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Abstract 

In-season methods that produce accurate and timely forecasts of returning salmon 

abundances allow fisheries managers to alter fishing plans in order to meet conservation 

and harvest objectives. In-season methods are challenged by variability in catch 

statistics due to factors external to abundance, specifically, fluctuations in the migration 

timing of target and co-migrating stocks. I apply genetic stock identification (GSI) data to 

develop catch indices for the five Fraser Chinook management units, and use these 

indices to forecast returns for each management unit according to four in-season model 

forms. I evaluate models using three performance measures to determine forecasting 

errors. Results show that forecasts for Spring 52 and Summer 52 Chinook can be 

produced with reasonable accuracy early in the fishing season. Forecasts of Spring 42, 

Summer 41, and Fall Chinook are less accurate. Results indicate that this technique 

shows promise for providing accurate and timely forecasts for the five Fraser Chinook 

management units, particularly as additional years of data are GSI-analyzed. 
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1. Introduction 

Salmon fishery managers are challenged by conflicting objectives to conserve 

biodiversity (Beacham et al. 2014b) while allowing for harvest of good-quality fish by 

multiple sectors (Shaklee et al. 1999, Su and Adkison 2002, Parken et al. 2008, 

Beacham et al. 2014b). To attain these objectives, stocks must be harvested at 

individually sustainable rates, with harvests distributed over the course of the migration 

of each stock (Hyun et al. 2005, Flannery et al. 2010). This is difficult to attain, as most 

fisheries intercept multiple stocks at a time, and those stocks often vary in their target 

harvest rates (Shaklee et al. 1999, Beacham et al. 2004b, Price et al. 2008, 

Satterthwaite et al. 2015). In order to design fisheries that are compatible with mixed-

stocks, managers require accurate estimates of returning population abundances and 

their migration timing prior to their migration through fishing areas (Marshall et al. 1987, 

Springborn et al. 1998, Zheng and Mathisen 1998, Hyun et al. 2005, DFO 2016).  

Accurate estimates of returning abundances allow managers to determine 

appropriate harvest rates for each fishing sector (Springborn et al. 1998), allocating 

catch when surpluses exist, or imposing closures when abundances are below target 

(Fried and Hilborn 1988, Claytor 1996, Pestal 2006). Where data are available, forecasts 

are produced prior to the fishing season, using biological stock-recruitment models, time-

series average, or sibling models (Haeseker et al. 2008, Grant et al. 2010). However, 

pre-season forecasts are often associated with large amounts of error, which can lead to 

missed fishing opportunities or management targets, potentially impacting conservation 

concerns (Walters and Buckingham 1975, Quinn and Marshall 1989, Su and Adkison 

2002, Holt and Peterman 2006, Haeseker et al. 2008). During the fishing season, in-

season forecasts are used to adjust management plans once fish begin to enter their 

natal rivers or approach areas (Sprout and Kadowaki 1987). In-season forecasts use  

intercepting commercial or test fishery data  in the form of catch-per-unit (CPUE) indices 
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to predict returning abundances based on their historical relationship, through regression 

models or ratios (Walters and Buckingham 1975, Minard and Meacham 1987, Dempson 

et al. 1998, Flynn and Hilborn 2004, Flynn et al. 2006, Catalano and Jones 2014). In-

season methods have become increasingly relied upon, and are generally considered 

more dependable as indicators of abundance than pre-season methods, due to 

uncertainty and poor performance of preseason forecasts in the past (Walters and 

Buckingham 1975, Henderson et al. 1987, Claytor 1996, Haeseker et al. 2008, Holt et al. 

2009).  

Ideally in-season forecasts are produced on a daily, weekly, or monthly basis to 

inform harvest decisions through iterative processes (Fried and Hilborn 1988, Hyun et al. 

2005). However, forecasts are often produced only once during the fishing season, to 

update pre-season estimates, or to be used as stand-alone forecasts (Fried and Hilborn 

1988, Zheng and Mathisen 1998, Flynn and Hilborn 2004, Chamberlain and Parken 

2012). In such cases, timing of forecast availability is very important (Claytor 1996). In-

season estimates are increasingly important as the fishing season progresses and data 

become more informative (Catalano and Jones 2014). Conversely, they are most 

beneficial early in the fishing season when managers have the greatest flexibility to 

adjust fisheries (Hyun et al. 2005, Chamberlain and Parken 2012). Managers must have 

adequate time to close fisheries when in-season forecasts indicate lower than expected 

abundances, or to allow enough fishing time when abundances are larger than expected 

(Holt and Peterman 2006). However, uncertainty in early season forecasts can translate 

into failure to meet the objectives of the fishery management system (Zheng and 

Mathisen 1998, Catalano and Jones 2014). 

In-season forecasting methods are challenged by annual variations in the 

migration timing of forecasted and co-migrating populations. Most in-season methods 

rely on the assumption of average migration timing, relating historical catch statistics to 

annual or reconstructed in-season returns (Walters and Buckingham 1975, Minard and 

Meacham 1987, Woodey 1987, Fried and Hilborn 1988, Zheng and Mathisen 1998, 

Hyun et al. 2005, Chamberlain and Parken 2012, Catalano and Jones 2014). Although 

authors such as Keefer et al. (2004) have found that migratory timing of individual stocks 
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is consistent enough to be predictable, it remains widely acknowledged that migration 

timing can vary greatly on an inter-annual basis (Zheng and Mathisen 1998). Variability 

in migration timing causes catch statistics to deviate from average values for a given 

date and abundance. This can be misinterpreted as an indication of run size, and leads 

to over- or under- forecasting when using average timing models (Zheng and Mathisen 

1998, Flynn and Hilborn 2004, Hyun et al. 2005). For example, larger than average 

catches early in the season can incorrectly indicate a large return when in fact the return 

is early, and therefore more of the run is available to fisheries than average on a given 

date (Flynn and Hilborn 2004).  

In areas where stocks mix, such as large river systems with multiple populations 

of a given species, run timing of co-migrating stocks adds to the variability in catch 

indices. Migration timing of returning salmon populations can differ greatly, even within a 

species (Keefer et al. 2004, Parken et al. 2008, Chamberlain and Parken 2012). In 

contrast, timing can also greatly overlap, as in the case of Fraser Chinook, where return 

timing of the Spring 52
1 and Summer 52 stock groups overlaps with both Spring 42 and 

Summer 41 Chinook (Chamberlain and Parken 2012). Such overlaps lead to high catch 

index variability because catch rates reflect fluctuations in both abundances and return 

timing of multiple stocks.  

Variability in catch indices leads to uncertainty in subsequent run size predictions 

(Marshall et al. 1987, Zheng and Mathisen 1998, Hyun et al. 2005, Catalano and Jones 

2014). Early in the fishing season, variability in catch indices is particularly problematic 

(Springborn et al. 1998), hence early in-season data may not give a clear signal of run 

size (Chamberlain and Parken 2012). Removal of some of the uncertainty in catch 

indices by including covariates in in-season models, or by stratifying CPUE according to 

major sources of variation, can improve forecasting ability (Marshall et al. 1987). 

 
1
 Stock aggregates are referred to using the Gilbert-Rich naming convention, whereby the large 
number indicates the age at maturity of the majority of the population, and the subscript 
represents the number of winters spent in freshwater before migrating to the ocean (DFO 
2011a). Stock groups consist of individuals with varying age structures, though they have been 
named according to the predominant life history. 
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For Pink Salmon in Southeastern Alaska, in-season forecasts have been 

improved by including covariates in the form of sex ratios, as an indicator of migration 

timing (Zheng and Mathisen 1998). For Port Moller Sockeye, the main causes of 

variability in test fishery indices are fluctuations in age structure combined with unequal 

vulnerability of age classes to fishing gear (Flynn and Hilborn 2004). Predictive ability of 

in-season forecasts for Port Moller Sockeye improved when age composition, migration 

route, and a proxy for migration timing were included in models as covariates. External 

sources of variability have also been successfully used to stratify catch indices. Fish age 

and river of origin accounted for approximately half the variation in Lynn Canal Sockeye 

commercial CPUE indices that was not attributed to migration timing (Marshall et al. 

1987). Variability in catch indices was significantly reduced when indices were stratified 

by age and stock, using scale pattern analysis, resulting in more accurate in-season 

forecasting methods (Marshall 1987).  

In this study I apply genetic stock identification (GSI) assignments to stratify test 

fishery catch indices for Fraser River Chinook Salmon into stock aggregates used for 

their management. I apply these indices to develop in-season forecasting models for 

each aggregate, and evaluate potential model forms to identify those that perform best 

for each aggregate in terms of the accuracy of forecasts, and subsequently, the timing of 

their availability. For two stock aggregates I evaluate models against currently used 

CPUE-based in-season forecasting methods to quantify potential improvements in 

forecasting due to CPUE stratification. I further use the performance of the current in-

season methods as guidelines for evaluating the accuracy of models for all management 

groups. 

Fraser Chinook present a good case study to assess GSI-derived indices as in-

season predictors for several reasons. First, Fraser Chinook management units have 

experienced diverging trends in abundance over the past decade, creating the potential 

for increased harvest of some stocks, and a need for conservation of others. Availability 

of forecasts at the management unit level prior to fisheries will present opportunities to 

plan fisheries according to returning abundances, increasing the potential to meet 

management objectives. Second, Fraser Chinook are currently managed with a test 
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fishery-based in-season model for Spring and Summer 52 Chinook, the predictions of 

which are used to determine in-season management actions to protect these stock 

groups. This model acts as a basis of comparison for those developed here. Additionally, 

past research in developing the current model has provided groundwork for this analysis. 

In this respect, incorporating genetic methods to develop stock indices for Fraser 

Chinook has proven beneficial for predicting run size on the stock and stock aggregate 

level (Parken et al. 2008). However, the previous study was limited by data availability 

and did not explore the potential of these methods for in-season forecasting (Parken et 

al. 2008).  

1.1. Fraser River Chinook 

The Fraser River is the largest producer of Chinook Salmon in Canada (Bailey et 

al. 2001, Parken et al. 2008), contributing to commercial, recreational, and First Nations 

fisheries in the Fraser River, Northern British Columbia, Southeastern Alaska, the west 

coast of Vancouver Island, and Washington State (Bailey et al. 2001, DFO 2006a, CTC 

2015a).  

Fraser Chinook stocks are divided into five management units based on their run 

timing and life history (DFO 2008). Run timing has been categorized into three groups 

for fishery management: Spring, Summer, and Fall (Fraser et al. 1982, DFO 1999). 

Spring runs migrate through the lower Fraser River with at least 50% of their returning 

abundance passing through prior to July 15 (median migration date). Two management 

units have Spring timing. The Spring 42 stocks enter the Fraser River from early March 

to the end of July, with a median migration date past the Albion test fishery in mid-July, 

and the Spring 52 stocks have an earlier median migration date, in late June (Figure 1) 

(Beacham et al. 2003b, DFO 2011a). The two summer management units, Summer 52 

and Summer 41 peak in their migrations through the lower river between July 15th and 

September 1st, with the median migration date of the Summer 52 populations falling in 

late July, and that of the Summer 41 management unit falling in mid-August (Figure 1). 
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The Fall run migrates after September 1st, with most populations migrating through the 

lower Fraser between mid-September and mid-October, reaching their median migration 

date in mid-September (Figure 1) (Bailey et al. 2001, Beacham et al. 2003b, Parken et 

al. 2008, DFO 2011a). 

Fraser Chinook management units have experienced different trends in their 

returns and escapements since the mid-1990’s. The Fall run has maintained large 

abundances despite fluctuations, and the Summer 41 management unit has shown large 

increases in returns, in some years tripling pre-1995 abundances. Conversely, the 

Spring (Spring 42 and Spring 52) and Summer 52 groups have experienced multiple 

declines (Figure 2).  After a high escapement in 1994, early-Spring components of the 

spring runs began to decline, triggering concerns over their abundances (Bailey et al. 

2001). After another peak in escapement in 2003, abundances of these early-timed 

stocks again declined (DFO 2008, Chamberlain and Parken 2012).   

Concern over the post-2003 decline in Spring 42, Spring 52 and Summer 52 

escapements began mounting in 2006, and in 2008 Fisheries and Oceans Canada 

(DFO) designated these management units as conservation concerns (DFO 2008, 2009, 

Chamberlain and Parken 2012). In that year (2008), DFO, in consultation with 

stakeholders, designed and imposed restrictions aimed at reducing the exploitation of 

early-timed stocks by 50%, with the majority of reductions affecting commercial and 

recreational interests (DFO 2009). However, aside from the declining trend, the impetus 

behind heightened regulation in 2008 was the combination of an extremely low catch 

rate of Fraser Chinook by the Albion test fishery in the Spring of 2008, and recent work 

that identified a significant relationship between Albion test fishery catch rates and 

returns of Spring and Summer 52 Chinook (Dempson et al. 1998, DFO 2009, 

Chamberlain and Parken 2012). Today, in-season forecasts are produced for Spring and 

Summer 52 Chinook, using a model that has evolved from four studies conducted on this 

relationship.  

Starr and Schubert (1990) and Dempson et al. (1998) initially investigated 

relationships between Albion test fishery indices and returning abundances of Fraser 
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Chinook. In Dempson et al. (1998), the authors’ purpose was to identify significant 

associations between cumulative weekly indices and returns of early and late-timed 

Chinook. They found a significant relationship for the early-timed populations, though 

none for the later components (Dempson et al. 1998). Starr and Schubert (1990) looked 

at the relationship between test fishery indices and returns of Harrison Chinook, and 

found that they were poorly correlated. Subsequently, Parken et al. (2008) evaluated the 

relationship between annual cumulative test fishery indices and returns for stocks and 

stock aggregates of Fraser Chinook, using GSI data for 2000 and 2001 to derive stock-

specific indices. They found that the addition of genetic information improved the 

association between test fishery indices and return abundances. Although relationships 

were stronger when stocks were aggregated according to run timing and regional 

reporting groups (Parken et al. 2008). 

Building on the work of Dempson et al. (1998) and Parken et al. (2008), 

Chamberlain and Parken (2012) formally tested the applicability of test fishery indices for 

in-season management, relating weekly cumulative indices to total returns of combined 

Spring and Summer 52 Chinook from 1995-2008. They found significant relationships 

across multiple analysis weeks, starting in mid-May until late July. They did not apply 

GSI in their analysis due to limited data availability. The models developed by 

Chamberlain and Parken (2012) produced “modestly accurate and precise” estimates, 

which most recently have been associated with an average error of 17% (Chamberlain 

and Parken 2012, DFO 2013).  

Since 2008, in-season forecasts generated from Albion test fishery catch rates 

have become the basis for Fraser Chinook in-season management decisions.  

Concurrently, management of Fraser Chinook has become increasingly complex, as 

more precise regulations have evolved to protect the Spring and Summer-run 

management units  (DFO 2008, 2009, 2010, 2011a, 2012, 2015a, 2015b). Concerns 

over the Spring 42, Spring 52, and Summer 52 management units, and consequently the 

limited information available for other stock groups, have resulted in a management 

system for Fraser Chinook that is driven by these three stock groups (M. Maxwell, 

Fraser Chinook & Coho Management Biologist, DFO, pers. comm., April 11, 2016).   
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Objectives for the Spring 42 populations are to minimize incidental harvests in 

marine fisheries, and minimize direct harvest in Fraser River fisheries up to July 15th 

(DFO 2015a). For Spring and Summer 52 Chinook, objectives are to conserve 

populations, as defined by three tiers of regulations (Management Zones). Each tier, or 

Management Zone, is associated with a range of predicted return abundances, upon 

which regulations are designed with the aim of rebuilding Spring and Summer 52 

escapements. DFO has identified five fisheries for regulation, based on their potential 

impacts on Spring and Summer 52 Chinook:  Northern BC and WCVI commercial troll 

fisheries, Juan de Fuca and Fraser River recreational fisheries, and Fraser River First 

Nations’ fisheries (DFO 2015a). Within these fisheries, DFO has designated 

management actions for the three Management Zones, with the most restrictive 

regulations coming into effect when the Spring and Summer 52 return estimate falls into 

Zone 1 and the least severe being imposed when the estimate is in Zone 3. Generally, 

managers begin the fishing season in Zone 1, and update this based on in-season 

information as it becomes available. Return forecasts are produced bi-weekly, from mid-

May to mid-June, though management actions are only triggered by the mid-June 

update, which in previous years has been between June 13th and 18th (2010-2013) (DFO 

2011b, 2012, 2014; M. Maxwell, pers. comm., April 11, 2016).   

In contrast with the earlier runs, the Summer 41 group has been abundant in 

recent years. This management unit is primarily impacted by troll fisheries in  Southeast 

Alaska and Northern BC, in-river First Nations fisheries, and the Northern BC and Fraser 

River recreational fisheries (DFO 2011a). There is interest in increasing harvest of this 

stock if forecasts indicate that abundances are sufficient (Chuck Parken, Stock 

Assessment Biologist, DFO. July 28, 2015). Specific management objectives, in 

conjunction with biologically-based escapement goals, are currently being developed for 

this management unit (DFO 2015a).    

Fraser Fall Chinook are the only management unit in the Fraser River that has 

pre-season forecasts and a biologically-based escapement goal. Forecasts are 

produced with sibling models and are used as inputs into DFO’s coast-wide Chinook 

model for planning mixed-stock ocean fisheries. The Fall Chinook forecast is not 
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updated in-season due to a lack of available information (DFO 2011a), although it is 

used to enact regulations when forecasted escapements fall below the escapement 

goal. Actions primarily affect in-river recreational or Chum fisheries (DFO 2015a; M. 

Maxwell,  pers. comm., April 11, 2016).. 

1.2. Genetic Stock Identification (GSI) 

I utilize GSI data for Fraser Chinook caught in the Albion test fishery to develop 

catch indices for stock aggregates. For Chinook Salmon, coded wire tags (CWT’s) have 

traditionally been used to identify stocks of origin in mixed stock fisheries (Beacham et 

al. 2008, Parken et al. 2008). However, genetic methods are increasingly being applied 

(Hess et al. 2014), as they have the combined benefits of high accuracy and precision, 

while being easy, quick, and cost effective once baselines are established (Beacham et 

al. 2004a, 2004b, 2014b, Parken et al. 2008, Flannery et al. 2010).   

GSI methods are applied to numerous mixed-stock fisheries, and have proven 

effective in enabling managers to address the challenge of providing harvest 

opportunities whilst restricting impacts on stocks of concern (Beacham et al. 2004a, 

2004b). To this end, GSI has been used to estimate migration timing (Beacham et al. 

2014a, 2014b, Hess et al. 2014); migration pathways (Shaklee et al. 1999, Beacham et 

al. 2014a); relative contributions or presence of individual stocks in mixed-stock fisheries 

(Shaklee et al. 1999, Beacham et al. 2008); and in-season stock-specific abundances 

(Shaklee et al. 1999, Beacham et al. 2004b, Flannery et al. 2010, Hess et al. 2014).   

In British Columbia, Alaska, and the Columbia River system, GSI is used as a 

management tool in combination with test or commercial fishery indices (Beacham et al. 

2014b), providing information on where and when to fish in order to avoid or target 

specific stocks (Beacham et al. 2014b). However, integration of GSI methods into 

management systems has not been as widespread as would be expected based on its 

proven potential (Waples et al 2008; Satterthwaite et al 2015). In order to use GSI to 
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correctly identify stocks, baselines must first be established to represent all populations 

present within the target fishery (Waples et al. 2008, Parken et al. 2008). Even then, the 

suitability of this method depends on the amount of genetic variation present in the 

populations being characterized (Shaklee et al. 1999, Waples et al. 2008).  

GSI methods have previously been evaluated for Fraser Chinook by Beacham et 

al. (2003), and Parken et al (2008). Beacham et al. (2003) used a simulated sample, two 

years of commercial fishery data, and one year of test fishery data (Albion test fishery), 

to test the accuracy of the microsatellite variation method for estimating Chinook stock 

composition and individual stock IDs in the lower Fraser River. For individual 

assignments the mean error was 70% for individual populations, although this varied 

across populations, with Lower Fraser, and Lower and North Thompson populations 

having the highest accuracy. Individual assignment accuracy was 80% to the correct 

regions. Parken et al. (2008) used cross-validation to evaluate the accuracy of GSI 

methods for CWT-identified samples. Classification was 69% accurate to individual 

populations, and 92% to Fraser Chinook management units. Results from these 

analyses indicate that GSI-derived stock compositions are sufficiently accurate for 

application to management in mixed stock fisheries (Beacham et al. 2003a). Further 

studies suggest that GSI provides key information on stock specific abundances and can 

be used to develop stock-specific indices for Fraser Chinook (Parken et al. 2008, Hess 

et al. 2014). 

My objective was to evaluate in-season forecasting models for each of the Fraser 

Chinook management units: Spring 42, Spring 52, Summer 52, Summer 41, and Fall. For 

this, I used GSI-analyzed Chinook catches and corresponding effort data from the Albion 

test fishery to develop management unit-specific cumulative CPUE indices for each 

week of available data. To account for potential differences in CPUE indices according 

to net type, I generated three indices, consisting of catch and effort data from the single 

panel net-type, multi-panel net-type, and combined net-types used in the Albion test 

fishery.  
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2. Methods 

I used three model forms to relate CPUE indices to the estimated in-river returns 

of each Fraser Chinook management unit on a weekly basis: linear, exponential, and 

allometric. These functions were fit to the three sets of CPUE indices (single panel, 

multi-panel & combined) for each Fraser Chinook management unit using Bayesian 

methods to represent uncertainty in the estimates. I additionally produced composite 

forecasts, which combine the three model forms for each management unit and set of 

indices. I evaluated model fit and convergence using standard diagnostics (Dodds and 

Vicini 2004, Toft et al. 2007, Gelman et al. 2014). The predictive ability of each 

applicable model was assessed for individual management units, using a cross-

validation analysis to identify models that perform best in terms of forecast accuracy. As 

part of this performance evaluation, I included the current in-season model for Spring 

and Summer 52 management units, to determine whether GSI-based models outperform 

the existing method.     

2.1. Data 

To develop the in-season forecasting models, I relied on three types of data: test 

fishery catch and effort, GSI assignments, and annual return estimates by management 

unit. Return estimates represent the Chinook abundances at the Fraser River mouth, 

after ocean fishery harvests. Stock compositions were assigned based on the most 

recent categorization by Fraser River Stock Assessment, DFO (C. Parken, Stock 

Assessment Biologist, DFO, pers. comm., May 19, 2016) (Table 2). Any stock for which 

either GSI or return data were not available was excluded from the analysis. 
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Albion test fishery catch and effort 

Catch and effort data for CPUE indices were acquired from the Albion test fishery 

database through DFO. The Albion test fishery was established in 1980 to assess in-

river relative abundances and migration timing of Fraser Chinook (Dempson et al. 1998). 

Albion is located near the up-river end of McMillan Island, approximately 50 km 

upstream of the Fraser River mouth (Dempson et al. 1998). The test fishery operates at 

this location daily from April 1st to mid-October, although the start date has varied 

recently (Chamberlain and Parken 2012). Two consecutive 30-minute drift net sets are 

made daily, timed to occur just prior to, and after, the daylight high tide (DFO 2011a). 

The duration of each set is affected by the velocity of the river, debris, and catch 

(Dempson et al. 1998), but the average daily fishing time (61.9 minutes) shows no trend 

over time (Dempson et al. 1998), and each set length is recorded, including the time 

taken to set and recover the net.   

The fishery has been operated consistently since its initiation, experiencing few 

changes in terms of materials or methods (Dempson et al. 1998, Parken et al. 2008). 

The Chinook-directed test fishery operates annually until October 20th (DFO test fishery 

website), using a 200-fathom, 8-inch multifilament Chinook net, which has been the 

standard since 2004. Prior to 2004, the net was 150 fathoms. Since 1997, a multi-panel 

net has been fished on alternate days to fully represent the range of Fraser Chinook 

body sizes and to minimize the potential bias towards catching larger fish (Dempson et 

al. 1998, DFO 2006b). One exception to this pattern occurred in 2001, when the single 

panel net was not used until May 14th, and the multi-panel net was fished on every 

second day from April 1st onwards. The multi-panel net is a 200 fathom net comprised of 

panels ranging from 6 to 9 inch mesh, although prior to 2004 the net also included a five-

inch panel. Additionally, from 2004 to 2007 after July 15th, a large multi-panel net, with 

panels ranging from 7 to 9 inch mesh, was fished. After August 31st, the Chinook-

directed test fishery is operated on alternating days with the Chum-directed test fishery, 

and uses only the 8 inch net.  
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GSI Data 

Tissue samples are collected from nearly every Chinook caught in the Albion test 

fishery as part of the standard biological sampling routine (Bailey et al. 2001). Samples 

have not been GSI analyzed for every year of the test fishery, as these analyses are 

costly. GSI results were available from DFO’s Molecular Genetics Lab for the 2000, 

2001, 2005, 2006, and 2008-2014 test fishery samples (A. Araujo, Aquatic Science 

Biologist, DFO, pers. comm., May 27, 2016), totalling 16,860 analyzed fish, and 

representing 75% of the total Albion catch in these years. However, the rate of analyses 

is not equal for each year (Table 3). Rates of sample analysis for years 2000, 2001, 

2005, and post-August 31st 2008 (average 71% of samples analyzed), were lower than 

in more recent years (average 98% of samples analyzed). This creates bias in the catch 

estimates for these years. I therefore expanded catch estimates for the affected years by 

calculating the proportion of analyzed samples attributed to each management unit for 

each week and multiplying that proportion by the total sampled catch for that week. This 

expansion assumes that the analyzed samples are representative of the weekly catch at 

Albion.     

GSI analyses produce two stock identification outputs: a catalogue of stock 

composition, which summarizes the proportion of each stock in the entire sample and 

includes an estimate of error; and individual stock IDs, which present the most likely 

stock IDs for each sampled fish in order of their associated marginal probability. 

Although stock proportions are more accurate than individual fish IDs, because more 

information is available at the mixture level (Beacham et al. 2003a), individual 

classifications were used to perform this analysis, because of the weekly time-scale. The 

highest probability individual stock assignments were rolled up into management unit 

catch estimates. Overall, IDs were associated with moderate to high assignment 

probabilities; less than 15% of samples had marginal probabilities that were 0.5 or less, 

while more than 50% had probabilities that were 0.8 or greater. 
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CPUE Indices    

CPUE indices were derived using management unit-specific catch estimates 

from the GSI analysis, and total effort of the Albion test fishery. Effort was calculated in 

fathom-minutes per boat day, as the product of total daily fishing time and the length of 

the net fished (200 fathoms for most years, 150 fathoms for the single panel net in 2000 

and 2001), according to the method outlined in Schubert et al. (1988). 

𝐸𝑓𝑓𝑜𝑟𝑡𝑑 = ∑ (𝑠𝑜𝑎𝑘 𝑡𝑖𝑚𝑒𝑠,𝑑 +
1

2
𝑠𝑒𝑡 𝑡𝑖𝑚𝑒𝑠,𝑑 +

1

2
𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 𝑡𝑖𝑚𝑒𝑠,𝑑) 𝑆

𝑠=1 𝑋  (𝑛𝑒𝑡 𝑙𝑒𝑛𝑔𝑡ℎ) (1) 

where s is the set number, S is the total number of daily sets fished, and d represents 

day. Catch-per-unit-effort indices were calculated as the ratio of the total weekly (w) 

catch for each management unit (MU) and the total weekly fishing effort.  

𝐶𝑃𝑈𝐸𝑀𝑈,𝑤 =   
∑ 𝐶𝑎𝑡𝑐ℎ𝑀𝑈,𝑑

7
𝑑=1

∑ 𝐸𝑓𝑓𝑜𝑟𝑡𝑑
7
𝑑=1

  (2) 

I developed CPUE indices on a weekly time-scale to line up with the current 

requirements of aggregated Spring and Summer 52 Chinook management, for which in-

season forecasts are produced on a bi-weekly basis in the early summer (M. Maxwell, 

pers. comm., April 11, 2016). Weekly CPUE indices were summed from the start week 

to produce cumulative indices. Start weeks were standardized at statistical week 19, 

referring to the first week of May (Table 1), across all years to account for variation in the 

annual start date of the test fishery.  

In addition to total CPUE indices, I developed indices specific to the two net 

types: single panel and multi-panel. I calculated these indices using the same method 

outlined above, separating catch and effort data by the net used for each day of fishing, 

and summing these estimates over weeks.  
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In-river Returns 

Return data for Fraser Chinook management units were obtained from Fraser 

River Resource Management, DFO (M. Hawkshaw, Fisheries Assistant, DFO, Dec. 4, 

2015). Annual returns are estimated for Fraser Chinook stocks using a backwards run-

reconstruction model developed in 2007. The model uses escapements, fishery catches, 

and assumptions about run timing, movement rates and fishing patterns to reconstruct 

stock-specific harvest rates, catches, and in-river abundances (English et al. 2007). Due 

to the numerous model assumptions, return estimates are undoubtedly associated with 

error, although this error has not been quantified.  

2.2. Forecasting Models 

Three in-season forecast models forms were fit to each datasets: linear, 

exponential, and allometric. Composite forecasts were subsequently produced, 

combining forecasts from the three model forms. Models were selected to align with 

previous work on in-season forecasting for Fraser Chinook (Parken et al. 2008, 

Chamberlain and Parken 2012). I evaluated each model to identify those that best 

represented the relationship for each Fraser Chinook management unit.    

The linear model takes the form 

𝑅̂𝑡,𝑀𝑈 = 𝛼 +  𝛽 𝐶𝑃𝑈𝐸𝑀𝑈,𝑤,𝑡,   (3) 

where 𝑅̂t,MU is the return estimate for year t by management unit (MU), and CPUEMU.w,t is 

the cumulative CPUE index up to week w in year t by management unit (MU). The linear 

model form implies that  there is a minimum abundance at which the test fishery begins 

to catch samples, and above that value the catch rate is proportional to the total return 

(Flynn and Hilborn 2004). The linear model was fit under the assumption of normally 

distributed errors with the following likelihood function: 
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𝑃(𝑅𝑡,𝑀𝑈|𝛼, 𝛽, 𝜎) =  
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(𝑅𝑡,𝑀𝑈−𝑅𝑡,𝑀𝑈̂)
2

2𝜎2 ]; (4)   

and the likelihood of the return dataset defined as: 

 𝑃(𝑅1,…,𝑇,𝑀𝑈|𝛼, 𝛽, 𝜎) = ∏ 𝑃(𝑅𝑡,𝑀𝑈|𝛼, 𝛽, 𝜎)𝑇
𝑡=1   (5) 

where 𝑅̂t,MU is the estimated return for year t and management unit MU from equation 3, 

Rt,MU is the observed return in year t from management unit MU, and T is the total 

number of years of return data in the dataset for each management unit.     

The exponential model is defined as, 

 𝑅𝑡,𝑀𝑈 = 𝑒𝛼+ 𝛽 𝐶𝑃𝑈𝐸𝑀𝑈,𝑤,𝑡   . (6) 

This model form allows returns to increase exponentially in relation to cumulative CPUE, 

assuming that at higher return abundances the test fishery cumulative CPUE levels off. 

The exponential relationship is indicative of net saturation a high abundances, also 

known as hyperstability (Hilborn and Walters 1992). This relationship has been proven to 

occur in CPUE indices derived from commercial salmon fisheries (Hilborn and Walters 

1992), and has also been shown in test fishery indices (Link and Peterman 1998).  

Finally, the allometric model was defined in Chamberlain and Parken (2012) as 

𝑅𝑡,𝑀𝑈 =  𝛼𝐶𝑃𝑈𝐸𝑀𝑈,𝑤,𝑡
𝛽

 ,  (7) 

where there is no minimum run size implied before the test fishery begins to catch 

samples. Here the scaling parameter α represents the returns per cumulative index point 

at cumulative CPUE=1. The exponent, β, determines either the growth or decay of that 

sampling rate, where a value of 1 represents a straight line, values > 1 have increasing 

returns per cumulative CPUE, and values <1 have decreasing returns per cumulative 

CPUE. This model form can represent hyperstability, or its inverse, hyperdepletion, in 

the relationship between CPUE indices and return abundances (Hilborn and Walters 



 

17 

 

1992). Parken et al. (2008) found that this relationship better represented the variability 

in run size as a function of Albion test fishery indices at the population level than a linear 

model. Subsequently, this model form is currently used to forecast Fraser Spring and 

Summer 52 Chinook.  

The exponential and allometric models were linearized and fit under the 

assumption of normally distributed errors on the log-scale, which gives the following 

likelihood: 

𝑃(𝑅𝑡,𝑀𝑈|𝛼, 𝛽, 𝜎) =  
1

𝜎√2𝜋
𝑒𝑥𝑝 [−

(ln (𝑅𝑡,𝑀𝑈)−ln (𝑅𝑡,𝑀𝑈 ̂ ))
2

2𝜎2 ] (8) 

where 𝑅̂t,MU is the estimated return for year t and management unit MU from equation 6 

in the case of the exponential model, and equation 7 in the case of the allometric model. 

Rt,MU is the observed return in year t from management unit MU. 

All models were fit using Bayesian methods via R Statistical Software, version 

3.2.3 (packages ‘R2OpenBUGs’, ‘coda’,& ‘car’) (available at www.r-project.org) and 

OpenBUGs (Bayesian Inference Using Gibbs Sampling), version 3.2.2  

(http://www.openbugs.net). Vague priors were used for all parameters [α~N(0, 1.0*10-11); 

β~N(0, 1.0*10-11); 𝜏 ~G(0.01. 0.01)]. Models were run each with two Monte-Carlo 

Markov-Chains (MCMC), and were monitored for convergence before the initial samples 

were removed as ‘burn-ins’, and 8,000 samples were subsequently taken from the 

posterior parameter estimates, storing every fourth value to remove autocorrelation in 

the samples and improve mixing of the chains (Toft et al. 2007). Weeks with fewer than 

five annual data points at the management unit level were not included in the evaluation.  

Composite forecasts were subsequently generated by combining the posterior 

forecast distributions of the three model types, for each management unit and CPUE 

dataset, and sampling 2,000 estimates from the combined posterior. Forecast averaging 

is a common method used to reduce forecasting errors associated with systematic bias, 

data errors, and unsatisfied model assumptions (Armstrong 2001). Though they have 

been contested by some researchers, this approach allows forecasters to explore 
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alternative approaches that may improve accuracy (Armstrong 2001), and they have 

performed well in a fisheries context (Haeseker et al. 2008).   

Convergence Diagnostics 

Convergence refers to the process through which MCMC samplers reach their 

target distribution. Convergence of MCMC chains cannot explicitly be proven; however, 

a lack of convergence can be identified using a number of diagnostics (Toft et al. 2007). 

I examined trace plots, Gelman-Rubin diagnostics, and Geweke values to determine 

when MCMC chains approximated convergence for each model. Trace plots show the 

MCMC pathways as chains move from their initial values towards the ‘true’ distribution 

(Dodds and Vicini 2004). In order to properly reach convergence, trace plots must show 

that the chains mixed properly, and explored the parameter space in a stable manner 

(Dodds and Vicini 2004). I examined these plots visually to determine whether the 

chains showed evidence of improper mixing and instability. The Gelman-Rubin 

diagnostic, a quantitative indicator of stationarity, signifies that the burn-in period is 

complete once chains have stabilized. The Gelman-Rubin diagnostic estimates a ‘shrink 

factor’, which represents the factor by which the scale parameter may shrink if sampling 

were continued indefinitely. The scale parameter compares between chain variance to 

within chain variance. The shrink factor approaches 1 when the chains are no longer 

influenced by their initial values and have properly explored the parameter space 

(Cowles and Carlin 1996). I set the critical value of the Gelman-Rubin diagnostic to 1.1, 

to indicate whether the chains had reached convergence. I also examined another 

measure of stationarity, the Geweke diagnostic, which compares initial portions of the 

Markov chains to the end portions using z-scores. Scores that fall outside the critical 

values (-2.5 to 2.5) are considered aa significant indications of non-stationarity (Dodds 

and Vicini 2004). Lastly, I inspected autocorrelation in the posterior samples to ensure 

that the thinning interval were sufficient to overcome any autocorrelation in the chains, 

by comparing the lag-5 term to the critical value for each analysis.  
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2.3. Cross-Validation 

I used cross-validation to identify models that produce the best forecasts for each 

management unit, based on the selected performance measures. Cross-validation is the 

appropriate method for evaluating forecasting models, because errors are calculated 

using data that are not employed in model fit (Hyndman and Athanasopoulos 2013). 

Cross-validation encompasses a variety of methods applied in evaluating the predictive 

ability of models in comparison to one another. Data is split into two samples, one of 

which is used to fit the model, and the other is used to test predictions. Due to the limited 

number of years of data available for this analysis, I applied a leave-one-out cross-

validation analysis to evaluate models for in-season Fraser Chinook forecasts. In 

accordance with this method, models were fit to datasets excluding one annual data 

point at a time. Each fit was used to forecast values for the excluded year. Forecasts 

could then be compared to observed values to estimate error in the model predictions. 

Error was summarized according to a set of performance measures that quantify 

the accuracy and bias of the predicted estimates. I chose to apply three performance 

measures to estimate error in the in-season model forecasts: 

mean percent error (MPE) =  
1

𝑛
∑

𝑅𝑡,𝑀𝑈̂−𝑅𝑡,𝑀𝑈

𝑅𝑡,𝑀𝑈
∗ 100𝑛

𝑡=1  , (9) 

mean absolute percent error (MAPE) = 
1

𝑛
∑ |

𝑅𝑡,𝑀𝑈̂−𝑅𝑡,𝑀𝑈

𝑅𝑡,𝑀𝑈
| ∗ 100𝑛

𝑡=1   , (10) 

and root mean squared error (RMSE) =  √
∑ (𝑅𝑡,𝑀𝑈̂−𝑅𝑡,𝑀𝑈)

2𝑛
𝑡=1

𝑛
 , (11) 

where n is the number of years of data, 𝑅𝑡,𝑀𝑈 is the observed return from a 

management unit (MU) for year t, 𝑅̂𝑡,𝑀𝑈 is the median predicted return to the 

management unit (MU) for year t from the fitted model, and n is the number of samples 

used to fit the model. 
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Mean percent error (MPE) reflects systematic biases in the predicted values, 

scaling the magnitude of the error by the true return so metrics can be compared 

between analyses (Walther and Moore 2005, Haeseker et al. 2008). Positive values of 

MPE indicate that the model consistently over-forecasts, while negative values imply 

under-forecasting.  Alternatively, the mean absolute percent error (MAPE) and root 

mean squared error (RMSE) performance measures ignore the direction of biases to 

measure the overall accuracy of model predictions. I included two measures of 

accuracy, as they reflect different aspects of the data. The MAPE reflects central 

tendency, measuring the magnitude of distance between predicted and observed values, 

scaled according to the true return. The RMSE is calculated based on the squared error, 

therefore it is heavily affected by large deviations and reflects the presence of outliers in 

model fit (Walther and Moore 2005, Willmott and Matsuura 2005). Models with large 

outliers will, therefore, perform more poorly on the RMSE metric than models that 

minimise outliers. 

Forecasts from each model were scored according to the set of performance 

measures. For comparison, the currently-used in-season methods for Spring and 

Summer 52 Chinook were also evaluated according to the cross-validation process and 

scored across performance measures. These methods use an allometric model and total 

cumulative CPUE from the single panel net to predict the combined returns of Spring 

and Summer 52 Chinook. I fit this model to corresponding data for the same years 

evaluated in this analysis, and calculated performance measures over those years. 

Additionally, to equally compare GSI-based methods to the current in-season model for 

aggregated Spring and Summer 52 Chinook, I summed median GSI-based forecasts of 

Spring and Summer 52 Chinook from the allometric model applied to single panel data, 

and calculated performance measures for these forecasts against summed Spring and 

Summer 52 returns. 

Assessment of Net Type 

I used values of the MPE and MAPE performance measures to visually examine 

the influence of net type on forecasting ability. To simplify further analyses, I determined 
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which dataset to present for each management unit, based on relative model 

performance using each dataset. MPE and MAPE are scaled according to true returns, 

and therefore can be intuitively compared across analyses. I removed data after 

statistical week 35 from this assessment, because the multi-panel net is only fished until 

week 35 (August 31st), Consequently, the Fall Chinook management unit was excluded 

from the net type analysis, as Fall Chinook do not consistently appear in the CPUE data 

until statistical week 34 (late August). CPUE indices for Fall Chinook were, therefore, 

restricted to single panel data only, to maintain consistency across statistical weeks.  

2.4. Model Fit Diagnostics 

The retrospective analysis evaluated models based only on their median 

forecasts. I, therefore, further evaluated model performance using a series of posterior 

predictive checks. These model fit diagnostics were not used to select models with the 

best fit. Posterior model checks are intended to detect systematic divergences between 

the model and the data (Gelman et al. 2000), and are therefore used to identify ill-fitting 

models. Posterior predictive plots have been proposed as a Bayesian alternative to 

classical model testing methods (Gelman et al. 2000). These checks involve estimating 

replicated datasets from simulations of the fitted model (i.e. using draws from the 

posterior distributions of the model parameters), which are compared to the observed 

values. If replicated distributions align with observed values across the dataset, model fit 

is considered appropriate, whereas systematic differences may be an indication of a 

poor model (Gelman et al. 2014). I generated posterior predictive distributions of annual 

returns across the three model forms fit using Bayesian methods (linear, exponential, 

and allometric). I then compared observed returns to the 95% highest posterior density 

(HPD) region for replicated data, and calculated the percentage of years that fell outside 

this range for each weekly model fit (Hyun et al. 2005, Holt et al. 2009).  
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3. Results 

3.1. Model Convergence 

All model scenarios satisfied the evaluation criteria for convergence within the 

specified number of MCMC iterations, and, therefore, no burn-in periods were increased. 

Trace plots all indicated that sampling chains mixed well and explored the parameter 

space. Gelman-Rubin diagnostics fell at, or very close to 1.0, with a maximum value of 

1.01 across all modeled scenarios, and Geweke values fell between -2.5 and 2.5 for all 

parameters. Autocorrelation within the chains did not exceed critical values for lags up to 

and including lag-5, indicating that the thinning interval of four was sufficient to account 

for any autocorrelation within the chains 

3.2. Cross-Validation and Model Fit 

To compare models across analyses, performance measures are generally 

calculated using the same years of data. CPUE indices are not available in all years for 

analysis weeks that fall early in the migration of Fraser Chinook management units. This 

required removing some analysis weeks from the cross-validation procedure for each 

management unit, due to the discrepancy in sample sizes. However, since timing is an 

important criterion for in-season forecasting, and it is of interest to evaluate models for 

early analysis weeks, I allowed a buffer of two missing years in each evaluation.  
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Effects of Net Type 

Comparison plots of MPE and MAPE indicate that net type has no consistent 

effect on the performance of models for the Spring 42, Summer 52 and Summer 41 

management units. Overall, values for these MUs fell on or close to the 1:1 line, with the 

exception of between one and four values per plot, representing the poor performing 

exponential model, and in the case of Summer 41‘s also the linear model, in the first few 

analysis weeks (Spring 42: weeks 24-26; Summer 52: weeks 26 & 27; Summer 41 weeks 

28 & 29) (Figure 3-Figure 6). Without these points, associations between performance 

measures, quantified using Pearson’s correlation coefficient, fell at or above r=0.85. 

Since deviations are limited to only a few model-week scenarios, none of which perform 

well, compared to other scenarios, I have presented the combined net data for the 

Spring 42, Summer 52, and Summer 41 management units, 

Performance measures for the Spring 52 models indicate that higher accuracy 

and lower bias can be achieved using only single panel net data. For this management 

unit, performance measures calculated from models fit to single panel-only data have 

consistently better values compared to analyses using combined data (Spring 52 MPE 

r=0.71; MAPE r=0.64) (Figure 3-Figure 6). This is due to single panel-only data 

producing larger CPUE indices than combined data, and indicates that the single panel 

net catches more Spring 52 Chinook than the multi-panel net, given the same effort. Due 

to the superior performance of models using the single panel data for this management 

unit, single panel-only CPUE indices are presented for Spring 52 Chinook.    

Performance Measure In-season Trends 

Performance measures for all models generally improve across analysis weeks, 

reaching a peak then levelling off or declining. Timing of peak performance varies 

among management units, as expected due to differences in run-timing past the Albion 

test fishery (Figure 1). All models tend to over-forecast returns due to large positive 

errors caused by one year of data, for which CPUE indices are very large and returns 

are average (Figure 7-Figure 11). Accuracy measures MAPE and RMSE reflect very 
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similar patterns across analysis weeks. Though for poor performing models, RMSE 

values are much larger relative to other models than the MAPE, implying that these are 

affected by outlying values.   

In general, the allometric model performs well according to the MPE, MAPE and 

RMSE performance measures across weeks and management units. This model clearly 

outperforms the others in the majority of analysis weeks for all management units except 

Spring 42, where the exponential model is superior after week 28. Although the 

allometric model performs best in the first few analysis weeks for Spring 42 Chinook 

(Figure 7). In the earliest weeks of analysis for all management units, including Spring 

42, though except Fall, the exponential model has the poorest predictive ability. The 

allometric model only performs worst in three specific cases, for the Spring 42 

management group after analysis week 28 (MAPE and RMSE), for Fall Chinook after 

week 40 (MAPE and RMSE), and for Spring 52 Chinook in week 20 (MAPE only). These 

trends suggest that early in the fishing season the allometric model is the best choice to 

represent the relationship between cumulative CPUE and returns across management 

units, while use of the exponential model will result in the largest forecasting errors.    

Model Performance for Individual Management Units 

Since forecasts produced by the current aggregated Spring and Summer 52 

Chinook forecasting method are used to update management actions in mid-June (week 

24), I used performance of this method in week 24 as the standard against which GSI-

based methods were compared (MPE=5%, MAPE=20%, rounded from 18%) (Figure 

12). I also used the timing of current aggregated Spring and Summer 52 forecast 

availability (week 24) in relation to average median migration timing of Spring 52 Chinook 

(week 26/27) as a guideline to assess the availability of forecasts for other management 

units. I deemed forecasts useful if they fell more than 2 weeks prior to the median 

migration timing of respective management units, based on timing derived from Albion 

test fishery catch data. Timing guidelines were as follows: Spring 42-week 28; Spring 52-

week 24; Summer 52-week 29; Summer 41-week 32; Fall-week 36.  
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Spring 42 Chinook 

Data for the Spring 42 management unit were available for weeks 23 (early June) 

through 42 (mid-October), though no Spring 42 Chinook are present in the catch data for 

2011. Forecasts of Spring 42, Chinook have the most relative error of all management 

units in terms of both bias (minimum MPE=20%: exponential model, week 28) and 

overall accuracy (minimum MAPE=50%: allometric model, week 23; minimum 

RMSE=6121: allometric model, week 26). Although no model performs well for this 

management unit in comparison to the current model for Spring and Summer 52 Chinook 

(Figure 12), those that perform best in relative terms, do so in the earliest analysis 

weeks available for this management unit (Figure 13), falling well before the Spring 42 

timing guideline (week 28). Forecasts for Spring 42 Chinook perform best in early and 

mid/late June (weeks 23 & 25-26) and have absolute errors of ~50% (Table 5; Figure 7; 

Figure 13). Performance declines across all models for weeks 30 to 42.  

Spring 52 Chinook 

The best performing GSI-based models for Spring 52 Chinook, produce forecasts 

with MAPE’s of 17-20%, and less than 5% average bias, outperforming the current 

model standard (Figure 12; Figure 14). For Spring 52 Chinook, models that perform well 

fall in early analysis weeks, prior to the timing guideline for the management group 

(week 24). The best performing model on average across metrics is the allometric model 

in week 21 (MPE=3%, MAPE=18%, RMSE=6481), followed by the same model in week 

20. The allometric model in week 20 performs best on the MPE (0.4%), while the linear 

model in week 20 performs best on the MAPE (16%) and RMSE (RMSE=5204) 

performance measures. Average absolute error remains close to 20% for the allometric 

model throughout the analyses, while bias (MPE) remains under 5% (Table 6; Figure 8; 

Figure 14). Forecasts for Spring 52 Chinook can therefore be produced in any analysis 

week using the allometric model, with similar forecasting performance to the current 

standard.  
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Summer 52 Chinook 

The case is similar for Summer 52 Chinook. Although average absolute error is 

smallest after week 36 (MAPE=14%), forecasts as early as week 25 do not perform 

much worse (max. MAPE=21%). Accurate forecasts (MAPE=18%) can be produced 

prior to the availability guideline for Summer 52 Chinook (week 29), by mid-to-late June, 

(week 26) with little bias (MPE=6%), though this falls slightly above the bias standard 

from the current model (Table 7; Figure 9; Figure 12; Figure 15). Forecasts that perform 

well on both the MAPE and MPE metrics can be produced in any of the evaluated 

analysis weeks for Summer 52 Chinook, using the allometric model (Figure 15). Good 

performing forecasts may also be produced by the composite model after week 29 

(Figure 9).  

Summer 41 Chinook 

The best forecasts for Summer 41 Chinook perform poorly compared to the 

current standard, with 38% error and 12% bias (Figure 12), and are produced in late 

August (week 35) (Figure 16). Performance of Summer 41 forecasts is generally better in 

later analysis weeks, falling after the availability guideline for this management unit 

(week 32) (Figure 10; Table 8). However, relative to the best performing models for this 

management unit, earlier forecasts do not perform much worse, particularly using the 

allometric model, for which MPE ranges from 11% to 13%, and MAPE from 38% to 43% 

across analysis weeks. In the availability guideline week for Summer 41 Chinook (week 

32), forecasts produced by the allometric model have 12% bias and 41% accuracy.  

Fall Chinook 

Forecasts of Fall Chinook show the least consistency across performance 

measures, and the largest apparent trade-offs between accuracy, bias, and forecast 

availability (Table 9; Figure 11; Figure 17). More accurate forecasts of Fall Chinook are 

associated with larger bias, and are produced by models in later weeks, though no 

forecasts perform well compared to the current model standard (Figure 12; Figure 17). 

The allometric model shows the least bias for most analysis weeks, though the 

composite and exponential models perform better in week 35 (Figure 11; Table 9). The 
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best values of both the MAPE and RMSE occur in week 42, produced by the exponential 

and linear models, respectively. Despite shifts in relative value, bias remains small for 

most models and weeks using the allometric or exponential models (<5%), and the 

overall best performing forecasts can be produced for this management unit in early 

September (week 36), falling on the availability guideline (week 36), with 31% error 

(Figure 17). 

Comparison of Current to GSI-based Methods for Combined 
Spring and Summer 52 Chinook 

Performance measures indicate that the current method of forecasting combined 

Spring and Summer 52 Chinook, using total CPUE indices, performs best in analysis 

weeks 20 and 21, with less than 1% bias, with an average error of ~10% (Figure 18). 

Unfortunately, GSI-based methods for forecasting aggregated Spring and Summer 52 

Chinook cannot be evaluated for these weeks, as forecasts of Summer 52 Chinook 

cannot be generated until statistical week 22 (late May). Also, although forecasts from 

the early season (statistical weeks 22-25) are included for Summer 52 Chinook, note that 

until statistical week 25, CPUE indices used by the GSI model are missing at least two 

years of data.    

Although GSI-based forecasts of Spring 52 and Summer 52 Chinook perform the 

best of all the stock groups, with the greatest accuracy and least amount of bias, 

aggregated forecasts using GSI methods do not perform better than those produced by 

current in-season methods in early analysis weeks (weeks 22/23 – late May/early June) 

(Figure 18Figure 18. Mean percent error (MPE), mean absolute percent error (MAPE), 

and root mean squared error (RMSE) of the current in-season Spring and Summer 52 

forecast model (pink bars), and the allometric model applied to single panel CPUE 

indices for the Spring 52 and Summer 52 management units combined (blue bars). 

Statistical weeks of analysis are indicated on the x-axis.). Early season forecasts 

(statistical weeks 22 and 23), using GSI-based single panel indices and the allometric 

model, have relatively large bias, and an average error of 15% (Figure 18). However, 

bias in the GSI methods improves substantially at week 24, to approximately 1%. 
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Therefore, GSI-based forecasts of aggregated Spring and Summer 52 returns perform 

better than the current method in week 24 (second week of June) (MAPE reduced from 

18% to 15%; MPE from 5% to -0.1%), the week in which forecasts are required for in-

season management applications. GSI-based forecasts also perform better from late 

June (week 27) onwards (except week 29).  During July, GSI-based methods reduce the 

MAPE and MPE of forecasts by 1-2%, which increases to 6-7% in the MAPE reduction 

in August (21% to 15%) (Figure 18), as total CPUE indices respond to rising 

abundances of Summer 41 Chinook in the lower Fraser River, and performance of the 

current method is degraded.  

Apart from the initial two analysis weeks (20 and 21), for which only one model is 

evaluated, the best MAPE and MPE are associated with the GSI-based model in weeks 

27 and 25, at 11% and 0.2%, repsctively. The RMSE performance measure shows a 

more consistent trend in model performance, with the current method outperforming the 

GSI indices until statistical week 26, at which point roles reverse (Figure 18).  

3.3. Assessment of Model Fit 

In addition to performance measures, I examined posterior distributions of model-

simulated returns, and compared these to observed values as an indication of model fit. 

The frequency with which the true returns fall within the 95% highest posterior density 

region (HPD) of the replicated data (coverage frequency) is 100% for all weeks across 

models and management units with the exception of Spring 42 Chinook (Table 4). For 

this management unit, the 2009 annual return (10% of the data set) falls outside the 95% 

HPD region of replicated values generated by the three fitted models, though the 

number of weeks for which this occurs varies. For all models the week 29 analysis 

produces a 90% coverage frequency. The exponential model also produces this result in 

weeks 38 and 40, while the allometric model shows 90% coverage in weeks 27, 28, 31, 

34, and 41 in addition to week 29.  
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4. Discussion 

Accuracy is an important component of forecasting, as error can lead to missed 

escapement targets, impacting conservation objectives or fishing opportunities (Noakes 

1989, Zheng and Mathisen 1998). Even small improvements in the accuracy of forecasts 

can potentially benefit stakeholders in attaining objectives (Noakes 1989). However, 

because in-season methods become more accurate as the fishing season progresses 

(Fried and Hilborn 1988, Catalano and Jones 2014), improvements in forecasting 

accuracy can come at the cost of delayed availability, which can also impact their utility 

(Pearse 1982, Woodey 1987, Claytor 1996). I evaluated whether accurate and timely 

forecasts could be produced for Fraser Chinook management units with the addition of 

GSI data to CPUE indices. The GSI-based models produced accurate and timely 

forecasts for two of the five management units, and less accurate forecasts for the 

remaining groups, though these forecasts are still potentially useful to management. 

Although trade-offs are apparent in the relationships between accuracy, bias, and 

analysis week for Fraser Chinook, in many cases forecasts perform well early in the 

fishing season. I found that GSI-derived forecasts for Spring 52, and Summer 52 Chinook 

have similar predictive errors to forecasts that are currently used for aggregated Spring 

and Summer 52 Chinook (MPE<5%; MAPE<20%), and are available more than two 

weeks prior to their respective median migration dates at Albion. Conversely, forecasts 

of Spring 42, Summer 41, and Fall Chinook did not perform well in terms of accuracy and 

bias measures in relation to the current standard, producing forecasts with 20-50% 

absolute accuracy and 0-25% bias.  

Developing indices of abundance from fisheries data that reflect patterns in true 

abundances is a central problem for stock assessment programs (Hilborn & Walters 

1992). Despite standardization, test fishery CPUE indices are subject to external 
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variability that does not stem from fluctuations in returning abundances or run timing. 

This variability presents challenges for in-season management, creating error and 

uncertainty in forecasts (Marshall et al. 1987, Flynn and Hilborn 2004, Hyun et al. 2005, 

Catalano and Jones 2014). Indices may be affected by factors such as gear saturation, 

size selectivity, migration timing, environmental factors, salmon behaviour, variation in 

stock-age compositions, and non-representative sampling (Marshall et al. 1987, Hilborn 

and Walters 1992, Dempson et al. 1998, Chamberlain and Parken 2012, Beacham et al. 

2014b). I removed one major source of variability, specifically, that created by 

overlapping run timing between stock groups, to develop management unit-specific 

indices for Fraser Chinook. However, additional sources of variability remain within the 

indices, and are reflected in forecasting predictive errors. 

For all management units except Spring 42, the allometric model produced the 

least amount of error in forecasts. This corroborates the findings of Parken et al. (2008), 

who determined that the allometric model provided a better fit to population-specific 

Fraser Chinook CPUE indices and returns than a linear model. Similar results have also 

been found for Southeastern Alaska Pink Salmon, where a comparable non-linear model 

better represented the relationship between run size and CPUE (Zheng and Mathisen 

1998). The exponential and allometric models produce more realistic forecasts for 

Fraser Chinook management units than the linear model, because lower values are 

bounded by zero, and errors are multiplicative. In all cases of the fitted allometric 

models, posterior probability distributions of the parameter β fell below 1 across 

management groups and weeks. This represents declining relative returns per 

cumulative CPUE index point as both increase, also known as hyperdepletion (Hilborn 

and Walters 1992). Hyperdepletion may indicate that components of the management 

units are differentially vulnerable to the gear used the test fishery. Size selectivity is a 

well-known cause of patterns of hyperdepletion in CPUE indices (Hilborn and Walters 

1992). In the case of the Albion test fishery, the multi-panel net is used on alternating 

fishing days to reduce size selectivity because the single panel net has been shown to 

bias catch towards larger body sizes (Dempson et al. 1998, DFO 2006a).   
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Models developed in this analysis are limited by the accuracy of the data and 

assumptions they are built on. Here there are many uncertainties that are not explicitly 

captured by the forecast distributions. First, historical return data are estimates derived 

from Chinook run reconstruction (English et al. 2007). The reconstruction model makes 

assumptions about the run timing and movement rates of stocks from the mouth of the 

Fraser River to their natal spawning streams, the vulnerability of stocks to the gear 

types, and the daily pattern of fisheries (English et al. 2007). Additionally, it assumes that 

escapement and catch estimates are accurate and complete (English et al. 2007). 

However, escapements, the building block of return estimates, are derived from visual 

surveys, mark-recapture assessments, electronic counters, and coded-wire tag analyses 

(DFO 2011a), each of which is associated with its own set of errors and assumptions. 

Due to the lack of error quantification in the catch estimates, error is not propagated 

through to the return estimates. Second, test fishery indices are assumed to be without 

error, though this is unlikely, and is probably most heavily impacted by error in the GSI 

stock assignments. Parken et al. (2008) quantified individual GSI assignments as 92% 

accurate to Fraser Chinook management units, though this error is not propagated into 

the CPUE indices. Unquantified errors in both the CPUE and return estimates are not 

reflected in the uncertainty of the forecast distributions, therefore the amount of 

uncertainty in the forecasts is underrepresented. If this error were quantified, it could 

affect the overall performance of model forecasts. Third, data used for this analysis are 

limited to eleven years. Therefore they do not represent the range of conditions likely 

experienced, and predictions are restricted by those outcomes represented in the data. 

I recommend that additional years of data be GSI analyzed, particularly those 

exhibiting large total CPUE values, where data are currently limited. Additional data 

would also benefit management units for which available data poorly represent the range 

of returns observed. This is particularly true for those management units that have a lot 

of relative variability in their run sizes, and consequently a lot for error in their forecasts 

(Spring 42, Summer 41, and Fall).  The addition of data to better represent the range of 

returns, particularly for Spring 42 and Summer 41 Chinook, will likely inform the 

regression relationships for these management units, improving forecasting ability and 

better representing forecast uncertainty.   
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Additional GSI data will also likely improve the performance of the GSI-based 

methods earlier in the fishing season, where sample sizes are limited in comparison to 

the current method. Aggregated forecasts of Spring and Summer 52 Chinook produced 

using GSI methods did not perform better than the current in-season method prior to 

week 24. Poor relative performance of the GSI-based method in these early analysis 

weeks is most likely caused by small sample sizes in Summer 52 CPUE indices up to 

week 24, which creates larger standard errors in model fit for these weeks. Although 

GSI-based methods performed better specifically in week 24, improvements in 

performance due to the use of GSI indices was inconsistent until week 30, falling after 

in-season information is required to manage Spring and Summer 52 Chinook as an 

aggregate.  

Variability in total CPUE indices affects the forecasting accuracy of the current in-

season method, due to fluctuating returns of co-migrating management units. Hence, 

poorer performance of the current method in relation to GSI-based methods after week 

30 is likely the result of increasing abundances of Summer 41 Chinook entering the lower 

Fraser River throughout late July and August (Chamberlain and Parken 2012). The 

effect of Summer 41 Chinook on the total CPUE indices reduces the ability of the current 

method to accurately forecast aggregated Spring and Summer 52 returns. Conversely, 

the notable performance of the current method in early weeks of the fishing season, as 

early as mid-May (weeks 20 and 21), suggests that return estimates are heavily 

influenced by catch rates of Spring 42 and Spring 52 Chinook in these weeks. Based on 

the GSI data, 80% of catch at Albion in weeks 20 and 21 is attributed to Spring 52 

Chinook, while 15% is Spring 42 Chinook. Summer 52 Chinook represent less than 10% 

of Albion catch indices up to early-June (week 23). The accuracy of forecasts for the 

aggregate therefore depends on co-variation between the Spring 52, Summer 52, and to 

a lesser extent the Spring 42 management group. Spring 42, Spring 52, and Summer 52 

Chinook have displayed similar trends in returning abundances since the mid-1990’s, the 

exceptions being 2009 and 2012. Whether this will continue into the future is unknown. If 

returning abundances of Spring 42, Spring 52 and Summer 52 Chinook become 

dissociated in the future, accuracy of the current in-season method may be 
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compromised, at which point GSI-based methods will become necessary for in-season 

prediction. 

4.1. Management Implications 

Fishery harvest strategies typically aim to meet biologically-based escapement 

goals by adjusting target harvest rates in response to annual variation in return 

abundances (Link and Peterman 1998). Return forecasts inform managers about 

expected returns and, therefore help to align harvest plans with those abundances 

(Woodey 1987). Within a fishing season, managers evaluate regulations in light of in-

season abundance estimates, and make decisions regarding future allocations 

(Henderson et al. 1987, Fried and Hilborn 1988). This process can occur on daily, 

weekly, or monthly time-scales, as well as only once during the fishing season (Minard 

and Meacham 1987, Woodey 1987, Fried and Hilborn 1988, Hyun et al. 2005). The 

framework for updating regulations can impact the success of in-season management 

depending on the objectives. When a single forecast is used in-season to update 

allocations, the timing of that update is critical to success (Claytor 1996).   

For Fraser Chinook, in-season management is largely centered on achieving 

escapement objectives for the Spring and Summer 52 stock aggregates, due to concerns 

about their status as well as a lack of information on other stocks (DFO 2011a). Pre-

season forecasts are currently available only for the Fall management unit, and are not 

updated in-season (DFO 2011a). In-season forecasts are produced only for aggregated 

Spring and Summer 52 Chinook and are used to make one in-season update regarding 

allocation. This process employs the previously-described management zone system, as 

triggered by in-season Spring and Summer 52 aggregate forecasts. No quantitative 

estimates of abundance are available for Spring 42 or Summer 41 Chinook. 

Although forecasts for all management groups did not meet the benchmarks set 

by the current in-season forecasting method for aggregated Spring and Summer 52 
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Chinook, these forecasts may still be informative. Zheng and Mathesin (1998) present 

in-season forecasts for Southeastern Alaska Pink Salmon that range in MAPE from 10% 

to 46%. These forecasts are an improvement upon pre-season forecasts for SEAK Pink 

Salmon, which have exceeded 200% in terms of relative error over the course of their 

use (Zheng and Mathisen 1998). Hyun et al. (2012) incorporated in-season methods to 

update pre-season forecasts for Pacific Fall Chinook and found that integrated forecasts 

performed better than preseason forecasts, reducing the range of MAPE across stocks 

from 22-43% to 15-36%. Forecasts for four of the five Fraser Chinook management units 

(excluding the Spring 42) performed better than forecasts used in these two 

management systems, and therefore should not be completely discounted based on 

their performance relative to the current method. 

In-season forecasts for all Fraser Chinook management units would allow 

managers to adjust harvests of individual management units based on their predicted 

abundances (Zheng and Mathisen 1998). Adjusting harvest allocations in-season, based 

on in-season forecasts, helps managers attain management objectives, reducing the 

occurrence of over-harvest and under-harvest, and increasing harvests overall (Claytor 

1996). This may be particularly useful in the case of the Summer 41 management unit, 

where potential harvesting opportunities are available, though the ability to formally plan 

for them is constrained by the lack of run size predictions (DFO 2015a).  

The Summer 41 management unit is abundant enough in many years to support 

directed harvest, provided that harvesting activity does not adversely impact stocks of 

concern (DFO 2015a). However, regulations imposed to protect conservation concerns 

within the Fraser River dominate in-river management during the migration of Summer 

41 Chinook. In the early summer, regulations are in place to protect Spring 42, Spring 52, 

and Summer 52 Chinook, to various degrees, depending on their in-season estimates 

(DFO 2015a). From mid-to-late summer through to Fall, fisheries within the Fraser River 

are managed according to objectives for Sockeye, and later, conservation concerns for 

Interior Fraser Coho and wild Steelhead (DFO 2011a). 
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Management constraints in mixed stock areas can result in larger escapements 

to terminal areas than are required to attain spawning goals (DFO 2012). This can also 

be the result of uncertain or inaccurate return estimates, when realized run sizes are 

larger than anticipated (DFO 2013). These factors create the opportunity for terminal 

fisheries (DFO 2012). Locating fisheries in terminal areas, close to spawning grounds 

where fewer stocks intermingle, rather than in mixed-stock marine areas, reduces 

mortality of non-target species or stocks (Plate et al. 2009). This allows managers to 

manage stocks according to population-specific harvest rates (Minard and Meacham 

1987, Su and Adkison 2002). Such terminal fisheries are often associated with hatchery 

programs, as a method of creating fishing opportunities while directing harvest towards 

hatchery fish without impacting wild stocks (Kostow 2009). 

For Fraser Summer 41 Chinook, realized escapements are affected by both in-

river management constraints and uncertainty in run sizes, due to the lack of return 

forecasts for this management unit. Small-scale terminal commercial fisheries have 

targeted Summer 41 Chinook in Kamloops and Little Shuswap Lakes, located in the BC 

Interior near spawning areas, since 2009 (DFO 2013). However, currently the allowable 

catch in these fisheries is determined as a percentage of the annual commercial total 

allowable catch (TAC) transferred from unallocated licenses, primarily in Northern BC 

troll fisheries (DFO 2011a). Harvest rates are therefore not related to estimated returns 

of Summer 41 Chinook. Total allowable catch in the commercial troll fisheries is based 

on aggregated abundance forecasts for mixed stock ocean fisheries produced by the 

Chinook Technical Committee (CTC 2015b, DFO 2015a). The percentage of this TAC 

allocated to terminal commercial fisheries is determined prior to the fishing season (DFO 

2013, 2015a).  

In-season information on the returning Summer 41 run size would allow managers 

to refine target harvests of Summer 41 Chinook in terminal fisheries. Terminal harvest 

rates could be tailored to returns, and harvesting opportunities would not risk being 

under-utilized in these areas. Having more accurate and timely information to better 

manage terminal fisheries is beneficial both in terms of potentially increasing harvest, 

and reducing impacts on non-target stocks and species. 
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4.2. Future Research 

The benefits of GSI-based forecasts for Fraser Chinook should be evaluated in a 

simulation analysis. Simulation can be used to assess the value of information or 

strategies within a management system in quantitative terms, such as differences in 

catch (Link and Peterman 1998, Catalano and Jones 2014), value of harvests (Link and 

Peterman 1998, Su and Adkison 2002), and probability of meeting escapement goals 

(Su and Adkison 2002, Catalano and Jones 2014). Simulation methods allow 

uncertainties within the system to be explicitly accounted for, such as those associated 

with population dynamics, forecasting, dynamics of harvesters, and data collection (Link 

and Peterman 1998, Su and Adkison 2002, Catalano and Jones 2014). Therefore, such 

studies are useful for objectively evaluating the benefits of management strategies in 

light of uncertainties within the system (Catalano and Jones 2014). 

For Fraser Chinook, simulation analysis could be used to evaluate in-season 

management, while taking into account uncertainties in CPUE data, in-season forecasts, 

return estimates, and harvest implementation. In such, the timing of in-season decisions 

are evaluated in light of the accuracy of forecasts and uncertainties in the data, to 

determine if the additional costs of in-season GSI analysis are worth the potential gains, 

primarily in terms of harvests. Though GSI analysis is cheaper than previous methods of 

stock identification (Beacham et al. 2014b), analyzing samples of Chinook from the 

Albion test fishery in-season would require the allocation of annual resources that are 

currently not in place. If an annual framework for more precise in-season management 

of Fraser Chinook is implemented, an assessment of its benefits will be necessary in 

light of these costs.  

Error associated with in-season forecasts of Fraser Chinook could be reduced 

with better representation of run timing, either through additional data, or methods such 

as including environmental variables in the models (Flynn and Hilborn 2004), or the 

using time-density models. In-season forecasting methods for Fraser Chum and 

Sockeye characterize in-season data using time-density models, which represent the 
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pattern in CPUE indices over the fishing season as normal distributions (Gazey and 

Palermo 2000). The time density model explicitly describes run timing, therefore 

deviations in catch indices that are due to shifts in run timing rather than run size can be 

identified (Springborn et al. 1998).  

Alternatively, pre-season information on return abundances could be 

incorporated, where available, into in-season forecasts. For Fall Chinook, pre-season 

forecasts may be combined with in-season estimates through informal or formal 

techniques, such as model weighting or Bayesian approaches (Walters and Buckingham 

1975, Sprout and Kadowaki 1987, Fried and Hilborn 1988, Zheng and Mathisen 1998, 

Gazey and Palermo 2000, Hyun et al. 2005, Catalano and Jones 2014). Although 

combined estiamtes do not necessarily outperform independent forecasts in all cases, 

Fried and Hilborn (1988) found that estimates combined using Bayesian methods never 

performed worst, and they provided a convenient method of aggregating information 

from multiple sources.  

 Management of fisheries can be complex, due to the paired objectives of 

conserving stocks and species of concern while providing opportunities to harvest 

(Beacham et al. 2008, 2014a). In mixed stock scenarios, detailed information is required 

to ensure that objectives are met (Marshall et al. 1987, Beacham et al. 2004a). In this 

paper I evaluated whether GSI-based forecasting models for Fraser Chinook 

management units could help fisheries managers improve in-season harvest 

management. The GSI-based models produced timely and accurate forecasts for two of 

the five management units when compared to current Fraser Chinook forecasting 

methods, and less accurate, though still potentially useful forecasts for the remaining 

groups. Though the overall benefits of applying GSI-based in-season methods should be 

formally evaluated, this technique shows promise for providing accurate and timely 

forecasts for the five Fraser Chinook management units, as additional data are GSI 

analyzed and can be added to these models. 
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Tables and Figures 

Table 1. Conversion chart of statistical weeks to day-month format for weeks 
that are applicable to this analysis. 

Statistical Week   Period 

19 06-May 12-May 

20 13-May 19-May 

21 20-May 26-May 

22 27-May 02-Jun 

   23 03-Jun 09-Jun 

24 10-Jun 16-Jun 

25 17-Jun 23-Jun 

26 24-Jun 30-Jun 

   27 01-Jul 07-Jul 

28 08-Jul 14-Jul 

29 15-Jul 21-Jul 

30 22-Jul 28-Jul 

31 29-Jul 04-Aug 

   32 05-Aug 11-Aug 

33 12-Aug 18-Aug 

34 19-Aug 25-Aug 

35 26-Aug 01-Sep 

   36 02-Sep 08-Sep 

37 09-Sep 15-Sep 

38 16-Sep 22-Sep 

39 23-Sep 29-Sep 

   40 30-Sep 06-Oct 

41 07-Oct 13-Oct 

42 14-Oct 20-Oct 

43 21-Oct 27-Oct 
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Table 2. Inventory of Fraser Chinook stocks according to Conservation Unit 
and Management Unit. Stocks that are included in the return and 
genetic data are indicated.  

Stock Information Data Availability 

Management 
Unit CU ID CU Name Stock Name 

Return 
Data GSI Data 

      Fall CK-03 Lower Fraser River_FA_0.3 Harrison √ √ 

Fall CK-9006 Fraser-Cross Stave √ √ 

Fall CK-9008 Fraser-Harrison fall transplant Chilliwack √ √ 

Spring 42 CK-16 South Thompson-Bessette Creek Bessette √ √ 

Spring 42 CK-16  Duteau 

 

√ 

Spring 42 CK-17 Lower Thompson Bonaparte √ √ 

Spring 42 CK-17  Coldwater √ √ 

Spring 42 CK-17  Deadman √ √ 

Spring 42 CK-17  Louis √ √ 

Spring 42 CK-17  Nicola √ √ 

Spring 42 CK-17  Spius √ √ 

Spring 52 CK-04 Lower Fraser River_SP_1.3 Birkenhead √ √ 

Spring 52 CK-05 Lower Fraser River-Upper Pitt Pitt √ √ 

Spring 52 CK-08 Middle Fraser-Fraser Canyon Nahatlatch √ 

 Spring 52 CK-10 Middle Fraser River_SP_1.3 Baker  √ √ 

Spring 52 CK-10  Baezeako 

 

√ 

Spring 52 CK-10  Blackwater √ √ 

Spring 52 CK-10  Bridge √ √ 

Spring 52 CK-10  Chilako √ √ 

Spring 52 CK-10  Chilcotin Lower √ √ 

Spring 52 CK-10  Chilcotin Upper √ √ 

Spring 52 CK-10  Cottonwood √ √ 

Spring 52 CK-10  Endako √ √ 

Spring 52 CK-10  Horsefly √ 

 Spring 52 CK-10  McKinley √ 

 Spring 52 CK-10  Narcosli √ 

 Spring 52 CK-10  Naver √ 

 Spring 52 CK-10  Nazko 

 

√ 

Spring 52 CK-11 Middle Fraser River_SU_1.5 Elkin √ √ 
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Table 2 cont’d 

Management 
Unit CU ID CU Name Stock Name 

Return 
Data 

GSI 
Data 

      Spring 52 CK-12 Upper Fraser River Bowron √ √ 

Spring 52 CK-12  Dome √ √ 

Spring 52 CK-12  Fontoniko 
 

√ 

Spring 52 CK-12  Fraser √ √ 

Spring 52 CK-12  Goat √ √ 

Spring 52 CK-12  Herrick 
 

√ 

Spring 52 CK-12  Holliday √ 
 Spring 52 CK-12  Holmes √ √ 

Spring 52 CK-12  Horsey √ √ 

Spring 52 CK-12  Indianpoint 
 

√ 

Spring 52 CK-12  James 
 

√ 

Spring 52 CK-12  Kenneth 
 

√ 

Spring 52 CK-12  McGregor √ √ 

Spring 52 CK-12  McKale √ 
 Spring 52 CK-12  Morkill √ √ 

Spring 52 CK-12  Nevin √ √ 

Spring 52 CK-12  Ptarmigan 
 

√ 

Spring 52 CK-12  Salmon (PG) √ √ 

Spring 52 CK-12  Slim √ √ 

Spring 52 CK-12  Small √ 
 Spring 52 CK-12  Swift √ √ 

Spring 52 CK-12  Torpy √ √ 

Spring 52 CK-12  Twin √ 
 Spring 52 CK-12  Walker √ √ 

Spring 52 CK-12  Willow √ √ 

Spring 52 CK-18 North Thompson_SP_1.3 Blue √ √ 

Spring 52 CK-18  Finn √ √ 

Spring 52 CK-9006 Fraser-Cross Chehalis √ √ 

Spring 52 CK-14 South Thompson_SU_1.3 Eagle √ √ 

Spring 52 CK-14  Salmon (ST) √ √ 

Spring 52 CK-14  Scotch √ 
 Spring 52 CK-14  Seymour √ √ 

Summer 41 CK-07 Maria Slough Maria Slough √ √ 

Summer 41 CK-13 South Thompson_SU_0.3 Adams √ √ 

Summer 41 CK-13  Little River √ √ 

Summer 41 CK-13  Lower Thompson √ √ 

Summer 41 CK-13  South Thompson √ √ 
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Table 2 cont’d 
 
Management 
Unit CU ID CU Name Stock Name 

Return 
Data 

GSI 
Data 

      

Summer 41 CK-15 Shuswap River Lower Shuswap √ √ 

Summer 41 CK-15  Middle Shuswap √ √ 

Summer 41 CK-15  Wap √  

Summer 41 CK-82 Upper Adams River Upper Adams √ √ 

Summer 52 CK-06 Lower Fraser River Big Silver √ √ 

Summer 52 CK-06  Chilliwack Su √ √ 

Summer 52 CK-06  Douglas √  

Summer 52 CK-06  Sloquet √  

Summer 52 CK-06  Tipella √  

Summer 52 CK-09 Middle Fraser River-Portage Portage √ √ 

Summer 52 CK-11 Middle Fraser River_SU_1.3 Cariboo √ √ 

Summer 52 CK-11  Chilko √ √ 

Summer 52 CK-11  Kazchek √  

Summer 52 CK-11  Kuzkwa √ √ 

Summer 52 CK-11  Nechako √ √ 

Summer 52 CK-11  Pinchi √  

Summer 52 CK-11  Quesnel √ √ 

Summer 52 CK-11  Seton √  

Summer 52 CK-11  Stellako √  

Summer 52 CK-11  Stuart √ √ 

Summer 52 CK-11  Taseko √ √ 

Summer 52 CK-19 North Thompson_SU_1.3 Barriere √ √ 

Summer 52 CK-19  Clearwater √ √ 

Summer 52 CK-19  Lemieux √ √ 

Summer 52 CK-19  Mahood √ √ 

Summer 52 CK-19  North Thompson √ √ 

Summer 52 CK-19  Raft √ √ 
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Table 3. Annual sample size from each net type (single panel, multi panel, and both combined) used by the Albion test 
fishery (Total), and the number/percent of those samples that were GSI analyzed (Analyzed).  

 

Year 
  Single Panel Samples   Multi Panel Samples   All Samples 

 
Analyzed 

 
Total 

 
% Analyzed   Analyzed 

 
Total 

 
% Analyzed 

 
Analyzed 

 
Total 

 
% Analyzed 

2000 

 

880 

 

1369 

 

64% 

 

709 

 

896 

 

79% 

 

1589 

 

2265 

 

70% 

2001 

 

1376 

 

2043 

 

67% 

 

1113 

 

1769 

 

63% 

 

2489 

 

3812 

 

65% 

2005 

 

659 

 

1451 

 

45% 

 

524 

 

612 

 

86% 

 

1183 

 

2063 

 

87% 

2006 

 

807 

 

816 

 

99% 

 

527 

 

532 

 

99% 

 

1334 

 

1348 

 

99% 

2008 

 

954 

 

1613 

 

59% 

 

541 

 

809 

 

67% 

 

1495 

 

2422 

 

62% 

2009 

 

1254 

 

1264 

 

99% 

 

722 

 

731 

 

99% 

 

1976 

 

1995 

 

99% 

2010 

 

1233 

 

1247 

 

99% 

 

543 

 

550 

 

99% 

 

1776 

 

1797 

 

99% 

2011 

 

1373 

 

1393 

 

99% 

 

437 

 

455 

 

96% 

 

1810 

 

1848 

 

98% 

2012 

 

526 

 

543 

 

97% 

 

274 

 

274 

 

100% 

 

800 

 

817 

 

98% 

2013 

 

624 

 

628 

 

99% 

 

418 

 

421 

 

99% 

 

1042 

 

1049 

 

99% 

2014   761   817   93%   605   630   96%   1366   1447   94% 

 

  



 

51 

 

Table 4.  Proportion of annual data points that fall outside the highest probability density region of replicated data for 
each model type analyzed across available analysis weeks. 

 

 

 

  

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Linear --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Exponential --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0% 0% 0% 0% 0% 0% 0% 0% 10% 0% 10% 0% 0% 0%

Allometric --- 0% 0% 0% 0% 0% 0% 0% 10% 10% 10% 0% 10% 0% 0% 10% 0% 0% 0% 0% 0% 0% 10% 0% 0%

Linear 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Exponential 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Allometric 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Linear --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Exponential --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Allometric --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Linear --- --- --- --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Exponential --- --- --- --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Allometric --- --- --- --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Linear --- --- --- --- --- --- --- --- --- --- --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Exponential --- --- --- --- --- --- --- --- --- --- --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Allometric --- --- --- --- --- --- --- --- --- --- --- --- --- 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Statistical Week

Fall

MU Model

Spring 42

Spring 52

Summer 52

Summer 41
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Table 5. Mean percent error (MPE), mean absolute percent error (MAPE), and root mean squared error (RMSE) 
performance measure values calculated for the Spring 42 management unit for each model form (columns) 
and analysis week (rows) in the cross-validation analysis.  

 

Linear Exponential Allometric Composite Linear Exponential Allometric Composite Linear Exponential Allometric Composite

19 -- -- -- -- -- -- -- -- -- -- -- --

20 -- -- -- -- -- -- -- -- -- -- -- --

21 -- -- -- -- -- -- -- -- -- -- -- --

22 -- -- -- -- -- -- -- -- -- -- -- --

23 0.35 0.45 0.21 0.28 0.54 2.47 0.49 0.53 7965 23113 7603 8887

24 0.43 0.84 0.27 0.37 0.63 0.77 0.59 0.65 11959 55313 10713 13983

25 0.39 0.89 0.22 0.33 0.56 1.17 0.51 0.59 11620 65024 6514 12395

26 0.39 0.84 0.21 0.33 0.57 1.18 0.52 0.60 11684 61043 6121 11945

27 0.29 0.21 0.23 0.25 0.52 1.15 0.57 0.53 5689 6808 7195 5925

28 0.30 0.20 0.27 0.26 0.54 0.55 0.63 0.57 5863 6328 7806 6378

29 0.31 0.21 0.26 0.27 0.54 0.56 0.62 0.57 5905 6341 7642 6417

30 0.37 0.26 0.33 0.33 0.61 0.56 0.71 0.65 6805 7672 8650 7475

31 0.36 0.25 0.33 0.31 0.61 0.65 0.71 0.65 6599 7608 8666 7404

32 0.37 0.23 0.33 0.32 0.61 0.65 0.72 0.66 6766 7824 8890 7605

33 0.38 0.22 0.33 0.32 0.61 0.64 0.73 0.66 6953 8228 9005 7736

34 0.38 0.22 0.35 0.33 0.61 0.64 0.75 0.68 7034 9119 9215 8032

35 0.40 0.24 0.37 0.35 0.62 0.66 0.77 0.69 7102 9132 9361 8236

36 0.39 0.23 0.38 0.34 0.63 0.67 0.77 0.69 7175 9419 9347 8365

37 0.39 0.23 0.36 0.33 0.63 0.68 0.77 0.70 7215 9623 9376 8441

38 0.39 0.23 0.37 0.34 0.63 0.68 0.77 0.70 7210 9566 9425 8528

39 0.39 0.23 0.37 0.34 0.63 0.68 0.77 0.70 7144 9301 9298 8305

40 0.39 0.23 0.36 0.34 0.63 0.68 0.76 0.70 7136 9230 9323 8342

41 0.39 0.24 0.37 0.35 0.63 0.68 0.77 0.69 7129 9298 9294 8225

42 0.38 0.23 0.36 0.33 0.63 0.67 0.77 0.70 7149 9356 9439 8401

Week
MPE MAPE RMSE
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Table 6. Mean percent error (MPE), mean absolute percent error (MAPE), and root mean squared error (RMSE) 
performance measure values calculated for the Spring 52 management unit for each model form (columns) 
and analysis week (rows) in the cross-validation analysis. 

 

Linear Exponential Allometric Composite Linear Exponential Allometric Composite Linear Exponential Allometric Composite

19 -- -- -- -- -- -- -- -- -- -- -- --

20 0.04 0.04 0.00 0.02 0.16 0.18 0.20 0.2 5204 7578 5983 5435

21 0.07 0.06 0.03 0.05 0.21 0.23 0.18 0.2 7305 8898 6481 6919

22 0.12 0.13 0.04 0.08 0.29 0.34 0.22 0.3 11281 17749 10663 11122

23 0.14 0.18 0.04 0.09 0.31 0.40 0.22 0.3 12338 24770 10161 11784

24 0.13 0.16 0.05 0.09 0.31 0.38 0.22 0.3 11859 21754 9820 11433

25 0.11 0.13 0.04 0.08 0.29 0.33 0.20 0.2 11043 18107 8883 10497

26 0.08 0.06 0.02 0.05 0.23 0.23 0.17 0.2 8987 10693 7709 8500

27 0.08 0.06 0.03 0.05 0.23 0.23 0.19 0.2 9211 10575 7826 8820

28 0.10 0.08 0.03 0.07 0.27 0.28 0.20 0.2 10383 12988 8265 9953

29 0.11 0.10 0.03 0.07 0.28 0.31 0.21 0.3 11160 15402 8557 10641

30 0.12 0.11 0.04 0.08 0.28 0.31 0.21 0.2 11097 15199 8637 10610

31 0.10 0.08 0.03 0.07 0.27 0.28 0.21 0.2 10272 12416 8466 9789

32 0.08 0.06 0.03 0.05 0.24 0.25 0.19 0.2 9252 10528 8120 8895

33 0.11 0.10 0.04 0.07 0.27 0.30 0.20 0.2 10227 14488 8265 9644

34 0.10 0.10 0.03 0.07 0.27 0.31 0.20 0.2 10376 15162 8315 9846

35 0.11 0.11 0.04 0.07 0.27 0.31 0.20 0.2 10288 15108 8288 9776

36 0.10 0.11 0.03 0.07 0.27 0.31 0.20 0.2 10411 15570 8325 9970

37 0.11 0.10 0.03 0.07 0.27 0.31 0.20 0.2 10335 15105 8283 9756

38 0.11 0.11 0.04 0.08 0.28 0.31 0.20 0.2 10366 14989 8342 9847

39 0.11 0.11 0.04 0.08 0.28 0.31 0.20 0.2 10400 15516 8336 9927

40 0.11 0.11 0.04 0.07 0.27 0.31 0.20 0.2 10413 15384 8402 9933

41 0.11 0.10 0.03 0.07 0.28 0.31 0.20 0.2 10368 14987 8294 9792

42 0.11 0.11 0.04 0.07 0.28 0.31 0.20 0.2 10373 15153 8284 9867

Week
MPE MAPE RMSE
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Table 7. Mean percent error (MPE), mean absolute percent error (MAPE), and root mean squared error (RMSE) 
performance measure values calculated for the Summer 52 management unit for each model form (columns) 
and analysis week (rows) in the cross-validation analysis. 

 

Linear Exponential Allometric Composite Linear Exponential Allometric Composite Linear Exponential Allometric Composite

19 -- -- -- -- -- -- -- -- -- -- -- --

20 -- -- -- -- -- -- -- -- -- -- -- --

21 -- -- -- -- -- -- -- -- -- -- -- --

22 -- -- -- -- -- -- -- -- -- -- -- --

23 -- -- -- -- -- -- -- -- -- -- -- --

24 -- -- -- -- -- -- -- -- -- -- -- --

25 0.22 1.13 0.06 0.16 0.39 1.32 0.20 0.32 19952 136263 8207 16572

26 0.24 1.87 0.04 0.19 0.39 2.05 0.18 0.34 24030 241146 6666 20299

27 0.18 0.60 0.03 0.14 0.32 0.78 0.18 0.30 17392 76020 6323 15775

28 0.11 0.20 0.02 0.09 0.26 0.38 0.21 0.25 10832 24963 6966 9943

29 0.07 0.06 0.02 0.05 0.21 0.23 0.19 0.21 6932 8885 6740 6782

30 0.05 0.04 0.02 0.04 0.19 0.20 0.18 0.19 6583 7105 6301 6522

31 0.07 0.06 0.02 0.05 0.21 0.23 0.16 0.19 7506 9255 5956 7198

32 0.08 0.10 0.02 0.06 0.23 0.26 0.17 0.21 8736 12777 6250 8519

33 0.08 0.08 0.03 0.05 0.21 0.24 0.16 0.20 8003 10552 6258 7839

34 0.07 0.06 0.03 0.05 0.19 0.21 0.15 0.17 7065 8209 6021 6840

35 0.07 0.06 0.03 0.05 0.19 0.21 0.15 0.17 6809 7603 5933 6577

36 0.06 0.05 0.03 0.04 0.18 0.20 0.14 0.17 6607 7444 5848 6446

37 0.06 0.05 0.03 0.04 0.18 0.20 0.14 0.16 6568 7338 5750 6338

38 0.06 0.05 0.03 0.04 0.18 0.20 0.14 0.17 6595 7380 5794 6393

39 0.06 0.05 0.03 0.04 0.17 0.19 0.14 0.16 6499 7281 5778 6368

40 0.06 0.05 0.03 0.04 0.18 0.20 0.14 0.16 6581 7395 5816 6364

41 0.06 0.05 0.03 0.05 0.18 0.19 0.14 0.16 6577 7288 5806 6388

42 0.06 0.05 0.03 0.04 0.18 0.20 0.14 0.17 6583 7338 5818 6384

Week
MPE MAPE RMSE
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Table 8. Mean percent error (MPE), mean absolute percent error (MAPE), and root mean squared error (RMSE) 
performance measure values calculated for the Summer 41 management unit for each model form (columns) 
and analysis week (rows) in the cross-validation analysis. 

 

Linear Exponential Allometric Composite Linear Exponential Allometric Composite Linear Exponential Allometric Composite

19 -- -- -- -- -- -- -- -- -- -- -- --

20 -- -- -- -- -- -- -- -- -- -- -- --

21 -- -- -- -- -- -- -- -- -- -- -- --

22 -- -- -- -- -- -- -- -- -- -- -- --

23 -- -- -- -- -- -- -- -- -- -- -- --

24 -- -- -- -- -- -- -- -- -- -- -- --

25 -- -- -- -- -- -- -- -- -- -- -- --

26 0.29 0.43 0.12 0.24 0.50 0.68 0.40 0.48 89204 150599 63285 87050

27 0.44 1.10 0.12 0.35 0.65 1.36 0.43 0.61 128674 398600 61450 114940

28 0.36 0.54 0.12 0.27 0.58 0.80 0.42 0.53 102276 188873 61273 91918

29 0.31 0.36 0.12 0.23 0.54 0.62 0.41 0.49 91315 125258 60436 79154

30 0.26 0.23 0.12 0.19 0.49 0.50 0.41 0.46 77356 85140 61169 70095

31 0.25 0.20 0.13 0.19 0.48 0.47 0.41 0.45 73227 76349 60884 67686

32 0.21 0.15 0.12 0.16 0.44 0.42 0.41 0.42 65601 64104 60712 62487

33 0.20 0.14 0.12 0.16 0.42 0.40 0.39 0.41 61490 60066 58341 60429

34 0.18 0.12 0.12 0.15 0.40 0.39 0.39 0.40 59211 59345 59088 59806

35 0.18 0.11 0.11 0.14 0.39 0.38 0.37 0.38 58470 58573 58065 59145

36 0.17 0.11 0.11 0.12 0.40 0.38 0.38 0.38 58394 58784 59149 58152

37 0.19 0.12 0.12 0.14 0.41 0.38 0.38 0.39 58413 58329 58916 58939

38 0.18 0.11 0.11 0.13 0.40 0.38 0.38 0.38 58309 58256 59185 58122

39 0.19 0.12 0.12 0.14 0.41 0.39 0.39 0.40 58561 58566 59370 58980

40 0.19 0.13 0.13 0.15 0.41 0.38 0.39 0.40 58106 57801 58618 58582

41 0.19 0.12 0.12 0.14 0.41 0.39 0.39 0.40 58847 58846 59854 59227

42 0.19 0.12 0.12 0.15 0.41 0.39 0.39 0.40 59272 59311 59353 59054

Week
MPE MAPE RMSE
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Table 9. Mean percent error (MPE), mean absolute percent error (MAPE), and root mean squared error (RMSE) 
performance measure values calculated for the Fall management unit for each model form (columns) and 
analysis week (rows) in the cross-validation analysis. 

Linear Exponential Allometric Composite Linear Exponential Allometric Composite Linear Exponential Allometric Composite

19 -- -- -- -- -- -- -- -- -- -- -- --

20 -- -- -- -- -- -- -- -- -- -- -- --

21 -- -- -- -- -- -- -- -- -- -- -- --

22 -- -- -- -- -- -- -- -- -- -- -- --

23 -- -- -- -- -- -- -- -- -- -- -- --

24 -- -- -- -- -- -- -- -- -- -- -- --

25 -- -- -- -- -- -- -- -- -- -- -- --

26 -- -- -- -- -- -- -- -- -- -- -- --

27 -- -- -- -- -- -- -- -- -- -- -- --

28 -- -- -- -- -- -- -- -- -- -- -- --

29 -- -- -- -- -- -- -- -- -- -- -- --

30 -- -- -- -- -- -- -- -- -- -- -- --

31 -- -- -- -- -- -- -- -- -- -- -- --

32 -- -- -- -- -- -- -- -- -- -- -- --

33 -- -- -- -- -- -- -- -- -- -- -- --

34 -0.28 -0.04 0.02 -0.01 0.71 0.40 0.40 0.41 232073 78754 62734 73401

35 -0.07 -0.02 0.05 0.01 0.50 0.38 0.36 0.38 125428 72766 57018 70432

36 0.10 0.06 0.06 0.07 0.38 0.35 0.31 0.34 59562 56716 49905 54348

37 0.14 0.10 0.08 0.10 0.37 0.35 0.32 0.35 53794 53018 48239 51434

38 0.13 0.08 0.05 0.09 0.35 0.34 0.31 0.33 50370 50812 46738 48138

39 0.14 0.10 0.05 0.10 0.36 0.34 0.33 0.34 49307 49525 47468 47908

40 0.12 0.08 0.04 0.08 0.34 0.33 0.35 0.33 47190 48031 49426 47309

41 0.09 0.05 0.02 0.06 0.31 0.31 0.35 0.32 44358 45259 51087 46301

42 0.09 0.04 0.02 0.05 0.31 0.30 0.35 0.32 43903 44528 50806 45493

Week
MPE MAPE RMSE
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Figure 1. Average cumulative run timing curves for each Fraser Chinook 
management unit based on GSI analyzed catch data from the Albion 
test fishery. The red dashed line indicates the point at which 50% of 
the management unit has migrated past Albion. 
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Figure 2. Time series of escapements (top panel) and returns (bottom panel) 
for Fraser Chinook management units from 1979 to present. Return 
estimates are reconstructed to the mouth of the Fraser River using 
escapement and catch estimates. 
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Figure 3. MPE performance measure values for models using CPUE indices 
calculated from all of the data (x-axis), versus only data from the 
single panel net (y-axis). Black dots represent the MAPE for linear 
models, grey circles are exponential models, light grey circles are 
allometric models, and white squares are composite models. 
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Figure 4. MPE performance measure values for models using CPUE indices 
calculated from all of the data (x-axis), versus only data from the 
multi-panel net (y-axis). Black dots represent the MAPE for linear 
models, grey circles are exponential models, light grey circles are 
allometric models, and white squares are composite models. 
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Figure 5. MAPE performance measure values for models using CPUE indices 
calculated from all of the data (x-axis), versus only data from the 
single panel net (y-axis). Black dots represent the MAPE for linear 
models, grey circles are exponential models, light grey circles are 
allometric models, and white squares are composite models. 
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Figure 6. MAPE performance measure for models using CPUE indices 
calculated from all of the data (x-axis), versus only data from the 
multi-panel net (y-axis). Black dots represent the MAPE for linear 
models, grey circles are exponential models, light grey circles are 
allometric models, and white squares are composite models. 

 



 

63 

 

 

Figure 7. Weekly performance of Spring 42 Chinook forecasting models up to 
analysis week 35 according to mean percent error (MPE), mean 
absolute percent error (MAPE), and root mean squared error 
(RMSE). Models are represented by the following colours: dark 
brown - allometric model; light brown - composite models; light blue 
- exponential models; dark blue - linear models.   
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Figure 8. Weekly performance of Spring 52 Chinook forecasting models up to 
analysis week 35 according to mean percent error (MPE), mean 
absolute percent error (MAPE), and root mean squared error 
(RMSE). Models are represented by the following colours: dark 
brown - allometric model; light brown - composite models; light blue 
- exponential models; dark blue - linear models.   
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Figure 9. Weekly performance of Summer 52 Chinook forecasting models 
across analysis weeks according to mean percent error (MPE), mean 
absolute percent error (MAPE), and root mean squared error 
(RMSE). Models are represented by the following colours: dark 
brown - allometric model; light brown - composite models; light blue 
- exponential models; dark blue - linear models. Maximum values of 
all performance measures for the exponential model have been 
constrained for presentation purposes.    
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Figure 10. Weekly performance of Summer 41 Chinook forecasting models 
across analysis weeks according to mean percent error (MPE), mean 
absolute percent error (MAPE), and root mean squared error 
(RMSE). Models are represented by the following colours: dark 
brown - allometric model; light brown - composite models; light blue 
- exponential models; dark blue - linear models.   
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Figure 11. Weekly performance of Fall Chinook forecasting models across 
analysis weeks according to mean percent error (MPE), mean 
absolute percent error (MAPE), and root mean squared error 
(RMSE). Models are represented by the following colours: dark 
brown - allometric model; light brown - composite models; light blue 
- exponential models; dark blue - linear models.   
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Figure 12. MPE (x-axis) and MAPE (y-axis) performance measures for all Fraser 
Chinook management unit forecasts across analysis weeks and 
model forms. The grey box in the lower left corner indicates 
accuracy and bias benchmarks set by the current Spring and 
Summer 52 Chinook in-season methods (MAPE < 18%, MPE < 5%). 
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Figure 13. In-season forecast trade-offs for Spring 42 Chinook, between mean 
percent error (MPE), mean absolute percent error (MAPE) and 
availability. The top panel presents performance measures for all 
Spring 42 forecasts, colour-coded as follows: dark blue-linear 
models; light blue-exponential models; dark brown-allometric 
models; light brown-composite models. The bottom panel focuses 
on the best performing models, which are labelled according to 
analysis week, colour-coded as above, and colour-graded with 
earlier weeks appearing darker and later weeks appearing lighter.  
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Figure 14. In-season forecast trade-offs for Spring 52 Chinook, between mean 
percent error (MPE), mean absolute percent error (MAPE) and 
availability. The top panel presents performance measures for all 
Spring 52 forecasts, colour-coded as follows: dark blue-linear 
models; light blue-exponential models; dark brown-allometric 
models; light brown-composite models. The bottom panel focuses 
on the best performing models, which are labelled according to 
analysis week, colour-coded as above, and colour-graded with 
earlier weeks appearing darker and later weeks appearing lighter. 
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Figure 15. In-season forecast trade-offs for Summer 52 Chinook, between mean 
percent error (MPE), mean absolute percent error (MAPE) and 
availability. The top panel presents performance measures for all 
Summer 52 forecasts, colour-coded as follows: dark blue-linear 
models; light blue-exponential models; dark brown-allometric 
models; light brown-composite models. The bottom panel focuses 
on the best performing models, which are labelled according to 
analysis week, colour-coded as above, and colour-graded with 
earlier weeks appearing darker and later weeks appearing lighter. 
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Figure 16. In-season forecast trade-offs for Summer 41 Chinook, between 
mean percent error (MPE), mean absolute percent error (MAPE) and 
availability. The top panel presents performance measures for all 
Summer 41 forecasts, colour-coded as follows: dark blue-linear 
models; light blue-exponential models; dark brown-allometric 
models; light brown-composite models. The bottom panel focuses 
on the best performing models, which are labelled according to 
analysis week, colour-coded as above, and colour-graded with 
earlier weeks appearing darker and later weeks appearing lighter. 
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Figure 17. In-season forecast trade-offs for Fall Chinook, between mean 
percent error (MPE), mean absolute percent error (MAPE) and 
availability. The top panel presents performance measures for all 
Fall forecasts, colour-coded as follows: dark blue-linear models; 
light blue-exponential models; dark brown-allometric models; light 
brown-composite models. The bottom panel focuses on the best 
performing models, which are labelled according to analysis week, 
colour-coded as above, and colour-graded with earlier weeks 
appearing darker and later weeks appearing lighter. 
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Figure 18. Mean percent error (MPE), mean absolute percent error (MAPE), and 
root mean squared error (RMSE) of the current in-season Spring and 
Summer 52 forecast model (pink bars), and the allometric model 
applied to single panel CPUE indices for the Spring 52 and Summer 
52 management units combined (blue bars). Statistical weeks of 
analysis are indicated on the x-axis. 
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Appendix A  
 
Cumulative CPUE Indices and Return Data  

Table A1. Cumulative CPUE indices for Spring 42 Chinook using all catch data.  

 

2000 2001 2005 2006 2008 2009 2010 2012 2013 2014

23 0.24 0.47 0.03 0.05 0.00 0.01 0.01 0.04 0.00 0.05

24 0.28 0.77 0.03 0.05 0.00 0.03 0.04 0.04 0.00 0.06

25 0.30 0.86 0.04 0.17 0.03 0.04 0.06 0.04 0.00 0.11

26 0.30 0.90 0.06 0.19 0.06 0.08 0.10 0.04 0.00 0.19

27 0.57 0.90 0.13 0.20 0.09 0.23 0.16 0.04 0.01 0.40

28 0.73 0.90 0.16 0.23 0.09 0.33 0.17 0.06 0.03 0.44

29 0.91 0.90 0.16 0.24 0.20 0.39 0.21 0.07 0.03 0.47

30 1.02 0.90 0.16 0.32 0.26 0.54 0.22 0.08 0.05 0.48

31 1.04 1.53 0.16 0.40 0.32 0.68 0.23 0.09 0.05 0.49

32 1.04 2.19 0.16 0.52 0.32 0.79 0.24 0.09 0.06 0.50

33 1.04 2.84 0.16 0.55 0.32 0.87 0.24 0.09 0.06 0.50

34 1.04 3.05 0.16 0.55 0.32 0.96 0.24 0.09 0.06 0.50

35 1.04 3.05 0.16 0.55 0.32 1.00 0.24 0.09 0.06 0.50

36 1.04 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

37 1.04 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

38 1.04 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

39 1.08 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

40 1.08 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

41 1.08 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

42 1.08 3.05 0.16 0.55 0.32 1.01 0.24 0.09 0.06 0.50

Year
Week
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Table A2. Cumulative CPUE indices for Spring 52 Chinook using single panel catch data only. 

 

  

2000 2001 2005 2006 2008 2009 2010 2011 2012 2013 2014

20 0.13 0.69 0.09 0.14 0.09 0.19 0.08 0.07 0.03 0.02 0.00

21 0.48 1.54 0.12 0.19 0.09 0.19 0.16 0.15 0.03 0.04 0.00

22 0.68 2.77 0.35 0.36 0.15 0.38 0.20 0.15 0.07 0.04 0.07

23 1.04 3.77 0.43 0.56 0.19 0.46 0.22 0.15 0.10 0.04 0.10

24 1.51 4.88 0.46 0.90 0.37 0.56 0.51 0.22 0.12 0.13 0.24

25 2.22 5.04 0.97 1.82 0.77 0.98 1.08 0.28 0.15 0.17 0.61

26 3.76 5.17 1.32 2.27 1.37 2.06 1.67 0.52 0.15 0.29 1.34

27 5.70 5.20 1.85 2.46 1.93 3.18 2.70 0.60 0.24 0.33 2.03

28 6.98 5.23 2.01 2.67 2.12 3.47 3.27 0.60 0.38 0.44 2.23

29 7.78 5.27 2.13 3.00 2.38 3.72 3.50 0.78 0.40 0.49 2.36

30 8.08 6.51 2.36 3.25 2.51 4.13 3.75 0.98 0.44 0.62 2.50

31 8.24 10.64 2.39 3.30 2.63 4.21 3.78 1.13 0.44 0.62 2.50

32 8.24 13.51 2.43 3.32 2.65 4.32 3.78 1.16 0.46 0.62 2.53

33 8.24 14.17 2.43 3.32 2.72 4.33 3.80 1.18 0.48 0.62 2.53

34 8.36 14.40 2.43 3.32 2.72 4.33 3.85 1.18 0.50 0.62 2.53

35 8.36 14.40 2.43 3.32 2.72 4.33 3.85 1.18 0.50 0.62 2.53

36 8.36 14.40 2.43 3.34 2.72 4.33 3.85 1.18 0.51 0.62 2.53

37 8.36 14.40 2.43 3.36 2.72 4.33 3.85 1.18 0.51 0.62 2.53

38 8.36 14.40 2.43 3.36 2.72 4.33 3.85 1.18 0.51 0.62 2.53

39 8.36 14.40 2.43 3.36 2.72 4.33 3.85 1.18 0.51 0.62 2.53

40 8.36 14.40 2.43 3.36 2.72 4.33 3.85 1.18 0.51 0.62 2.53

41 8.36 14.40 2.43 3.36 2.72 4.33 3.85 1.18 0.51 0.62 2.53

42 8.36 14.40 2.43 3.36 2.72 4.33 3.85 1.18 0.51 0.62 2.53

Week
Year
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Table A3. Cumulative CPUE indices for Summer 52 Chinook using all catch data. 

  

 

2000 2001 2005 2006 2008 2009 2010 2011 2012 2013 2014

25 0.28 2.12 0.29 0.10 0.05 0.04 0.08 0.00 0.01 0.01 0.07

26 0.45 3.17 0.37 0.15 0.09 0.20 0.17 0.01 0.01 0.02 0.17

27 0.85 3.74 0.61 0.30 0.17 0.61 0.43 0.01 0.03 0.05 0.68

28 1.30 3.86 0.86 0.54 0.33 0.93 0.83 0.03 0.05 0.19 1.08

29 2.37 3.87 1.29 1.09 1.31 1.07 1.08 0.10 0.12 0.30 1.38

30 3.89 3.89 1.98 1.70 1.64 1.87 1.39 0.26 0.21 0.47 2.01

31 5.14 3.92 2.51 2.15 2.23 2.31 1.55 0.60 0.29 0.72 2.47

32 6.76 4.39 3.22 2.68 2.40 2.82 1.86 0.85 0.47 1.08 3.10

33 7.34 5.62 3.43 2.89 2.74 3.05 1.98 1.23 0.68 1.18 3.38

34 7.65 7.00 3.71 3.07 2.94 3.31 2.13 1.42 0.79 1.34 3.52

35 7.76 7.88 3.96 3.09 3.00 3.38 2.16 1.62 0.88 1.37 3.67

36 7.87 8.11 4.20 3.15 3.03 3.43 2.18 1.73 0.88 1.39 3.81

37 7.87 8.28 4.20 3.18 3.03 3.50 2.18 1.82 0.92 1.39 3.81

38 7.87 8.31 4.20 3.18 3.06 3.52 2.18 1.88 0.92 1.41 3.81

39 7.87 8.31 4.20 3.18 3.06 3.52 2.18 1.89 0.92 1.41 3.81

40 7.87 8.31 4.20 3.18 3.06 3.52 2.18 1.89 0.92 1.43 3.81

41 7.87 8.31 4.20 3.18 3.06 3.52 2.18 1.89 0.92 1.43 3.81

42 7.87 8.31 4.20 3.18 3.06 3.52 2.18 1.89 0.92 1.43 3.81

Week
Year
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Table A4. Cumulative CPUE indices for Summer 41 Chinook using all catch data. 

 

2000 2001 2005 2006 2008 2009 2010 2011 2012 2013 2014

26 0.01 1.07 0.01 0.20 0.02 0.04 0.46 0.01 0.00 0.01 0.06

27 0.10 3.62 0.02 0.53 0.05 0.08 0.99 0.04 0.01 0.01 0.26

28 0.27 6.09 0.06 0.77 0.06 0.09 2.20 0.07 0.04 0.06 0.50

29 0.95 7.73 0.14 1.33 0.32 0.17 2.95 0.07 0.05 0.13 0.67

30 1.65 8.12 0.29 2.12 0.59 0.32 3.91 0.13 0.11 0.28 0.99

31 2.26 8.12 0.49 2.78 1.14 0.56 4.25 0.34 0.24 0.51 1.31

32 3.60 8.12 0.83 3.60 1.97 0.86 5.05 0.87 0.66 1.08 1.81

33 4.76 8.35 1.30 4.12 4.41 1.82 5.64 2.16 1.82 1.65 2.26

34 6.48 9.07 2.68 4.62 6.91 3.57 7.36 4.02 2.57 3.51 2.89

35 7.13 11.33 4.95 4.81 10.06 4.93 8.35 6.32 3.67 4.33 4.11

36 7.94 13.56 7.26 4.95 12.21 5.71 8.73 7.44 4.60 4.82 4.62

37 8.90 15.63 7.26 5.21 12.45 6.02 8.91 8.75 4.74 4.90 5.04

38 9.46 16.56 7.26 5.29 12.54 6.18 8.91 9.04 4.78 4.94 5.08

39 9.46 16.92 7.26 5.31 12.61 6.18 8.93 9.07 4.79 4.97 5.10

40 9.46 17.31 7.26 5.31 12.61 6.18 8.93 9.07 4.79 4.97 5.10

41 9.46 17.31 7.26 5.32 12.61 6.18 8.93 9.08 4.79 4.97 5.10

42 9.46 17.41 7.26 5.32 12.61 6.18 8.93 9.08 4.79 4.97 5.10

Week
Year
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Table A5. Cumulative CPUE indices for Fall Chinook using single panel catch data only. 

 

2000 2001 2005 2006 2008 2009 2010 2011 2012 2013 2014

34 0.12 4.71 0.00 0.00 0.13 0.15 0.05 0.03 0.03 0.18 0.04

35 0.12 4.71 0.00 0.02 1.02 0.38 0.05 0.09 0.15 0.37 0.38

36 0.68 4.74 0.13 0.10 3.90 1.32 0.28 0.19 0.61 1.26 1.09

37 2.09 4.90 0.13 0.85 5.57 2.99 1.28 1.06 1.27 1.72 2.09

38 4.31 4.94 0.13 1.12 6.32 4.58 1.80 2.63 1.64 2.30 2.46

39 5.53 4.96 0.13 1.37 6.89 5.31 3.15 3.53 2.15 2.90 2.75

40 6.86 4.96 0.13 1.37 6.89 6.03 4.27 5.97 2.24 3.14 2.95

41 7.46 5.00 0.13 1.45 6.89 6.32 5.57 9.56 2.34 3.25 3.35

42 7.69 5.00 0.13 1.47 6.89 6.39 5.84 10.09 2.53 3.31 3.49

Week
Year
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Table A6. Reconstructed annual returns for each management unit. 

•  

  

Year Spring 42 Spring 52 Summer 52 Summer 41 Fall

2000 28599 40669 33787 68534 157554

2001 31128 47720 39639 116020 193666

2002 35570 54704 45034 157627 166617

2003 40816 71286 55960 125385 310530

2004 39324 54290 51514 92774 206471

2005 15363 35636 31357 131457 134750

2006 19654 34580 33640 228414 120499

2008 17830 27137 25540 151591 89119

2009 4279 43481 29551 123300 98207

2010 13378 26320 24855 214563 194866

2011 7923 19776 27667 187124 184944

2012 15489 17811 17029 75538 73343

2013 7492 23521 18458 144689 116791

2014 21553 50655 43553 115431 123187
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Appendix B  
 
Parameter Estimates by Management Unit, Model Form and Analysis Week 

Table B1. Model parameter estimates for Spring 42 Chinook (all data).  

 

α β σ α β σ α β σ

23 14650 25250 6488 9.49 1.36 0.59 10.63 0.35 0.52

24 14440 22540 5885 9.49 1.19 0.54 10.50 0.33 0.50

25 13850 21970 6079 9.46 1.15 0.55 10.37 0.33 0.54

26 10965 23845 5635 9.29 1.27 0.54 10.10 0.25 0.57

27 10570 21795 5982 9.28 1.11 0.56 10.07 0.27 0.59

28 10310 20200 6032 9.27 1.03 0.56 10.04 0.29 0.58

29 10590 17200 6722 9.31 0.81 0.60 9.97 0.26 0.60

30 11310 12330 6643 9.35 0.57 0.59 9.90 0.24 0.60

31 12390 8628 6889 9.40 0.40 0.60 9.86 0.22 0.61

32 13100 6465 7107 9.43 0.30 0.61 9.83 0.20 0.61

33 13400 5844 7298 9.45 0.27 0.62 9.82 0.19 0.62

34 13470 5699 7337 9.45 0.25 0.62 9.82 0.19 0.62

35 13410 5786 7349 9.45 0.26 0.62 9.82 0.18 0.62

36 13560 5691 7367 9.46 0.25 0.62 9.81 0.19 0.62

37 13440 5676 7301 9.45 0.25 0.61 9.82 0.18 0.62

38 13470 5693 7319 9.46 0.25 0.62 9.81 0.19 0.62

39 13455 5740 7281 9.46 0.26 0.61 9.81 0.19 0.62

40 13430 5742 7314 9.45 0.26 0.62 9.81 0.19 0.62

41 13470 5704 7286 9.46 0.25 0.61 9.81 0.19 0.62

42 12840 5655 9238 9.49 0.02 0.76 9.61 0.10 0.75

Analysis 

Week

Linear Model Exponential Model Allometric Model
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Table B2. Model parameter estimates for Spring 52 Chinook (single panel data only).  

 

α β σ α β σ α β σ

20 18090 125900 4882 9.89 3.96 0.19 11.16 0.34 0.21

21 23520 38060 7285 10.06 1.17 0.27 10.84 0.27 0.23

22 28150 14450 10315 10.20 0.45 0.33 10.65 0.19 0.32

23 29040 7737 10416 10.23 0.24 0.34 10.59 0.18 0.32

24 28830 5687 10397 10.22 0.18 0.33 10.53 0.23 0.29

25 27290 4845 10020 10.17 0.15 0.32 10.42 0.25 0.26

26 23790 5337 8855 10.05 0.17 0.28 10.31 0.28 0.23

27 22700 4490 8678 10.01 0.15 0.27 10.22 0.28 0.23

28 23570 3691 9309 10.04 0.12 0.29 10.17 0.29 0.23

29 23990 3263 9617 10.05 0.11 0.30 10.15 0.30 0.24

30 23580 3204 9566 10.03 0.11 0.29 10.10 0.31 0.24

31 23470 3062 9450 10.03 0.10 0.29 10.10 0.31 0.25

32 24820 2355 9255 10.09 0.08 0.29 10.09 0.29 0.24

33 25910 1901 9496 10.12 0.06 0.30 10.09 0.28 0.24

34 26200 1784 9616 10.13 0.06 0.31 10.09 0.28 0.25

35 26380 1746 9617 10.14 0.05 0.31 10.09 0.28 0.25

36 26355 1746 9637 10.14 0.05 0.31 10.09 0.28 0.25

37 26360 1741 9542 10.14 0.05 0.31 10.09 0.28 0.25

38 26400 1749 9618 10.14 0.05 0.31 10.09 0.28 0.25

39 26320 1758 9618 10.14 0.06 0.31 10.09 0.28 0.25

40 26350 1764 9626 10.14 0.06 0.31 10.09 0.28 0.25

41 26420 1756 9628 10.14 0.06 0.31 10.09 0.28 0.25

42 26330 1745 9574 10.14 0.05 0.31 10.09 0.28 0.25

Analysis 

Week

Linear Model Exponential Model Allometric Model
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Table B3. Model parameter estimates for Summer 52 Chinook (all data).  

 

 

  

α β σ α β σ α β σ

25 27840 6150 8283 10.20 0.21 0.31 10.62 0.15 0.23

26 27740 4270 7779 10.20 0.14 0.29 10.53 0.13 0.22

27 26570 4428 7230 10.16 0.15 0.27 10.44 0.13 0.22

28 25070 4894 6851 10.10 0.17 0.26 10.36 0.14 0.23

29 23060 5095 6507 10.03 0.18 0.24 10.29 0.18 0.23

30 21420 4586 6131 9.96 0.17 0.22 10.21 0.22 0.21

31 21060 3870 6414 9.94 0.14 0.23 10.12 0.27 0.19

32 21370 3042 6647 9.96 0.11 0.24 10.03 0.30 0.20

33 21020 2810 6502 9.94 0.10 0.23 9.94 0.34 0.18

34 21070 2529 6453 9.95 0.09 0.23 9.91 0.35 0.19

35 21060 2416 6388 9.95 0.09 0.23 9.88 0.36 0.18

36 20920 2377 6280 9.95 0.09 0.23 9.87 0.36 0.18

37 20805 2397 6272 9.94 0.09 0.23 9.85 0.37 0.17

38 20850 2367 6306 9.94 0.09 0.23 9.85 0.37 0.18

39 20810 2357 6277 9.94 0.09 0.23 9.85 0.37 0.17

40 20855 2383 6318 9.94 0.09 0.23 9.85 0.37 0.18

41 20910 2347 6281 9.94 0.08 0.23 9.85 0.37 0.17

42 20940 2362 6294 9.95 0.09 0.23 9.85 0.37 0.18

Analysis 

Week

Linear Model Exponential Model Allometric Model
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Table B4. Model parameter estimates for Summer 41 Chinook (all data).  

 

 

 

  

α β σ α β σ α β σ

26 146400 7834 54433 11.84 0.06 0.39 12.04 0.06 0.38

27 141000 1078 56201 11.79 0.02 0.42 11.93 0.06 0.40

28 141000 1096 55973 11.79 0.01 0.42 11.87 0.05 0.41

29 140100 592 56639 11.78 0.01 0.42 11.83 0.04 0.42

30 138000 1965 56196 11.77 0.01 0.42 11.81 0.05 0.42

31 136400 2516 56187 11.76 0.02 0.42 11.79 0.07 0.42

32 134200 2774 55776 11.76 0.01 0.42 11.75 0.07 0.42

33 132900 2627 55651 11.76 0.01 0.42 11.72 0.07 0.42

34 124950 3442 55906 11.70 0.02 0.42 11.55 0.17 0.42

35 126800 2374 55691 11.67 0.02 0.42 11.44 0.20 0.41

36 141800 41 56409 11.76 0.01 0.42 11.68 0.06 0.42

37 143900 -216 56679 11.78 0.00 0.42 11.72 0.04 0.42

38 146400 -669 56391 11.80 0.00 0.42 11.74 0.03 0.42

39 146800 -678 56356 11.80 0.00 0.42 11.75 0.02 0.42

40 145100 -435 56387 11.79 0.00 0.42 11.69 0.05 0.42

41 147600 -706 56471 11.81 0.00 0.42 11.75 0.02 0.42

42 146000 -626 56303 11.80 0.00 0.42 11.72 0.03 0.42

Analysis 

Week

Linear Model Exponential Model Allometric Model
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Table B5. Model parameter estimates for Fall Chinook (single panel data only). 

 

 
 

  

α β σ α β σ α β σ

34 128700 13580 47244 11.71 0.10 0.37 11.91 0.06 0.39

35 127200 10875 46422 11.71 0.07 0.36 11.75 -0.01 0.38

36 134200 622 46309 11.77 0.00 0.36 11.75 -0.05 0.35

37 139900 -2205 46114 11.82 -0.02 0.36 11.78 -0.03 0.36

38 137050 -681 46503 11.80 -0.01 0.36 11.77 0.00 0.36

39 133800 475 46249 11.78 0.00 0.36 11.76 0.00 0.36

40 119200 3842 45133 11.67 0.02 0.35 11.74 0.03 0.36

41 108900 5606 42988 11.59 0.04 0.34 11.72 0.04 0.35

42 108600 5553 42930 11.59 0.04 0.34 11.72 0.04 0.36

Analysis 

Week

Linear Model Exponential Model Allometric Model
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Appendix C  
 
Model Fit by Management Unit and Model Type  

Spring 42 Chinook  

 

Figure C1. Cumulative CPUE (all data) (x-axes) and returns (y-axes) of Spring 42 
Chinook (grey points) with fitted linear model (blue line) and 
predicted values (green points). Labels indicate analysis week. 
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Figure C2. Cumulative CPUE (all data) (x-axes) and log transformed returns of 
Spring 42 Chinook (grey points) with fitted exponential model (blue 
line) and predicted values (green points). Labels indicate statistical 
week of model fit. 
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Figure C3. Log transformed cumulative CPUE (all data) (x-axes) and log 

transformed returns of Spring 42 Chinook (grey points) with fitted 
allometric model (blue line) and predicted values (green points). 
Labels indicate statistical week of model fit. 
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Spring 52 Chinook 

 

Figure C4. Cumulative CPUE (single panel data only) (x-axes) and returns (y-
axes) of Spring 52 Chinook (grey points) with fitted linear model 
(blue line) and predicted values (green points). Labels indicate 
analysis week. 
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Figure C5. Cumulative CPUE (single panel data only) (x-axes) and log 

transformed returns of Spring 52 Chinook (grey points) with fitted 
exponential model (blue line) and predicted values (green points). 
Labels indicate statistical week of model fit. 
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Figure C6. Log transformed cumulative CPUE (single panel data only) (x-axes) 
and log transformed returns of Spring 52 Chinook (grey points) with 
fitted allometric model (blue line) and predicted values (green 
points). Labels indicate statistical week of model fit. 
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Summer 52 Chinook 

 

Figure C7. Cumulative CPUE (all data) (x-axes) and returns of Summer 52 
Chinook (grey points) with fitted linear model (blue line) and 
predicted values (green points). Labels indicate statistical week of 
model fit. 
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Figure C8. Cumulative CPUE (all data) (x-axes) and log transformed returns of 
Summer 52 Chinook (grey points) with fitted exponential model (blue 
line) and predicted values (green points). Labels indicate statistical 
week of model fit. 



 

94 

 

 

Figure C9. Log transformed cumulative CPUE (all data) (x-axes) and log 

transformed returns of Summer 52 Chinook (grey points) with fitted 
allometric model (blue line) and predicted values (green points). 
Labels indicate statistical week of model fit. 
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Summer 41 Chinook 

 

Figure C10. Cumulative CPUE (all data) (x-axes) and returns of Summer 41 
Chinook (grey points) with fitted linear model (blue line) and 
predicted values (green points). Labels indicate statistical week of 
model fit. 
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Figure C11. Cumulative CPUE (all data) (x-axes) and log transformed returns of 
Summer 41 Chinook (grey points) with fitted exponential model (blue 
line) and predicted values (green points). Labels indicate statistical 
week of model fit. 
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Figure C12. Log transformed cumulative CPUE (all data) (x-axes) and log 

transformed returns of Summer 41 Chinook (grey points) with fitted 
allometric model (blue line) and predicted values (green points). 
Labels indicate statistical week of model fit. 
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Fall Chinook 

 

Figure C13. Cumulative CPUE (single panel data only) (x-axes) and returns (y-
axes) of Fall Chinook (grey points) with fitted linear model (blue line) 
and predicted values (green points). Labels indicate analysis week. 
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Figure C14. Cumulative CPUE (single panel data only) (x-axes) and log 

transformed returns of Fall Chinook (grey points) with fitted 
exponential model (blue line) and predicted values (green points). 
Labels indicate statistical week of model fit. 
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Figure C15. Log transformed cumulative CPUE (single panel data only) (x-axes) 
and log transformed returns of Fall Chinook (grey points) with fitted 
allometric model (blue line) and predicted values (green points). 
Labels indicate statistical week of model fit. 
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Appendix D  
 
Forecasts by Management Unit and Model Type 
Produced during Cross-validation  

Spring 42 Chinook Forecasts 

 

Figure D1. Annual forecasts of Spring 42 returns produced in the cross-
validation analysis for the linear model. X-axes indicate statistical 
weeks, while the red line represent the true return in each year. 
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Figure D2. Annual forecasts of Spring 42 returns produced in the cross-
validation analysis for the exponential model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D3. Annual forecasts of Spring 42 returns produced in the cross-
validation analysis for the allometric model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D4. Annual forecasts of Spring 42 returns produced in the cross-
validation analysis for the composite model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Spring 52 Chinook Forecasts 

 

Figure D5. Annual forecasts of Spring 52 returns produced in the cross-
validation analysis for the linear model (single panel data). X-axes 
indicate statistical weeks, while the red line represents the true 
return in each year. 
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Figure D6. Annual forecasts of Spring 52 returns produced in the cross-
validation analysis for the exponential model (single panel data). X-
axes indicate statistical weeks, while the red line represents the true 
return in each year. 
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Figure D7. Annual forecasts of Spring 52 returns produced in the cross-
validation analysis for the allometric model (single panel data). X-
axes indicate statistical weeks, while the red line represents the true 
return in each year. 



 

108 

 

 

Figure D8. Annual forecasts of Spring 52 returns produced in the cross-
validation analysis for the composite model (single panel data). X-
axes indicate statistical weeks, while the red line represents the true 
return in each year. 
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Summer 52 Chinook Forecasts 

 

Figure D9. Annual forecasts of Summer 52 returns produced in the cross-
validation analysis for the linear model. X-axes indicate statistical 
weeks, while the red line represents the true return in each year. 
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Figure D10. Annual forecasts of Summer 52 returns produced in the cross-
validation analysis for the exponential model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D11. Annual forecasts of Summer 52 returns produced in the cross-
validation analysis for the allometric model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D12. Annual forecasts of Summer 52 returns produced in the cross-
validation analysis for the composite model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Summer 41 Chinook Forecasts 

 

Figure D13. Annual forecasts of Summer 41 returns produced in the cross-
validation analysis for the linear model. X-axes indicate statistical 
weeks, while the red line represents the true return in each year. 
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Figure D14. Annual forecasts of Summer 41 returns produced in the cross-
validation analysis for the exponential model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D15. Annual forecasts of Summer 41 returns produced in the cross-
validation analysis for the allometric model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D16. Annual forecasts of Summer 41 returns produced in the cross-
validation analysis for the composite model. X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Fall Chinook Forecasts 

 

Figure D17. Annual forecasts of Fall returns produced in the cross-validation 
analysis for the linear model (single panel data). X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D18. Annual forecasts of Fall returns produced in the cross-validation 
analysis for the exponential model (single panel data). X-axes 
indicate statistical weeks, while the red line represents the true 
return in each year. 
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Figure D19. Annual forecasts of Fall returns produced in the cross-validation 
analysis for the allometric model (single panel data). X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 
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Figure D20. Annual forecasts of Fall returns produced in the cross-validation 
analysis for the composite model (single panel data). X-axes indicate 
statistical weeks, while the red line represents the true return in 
each year. 

 




