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Abstract

This thesis consists of two independent essays on financial econometrics.

The first study introduces a new family of portmanteau tests for serial correlation. 
Using the wavelet transform, we decompose the variance of the underlying process into 
the variance of its low frequency and of its high frequency components and we design a 
variance ratio test of no serial correlation in the presence of dependence. Such decompo-

sition can be carried out iteratively, each wavelet filter leading to a rich family of tests 
whose joint limiting null distribution is a multivariate normal. We illustrate the size and 
power properties of the proposed tests through Monte Carlo simulations.

The second study focuses on counterparty risk and its role as a determinant of cor-

porate credit spreads. However, there are only a few techniques available to isolate 
it from other factors. In this paper we describe a model of financial networks that is 
suitable for the construction of proxies for counterparty risk. Using data on the U.S. 
supplier-customer network of public companies, we find that, for each supplier, counter-

parties’ leverage and jump risk are significant determinants of corporate credit spreads. 
Our findings are robust after controlling for several idiosyncratic, industry, and market 

factors.

iii



ii

iii

iv

Contents

Approval

Abstract

Contents

1 Multi-scale tests for serial correlation 1

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Wavelet Transformations . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Multi-scale Variance Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Sample Multiscale Variance Ratios: Scale One . . . . . . . . . . . 11

1.2.2 Sample Multiscale Variance Ratios: Scale m . . . . . . . . . . . . . 12

1.3 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Multivariate multiscale tests . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Asymptotic Local Power and Finite Sample Performance . . . . . . . . . . 19

1.4.1 Asymptotic Local Power . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Application to High Frequency Financial Data . . . . . . . . . . . . . . . 26

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Economic Links and Credit Spreads 36

2.1 Background and Literature Review . . . . . . . . . . . . . . . . . . . . . . 38

2.2 The NARMA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Networks and graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iv



2.2.2 Basic properties of NARMA models . . . . . . . . . . . . . . . . . 42

2.3 The Network Determinants of Credit Spreads . . . . . . . . . . . . . . . . 45

2.3.1 The model: network spillovers . . . . . . . . . . . . . . . . . . . . . 45

2.3.2 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.3 Supplier-customer network . . . . . . . . . . . . . . . . . . . . . . 48

2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4.1 Bi-directionality of Supplier-Customer Relationships . . . . . . . . 50

2.4.2 Model Specification and Higher Network Lags . . . . . . . . . . . . 51

2.4.3 Counterparty Risk and Cross-Industry Effects . . . . . . . . . . . . 53

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Appendix A Proofs and Additional Materials 63

A.1 Proofs for Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography 71

v



Chapter 1

Multi-scale tests for serial

correlation

In this chapter we proposes a new family of frequency-domain tests for the white

noise hypothesis, the assumption that a process is uncorrelated. Frequency-domain

tests take as their starting point the result that, under stationarity conditions, the linear

dependence structure of a process {yt} is fully captured by its spectral density function

Sy(f). We focus our attention on the relation between the spectral density function and

the variance,

var(y) = 2

∫ 1/2

0
Sy(f) df ,

which, paraphrasing, says that the contribution of the frequencies in a small interval ∆f

containing f is approximately Sy(f)∆f . It is an elementary result that—when defined—

the spectral density function of an uncorrelated process is constant or, in other words,

that each frequency contributes equally to the variance of a white noise process; instead,

when a process is serially correlated, each frequency generally contributes in different

amounts and the spectral density function is non-constant.

Such contrast is the basis for the tests developed in this paper. Imagine that {yt} is

a Gaussian white noise process (Fig. 1.1, left panel). Then high frequencies, say those

in the band [1/4, 1/2], will contribute exactly half of the total variance of {yt}. On

the other hand, if {yt} is an autoregressive process of order 1 with a positive coefficient

(right panel), high frequencies will account for less than half of the total variance. This

example motivates the introduction of the variance ratio E(a, b), defined as the fraction

1



CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION 2

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Figure 1.1: High frequency contribution (in grey) to the total variance of a white noise
process (left) and an AR(1) process (right).

of the total variance contributed by the frequency band (a, b). Under the null of no serial

correlation, E(a, b) is equal to the length of the interval (a, b) and any departure from

this benchmark provides the means to detect serial correlation.

Although the variance ratio can be defined for an arbitrary frequency domain, the

need to estimate the corresponding integral of the spectral density function—the nu-

merator of E—imposes practical limitations. We resort to wavelet analysis to address

this need. For frequency bands of a particular form, the numerator of the statistic E is

a well known quantity, the wavelet variance,1 which can be estimated efficiently using

the maximum-overlap discrete wavelet transformation estimator. In this light, given

the temporal resolution properties of the wavelet transform, it is appropriate to refer

to E(a, b) as a multiscale variance ratio. The recursive application of this procedure

generates a family of tests whose joint limit distribution is multivariate normal under

mild restrictions.

While the main intuition behind multiscale variance ratios originates under covari-

ance stationarity assumptions, the corresponding test statistics are informative in more

general scenarios. Indeed, the null hypothesis can be relaxed to allow for a degree

of non-stationarity, specifically, for heteroskedastic white noise. Heteroskedastic white

noise is an uncorrelated process with varying variance. We develop the asymptotic theory

of multiscale variance ratios for uncorrelated but possibly dependent processes within

the framework of near-epoch dependence (NED). Besides accommodating heterogeneity,

1The wavelet variance was studied, among others, by Allan (1966), Percival (1983), Percival and
Guttorp (1994), Percival (1995), and Howe and Percival (1995).
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there are three further benefits of this approach. Firstly, the asymptotic results originate

from one of the most general Gaussian central limit theorems for dependent processes

(De Jong, 1997). Secondly, it permits trending higher moments (see Assumption A and

Assumption B1). Finally, it leverages a rich literature devoted to the derivation of the

NED property for many nonlinear time series models and, thus, parametric restrictions

for the validity of our test can be obtained in several typical cases.2

We contribute to the literature on tests for serial correlations in several ways. First,

the design we propose leads to serial correlation tests with desirable empirical size and

power in small samples. Second, as argued in the previous paragraph, our test is robust

to the presence of higher order dependence, heteroskedasticity, and trending moments,

while at the same time the asymptotic theory is developed in great generality. Third,

ours is the first test of serial correlation that utilizes directly the wavelet coefficients of

the observed time series to construct the wavelet-based test statistics.3 The tests we

design generalize, on one hand, variance ratios tests (Lo and MacKinlay, 1988), on the

other, they are related to ratios of quadratic forms and Von Neumann ratios (1941).

In addition, since the proposed test statistic does not rely on a point estimate of the

spectral density, the rate of convergence issues relating to the nonparametric spectral

density are not of first order of importance.

One of the well-known time-domain portmanteau tests for serial correlation is the Box

and Pierce’s test QK (BP). Given independent and identically distributed observations,

Box and Pierce (1970) show that the sum of K sample autocovariances times the number

of observations is approximately distributed as a Chi-squared distribution withK degrees

of freedom; statistically large values of QK indicate a likely serial correlation among the

data. In practice, the strict restrictions of independence and homogeneity are violated,

leading to possibly very inaccurate inference. There is a long streak of papers that

address these limitations, starting from the small sample improvements of Ljung and

Box (1978), to the more recent robustification program of Lobato (2001) and Lobato,

Nankervis, and Savin (2002). Robust inference can also be achieved using bootstrapping

methods. Building on the block bootstrap inference for autocorrelations of Romano and

2These results include GARCH, IGARCH, FIGARCH, ARCH(∞) (Davidson, 2004), ARMA, Bi-
linear models, switching and threshold autoregressive models, and smooth nonlinear autoregressions.
(Davidson, 2002).

3This approach was originally put forth by Fan and Gençay (2010) in unit root testing. Within a
similar framework, Xue et al. (2010) propose discrete wavelet-based jump tests to detect jump arrival
times in high frequency financial time series data.
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Thombs (1996), Horowitz, Lobato, Nankervis, and Savin (2006) develop a blocks-of-

blocks bootstrap that reduces the error rejection probability to nearly zero for samples

with at least 500 observations. Finally, Escanciano and Lobato (2009) (EL) combine

robustification techniques with a data-driven approach for automatic lag selection. The

resulting adaptive test has particularly high empirical power in finite samples.

Frequency-domain tests provide an alternative framework for testing serial corre-

lation. Hong (1996) uses a kernel estimator of the spectral density for testing serial

correlation of arbitrary form. His procedure relies on a distance measure between two

spectral densities of the data and the one under the null hypothesis of no serial correla-

tion. Paparoditis (2000) proposes a test statistic based on the distance between a kernel

estimator of the ratio between the true and the hypothesized spectral density and the

expected value of the estimator under the null. Wavelet methods are particularly suit-

able in such situations where the data has jumps, kinks, seasonality and nonstationary

features. The framework established by Lee and Hong (2001) is a wavelet-based test for

serial correlation of unknown form that effectively takes into account local features, such

as peaks and spikes in a spectral density. Duchesne (2006) extends the Lee and Hong

(2001) framework to a multivariate time series setting. Hong and Kao (2004) extend

the wavelet spectral framework to the panel regression. The simulation results of Lee

and Hong (2001) and Duchesne (2006) indicate size over-rejections and modest power in

small samples. Reliance on the estimation of the nonparametric spectral density together

with the choice of the smoothing parameter affects their small sample performance. Re-

cently, Duchesne et al. (2010) have made use of wavelet shrinkage (noise suppression)

estimators to alleviate the sensitivity of the wavelet spectral tests to the choice of the

resolution parameter. This framework requires a data-driven threshold choice and the

empirical size may remain relatively far from the nominal size. Therefore, although a

shrinkage framework provides some refinement, the reliance on the estimation of the

nonparametric spectral density slows down the rate of convergence of the wavelet-based

tests, and consequently leads to poor small sample performance.

In Section 1.1, we fix the notation, describe the discrete wavelet transform, and

present the concept of near-epoch dependence together with the law of large numbers

and the central limit theorem from which our main results will obtain. In Section 1.2, we

introduce and motivate our tests. In Section 1.3 we study its large sample distribution.

In Section 1.4, we analyze the small sample properties through several Monte Carlo
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simulations. A brief conclusion follows afterwards.

1.1 Preliminaries

Let yt be a stochastic sequence with E(yt) = 0 and var(yt) = σ2
t . If yt is ho-

moskedastic, that is σ2
t = σ2 for all t, and uncorrelated, that is cov(yt, ys) = 0 for all

s 6= t, then yt is called white noise. If homoskedasticity is violated, we refer to yt as

heteroskedastic white noise. We consider tests of the null hypothesis of no correlation,

H0 : cov(yt, ys) = 0 for all s 6= t, against correlated alternatives, H1 : cov(yt, ys) 6= 0

for some s 6= t. A finite sample realization of yt with T observation is denoted with

{yt} and, when viewed as a vector in RT , we use the notation yT , or simply y, leaving

T understood when there is no chance for confusion. Throughout the paper we impose

periodic boundary conditions on {yt}, that is

yt ≡ yt mod T ,
4

and we define s2
n(y) as

s2
n(y) =

n∑
t=1

var(yt) + 2

n∑
t=2

n−1∑
k=1

cov(yt, yt−k) . (1.1)

A stochastic sequence yt gives rise to a filtration of sigma fields

F t+mt−m (x) ≡ σ(xt−m, . . . , xt+m) ,

where F t+mt−m (x) is the smallest sigma field on which {xt−m, . . . , xt+m} are measurable,

that is the collection of sets of the form x−1
i (B) where B is a measurable set in the

codomain of xi and the index i ranges from t−m to t+m. Either bounds can be let go

to infinity, yielding the sigma fields F t−∞—containing the information from the remote

past up to now—and F∞t —containing the information from the present to the remote

future. When there is no risk of confusion, we will write F t+mt−m for F t+mt−m (x). All proofs

can be found in the Appendix.

4The notation a− b mod T stands for “a− b modulo T”. If j is an integer such that 1 ≤ j ≤ T , then
j mod T ≡ j. If j is another integer, then j mod T ≡ j + nT where nT is the unique integer multiple of
T such that 1 ≤ j + nT ≤ T .
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In developing the statistical properties of our test for serial correlation, we consider a

very general null hypothesis, namely that the data generating process is heteroskedastic

white noise, thus restricting only the correlation properties of the process while leaving

higher order dependence completely unconstrained. In order to remain close to the

intention of a very general null hypothesis, we develop the asymptotic theory for our serial

correlation test in terms of concept of near-epoch dependence (NED). For a stochastic

sequence xt define

αm ≡ sup i∈Z sup {A∈Ft−∞,B∈F∞t }|P (A ∪B)− P (A)P (B)|

φm ≡ sup i∈Z sup {A∈Ft−∞,B∈F∞t ,P (A)>0}|P (B|A)− P (B)| .

Then, if φm = o(m−a−ε) for ε > 0, then xt is φ-mixing of size −a. If αm = o(m−a−ε)

for ε > 0, then xt is α-mixing of size −a.

Definition 1 (Adapted from Davidson (1995), Definition 17.1, page 261). A stochastic

sequence xt is said to be near-epoch dependent on εt in Lp-norm for p > 0 if

‖xt − E[xt|F t+mt−m (ε)]‖p ≤ dtνm (1.2)

where νm → 0 as m → ∞ and dn is a sequence of positive real numbers such that

dt = O(‖xt‖p).5

Any process xt that satisfies Definition 1 will be referred to as “Lp-NED on εt”

for short. The concept of near-epoch dependence was popularized in the econometrics

literature by Gallant and White (1988), but its inception can be traced back to the

work of Ibragimov (1962). As pointed out by Davidson (1995), near-epoch dependence

is not an alternative to mixing assumptions, instead it allows to establish useful memory

properties of xt in terms of those of εt.

When the innovation process εt is mixing, powerful laws of large numbers and central

limit theorems can be established for NED processes.6 In order to apply these results,

the following proposition will be useful (a generalization of Theorem 17.9 in Davidson,

1995, from L2 to Lp processes).

5The sequence dt is a technical device used to accommodate trending moments. For all the data
generating processes encountered in the examples, it can be set equal to 1.

6See, among others, Davidson (1992, 1993, 1995); De Jong (1997).
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Proposition 2. If xt and yt be Lp-NED on {εt} of size −φx and −φy respectively, then

xtyy is Lp/2-NED of size −min(φx, φy) on {εt}.

1.1.1 Wavelet Transformations

In this section we introduce the Maximum Overlap Discrete Wavelet Transform

(MODWT).7 A vector {hl} = (h0, . . . , hL−1) in RL gives rise to a linear time invari-

ant filter by means of the convolution operation: Given a sequence to be filtered {yt},
the convolution of {hl}, and {yt} is the sequence

h ∗ yt =
l=∞∑
l=−∞

hlyt−l , ∀t ,

where we define hl = 0 for all l < 0 and l ≥ L.

A wavelet filter is a linear time invariant filter {hl} of length L, such that for all

n 6= 0:
L−1∑
l=0

hl = 0 ,
L−1∑
l=0

h2
l = 1/2 ,

∞∑
l=−∞

hlhl+2n = 0 . (1.3)

In words, h sums to zero, has norm 1/2, and is orthogonal to its even shifts. The

natural complement to the wavelet filter {hl} is the scaling filter {gl} determined by the

quadrature mirror relationship

gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1 .

The scaling filter satisfies the following basic properties, analogous to Equations 1.3:

L−1∑
l=0

gl = 1 ,

L−1∑
l=0

g2
l = 1/2 ,

∞∑
l=−∞

glgl+2n = 0 ,

∞∑
l=−∞

glhl+2n = 0 , (1.4)

for all nonzero integers n.

In general, the definitions of wavelet and scaling filter do not imply any specific

7This section closely follows Gençay et al. (2001), see also (Percival and Walden, 2000, Chap. 5).It is
common in the literature distinguish the objects related Discrete Wavelet Transform from those related
to the Maximum Overlap Discrete Wavelet Transform by placing a tilde (∼) in the latter case. Since
all quantities in the main part of the paper refer to the MODWT and we believe there is little scope for
confusion, we warn the reader that in this paper we do not follow this convention.
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band-pass properties (see Percival and Walden, 2000, Chap. 4, Pag. 105, for an in-

depth discussion). Further conditions must be imposed to recover the domain frequency

interpretation associated with the continuous wavelet transform and to guarantee that

{hl} is a high-pass filter (which, as a consequence of the QMF relationship, implies

that {gl} is a low-pass filter). An example of such additional constraints, sometimes

referred to as regularity conditions, are the vanishing moment conditions introduced by

Daubechies (1993). Nevertheless, all the results in the paper apply without any regularity

conditions on the filters and hence to any arbitrary dyadic band-pass decomposition. In

particular, when the filters {hl} and {gl} applied to an observed time series are from a

wavelet filter-bank, we can separate high-frequency oscillations from low-frequency ones.

Formally, the MODWT of level M is a linear operator and can be represented in

terms of matrix operations:

w =Wy

where W is a (M + 1)T × T matrix. The matrix W is constructed by assembling M + 1

sub-matrices of dimensions T × T :

W = [W1,W2, · · · ,WM ,VM ]′ ,

whose action is defined in terms of wavelet filter {hl} and scaling filter {gl}. Specifically,

(Wmy)t =

Lm∑
l=0

hm,lvm,t−l mod T

where Lm := (2m − 1)(L− 1) + 1. The m-th level filter {hm,l} can be written as a filter

cascade

hm = h ∗ g ∗ . . . ∗ g︸ ︷︷ ︸
m−1

,

where g is the scaling filter and ∗ denotes a convolution.8

The MODWT of the observed time series yT can be organized into M + 1 vectors of

8A general explicit formula for hm requires working with transfer functions in Fourier space

hm(l) =
1

L

L−1∑
f=0

H

(
2m−1f

N

)m−2∏
k=1

G

(
2kf

N

)
e2iflπ/L
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length T

w = (w′1, . . . ,w
′
M ,v

′
M )′ , (1.5)

where M ≤ log2 T be the decomposition level of the MODWT. In practice, w is com-

puted recursively via a so-called pyramid algorithm. Each iteration of the MODWT

pyramid algorithm, requires three objects: the data vector to be filtered, the wavelet

filter {hl} and the scaling filter {gl}. The initial step consists of applying the wavelet

and scaling filter to the data with each filter to obtain the first level wavelet and scaling

coefficients:

w1,t = (w1)t =
L−1∑
l=0

hlyt−l mod T and v1,t = (v1)t =
L−1∑
l=0

glyt−l mod T

for all t = 1, . . . , T .

The length T vector of observations has been high- and low-pass filtered to obtain

T coefficients associated with this information. The m-th step consists of applying

the filtering operations as above to obtain the (m + 1)-st level of wavelet and scaling

coefficients

wm+1,t = (w1)t =
L−1∑
l=0

hlvm,t−l mod T and vm+1,t = (v1)t =
L−1∑
l=0

glvm,t−l mod T (1.6)

for all t = 1, . . . , T .

Keeping all vectors of wavelet coefficients, and the level M scaling coefficients, we obtain

the decomposition of Equation 1.5.

1.2 Multi-scale Variance Ratios

Consider the general variance ratio

E(a, b) = 2

∫ b

a
Sy(f) df

/
var(y) .

where H and G are the Discrete Fourier Transforms of h and g, respectively:

H(f) =

L−1∑
l=0

hle
2iflπ/L , G(f) =

L−1∑
l=0

gle
2iflπ/L .
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The numerator of E(a, b) can, for specific intervals, be expressed in terms of the wavelet

variance. Indeed, neglecting the leakage of the wavelet filter, the following approximation

holds9

wvarm(y) ≈ 2

∫ 1/2j

1/2j+1

Sy(f) df . (1.7)

For m = 1, the integral in Equation (1.7) corresponds to the area E1 in Figure 1.1.

Formally, the wavelet variance for a stationary process y is defined as

wvarm(y) ≡ var(wm,t) . (1.8)

From equation (1.6), we see that wm,t is a linear process, obtained by applying the time

invariant filter hm to a zero mean process y. If y is stationary, then the spectrum of

wm,t is Sm(f) = |Hm(f)|2Sy(f), where Hm(f) is the discrete Fourier transform of the

filter {hi} (see Brockwell and Davis, 2009, Page 121, Eq. 4.4.3.). If follows that

wvarm(y) =

∫ 1/2

−1/2
Sm(f) df =

∫ 1/2

−1/2
|Hm(f)|2Sy(f) df (1.9)

In particular, if {yt} is a covariance stationary white noise, then Sy(f) = σ2
y and

wvarm(y) = σ2
y

∫ 1/2

−1/2
|Hm(f)|2 df = σ2

y‖hm‖2

= σ2
y‖g‖2

m−1∏
i=1

‖h‖2 = σ2
y2
−m

The second equality uses Parseval’s identity, the third equality holds because the norm

of a convolution is the product of the norms, and the last equality follows from the

normalization Equation (1.3). In conclusion, we proved the following

Theorem 3. The wavelet variance ratio for a stationary white noise process is

Em(y) ≡ wvarm(y)

var(y)
=

1

2m
.

When there is no risk of confusion, we will write Em for Em(y). In the remainder of this

section we introduce a family of statistics that detect serial correlation by testing the

9See Percival and Walden (2000), Equation (297a), page 297.
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implications of Theorem 3.

1.2.1 Sample Multiscale Variance Ratios: Scale One

The Maximum Overlap Discrete Wavelet Transform (MODWT) consists of a set of

linear filters that given a time series generates a collection of vectors. The design of the

MODWT filters are such that each of the resulting vectors contains the characteristics

of the original time series corresponding to a specific time-scale.10

We illustrate the workings of the MODWT and the intuition behind our test with

the simple case of a first level decomposition using the Haar filter. Consider the Haar

wavelet filter {hl}10 = (1/2,−1/2) and the corresponding scaling filter {gl}10 = (1/2, 1/2).

The wavelet and scaling coefficients of a time series {yt}Tt=1 are given by

wt,1 =
1

2
(yt − yt−1), t = 1, 2, . . . , T, (1.10)

vt,1 =
1

2
(yt + yt−1), t = 1, 2, . . . , T. (1.11)

The wavelet coefficients {wt,1} capture the behavior of {yt} in the high frequency band

[1/4, 1/2], while the scaling coefficients {vt,1} capture the behavior of {yt} in the low

frequency band [0, 1/4]. A sample analogue of E1 is readily constructed following the

analogy principle

Ê1,T =
ŵvar1 y

v̂ar y
=

∑T
t=1w

2
1,t∑T

t=1 y
2
1,t

. (1.12)

We show (see Theorem 4) that under H0, Ê1,T is close to 1/2, since the numerator is

the half of the denominator, while under H1 the variance ratio Ê1,T , in general, deviates

from 1/2.

The definition of the variance ratio Ê1,T can be applied to the wavelet decomposition

obtained from a generic filter wavelet {hi}. As before, we expect Ê1,T to be close to 1/2

under H0.

10The MODWT goes by several names in the literature, such as the stationary DWT by Nason
and Silverman (1995) and the translation-invariant DWT by Coifman and Donoho (1995). A detailed
treatment of MODWT can be found in Percival and Mofjeld (1997), Percival and Walden (2000) and
Gençay et al. (2001).
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1.2.2 Sample Multiscale Variance Ratios: Scale m

The intuitive results that we discussed above can be generalized to arbitrary scales.

For a white noise process, variance is asymptotically equi-partitioned in Fourier space:

each frequency contributes an equal share to the total variance of the process. An

analogous result holds in “wavelet space”: the variance at scale m contributes a ratio of

2−m to the total variance. The variance ratio corresponding to the resolution scale m is

defined as

Êm,T =
ŵvarm y

v̂ar y
=

∑T
t=1w

2
m,t∑T

t=1 y
2
m,t

.

where wm are the m-th level wavelet coefficients of y.

To formalize the above discussion, we need to prove that Êm,T is a consistent estimator

of the wavelet variance ratio. Indeed, the next result goes a step further: as the sample

multiscale variance ratio is well defined for nonstationary processes, we show that Ê
converges in probability to 2−m even for (unconditionally) heteroskedastic white noise

processes, that is uncorrelated processes that may fail to be covariance stationary.

Assumption A. {yt} is stochastic sequence that is Lr bounded for r > 2 and Lp-NED

on an α-mixing process for p ≥ 2.

Theorem 4. Let {yt} be a heteroskedastic white noise process with zero mean. Under

Assumption A

Êm,T
p−→ 1

2m

Example 5 (GARCH(1,1) with α-mixing innovations, Hansen (1991)). Let {εt} be a

α-mixing process and define

xt = σtεt, σ2
t = ω + βσ2

t−1 + αx2
t−1

for some real numbers ω, β, and α. Hansen (1991) shows that if

(
E
[(
β + αε2t

)p |F t−1
−∞(ε)

])1/r ≤ c < 1 a.s. for all t, (1.13)

then {xt, σt} is Lr-NED on {εt} with an exponential decay of NED coefficients. With
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p = 2, the condition (1.13) is equivalent to

β2 + 2αβµ2
t + α2µ4

t < 1 a.s. for all t,

in which µ4
t = E(ε4t |F t−∞) is the conditional kurtosis.

Example 6 (ARCH(∞) with i.i.d. innovations, Davidson (2004)). Let {εt} be a i.i.d.

process, with zero mean and unit variance, and define:

xt = σtεt, σ2
t = ω +

∞∑
i=1

αix
2
t−i .

This specification is called ARCH(∞) model. It encompasses several nonlinear time

series, including GARCH (Bollerslev, 1986), IGARCH (Engle and Bollerslev, 1986),

FIGARCH Baillie et al. (1996). Assume that Eε4 exists and
∑∞

i=1 αi < (Eε4)2. Davidson

(2004) shows that if 0 ≤ αi ≤ Ci−1−λ for some λ > λ0, then xt is L2-NED on εt of size

−λ0.

Example 7 (Bilinear Model with i.i.d. innovations, Davidson (2002)). Consider the

following bilinear models

xt =

p∑
j=1

αjxt−j +
m∑
j=1

βjxt−jεt−1 +
r∑
j=1

γjεt−j ,

This parametric family is referred to as BL(p, r,m, 1) and it is discussed in detail in

(Priestley, 1988, Chapter 4). When the innovations are i.i.d. , Davidson (2002) concludes

that the covariance stationary BL(p, r,m, 1) is L2-NED on {εt} with an exponential

decay of NED coefficients. A simple example of bilinear white noise is the process

xt = βxt−2εt−1 + ε, εt ∼ i.i.d(0,1) .

It is covariance stationary if 0 < β < 1/
√

2 (see Granger and Newbold, 1986).

In the next section we study the asymptotic distribution of the wavelet ratio Êm,T .
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1.3 Asymptotic Analysis

In the remainder of the paper, the process {zm,t} is defined as the cross-product

component of the square of each wavelet coefficient

zm,t :=
L−1∑
i=0

L∑
j>i

hm,ihm,jyt−iyt−j .

When there is no risk of confusion, we omit the index m. Our next result establishes

the asymptotic distribution of the wavelet variance ratio Êm,T .

Assumption B. Fix a wavelet filter hm.

B1. for r > 1 and for all i, j, k, l such that 0 ≤ i < j ≤ Lm and 0 ≤ k < l ≤ Lm,

{yt−iyt−jyt−kyt−l/M4,t} is uniformly Lr-bounded for r > 1, where

M4,t =

Lm∑
i=0

Lm∑
j>1

Lm∑
k=0

Lm∑
l>1

hihjhkhlE(yt−iyt−jyt−kyt−l);

B2. For all positive i ≤ Lm, {ytyt−i} is a stochastic sequence that is Lr-bounded for

r > 2 and Lp-NED of size −1/2 on a φ-mixing process for p ≥ 2.

B3. var(zt) ∼ tβ and s2
n(z) ∼ n1+γ, β ≤ γ.

Assumption B imposes very mild restrictions on {yt} and allows for substantial de-

viation from stationarity. Condition B3 can alternatively be expressed in terms of rate

of growth the fourth order cumulants of {yt}, we omit the resulting expression as it

is not particularly revealing. Condition B1 is infinitesimally stricter than allowing for

trending joint fourth moments in {yt}. Notice that neither B1 nor B2 require finite

joint fourth moments for {yt} but place no explicit restrictions on the fourth moments

Ey4
t . For instance, our asymptotic results are valid under the null of independently (but

possibly heterogenously) distributed Student’s t shocks with ν ≥ 3 degrees of freedom.

We discuss GARCH(1,1) processes in detail below (Example 9).

Proposition 8. Let {yt} be a a heteroskedastic white noise process with zero mean and

let

T−1
T∑
t=1

Ey2
t

p−→ σ2 <∞ .
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Under Assumption B √
Tσ4

4s2
T (z)

(
Êm,T −

1

2m

)
d−→ N(0, 1) ,

where sT (z) is defined in Equation (1.1).

Proposition 8 suggests the following definition for a test statistic

GSm =

√
Tσ4

4 avar(z)

(
Êm,T −

1

2m

)
,

where avar(z) is the probability limit of s2
T (z). To implement the test, generally the

asymptotic variance of {zt} needs to be estimated. The asymptotic results considered

here extend seamlessly to the case of estimated normalizations (Davidson, 1995, Chapter

25). Generally any estimator from the class of kernel estimators is appropriate.11

Example 9 (GARCH(1,1) with α-mixing innovations). Consider again Example 5. A

straightforward generalization of of Hansen’s computation (1991, Proof of Theorem 1,

page 185) shows that {ytyt−1} is L2-NED if and only if condition (1.13) with p = 4 is

satisfied. Specifically, {ytyt−1} is L2-NED whenever

β4 + 4αβ3µ2
t + 6α2β2µ4

t + 4α3βµ6
t + α4µ8

t ≤ 1 a.s. for all t ,

in which µkt = E[εk|F t−∞]. If εt ∼ N(0, 1) are i.i.d., the condition reads

β4 + 4β3α+ 18β2α2 + 60βα3 + 105α4 ≤ 1 a.s. for all t .

The solution set of this inequality is depicted in Figure 1.2.

Estimating the asymptotic variance is not always necessary. If yt is a white noise

whose cross-joint cumulants of order four are zero, the asymptotic variance of test can be

computed exactly. More specifically, let Xijkl
t = (Xt−i, Xt−j , Xt−k, Xt−l) and ξ a vector

11See Andrews (1991) for a general theory of kernel estimators. Among several approaches and kernel
choices we did not find significant differences pointing to a strong preference for one method over the
others.
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Figure 1.2: Let {εt} be a identically and independently normally distributed. Let xt =
σtεt and σ2

t = ω + βσ2
t−1 + αx2

t−1 for some real numbers ω, β, and α. The pink region
depicts the solution to the inequality β2 + 2αβ + α2µ4

t < 1. In this case xt satisfies
Assumption A. The purple region depicts the solution to the inequality β4 + 4β3α +
18β2α2 + 60βα3 + 105α4 ≤ 1. In this case xt satisfies Assumption B.
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in R4 and M(ξ). be the moment generating function Xijkl
t

M ijkl
t (ξ) = E exp(ξ′Xijkl

t )

has as coefficients of its Taylor expansion

M(ξ) =
∑
a

ξaκ
a +

1

2!

∑
a,b

ξaξbκ
ab +

1

3!

∑
a,b,c

ξaξbξcκ
abc + · · ·

The cumulants of Xijkl
t are defined as the coefficients κ(•) in the Taylor expansion

logM(ξ) =
∑
a

ξaκ
a +

1

2!

∑
a,b

ξaξbκ
a,b +

1

3!

∑
a,b,c

ξaξbξcκ
a,b,c + · · ·

Notice how commas separating indexes serve to distinguish cumulants from moments

when necessary.

Corollary 10. Let {yt} be white noise process with zero four order cumulants. Then√
T

am

(
Êm,T −

1

2m

)
→ N (0, 1)

with

am =
∑
s∈Z

imax∑
i=imin

jmax∑
j>i

hm,ihm,jhm,i−shm,j−s ,

where hm is the wavelet filter used in the construction of Êm and

imin = max(0, s) , imax = min(Lm, Ln + s)− 2 , jmax = min(Lm, Ln + s)− 1 .

The computation of am is trivial but tedious.12 The following Corollary contains

several asymptotic results for the Haar filter.

Corollary 11 (Asymptotics for the Haar filter). Let h1 =
(

1
2 ,−

1
2

)
(the Haar filter).

12We implement a routine in a symbolic algebra program (Mathematica) to compute both exact and
approximate values of am for different filters and different resolution scales. The source code is available
upon request.
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The GSm test statistics for the scales 1 to 4 are

√
4T

(
Ê1,T −

1

2

)
,

√
32T

3

(
Ê2,T −

1

4

)
,√

256T

15

(
Ê3,T −

1

8

)
,

√
2048T

71

(
Ê4,T −

1

16

)
,

respectively. Their asymptotic distribution is the standard normal.

1.3.1 Multivariate multiscale tests

Each test in the GS family has a particularly strong power against specific alterna-

tives. For example, for m = 1, the test is particularly powerful against AR(1) and MA(1)

alternatives, while for m = 2, the test has significant power against AR(2) and MA(2)

alternatives. In the reminder of this section we derive the asymptotic joint distribution

of these tests. These results will allow us to combine these tests to gain power against

a wide range of alternatives.

Theorem 12. Let {yt} be a heteroskedastic white noise process with zero mean. Under

Assumption B, the vector (GS 1, . . . ,GSN ) has asymptotic distribution N (0,Σ), where

Σi,j =
acov(zizj)

avar(zi) avar(zj)
.

Moreover, Large sample inference can be implemented using the test statistics

GSMN = (GS 1, . . . ,GSN )Σ−1(GS 1, . . . ,GSN )T ,

which is asymptotically distributed as a χ2
N distribution.

The proof of this results follows closely the proof of Proposition 8, we omit it in the

interest of space. Large sample inference on the values of the vector (GS 1, . . . ,GSN )

can be handily implemented using the χ2 distribution. Indeed, it is a standard result

(see Bierens, 2004, Theorem 5.9, page 118) that for a multivariate normal n-dimensional

vectorX and a non-singular n×nmatrix Σ, XTΣ−1X is distributed as a χ2
n. Accordingly,

we define the test statistics

GSMN = (GS 1, . . . ,GSN )Σ−1(GS 1, . . . ,GSN )T ,
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whose asymptotic distribution is a χ2
N .

As before, if the fourth cumulants of yt vanish, the asymptotic variance can be

computed explicitly as a function of the filters {hm}. Let

γm,n(s) = σ4
imax∑
i=imin

jmax∑
j≥i

hm,ihm,jhn,l−shn,k−s

with

imin = max(0, s) , imax = min(Lm, Ln + s)− 2 , jmax = min(Lm, Ln + s)− 1 .

Define, furthermore,

am,n =
1

σ4

∑
s∈Z

γm,n(s)

and let A be an N ×N matrix with ones on the main diagonal and off-diagonal entries

Amn =
am,n√
aman

Corollary 13. The vector (GS 1, . . . ,GSN ) has asymptotic distribution N (0, A).

In the case of the Haar filter we have:

Corollary 14 (Multi-scale asymptotics for the Haar filter).
GS 1

GS 2

GS 3

 d−→ N (0, A) , with A =


1 −1/

√
6 −5/

√
60

−1/
√

6 1 2/
√

360

−5/
√

60 2/
√

360 1

 .

1.4 Asymptotic Local Power and Finite Sample Perfor-

mance

In this section, we evaluate of the GSM test family generated by the Haar filter using

two criteria, namely asymptotic local power and finite sample performance.13

First, we illustrate, through an example, the inconsistency of the family GSMN .

13Results for other wavelet filters are similar and available from the authors upon request.
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Consider the spectrum Sy of the stochastic process y:

Sy(f) =


1
2 + 1

4sin(8πf) if f ∈
(

1
4 ,

1
2

]
1
2 + 1

8sin(16πf) if f ∈
(

1
8 ,

1
4

]
. . .

(1.14)

Figure 1.3: Spectrum of an ARMA model of infinite degree. No test of the GSM family
is consistent against this alternative.

The spectrum Sf (y) is shown in Figure 1.3 and it is non-flat and, hence, the corre-

sponding time series is correlated. At the same time the area underneath Sy within any

of the blocks considered by the dyadic decomposition of the frequency space is consistent

with the equipartition of variance result valid for white noise processes (Theorems 3 and

4).

For a feasible wavelet filter whose Fourier transform is H, a process x for which

the test is inconsistent is one whose spectrum Sx is a solution to the integral equation

H ∗ Sx = Sy, where ∗ denotes convolution and Sy is given by (1.14).

At the same time, for any finite ARMA model there is a test in the {GSMN} family

which is consistent against it. Recall that the spectrum of a finite ARMA process is a
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trigonometric rational function in the frequency domain (Theorem 4.4.2 Brockwell and

Davis, 2009, page 121):

Sy(f) =
P (f)

Q(f)
(1.15)

where P (f) and Q(f) are trigonometric polynomials. With no loss of generality, assume

that var(y) = 1. Let F be the set of solutions to the equation

P (f)

Q(f)
− 1

2
= 0, (1.16)

and let fmin be

fmin = min
f>0
{f ∈ F} .

Since Equation (1.16) has only a finite number of solutions on a compact set (see Powell,

1981), fmin is well defined and positive. Choose k such that

2−k−1 < fmin ,

then the test GSk is consistent against H1 : Sy(f) = P (f)
Q(f) . Indeed, Sy(f) > 1/2 or

Sy(f) < 1/2 for all f in (2−k−1, 2−k−2) and therefore the expected value of GSk on the

process y with spectrum Sy is E[GSk(Xf )] 6= 0.

1.4.1 Asymptotic Local Power

Let χ2
` (c) denote the non-central χ2 distribution with non-centrality parameter c and

` degrees of freedom. Consider the family of alternative hypothesis

H1,T : ST (f) = T−1/2

(
S(f)− 1

2

)
+

1

2
, (1.17)

where S(f) is a non-constant spectrum. Recall that

Ek =

∫ 2k

2−k−1

|Hk(f)|2S(f)df

and that, in probability, Êk → Ek and, therefore, GSk(X)→ Ek/E0 − 1/2k. Let

TGSN =
√
TE(GS1(X), . . . , GSN (X))
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= (E1/E0 − 1/21, . . . , EN/E0 − 1/2N ) .

Since the estimator of the covariance matrix of (GS1(X), . . . , GSN (X)) is consistent

under H1,T , it follows that the distribution of the test GSN is the non-central χ2
N (c),

where

c = T ∗GSMN (X)

= TGS′1,Navar(TGS1,N )−1TGS1,N .

Therefore the asymptotic local power of GSMN is given by

Pr(χ2
N (c) > χ2

N,1−α),

where χ2
N,1−α denotes the (1− α)-quantile of a χ2

N distribution.

Figure 1.4: Asymptotic rejection rates at the nominal level α = 0.10 against a two-
dimensional AR family. The first and second plot (left and center, respectively) depict
the asymptotic rejection rate of the one dimensional tests GS1 and GS2 together with
their 0.10 level (in black). The third plot (right) shows the asymptotic power of the
bivariate test GSM2: in this case the 0.10 level is only one point, corresponding to
α1 = α2 = 0.

Figure 1.4 plots the asymptotic rejection rate for the nominal level α = 0.05 against

the two dimensional family of alternatives

yt = α1yt−1 + α2yt−2 + εt

where εt is Gaussian white noise. The first and second plot (left and center) depict the

asymptotic power of the univariate tests GS1 and GS2 for the Haar wavelet. The black

lines correspond to the 0.10 levels and highlight the subset of the parameter space for

which the tests are inconsistent. The third plot (right) shows the asymptotic power
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of the bivariate test GSM2: its 0.10 level is the intersection of the 0.10 levels for the

univariate tests and it consists of only one point, the origin (α1, α2) = (0, 0).

1.4.2 Monte Carlo Simulations

Feasible tests are obtained from Theorem 12 by replacing the matrix Σ with a known

matrix. A natural choice is to replace all the asymptotic quantities with consistent

estimators, for example using the Newey and West (1987) estimator. We denote the

corresponding statistic with GSM , and also consider two additional feasible statistics:

1. First, the test statistics can be computed under the assumption that the fourth

order cumulants vanish, combining Corollary 11 and 14. We denote these statistics

GSg and GSMg in the univariate case and multivariate case, respectively.

2. Second, each level GSi can be computed using an estimator of the long run variance

(again, we use the Newey and West’s estimator) while using the asymptotic covari-

ance matrix implied by vanishing fourth order cumulants. This feasible statistic is

denoted with GSM∆.

The GSg and GSMg tests display accurate empirical size in small samples. With

100 observations and 50,000 replications, the rejection rates at the 1% level against yt ∼
N(0, 1) are 0.78%, 1.07%, and 0.82% for the tests GSg1, GSg2, and GSMg

2 , respectively.

At the 5% nominal level, the rejection rates are 4.72%, 4.52%, 4.77%. Tables 1.1 and 1.2

contain a systematic comparison of the rejection rates of GSMg
2 , GSM∆

2 , GSM2, the

Qk test of Box and Pierce (1970), and the Esconciano-Lobato test (EL, see Escanciano

and Lobato, 2009). We consider sample sizes of 100, 300, 1000, and 5,000 observations

and compute the empirical rejection rates form 50,000 replications of the following five

different data generating processes under the null hypothesis:

(1) A standard normal process yt, such that yt ∼ N(0, 1);

(2) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees

of freedom (and an otherwise identical specification as above)



(4) An EGARCH(1,1) process with i.i.d standard normal innovations

yt = σtεt , εt ∼ N(0, 1) , log σ2
t = 0.001 + 0.5|εt| − 0.2εt + 0.95σ2

t−1 ;

(5) An mixture of two normals N(0, 1/2) and N(0, 1) with mixing probability 1/2.

(6) An heterogeneous normal with trending mean: yt ∼ N(0, t).

For a small sample size (100 observations), the GSMg
2 test has an accurate rejection

rate across several of the models analyzed, both at the 1% level and the 5% level, with the

exception of the EGARCH model and model (6) (trending variance). With larger sample

sizes (1000 and above) and in the presence of a marked deviation from normality, the

gains from estimating the asymptotic covariance matrix are significant. Indeed, under

these circumstances, the size of the GSM1,2 is accurate across all models (in particular

at the 5% level). In general, the test GSM∆ performs satisfactorily across all models:

at the 1% level GSM∆ dominates EL in all cases but against EGARCH, while at the

5% level with T ≥ 300 the two test perform very similarly (although, EL maintains a

significant edge against EGARCH).

Figure 1.5 illustrates the empirical power functions of the tests GSg1 , GSg2 , and

GSMg
2 against two one-dimensional families of alternatives, an AR(1) model (AR1:

yt = αyt−1 + εt) and a restricted AR(2) model (RAR2: yt = αyt−2 + εt) with standard

normal innovations. The rejection rates are computed with respect to a 1% nominal size

for sample sizes of 100, 300, and 1000 observations. From the first row, it is apparent

that the test GSg1 has strong power against an AR1 alternative while at the same time

its power is practically orthogonal to an RAR2 deviation from the null. The second row

shows that the test GSg2 has a complementary behavior: its power against AR1 devia-

tions from the null is uneven, while it displays strong power against RAR2 deviations

from the null. Finally, the last row illustrates how the joint test GSMg
2 incorporates the

best properties of the single scale tests. The power of GSMg
2 is consistently high against

AR1 and RAR2 alternatives. The panels in Figure 1.5 also show that the power of the

various tests increases steadily as the sample size increases.

To further understand how the power of the GS test family varies against the two-

parameter family

yt = α1yt−1 + α2yt−2 + εt , εt ∼ N(0, 1) , (1.18)



we plot in Figure 1.6 the contours of the power surface obtained varying α1 in the interval

(−0.50, 0.50) and α2 in (−0.45, 0.45). Simulations are carried out for a grid of values of

the parameters spaced by 0.05 ans intermediate values are interpolated. The black lines

correspond to 25%, 50%, 75%, and 100% percent power (starting from the center), while

the grey lines correspond to 5% increments. Approximately, contour lines of the power

function of GSg1 test (first panel) run vertically, an indication that the first scale test

is not very sensitive to variations in the parameter α2. This picture is approximately

reversed in the second panel: the contour lines for the GSg2 test run horizontally. In the

third panel we see that the contour lines of the multi-scale test GSMg
2 are, even in small

samples, close to ellipses, the shape predicted by our asymptotic results.

In the reminder of this section we restrict our analysis to a size of 1% (results are

similar at the 5% level) and a sample size of 100 observations.

An accurate analysis is contained in Table 1.3, where we compare the size adjusted

power of the three tests against the two-dimensional Gaussian AR(2) alternative defined

in Equation (1.18). The first column contains the size adjusted power of each test

for various alternatives.14 In the second column we report the relative power gains

of the multi-scale test GSMg
2 with respect to the LB tests, the BP test and the EL

test. Against the great majority of the alternatives the GSMg
2 test outperforms the

BP and LB tests.15 The GSMg
2 test clearly outperforms the EL test when the first

order parameter is negative (α1 < 0) with a power improvement of up to 125%. When

α1 is positive, neither test has a clear edge, with variations in power against various

alternatives between +44% and −49%. 16

In Table 1.4 we repeat the previous power analysis for AR(2) models with innova-

tions driven by a GARCH(1,1) process (with the same parameters as in model (5)).

Qualitatively the results are unchanged: the GSMg
2 outperforms the BP and LB tests

across a wide variety of alternatives (by up to 283% and 311%, respectively); the GSMg
2

also outperforms the EL test when the first order autoregressive coefficient is negative

(by up to 134%), while when α1 > 0, neither test has a clear advantage.

14Size adjusted power is computed using, for a given sample size, the empirical critical values obtained
from Monte Carlo simulations with 100,000 replications.

15Analogous results hold for Gaussian MA(2) and Gaussian ARMA(2,2) alternatives. The results are
very close to those of Table 1.3. These results are available upon request.

16Despite our adjustments, sized-distortions remain because of the random nature of the Monte Carlo
simulations.



In econometric practice, it necessary to choose a value for N . Ultimately, this choice

is dictated by the amount of data available, as deeper wavelet decompositions consume

more degrees of freedom. According to Percival and Walden (2000), the properties of

the wavelet variance estimator are well approximated by its asymptotic distribution

whenever T −Lh,m > 128, where Lh,m is the length of the m− th level filter. Recall that

Lh,m = (2m−1)(Lh−1)+1, where Lh is the length of wavelet filter. We report some size

and power simulations comparing various of N up to 6. Table 1.5 shows that in general

there is a trade off between the depth of the wavelet decomposition and the sample size:

for small sample size, a shallower wavelet decomposition has better size properties.

To investigate power as N is allowed to vary, we consider the restricted autoregressive

model rar(p) as yt = 0.1yt−p + εt for p = 1, 2, 4. Table 1.6 illustrates another tradeoff:

lower values of N correspond to higher power but only against ARMA models of lower

order.

Finally, in our simulations the choice of the wavelet family was generally influential,

with small idiosyncratic differences across various nulls and alternative models.

1.5 Application to High Frequency Financial Data

In this section we apply our test and the AQ test to high frequency market data,

specifically to returns from transactions of Apple Inc. (AAPL). We use intraday data

from January 2, 2012 to December 28, 2012 and restrict our sample to the 10 minutes

time interval from 11:50 to 12:00. Using data from TAQ we construct 1-second returns

from transactions for the entire period and test each day for serial correlation, so that for

each test the sample consists of 600 observations. Serial correlation at high frequency is

on one hand related to liquidity measures (as an indirect estimate of the bid-ask spread,

see Roll, 1984) and on the other to market efficiency (see, for example, Jegadeesh and

Titman, 2001).

The average p-values over the 251 testing days for the tests GM∆
4 , GSM4 and AQ

are 0.0077, 0.0109, and 0.0130, respectively (we do not report the other test because of

the large size distortions). On average, our wavelet based tests reject the null of no serial

correlation slightly more strongly than the AQ test. This example shows that our test

can be useful in econometric practice.
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1.6 Conclusions

We use the wavelet coefficients of the observed time series to construct a test statis-

tics in the spirit of Von Neumann variance ratio tests. In our approach, there is no

intermediate step such as the estimation of the spectral density for the null and alter-

native hypotheses. Therefore, we are not constrained with the rate of convergence of

nonparametric estimators.

Our analysis of consistency and power does not apply to more general local alterna-

tives, such as

H1,t : Sy(f) = T−1/2

(
S(f ;T )− 1

2

)
+

1

2
,

where the lag order is allowed to grow with T . On one hand, we have already established

that all tests are inconsistent against certain carefully designed alternatives. On the

other, we expect that, much like variance tests in the spirit of Lo and MacKinlay (1989),

there is an optimal choice of N that will maximize power(see for example Deo and

Richardson, 2003; Perron and Vodounou, 2005). A related, and more general, issue is

that of choosing optimally the wavelet decomposition to be used. Intuitively, it is clear

that, for a given alternative, there is a choice of frequency bands that will maximize

power, namely those bands that deviate the most from the white noise baseline. The

development of an adaptive version of the current test could resolve the problem of

inconsistency while providing better all round power properties.

Another natural extension of the portmanteau framework is through the residuals of

a regression model. In the linear regression setting, the most well-known test for serial

correlation is the d-test of Durbin and Watson (1950). Alternative tests proposed by

Breusch (1978) and Godfrey (1978) are based on the Lagrange multiplier principle, but

although they allow for higher order serial correlation and lagged dependent variables,

their finite sample performance can be poor. Our current framework can be generalized

to residual-based tests and it embeds Durbin-Watson’s d-test as a special case. These

extensions are currently under investigation by the authors.



CHAPTER 1. MULTI-SCALE TESTS FOR SERIAL CORRELATION 28

Table 1.1
Rejection rates under the null hypothesis at 1% nominal level

Rejection probabilities in percentages of tests with nominal levels of 1% against five different
data generating processes under the null hypothesis:

(1) A standard normal process yt ∼ N(0, 1);

(2) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of
freedom;

(4) An EGARCH(1,1) process with i.i.d standard normal innovations

yt = σtεt , εt ∼ N(0, 1) , log σ2
t = 0.001 + 0.5|εt| − 0.2εt + 0.95σ2

t−1 ;

(5) An mixture of two normals N(0, 1/2) and N(0, 1) with mixing probability 1/2.

(6) An heterogeneous normal with trending mean: yt ∼ N(0, t).

The tests GSMg, GSM∆, and GSM are computed assuming zero fourth order cumulants, es-
timating the scaling coefficients, and estimating scaling coefficients and asymptotic covariance
matrix, respectively; Qk is the Box and Pierce test with k lags; EL is the Escanciano and Lobato
test. All size simulations based on 50,000 replications.

N(0, 1) N(0, 1)-GARCH(1,1) t5-GARCH(1,1)

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 0.82 0.92 0.87 1.04 1.32 1.81 1.62 1.86 1.76 2.84 4.04 5.16

GSM∆
2 2.75 1.47 1.12 1.21 2.60 1.65 1.12 1.22 2.14 1.04 1.20 1.12

GSM2 5.25 2.75 1.87 1.54 5.13 2.72 1.64 1.55 4.26 2.14 1.70 1.25

Q5 0.86 0.88 0.95 1.06 1.22 1.94 1.81 2.17 1.81 3.59 5.67 7.51
Q10 0.90 1.02 1.03 1.08 1.60 2.34 2.26 2.70 1.95 4.24 7.08 10.51
Q20 0.88 1.15 1.02 1.14 1.51 2.40 2.59 2.63 1.59 4.98 8.51 12.08
EL 2.73 2.28 1.71 1.23 2.65 2.68 1.80 1.36 2.17 1.94 1.78 1.25

N(0, 1)-EGARCH(1,1) Mixture of Normals Trending σ

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 8.45 19.67 32.22 45.52 0.86 0.90 0.98 1.24 2.63 2.87 2.88 3.05

GSM∆
2 1.65 0.66 0.46 0.55 2.64 1.40 1.32 1.40 1.72 1.20 1.11 1.19

GSM2 4.14 1.84 1.06 0.91 4.98 2.63 1.93 1.73 4.48 2.19 1.84 1.55

Q5 12.15 30.15 49.57 67.07 0.93 0.79 1.09 1.03 3.49 3.99 4.34 4.86
Q10 12.15 36.45 59.61 79.79 0.88 0.94 0.97 1.02 4.28 5.57 6.22 6.93
Q20 8.40 35.13 63.07 84.86 0.83 0.90 1.04 0.99 4.38 7.90 9.62 10.18
EL 1.98 1.93 1.38 1.17 2.58 2.28 1.83 1.55 2.56 2.31 1.87 1.26
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Table 1.2
Rejection rates under the null hypothesis at 5% nominal level

Rejection probabilities in percentages of tests with nominal levels of 5% against five different
data generating processes under the null hypothesis:

(1) A standard normal process yt ∼ N(0, 1);

(2) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of
freedom;

(4) An EGARCH(1,1) process with i.i.d standard normal innovations

yt = σtεt , εt ∼ N(0, 1) , log σ2
t = 0.001 + 0.5|εt| − 0.2εt + 0.95σ2

t−1 ;

(5) An mixture of two normals N(0, 1/2) and N(0, 1) with mixing probability 1/2.

(6) An heterogeneous normal with trending mean: yt ∼ N(0, t).

The tests GSMg, GSM∆, and GSM are computed assuming zero fourth order cumulants, es-
timating the scaling coefficients, and estimating scaling coefficients and asymptotic covariance
matrix, respectively; Qk is the Box and Pierce test with k lags; EL is the Escanciano and Lobato
test. All size simulations based on 50,000 replications.

N(0, 1) N(0, 1)-GARCH(1,1) t5-GARCH(1,1)

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 4.77 4.71 4.74 5.11 5.63 7.06 7.02 7.53 6.56 8.94 11.58 13.34

GSM∆
2 9.21 6.32 5.53 5.43 8.29 6.53 5.48 5.61 7.46 5.85 5.49 5.14

GSM2 13.32 8.37 7.12 6.33 12.39 8.84 7.11 6.30 11.26 7.64 7.01 5.69

Q5 4.12 4.75 4.74 5.01 6.00 7.54 7.69 8.37 6.41 10.71 14.60 17.97
Q10 4.06 4.53 4.64 5.19 5.91 8.11 8.74 9.44 6.00 11.87 16.97 22.87
Q20 3.20 4.29 4.49 5.05 4.93 7.61 9.02 10.46 4.82 11.51 18.13 25.32
EL 7.80 6.70 5.47 5.50 7.66 6.83 5.52 5.39 7.33 5.86 5.56 5.07

N(0, 1)-EGARCH(1,1) Mixture of Normals Trending σ

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 18.37 33.17 46.74 59.24 4.55 5.05 4.86 5.41 8.74 9.60 10.16 10.42

GSM∆
2 6.22 3.83 3.21 3.97 9.04 6.40 5.77 5.74 7.61 5.90 5.46 5.46

GSM2 10.80 6.43 4.73 4.92 13.06 8.57 7.26 6.69 11.75 7.86 6.74 5.98

Q5 24.32 45.80 64.90 79.30 3.93 4.81 4.67 5.48 11.24 12.31 13.92 14.05
Q10 23.53 51.90 73.62 88.80 3.69 4.45 5.10 5.14 12.05 15.57 17.65 18.31
Q20 16.86 50.37 77.03 92.82 3.15 4.52 4.61 5.31 11.65 19.49 23.98 25.32
EL 6.64 5.65 5.11 4.94 7.92 6.57 5.75 5.44 7.92 6.34 5.54 4.97
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yt = αyt−1 + εt yt = αyt−2 + εt
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Figure 1.5: Empirical power functions of the tests GSg1 , GSg2 , and GSMg
2 (first, second,

and third row, respectively) against AR(1) and AR(2) alternatives (first and second
columns, respectively). The rejection rates are based on 5,000 replications with 1%
nominal size for sample sizes of 100 (circle), 300 (triangle), and 1000 (square) observa-
tions.
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yt = α1yt−1 + α2yt−2 + εt
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Figure 1.6: Contours of the power surface of the tests GSg1 , GSg2 , and GSMg
2 against

the Gaussian AR(2) alternative. Simulations are carried out for a grid of values of the
parameters obtained varying α1 in the interval (−0.50, 0.50) and α2 in (−0.45, 0.45) in
steps of size 0.05. Intermediate values are interpolated. From the center of each graph,
the black lines correspond to the 25-th, 50-th, 75-th and 100-th quantiles, while each
grey line corresponds to a 5% increment.
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Table 1.3
Size-adjusted power against Gaussian AR(2) processes

Power and relative power against the two-parameter family

yt = α1yt−1 + α2yt−2 + εt , εt ∼ N(0, 1) ,

Simulations are carried out for set of alternatives obtained varying α1 in the interval
(−0.50, 0.50) and α2 in (−0.45, 0.45) in increments of 0.05.

GSMg
2

α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 94.3 76.2 51.6 43.8 62.0 85.7 96.9
0.20 85.1 54.1 23.3 17.2 33.4 64.6 89.6
0.10 69.7 32.8 8.7 4.3 13.2 40.3 74.9
0.00 53.7 18.3 3.2 1.2 4.6 21.3 56.1
−0.10 39.7 11.0 2.7 2.5 5.2 17.1 46.5
−0.20 33.4 11.8 8.0 11.9 18.5 31.6 54.3
−0.30 40.5 27.2 29.2 37.3 48.3 60.8 76.3

Q20 Relative power: (GSMg
2 /Q20) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 84.7 58.8 31.7 19.9 25.7 49.5 77.8

α2

0.30 0.11 0.30 0.63 1.20 1.42 0.73 0.25
0.20 64.4 33.3 12.3 6.8 9.6 26.1 56.2 0.20 0.32 0.62 0.89 1.53 2.50 1.47 0.59
0.10 39.3 15.3 5.0 1.7 3.6 12.1 33.4 0.10 0.77 1.14 0.75 1.49 2.68 2.33 1.24
0.00 21.6 7.3 2.2 1.1 1.7 5.6 17.9 0.00 1.49 1.52 0.48 0.07 1.74 2.82 2.14
−0.10 14.5 5.9 2.8 1.9 2.2 4.2 11.3 −0.10 1.74 0.87 −0.04 0.27 1.32 3.08 3.10
−0.20 16.1 9.9 7.1 6.7 7.2 9.2 14.7 −0.20 1.08 0.19 0.13 0.79 1.57 2.44 2.70
−0.30 28.2 23.3 21.1 19.7 20.5 23.6 28.9 −0.30 0.43 0.17 0.38 0.89 1.36 1.57 1.64

LB Relative power: (GSMg
2 /LB) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 82.7 55.5 29.3 17.7 23.0 45.5 75.1

α2

0.30 0.14 0.37 0.76 1.47 1.70 0.88 0.29
0.20 60.9 30.5 11.2 6.1 8.6 24.0 52.8 0.20 0.40 0.78 1.07 1.83 2.87 1.69 0.70
0.10 35.5 13.7 4.4 1.6 3.3 10.9 30.6 0.10 0.96 1.39 0.95 1.65 3.04 2.69 1.45
0.00 19.1 6.5 2.1 1.0 1.6 5.0 15.9 0.00 1.81 1.80 0.52 0.18 1.80 3.25 2.53
−0.10 12.8 5.3 2.5 1.8 2.2 3.8 10.0 −0.10 2.11 1.10 0.05 0.38 1.39 3.55 3.66
−0.20 14.3 8.9 6.4 6.3 6.5 8.3 12.8 −0.20 1.34 0.32 0.25 0.91 1.83 2.79 3.24
−0.30 25.1 20.8 18.7 17.8 18.7 21.3 25.9 −0.30 0.61 0.31 0.56 1.10 1.59 1.85 1.95

EL Relative power: (GSMg
2 /EL) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 94.8 80.1 57.7 42.6 51.4 73.7 91.9

α2

0.30 0.00 −0.05 −0.11 0.03 0.21 0.16 0.06
0.20 82.4 54.0 26.8 15.1 21.7 45.3 74.4 0.20 0.03 0.00 −0.13 0.14 0.54 0.42 0.20
0.10 59.2 27.5 8.7 3.3 6.5 20.8 50.8 0.10 0.18 0.19 0.00 0.32 1.04 0.94 0.47
0.00 39.8 12.8 2.8 1.3 2.0 8.7 32.1 0.00 0.35 0.44 0.13 −0.12 1.25 1.44 0.75
−0.10 29.2 9.8 4.6 3.5 4.1 7.8 23.3 −0.10 0.36 0.13 −0.43 −0.30 0.28 1.19 1.00
−0.20 31.0 20.1 15.7 14.4 15.7 19.7 28.9 −0.20 0.08 −0.41 −0.49 −0.17 0.18 0.61 0.88
−0.30 55.1 50.3 45.1 41.9 43.9 48.7 55.1 −0.30 −0.27 −0.46 −0.35 −0.11 0.10 0.25 0.39
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Table 1.4
Size-adjusted power against GARCH(1,1)-AR(2) processes

Power and relative power against the two-parameter family

yt = α1yt−1 + α2yt−2 + εt ,

εt = σtzt , z ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 .

Simulations are carried out for set of alternatives obtained varying α1 in the interval
(−0.50, 0.50) and α2 in (−0.45, 0.45) in increments of 0.05.

GSMg
2

α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 92.5 70.7 46.6 40.5 57.4 82.7 96.3
0.20 80.7 48.8 19.9 15.0 32.6 62.5 88.6
0.10 65.1 28.1 7.2 4.2 12.6 36.7 71.0
0.00 46.9 15.3 2.3 1.0 4.3 19.2 52.1
−0.10 34.4 8.7 1.8 2.0 4.7 14.8 41.2
−0.20 27.1 8.4 6.4 9.8 16.3 27.1 50.2
−0.30 30.0 20.9 23.1 32.5 41.9 54.0 70.3

Q20 Relative power: (GS2/Q20) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 83.1 55.2 28.3 17.5 22.9 46.4 74.3

α2

0.30 0.11 0.28 0.64 1.31 1.51 0.78 0.30
0.20 60.4 30.2 11.4 6.4 9.7 24.7 52.8 0.20 0.33 0.62 0.75 1.36 2.34 1.53 0.68
0.10 38.3 14.6 4.6 2.0 3.4 11.5 30.0 0.10 0.70 0.93 0.55 1.10 2.70 2.20 1.37
0.00 19.8 6.2 2.2 1.1 2.1 5.1 17.0 0.00 1.37 1.46 0.06 −0.02 1.03 2.73 2.06
−0.10 12.3 4.6 2.6 1.9 2.3 4.2 10.9 −0.10 1.80 0.89 −0.29 0.04 1.08 2.50 2.76
−0.20 14.0 8.8 6.3 5.8 5.8 8.4 13.1 −0.20 0.94 −0.04 0.01 0.69 1.81 2.21 2.83
−0.30 25.6 20.5 18.0 17.4 17.6 20.0 25.5 −0.30 0.17 0.02 0.28 0.87 1.39 1.70 1.75

LB Relative power: (GSMg
2 /LB) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 81.0 52.0 26.7 15.8 21.2 43.5 72.0

α2

0.30 0.14 0.36 0.74 1.56 1.70 0.90 0.34
0.20 57.2 27.7 10.6 5.8 9.1 22.9 49.6 0.20 0.41 0.76 0.88 1.59 2.56 1.73 0.79
0.10 35.5 13.4 4.4 1.9 3.3 10.3 27.8 0.10 0.83 1.10 0.63 1.24 2.81 2.58 1.56
0.00 18.0 5.7 2.2 1.0 2.1 4.9 15.3 0.00 1.61 1.70 0.08 0.02 1.01 2.93 2.40
−0.10 11.5 4.4 2.5 2.0 2.3 4.0 9.8 −0.10 2.00 1.00 −0.28 0.02 1.10 2.69 3.20
−0.20 12.4 8.1 6.0 5.5 5.4 7.7 12.2 −0.20 1.18 0.04 0.07 0.77 2.00 2.54 3.11
−0.30 23.2 18.8 16.5 16.2 16.0 18.4 23.1 −0.30 0.29 0.11 0.40 1.01 1.62 1.94 2.04

EL Relative power: (GSMg
2 /EL) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 94.0 78.2 54.6 40.8 48.7 72.3 90.6

α2

0.30 −0.02 −0.10 −0.15 −0.01 0.18 0.14 0.06
0.20 79.7 51.8 25.5 14.4 21.6 44.2 73.1 0.20 0.01 −0.06 −0.22 0.05 0.51 0.41 0.21
0.10 57.8 25.2 7.6 3.6 6.7 19.4 47.6 0.10 0.13 0.11 −0.05 0.16 0.90 0.90 0.49
0.00 37.1 11.5 2.3 1.4 1.8 8.5 29.0 0.00 0.26 0.34 0.00 −0.24 1.34 1.26 0.80
−0.10 26.2 8.3 3.5 2.9 3.6 6.4 21.4 −0.10 0.31 0.05 −0.47 −0.30 0.33 1.30 0.92
−0.20 28.1 17.4 14.1 11.9 13.5 17.6 27.0 −0.20 −0.04 −0.52 −0.55 −0.18 0.21 0.54 0.86
−0.30 50.0 45.5 41.4 38.6 39.7 45.3 51.5 −0.30 −0.40 −0.54 −0.44 −0.16 0.05 0.19 0.37
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Table 1.5
Size for higher order wavelet decompositions

Rejection probabilities of tests with nominal levels of 5% against the following models for the
null

(1) A standard normal process yt ∼ N(0, 1);

(2) A Student-t process yt with 3 degrees of freedom;

(3) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

All simulations based on 10,000 replications.

model N GSM2 GSM3 GSM4 GSM5 GSM6

norm 100 0.0518 0.0499 0.0563 0.0642 0.0787
t3 100 0.0385 0.0388 0.0428 0.0503 0.0664
garch 100 0.0566 0.0603 0.0667 0.0727 0.0896

norm 300 0.0468 0.0503 0.0547 0.0574 0.0650
t3 300 0.0425 0.0431 0.0433 0.0496 0.0565
garch 300 0.0644 0.0673 0.0705 0.0729 0.0831

norm 1000 0.0493 0.0500 0.0506 0.0518 0.0543
t3 1000 0.0486 0.0485 0.0493 0.0503 0.0532
garch 1000 0.0736 0.0755 0.0797 0.0798 0.0814
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Table 1.6
Power for higher order wavelet decompositions

Rejection probabilities of tests with nominal levels of 5% against the restricted autoregressive
model rar(p)

yt = 0.1yt−p + εt , for p = 1, 2, 4 .

All simulations based on 10,000 replications.

model N GSMg
2 GSMg

3 GSMg
4 GSMg

5 GSMg
6

rar(1) 100 0.1009 0.0673 0.0496 0.0408 0.0479
rar(2) 100 0.0912 0.0769 0.0614 0.0506 0.0553
rar(4) 100 0.0404 0.0645 0.0663 0.0602 0.0641
rar(5) 100 0.0389 0.0568 0.0591 0.0558 0.0632

rar(1) 300 0.2966 0.2226 0.1716 0.1359 0.1079
rar(2) 300 0.2376 0.2004 0.1643 0.1296 0.1049
rar(4) 300 0.0395 0.1308 0.1192 0.0971 0.0826

rar(1) 1000 0.8152 0.7504 0.6931 0.6338 0.5752
rar(2) 1000 0.7069 0.6558 0.5866 0.5292 0.4743
rar(4) 1000 0.0399 0.4084 0.3807 0.3280 0.2838



Chapter 2

Economic Links and Credit

Spreads

Is counterparty risk an important determinant of corporate risk? In times of dis-

tress, credit contagion is well documented; bankruptcy announcements are followed by a

widening in credit defauls swaps (CDS) spreads for creditors (Jorion and Zhang, 2009).

At the same time, little is known about its impact on corporate risk under general

market conditions. We examine whether counterparty risk in supplier-customer rela-

tionships matters in describing the cross-sectional and time-series variation in corporate

credit spreads. Along the supply chain, counterparty risk arises from two primary mech-

anisms, trade credit exposure and future cash flow risk. Trade credits are extended

whenever payment is not made upon delivery. When payment is delayed, the supplier

acts as a lender, and vice-versa, when payment is anticipated, it is the buyer that acts as

a lender.1 In both circumstances, the lender takes on a risk exposure, whose magnitude

depends on the size of the trade and the credit standing of the borrower. In turn, such

exposure affects the credit standing of the lender. The second propagation mechanism,

cash flow risk, hinges on the strength of the economic link between buyer and seller.

Strong ties along the supply chain arise for several reasons. For example, a customer

might share his technical knowledge for the engineering of custom-built parts, while a

supplier might invest in customer-specific equipment. Such economic links are, indeed,

a form of business partnership in which customers and suppliers are co-invested and

1For a summary of the theoretical literature and a study of the determinants of credit terms, see Ng
et al. (1999).

36
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therefore exposed to the uncertainties in each others’ businesses.

What emerges from these mechanisms is that the impact of these economic links rests

heavily on the degree of financial commitment they imply. Normally strong commitment

is difficult to observe, but the dataset we use allows for its identification. Since 1998,

Regulation SFAS No. 131 requires firms to disclose those customers that account for

more than 10% of their total yearly sales.2 Clearly, these relationships point to strong

ties and are potential channels for the propagation of counterparty risk.

Our results establish counterparty risk, as identified by network factors, as an im-

portant determinant of credit spreads for corporate bonds. The magnitude of network

effects is substantial: for a given firm, an increase of one standard deviation in the lever-

age of its main customers leads to a widening of its credit spread of 25 basis points on

average. This figure is particularly compelling when compared to the effect of a firm’s

own leverage: an increase of a standard deviation in a firm’s own leverage widens its

credit spread by 50 basis points. Our result is consistent with the theoretical work of

Merton (1974), in which leverage plays a key role in the pricing of corporate debt. A

customer with higher leverage has on average wider spreads and, hence, a higher im-

plied probability of default. This, in turn, reflects negatively on the supplier’s prospects

(trade credits are riskier and future demand uncertain), and it eventually leads to a

higher spread.

In this paper, we describe an econometric model of network effects that is appropriate

for the analysis of counterparty risk. In our context, nodes represent firms, while links

between them represent supplier-customer relations. The essence of our approach is best

described through an analogy. Just like in time series models the basic building blocks

are constructed with the help of the time lag operator, we use a network lag operator

which plays a similar role, only along a different dimension. The time lag operator shifts

a variable by one period and its powers refer to events more distant in the time. Instead,

a network lag of a variable is the average, possibly weighted, of values from neighboring

nodes. Higher powers of the network lag operator refer, intuitively, to more distant

firms along the supply chain. The network lag operator allows us to define processes

that include moving averages and are autoregressive along the network directions. We

2Regulation SFAS 131 is established in FASB Statement No. 131, Disclosures about Segments of
an Enterprise and Related Information (FASB, 1997). SFAS 131 is designed to increase information
disaggregation, providing financial analysts with additional data about diversification strategies and
exposures.
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refer to these processes as Network Autoregressive Moving Average (NARMA).

Typically, each node in a financial network is observed through time and the data

sample is structured as a panel. Although this type of data is the natural domain of

panel data econometrics, modeling explicitly the network structure—when available—

offers important complementarities, as well as some distinct advantages, over standard

panel data models. First, the standard assumption of cross-sectional independence for

the disturbances for panel models often does not hold in practice. While several panel

techniques are available to tackle this issue,3 they do not exploit the rich information

about the links between the units, when available. In a network model, on the contrary,

cross-sectional dependence is explicitly described in terms of a parsimonious model.

Second, network models provide the ability to estimate the effects that neighboring units

have on each other. While in principle allowing for individual effects can mitigate the

bias introduced when ignoring these dependencies, the panel approach provides minimal

information about their structural underpinnings.

The paper is organized as follows. Section 2.1 provides some background and reviews

the literature. Section 2.2 is an introduction to the NARMA model. We define several

basic notions from graph theory, describe the workings of the network lag operator and

the general specification of the model. Section 2.3 contains the main empirical result

of the paper. We describe application of our modeling framework to the analysis of

counterparty risk in supplier-customer networks. Section 2.4 considers three robustness

checks: we consider the issue of bi-directionality of economic links, we discuss alternative

specifications, and we explore the hypothesis that network effects proxy for cross-industry

covariates rather than measuring counterparty risk. We reject this hypothesis. Section

2.5 concludes.

2.1 Background and Literature Review

Recently, networks have risen to the foreground of empirical finance. Several studies

document the importance of social ties in portfolio choices of retail investors and mutual

3A textbook example is the seemingly unrelated regressions method (SURE) introduced by Zellner
(1962) which can account for cross-sectional correlations in long, narrow panels; asymptotically correct
inference can be achieved using the method of Driscoll and Kraay (1998) to consistently estimate standard
errors. Driscoll-Kraay standard errors are robust to heteroskedasticity, cross-sectional and temporal
dependence.
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fund managers, in contracting decisions and as drivers of return predictability.4 Other

works focus on the structural properties of financial networks and one of the most salient

examples is the analysis of interbank loan markets.5 By examining the dynamic prop-

erties of the network structure and through the use of simulations, these studies try to

assess how the network topology determines market liquidity and systemic risk.

Our research combines the recent literature on the econometrics of networks and the

broad topic of credit risk. The origin of our modeling framework can be traced back to

the field of spatial econometrics and to the literature concerned with the identification of

social interactions. The monographs on spatial econometrics by Anselin (1988), LeSage

and Pace (2009) and Lee and Yu (2011), and the chapter on social interactions by Blume

et al. (2010) provide recent overviews of these areas. Despite many formal similarities,

there are a few differences that are worth noting.

An essential ingredient in spatial models is the weight matrix, an analogue of the

network lag operator that encodes information about the relative locations and distances

of the spatial units. Two common critiques directed at spatial models involve the arbi-

trariness in the determination of the spatial units and the, sometimes, tenuous economic

relevance of the weights. In contrast, nodes in a network model are identified with spe-

cific entities and the normalization of the network lag operator follows either an equal

weighting scheme or is suggested by the economic setting.6

Our work expands on a long series of studies of corporate credit spreads by analyzing

their network determinants. At the firm level, the most important factors are leverage,

volatility, and jump risk (see, among others, Cremers et al., 2008). Campbell and Taksler

(2003) find that equity volatility accounts for as much variation in corporate spreads as

do credit ratings. Cremers et al. (2008) calibrate a jump-diffusion firm value process from

4Hong et al. (2004) document that socially engaged households are more likely to participate in the
stock market, and Cohen et al. (2008) find that portfolio managers place larger bets on firms to which
they have social ties. Kuhnen (2009) shows that the contracting decisions made by mutual funds, such as
selecting the board of directors and fund advisors, are influenced by past business relationships. Cohen
and Frazzini (2008) suggest that investors fail to promptly take into account supplier-customer links and
construct a customer momentum strategy that yield abnormal returns.

5Boss et al. (2004) and Soramaki et al. (2007) analyze the Austrian interbank market and the Fedwire
Funds Service, respectively, and they both find these networks have a low average path length and low
connectivity. Applying methods of network theory, Müller (2006) uses simulations to assess the risk of
contagion in the Swiss interbank market.

6For example, in the supplier-customer network that we consider, the sales associated to each edge
(each supplier-customer pair) provide relevant economic weights.
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equity and option data and confirm the importance of including jump risk with an out-

of-sample test. Besides risk determinants, market frictions are priced in the spreads. An

example is the liquidity premium that investors demand for their inability to trade large

quantities over a short horizon without incurring into negative price effects. Chen et al.

(2007) find that liquidity is priced in both levels and changes in the yield spread, while

Bao et al. (2011) quantify implicit illiquidity costs as the (negative) autocorrelation of

price reversals in high frequency transaction data and reach similar conclusions.

Another area related to our paper is the literature exploring the nature of default

correlations. Several authors document the clustering of corporate default in time.7 The

practical repercussions are significant both from both asset pricing and risk manage-

ment perspective. For example, Das et al. (2007) show that default correlations cannot

be explained by the widely used doubly stochastic model of defaults.8 A possible ex-

planation for default clustering is the dependence of default intensities on a dynamic

common factor. From this viewpoint, default clustering is puzzling only to the extent

that such factor is unobserved. Duffie et al. (2009) discuss a model in which the pos-

terior distribution of the latent factor is updated at the occurrence of defaults arriving

with an anomalous timing (i.e. overly clustered). A second, independent explanation

for default clustering is counterparty risk. A common limitation of many studies is the

abstraction from the economic links that connect the firms under consideration. In the

absence of a suitable empirical framework and readily available data, such a limitation

is both technical and practical. As a by-product, counterparty risk cannot be identified.

One of the few papers that is successful in isolating counterparty risk from generic

credit contagion is the work of Jorion and Zhang (2009). In their study, they consider

a sample of 250 bankruptcies between 1999 and 2005 and collect information about

counterparty exposures as detailed in bankruptcy filings. Within this sample, equity

value decreases and credit default swap spreads widen for those firms whose debtors

undergo bankruptcy. Our analysis corroborates these findings but differs in that our

approach not only provides evidence of counterparty risk, but it also includes a study of

its determinants and of their impacts on credit spreads. Moreover, we are not restricted

to events of particular gravity, such as bankruptcies, but instead examine interactions

7See Lucas (1995), and more recently Akhavein et al. (2005), Das et al. (2006), and de Servigny and
Renault (2002).

8According to the doubly stochastic model, defaults are independent Poisson arrivals, conditional on
past determinants of default intensities.
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under general market conditions.

2.2 The NARMA Model

2.2.1 Networks and graphs

Networks can be represented by graphs. A graph g is a pair of sets (V,E) containing

the vertices and the edges of the graph. These correspond to nodes and links in the

network. In what follows, the terms network and graph are used interchangeably.

Edges can be uni-directional or bi-directional. Accordingly, the graph is called di-

rected or undirected, respectively. A precise mathematical definition can be given as

follows. An edge is identified by an ordered pair of vertices, its source and its target.

Thus, the set E of all edges is a subset of V ×V and, consequently, any edge e in E can

be thought of as a pair (i, j), meaning that there is a edge between the node i and the

node j. Therefore specifying E is the same as specifying a map

G : V × V → {0, 1} ,

such that G(i, j) = 1 if and only if there is an edge between (i, j). A graph is undirected

(all edges are bi-directional) is the map G is symmetric, that is if G(i, j) = G(j, i), for

all the pairs of vertices (i, j). We assume that there are no selfloops, which is equivalent

to condition G(i, i) = 0 for all i.

In some applications, it is useful to introduce the concept of strength of a link. A

simple way of doing this is to attach a number to every edge, its weight. In practice this

corresponds to extending the edge map G to the real numbers:

G : V × V → R .

Given that the number of vertices V is finite, the map G can be interpreted as

a square matrix with dimension the number of vertices, the adjacency matrix. More

explicitly:

(G)ij = G(i, j) .

When the graph is undirected, the matrix G is symmetric. In particular the sum of the

entries of the i-th row is equal to the sum of the entries of the i-th column. Intuitively,
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this means that the vertex i influences the same number of nodes by which it is influenced.

A typical weighting scheme is a simple uniform normalization where each non-zero row

is divided by the sum of its entries.

The successive powers of the adjacency matrix capture the topology of the graph. A

walk from node i to node j of length k is a succession of k edges starting at i and ending

at j.9 More precisely, the matrix entry (Gk)ij is equal to the number of walks from node

i to node j of length k.

The following proposition characterizes the powers of the adjacency matrix:

Proposition 15. (Van Mieghem, 2010, pag. 26, Lemma 3) The matrix entry (Gk)ij is

equal to the number of walks from node i to node j of length k.

Proposition 15 holds whether the graph is directed or undirected. When the graph is

weighted, the task of interpreting higher powers of the adjacency matrix is more complex.

2.2.2 Basic properties of NARMA models

The next step is to recognize that the adjacency matrix is a linear operator on vectors

of vertex characteristics. We refer to this operator as the Network Lag Operator (NLO).

Indeed, let x be an n-dimensional vector of vertex characteristics (i.e. xi is some property

of node i). Since the matrix G is an n × n matrix, x can be right multiplied by G. A

NARMA process of order (p, q) is a stochastic process y on a network g (i.e. indexed by

the nodes of the network g) that follows the data generating process

y =

p∑
i=1

αiG
iy +

q∑
j=0

βjG
jx+ ε , (2.1)

where x is an (n× 1)-dimensional vector, {αi} and {βj} are families of real parameters,

G is the adjacency matrix (weighted or unweighted) of the network g, and ε is an (n×1)-

dimensional vector of disturbances. More generally x can be an n×k matrix of exogenous

characteristics and each βj is a 1× k vector.

To further understand the action of the network lag operator, consider the following

three alternative uses of the adjacency matrix. First, G can taken to be the (unweighted)

9Generally, a walk is not path. A path on a graph is to a succession of edges that does not visit the
same vertex more than once, i.e. a path is a walk in which all vertices are different.
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Figure 2.1: A simple example of a directed network.

adjacency matrix of a given graph g. Then the entries of Gx are the sums of neighbors’

characteristics. More specifically,10

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

xj ,

where the notation j|i→ j means “(node) j such that i connects to j”. A second option

is for G be a row normalized adjacency matrix. Then

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

1

ni
xj =

1

ni

∑
j|i→j

xj ,

where ni is the number of neighbors of i, that is the number of nodes j such that i

connects to j. Thirdly, G can be an stochastic weighted adjacency matrix.11 Then

(Gx)i =
∑
j∈V

Gijxj =
∑
j|i→j

Gijxj

is the weighted average of the neighbors of nodes i.

First- and second-order network effects can be easily interpreted in a simple network

and the arguments that follow can be easily extended to higher-order effects. Consider

the directed network g depicted in Figure 2.1. For this network the adjacency matrix G

10The sums are written as sums over all the vertices in V . This is equivalent to summing over j that
ranges from 1 to n.

11A square matrix of nonnegative real numbers is stochastic if the sum of the elements of each row is
equal to one. This concept of stochasticity is not related to the concept of random networks.
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and the matrix G2 of walks of length 2 are

G =


0 1 1 0

0 0 0 1

0 0 0 1

0 0 0 0

 , G2 =


0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0


In a NARMA model, v2 and v3 affect v1 and these are first order effects.12 The effect of

v4 on v1 is a second order effect. According to the matrix G2, shocks from v4 have weight

2 because there are two walks from v4 to v1. Walks accounting becomes important when

there is a need to discriminate between the relative impacts of different nodes, as it is

the case for the second order effects of the network depicted Figure 2.2.

Figure 2.2: In this network, the second order effect of v4 on v1 has weight 2, while the
second order effect of v5 on v1 has weight 1.

A similar line of reasoning can be applied to weighted adjacency matrices. In a

NARMA model, when the adjacency matrix G is weighted, the product Gx is the local

weighted sum of vertex characteristics, where local refers to the fact that, at each node,

the sum is taken over neighboring nodes. To understand higher powers of the network

lag operator, define the weight of a walk as the product of the weights of its segments.

Then, the entry (i, j) of the k-th power of the adjacency matrix is the sum of the weights

of the paths from i to j of length k.

12Note that it is the target vertex influencing the source vertex and not vice versa. This convention,
which might seem counterintuitive, stems from the way the adjacency matrix is constructed and from
the fact that it acts from the left. One could transpose the adjacency matrix and gain a more intuitive
picture, but this would mean breaking away from the common practice adopted in graph theory.
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2.3 The Network Determinants of Credit Spreads

2.3.1 The model: network spillovers

We focus our analysis on a model of network spillovers. Network spillovers occur

when the characteristics of a node’s neighbors have a direct impact on its outcomes. The

NARMA(0,1) model is a simple approach that accounts for neighbors’ characteristics by

way of the network lags of the covariates:

CS i,t = α+ β Firmi,t + γ Customers i,t + δ1 S&P t + δ2 YieldCurvet + εi,t , (2.2)

where,

1. CS i,t is the credit spread for of firm i at time t.

2. Firmi,t is a vector of the firm’s characteristics: leverage, volatility, and a measure

of jump-to-default risk.

Firmi,t = { lev i,t, ivol i,t, jumpi,t } .

Alongside their theoretical underpinnings (Merton, 1974), leverage (lev), idiosyn-

cratic volatility (ivol), and jump-to-default risk (jump) have been documented

as determinants of credit spreads in several studies (for example Campbell and

Taksler, 2003; Cremers et al., 2008).

3. Customers i,t is a vector of the characteristics of the firm’s customers constructed

using the supplier-customer network G:

Customers i,t = { (Gt · lev t)i, (Gt · ivol t)i, (Gt · jumpt)i } .

4. S&P t is a vector of the market’s characteristics:

S&P t = { retS&P,t, ivolS&P,t, jumpS&P,t } .

5. YieldCurvet is a vector with two components,

YieldCurvet = {r10
t , slope

(2,10)
t } ,
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the 10-year Benchmark Treasury rate r10
t and the slope of the yield curve, defined

as the difference between the 10-year and the 2-year Benchmark Treasury rates,

slope
(2,10)
t = r10

t − r2
t .

6. εi,t is a vector of white noise disturbances.

2.3.2 Sources

The data in this study is combined from several sources. In this section, we describe

in detail how each variable is constructed. The analysis is carried out on weekly data

for the 2004-2009 period.

1. Credit Spreads. Corporate bonds transactions come from the Trade Reporting

and Compliance Engine (TRACE), a platform operated by the Financial Industry

Regulatory Authority (FINRA) that covers the majority of US corporate bonds.

The TRACE facility has been operating since 2002 and, by February 2005, its

coverage reached approximately 99% of all public transactions. Our sample covers

the years from 2004 to 2009. For each Friday in the sample and for each bond issue,

we compute the volume weighted average yield from transaction data.13 We obtain

detailed information on corporate bond issues from Thompson Reuters DataStream

and only select issues with fixed rate coupons and no embedded optionality. From

Thompson Reuters DataStream we also obtain benchmark treasury interest rates

and compute maturity matched credit spreads from a linear interpolation of the

yield curve.14 Finally, for each firm in the sample we select the most traded issue

as measured by the average number of trades over the number of days the issue

was traded.15

2. Firm leverage. Following Collin-Dufresne et al. (2001), for each firm i, we define

13In our calculations we consider only regular trades (trades executed between 8:00 a.m. to 6:29:59
p.m., Eastern Time, and reported within 15 minutes of trade execution) which are not flagged as having a
“special price”. Moreover, we impute large trades to their minimum possible size. Indeed, for investment
grade bonds (junk bonds) when the par value of a transaction is greater than $5 million ($1 million),
the quantity field in the TRACE dataset contains the value “5MM+” (“1MM+”).

14The yield curve is linearly interpolated using maturities of 1, 3, 6 months and of 2, 3, 5, 7, 10, 30
years.

15There is no substantial difference when we select issues based on the average quantity traded.
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firm leverage lev i,t as

Book Value of Debt

Market Value of Equity + Book Value of Debt
.16

3. Implied Volatility. Weekly implied volatilities are constructed using the Option-

Metrics dataset. OptionMetrics contains quotes and analytics for US equity option

markets and, in particular, it reports the volatility surface constructed via kernel

smoothing on a fixed grid of maturities and deltas.17 We estimate future volatility

as the average of the implied volatilities of near-the-money call and put options:

ivol = 0.5
(
σimp
i,put(−0.5) + σimp

i,call(0.5)
)
,

where σimp
i,put is the implied volatility of the call option with 60 days to expiry on

the underlying stock of firm i as a function of delta.

4. Jump Measure. To quantify the probability of negative jumps we use a formula

developed by Yan (2010) as a formalization of the intuitive measure defined by

Collin-Dufresne et al. (2001). The basic idea is to exploit the stylized fact, known

as the volatility smile, that, as the strike value of an option varies, implied volatility

follows approximately a concave parabola — volatility smiles. This pattern is

attributed to the probability of extreme moves in firm value, with such probability

being higher the more the smile is accentuated. Practically, one can use near- and

out-of-the money puts and near and in-the-money calls to interpolate the implied

volatility σ(K) as a quadratic polynomial in the strike K and quantify jump risk

as σ(0.9 S) − σ(S), where S is the stock closing price. This is the approach of

Collin-Dufresne et al. (2001). Instead, we use the formula by Yan (2010), who

provides a formal argument in support of the following estimate of the slope of the

16Book Value of Debt is the the sum of long term debt (Compustat item DLTTQ) and debt in
liabilities (Compustat item DLCQ), while Market Value of Equity is the product of the number of share
outstanding (CRSP item SHROUT) and the price or bid/ask average (CRSP item PRC).

17The OptionMetrics volatility surface contains information on standardized options, both calls and
puts, with expirations of 30, 60, 91, 122, 152, 182, 273, 365, 547, and 730 calendar days, at deltas from
0.20 to 0.80 in steps of 0.05 units for calls and at negative deltas for puts. For European options, the
implied volatility is calculated inverting numerically the Black-Scholes model. For American options,
the implied volatility is estimated by evaluating iteratively a binomial tree model until the model price
converges to the market price.
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volatility smile:

jump = σimp
i,put(−0.5)− σimp

i,call(0.5) , (2.3)

where σimp
i,call is defined as above.

5. Market returns. Weekly S&P index returns, S&P i,t, are obtained by aggregating

daily data from the Center for Research on Security Prices (CRSP).

2.3.3 Supplier-customer network

According to Regulation SFAS no.131, suppliers are required to report those cus-

tomers that account for at least 10% of their total yearly sales. This information is

contained in the Compustat Customer Segment files. For each supplier, the key items

in each entry of the customers segments are the customer’s name and the customer’s

total amount of sales. As major customers are self-reported and, in particular, names are

manually entered, the matching of a reported customer’s name with a standard identifier

is not a straightforward matter. For example, the same company can be reported with

different names (IBM vs. International Business Machines), acronyms are sometimes

included and sometimes omitted (ADR, LLC, INC, etc.), or the company’s name can

be outright misspelled. We take a very conservative approach. After filtering common

acronyms, we only consider those links for which there is an exact match between a

word in the reported name and an entry in the Compustat datafile of names. In the case

of multiple matches, a link is manually identified by inspecting additional information,

such as TIC symbols and CUSIP codes, and by querying the online matching engine

available through the WRDS servers.18

Following this procedure, we identify 4,462 companies and 21,400 links, between the

years 2003 and 2009. For each supplier, links are weighted by the total amount of sales

corresponding to the target customer, normalized by the observed total amount of sales.

With such weighting, more importance is given to those customer that account for a

larger shares of trades. There are two aspects that dictate the network dynamics. First,

when a link is identified, it is considered active for one year prior to the reported date. In

the case of multiple links between two vertices for a given date, these are aggregated into

one link and the sales counts associated with different links summed. Second, as fiscal

18This procedure allows us to match a major customer firm to its unique identifier in Compustat
(GVKEY field). In turn, this allows us to merge data from Compustat with CRSP and TRACE data.
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years vary between businesses, new links are established and existing links are dropped

throughout the year. Overwhelmingly, links are updated in the month of December

(2887 links reported, on average), followed by end-of-quarter-months (March, June, and

September; 279 links reported, on average), and the rest (68 links, on average). Overall,

the supplier-customer network so constructed, although dynamic, is slowly varying.

Of the 4,462 companies in the supplies-customer network, 3,521 are covered in CRSP,

2,133 are reported in the OptionMetrics dataset, and only 564 firms are active in the

credit markets. For each time unit t, let lev t, ivol t, and jumpt be the vectors of vertex

(firms) characteristics, and let Gt be the adjacency matrix of the supplier-customer

network. Using the formalism of the network lag operator, we compute the weighted

average of customers’ characteristics as Gt · lev t, Gt · ivol t and Gt · jumpt.

Table 2.1 contains the summary statistics for the final sample. The time period

is January 2004 to December 2009 and the sample frequency is weekly. The sample

includes bonds that have a spread of less than 30% and more than 0.1%, maturities that

are between 5 and 35 years, and with a minimum of 20 observations. After matching

the firms in the supplier-customer network with the corporate bond trades in TRACE,

with the bond characteristics from DataStream, and dropping incomplete observations,

our final sample consists of 154 firms,19 and 12,128 weekly observations. Our panel is

unbalanced: the number of observations for each firm varies between 20 to 294, with a

median value of 74. The median maturity of the sample is December 2016.

2.3.4 Results

The regression estimates in Table 2.2 indicate that network lags are economically

and statistically significant determinants of corporate credit spreads. Moreover, the

signs of the coefficients, when significant, are consistent with theoretical predictions.

Standard errors are estimated following the procedure of Driscoll and Kraay (1998),

which is robust to heteroskedasticity, cross-sectional and temporal dependence. Our

most important findings are reported in Table 2.2 below.20

19The total market capitalization of our sample is approximately $2.8 trillion (median value between
2004 and 2009). For comparison, the S&P 500 has a median market capitalization over the same period
of $11.3 trillion.

20All the numerical examples in this section refer to model 7 in Table 2.2. Since the estimated
coefficients are stable across various models, the differences in the interpretation of the results are
immaterial.
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We find that an increase in the average of the customers’ leverage increases the credit

spread. Its economic impact is sizable: an increase of one standard deviation (0.23) in

the average leverage of the customers leads to a widening of the credit spread of up to

25 basis points (∼ 0.22× 1.13× 100 bp). In comparison, the credit spreads increase by

50 basis points (∼ 0.22 × 2.3 × 100 bp) when own leverage increases by one standard

deviation (0.22).

The slope of the volatility smile, as captured by the variable jump, is statistically

significant and its economic significance is comparable to the firms’ own jump risk mea-

sure. The average value of firm’s jump (0.009) is twice as much than the corresponding

customer variable (0.004, see Table 2.1), the factor loading on the latter (20.6) is almost

twice as much as the former (13.4, see Table 2.2). As a result, the economic impact of

the customer jump risk is comparable to that of the supplier specific jump risk.

S&P returns, volatility and jump risk are included in the model as control variables

for general economic conditions. Across all models S&P returns have a positive impact

on credit spreads and are statistically significant. Neither S&P implied volatility nor

S&P jump risk are significant when yield curve covariates are included in the regression.

2.4 Robustness

2.4.1 Bi-directionality of Supplier-Customer Relationships

The customer-supplier relationship is clearly bi-directional and, potentially, so is

the possibility of risk transfer. Our analysis so far has been concerned solely with the

risks flowing from customers to their suppliers and has disregarded the possibility that

distressed suppliers affect their customers’ financial standing. There are several counter-

examples that illustrate this possibility. For example, at the end of 2011, Western

Digital had to shut down its Thai factories as a consequence of severe floods, cutting

its hard drive production capacity by 60%. The incident influenced computer makers

world-wide.21 Earlier in the same year, the Japanese Earthquake similarly caused serious

disruptions to the worldwide supply chain.22 This section addresses two issues related to

the bi-directionality of supplier-customer relationships. First, we estimate the influence

of suppliers’ characteristics on the credit worthiness of customers. Second, our findings

21Counting the cost of calamities, The Economist, Jan 14th, 2012.
22Broken Links, The Economist, Mar 31st, 2011.
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provide evidence that the risk channel operating from customers to suppliers is distinct

form the channel operating from suppliers to customers.

In order to account for suppliers’ effects, consider again the supplier-customer net-

work g and its adjacency matrix G. To the transposed matrix GT , there corresponds

another network gT , whose links are reversed with respect to the original network g,

that is, gT is a network whose connections run from suppliers to customers. The initial

specification (see Equation 2.2) is augmented with the introduction of a term containing

the characteristics of the firm’s suppliers constructed using the the adjacency matrix GT

Customers i,t = { (GTt · lev t)i, (GTt · ivol t)i, (GTt · jumpt)i } .

Table 2.2 reports estimates under various restrictions of the following model:

CS i,t = α+β Firmi,t+γ
c Customers i,t+γ

s Suppliers i,t+δ1 S&P t+δ2 YieldCurvet+εi,t .

Within our sample, the coefficients for suppliers’ leverage and jump risk are not sig-

nificantly different from zero. Instead, there is strong statistical evidence that suppliers’

implied volatility has, perhaps counterintuitively, a negative impact on a firm’s credit

spread. This holds true across numerous different specifications (see also Tables 2.3 and

2.5). For our purposes, there are two important lessons that emerge from Table 2.2.

The first one is that the economic and statistical significance of customer’s effects is

robust to the introduction of supplier’s covariates. Indeed, the statistical significance of

the customers’ leverage and jump coefficients (γc1 and γc3, respectively) is even stronger

upon introducing suppliers into the model. The second is that customers’ and suppliers’

effects seem to operate through different channels, leverage and jump risk in the case of

customers, implied volatility in the case of suppliers.

2.4.2 Model Specification and Higher Network Lags

We focus on a model of network spillovers and ignore the autoregressive component

because the supplier-customer network resulting from our final sample does not contain

many long walks. Indeed, the non-zero observations for higher lags are only 354 at degree

2 and 4 at degree 3. Under such circumstances, it is easy to show that the a network

autoregressive model is equivalent to a finite network moving average.
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A NARMA process admits, under certain regularity conditions, a Wold-type repre-

sentation as a network moving average (NMA) of infinite order. For example, consider

the following NARMA(1,1) process;

y = αGy + βx+ ε

Let In be the identity matrix of dimension given by the number of vertices in the graph

g. Then, when the matrix (I− αG) is invertible y admits a NMA(∞) representation,23

indeed

y − αGy = βx+ ε

(I− αG)y = βx+ ε

y = (I− αG)−1(βx+ ε) =
∞∑
k=0

αkGk(βx+ ε) . (2.4)

The general NARMA model can be represented as a NMA whenever the matrix (I −∑
αkG

k) is invertible.24

For the sake of argument, consider the extreme example of a network in which there

are no walks of length greater than one. As an immediate consequence of Proposition

15, the square of the adjacency matrix of such network is zero. Expanding (2.4)

y = (I + αG+ α2G2 + . . . )(βx+ ε)

y = βx+ αβGx+ ε̃ ,

for an appropriate error process ε̃.25 As a result there is little difference between local

averages and global effects, making the case for the need of an autoregressive component

weak.26

23The matrix (I − αG) is invertible if (1) G is row normalized and |α| ≤ 1, or more generally
(2) α−1 ∈ (minσ(G),maxσ(G)), where σ(G) is the spectrum of G, i.e. the set of all eigenvalues of G.

24A condition for the invertibility of the matrix (I −
∑
αkG

k) is that limn→∞(
∑
αkG

k)n exists. A
sufficient condition is that

∑
|αk| · ||Gk|| < 1, where || · || is any matrix norm.

25In this case powers of the adjacency matrix of order two and higher are zero and the vector of
disturbances ε̃ is equal to ε+Gε.

26This is confirmed empirically: coefficients pertaining to the second lag of firm’s characteristics are
insignificantly different from zero, while the main results are practically unchanged. These results are
available upon request.
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2.4.3 Counterparty Risk and Cross-Industry Effects

Beside originating from counterparty risk, an alternative explanation for the presence

of network effects in our model of credit spreads is cross-industry spillover. Averaging

over customers’ characteristics, the argument goes, builds proxies for whole industrial

sectors that are connected along the supply-chain. Therefore, according to this hypothe-

sis, network effects should be interpreted as broad macroeconomic covariates and not as

measures of idiosyncratic counterparty shocks. To address these concerns, we introduce

control variables for both industry and cross-industry economic conditions.

We obtain value-weighted returns of industry portfolios from French’s website.27

These returns are constructed by assigning each AMEX, NYSE and NASDAQ stock to

a portfolio according to its Standard Industrial Classification (SIC) code. For robust-

ness, we consider various classifications, resulting in 12, 17, 30, 38 and 48 portfolios. For

example the 12-industry classification consists of the following 12 categories: 1. consumer

non-durables; 2. consumer durables; 3. manufacturing; 4. oil, gas, and goal extraction

and products; 5. chemicals and allied products; 6. business equipment; 7. telephone

and television transmission; 8. utilities; 9. shops (wholesale, retail and some services);

10. healthcare, medical equipment, and drugs; 11. finance; 12. other. Detailed defini-

tions for the 12-industry classification, as well as the others, are available from French’s

website.

Industry variables are constructed as follows. First, for each classification scheme and

each industry portfolio we compute weekly realized volatilities. Second, given a classi-

fication scheme, each firm in our dataset is assigned to a portfolio using its Compustat

SIC codes. Third, each firm’s neighboring industries are identified by the industries of

the firm’s customers, and neighboring industries returns and volatilities are computed as

weighted averages of weekly returns.28 This extension fits naturally within the modeling

framework described thus far. Let indretk and indvolk denote the returns and volatility

for industry k, and denote with k(i) the industry of firm i. Define the 2× n matrix Ind

of firm specific industry characteristics as the vector

Ind i = (indretk(i), indvolk(i)) ,

27These data and definitions are available online at Ken French’s website:
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

28As before, weights are normalized sales.
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where n is the number of firms. With this notation, the model with industry and cross-

industry effects is

y = βFirm + γ(G · Firm)︸ ︷︷ ︸
Firm and
Customers

effects

+ δ(S&P ,YieldCurve)︸ ︷︷ ︸
Market
effects

+ ηInd + φ(G · Ind)︸ ︷︷ ︸
Industry and

Cross-industry
effects

+ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects,

respectively.
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Table 2.1
Summary Statistics

This table presents summary statistics for the regressors and regressand in our final sample.
The data covers the years 2004 to 2009 with weekly frequency. Credit spreads are computed
using transaction data as differences between volume weighted average yields and a linear in-
terpolation of benchmark treasury bond yields. Leverage is defined as the ratio between book
value of debt and total capital. Volatility is estimated as the average of the implied volatilites
of near-the-money call and put options with 60 days to expiry. The jump measure quantifies
the risk of negative jumps using an estimate of the slope of the volatility smile (see Equation
(2.3)). The slope of the yield curve is defined as the difference between the 10-year, r10, and the
2-year, r2, Benchmark Treasury rates. Firm, Customers, Suppliers, and S&P refer to individual,
downstream neighbors (customers), upstream neighbors (suppliers), and market characteristics,
respectively. In particular, for a each firm, customers’ characteristics are averages of leverage,
volatility and jump measure, weighted on sales shares, of their customers. Suppliers’ character-
istics are defined similarly. Several firms in our supplier-customer network have no customers.
In this case, customers’ characteristics are zero. Summary statistics including these observation
are also reported (under “Customers (all)”). The same considerations apply to the definition of
“Suppliers (all)”.

Mean SD Min Max Obs

All Maturities (154 Firms)

Credit Spread 2.927 3.117 .115 29.261 12133

Implied Volatility

Firm .3619 .2285 .085 2.363 12133
Customers .2555 .1288 .107 2.012 2695
Customers (all) .0606 .1255 0 2.012 11357
Suppliers .3999 .2010 .020 1.353 1296
Suppliers (all) .1006 .2007 0 1.353 5150
S&P .1860 .0959 .095 .607 12133

Implied Jump Measure

Firm .0089 .0419 -.602 .881 12133
Customers .0039 .0148 -.264 .281 2695
Customers (all) .0009 .0074 -.264 .281 11357
Suppliers .0103 .0951 -1.016 1.824 1295
Suppliers (all) .0025 .047 -1.016 1.824 5150
S&P .0016 .0090 -.039 .035 12133

Leverage
Firm .3387 .2158 .0123 .979 12133
Customers .2440 .2275 .0008 .9992 2668
Customers (all) .0570 .1508 0 .9992 11422
Suppliers .278 .2254 0 .9347 1923
Suppliers (all) .1217 .2032 0 .9347 4406

Weekly Returns S&P .0010 .026 -.195 .116 12133

Term Structure
r10 4.140 .6341 2.130 5.226 12133
slope 1.003 .9498 -.190 2.749 12133



CHAPTER 2. ECONOMIC LINKS AND CREDIT SPREADS 56

Table 2.2
Network Determinants of Credit Spreads

Regression estimates for various restrictions of the model

CS i,t = α+ β Firmi,t + γ Customersi,t + δ1 S&P t + δ2 YieldCurvet + εi,t ,

where Firmi,t, Customersi,t and S&P t are vectors of firm’s, customers’, and market’s characteris-
tics, including leverage lev (for firms and customers) and returns ret (for the S&P), option implied
volatilities ivol and an implied jump risk measure jump. The vector YieldCurvet has two compo-
nents, the 10-year Benchmark Treasury rate r10

t and the slope of the yield curve, defined as the

difference between the 10-year and the 2-year Benchmark Treasury rates, slope
(2,10)
t = r10

t − r2
t .

The index i refers to the i-th observation at time t. The observation frequency is weekly. The
time period is January 2004 to December 2009. The sample includes bonds with at least 20 obser-
vations which have a spread of less that 30% and higher that 0.1%, and maturities between 5 and
35 years. The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity,
cross-sectional and temporal dependence).

Classical Models Customers Spillovers

(1) (2) (3) (4) (5) (6)

Firm

lev, β1 2.020∗∗∗ 2.243∗∗∗ 2.231∗∗∗ 2.131∗∗∗ 2.314∗∗∗ 2.282∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
ivol, β2 9.298∗∗∗ 8.502∗∗∗ 8.536∗∗∗ 9.100∗∗∗ 8.374∗∗∗ 8.474∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
jump, β3 12.44∗∗∗ 12.97∗∗∗ 12.84∗∗∗ 13.02∗∗∗ 13.53∗∗∗ 13.35∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Customers

lev, γ1 0.802 1.196∗ 1.135∗

(0.104) (0.015) (0.030)
ivol, γ2 0.670 0.255 0.337

(0.142) (0.542) (0.458)
jump, γ3 22.54∗∗∗ 21.34∗∗∗ 20.63∗∗

(0.000) (0.001) (0.001)

S&P

ret, δ1,1 3.961∗∗∗ 3.660∗∗∗

(0.000) (0.000)
ivol, δ1,2 0.159 -0.300

(0.823) (0.686)
jump, δ1,3 -1.463 -0.880

(0.538) (0.727)

Yield Curve

r10, δ2,1 -0.680∗∗∗ -0.684∗∗∗ -0.639∗∗∗ -0.673∗∗∗

(0.000) (0.000) (0.000) (0.000)
slope, δ2,2 -0.128∗ -0.140∗∗ -0.126∗ -0.129∗∗

(0.012) (0.003) (0.014) (0.007)

Constant -1.233∗∗∗ 1.920∗∗∗ 1.906∗∗∗ -1.324∗∗∗ 1.645∗∗∗ 1.818∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

N 12133 12133 12133 11186 11186 11186
R2 0.684 0.694 0.695 0.691 0.699 0.700



Table 2.3
Industry Controls for Customers Spillovers

Regression estimates for various models with industry and cross-industry effects.

y = βFirm + γ(G · Firm) + δ(S&P ,YieldCurve) + ηInd + φ(G · Ind) + ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and
indvolk denote the returns and volatility for industry k, and denote with k(i) the industry of firm i. Then Ind is the matrix
of firm specific industry characteristics

Ind i = (indretk(i), indvolk(i)) ,

and the vector G · Ind involves characteristics of downstream industries (customers’ industries). We use the same sample
selection and variable definitions as in Table 2.2. We consider various classifications, resulting in 12, 17, 30, 38 and 48
portfolios. The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional and
temporal dependence). For brevity Yield Curve and S&P coefficients are omitted.

No Industries Industry Portfolios

0 12 17 30 38 48

Firm

lev, β1 2.282∗∗∗ 2.222∗∗∗ 2.237∗∗∗ 2.240∗∗∗ 2.276∗∗∗ 2.252∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ivol, β2 8.474∗∗∗ 8.494∗∗∗ 8.521∗∗∗ 8.512∗∗∗ 8.479∗∗∗ 8.484∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

jump, β3 13.35∗∗∗ 13.48∗∗∗ 13.51∗∗∗ 13.49∗∗∗ 13.33∗∗∗ 13.38∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Customers

lev, γc1 1.135∗ 1.202∗ 1.161∗ 1.126∗ 1.204∗ 1.257∗

(0.030) (0.021) (0.030) (0.037) (0.022) (0.013)

ivol, γc2 0.337 0.0966 0.235 0.337 0.141 −0.0494

(0.458) (0.835) (0.647) (0.512) (0.787) (0.914)

jump, γc3 20.63∗∗ 20.90∗∗∗ 21.60∗∗∗ 21.33∗∗ 20.55∗∗∗ 19.53∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Industry

ret, η1 0.00288 0.00186 0.00795 −0.0143∗ −0.00336

(0.671) (0.863) (0.248) (0.011) (0.553)

vol, η2 −0.00936∗∗∗ −0.0104∗∗∗ −0.00634∗∗∗ 0.000221 −0.000822

(0.000) (0.000) (0.000) (0.855) (0.432)

Cross-Industry

ret, φ1 −0.0481∗∗ −0.0385∗∗∗ −0.0343∗∗ −0.00939 −0.0220

(Continued)
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(0.004) (0.001) (0.001) (0.241) (0.077)

vol, φ2 0.0166∗∗∗ 0.00229 −0.00057 0.00174 0.00530∗

(0.000) (0.643) (0.799) (0.133) (0.032)

Constant 1.818∗∗∗ 1.540∗∗∗ 1.351∗∗∗ 1.521∗∗∗ 1.910∗∗∗ 1.834∗∗∗

(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

N 11186 11186 11186 11186 11186 11186

R2 0.700 0.702 0.702 0.702 0.700 0.701
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Our principal result remains unchanged. Cross-industry effects are generally insignif-

icant across the classification considered models, and moreover the economic significance

of their contribution to the corporate credit spreads is minimal. The estimates of the

network effects are the same for all practical purposes. Tables 2.4 and 2.5 extend these

robustness results to include upstream (suppliers) industries.



Table 2.4
Industry Controls for Suppliers Spillovers

Regression estimates for various models with industry and cross-industry effects.

y = βFirm + γs(G · Firm) + δ(S&P ,YieldCurve) + ηInd + φs(GT · Ind) + ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and indvolk denote
the returns and volatility for industry k, and denote with k(i) the industry of firm i. Then Ind is the matrix of firm specific industry
characteristics

Ind i = (indretk(i), indvolk(i)) ,

and the vector GT · Ind involves characteristics of upstream industries (suppliers’ industries). We use the same sample selection,
variable definitions and controls (omitted for the sake of space) as in Table 2.2. We consider various industry classifidcations, resulting
in 12, 17, 30, 38 and 48 portfolios. The numbers in parenthesis are Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional
and temporal dependence).

No Industries Industry Portfolios

0 12 17 30 38 48

Suppliers

lev, γs1 −1.26 −1.54∗ −1.37∗ −1.41∗ −1.18 −1.27
(0.101) (0.036) (0.047) (0.043) (0.097) (0.082)

ivol, γs2 −1.3∗∗∗ −1.39∗∗∗ −1.36∗∗∗ −1.37∗∗∗ −1.23∗∗∗ −1.32∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
jump, γs3 .283 .287 .206 .192 .31 .324

(0.655) (0.698) (0.791) (0.801) (0.628) (0.636)

Supplier Industries

ret, φs1 −.0225 −.0132 −.0206 −.0228 −.0192
(0.240) (0.652) (0.380) (0.204) (0.245)

vol, φs2 .0119∗∗∗ .00882 .00641 −.00211 .00106
(0.000) (0.310) (0.186) (0.436) (0.714)

N 3849 3791 3791 3791 3791 3791



Table 2.5
Industry Controls for Suppliers and Customers Spillovers

Regression estimates for various models with industry and cross-industry effects.

y = βFirm + γc(G · Firm) + γs(GT · Firm) + δ(S&P ,YieldCurve) + ηInd + φc(G · Ind) + φs(GT · Ind) + ε ,

where η and φ are 2-vectors of parameters quantifying industry and cross-industry effects, respectively. Let indretk and indvolk denote
the returns and volatility for industry k, and denote with k(i) the industry of firm i. The vectors Ind , G · Ind , and G · Ind are defined
as in Tables 2.3 and 2.4. We use the same sample selection and variable definitions as in Table 2.2. The numbers in parenthesis are
Driscoll-Kraay p-values (robust to heteroskedasticity, cross-sectional and temporal dependence).

No Industries Industry Portfolios

0 12 17 30 38 48

Customers

lev, γc1 2.01∗∗∗ 1.83∗∗ 2.01∗∗ 1.93∗∗ 2.04∗∗ 2.08∗∗

(0.001) (0.006) (0.002) (0.004) (0.002) (0.002)
ivol, γc2 −.817 −.772 −.817 −.687 −.74 −.81

(0.129) (0.189) (0.161) (0.258) (0.266) (0.188)
jump, γc3 12.8∗∗∗ 14.2∗∗∗ 13.9∗∗∗ 13.8∗∗∗ 13.4∗∗∗ 13.4∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Suppliers

lev, γs1 −1.15 −1.5∗ −1.33 −1.34 −1.12 −1.19
(0.135) (0.042) (0.054) (0.055) (0.119) (0.104)

ivol, γs2 −1.17∗∗∗ −1.26∗∗∗ −1.25∗∗∗ −1.24∗∗∗ −1.12∗∗∗ −1.19∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)
jump, γs3 −.225 −.539 −.444 −.261 −.0612 −.0621

(0.681) (0.431) (0.604) (0.735) (0.918) (0.918)

Customer Industries

ret, φc1 −.0337 −.0521 −.0385∗ −.00665 −.0264
(0.216) (0.057) (0.041) (0.577) (0.082)

vol, φc2 .0192∗∗∗ .0038 0 −.00162 −.00117
(0.000) (0.408) (1.000) (0.317) (0.504)

Supplier Industries

ret, φs1 −.0174 −.0157 −.0236 −.0174 −.0196
(0.371) (0.643) (0.343) (0.375) (0.224)

vol, φs2 .0141∗∗∗ .0121 .00703 −.00137 .00106
(0.000) (0.174) (0.179) (0.573) (0.686)

N 3530 3506 3506 3506 3506 3506
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2.5 Conclusions

The main objective of this paper is to evaluate the market assessment of counterparty

risk in supplier-customer relationships. To this end, we study the network determinants

of corporate credit spreads and use network effects as an instrument for counterparty

risk. Using an econometric framework that allows us to estimate network effects, we

show that along the supply chain, network effects are economically and statistically

significant determinants of credit spreads.

Besides the empirical analysis of counterparty risk, an important contribution of this

paper is the introduction of a powerful modeling framework for financial networks. Its

major strengths are the ability to model parsimoniously cross-sectional dependence and

the possibility to quantify the impact that neighboring units have on each other. In

our application of the NARMA model we showed the importance of network effects in

asset pricing. There are several possible directions for future research in this area. The

interbank loans market and fragmentation that characterizes equity trading are only

two of many interesting topics where we believe that the application of our modeling

framework can lead to new insights.



Appendix A

Proofs and Additional Materials

A.1 Proofs for Chapter 1

Recall that the process {zm,t} is defined as the cross-product component of the square

of each wavelet detail

zm,t :=
L−1∑
i=0

L∑
j>i

hm,ihm,jyt−iyt−j

and that when there is no risk of confusion we omit the index m.

Proof of Proposition 2. Recall that on a measure space {X,µ}, for any f ∈ Lp(Ω) and

g ∈ Lq(Ω), the generalized Hölder inequality holds (see, for example, Reed and Simon,

1972, page 82):

‖fg‖r ≤ ‖f‖p‖g‖q, with p−1 + q−1 = r−1 , (A.1)

in particular, if p = q, ‖fg‖p/2 ≤ ‖f‖p‖g‖p. For the remainder of this proof let

E[·] = E[·|F t+mt−m (ε)]. The following computation follows almost exactly the proof of

Theorem 17.9 in Davidson (1995). Using the triangle inequality and the generalized

Hölder inequality (A.1):

‖xtyt − Extyt‖p/2
= ‖(xtyt − xtEyt) + (xtEyt − ExtEyt)− E(xt − Ext)(yt − Eyt)‖p/2
≤ ‖xt(yt − Eyt)‖p/2 + ‖(xt − Ext)Eyt‖p/2 + ‖E(xt − Ext)(yt − Eyt)‖p/2
≤ ‖xt‖p‖yt − Eyt‖p + ‖xt − Ext‖p‖Eyt‖p + ‖xt − Ext‖p‖yt − Eyt‖p

≤ ‖xt‖pdyt νym + ‖yt‖pdxt νxm + dxt ν
x
md

y
t ν
y
m ≤ dtνm,

63
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where dt = max(‖xt‖pdyt , ‖yt‖pdxt , dxt d
y
t ) and νm = O(m−minφx,φy).

Proof of Theorem 4. Let {εt} be the driving mixing process of {yt}. Since the NED

property is preserved under linear combinations (Davidson, 1995, Theorem 17.8, page

267), {wm,t} is L2-NED on εt. It follows that {w2
m,t} is L1-NED on εt (Davidson, 1995,

Theorem 17.9, page 268). Recall that

zm,t = w2
m,t −

Lm∑
i=1

h2
m,iy

2
t−i .

Again, since the linear combination of NED processes is a NED process, {zm,t} is L1-

NED. Notice that Êm,T − 2−m can be written in terms of zt and yt:

Êm,T −
1

2m
=

2
∑

t zm,t∑
t y

2
t

,

indeed

Êm,T =

∥∥wTm∥∥∥∥yTt ∥∥ =

∑T
t=1

(∑Lm
i=0 hm,iyt

)2

∑T
t=1 y

2
t

(A.2)

=

∑T
t=1

(∑Lm
i=0 h

2
m,iy

2
t−i + 2

∑Lm−1
i=0

∑Lm
j>i hm,ihm,jyt−iyt−j

)
∑T

t=1 y
2
t

(A.3)

=

∑Lm
i=0 h

2
m,i

∑T
t=1 y

2
t−i∑T

t=1 y
2
t

+
2
∑T

t=1 zm,t∑T
t=1 y

2
t

=

Lm∑
i=0

h2
m,i +

2
∑T

t=1 zm,t∑T
t=1 y

2
t

=
1

2m
+

2
∑T

t=1 zm,t∑T
t=1 y

2
t

(A.4)

Step A.4 uses the fact that filtering is cyclic, therefore the sum
∑T

t=1 yt−i does not depend

on i and is the same as the denominator
∑T

t=1 yt. The last equality holds because the

norm of a convolution is the product of the norms. Since hm,t is the cascade filter

obtained by convolution of m filters with norm 1/2, the result holds. Now, Theorem ??

together with Slutsky’s Theorem imply

2
∑T

t=1 zm,t∑T
t=1 y

2
t

p−→ 0

and the theorem is proven.
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In the stationary case, Theorem 4 follows easily from Theorem ?? and Slutsky’s

Theorem. Indeed, ∑n
t=1w

2
m,n∑n

t=1 y
2
t

p−→ 2−mσ2

σ2
=

1

2m
,

as Ew2
m,n = 2−mσ2 for all m and n.

Lemma 16. Let {yt} be a stochastic sequence with zero means with finite joint fourth

cumulants, i.e.

E[yt−iyt−jyt−kyt−l] <∞ ,

for all i, j, k, and l such that 0 ≤ i < l < L and 0 ≤ k < l < L. Then,

var(zt) =
L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlE(yt−iyt−jyt−kyt−l)

and

cov(zt, zt−s) =
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)

Proof. The proof relies on a direct computation. First, we compute the variance:

var(zt) = var

L−1∑
i=0

L∑
j>i

hihj yt−iyt−j


= cov

L−1∑
i=0

L∑
j>i

hihj yt−iyt−j ,
L−1∑
k=0

L∑
l>k

hkhl yt−kyt−l


=

L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlCov(yt−iyt−j , yt−kyt−l)

=

L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlE(yt−iyt−jyt−kyt−l) , (A.5)

where at step (A.5) we used the fact that yt has zero mean.

The autocovariances of {zt} are computed similarly. Let hl = 0 for all l > L, then

cov(zt, zt−s) = cov(
L−1∑
i=0

L∑
j>i

hihj yt−iyt−j ,

L−1∑
l=0

L∑
k>l

hl−shk−s yt−s−lyt−s−k)
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=
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sCov(yt−iyt−j , yt−s−lyt−s−k)

=

L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k) . (A.6)

Proof of Theorem 8. Since {zm,t} is linear combination of processes of the form {ytyt−i}
and since the NED property is preserved under linear combinations, it follows that under

under Assumption (B2), {zm,t} is L2-NED of size −1/2 on εt.

To see that Assumption B1 implies condition (a) of Theorem ?? recall that from

lemma 16

var(zm,t) =

Lm∑
i=0

Lm∑
j>1

Lm∑
k=0

Lm∑
l>1

hihjhkhlE(yt−iyt−jyt−kyt−l) .

Then, ∥∥∥∥∥ yt−iyt−jyt−kyt−l∑Lm
i=0

∑Lm
j>1

∑Lm
k=0

∑Lm
l>1 hihjhkhlE(yt−iyt−jyt−kyt−l)

∥∥∥∥∥
p

∼

∥∥∥∥∥
∑Lm

i=0

∑Lm
j>1

∑Lm
k=0

∑Lm
l>1 hihjhkhlyt−iyt−jyt−kyt−l∑Lm

i=0

∑Lm
j>1

∑Lm
k=0

∑Lm
l>1 hihjhkhlE(yt−iyt−jyt−kyt−l)

∥∥∥∥∥
p

=

∥∥∥∥∥ z2
t,m

var(zm,t)

∥∥∥∥∥
p

=

∥∥∥∥ zt,mσm,t

∥∥∥∥
2p

,

which implies that zm,t/σm,t is Lr-bounded for r = 2p > 2.

Thus, zm,t satisfies the conditions of Theorem ?? and

T∑
t=1

zm,t/sT (z)
d−→ N(0, 1) .

Therefore, ∑
t y

2
t

2sT (z)

(
Êm,T −

1

2m

)
d−→ N(0, 1)

√
Tσ4

T

4s2
T (z)

(
Êm,T −

1

2m

)
d−→ N(0, 1) ,where σ2

T = T−1
T∑
t=1

Ey2
t .

Proof of Corollary 10. In order to prove Corollary 10, we require the following lemma.
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Lemma 17. Let {yt} be a stochastic sequence with zero means, identical variances σt =

σ, and vanishing fourth order joint cumulants. Let {hl}L−1
0 be an L-dimensional vector.

Then the stochastic sequence zt is has variance

var(zt) = σ4
L−1∑
i=0

L∑
j>i

(hihj)
2 , (A.7)

and autocovariances

cov(zt, zt−s) =

σ4
∑imax

i=imin

∑jmax

j>i hihjhi−shj−s , if s ≤ L− 1

0 , otherwise
(A.8)

where

imin = max(0, s) , imax = L− 1 + min(0, s) , jmax = L+ min(0, s) .

Proof. When fourth cumulants are zero, the fourth moment κabcd of yt can be expressed

in terms of the second moments κab. Such decomposition is valid whenever the fourth

cumulant κa,b,c,d is zero. Indeed (see for example McCullagh (1987))

xsκabcd = κa,b,c,d + κa,b,cκd[4] + κa,bκc,d[3] + κa,bκcκd

= κa,b,c,d + κa,bκc,d[3]

where the the bracket notation [n] indicates the number of terms in implicit summation

over distinct partitions having the same block sizes. The second equality follows since

κs = 0 as yt is a zero mean sequence. Continuing form (A.5), since yt is independently

distributed and since i 6= j and k 6= l (from the second and fourth summations), the only

non vanishing contributions in (A.5) correspond to the two possibilities (i = k, j = l)

and (i = l, j = k). The second scenario never arises. Indeed, when i = l and j = k,

using l > k (from the fourth summation)

i = l > k = j =⇒ i > j,

which contradicts the condition j > i (from the second summation). Let δij be equal to
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1 whenever i = j and 0 otherwise. Thus,

L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlE(yt−iyt−jyt−kyt−l)(δikδjl + δilδjk)

=

L−1∑
i=0

L∑
j>i

h2
ih

2
jE(y2

t−iy
2
t−j)

=
L−1∑
i=0

L∑
j>i

h2
ih

2
jE(y2

t−i)E(y2
t−j)

= σ4
L−1∑
i=0

L∑
j>i

h2
ih

2
j .

A very similar computation yields the autocorrelation function γs:

γm(s) = Cov(

L−1∑
i=0

L∑
j>i

hihj yt−iyt−j ,

L−1∑
l=0

L∑
k>l

hl−shk−s yt−s−lyt−s−k) (A.9)

=
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sCov(yt−iyt−j , yt−s−lyt−s−k)

=

L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)

=
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)(δi,s+lδj,s+k + δi,s+kδj,s+l)

=
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)δi,s+lδj,s+k

(A.10)

=

imax∑
i=imin

jmax∑
j>i

hihjhi−shl−sE(y2
t−i)E(y2

t−j)

= σ4
imax∑
i=imin

jmax∑
j>i

hihjhi−shl−s .

where

imin = max(0, s) , imax = L− 1 + min(0, s) , jmax = L+ min(0, s) .
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At equality (A.10) we used the fact that the contribution of δi,s+kδj,s+l is zero. The

argument is the same as for the analogous contribution to γm(0).

Notice that the autocovariance γ(s) is zero when imin > imax. For s > 0, this

condition holds when

max(0, s) > L− 1 + min(0, s)

s > L− 1 .

In particular, the sequence zt is a (L− 1)-dependent sequence (i.e. zt is independent of

zt−l for l > L− 1).

Using Equation A.3 and the fact that Êm,T
p−→ 1

2m (see Theorem 8) we can write

√
T

(
Êm,T −

1

2m

)
=
√
T

2
∑T

t=1

∑2m−2
i=0

∑2m−1
j>i hihjyt−iyt−j∑T

t=1 y
2
t

=
√
T

∑T
t=1 2zt∑T
t=1 y

2
t

=

√
T (2z̄t)

1
T

∑T
t=1 y

2
t

d−→
N
(

0, 4
∑L−1

j=−L+1 γ(j)
)

σ2
∼
N
(
0, σ4an

)
σ2

∼
√
anN (0, 1) . (A.11)

In step (A.11) we used the Continuous Mapping Theorem and the Central Limit Theorem

for stationary time series (see Hamilton, 1994, Theorem 7.11). Independence of am from

σ follows directly from Equations (A.7) and (A.8).

Proof of Theorem 13. Consider the vector (GS 1,T , . . . ,GSN,T ).


GS 1,T

...

GSN,T

 =


√

T
a1

(
Ê1,T − 1

21

)
...√

T
aN

(
ÊN,T − 1

2N

)
 =

√
T∑T

t=1 y
2
t


1√
am

∑T
t=1 z1,t

...
1√
aN

∑T
t=1 zN,t

 =

√
T

1
T

∑T
t=1 y

2
t


1√
a1
z̄1,T

...
1√
aN
z̄N,T


Let q be the column N -vector with coordinates 1√

ai
. Let diag(v) be the square matrix
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with v on the main diagonal and zero everywhere else. By definition

diag(q)

(∑
s∈Z

Γ (s)

)
diag(q) = σ2A .

Indeed, 
1√
a1

0 · · · 0

0 1√
a2
· · · 0

...
...

. . .
...

0 0 · · · 1√
aN




σ4a1 σ4a12 · · · σ4a1N

σ4a21 σ4a2 · · · σ4a2N

...
...

. . .
...

σ4aN1 σ4aN2 · · · σ4aN



×


1√
a1

0 · · · 0

0 1√
a2
· · · 0

...
...

. . .
...

0 0 · · · 1√
aN
e

 = σ4A

The joint asymptotic distribution of the vector of multi-scale energy ratios is
GS 1,T

...

GSN,T

 d−→ 1

σ2
N

0, diag(q)

 +∞∑
j=−∞

Γ (j)

 diag(q)

 ∼ N (0, A) .
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