-redundant) edge-inconsistent template
BN, I can find a query conjunction and two ground nodes such that the conditional dis-
tributions of the ground nodes given the query conjunction are not mutually consistent.
Therefore there is no joint distribution that is consistent with all the conditional distribu-
tions defined by the log-linear equations, which establishes the necessity direction of the
main theorem 1.

A.2.1 Properties of the template BN and the input query Λ∗

I begin by establishing some properties of the template BN and the query conjunction that
are needed in the remainder of the proof.

The inconsistency of the BN networks arises when a parent and a child ground node have
different relevant family counts. The next lemma shows that this is possible exactly when
the template BN is properly relational, meaning it relates parents and children from different
populations.

Lemma 1. The following conditions are equivalent for a template edge T1 → T2.

1. The parent and child do not contain the same population variables.

2. It is possible to find a grounding γ for both parent and child, and an assignment Λ∗
to all other nodes, such that the relevant family count for the T2 family differs for
T ∗1 = γT1 and T ∗2 = γT2.
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Proof. If the parent and child contain the same population variables, then there is a 1-1
correspondence between groundings of the child and groundings of the parents. Hence the
count of relevant family groundings is the same for each, no matter how parents and child are
instantiated. If the parent and child do not contain the same population variables, suppose
without loss of generality that the child contains a population variable A not contained in
the parent. Choose a common grounding γ for the parents and child node. For the ground
child node, γT2, let γ be the only family grounding that is relevant, so the relevant count
is 1. For the ground parent node, there is at least one other grounding of the child node
T ′2 different from γT2 since T2 contains another population variables. Thus it is possible to
add another relevant family grounding for γT1, which means that the relevant count is at
least 2.

The proof proceeds most simply if I focus on template edges that relate different populations
and no common children.

Definition 2. An template edge T1 → T2 is suitable if

1. The parent and child do not contain the same population variables.

2. The parent and child have no common edge.

The next lemma shows that focusing on suitable edges incurs no loss of generality.

Lemma 2. Suppose that a template BN contains an edge such that the parent and child do
not contain the same population variables. Then the template BN contains a suitable edge.

Proof. Suppose that there is an edge satisfying the population variable condition. Suppose
that the parent and child share a common child. Since the edge satisfies the condition,
the set of population variables in the common child differs from at least one of T1, T2.
Therefore there is another edge from one of T1 → T2 as parent to a new child that satisfies
the population variable condition. If this edge is not suitable, there must be another shared
child. Repeating this argument, I eventually arrive at an edge satisfying the population
variable condition where the child node is a sink node without children. This edge is
suitable.

Consider a suitable template edge T1 → T2 that produces a bidirected ground edge T ∗1 ↔ T ∗2 .
For simplicity I assume that T1 and T2 are binary variables with domain {T,F}. (This incurs
no loss of generality as I can choose a database Λ∗ in which only two values occur.) Let
Pa(T2) be the parents of T2 other than T1. Since the template edge is not redundant [62],
there is a parent value setting Pa(T2) = pa such that T1 and T2 are conditionally dependent
given Pa(T2) = pa. This implies that the conditional distribution of T1 is different for each
of the two possible values of T2:

θ(T2 = F|T1 = F,pa)
θ(T2 = T|T1 = F,pa) 6=

θ(T2 = F|T1 = T,pa)
θ(T2 = T|T1 = T,pa) . (A.1)

Let Λ∗ denote an assignment of values to all ground nodes other than the target nodes T ∗1
and T ∗2 . I assume that the input query Λ∗ assigns different relevant family counts N1 to T ∗1
and N2 to T ∗2 . This is possible according to Lemma 1.
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Lowd’s Equation and Relevant Family Counts

The log-linear equation 1, specifies the conditional distribution of each target node given
Λ∗ and a value for the other target node. I keep the assignment Λ∗ fixed throughout, so for
more compact notation, I abbreviate the conditional distributions as

p(T1
∗ = t1|T2

∗ = t2) ≡ P (T1
∗ = t1|T2

∗ = t2,Λ∗)

and similarly for P (T1
∗ = t1|T2

∗ = t2,Λ∗).

On the assumption that the dependency network is consistent, there is a joint distribu-
tion over the target nodes conditional on the assignment that agrees with the conditional
distribution:

p(T1
∗ = t1, T2

∗ = t2)
p(T2

∗ = t2) = p(T1
∗ = t1|T2)∗

and also with the conditional p(T2
∗ = t2|T1

∗ = t1).

Lowd [52] pointed out that this joint distribution satisfies the equations

p(F,F)
p(T,F) ·

p(T,F)
p(T,T) = p(F,F)

p(T,T) = p(F,F)
p(F,T) ·

p(F,T)
p(T,T) (A.2)

Since the ratio of joint probabilities is the same as the ratio of conditional probabilities
for the same conditioning event, consistency entails the following constraint on conditional
probabilities via Equation (A.2):

p(T2
∗ = F|T1

∗ = F)
p(T2

∗ = T|T1
∗ = F) ·

p(T1
∗ = F|T ∗

2 = T)
p(T1

∗ = T|T2
∗ = T) = p(T1

∗ = F|T2
∗ = F)

p(T1
∗ = T|T2

∗ = F) ·
p(T2

∗ = F|T1
∗ = T)

p(T2
∗ = T|T1

∗ = T) (A.3)

I refer to Equation A.3 as Lowd’s equation. The idea of the proof is to show that Lowd’s
equations are satisfied only if the relevant family counts for the target nodes are the same.
According to the log-linear equation, each conditional probability is proportional to a prod-
uct of BN parameters. The first step is to show that in Lowd’s equation, all BN parameter
terms cancel out except for those that are derived from the family that comprises T ∗1 and
their T ∗2 and their common grounding.

Lemma 3. The conditional probabilities for the target nodes can be written as follows:

P (T2
∗ = t2|T ∗1 = t1,Λ∗) ∝ θ(T2 = t2|T1 = t1,pa)(N/N2+MT2=t2/N2) · πT2=t2 (A.4)

where MT2=t2 and πT2=t2 depend only on t2 and not on t1 and

P (T1
∗ = t1|T ∗2 = t2,Λ∗) ∝ θ(T2 = t2|T1 = t1,pa)(N/N1+MT1=t1/N1) · πT1=t1 (A.5)

where MT1=t1 and πT1=t1 depend only on t1 and not on t2.

Proof Outline. This is based on analysing the different types of families that appear in
the log-linear equation and their groundings. I omit this straightforward analysis to simplify
the proof; the details are available from [80].
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Lemma 4. Suppose that conditions (A.4) and (A.5) of Lemma 3 hold. Then Lowd’s Equa-
tion (A.3) holds if and only if N1 = N2.

Proof. Observe that in Equation (A.3), each term on the left has a corresponding term with
the same value for the target node assignment and the opposing conditioning assignment.
For instance, the term p(T2

∗ = F|T1
∗ = F) on the left is matched with the term p(T2

∗ =
F|T1

∗ = T) on the right. This means that the products in the log-linear expression are the
same on both sides of the equation except for those factors that depend on both t1 and t2.
Continuing the example, the factors

θ(T2 = F|T1 = F,pa)(MF/N2) · πT2=t2

on the left equal the factors

θ(T2 = F|T1 = T,pa)(MT1=t1/N2) · πT2=t2

on the right side of the equation. They therefore cancel out, leaving only the term

θ(T2 = F|T1 = F,pa)N/N2

on the left and the term
θ(T2 = F|T1 = F,pa)N/N2

on the right. Lowd’s equation can therefore be reduced to an equivalent constraint with
only such BN parameter terms. For further compactness I abbreviate such terms as follows

θ(t2|t1) ≡ θ(T2 = t2|T1 = t1,pa).

With this abbreviation, the conditions of Lemma 3 entail that Lowd’s equation A.3 reduces
to the equivalent expressions.

θ(F|F)N/N2

θ(T|F)N/N2
· θ(T|F)N/N1

θ(T|T)N/N1
= θ(F|F)N/N1

θ(F|T)N/N1
· θ(F|T)N/N2

θ(T|T)N/N2
(A.6)

( θ(F|F)
θ(T|F))(N/N2−N/N1) = ( θ(F|T)

θ(T|T))(N/N2−N/N1) (A.7)

By the nonredundancy assumption (A.1) on the BN parameters, I have

θ(F|F)
θ(T|F) 6=

θ(F|T)
θ(T|T)

so Equation A.7 implies that
N1 = N2,

which establishes the lemma.

Theorem 2 now follows as follows: Lemma 1 entails that if the dependency network is
consistent, the log-linear equations satisfy Lowd’s equation with the bidirected ground edge
T ∗1 ↔ T ∗2 and the query conjunction Λ∗ that satisfies the BN non-redundancy condition.
Lemmas A.3 and 2 show that if the template BN is relational, it must contain a suitable edge
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T1 → T2. Lemma 4 together with Lowd’s equation entails that the relevant counts for T ∗1
and T ∗2 must then be the same. But the query conjunction Λ∗ was chosen so that the relevant
counts are different. This contradiction shows that Lowd’s equation is unsatisfiable, and
therefore no joint distribution exists that is consistent with the BN conditional distributions
specified by the log-linear Equation 1. Since Theorem 2 entails Theorem 1, the proof is
complete.
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Appendix B

B.1 SQL Queries for Achema Analyzer

DROP SCHEMA IF EXISTS @database@_AchemaAnalyzer;
CREATE SCHEMA @database@_AchemaAnalyzer;

CREATE SCHEMA if not exists @database@_BN;
CREATE SCHEMA if not exists @database@_CT;

USE @database@_AchemaAnalyzer;
SET storage_engine=INNODB;

CREATE TABLE Schema_Key_Info AS SELECT TABLE_NAME, COLUMN_NAME,
REFERENCED_TABLE_NAME, REFERENCED_COLUMN_NAME, CONSTRAINT_NAME FROM
INFORMATION_SCHEMA.KEY_COLUMN_USAGE WHERE (KEY_COLUMN_USAGE.TABLE_SCHEMA =
’@database@’) ORDER BY TABLE_NAME;

CREATE TABLE Schema_Position_Info AS SELECT COLUMNS.TABLE_NAME,
COLUMNS.COLUMN_NAME,
COLUMNS.ORDINAL_POSITION FROM
INFORMATION_SCHEMA.COLUMNS,
INFORMATION_SCHEMA.TABLES
WHERE
(COLUMNS.TABLE_SCHEMA = ’@database@’

AND TABLES.TABLE_SCHEMA = ’@database@’
AND TABLES.TABLE_NAME = COLUMNS.TABLE_NAME
AND TABLES.TABLE_TYPE = ’BASE TABLE’)

ORDER BY TABLE_NAME;

CREATE TABLE NoPKeys AS SELECT TABLE_NAME FROM
Schema_Key_Info
WHERE
TABLE_NAME NOT IN (SELECT

TABLE_NAME
FROM
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Schema_Key_Info
WHERE

CONSTRAINT_NAME LIKE ’PRIMARY’);

CREATE table NumEntityColumns AS
SELECT

TABLE_NAME, COUNT(DISTINCT COLUMN_NAME) num
FROM

Schema_Key_Info
WHERE

CONSTRAINT_NAME LIKE ’PRIMARY’
OR REFERENCED_COLUMN_NAME IS NOT NULL

GROUP BY TABLE_NAME;

CREATE TABLE TernaryRelations as SELECT TABLE_NAME FROM
NumEntityColumns
WHERE
num > 2;

CREATE TABLE KeyColumns AS SELECT * FROM
(Schema_Key_Info
NATURAL JOIN Schema_Position_Info)
WHERE
TABLE_NAME NOT IN (SELECT

TABLE_NAME
FROM

NoPKeys)
AND TABLE_NAME NOT IN (SELECT

TABLE_NAME
FROM

TernaryRelations);

CREATE TABLE AttributeColumns AS SELECT TABLE_NAME, COLUMN_NAME FROM
Schema_Position_Info
WHERE
(TABLE_NAME , COLUMN_NAME) NOT IN (SELECT

TABLE_NAME, COLUMN_NAME
FROM

KeyColumns)
and TABLE_NAME NOT IN (SELECT

TABLE_NAME
FROM

NoPKeys)
and TABLE_NAME NOT IN (SELECT

TABLE_NAME
FROM

TernaryRelations);
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ALTER TABLE AttributeColumns ADD PRIMARY KEY (TABLE_NAME,COLUMN_NAME);

CREATE TABLE InputColumns AS SELECT * FROM
KeyColumns
WHERE
CONSTRAINT_NAME = ’PRIMARY’
ORDER BY TABLE_NAME;

CREATE TABLE ForeignKeyColumns AS SELECT * FROM
KeyColumns
WHERE
REFERENCED_COLUMN_NAME IS NOT NULL
ORDER BY TABLE_NAME;

ALTER TABLE ForeignKeyColumns
ADD PRIMARY KEY (TABLE_NAME,COLUMN_NAME,REFERENCED_TABLE_NAME);

CREATE TABLE EntityTables AS SELECT distinct TABLE_NAME, COLUMN_NAME FROM
KeyColumns T
WHERE
1 = (SELECT

COUNT(COLUMN_NAME)
FROM

KeyColumns T2
WHERE

T.TABLE_NAME = T2.TABLE_NAME
AND CONSTRAINT_NAME = ’PRIMARY’);

ALTER TABLE EntityTables ADD PRIMARY KEY (TABLE_NAME,COLUMN_NAME);

CREATE TABLE SelfRelationships AS
SELECT DISTINCT RTables1.TABLE_NAME AS TABLE_NAME,

RTables1.REFERENCED_TABLE_NAME AS REFERENCED_TABLE_NAME,
RTables1.REFERENCED_COLUMN_NAME AS REFERENCED_COLUMN_NAME FROM
KeyColumns AS RTables1,
KeyColumns AS RTables2
WHERE
(RTables1.TABLE_NAME = RTables2.TABLE_NAME)

AND (RTables1.REFERENCED_TABLE_NAME = RTables2.REFERENCED_TABLE_NAME)
AND (RTables1.REFERENCED_COLUMN_NAME = RTables2.REFERENCED_COLUMN_NAME)
AND (RTables1.ORDINAL_POSITION < RTables2.ORDINAL_POSITION);

ALTER TABLE SelfRelationships ADD PRIMARY KEY (TABLE_NAME);

CREATE TABLE Many_OneRelationships AS SELECT KeyColumns1.TABLE_NAME FROM
KeyColumns AS KeyColumns1,
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KeyColumns AS KeyColumns2
WHERE
(KeyColumns1.TABLE_NAME , KeyColumns1.COLUMN_NAME) IN (SELECT

TABLE_NAME, COLUMN_NAME
FROM

InputColumns)
AND (KeyColumns2.TABLE_NAME , KeyColumns2.COLUMN_NAME) IN (SELECT

TABLE_NAME, COLUMN_NAME
FROM

ForeignKeyColumns)
AND (KeyColumns2.TABLE_NAME , KeyColumns2.COLUMN_NAME) NOT IN (SELECT

TABLE_NAME, COLUMN_NAME
FROM

InputColumns);

CREATE TABLE PVariables AS SELECT CONCAT(EntityTables.TABLE_NAME, ’0’) AS Pvid,
EntityTables.TABLE_NAME,
0 AS index_number FROM
EntityTables
UNION
SELECT
CONCAT(EntityTables.TABLE_NAME, ’1’) AS Pvid,
EntityTables.TABLE_NAME,
1 AS index_number
FROM
EntityTables,
SelfRelationships
WHERE
EntityTables.TABLE_NAME = SelfRelationships.REFERENCED_TABLE_NAME

AND EntityTables.COLUMN_NAME = SelfRelationships.REFERENCED_COLUMN_NAME ;

ALTER TABLE PVariables ADD PRIMARY KEY (Pvid);

CREATE TABLE RelationTables AS SELECT DISTINCT ForeignKeyColumns.TABLE_NAME,
ForeignKeyColumns.TABLE_NAME IN (SELECT

TABLE_NAME
FROM

SelfRelationships) AS SelfRelationship,
ForeignKeyColumns.TABLE_NAME IN (SELECT

TABLE_NAME
FROM

Many_OneRelationships) AS Many_OneRelationship FROM
ForeignKeyColumns;

ALTER TABLE RelationTables ADD PRIMARY KEY (TABLE_NAME);

CREATE TABLE 1Variables AS
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SELECT CONCAT(’‘’, COLUMN_NAME, ’(’, Pvid, ’)’, ’‘’) AS 1VarID,
COLUMN_NAME,
Pvid,
index_number = 0 AS main FROM
PVariables

NATURAL JOIN
AttributeColumns;

ALTER TABLE 1Variables ADD PRIMARY KEY (1VarID);
ALTER TABLE 1Variables ADD UNIQUE(Pvid,COLUMN_NAME);

CREATE TABLE ForeignKeys_pvars AS SELECT ForeignKeyColumns.TABLE_NAME,
ForeignKeyColumns.REFERENCED_TABLE_NAME,
ForeignKeyColumns.COLUMN_NAME,
Pvid,
index_number,
ORDINAL_POSITION AS ARGUMENT_POSITION FROM
ForeignKeyColumns,
PVariables
WHERE
PVariables.TABLE_NAME = REFERENCED_TABLE_NAME;

ALTER TABLE ForeignKeys_pvars ADD PRIMARY KEY (TABLE_NAME,Pvid,ARGUMENT_POSITION);

CREATE table Relationship_MM_NotSelf AS
SELECT

CONCAT(’‘’,
ForeignKeys_pvars1.TABLE_NAME,
’(’,
ForeignKeys_pvars1.Pvid,
’,’,
ForeignKeys_pvars2.Pvid,
’)’,
’‘’) AS orig_RVarID,

ForeignKeys_pvars1.TABLE_NAME,
ForeignKeys_pvars1.Pvid AS Pvid1,
ForeignKeys_pvars2.Pvid AS Pvid2,
ForeignKeys_pvars1.COLUMN_NAME AS COLUMN_NAME1,
ForeignKeys_pvars2.COLUMN_NAME AS COLUMN_NAME2,
(ForeignKeys_pvars1.index_number = 0

AND ForeignKeys_pvars2.index_number = 0) AS main
FROM

ForeignKeys_pvars AS ForeignKeys_pvars1,
ForeignKeys_pvars AS ForeignKeys_pvars2,
RelationTables

WHERE
ForeignKeys_pvars1.TABLE_NAME = ForeignKeys_pvars2.TABLE_NAME
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AND RelationTables.TABLE_NAME = ForeignKeys_pvars1.TABLE_NAME
AND ForeignKeys_pvars1.ARGUMENT_POSITION

< ForeignKeys_pvars2.ARGUMENT_POSITION
AND RelationTables.SelfRelationship = 0
AND RelationTables.Many_OneRelationship = 0;

CREATE table Relationship_MM_Self AS
SELECT

CONCAT(’‘’,
ForeignKeys_pvars1.TABLE_NAME,
’(’,
ForeignKeys_pvars1.Pvid,
’,’,
ForeignKeys_pvars2.Pvid,
’)’,
’‘’) AS orig_RVarID,

ForeignKeys_pvars1.TABLE_NAME,
ForeignKeys_pvars1.Pvid AS Pvid1,
ForeignKeys_pvars2.Pvid AS Pvid2,
ForeignKeys_pvars1.COLUMN_NAME AS COLUMN_NAME1,
ForeignKeys_pvars2.COLUMN_NAME AS COLUMN_NAME2,
(ForeignKeys_pvars1.index_number = 0

AND ForeignKeys_pvars2.index_number = 1) AS main
FROM

ForeignKeys_pvars AS ForeignKeys_pvars1,
ForeignKeys_pvars AS ForeignKeys_pvars2,
RelationTables

WHERE
ForeignKeys_pvars1.TABLE_NAME = ForeignKeys_pvars2.TABLE_NAME

AND RelationTables.TABLE_NAME = ForeignKeys_pvars1.TABLE_NAME
AND ForeignKeys_pvars1.ARGUMENT_POSITION

< ForeignKeys_pvars2.ARGUMENT_POSITION
AND ForeignKeys_pvars1.index_number < ForeignKeys_pvars2.index_number
AND RelationTables.SelfRelationship = 1
AND RelationTables.Many_OneRelationship = 0;

CREATE table Relationship_MO_NotSelf AS
SELECT

CONCAT(’‘’,
ForeignKeys_pvars.REFERENCED_TABLE_NAME,
’(’,
PVariables.Pvid,
’)=’,
ForeignKeys_pvars.Pvid,
’‘’) AS orig_RVarID,

ForeignKeys_pvars.TABLE_NAME,
PVariables.Pvid AS Pvid1,

100



ForeignKeys_pvars.Pvid AS Pvid2,
KeyColumns.COLUMN_NAME AS COLUMN_NAME1,
ForeignKeys_pvars.COLUMN_NAME AS COLUMN_NAME2,
(PVariables.index_number = 0

AND ForeignKeys_pvars.index_number = 0) AS main
FROM

ForeignKeys_pvars,
RelationTables,
KeyColumns,
PVariables

WHERE
RelationTables.TABLE_NAME = ForeignKeys_pvars.TABLE_NAME

AND RelationTables.TABLE_NAME = PVariables.TABLE_NAME
AND RelationTables.TABLE_NAME = KeyColumns.TABLE_NAME
AND RelationTables.SelfRelationship = 0
AND RelationTables.Many_OneRelationship = 1;

CREATE table Relationship_MO_Self AS
SELECT

CONCAT(’‘’,
ForeignKeys_pvars.REFERENCED_TABLE_NAME,
’(’,
PVariables.Pvid,
’)=’,
ForeignKeys_pvars.Pvid,
’‘’) AS orig_RVarID,

ForeignKeys_pvars.TABLE_NAME,
PVariables.Pvid AS Pvid1,
ForeignKeys_pvars.Pvid AS Pvid2,
KeyColumns.COLUMN_NAME AS COLUMN_NAME1,
ForeignKeys_pvars.COLUMN_NAME AS COLUMN_NAME2,
(PVariables.index_number = 0

AND ForeignKeys_pvars.index_number = 1) AS main
FROM

ForeignKeys_pvars,
RelationTables,
KeyColumns,
PVariables

WHERE
RelationTables.TABLE_NAME = ForeignKeys_pvars.TABLE_NAME

AND RelationTables.TABLE_NAME = PVariables.TABLE_NAME
AND RelationTables.TABLE_NAME = KeyColumns.TABLE_NAME
AND PVariables.index_number < ForeignKeys_pvars.index_number
AND RelationTables.SelfRelationship = 1
AND RelationTables.Many_OneRelationship = 1;

CREATE TABLE Relationship AS SELECT * FROM
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Relationship_MM_NotSelf
UNION SELECT
*
FROM
Relationship_MM_Self
UNION SELECT
*
FROM
Relationship_MO_NotSelf
UNION SELECT
*
FROM
Relationship_MO_Self;

ALTER TABLE Relationship ADD PRIMARY KEY (orig_RVarID);
ALTER TABLE ‘Relationship‘ ADD COLUMN ‘RVarID‘
VARCHAR(10) NULL , ADD UNIQUE INDEX ‘RVarID_UNIQUE‘ (‘RVarID‘ ASC) ;

CREATE TABLE 2Variables AS SELECT CONCAT(’‘’,
COLUMN_NAME,
’(’,
Pvid1,
’,’,
Pvid2,
’)’,
’‘’) AS 2VarID,

COLUMN_NAME,
Pvid1,
Pvid2,
TABLE_NAME,
main FROM
Relationship

NATURAL JOIN
AttributeColumns;

ALTER TABLE 2Variables ADD PRIMARY KEY (2VarID);</p>
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B.2 Tables Dependency in the Random Variable Database
VDB

INFORMATION_SCHEMA 

KEY_COLUMN_USAGE COLUMNS TABLES 

Schema_Key_Info Schema_Position_Info 

KeyColumns 

EntityTables ForeignKeyColumns 

RelationTables 

PVariables 

1Variables 

AttributeColumns 

2Variables 

Relationship 

ForeignKeys_pvars 

RNodes_MM_NotSelf RNodes_MM_Selff 

Figure B.1: Tables Dependency in the Random Variable Database VDB.
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B.3 Schema for Random Variable Database

Table B.1: Schema for Random Variable Database

Table Name Schema
AttributeColumns TABLE_NAME, COLUMN_NAME
Domain COLUMN_NAME, VALUE
Pvariables Pvid, TABLE_NAME
1Variables 1VarID, COLUMN_NAME, Pvid

2Variables 2VarID, COLUMN_NAME, Pvid1, Pvid2,
TABLE_NAME

Relationship RVarID, TABLE_NAME, Pvid1, Pvid2,
COLUMN_NAME1, COLUMN_NAME2
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