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Abstract

Mutation testing is used to evaluate the quality of a test suite by measuring how well the
test suite detects systematically seeded faults (mutants). However, in the C programming
language, the created mutants may introduce undefined behaviour. Such a mutant has no
meaning and thus cannot meaningfully be reported as either detected or undetected by
mutation testing. This introduces two problems. First, it increases the number of mutants
that must be considered for mutation testing. Second, it creates a potential for bias in
the mutation score when mutants with undefined behavior count toward the number of
detected or undetected mutants. This thesis makes contributions toward identifying the
ways in which traditional mutation testing mechanisms may lead to undefined behavior.
It furthermore introduces automated analyses for statically detecting mutants that cause
undefined behavior so that they can be filtered out ahead of time. A proof of concept
implementation using Clang and LLVM validates that these techniques work for real world
programs in the C programming language.

Keywords: Undefined Behaviour; Mutation Testing; Program Analysis
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Chapter 1

Introduction

Software applications potentially touch millions of people, enabling them to do their jobs
effectively and efficiently [14]. Software testing is a process that is designed to make sure
software applications do what they are supposed to do. In this process, the software under
test is executed on a set of test cases. Then the results are evaluated to see if they match the
expected results. If the results are not as expected, the software is faulty. Otherwise, better
tests need to be developed to reveal errors. Adequate program testing is a necessary part of
software development. One of the challenges in testing is to measure the adequacy (quality)
of the test suite. There are several criteria that may be used to specify adequacy [16], and
evidence suggests mutation testing to be an effective one [4].

Mutation testing evaluates the quality of a test suite by measuring how well it detects
seeded faults. This is done by inserting numerous small defects into a program, one at a
time. Each new seeded program is called a mutant. The quality of a test suite is measured
by the number of seeded faults that the test suite can detect. A fault is detected, and the
corresponding mutant killed, when the test suite fails on a test for the mutant but passes on
that test for the original program. Otherwise, the mutant is live, and the seeded fault could
not be detected. This establishes a base for calculating a mutation score, the ratio of killed
mutants to seeded mutants. The higher the mutation score, the better the quality of the test
suite. Mutation testing is based on two hypotheses: the Competent Programmer Hypothesis
(CPH) and Coupling Effect [8]. The CPH states that programmers are competent, meaning
they tend to develop programs close to the correct version and as a result, even though there
might be faults in the developed program, they are simple faults that can be corrected by
a few syntactic changes [8]. The coupling Effect, states that “Test data that distinguishes
all programs differing from a correct one by only simple errors is so sensitive that it also
implicitly distinguishes more complex errors” [8]. In the context of mutation testing, it
means that complex faults are coupled with small faults, and a test suite that can detect
the small ones can also detect the complex ones.
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The main advantage of mutation testing is that the mutation operators can be described
precisely and therefore provide a well-defined, fault-seeding process [4]. However, applying
these operators to programs may create mutants with undefined behaviour. These mutants
have no meaning defined by a language specification, and reporting them as either killed or
alive by a mutation testing framework is not meaningful. Mutants with undefined behaviour
(invalid mutants) have the potential to affect the mutation score of programs and also
increase the number of mutants that need to be tested for computing it. In this work, we
have studied the presence of invalid mutants for programs in the C programming language.
We have proposed automated analysis techniques to detect such mutants. By measuring the
number of invalid mutants, our results show that undefined behaviour in mutation testing
does exist in real world C programs and has the potential to affect their mutation scores.

Chapter 2 provides the background information for this work. We have identified cases
where mutation operators result in undefined behaviour and discussed them in chapter 3.
The proposed automated analysis techniques to detect such cases automatically is described
in chapter 4. In addition, an implementation of the proposed analysis shows that it works
in real world projects as discussed in chapter 5. Finally, conclusions and future work are
presented in chapter 6.

2



Chapter 2

Background

Software is an essential component in much of the infrastructure that exists in our society
today such as airplanes, cell phones, cars, and more. Software testing is an important cycle
of software engineering and quality assurance of any software. Testing observes the execution
of a software system in order to validate whether it behaves as expected and to identify
potential bugs in the system [6]. It is used in industry for quality assurance of software
products. As software applications become more complex and critical, ensuring their desired
quality becomes more crucial, difficult and expensive. Studies estimate that testing can
comprise even more than half of development costs [6]. One of the challenges in testing is
how to qualify and evaluate the effectiveness of testing criteria. The attributes of a good
test are [2]:

(a) Having a high probability of finding bugs

(b) Not being redundant

(c) Should be neither simple nor complex

Mutation analysis is a test adequacy criterion for evaluating test suites. Mutation testing
has been shown to be a potentially valuable testing technique, capable of simulating real
bugs [17]. Mutants are versions of a program that differ from the original version by a small
syntactic change. Each of these mutants is run against the test suite. If the output differs
from the original program’s results, then it means that the test suite is able to identify the
bug and has killed the mutant. Otherwise the mutant stays alive. The higher the ratio of
killed mutants to all mutants, the better the quality of the test suite.

The remainder of this chapter explains mutation testing frameworks and then provides
background information for undefined behaviour.
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Figure 2.1: Process of Mutation Testing [8]

Original Program P Mutant Program P ′

1 if (a && b)
2 ...

1 if (a || b)
2 ...

Table 2.1: Example of a Simple Mutation

2.1 Mutation Testing

The process of mutation testing is shown in Figure 2.1. For a program P and a set of test
cases T , first a set of mutants are generated. Each mutant is generated by a single syntactic
change to the original program P . This transformation is known as mutation and a group
of related syntactic changes (e.g., replace one arithmetic operator with another) is called a
mutation operator. For example, Table 2.1 shows an original program and its mutant. By
changing the && operator that is used in an if statement to the || operator, a new program
P ′ is generated that is a mutant of the original program. By applying an operator only once,
a first order mutant is generated. Table 2.2 shows a set of mutation operators in C-like
languages. Mutation operators can be categorized into replacement operators, insertion
operators, and deletion operators. The first category, replacement operators, are designed
to modify and replace a variable or an expression in a program. Insertion and deletion
operators are used to add and delete statements in a program respectively [8].

A set of mutants is generated by applying mutations to the original program (one at a
time). This set of mutants is shown as P ′ in Figure 2.1. In the next step, all the test cases in
set T are executed against the original program P . If any test cases fail, the bugs indicated
by those tests need to be fixed. After all the test cases pass for program P , the test suite is
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then executed against every mutant in set P ′. If all the test cases pass when executed for a
mutant, that means the bug in that mutant could not be detected by T , and therefore the
mutant has survived. Otherwise, in the case of any failing test cases, the mutant is killed
by the test suite. At the end, when all mutants P ′ have been executed against T , some
of them may have survived. This could happen for two reasons. (1) Either the test suite
was not strong enough to detect the bug, or (2) the mutant was functionally equivalent to
the original program and therefore should have passed all the test cases. In the first case,
the programmer can add new test cases to T in order to increase the quality of the test
suite and kill the surviving mutants. However, in the second case mutants are functionally
equivalent with the original program and can never be killed. An example of syntactically
different but functionally equivalent mutants is illustrated in Figures 2.2 and 2.3. Both
programs will have the same output regardless of the test suite used because their meaning
is the same. Automatically detecting these mutants is impossible because in general this
problem is proved to be undecidable [8]. However, many solutions have been proposed in
the literature for equivalent detection problem [8].

1 counter = 0
2 while(flag){
3 if ( counter > 10){
4 break;
5 }
6 }
7 print( counter );

Figure 2.2: Original Program P

1 counter = 0
2 while(flag){
3 if ( counter >= 10){ // Mutation : >=
4 break;
5 }
6 }
7 print( counter );

Figure 2.3: Equivalent Mutant P ′

Finally, at the end of the process, a mutation score is reported. This score shows the
quality of the test suite T when used for testing program P . Equation 2.1 shows that the
mutation score is computed by the number of mutants killed by test suite T divided by the
total number of non-equivalent mutants for program P [8].

Mutation Score(P , T ) = Number of killed mutants
Total number of non-equivalent mutants (2.1)
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Mutation testing has been shown to effectively measure the quality of a test suite.
However, it is considered to be expensive, and this is for two main reasons [17]. First, the
number of mutants for a program can be very large, and this results in high computational
costs for executing all the test cases against the enormous number of mutants. This problem
has been addressed in the literature by applying various methods such as mutant sampling,
mutant clustering, selective mutation, runtime optimizations and other techniques [8]. The
second reason that makes mutation testing expensive is the equivalent mutant detection
problem. As mentioned earlier, the problem of detecting whether a program and a mutant
of that program are functionally equivalent or not is undecidable. Since the number of
non-equivalent mutants is used for computing the mutation score, it is important to address
this problem in order to achieve accurate results. In other words, if the equivalent mutants
are not detected, the mutation score may be arbitrarily lowered by mutants that do not
reflect faulty behavior. Because of the undecidable nature of this problem, one can never find
a complete solution; however, finding fast and effective ways to detect equivalent mutants
can help with overcoming the practical aspects of the problem [17].

One solution for detecting equivalent mutants is using compiler optimizations. This idea
was first suggested by Baldwin and Sayward [17]. The intuition for this approach is the fact
that optimization rules form transformations on equivalent programs. Therefore, if program
P can be transformed to its mutant using optimization rules, then the two programs are
functionally equivalent and have the same meaning. In paper Trivial Compiler Equivalence
(TCE) [17], authors have used this intuition to build a tool to automate the process of
equivalent mutant detection. TCE simply identifies two programs as equivalent if their
compiled object codes are identical. Their experimental results show that TCE can detect
approximately 30% of all the existing equivalent mutants [17].

2.1.1 Mutation Operator Types

Applying mutation operators to a program creates mutants of the original program. For each
mutation operator, if the program contains several entities that are in the domain of that
operator, then the operator is applied to each entity, one at a time. For example, consider
the mutation operator that deletes a statement from the program. All the statements in
the program are in the domain of this operator and therefore it will be applied to every
statement. Each mutant will have all statements in the program except the one deleted
by the mutant operator. These mutants are considered to be fault induced versions of
the original program. Table 2.2 shows a detailed description of these selected mutation
operators.

1. Absolute Value Insertion
ABS mutates statements containing scalar references. It provides domain coverage
for scalar variables. The domain is partitioned into three sections: negative, positive

6



Table 2.2: Mutation Operator Types [17]

Name Description

ABS: Absolute Value Insertion {(e, abs(e)), (e,-abs (e))}
AOR: Arithmetic Operator Replacement {(x, y) |x, y ∈ {+ ,- ,* ,/,%} ∧ x 6= y}
LCR: Logical Connector Replacement {(x, y) |x, y ∈ {&&, ||} ∧ x 6= y}
ROR: Relational Operator Replacement {(x, y) |x, y ∈ {>,>=,< ,<= , ==, !=} ∧ x 6= y}
UOI: Unary Operator Insertion {(v,-- v), (v, v-- ), (v,++v), (v, v++ )}
CRCR: Integer Constant Replacement {(ci, x) |x ∈ {1,-1 , 0, ci+1 , ci-1 ,- ci}}
OAAA: Arithmetic Assignment Mutation {(x, y) |x, y ∈ {+= ,-= ,*= ,/=,%=} ∧ x 6= y}
OBBN: Bitwise Operator Mutation {(x, y) |x, y ∈ {&, |} ∧ x 6= y}
OCNG: Logical Context Negation {(e, !(e)) | e ∈ {if(e),while(e)}}
SSDL: Statement Deletion {(s, remove(s)}

and zero [1]. ABS is designed to make sure each scalar variable will have a negative
value, a positive value, and value zero [3]. For example x = 5 + (*y)++ is mutated to
the following statements:

x = 5 + abs(*y)++ (2.2)

x = 5 + -abs(*y)++ (2.3)

Instead, if we had x = 5 + *(y++) the mutated statements would be the following[1]:

x = 5 + abs(*(y++)) (2.4)

x = 5 + -abs(*(y++)) (2.5)

2. Arithmetic Operator Replacement
Let S be equal to set {+ ,- ,* ,/,%}. AOR replaces each occurrence of elements in set S
by the other operators in the set [3]. For example, c = a + b is mutated to create the
following:

c = a - b (2.6)

c = a * b (2.7)

c = a/ b (2.8)

c = a % b (2.9)

7



3. Logical Connector Replacementt
This mutation operator simply replaces && with || and the other way around. An
example of this mutation was illustrated earlier in Table 2.1.

4. Relational Operator Replacement
ROR replaces each occurrence of one of the relational operators that belong to set
{ >,>=,< ,<= ,==,!=} with other elements in the set [3]. For example, applying ROR to
if(a>b) produces the following mutants:

if(a>=b) (2.10)

if(a<b) (2.11)

if(a<=b) (2.12)

if(a==b) (2.13)

if(a!=b) (2.14)

5. Unary Operator Insertion
UOI replaces each reference v by one of the elements in {-- v, v-- , v++ ,++v}. Values of
variables can be off the desired value by +1 or-1 . This operator is designed to model
such errors and is useful for checking boundary conditions [1]. Consider statement
c = a + b. Applying UOI to variable b in this statement creates the following mutants:

c = a + (b++) (2.15)

c = a + (++b) (2.16)

c = a + (b--) (2.17)

c = a + (--b) (2.18)

6. Integer Constant Replacement
Let S denote the set {1,-1 , 0, ci+1 , ci-1 ,- ci}, where ci is a constant in the program.
CRCR replaces each constant with one of the elements of set S. This mutation operator
aims to ensure that one constant is not mistakenly used for another [1]. Applying
CRCR to n |= (n >> 4) will result in following mutants:

n |= (n >> 1) (2.19)

n |= (n >> -1) (2.20)

n |= (n >> 0) (2.21)

8



n |= (n >> 5) (2.22)

n |= (n >> 3) (2.23)

n |= (n >> -4) (2.24)

Note that the number of bits to shift in Equations 2.20 and 2.24 are negative and
therefore these statements are not meaningful in C. We shall discuss this more in the
next chapter.

7. Arithmetic Assignment Mutation
OAAA replaces any occurrence of elements of set { += ,-= ,*= ,/=,%=} with the rest of its
elements.

8. Bitwise Operator Mutation
OBBN is for mutating bitwise operators. It replaces & with | and vice versa.

9. Logical Context Negation
In conditional statements, often the condition is reversed. OCNG aims to model such
types of errors [1]. This operator negates the controlling condition inside conditional
statements such as if and while. It also replaces the condition with constant true

and false boolean values. For instance, if(expr) will be mutated to:

if(!expr) (2.25)

if(true) (2.26)

if(false) (2.27)

This operand may cause infinite loops.

10. Statement Deletion
SSDL removes statements from the program. It is designed to ensure that each
statement in the program is executed and has an effect on the output [1].

Based on previous research on mutation operator selection [17], we have used the union
of two sets of operators. The first set includes ABS, AOR, LCR, ROR, and UOI. This
set has been used in the literature extensively. The second set consists of CRCR, OAAA,
OBBN, OCNG and SSDL. This set has been shown to provide accurate predictions of the
real fault detection ability of the test suite [17].
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2.2 Undefined Behaviour

According to the C Standards, undefined behaviour is “behaviour, upon use of a non-portable
or erroneous program construct or of erroneous data, for which this International Standard
imposes no requirements” [7]. It further explains that even though a segment of source code
may be an erroneous program construct, a translator is not required to issue a diagnostic
message for it. The erroneous data can happen either during compilation or execution. For
instance, division by zero may occur by dividing an expression by a constant zero (during
compilation) or by a division operator whose right operand is calculated to zero at run time
(during execution).

When executing code that contains undefined behaviour, one of the following may happen
in practice:

(a) A signal is raised. For instance SIGFPE on divide by zero.

(b) The defined behaviour of the processor occurs. For example, two’s complement modulo
rules for signed integer overflow.

(c) The machine code generated as a result of a translation time decision is executed.
For instance, x = x++ may be translated to increment first and then assign or maybe
translated to assign first and then increment or any other combination of instructions.

The C Standard summarizes the above cases: “Possible undefined behaviour ranges from
ignoring the situation completely with unpredictable results, to behaving during translation
or program execution in a documented manner characteristic of the environment (with or
without the issuance of a diagnostic message), to terminating a translation or execution
(with issuance of a diagnostic message).” [7].

Some programming languages define many constructs as undefined behaviour, whereas
others have less undefined behaviour. The trade-off is that on one hand, having more
undefined behaviour enables the compiler to generate efficient code, and on the other hand
it might generate code that may behave differently on various hardware platforms.

For instance, undefined behaviour exists in C-based programming languages because it
simplifies the job of the compiler. According to the language design principles, a C program
should be "made fast, even if it is not guaranteed to be portable" [7]. This helps the compiler
to be able to generate efficient low-level code, since it is not required to add either complex
static checks or dynamic checks that may slow down compilation and execution time [7]. In
contrast, programming languages like Java that are considered to be safe have less undefined
behaviour and the cost for that is sacrificing performance [9].

One way that compilers exploit undefined behaviour is by assuming that programmers
never invoke undefined behaviour [?]. Under this assumption, compilers make optimizations
that can lead to surprising results for developers. More precisely, a program may work as
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expected when compiled with no optimization but the same code with a higher level of
optimization may fail to execute. The reason behind this is that the compiler may remove
some parts of the code based on undefined behaviour because it can infer that it is dead
code.

2.2.1 Categories of Undefined Behaviour

This section introduces categories of undefined behaviour and explains how the compiled
versions of these programs might not behave as the developers may expect.

1. Division by Zero

1 if(size == 0){
2 size = 1 / size ; // Provoke a signal
3 }

Figure 2.4: Division by Zero Example [18]

Division by zero is undefined behaviour and the compiler can assume it never happens.
In example 2.4 the programmer intends to provoke a signal in case the variable size

is zero. When compiling this code with Clang, since size is used as a divisor in line
2, the compiler can infer that size != 0. Therefore the condition in line 1 is always
evaluated to false and is considered to be dead code. The compiler will optimize away
the code because it can never happen [18].

2. Logical Shift Overflow

1 groups_per_flex = 1 << sbi -> s_log_groups_per_flex ;
2 /* There are some situations , after shift the
3 value of groups_per_flex can become zero and
4 division with 0 will result in fixpoint
5 divide exception */
6 if ( groups_per_flex == 0)
7 return 1;
8 flex_group_count = ... / groups_per_flex ;

Figure 2.5: Oversized Shift Example [18]

Shifting an n-bit integer by n or more bits is undefined behaviour. For instance left-
shifting a 32-bit one by 32 bits produces one on x86, but zero on ARM and PowerPC;
however, left-shifting a 32-bit one by 64 bits produces zero on ARM, but one on x86
and PowerPC [18]. Because of these hardware differences, the behaviour is undefined
by C. Therefore, the compiler can assume that size of shifting an n-bit integer is at
most n− 1 bits. Based on this assumption, result of shifting one is always non-zero
regardless of the amount of shifting.
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Example 2.5 is a fragment of code from the file system in Linux. The programmer
intends to prevent a security vulnerability from happening by guarding a division by
zero in line 8; however, the guarded variable, groups_per_flex, is the result of shifting
constant value one. As discussed earlier, the compiler makes the assumption that this
value is never zero and therefore removes the guard as dead code.

3. Out of Bounds Pointer

1 int vsnprintf (char *buf , size_t size , ...){
2 char *end;
3 /* Reject out -of -range values early.
4 Large positive sizes are used for
5 unknown buffer sizes. */
6 if ( WARN_ON_ONCE (( int) size < 0))
7 return 0;
8 end = buf + size;
9 /* Make sure end is always >= buf */

10 if (end < buf) { ... }
11 ...
12 }

Figure 2.6: Out of Bounds Pointer Example [18]

If an integer is added to or subtracted from a pointer, the result should point to an
object with the same type of the original pointer or just one past the end of that object;
otherwise, it is undefined behaviour in C [18]. However, some programmers wrongly
assume that pointer arithmetic wraps around and use this assumption to check for
overflows. Example 2.6 illustrates one such bug. In line 10 the programmer is checking
for overflow in case of size being large, but the compiler can optimize away the check
since it is undefined behaviour and should not happen. More precisely, buf+size<size

will be translated to size<0 and since size is not negative (according to check in line
6), the guard is dead code.

4. Null Pointer Dereference

1 unsigned int
2 tun_chr_poll ( struct file *file , poll_table * wait){
3 struct tun_file *tfile = file -> private_data ;
4 struct tun_struct *tun = __tun_get (tfile);
5 struct sock *sk = tun ->sk;
6 if (! tun)
7 return POLLERR ;
8 ...
9 }

Figure 2.7: Null Pointer Dereference Example [18]
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Dereferencing a null pointer is undefined behaviour in C [18]. Therefore, whenever a
pointer is dereferenced in the code, the compiler can assume that the pointer is not
null. This can result in a bug if programmers check for a pointer being null after they
have already dereferenced it. For example in the code fragment of Figure 2.7, the
programmer checks for tun being not null at line 6, however, this pointer has already
been dereferenced in line 5. The compiler removes the check as dead code.

5. Uninitialized Read

1 struct timeval tv;
2 unsigned long junk; /* XXX left uninitialized
3 on purpose */
4 gettimeofday (&tv , NULL);
5 srandom (( getpid () << 16)
6 ^ tv. tv_sec ^ tv. tv_usec ^ junk);

Figure 2.8: Uninitialized Read Example [18]

Using an uninitialized variable in C is undefined behaviour [18]. In the C programming
language, variables are neither initialized to zero by default nor contain random values.
Compilers can eliminate computation derived from uninitialized variables [9]. In
example 2.8, the programmer aims to use the variable junk as a random value in
computation of srandom. But since it is uninitialized the compiler can ignore the entire
expression used in srandom’s argument.

6. Type-Punned Pointer Dereference

In C programming languages, programmers are allowed to cast pointers of one type
to another. However, pointer casts are often mistakenly used to reinterpret a given
object with a different type. In this case, programmers expect that two pointers of
different types, point to the same location in memory (known as aliasing). However
the C standard has strict rules for aliasing and two pointers of different types do not
alias and have their own memory address. Therefore, misusing such behaviour leads
to undefined behaviour [18].

In example 2.9, first iwe->len is updated and then memcpy is called in line 14 to copy
contents of (char*)iwe to stream. The Linux kernel contains its own version of memcpy

and the code is expanded as follows:

This code first writes the new len value to iwe->len and then reads iwe, which points
to the same memory location of iwe->len, using type int. GCC assumes that the read
and write do not happen in the same memory location because they are using different
pointer types and therefore point to different memory locations. As a result, GCC can
reorder the operations and copies an old version of iwe->len [18].
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1 struct iw_event {
2 uint16_t len; /* Real length of this stuff */
3 ...
4 };
5 static inline char * iwe_stream_add_event (
6 char * stream , /* Stream of events */
7 char * ends , /* End of stream */
8 struct iw_event *iwe , /* Payload */
9 int event_len ) /* Size of payload */

10 {
11 /* Check if it is possible */
12 if ( likely (( stream + event_len ) < ends)) {
13 iwe ->len = event_len ;
14 memcpy (stream , (char *) iwe , event_len );
15 stream += event_len ;
16 }
17 return stream ;
18 }

Figure 2.9: Type-Punned Pointer Dereference Example [18]

1 iwe ->len = 8;
2 *( int *) stream = *( int *)(( char *) iwe);
3 *(( int *) stream + 1) = *(( int *)(( char *) iwe) + 1);

Figure 2.10: memcopy expansion in Linux [18]

7. Signed Integer Overflow

1 int do_fallocate (... , loff_t offset , loff_t len){
2 struct inode *inode = ...;
3 if ( offset < 0 || len <= 0)
4 return -EINVAL ;
5 /* Check for wrap through zero too */
6 if (( offset + len > inode ->i_sb -> s_maxbytes )
7 || ( offset + len < 0))
8 return -EFBIG;
9 ...

10 }

Figure 2.11: Signed Integer Overflow Example [18]

One may assume that signed integer operations wrap around on overflow using two’s
complement. However, if an arithmetic operation overflows on an integer, it is undefined
behaviour in C. As a result of this, compilers can make many optimizations. For
example, x+1 > x is always evaluated to true because x+1 cannot overflow. In the
example 2.11, the programmer intends to check whether offset + len exceeds a
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number but then realizes that the sum may overflow and bypass the guard. In an
attempt to prevent this, a check is added for the case that the sum overflows. However,
since integer overflow is undefined behaviour, the compiler makes the conclusion that
the check for overflow always evaluates to false and therefore removes it. Thus, the
code remains vulnerable and may not behave as expected if the sum overflows.
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Chapter 3

Motivation

In this section, we explore how different mutation operators can lead to undefined behaviour.
In such cases, the resulting mutants can have undefined behavior and might unduly impact
the mutation score. However, exploring this full range of possible undefined behaviors for even
a single version of a program is costly. Exploring such behaviors for each individual mutant
is prohibitive. Instead, we examine how each mutation operator might lead to undefined
behavior while considering only instructions local to the syntactic change. Table 3.1 presents
a summary of the results discussed in this chapter.

Table 3.1: Undefined Behaviour in Mutation Testing

Undefined Behaviour Category Mutation Operator Type

DBZ: Division By Zero CRCR: Integer Constant Replacement
ROR: Relational Operator Replacement

LSO: Logical Shift Overflow
ABS: Absolute Value Insertion
CRCR: Integer Constant Replacement
ROR: Relational Operator Replacement

OBP: Out of Bounds Pointer and Array Access

UOI: Unary Operator Insertion
ABS: Absolute Value Insertion
CRCR: Integer Constant Replacement
ROR: Relational Operator Replacement

NPD: Null Pointer Dereference

OCNG: Logical Context Negation
ROR: Relational Operator Replacement
LCR: Logical Connector Replacement
SSDL: Statement Deletion

UIR: Uninitialized Read
OCNG: Logical Context Negation
ROR: Relational Operator Replacement
SSDL: Statement Deletion

TPD: Type-Punned Pointer Dereference -
SIO: Signed Integer Overflow -
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3.1 Division By Zero (DBZ)

Assume the value of a variable evaluates to zero. If this variable is used as a divisor then
it is undefined behaviour (division by zero). There are two cases when this can happen in
mutation testing. First, a constant integer may be used as a divisor. Replacing this constant
integer with zero results in DBZ. Second, a variable is guarded not to be zero and then used
as a divisor in the following block. In this case, flipping the condition of the guard results in
DBZ. Example 3.1 illustrates both cases.

1 x = y / 2; // CRCR: x = y / 0
2 x = y % 2; // CRCR: x = y % 0
3

4 if( y != 0) // ROR: if( y == 0)
5 x = x/y;

Figure 3.1: Division by Zero (CRCR and ROR)

3.2 Logical Shift Overflow (LSO)

Shifting an integer variable by a negative value is undefined behaviour. Any mutation
operator that changes the sign of values can result in this behaviour. For example, in the
case of a constant c used as a shift value, CRCR makes c negative by replacing it with either
-1 or - c. Also, in the case of a non-constant variable, v, the ABS operator changes the sign
of v to negative by applying -abs (v).

1 x = y >> 1; // CRCR: x = y >> -1
2 x = y >> count // ABS: x = y >> -abs(count)

Figure 3.2: Logical Shift Overflow (CRCR and ROR)

3.3 Out of Bounds Pointer and Array Access (OBP)

Assume pointer arr points to the first element of an array. In this case, mutating index

in arr[index] such that it is replaced with a negative value, results in out of bound array
access. This can happen in three cases. First, replacing a constant by a negative value using
CRCR, second, applying-abs() on a non-constant variable, and third, changing guards that
are used for sign checking. Also, in general, if arr points to the start of a block of memory,
applying UOI may cause OBP.

Example 3.3 is a real world code fragment from utimens.c file in gzip. In this example,
we can infer that tt is a pointer to start of an array of memory and therefore accessing
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negative indices of tt is undefined behaviour. This means that the constant index in lines 7
cannot be mutated to negative values by CRCR.

1 struct timeval *tt = NULL;
2 struct timeval truncated_timeval [2];
3 truncated_timeval [0] = ...
4 truncated_timeval [1] = ...
5 if (abig && adiff == 1 && get_stat_atime_ns (&st) == 0){
6 tt = truncated_timeval ;
7 tt [0]. tv_usec = 0; /* CRCR: tt [ -1]. tv_usec = 0; */
8 }

Figure 3.3: Code Fragment from lib/utimens.c of gzip-1.6 Project (CRCR)

Example 3.4 is another code fragment from the gzip project. In this example, leaves

is a pointer to the starting location (memory address) of an array of memory. As a result,
every array access to this memory, cannot be mutated to negative values using-abs() .

1 local int leaves [ MAX_BITLEN +1]; /* Number of leaves for each bit
length */

2 for (len = 1; len <= max_len ; len ++) {
3 leaves [len] = read_byte ();
4 if ( max_leaves - (len == max_len ) < leaves [len ])
5 gzip_error ("too many leaves in Huffman tree");
6 max_leaves = ( max_leaves - leaves [len] + 1) * 2 - 1;
7 n += leaves [len ]; /* ABS: n += leaves [-abs(len)] */
8 }

Figure 3.4: Code Fragment from lib/utimens.c of gzip-1.6 Project (ABS)

In the following example by applying ROR the comparison operator changes from !=

to < . The compiler can then infer that index i is negative in the following block of the
condition in line 3. Therefore accessing the element i of arr will be undefined in line 4.

1 int arr [3] = {1, 1, 1};
2 for (int i = 0; i< size; i++){
3 if(i != 0){ /* ROR: if( i < 0 ) */
4 arr[i] += 5;
5 }
6 ...
7 }

Figure 3.5: Out of Bounds Array Access (ROR)

Finally, in line 1 of the following code, one block of memory is allocated for pointer pat_y

and therefore this pointer cannot be incremented or decremented in line 2, because it will
exceed its allocated memory and will access an invalid address in memory. In line 4, two
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blocks of memory are allocated for pat_x, so it can be incremented but not decremented in
line 5.

1 struct a_pattern *pat_y = xmalloc ( sizeof ( struct a_pattern ));
2 pat_y ->str = p; /* UOI: (( pat_y)++) ->str = p; */
3

4 struct a_pattern *pat_x = xmalloc (2* sizeof ( struct a_pattern ));
5 pat_x ->str = p; /* UOI: (( pat_x) --)->str = p;*/

Figure 3.6: Out of Bounds Pointer (OBP)

3.4 Null Pointer Dereference (NPD)

There are two cases where mutation operators cause null pointer dereference. The first case is
omitting definition statements. The SSDL mutation operator maintains the syntactic validity
of a mutant; however, if the deleted statement is a definition statement, a null-initialized
pointer variable may remain null. Any access to it results in a null pointer dereference.
Second, the mutation operators OCNG, ROR, LCR, and UOI can change null pointer guards.
More precisely, assume a conditional statement is guarding a pointer to not be null and then
the guarded code dereferences the same pointer in the following block. Mutation operators
that negate conditions of such guards, result in NPD.

In example 3.7, applying SSDL to statement in line 6, causes tt to remain null. As a
result, accessing this variable in line 7 is an undefined behaviour of type NPD.

1 struct timeval *tt = NULL;
2 struct timeval truncated_timeval [2];
3 truncated_timeval [0] = ...
4 truncated_timeval [1] = ...
5 if (abig && adiff == 1 && get_stat_atime_ns (&st) == 0){
6 tt = truncated_timeval ; /* SSDL deletes this statement */
7 tt [0]. tv_usec = 0;
8 }

Figure 3.7: Code Fragment from lib/utimens.c of gzip-1.6 Project (SSDL)

The code in example 3.8 simply checks whether struct ctx != NULL and then reads field i

of ctx. A mutation operator that changes the condition of the if statement to ctx == NULL,
results in NPD in line 4. It can happen either by applying ROR to statement in line 1 or by
applying OCNG to the condition in line 3. If the guarded condition is a pointer as shown in
line 8, applying UOI to the pointer will change the condition to be always true and causes
NPD in line 9.
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1 bool cond = ctx != NULL; /* ROR: bool cond = ctx == NULL */
2 unsigned int ctx_i = 0;
3 if (cond) { /* OCNG: if (!( cond)) or if(true) */
4 ctx_i = ctx ->i;
5 ...
6 }
7

8 if (ctx) { /* UOI: if(--ctx) or if (++ ctx) */
9 ctx_i = ctx ->i;

10 ...
11

12 }

Figure 3.8: Null Pointer Dereference (OCNG)

3.5 Uninitialized Read (UIR)

Uninitialized reads happen when the mutation operator modifies the code in a way that a
variable is not initialized before it is read from. Two cases can cause this behaviour. The
first case is SSDL, it can delete the initialization statement of a variable. The second case
is mutation operators that change the flow of the program in a way that variables remain
uninitialized. Most of the mutation operators can be counted toward the second case, such
as OCNG, ROR, and others.

3.6 Type-Punned Pointer Dereference (TPD)

The mutation operators in Table 2.2 do not change the type of pointers and therefore do
not result in this type of undefined behaviour.

3.7 Signed Integer Overflow (SIO)

Mutation operators in table 2.2 may result in SIO, but such cases are not local to the
mutation and require specific conditions to hold. For example, if an integer variable contains
the maximum integer value possible, incrementing it results in SIO; however, reasoning
about the ranges of values in variables is a non-trivial task and is not in the scope of our
study.
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Chapter 4

Approach

In this chapter, we introduce three approaches for identifying cases where a mutation would
lead to undefined behavior.

4.1 Data Flow Analysis (DFA)

Data flow analysis is a framework for gathering facts about programs. DFA algorithms
were originally developed in the field of compiler construction, used to detect opportunities
for optimization [20]. They also have many other applications in software development
to solve problems in verification, debugging, testing and more [12]. Their applications
range from selecting test cases based on dependence information to detecting patterns that
indicate programming errors such as reads of potentially uninitialized variables or null
pointer dereferences [20].

DFA algorithms take a program as input, capture static information and return derived
information as a solution [12]. A control flow graph (CFG) is a representation of a program
that makes data flow analysis easier. It is a directed graph in which nodes represent
statements of a program and edges represent the control flow. A data flow solution assigns
a value to each node in the CFG. The assigned values can be a set of facts or relations
that can flow to other nodes in the graph. Data flow problems can be forward or backward.
In a case of forward analysis, the information flows in the same direction as CFG edges,
and in a backward analysis, it flows in the opposite direction [12]. In addition, they can
be interprocedural or intraprocedural. An interprocedural analysis takes into account the
procedures or functions of a program and their calling relationships, while an intraprocedural
analysis only considers one procedure at a time [12].

A formal definition of DFA frameworks is presented in section 4.1.1. Then our approach
using DFA to find potential undefined behaviour in mutation testing is described in the
following sections.
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4.1.1 Data Flow Analysis Framework

Data flow analysis framework is defined as a tuple τ = ((D,u,v,>,⊥), T ), where the first
element of τ , defines a semi-lattice and its second element, T , is a set of transfer functions.
The semi-lattice consists of a set of data flow values, D, and a meet operator. Each element
of τ is described as follows [19]:

(a) D: A set of data flow values which abstractly represent states of a program. This
abstraction is based on characteristics and facts that DFA is searching for.

(b) u: A meet operator that operates from a DxD domain to D. It takes two elements of
D and maps it to another element in D.

(c) v: A partial order relation on domain D (x v y iff x u y = y).

(d) >,⊥: Top and bottom elements of the lattice respectively, which are part of domain
D.

(e) T : A set of transfer functions that defines for each side effect, the impact on the data
flow values.

For instance, assume the data flow problem is to approximate signs of integer variables in a
program. In this case, D is {+, −, 0}∪ {>, ⊥} representing all the possible signs. The meet
operator is applied when multiple paths in the program join and is used to approximate the
sign of variables at the joint point. For example, if variable a is known to be positive in one
path and negative in another path, when the two path join, the meet operator is applied
and the state of variable a will be unknown at that point. Transfer functions show how to
evaluate the approximated behaviour. For example, in case of c = a + b, if the analysis
have computed facts about signs of a and b then it can infer sign of c (adding a positive
integer to another positive integer results in a positive value and etc.).

Given a program P , and a DFA framework τ , a data flow solution computes a mapping
between nodes of the control flow graph of P and abstract states of set D. This map is
called the abstract state of P . To compute this mapping a fixpoint computation is used,
which is based on a worklist algorithm. The complexity of this computation is bounded by
the height of the semi-lattice in τ . For each node n, the algorithm iteratively computes the
abstract state D(n) for that node using the following equations:

D0(n) = > ∀n ∈ CFG(P ) (4.1)

Di(n) =
l

np ∈ pred(n)
Tf (np, n) ∀i ≥ 0 (4.2)
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Di(n) =
l

np ∈ succ(n)
Tb(np, n) ∀i ≥ 0 (4.3)

In the first iteration, all the nodes are initialized to the top element, >, as shown in
equation 4.1. Then depending on the flow of the analysis, forward or backward, either
equation 4.2 or 4.3 is used. For instance, in the case of forward analysis, for each iteration i
of node n, the transfer function uses the current state of n, which is Di−1(n), along with
the states of all its predecessors to compute a new state for n, defined as Di(n) in equation
4.2. The backward analysis is very similar to forward analysis and the difference is that the
successors of each node are used for computation instead of its predecessors [19].

4.1.2 Data Flow Analysis Algorithm

Function computeAbstractState presented in algorithm 1 shows the process described earlier
(for the forward analysis). It takes in a function as input and returns the abstract state
for that function. The algorithm uses a standard worklist based approach to compute a
fixpoint solution. First, a new abstractState is created which is a mapping between nodes
of the program to their state in the domain D. After all the nodes are added to a list in
topological order, at each step, node n is removed from the worklist. Then for each of its
predecessors, a call to function Tf (np, n) is made. This function computes a new incoming
abstract state for n in relation to np. In the next step, node n is analyzed to collect facts of
interest. Finally, if the state of n, D(n), has changed in this iteration, then successors of
n are added to the worklist using function addToWorkList. This algorithm is guaranteed
to terminate if the lattice is well-defined and the height of the lattice is finite. After the
abstract state is computed for func, it can be postprocessed to find facts of interest.
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Algorithm 1 computeAbstractState
function computeAbstractState(function func)

add all nodes of func to worklist in topological order
new abstractState
while worklist 6= ∅ do

Remove node n from worklist
D(n): current state for n
for each predecessor np of n do

D′(n) = D′(n) u Tf (np, n)
end for
D′(n) = D′(n) u Transfer(n)
if D′(n) 6= D(n) then

D(n) = D′(n)
for each successor np of n do

addToWorkList(np)
end for

end if
end while
return abstractState

end function

4.2 Null Guard Analysis (NGA)

Null guard analysis is a forward data flow analysis that aims to identify a particular type of
null pointer dereference in mutation testing. This type of NPD happens if the mutation
operator changes the condition of a guard that is making sure a pointer is not null in its
following block. This can be caused by OCNG and ROR mutation operators and was
discussed earlier in chapter 3 with examples. The goal of this analysis is to find conditional
statements that are guarding pointer variables such that negating them causes NPD. In this
case, the analysis abstracts facts about pointers being null or not null at each statement of
the program. By analyzing this abstract state, a statement s that dereferences a pointer
p while its abstract state contains the fact p 6= null can be identified. Such statements
indicate that mutating the program in a way that switches the state of that fact to be null,
can potentially generate a meaningless mutant. In example 4.1, pointer p is guarded by
condition flag to not be null in line 4 and then is dereferenced in line 5. Therefore, negating
this condition causes undefined behaviour as a result of dereferencing a null pointer.
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1 int foo(int* p){
2 int a = 0;
3 bool flag = (p != null); /* NULL check */
4 if (flag){ /* Guarding pointer p */
5 a = *p; /* Dereferencing pointer p */
6 }else{
7 a = boo ();
8 }
9 return a;

10 }

Figure 4.1: NGA Example

4.2.1 Null Guard Analysis Instantiation

The NGA data flow framework instantiates the simple DFA framework by choosing a
particular abstract domain D, transfer functions and meet operator. The following provides
their detailed definitions:

(a) Domain:
NGA computes a set of facts over a program’s pointer variables. The following
equations describe the facts that are tracked by the analysis:

fact ∈ {pointerVar} × {ubInfo} (4.4)

ubInfo ∈ {guardState} × {actPoint} (4.5)

guardState ∈ {= ∅, 6= ∅,>,⊥} (4.6)

Each fact consists of a pointer variable, pointerVar, and a corresponding ubInfo that
contains both a guard state asserting the (non)nullness of a pointer and an activation
point where that assertion is used as a guard. Initially, the guardState for all pointers
is set to >, denoting that no information about the pointer has been computed. If a
pointer is proved to be null or not null, = ∅ and 6= ∅ are used respectively. Finally, if
contradictory states are observed, guardState will be set to ⊥, denoting that the value
is overconstrained and unknown. The activation point is the node that contains the
guard for the null comparison. For instance, in example 4.1, the null comparison for
pointer p is done in line 3 and then is used (activated) in the if condition in line 4.
Thus, the if node is set as the actPoint in ubInfo for p.

(b) Transfer Functions:
Transfer(n): If node n is a conditional node with guarding condition cond such that
cond is comparing a pointer variable p to null, then the following fact is generated for
p:
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fact =< p , ubInfo > (4.7)

ubInfo =< cond , n > (4.8)

Tf (np, n): If np is not a conditional node, all the facts in np flow to n directly.
Otherwise, two cases are possible for each fact in np. In the first case, the fact is not
activated in np, meaning np is merely propagating those facts. These facts also flow
directly to n. In the second case, the fact is activated by the guard condition in np,
meaning that its actPoint is equal to np. In this case, if n is the then block of np, the
new facts flow directly to n, but if n is the else block of np, the negation of these facts
flow to n. Fact a is the negation of fact b, if their guardStates are the negation of each
other ( 6= ∅ and = ∅).

(c) Meet Operator:
In order to model the abstract state of each node, n, in relation to all possible execution
paths in the program, states of all the predecessors of n should be merged using the
meet operator. The following constraint is used for computing the meet:

Di(n) =
l

np ∈ pred(n)
Tf (np, n) ∀i ≥ 0 (4.9)

The lattice for NGA is shown in figure 4.2 with the top element as undefined and the
bottom element as unknown.

>

6= ∅ = ∅

⊥

Figure 4.2: Lattice of NGA

4.2.2 Applying Null Guard Analysis

Our approach is a forward intraprocedural analysis. In other words, the analysis propagates
a set of abstract state facts forward in the program one function at a time. First, a
preprocessing algorithm is performed on the program to find pointer comparisons to null,
called cmpFacts. Equation 4.10 describes the cmpFacts that we track. If node cmp is
comparing pointer variable p to be equal to null, then cmpFact=< p,= ∅ > is generated,
and if cmp compares p to be not equal to null, cmpFact=< p, 6= ∅ > is generated. In the
next step, the null guard analysis is performed. A cmpFact can potentially be activated in
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this step and generate a fact if used in a guard node. For example, in code fragment 4.1, in
the preprocessing step cmpFact=< p, 6= ∅ > is generated in line 3. Since it is activated in a
guard in line 4, the corresponding fact factP=< p,ubInfo> such that ubInfo=< 6= ∅, 4 >, is
generated during the null guard analysis.

cmpFact ∈ {pointerV ar} × {guardState} (4.10)

This process is shown in figure 4.3 for code fragment 4.1 . Initially, the state is empty. As
mentioned earlier factP =< p, ubInfo> is generated and added to the state in line 4. Node
4 is a conditional node, and the actPoint for factP is equal to node 4 (it is a newly learned
fact), therefore, factP flows directly to node 5 (then block of node 4) and the negation of it
flows to node 7 (thbased on line numberse else block of node 4). Line 5 dereferences pointer
p and the current state for this line contains a fact for p with ubInfo =< 6= ∅, 4 > . This
indicates that a mutation that switches the guardState of this fact will cause a null pointer
dereference. Next, two contradictory facts from node 5 and 7 flow to node 9. Thus, the
guardState for factP is set to ⊥ at this node.

2

3

4

5 7

9

{}

{}

{<p,<6= ∅,4>>}

{<p,<6= ∅,4>>} {<p,<= ∅,4>>}

{<p,<⊥,4>>}

Figure 4.3: Control Flow Graph of code fragment 4.1

4.2.3 Null Guard Analysis Algorithm

Algorithm 2 presents the intraprocedural analysis used for NGA. It takes a program as input
and returns as output a set of guard statements that should not be negated in the mutation
testing framework. For each function func in the program, it first collects a set of cmpFacts
that hold for each node in CFG(func), called cmpFactMap. This map is then passed to
the computeAbstractState function, which was defined earlier in algorithm 1. Functions
Transform(n) and Tf (np, n) are used in algorithm 1 as transfer functions. These functions
are defined for NGA as follows:
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(a) Transfer(n)
Algorithm 3 defines this transfer function. If node n is a conditional node and its
condition has a corresponding cmpFact set in cmpFactMap then, those cmpFacts are
activated and new corresponding facts are generated and added to the state of n,
replacing any existing facts for the pointers to which they pertain. The new facts have
n as their actPoint and their guardState matches the one in cmpFact.

(b) Tf (np, n)
This function is defined in algorithm 4. It controls which facts from the predecessor
should flow to n. As described earlier, depending on whether np is conditional or not
and whether a fact is a newly activated fact or an old one, the flow of facts to n can
be different.

After the abstractState is computed for func, collectPotentialUB makes a call to collect-
Guards. This function finds all statements that contain a pointer dereference while their
state has a fact indicating the pointer is not null at that point. The actPoint of that fact is
then added to the result set.

Algorithm 2 collectPotentialUB for NGA
function collectPotentialUB(program program)

for each function func in program do
cmpFactMap = findCmpFacts(func)
abstractState = computeAbstractState(func, cmpFactMap)
guardSet = collectGuards(abstractState, func)

end for
return guardSet

end function
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Algorithm 3 Transfer(n) for NGA
function Transfer(node n, cmpFactMap)

if n is conditional then
cmp = condition(n)
if cmp in cmpFactMap then

for each pointerVar p in cmpFactSet do
kill = {< p′, u′ >∈ D(n)|p′ = p}
gen = {new fact (actPoint = n, pointerVar = p)}
D(n) = (D(n)\kill)∪gen

end for
end if

end if
return D(n)

end function

Algorithm 4 Tf (np, n) for NGA
function Tf (node np, node n)

D(np): state of np , D(n) : state of n
for each fact in D(np) do

if np is not conditional then
D(n) = D(n)u fact

else
if fact is old or (fact is new and n is then block of np) then

D(n) = D(n)u fact
else if fact is new and n is else block of np then

D(n) = D(n) u ¬ fact
end if

end if
end for
return D(n)

end function

4.3 Malloc Pointer Analysis (MPA)

Malloc pointer analysis is a forward data flow analysis for identifying another type of invalid
pointer. This type can be caused by unary operator insertion mutation type (illustrated
earlier in chapter 3). The goal is to find a set of statements that are dereferencing a pointer
such that those pointers cannot be incremented or decremented because doing so will exceed
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the allocated memory for the pointer. The analysis abstracts facts about pointers’ allocated
size in order to evaluate the validity of UOI operators. In example 4.4, struct point is defined
and a pointer to point p is passed to function foo. Then depending on condition cond, one
or two blocks of memory is allocated for p (each block is of size point). In the first case, p

cannot be incremented nor decremented because only one block is allocated for it. In the
second case, p can be incremented (point to the second block), but cannot be decremented.

1 struct point{
2 int x;
3 int y;
4 };
5

6 void foo( struct point* p, int a, bool cond){
7 if(cond){
8 p = malloc ( sizeof ( struct point));
9 p->x = a;

10 }else{
11 p = malloc (2* sizeof ( struct point));
12 p->x = a;
13 }
14 return ;
15 }

Figure 4.4: MPA Example

4.3.1 Malloc Pointer Analysis Instantiation

MPA instantiates the simple DFA framework by choosing the following abstract domain D,
transfer functions and meet operator:

(a) Domain:
MPA computes a set of facts over a program’s pointer variables. The following
equations describe the facts that are tracked by the analysis:

fact ∈ {pointerVar} × {allocState} (4.11)

allocState ∈ {no ++, no --, neither,>,⊥} (4.12)

Each fact is a pair consisting of a pointer variable pointerVar and its allocation state
allocState. Initially, the allocState is set to >, meaning an allocation state has not
been defined for this variable yet. If it is proved that pointerVar is the start/end point
of a chunk of memory, then it cannot be decremented/incremented and its allocState
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is set to no -- or no ++ respectively. In case pointerVar is pointing to only one block
of memory as shown in example 4.4 (line 8), then it can be neither incremented nor
decremented (neither). Finally, if any contradictory states are observed, then allocState
is set to ⊥ (unknown).

(b) Transfer Functions:
Transfer(n): If node n allocates memory to pointer variable p by making a call to an
allocation function, then the following fact is generated:

fact =< p , allocState > (4.13)

An allocation function (malloc for example), takes in an argument, size, that is the
size of the memory block to be allocated. If the size argument is equal to the size
of the type to which p points, then p points to the start of a single valid object in
memory, and its allocState is set to neither (similar to example 4.4, line 8). Otherwise,
p points to the start of the allocated memory block but not the end of it. In this case
allocState is set to no --.

Tf (np, n): All the facts in np flow to n.

(c) Meet Operator:
The meet operator for MPA is very similar to the one introduced for NGA. It combines
the states of all the predecessors of node n to overapproximate the behaviour of the
program in n using the following equation:

Di(n) =
l

np ∈ pred(n)
Tf (np, n) ∀i ≥ 0 (4.14)

Figure 4.5 shows the lattice for MPA. The top element again represents undefined state,
and the bottom element represents unknown state.

>

neither

no ++ no --

⊥

Figure 4.5: Lattice of MPA
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4.3.2 Applying Malloc Pointer Analysis

Malloc pointer analysis is a forward intraprocedural analysis. It computes the abstract state
for each function in the program separately. Initially, the state is empty and each node
in the CFG can potentially transfer the state. The process is shown in figure 4.6 for code
fragment 4.4 based on line numbers. In node 7, the state is empty. Node 8, makes a call
to malloc with a size argument equal to the size of type point and therefore a new fact is
generated and added to the state with allocState = neither. Node 9 will have the same state
as its predecessor (node 8), and since it is dereferencing pointer p, a UOI mutation that
increments or decrements p is undefined behaviour. Node 11, also makes a call to malloc,
however this time the allocated memory is more than the size of type point and thus, a
new fact is generated with allocState = no -- and then flows to node 12. This node is also
dereferencing p and this time a UOI mutation that increments p is allowed, but decrementing
p is undefined behaviour. Finally, two different allocState for p will flow to node 14 and the
meet of them (no --) is set as the new allocState for this node.

7

8 11

9 12

14

{}

{<p, no -->}

{<p, no -->}

{<p, no -->}

{<p, neither>}

{<p, neither>}

Figure 4.6: Control Flow Graph of code fragment 4.4

4.3.3 Malloc Pointer Analysis Algorithm

Algorithm 5 presents the intraprocedural analysis used for MPA. It takes a program as input
and returns as output a set of dereferencing statements such that their pointers should not
be mutated with unary operator insertion mutation operator. For each function func in
the program, it first computes the abstract state for func by using algorithm 1. Transfer
functions Transfer(n) and Tf (np, n) used in algorithm 1 are designed as follows for MPA:

(a) Transfer(n)
Algorithm 6 defines Transfer(n). Node n adds a new fact to the state only if it is
allocating memory to a pointer, p, by making a call to a memory allocation function.
The allocState for this fact depends on the size passed to the allocation function as
described earlier.
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(b) Tf (np, n)
Algorithm 6 defines this transfer function. Each fact in the state of np (a predecessor
of n) flows to the state of n.

After the abstract state is computed for func, collectPotentialUB makes a call to col-
lectDerefs. This function finds all statements that contain a pointer dereference while their
state has a fact indicating the pointer cannot be incremented and or decremented. This
statement is then added to the result set.

Algorithm 5 collectPotentialUB for MPA
function collectPotentialUB(program program)

for each function func in program do
abstractState = computeAbstractState(func)
derefSet = collectDerefs(abstractState, func)

end for
return derefSet

end function

Algorithm 6 Transfer(n) for MPA
function Transfer(node n)

if n is allocation function then
size = argument passed to malloc

if size == size(Type of p) then
gen = new fact (pointerVar = p, allocState = neither)

else if size > size(Type of p) then
gen = new fact (pointerVar = p, allocState = no --)

end if
kill= {< p′, a′ >∈ D(n)|p′ = p}
D(n) = (D(n)\kill) ∪ {gen}

end if
return D(n)

end function
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Algorithm 7 Tf (np, n) for MPA
function Tf (node np, node n)

D(np): state of np , D(n) : state of n
for each fact in D(np) do

D(n) = D(n)u fact
end for
return D(n)

end function

4.4 Sign Value Analysis (SVA)

Sign value analysis is designed to make sure variables maintain a valid sign in mutation
testing. SVA uses the abstract syntax tree (AST) of a program to analyze its source code.
An AST is a simplified syntactic representation of the source code that represents the parsed
string of the program in a structured way [5]. Since SVA operates on the AST level, it
has some limitations. This is because the AST is an abstract representation of a program
and does not contain all the information. Therefore it is challenging to track the flow of
information at the AST level.

Each value in the program is either a constant or in a form of an expression. In the first
case, CRCR can change the sign of the value and in the second case, ABS can cause the
sign to change.

SVA only analyzes the outermost expressions and does not take into account the inner
expressions to reason about the sign of the outer expressions. For instance in code fragment
4.7, since variable i is used as the index of arr, SVA can infer that sign of i in line 3
cannot be negative. Variable i itself is a complex expression (i = t + 5). Since the inner
expressions in i like t are not analyzed by SVA, t can be mutated to be negative even
though it might cause a negative value for i. In addition to this limitation, SVA cannot
analyze that t+5 itself cannot be mutated to be negative. Because SVA does not keep track
of the flow of information.

1 void bar(int* arr , int t){
2 int i = t + 5;
3 arr[i] = ...
4 }

Figure 4.7: SVA Example

Examples of sign related undefined behaviour were discussed in chapter 3. SVA identifies
the following cases:
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(a) Array Index: Values used as index of an array cannot be negative. For example in
code fragment 4.7, since variable i is used as the index of arr, SVA reports that i in
line 3 cannot be mutated with ABS operator.

(b) Shift Value: Values used as a shift width cannot be negative. SVA finds such values
and reports that they cannot be mutated to have a negative sign.

(c) Division By Zero: Variables used as a divisor cannot be zero. SVA finds all the
variables that are used in a divisor and reports that these variables cannot be zero.

In this chapter, we proposed three automated analyses for statically finding mutants
with undefined behaviour. Null guard analysis and malloc pointer analysis operate on the
control flow graphs and use dataflow analysis framework. Sign value analysis operate on
abstract syntax tree of the source code. In the next chapter, we have used the teceshniques
to find mutants with undefined behaviour in the real world projects.
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Chapter 5

Evaluation

5.1 Implementation

We have used LLVM and Clang [10] to implement our approach. The LLVM (Low Level
Virtual Machine) compiler infrastructure is a language and compiler system designed for
static and dynamic compilation [11]. LLVM provides a fast, robust, and well-documented
framework to support compilers and tools. It has three main components: first, the LLVM
virtual instruction set, second, a collection of libraries for analysis, and third, tools built from
those libraries. The LLVM virtual instruction set is the common intermediate representation
(IR) shared by all the LLVM subsystems. The instruction set provides control flow graphs,
data flow information in static single assignment (SSA) form and more [11]. Clang is a
compiler front end for C-like programming languages and uses LLVM as its backend.

CEER is a mutation testing framework implemented using Clang and LLVM. It generates
mutants for a given program and supports mutation operators listed in Table 2.2. CEER
uses the Clang AST representation to find and generate the mutants. A preprocessing
analysis that detects invalid mutations (undefined behaviour in mutants) would help CEER
to be able to filter those out in advance.

We have implemented SVA using the Clang AST and passed its result to CEER. The
result of SVA is a set of expressions that cannot be mutated with particular mutation
operators. Since CEER and SVA both operate at the AST level, they can communicate and
filter out the invalid mutants. NGA and MPA are implemented using LLVM IR because the
IR provides a convenient infrastructure to do dataflow analysis, whereas the AST level is
an abstract representation and does not support the flow of information. The result of this
analysis is a set of instructions in IR that should not be mutated with a particular set of
mutation operators at the AST level. Therefore, creating a communication channel between
the Clang AST and the LLVM IR is necessary. Each expression at AST maps to one or
multiple instructions at IR and they share the same debugging information. More precisely,
each expression has debugging information containing the file name of the source file and
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the corresponding IR instructions have the same debugging information. Our solution is to
modify the source file name of each expression within the AST so that the file name contains
a unique identifier for that expression. For example, changing the file name from test.c
to test_id.c in which id is a unique identifier for an expression. This information can be
retrieved in the IR level because each instruction in the IR has a corresponding expression in
AST. The file name exists in the debugging information of the IR instruction and matches
with the one from the AST expression. This way, a mapping between AST expressions and
IR instructions is created. Thus, CEER can identify the invalid mutants and filter them out.

5.2 Experimental Results and Analysis

Table 5.1 presents the information about our benchmark. The benchmark contains seven
programs with lines of code (Loc) ranging from 7,243 to 362,769. The total number of
mutants generated by CEER for each program is shown in the third column of this table.
These mutants are generated by applying mutation operators listed in Table 2.2. Gzip and
Make are GNU utility programs. Gzip performs file compression, and Make is used to build
executable files from source code files. GSL is a numerical library providing a range of
common mathematical functions. MSMTP is an SMTP client for sending and receiving
messages. Git is a source code management system. Grep is a command line utility to search
plain text data sets for lines matching regular expressions. Finally, Vim is a configurable
text editor.

Table 5.1: Benchmark

Program Loc Mutants
Gzip-1.6 7,323 45,412
Gsl-1.16 228,863 566,853
Make-4.0 32,122 72,132
MSMTP-1.4 13,068 25,260
Git-2.1 106,012 679,525
Grep-2.24 7,243 64,289
Vim-7.2 362,769 981,599

This section answers the following questions:

• Q1: Do mutants with undefined behavior exist in real world programs?

• Q2: How long does it take to analyze real world projects to find invalid mutants?

• Q3: How effective are our techniques for finding invalid mutants in real world projects?
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5.2.1 Do mutants have undefined behavior?

To explore the presence of undefined behavior in mutants and find the answer to question
Q1, we have measured the number of detected invalid mutants by CEER using each of the
three analyses (NGA, MPA, SVA) individually as well as all three together for the programs
in the benchmark. We also measure the proportions of the detected invalid mutants per
program, computed as the percentage of the invalid mutants to the number of related
mutants (all mutants coming from a mutation operator that may cause a related undefined
behaviour). For NGA, the related mutants are those created using OCNG, ROR, LCR, and
UOI mutation operators. Related mutants for MPA are the ones created by UOI. Finally,
ABS and CRCR create the related mutants for SVA. For calculating the proportion of the
total number of invalid mutants, we have used the total number of mutants in the program.

Table 5.2: Effectiveness

Program NGA MPA SVA Total
- UB OCNG+ROR+ % UB UOI % UB ABS+ % UB mutants %

LCR+UOI CRCR
Gzip-1.6 62 25,848 0.23 2 19,884 0.01 837 14,387 5.81 901 45,412 1.98
Gsl-1.16 320 269,394 0.11 724 239,256 0.30 3,178 193,140 1.64 4,222 566,853 0.74
Make-4.0 283 53,753 0.52 28 43,420 0.06 157 12,804 1.22 468 72,132 0.64

MSMTP-1.4 52 12,709 0.04 2 10,284 0.02 385 8,455 4.55 439 25,260 1.73
Git-2.1 1,906 480,325 0.39 72 391,124 0.02 2,408 145,409 1.65 4,386 679,525 0.64

Grep-2.24 122 44,722 0.27 18 35,408 0.05 247 14,084 1.75 387 64,289 0.60
Vim-7.4 1,762 643,427 0.27 70 483,272 0.01 7,420 244,870 3.03 9,252 981,599 0.94
Total 4,507 1,530,178 0.29 916 1,222,648 0.07 14,632 633,149 2.31 20,055 2,435,070 0.87

Table 5.2 reports the results per program and per analysis. For each analysis (NGA,
MPA, and SVA), the corresponding column shows the number of potential mutants with
undefined behaviour (UB) found, the number of related mutants (as discussed above), and
ratio of the former to the latter (%). The last column shows this information using all three
analyses.

Overall, the results indicate that our analyses can detect a total of 20,055 invalid mutants
among the programs, which is 0.87% of the total number of mutants. This number ranges
from 387 (0.60%) in Grep to 9,252 (0.94%) in Vim. SVA found the most invalid mutants
with 14,632 (2.31%). NGA detected the second most with 4,507 (0.29%), and lastly, MPA
detected a total of 916 (0.07%).

The number of UB found by each analysis depends on the characteristics of each program.
For example, if the program uses a large number of memory allocations, there is a better
chance for MPA to find related UB. As another example, programs that use shift operators
and array accesses are more likely to have potential UB found by SVA. Finally, the programs
that use guards for pointers tend to have a higher number of UB using NGA. A simple
search for the word “malloc” in the GSL project finds 427 matches, but the same search
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for MSMTP and Gzip projects have less than 10 matches in total. This explains why MPA
finds 724 UB in Gsl and only 4 UB in total for the other two projects.

Software testers may choose to only use specific mutation operators and omit the others
for various reasons. For example, one way to reduce the cost of mutation testing is to reduce
the number of mutants created. One approach to achieving this is using selective mutation
approach in which mutants for a program are generated without using the operators that
create the most mutants (the expensive operators) [15]. NGA has four different related
mutation operators and one of them (UOI) is categorized as an expensive one, while the
other three are not. Therefore, we have included a breakdown of UB found by NGA in
Table 5.3. The columns show information about each of the related mutation operators
(OCNG, ROR, LCR, and UOI) and each column itself shows the number of invalid mutants
(UB) found by NGA, total number of mutants (mutants), and the proportion (%) of them
(all in regards to the corresponding mutation operator of that column).

Table 5.3: NGA

Program OCNG ROR LCR UOI
- UB mutants % UB mutants % UB mutants % UB mutants %

Gzip-1.6 22 860 2.49 0 3,740 0.00 0 1,342 0.00 40 19,844 0.20
Gsl-1.16 2 2,044 0.10 0 23,391 0.00 32 4,669 0.68 286 238,970 0.11
Make-4.0 87 2,229 3.75 0 5,314 0.00 20 2,683 0.73 176 4,3244 0.40

MSMTP-1.4 26 535 4.63 0 1,441 0.00 0 423 0.00 26 10,258 0.25
Git-2.1 1,063 33,806 3.04 0 31,090 0.00 279 22,963 1.20 564 390,560 0.14

Grep-2.24 60 2,184 2.67 0 4,478 0.00 0 2,592 0.00 62 35,346 0.17
Vim-7.4 56 17,200 0.32 0 90,616 0.00 344 51,939 0.65 1,362 481,910 0.28
Total 1,316 77,758 1.70 0 160,070 0.00 675 86,611 0.78 2,516 1,220,132 0.20

In total 2,516 (0.20%) UB were found in the UOI category. OCNG and LCR have 1,035
(1.7%) and 675 (0.78%) respectively. Finally, no mutants were found in the ROR category.

In our implementation of NGA, we only report mutation operators that are local to the
undefined behaviour identified. More precisely, assume the condition cond = (ctx != 0) is
defined and is used later to guard the use of the pointer ctx, e.g. if(cond), then CEER filters
out the OCNG operator resulting in if(!cond), but cannot reason about the structure of
cond itself and therefore does not filter out the mutant cond = (ctx = 0) where != becomes
=. Our implementation is currently limited in this regard and can only reason about UB
locally. Future work can address this problem by analyzing these relationships more precisely.
This further contributes to analyses finding no undefined mutants for the ROR operator
in Table 5.3. In addition, our implementation only supports simple conditions as shown in
Figure 5.1. More complicated cases (nested expressions as conditions) require more analysis
to understand which mutants can be filtered out without producing false positives. This is
another direction for future work.
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1 /* cond is a simple expression guarding a
pointer */

2 if(cond) {...}
3 if(! cond){...}
4 if(cond && ...) {...}
5 if(! cond || ...) {...}

Figure 5.1: Supported cases for NGA

In conclusion, the results show that mutants with undefined behaviour do exist in real
world programs and filtering them out ahead of time reduces the overall number of overall
mutants. As discussed earlier, this can mitigate the potential bias in computing the mutation
score. In addition, killed and surviving mutants may be used for purposes other than
computing the mutation score, and in such cases counting invalid mutants can create similar
biases. For example, MUSE [13] is a mutation based fault localization technique. It ranks
statements of a buggy program based on passing and failing mutants in order to locate a
fault in a program. The key idea of MUSE is to identify the buggy statement by utilizing
different expected characteristics of two groups of mutants: one group that mutates a faulty
statement and the other that mutates a correct statement [13]. Therefore, a mutant that is
invalid should be filtered out for computing the ranking of statements.

5.2.2 Efficiency

To assess the efficiency of the approach, answering question Q2, we report the execution
time. Table 5.4 summarizes the execution time of our analyses in total, on average, and per
program in the benchmark. The results show that the execution time of the invalid mutant
detection is reasonably small. It ranges from only 0.2 seconds for MSMTP to less than 9
minutes for Vim. On average it takes about 1.5 minutes to analyze each program of the
benchmark and around 10 minutes in total for all the programs. This reveals that running
this analysis has a small overhead of time for real world programs compared to other tools
for mutation analysis. For example, TCE takes 3 seconds to analyze each mutant [17] which
adds up to be days to analyze the benchmark programs.
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Table 5.4: Efficiency

Program Loc time (sec)
Gzip-1.6 7,323 19.32
Gsl-1.16 228,863 18.35
Make-4.0 32,122 16.24
MSMTP-1.4 13,068 0.22
Git-2.1 106,012 13.75
Grep-2.24 7,243 5.10
Vim-7.2 362,769 516.13
Total 757,400 589.11
Average 108,200 84.15

5.2.3 Evaluation Metric

STACK [19] is an open source static analysis tool that precisely identifies unstable code.
Optimization-unstable code or unstable code, in short, is a class of software bugs in which
code is unexpectedly discarded by compiler optimizations due to undefined behaviour in
the program. The consequences of such bugs range from incorrect functionality to missing
security checks [19].

To evaluate our approach and to answer question Q3, we have run STACK on the invalid
mutants detected by CEER for each program. Table 5.5 shows the results for NGA and
MPA. SVA is very simple and only filters out very straightforward cases (like negating
array indices and shift values), and for this reason, we did not externally validate its results.
Each column shows the number of UB identified by our analyses (CEER), the number of
those that were also marked as UB by STACK (STACK), and the ratio of the latter to the
former (%).
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Table 5.5: Evaluation

Program NGA MPA
- CEER STACK % CEER STACK %

Gzip-1.6 62 43 69.35 2 1 50.00
Gsl-1.16 320 249 77.81 724 62 8.56
Make-4.0 283 135 47.70 28 0 00.00

MSMTP-1.4 52 26 50.00 2 0 0.00
Git-2.1 1,906 1,021 53.56 72 0 0.00

Grep-2.24 122 61 50.00 18 2 11.11
Vim-7.4 1,762 964 54.71 70 30 42.85
Total 4,507 2,499 55.44 916 95 10.37

For NGA 2,499 invalid mutants were validated by STACK (55.44%). The maximum
proportion of validated UB is Gsl in which 77.81% of identified UB is validated. In all
programs, a minimum of 47.70% cases are validated. The missing cases (the ones not marked
by STACK) can be either false positives by CEER (due to implementation faults) or false
negatives by STACK. A manual inspection of 20 randomly selected files showed that the
second case was true for all of them and CEER had correctly marked those as invalid while
STACK did not. For instance, in the following example, (--p) is always evaluated to true.
Therefore, dereferencing pointer p in line 3 is NPD. However, STACK does not mark this
program as UB. Similarly it misses the case if(1) too. But it is able to validate if((++p))

as UB. We concluded that this is the reason for STACK only validating around 50% of the
identified UB by CEER in most cases.

1 void foo(int a, int *p) {
2 if ((--(p))) { /* if (1) */
3 a = *p;
4 } else {
5 ...
6 }
7 }

Figure 5.2: Undefined Behaviour Missed by STACK (NGA)

This provides evidence that the results from NGA are accurate and conservative. However,
since we have not externally validated all the files, we cannot claim that there are no false
positives.

For MPA only 95 out of 916 (%10.37) invalid mutants were marked by STACK with
a minimum of 0% and a max of 50% for the programs. We found this is due to different
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approaches that CEER and STACK use to mark programs undefined. CEER reports UB if
an invalid memory address is used. However, STACK reports such cases as UB only when
the undefined behavior causes the compiler to remove code. For instance, the following code
fragment is identified as UB by CEER but not by STACK. In this example, applying the
UOI operator (predecrement) on pointer c, will point to an invalid address and therefore is
undefined behaviour. However, since this does not cause the compiler to remove any code,
STACK does not report it. These differences fundamentally come from the fact that STACK
is designed to find unstable code, but CEER is designed to find UB in general even if it does
not result in code being removed.

1 struct dep {
2 int num;
3 int name;
4 };
5

6 void foo( struct dep **c, int a) {
7 c = malloc (2 * sizeof ( struct dep));
8 a = ((--(c))[0]-> num);
9 }

Figure 5.3: Undefined Behaviour Missed by STACK (MPA)

We have run STACK on all the mutants generated by CEER for Gzip and Make projects
to find the number of mutants with undefined behaviour detected by STACK. We only
did this experiment for these two programs because of the time overhead involved in using
STACK which takes days to analyze mutants of a real world project. The results show
that 3.9% and 4.1% of the mutants were detected as invalid by STACK for Gzip and Make
respectively. As a result we can conclude that there is potential to filter out more mutants
with undefined behaviour by using automated analyses.

5.3 Threats to Validity

To cope with possible threats to external validity, we have selected seven well-known and
open source projects as the benchmarks. These programs differ in size and purpose. The
results show that depending on the characteristics of the subject program, the number of
invalid mutants may differ for each undefined behaviour type. However, the overall presence
of invalid mutations is consistent and this shows that the problem of undefined behaviour in
mutation testing does exist.

Threats to internal validity include our implementation of the analysis that might contain
errors that affect the results. To cope with this threat, we have performed tests on the tool;
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however, testing alone cannot prove the absence of errors. In addition, we have used STACK
to validate our results, but since the design and purpose of STACK is different from CEER,
we could not validate all cases.

Our implementation is dependent on the proposed communication channel between the
Clang AST and LLVM IR. We have observed that in some cases changing the debugging
information in Clang expressions does not propagate to LLVM instructions and they maintain
their old debugging information. In such cases, the channel fails to correctly find the
corresponding expression of an instruction. This results in false negatives since CEER
cannot identify and filter out such cases even though they have been found in the IR level.
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Chapter 6

Conclusions and Future Work

This thesis presents the first study of undefined behaviour in mutation testing, a problem
that results in increased number of mutants that needs to be considered and also creates a
potential for bias in the mutation score. Our results show that traditional mutation testing,
in the C programming language, does create meaningless mutants in real world programs.
We have identified cases that directly lead to undefined behaviour in mutation testing based
on each mutation operator type as discussed in chapter 3. Then in chapter 4 we proposed an
automated analysis including three techniques: null guard analysis, malloc pointer analysis,
and sign value analysis in order to identify mutants with undefined behaviour. Each of these
three techniques aims to address a particular type of undefined behaviour that is related to
a set of mutation operators. Furthermore, our implementation proves that these techniques
are able to filter out invalid mutants ahead of time and reduce the overall number of mutants
with undefined behaviour.

6.1 Future Work

In this work, we have proposed analysis techniques for identifying and preventing undefined
behaviour in mutation testing. However, the proposed methods do not cover all the possible
cases of undefined behaviour types. Future work includes adding other techniques to cover
such cases. For instance SVA can be extended to determine lower and upper bounds on
values of expressions instead of just the signs of simple expressions. Adding alias analysis
to NGA and MPA enables them to reason about pointers that point to the same address
and potentially filter out more mutants. As discussed earlier, our current implementation
only reports invalid mutants locally. Future work can address this problem by analyzing
the flow of information and relationships between the variables. For NGA, supporting more
complicated cases like conditions inside nested expressions can be another direction for
future work.
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In addition, our current approach is intraprocedural and can be extended to interproce-
dural to cover more cases. Also, a better communication channel between LLVM IR and the
Clang AST is needed to reduce false negatives. Currently in some cases, the channel fails
to make a mapping between an instruction and its corresponding expression, and invalid
mutants will be missed in such cases.
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