
Statistical Learning Tools for
Heteroskedastic Data

by

Andrew J Henrey

M.Sc., Simon Fraser University, 2012
B.Sc., Simon Fraser University, 2010

Dissertation Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy

in the
Department of Statistics and Actuarial Science

Faculty of Science

c© Andrew J Henrey 2016
SIMON FRASER UNIVERSITY

Summer 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be
reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,
research, education, satire, parody, criticism, review and news reporting is likely

to be in accordance with the law, particularly if cited appropriately.

Approval

Name: Andrew J Henrey

Degree: Doctor of Philosophy (Statistics)

Title: Statistical Learning Tools for Heteroskedastic Data

Examining Committee: Chair: Tim Swartz
Professor

Tom Loughin
Senior Supervisor
Professor

Hugh Chipman
Supervisor
Adjunct Professor

Rachel Altman
Internal Examiner
Associate Professor

Russell Steele
External Examiner
Associate Professor
Department of Mathematics and
Statistics
McGill University

Date Defended: 18 August 2016

ii

Abstract

Many regression procedures are affected by heteroskedasticity, or non-constant variance. A
classic solution is to transform the response y and model h(y) instead. Common functions h
require a direct relationship between the variance and the mean. Unless the transformation
is known in advance, it can be found by applying a model for the variance to the squared
residuals from a regression fit. Unfortunately, this approach additionally requires the strong
assumption that the regression model for the mean is ‘correct’, whereas many regression
problems involve model uncertainty. Consequently it is undesirable to make the assumption
that the mean model can be correctly specified at the outset.

An alternative is to model the mean and variance simultaneously, where it is possible to
try different mean models and variance models together in different combinations, and to
assess the fit of each combination using a single criterion. We demonstrate this approach
in three different problems: unreplicated factorials, regression trees, and random forests.

For the unreplicated factorial problem, we develop a model for joint identification of mean
and variance effects that can reliably identify active effects of both types. The joint model
is estimated using maximum likelihood, and effect selection is done using a specially derived
information criterion (IC). Our method is capable of identifying sensible location-dispersion
models that are not considered by methods that rely on sequential estimation of location
and dispersion effects.

We take a similar approach to modeling variances in regression trees. We develop an
alternative likelihood-based split-selection criterion that has the capacity to account for
local variance in the regression in an unstructured manner, and the tree is built using a
specially derived IC. Our IC explicitly accounts for the split-selection parameter and our
IC also leads to a faster pruning algorithm that does not require crossvalidation. We show
that the new approach performs better for mean estimation under heteroskedasticity.

Finally we use these likelihood-based trees as base learners in an ensemble much like a
random forest, and improve the random forest procedure itself. First, we show that typical
random forests are inefficient at fitting flat mean functions. Our first improvement is the
novel α−pruning algorithm, which adaptively changes the number of observations in the
terminal nodes of the regression trees depending on the flatness. Second, we show that

iii

random forests are inefficient at estimating means when the data are heteroskedastic, which
we address by using our likelihood-based regression trees as a base learner. This allows
explicit variance estimation and improved mean estimation under heteroskedasticity.

Our unifying and novel contribution to these three problems is the specially derived IC.
Our solution is to simulate values of the IC for several models and to store these values
in a lookup table. With the lookup table, models can be evaluated and compared without
needing either crossvalidation or a holdout set. We call this approach the Corrected Het-
eroskedastic Information Criterion (CHIC) paradigm and we demonstrate that applying the
CHIC paradigm is a principled way to model variance in finite sample sizes.

Keywords: Heteroskedasticity, Information Criteria, Random Forest, Regression Tree

iv

Dedication

This work is dedicated to my friends.
I don’t have any friends.

v

Table of Contents

Approval ii

Abstract iii

Dedication v

Table of Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1

2 Literature Review 3
2.1 Linear Regression . 3
2.2 Trees . 5
2.3 Ensemble Methods . 6

2.3.1 Random Forests . 7
2.4 Information Criteria . 8
2.5 Heteroskedasticity . 14

2.5.1 Effects of Heteroskedasticity on Trees 15
2.6 Heteroskedastic Unreplicated Factorials . 16
2.7 Maximum Likelihood and Variance Modeling Methods 19

2.7.1 Trees for Modeling Variance . 20
2.7.2 Bayesian Additive Regression Trees 21

3 Joint Location and Dispersion Modeling for Heteroskedastic Factorials 23
3.1 Introduction . 23
3.2 Previous Approaches . 25
3.3 Examples . 27
3.4 Effect Selection using a Joint location and dispersion model 29

3.4.1 Exhaustive search . 30

vi

3.4.2 Corrected heteroscedastic information criterion 33
3.4.3 Model averaging . 36
3.4.4 Implementation details . 37

3.5 Applications . 39
3.6 Analyses of Simulated Data . 44

3.6.1 Methods . 44
3.6.2 Results . 45

3.7 Discussion and Conclusions . 47

4 HeaRTs : Heteroskedastic Regression Trees 50
4.1 Introduction . 50
4.2 Relevant Literature . 51
4.3 Adding variance splits to a regression tree 55

4.3.1 Splitting on the Mean . 55
4.3.2 Splitting on the Mean and Variance simultaneously 56
4.3.3 Splitting on the Variance . 57
4.3.4 Computational Efficiency of a Series of Splits 58

4.4 Example: A Single Split on Heteroskedastic Data 60
4.5 Choosing the best type of split at a given node 63
4.6 Pruning and the Accumulated Information Algorithm 67
4.7 Final Estimation of the Tree Parameters . 68
4.8 Simulated Examples . 71

4.8.1 Metrics for model performance . 71
4.8.2 Example: Variance Splits . 72

4.9 Real Data Examples . 75
4.10 Conclusion . 76

5 Jar of HeaRTs : An ensemble of Heteroskedastic Regression Trees 81
5.1 Introduction . 81
5.2 Relevant Literature . 82
5.3 Problems with random forests on flat functions 84
5.4 Constructing a Jar . 88
5.5 α−Pruning . 90
5.6 Estimating Final Parameters of the Jar . 93

5.6.1 Part 1 - Estimation of means in trees 94
5.6.2 Part 2 - Estimation of global means and residuals 94
5.6.3 Part 3 - Estimation of tree variance 95
5.6.4 Part 4 - Estimation of data variances 95

5.7 Simulated Examples . 96
5.8 Real Data Examples . 100

vii

5.9 Conclusion . 100

6 Conclusion and Closing Thoughts 103
6.1 Speculation, future work, and potential improvements 104

Bibliography 106

viii

List of Tables

Table 3.1 Proposed models resulting from different analyses presented in the lit-
erature for three different examples described in Section 3.3. Note
that the Lenth/modified Harvey method may be inappropriate for the
Dyestuff example, because discreteness can create residuals of exactly
zero. 28

Table 3.2 Estimated CHIC penalty values for various common location-dispersion
model prototypes in a 24 design. A “*” indicates values that may be
infinite: simulations yield increasingly large means and standard errors
with increasing numbers of runs. The subscript is the standard error
from the simulation. A subscript of “−” indicates that the value was
derived mathematically. 35

Table 3.3 Top five models using ESMA-CHIC and genetic algorithm and for each
model listed in Table 3.1 for the Welding data. Evidence weights and
model ranks are based on ESMA-CHIC. 40

Table 3.4 Top five models using ESMA-CHIC and genetic algorithm and for each
model listed in Table 3.1 for the Injection Molding data. Evidence
weights and model ranks are based on ESMA-CHIC. 40

Table 3.5 Top five models using ESMA-CHIC and genetic algorithm and for each
model listed in Table 3.1 for the Dyestuff data. Evidence weights and
model ranks are based on ESMA-CHIC. 42

Table 3.6 Estimated power (“Pow”) and Type I Error rate (“Err”) for detecting
location effects (“L”) and dispersion effects (“D”) using the ESMA-
CHIC procedure (100 simulations) and the Lenth/modified Harvey test
(5000 simulations). 46

Table 4.1 Runtime summary for all mean or mean-variance splits on a node with
nT nodes . 59

Table 4.2 Runtime summary for all variance splits on a node with nT nodes . . 60
Table 4.3 Runtime summary for a single variance split on a node with nT nodes 60
Table 4.4 MSE and WMSE on the single split example for three types of split. . 63
Table 4.5 Penalty Table for a Mean Split. Penalties were estimated using 20, 000

trials. 65

ix

Table 4.6 Penalty Table for a Variance Split. Penalties were estimated using
20, 000 trials. 66

Table 4.7 Penalty Table for a Mean-Variance Split. Penalties were estimated
using 20, 000 trials. 66

Table 4.8 Performance on the setup with the variance unrelated to the mean.
Averages over 50 runs . 73

Table 4.9 Performance on Ruth and Loughin Setup - Averages over 50 runs . . 74

Table 5.1 Performance of random forest for estimating means from a flat function.
Numbers are averages over 50 simulations from model (5.1), and have
standard error ≤ 0.01. 84

Table 5.2 Performance of the random forest on the elbow function for various
values of nodesize . 97

Table 5.3 Split distribution for four methods on the Elbow Function, fit with
r = 1 (recall that r is the number of randomly selected predictors for
each split). Only X1 is active, and only splits where X1 > 0.5 are
pertinent to the true mean function. 98

Table 5.4 Comparing the Jar of HeaRTs with and without Variance splits. α−pruning
is used on both. Results are averages over 50 datasets. 99

x

List of Figures

Figure 2.1 Histogram of simulated estimates of bias when using the evaluated
log-likelihood on training data as a proxy for the relevant part of the
KL information. A vertical line (barely discernable) is shown at the
average of the bias estimates, 1.1. The standard error of the location
of this line is 0.1. 11

Figure 3.1 Plots of effect evidence weights for three example data sets: Welding
(top), Injection Molding (middle), and Dyestuff (bottom). Larger
evidence weight indicates greater chance of an active effect. 41

Figure 3.2 Half-normal plot of location effects for the Dyestuff example. The
one extreme point in the plot on the left masks visual detection
of potential location effects of smaller magnitude, which are more
evident in the plot on the right. 43

Figure 3.3 Summary of estimated power and type I Error rates from Table 3.6
for detecting location effects and dispersion effects using the ESMA-
CHIC procedure (100 simulations) and the Lenth/modified Harvey
test (5000 simulations). Note that the Lenth test for location effects
has been calibrated to have approximately 0.5 power. 45

Figure 4.1 Plot of toy setup analysing one split. Top pane shows one dataset,
centered at y = 0 with significantly higher variance when X1 > 0.5.
The bottom pane shows the resulting mean models given by the
various types of splits, with a thin line at y = 0 for reference. Worth
noting is that the variance split uses a weighted average of the two
mean estimates, and tends to be a more precise estimate of the mean
than simply averaging across all the data with uniform weight. . . 62

Figure 4.2 An illustration of the painting algorithm. 70

xi

Figure 4.3 Plot of the data distribution where X2 through X5 are related to the
mean and X1 is related to the variance. The top left panel shows
the heteroskedastic relationship between X1 and y. The bottom left
panel shows the relationship between X2 and y, and the top right
panel shows the relationship between the true mean function and
y. The bottom right panel shows a residual vs predicted value plot,
used to assess heteroskedasticity. Here we plot as a ‘residual’ yi−µi
vs the theoretical mean, µi. 77

Figure 4.4 Population Parameters vs Terminal Nodes, plotted for four setups.
The x-axis represents distinct terminal nodes in a tree. The y-axis
represents the average true mean in the terminal node: e.g. if a node
contains the subset 0.47 < X2 < 0.51, then 75% of the y’s have a
true mean of 6 and 25% of the y’s have a true mean of 10, so the
displayed average is 7. The vertical bars at each point represent ±1
true standard deviation, again taking a weighted average of variances
if the terminal node crosses the boundary X1 = 0.5 78

Figure 4.5 Population Parameters vs Terminal Nodes, plotted for four setups
under the univariate design of Ruth and Loughin. The horizontal
axis represents distinct terminal nodes in a tree. The vertical axis
represents the average true mean in the terminal node: e.g. if a node
contains the subset 0.17 < X1 < 0.21, 75% of the y’s have a true
mean of 1, and 25% of the y’s have a true mean of 2 - the displayed
average is 1.75. The vertical bars at each point represent +/− 1 true
standard deviation, again taking a weighted average of variances if
the terminal node crosses the boundary X1 = 0.5 79

Figure 4.6 42 Real Data Sets from Chipman et al. Ratios computed are based
on averages of 50 sets of 90/10 subsamples. Ratios greater than 1
are in favour of HeaRTs. On the homoskedastic datasets, RPAB and
HeaRTs perform similarly. On heteroskedastic datasets, again the
RMSE is similar, but HeaRTs improves upon the RWMSE of RPAB
by a mean of 6.7% and median of 1.5%. Note that HeaRTs does not
appear to give itself an advantage in a RWMSE sense by estimating
the variance and then using it in the RWMSE formula. 80

Figure 5.1 Plot of RMSE vs nodesize under a model with no real effects. Smaller
trees (larger nodesize) gives significantly better performance, con-
trary to the usual claims in the literature. Even with nodesize = n,
the random forests still makes splits and has a RMSE (0.18) worse
than a tree from RPAB (0.13). 85

xii

Figure 5.2 Plot of RMSE vs Max Nodes under a model with no real effects.
Smaller trees (smaller maxNodes) gives significantly better perfor-
mance, contrary to the usual claims in the literature. SettingmaxNodes =
1 is the only way to attain the same RMSE performance (0.13) as
RPAB. 86

Figure 5.3 The plots on the left hand side show the relationship between average
optimal nodesize and the true R2 under a true linear model. Plots on
the right hand side show the relationship between average optimal
nodesize and slope. Top plots are identical to their respective bottom
plot, the only difference is the y-axis. Top plots are shown with
y ∈ [0, 1000], bottom plots are ‘zoomed in’ to y ∈ [0, 50]. We see
that the default value of nodesize (5) relies on the signal-to-noise
ratio (as measured by R2) being appreciably higher than 0. 87

Figure 5.4 A plot of the predicted values by a random forest with m = 5, as
a function of X1, on the elbow function. The true mean function is
drawn in red. The problem with these predictions is that there is
excess variability. The estimates of the mean are relatively unbiased
here: compare to Figure 5.5 . 89

Figure 5.5 A plot of the predicted values by a random forest with m = 200, as
a function of X1, on the elbow function. The true mean function
is drawn in red. The problem with these predictions is that the
estimates of the true mean are biased (too high in the low end, and
too low at the high end). The variability of these estimates is much
lower than Figure 5.4 . 90

Figure 5.6 Plot of RMSE on a linear model by 3 methods. Top plot shows
RMSE vs Slope and bottom plot shows theoretical RMSE vs R-
square. The black curve represents a default random forest. The
blue curve is the random forest with nodesize tuning. The red curve
is the Jar with α−pruning. 97

Figure 5.7 Plot of estimated variance on test data vs X1. The true model has
a variance of 1 for X1 < 0.5 and a variance of 25 for X1 > 0.5. The
Jar is able to estimate the variance to a reasonable degree. As a
consequence it has superior mean estimation. 99

Figure 5.8 Boxplots of random forest, Pruned random forest, and Jar of HeaRTs
on the Chipman bakeoff data. Left pane shows the performance of
the methods in terms of RMSE. We see that applying α−pruning to
the random forest tends to be a slight improvement over the default.
On the right pane, when measuring RWMSE, we see that the full
Jar of HeaRTs is the best performing method. 101

xiii

Chapter 1

Introduction

A common goal in statistics is to model the response y using a set of predictor variables X
and then predict new responses given new data. Another typical goal is to determine which
predictor variables affect the response. Many algorithms designed to solve these problems
are impacted by heteroskedasticity, or non-constant variance [16]. Linear regression, a
popular method used to answer both these questions, exhibits suboptimal variability in the
fitted mean under heteroskedasticity [16]. A classic approach to mitigate heteroskedasticity
is to take a transformation of the responses y [16]. This can be unsatisfactory for a variety
of reasons, two being that this might influence the apparent relationship between the mean
and the response, and that it is not always clear which transformation should be taken.

Our preferred approach to handling heteroskedasticity is to jointly model the mean and
the variance via maximum likelihood. By fitting several models of this type we recast the
problem as a model selection problem. Our solution to the model selection problem is
to use an information criterion (IC). Akaike ([1]; [2]) developed the Akaike Information
Criterion (AIC) which gives an asymptotic result that applies to almost any model. In
particular Akaike’s result states that the maximized likelihood of a model fit with maximum
likelihood on the training data is an overestimate of the fitted likelihood on test data, and
the difference is a penalty that increases with the number of estimated parameters. By
computing the evaluated maximum likelihood and the corresponding penalty values of a
series of models, the AIC can be used as a model selection criterion.

In Chapter 3, we work on a problem of modeling means and variances in unreplicated
factorials. The sample sizes are typically very small (our typical case is n = 16), and an
asymptotic criterion is inappropriate. The ‘Corrected AIC’, or AICc ([63]; [36]) provides an
exact IC under a linear homoskedastic model. We follow the same approach to construct an
IC for the linear heteroskedastic model. Unfortunately in the linear heteroskedastic case the
formula does not appear to have a closed form. Our approach, which we call the Corrected
Heteroskedastic Information Criterion (CHIC), consists of simulating a penalty value for
each possible model. We then use these penalty values to do model selection. We apply

1

our approach to unreplicated factorials, providing the first method to our knowledge that
can directly compare two arbitrary mean-variance models. We show that our method is
a strong improvement over a method recommended in the literature that does not jointly
model the mean and variance.

We apply our same CHIC paradigm to the regression tree algorithm of Breiman et al.
[11]. Regression trees typically recursively partition the data into two groups, fitting a
constant mean function to each group. This results in a variant of the linear homoskedastic
model. Ruth and Loughin [57] show that under heteroskedasticity the standard algorithm to
create pruned regression trees performs suboptimally. They show the regression tree makes
spurious splits in the high variance area of the data, and fails to make useful splits in the low
variance area. They determine that this problem stems from an overly aggressive stopping
rule. A second problem that we identify is that under heteroskedasticity the tree can produce
suboptimal estimates of the mean. Our approach to fixing these issues is to jointly model the
mean and the variance through a new tree structure we call the Heteroskedastic Regression
Trees (HeaRTs). Our tree makes splits on the mean, the variance, or both the mean and
variance simultaneously. The result is a tree that models both the mean and variance as
piecewise constants. The tree is both split and pruned using the CHIC approach. We
demonstrate superior performance to Breiman et al.’s algorithm under heteroskedasticity,
while also improving the runtime.

Ensemble methods are a modern approach to prediction [34]. A popular ensemble is the
Random Forest [9]. The Random Forest constructs a set of K regression trees from pertur-
bations of the data. It predicts new observations by first predicting the response of each
individual tree, and then averaging the predictions of each tree. As Random Forests are
usually constructed from a set of unpruned regression trees, it is unclear how heteroskedas-
ticity affects their performance (the results from Ruth and Loughin apply to pruned trees).
However, lack of pruning exposes Random Forests to a different problem when the signal-
to-noise ratio is low. We show that superior prediction can be obtained by applying some
amount of pruning. Furthermore, we show that under heteroskedasticity, jointly modeling
the mean and variance can lead to improved mean estimation. Our solution is the Jar of
HeaRTs, essentially a Random Forest of HeaRTs plus a development we call α-pruning. We
demonstrate our method on real and simulated data and demonstrate a small improvement
in mean estimation over the classic Random Forest while keeping the same asymptotic
runtime.

2

Chapter 2

Literature Review

2.1 Linear Regression

A common goal of data analysis is to model a column vector of responses (denoted as y)
given some predictor variables (denoted as an n by p matrix X); we call this the training
data. Then, we are interested in predicting new responses given a new matrixX, also known
as the test data. The response y and predictor variables X can be categorical, ordinal, or
continuous. In our work we focus on continuous y and X. A popular and simple method
to fit continuous y given X is linear homoskedastic regression [45]. The model is:

y = Xβ + ε

ε ∼ N(0, σ2).

As usual, β is a p× 1 vector of unknown parameters, ε is a n× 1 vector of errors, and σ2 is
an unknown variance. The least squares solution of β given y and X is:

β̂ = (X ′X)−1X ′y.

This model makes several key assumptions. The model assumes a linear mean function
Xβ, so the model fits better if the true relationship between E(Y) and X is close to
linear. If the true relationship between the mean of y and X is discontinuous or curved,
this model will not fare as well. Secondly, the model for the errors is ε ∼ N(0, σ2): in
this model σ is assumed to be constant throughout the space of X. Data that violate
this assumption are called heteroskedastic data. When the linear homoskedastic model is
applied to heteroskedastic data, the linear homoskedastic model gives unbiased estimates
of β but the estimates themselves are excessively variable—the estimator is not efficient
[45]. The linear homoskedastic model additionally assumes that the errors are normally

3

distributed and that the observations are independent. We will not be focusing on these
two assumptions in our work, and assume they are satisfied.

Instead, our focus is on fitting models when the first two assumptions can be called
into question, with a particular emphasis on heteroskedasticity. By relaxing the constant-
variance assumption of the linear homoskedastic model, one arrives at the linear het-
eroskedastic model, which is:

yi = Xiβ + εi

εi ∼ N(0, σi2),

where σi2 now represents the variance for a given response yi. Define the matrix Σ to be
a diagonal matrix where the diagonal entries Σii are σi2, the variance of yi. To estimate
β under the linear heteroskedastic model, the method of Weighted Least Squares (see e.g.,
[16]) is used. The Weighted Least Squares solution for β is:

β̂ = (X ′Σ−1X)−1X ′Σ−1y.

Unfortunately to use Weighted Least Squares, the σi2s must be known.
The method of Feasible Generalized Least Squares (FGLS, [55]) is an adaptation of

Weighted Least Squares that can be used to estimate both β and σi
2 at the same time.

In general FGLS can be used to estimate a variance matrix that has non-zero off-diagonal
elements. In our model, however, we continue to assume independence between the obser-
vations y and consequently we assume that the off-diagonal elements in Σ are 0. The FGLS
algorithm under these assumptions then reduces to:

1. Initialize Σ to be the identity matrix.

2. Estimate β̂ = (X ′Σ−1X)−1X ′Σ−1y, using our current estimate of Σ.

3. Estimate Σii using (yi −Xiβ̂)2 for all i, using our current estimate of β.

4. Repeat steps 2-3 until there is no appreciable change in the estimates of β or Σ.

The assumption of linearity is also not always met. Many methods have been developed
to adaptively fit the response surface. The common theme among these methods is that
they allow the data to determine the shape of the relationship between y and X, rather than
specifying a rigid model for the relationship. Some example methods include splines [27],
generalized additive models (see, e.g., [34]), nearest neighbor and kernel density estimators
(see e.g. [4], [34]) and Regression Trees [11]. Our main focus is on regression trees, mainly
due to their use as base learners in ensemble methods like bagging [8] and Random Forests
[9].

4

2.2 Trees

Regression trees [11] are piecewise constant linear models with split points determined
adaptively using a “recursive partitioning” algorithm. The algorithm recursively splits data
into pairs of smaller and smaller groups, called “nodes”, creating a tree structure. Typically,
splits are carried out until some stopping criterion is reached on the nodes at the end of
the tree, called “terminal nodes.” The mean response in each terminal node is estimated
from the sample mean of the data within the node. The size of the tree may be reduced
(“pruned”) if a smaller tree improves prediction accuracy. We describe the tree-building
and pruning processes in more detail below.

Breiman et al.’s approach [11] to building a regression tree (which we refer to as RPAB:
Recursive Partitioning Algorithm of Breiman et al.) works as follows. We begin by defining
the responses y and predictor matrix X, where y is a length n vector and X is a n by p
matrix of predictor variables. Assume for the moment that the values within each column of
X are continuous without ties, but the method can also handle categorical variables. RPAB
begins by finding a splitting rule for the full data, which reside in the root node. A splitting
rule consists of a predictor Xj and a rule “is Xij < c” for some value c. This creates an
indicator function that is evaluated on each observation. Note that many different values
of c may result in the same partitioning of the X ′ijs. Conventionally only the values of c
that fall halfway in between two adjacent values in the sorted list of Xj are considered.
This results in n− 1 possible values of c, though for practical reasons this is usually further
reduced. In particular, a ‘minimum node size’ parameter (which we call m) forces the tree
to split at least m observations into each terminal node. The default value of m in the
popular rpart package in R is 7. Thus, for a given Xj , there are a total of n + 1 − 2m
possible values for c. For each of the p(n+ 1− 2m) splits the sample means are estimated
and the resulting sum of squares (SSE) is evaluated.

After finding the minimum SSE split for some predictor Xj and some split point c, the
algorithm sends all the data that satisfy the rule Xij < c to the left child of the root node
of a tree and the data that do not satisfy the rule to the right child. The splitting algorithm
is then applied independently to each child. All allowable splits are examined and the best
one for each child is chosen. The algorithm continues until a stopping rule is met. A default
stopping rule in the rpart package is that the best split must reduce at least 1% of the
original SSE. Obviously the algorithm will refuse to split if the number of observations in a
node is not at least 2m.

Once a full tree has been created, the sample mean for a terminal node serves as the
fitted value for each observation in that node. A new observation is predicted using the
sample mean of the terminal node within which it is evaluated to fall.

This splitting procedure can overfit the training data (e.g., [11]; [56]). After the splitting
algorithm terminates, the pruning algorithm seeks to find an optimal subtree with respect to

5

some optimality criterion based on out-of-sample prediction. The approach used by Breiman
et al. uses crossvalidation to estimate the test error, though there are other methods—a
good discussion is given in [66]. Unfortunately, when the data are randomly subdivided and
individual trees are fit to subsamples of the data, a different set of splits may be selected.
There is therefore no way to measure prediction error on the original tree directly without
using a test set. Instead, Breiman et al. develop an algorithm to estimate the optimal size
of the tree, and then correspondingly restrict the size of the original tree.

Breiman et al.’s pruning algorithm, called cost-complexity pruning, works by assigning
a fixed cost z ∈ [0,+∞] to each terminal node in a tree. Let T be any tree, T̃ be the set of
terminal nodes in T , and let |T̃ | be the cardinality of T̃ . Define the “fitness” of a tree to be
Q(T) = SSE(T) + z|T̃ |, where SSE(T) is the sum of the SSE in the terminal nodes of T .

Let the subtree rooted at h be Th for any interior node h. The fitness of Th with |T̃h|
terminal nodes is defined as: Q(Th) = SSE(Th) + z|T̃h|. The idea is to evaluate this fitness
for several values of z on all possible subtrees Th. For a fixed value of z, Breiman et al.
show that there is a unique subtree that gives the best fitness as long as ties are broken by
choosing the smaller subtree (the result essentially shows that if two trees have the same
fitness, they must be nested). By increasing z from 0 to +∞, Breiman et al. show that a
nested sequence of such optimal subtrees trees TM ≺ ... ≺ T1 ≺ T0 is obtained (T0 denotes
the full tree and TM denotes a tree with no splits). Breiman et al.’s method then chooses
among these optimal trees based on the best crossvalidation performance. Crossvalidation
performance in this context means that the optimal z is estimated via crossvalidation, and
then that penalty ẑ is applied to the original tree. An optional rule is to find the best
crossvalidation performance and then choose the smallest optimal tree with crossvalidation
performance within 1 standard error of optimal (called the 1-SE rule). Torgo [66] argues
against this rule and we do not employ this option in our analysis.

Breiman et al.’s method of minimizing the SSE on a piecewise constant model is not
the only approach to recursive partitioning; there have been many developments on the
metric used to split the trees. Alexander and Grimshaw [3] fit linear regression at the
terminal nodes instead of piecewise constants. The SUPPORT method given in [18] also
uses linear fits at the terminal nodes but additionally forces the estimated mean model to
be continuous. MARS [27] also uses the recursive partitioning framework, and provides a
continuous and polynomial fit using splines.

2.3 Ensemble Methods

Regression trees, while interpretable, are not the best predictors. Breiman [8] shows a
material improvement in efficiency by averaging together the predictions of several trees,
where the individual trees are drawn from bootstrap samples of the data. The critical
problem Breiman identified is that regression trees are “unstable”. In this context, unstable

6

means that if the original data are perturbed in a small way, the resulting model can
change drastically. There are several regression tree models that are quite plausible given
the data, and furthermore they give materially different predictions. The implication is that
the predictions from regression trees are excessively variable. The bootstrap aggregation
(bagging) procedure works in the same vein as model averaging [35] - by averaging the
predictions from a set of plausible models, Breiman showed the overall averaged predictions
are an improvement over the predictions from an individual tree. It is worth noting that
bagging does not reduce bias, only variance [34].

Bagging is an example of a general type of prediction model called an ‘ensemble’. En-
semble methods for regression construct a set of weak learners and then aggregate the
predictions [34]. There are many types of ensembles, including Bagging [8], Boosting [26],
Random Forests [9], Bayesian Additive Regression Trees ([20]), and others. Furthermore,
ensemble methods have been studied in detail and many variants of the original algorithms
exist. Our main focus is on Random Forests. However, because there have been extensions
to BART that adapt to heteroskedasticity, we consider this method also. Random Forests
and BART aggregate regression trees in a slightly different way.

2.3.1 Random Forests

Random Forests are first proposed by Breiman [9]. Breiman [9] observes that gains in
precision of predictions due to bagging are limited due to the fact that prediction errors
from individual trees in the ensemble are somewhat correlated. To see why this is a problem,
consider the following example from [34]: consider B identically distributed, but correlated
random variables with variance σ and positive pairwise correlation ρ. The variance of the
average of B random variables as ρσ2 + 1−ρ

B σ2. The term 1−ρ
B σ2 can always be reduced

close to zero with a large enough B. The relevant term is ρσ2. By keeping ρ small, very
good predictive performance is attainable. The analogue of this is using an average of B
trees created from bootstrap samples of the data.

Like bagging, a random forest is also an average of many regression trees, but Breiman
[9] proposes a method for weakening the correlation among the trees’ prediction errors. To
accomplish this each tree can only use a random subset of the predictor variables at a given
split, and each tree is fit on a bootstrap sample of the data instead of the original data. The
size of the random subset of predictors is a tuning parameter called r. The subset given to
each split is chosen uniformly at random from all

(p
r

)
possible combinations.

Random Forests possess some unique attributes that make them desirable as a prediction
method. First, as each tree is grown on a bootstrap sample of the data, each tree has an
implicit holdout set called the "out-of-bag" sample, consisting of approximately 37% of the
original sample. This built-in test set provides a direct measure of mean squared prediction
error, called the “out-of-bag error”. Breiman proves that this error estimate is unbiased for

7

the test error. As a consequence, the test error can be estimated without needing either
cross validation or a holdout set.

Breiman also hypothesized that Random Forests could be used to measure the impor-
tance of the variables as predictors of the response. He explains the procedure in the context
of classification, although the same principles hold for regression. The idea is to permute the
values of a column Xj , and then compute the ‘Out-of-bag’ error on all observations. Since
Xj and Y now have in all likelihood no actual relationship, the difference in performance
between the original data and the permuted data should tell us something about how useful
Xj was in predicting Y . By ordering the variables in decreasing order of induced error,
we have a ranked list of variable importance. Strobl et al. [60] showed that this method
actually prefers correlated variables over uncorrelated ones and continuous variables over
discrete ones. Additionally they recommend subsampling over bootstrapping. Friedman
and Hall [28] show that subsampling 50% of the data without replacement is comparable
to bootstrapping the full data. Strobl et al. [59] introduce the conditional inference forest,
which they empirically show to have unbiased variable selection. Here unbiased means that
their variable selection gives no preference to correlated predictor variables. The conse-
quence is that it seems preferable to default to using 50% subsampling over bootstrapping
in the implementation of a random forest.

Finally, Random Forests consist of an aggregation of a set of non-interacting trees (two
arbitrary trees in a random forest are generated completely independently from each other).
The relevant consequence of this is that the trees can each be computed on a separate
core/machine and results aggregated together with minimal effort. The procedure is “em-
barrassingly parallel”, that is, using C cores results in a speedup of roughly C (with minimal
overhead). An example of a procedure that is not embarrassingly parallel is boosting, which
works by re-weighting the residuals from the prediction of the first K − 1 trees to create
the Kth tree. Since this algorithm is sequential in nature, there is no advantage to using
multiple cores.

2.4 Information Criteria

In our work in Chapters 3-5, we need a method for selecting models from a set of candidates
with different combinations of explanatory variables and other unusual features. We use
information criteria (IC) to help in this selection process.

Kullback and Leibler [39] derived a framework for finding the information lost when a
model g(x, θ) is used to approximate the true distribution f(x) for a random variable X.
The well known Kullback-Leibler (KL) information is:

∫
x
f(x) ln f(x)

g(x, θ) .

8

For the purposes of model comparison, the formula is usually split up into two terms:

∫
x
f(x) ln f(x)−

∫
x
f(x) ln g(x, θ).

By observing that the first term of the formula contains elements that depend only on the
truth (not the model, g(x, θ)), we typically seek to evaluate only the second term. We call
this the relevant part of the KL information. The relevant part can be expressed as:

Ef [ln(g(x, θ))], (2.1)

where Ef indicates that the expectation is taken under the truth.
Akaike [1] shows under some regularity conditions it is possible to approximate (2.1)

with lnL(θ̂|Y), the maximized log-likelihood of a model fit via maximum likelihood. Akaike
showed that this is a biased estimator, but the asymptotic bias is given by ν, the number of
parameters that were estimated by maximum likelihood. Akaike’s result does not specify
a model for g, which means that AIC can be applied to any model where the regularity
conditions apply. For ‘historical reasons’ [14] information criteria are typically multipled by
−2. Akaike’s formula is then:

AIC(g(x, θ)) = −2 lnL(g(x, θ)) + 2ν,

where L(g(x)) is the maximized log-likelihood of g(x, θ) on the training data.
A nice explanation of the process to derive AIC is found in Cavanaugh [17], which we

describe here. As before we let f denote the distribution of the true generating model and
we let θ represent the parameters of an approximating model. We also define θf to be the
parameters of the true model. Cavanaugh begins by writing the relevant part of the KL
information as:

d(θ, θf) = Ef{−2 lnL(θ|Y)}, (2.2)

where as before Ef is the expectation under the generating model and L(θ|Y) is the like-
lihood of the approximating model. After fitting the model via maximum likelihood, θ̂ is
the maximum likelihood estimate of θ. The goal is to evaluate:

d(θ̂, θf) = Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂. (2.3)

Unfortunately we do not know the distribution Ef and thus we cannot estimate this
quantity directly. Instead (2.3) is approximated with −2 lnL(θ̂|Y), which is the maximized
likelihood of the model (a quantity that is possible to evaluate). The asymptotic bias of
this estimator is:

Ef{−2 lnL(θ̂|Y)} − Ef{Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂}. (2.4)

9

Akaike estimated this bias to be twice the dimension of θ.
Akaike’s result can be corroborated empirically with a simple simulation. Let the true

model and fitted model be given as:

Y ∼ N(µ, 1),

and the true value of µ = 0. The goal is to directly estimate the bias in the maximized
log-likelihood when we fit this. Since we are fitting the correct model to these data, we could
appeal to the chi-square distribution and obtain an answer mathematically. The point of
this setup is to demonstrate the simulation-based approach. The simulation-based approach
is useful in more complicated circumstances when we cannot write down a formula for the
expected bias.

Evaluating (2.1) by simulation requires knowing f(x), which in this example we do. The
simulation approach directly evaluates lnL(θ̂|Y) and lnL(θ|Y)

∣∣
θ=θ̂, and takes the difference

to approximate the bias (note that we have taken out the factor of −2). We then repeat
this process over multiple datasets drawn from f to approximate an expectation under f .
Our algorithm for approximating the bias of this model is:

1. We draw a sample of size 1000. We call this sample the training data.

2. We estimate µ̂ from the data using maximum likelihood with the usual estimator
µ̂ = n−1

∑
i∈train

yi. In our setup, σ is known to be 1.

3. We find the maximized log-likelihood on the training data. This amounts to evaluating

Q1 =
∑

i∈train

(
−1

2 ln 2π − (yi − µ̂)2

2

)

which is an estimate of lnL(θ̂|Y).

4. We draw a new dataset from the true model of the same size as the training data. We
call this new sample the test data. We evaluate the likelihood on the test data, that
is:

Q2 =
∑

i∈test

(
−1

2 ln 2π − (yi − µ̂)2

2

)
which is an estimate of Ef{lnL(θ|Y)

∣∣
θ=θ̂}.

5. The difference between Q1 and Q2 is an unbiased estimate of the bias when fitting
this model.

6. We repeat these steps several times to obtain the distribution of Q1 − Q2, and to
precisely estimate Ef (Q1 −Q2).

10

In Figure 2.1, we see the distribution of Q1 − Q2. It is worth noting that, relative to
the bias, the amount of variance is relatively large. To estimate the bias using this method
we use 100, 000 repetitions of the aforementioned algorithm. The estimated standard error
is 0.1. This simulation estimates the bias with a 95% confidence interval of 1.1 + / − 0.2
(Akaike’s approximate result is that the bias should be 1). In our experience it often takes
many simulation replicates to approximate the bias to a sufficiently low standard error.
The approach we take to approximate IC in nonstandard cases therefore relies heavily on
storing computed penalty values in tables. We do on-the-fly penalty value simulation only
when necessary (discussed later during Chapter 3).

Histogram of Expected Bias when fitting a model
 with 1 estimable parameter

Estimated Bias

F
re

qu
en

cy

−150 −100 −50 0 50 100 150

0
50

00
10

00
0

15
00

0
20

00
0

Figure 2.1: Histogram of simulated estimates of bias when using the evaluated log-likelihood
on training data as a proxy for the relevant part of the KL information. A vertical line
(barely discernable) is shown at the average of the bias estimates, 1.1. The standard error
of the location of this line is 0.1.

11

AIC is unhelpful when samples are small. The AIC penalty approximation works asymp-
totically, and the true bias can be heavily underestimated by the AIC formula in small
samples [13]. There are some developments to extend Akaike’s ideas to small samples. In
general, the formulations of the small sample bias are model-dependent. Takeuchi [64] de-
velops a criterion (TIC) that works under model misspecification, however Burnham and
Anderson [13] point out that relatively large sample sizes are required to estimate the terms
to sufficient accuracy.

The small sample version of AIC for linear regression was initially proposed by Sug-
iura [63]. Hurvich and Tsai [36] named this quantity the “corrected AIC”, or AICc. They
demonstrated the superiority of AICc over AIC in small samples and additionally recom-
mend it for use on time series models and nonlinear regression. The penalty in AICc has
the form 2n/(n− ν− 1), where ν is the number of estimated parameters. This is asymptot-
ically equivalent to Akaike’s penalty (observe that by setting n >> ν, the denominator is
dominated by n, and the fraction approaches 2) but becomes much larger when the number
of parameters in a model is an appreciable fraction of the sample size.

To derive the AICc formulation in the linear regression framework, we return to the
derivation by Cavanaugh. Cavanaugh assumes the generating model is of the form:

y = Xβf + ε ε ∼ N(0, σf 2I)

and the candidate model is of the same form, in particular:

y = Xβ + ε ε ∼ N(0, σ2I).

The log likelihood for the candidate model is given by:

lnL(θ|Y) = −n2 ln 2π − n

2 ln σ2 − 1
2σ2 (y −Xβ)′(y −Xβ).

where θ = (β, σ2). Now we need to evaluate (2.4) using this form of the likelihood.
Ef{lnL(θ̂|Y)} can be interpreted as the average maximized log-likelihood of the candidate
model over all data sets.

Cavanaugh gives equation (2.5) directly. Here we provide the derivation:

Ef{−2 lnL(θ̂|Y)} = −2Ef
{
− n

2 ln 2π − n

2 ln σ2 − 1
2σ̂2 (y −Xβ̂)′(y −Xβ̂)

}

Ef{−2 lnL(θ̂|Y)} = n ln 2π + Ef
{
n ln σ̂2}+ Ef

{ 1
σ̂2 (nσ̂2)

}

Ef{−2 lnL(θ̂|Y)} = n ln 2π + Ef
{
n ln σ̂2}+ n (2.5)

12

We turn to evaluating Ef{Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂} on the linear homoskedastic model.

First we evaluate the inner expectation (conditional on one dataset drawn from f). Again
Cavanaugh simply gives equation (2.6), and we show here the derivation:

Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂ = −2Ef

{
− n

2 ln 2π − n

2 ln σ2 − 1
2σ2 (y −Xβ)′(y −Xβ)

}∣∣
θ=θ̂

Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂ = n ln 2π + n ln σ̂2 + Ef

{ 1
σ2 (Y −Xβ)′(Y −Xβ)

}∣∣
θ=θ̂

note that since (Y −Xβ)′(Y −Xβ) is a quadratic form, Ef
{

(Y −Xβ)′(Y −Xβ)
}∣∣
θ=θ̂ =

nσf
2 + (Xβ −Xβ̂)′(Xβ −Xβ̂), and after simplifying we arrive at:

Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂ = n ln 2π + n ln σ̂2 + n

σf
2

σ̂2 + 1
σ̂2 (Xβ −Xβ̂)′(Xβ −Xβ̂). (2.6)

Now we need to take the expectation of (2.6) with respect to Ef , i.e., with respect to the
distribution of the MLEs. Cavanaugh shows the third and fourth terms reduce to inverse
chi-square random variables (note the caveat that the expectation of the inverse chi-square
is not defined if the degrees of freedom is fewer than 2). This yields:

Ef{Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂} = Ef{n ln σ̂2}+ n ln 2π + n2

n− ν − 2 + np

n− ν − 2 (2.7)

Taking the difference of (2.7) and (2.5) yields the AICc formulation.
Following the same framework as Cavanaugh, we can write the linear model using a

diagonal variance Σ and compute the same two terms. This is the linear heteroskedastic
model assuming independence between observations. Making these changes results in:

Ef{−2 lnL(θ̂|Y)} = n ln 2π + Ef
{

ln |Σ̂|
}

+ n (2.8)

and

Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂ = n ln 2π + ln |Σ̂|+ Tr(Σ̂−1Σf) + (Xβ −Xβ̂)′Σ̂−1(Xβ −Xβ̂). (2.9)

Evaluating the expectation of (2.9) and taking the difference gives us the bias for the
heteroskedastic model:

13

Ef{−2 lnL(θ̂|Y)} − Ef{Ef{−2 lnL(θ|Y)}
∣∣
θ=θ̂} =

Ef
{

Tr(Σ̂−1Σf) + (Xβ −Xβ̂)′Σ̂−1(Xβ −Xβ̂)− n
}
. (2.10)

In Chapter 3, when we discuss unreplicated factorials, the number of parameters is
often an appreciable fraction of the sample size. AICc is not fully suitable for our problem
because infinite or monotone likelihoods can be produced for models where the total number
of parameters is considerably fewer than n−1. Using AICc on our problem always results in
selecting one of the pathological cases of Loughin and Rodríguez [44] as the best model (this
is explained further later in this Chapter). Even eliminating these models from consideration
is not adequate, because in pilot studies we found that in many data sets simulated from
normal distributions, a near-pathological model can be found for which the maximized log-
likelihood is much smaller than the penalty adjustment can account for. Essentially the
problem is that our model is heteroskedastic linear regression, which does not fit under the
AICc framework, and under our setup the bias actually depends on the values of the true
parameters. We simulate values from (2.10) instead of computing AICc.

In Chapters 4 and 5, we discuss regression tree models, which are a type of linear regres-
sion model, under heteroskedasticity. Making a split on a regression tree involves optimizing
over the split location. Many different pairs of piecewise constants are considered, and we
choose the one that optimizes some criterion. We choose the criterion to be maximum like-
lihood, but the split point parameter and our introduction of variance parameters means
that we cannot apply AICc. Our solution is to develop our own custom IC by simulating
the entire splitting process. We generate data from a null distribution, find the best split,
and then approximate the expected bias in the training set likelihood by evaluating (2.10)
on each of the three types of splits.

2.5 Heteroskedasticity

Gelfand [30] shows that heteroskedasticity is relatively common in real data sets. She an-
alyzed 42 data sets from Chipman et al. [20], noting that the datasets did not appear
to be selected for reasons related to heteroskedasticity. Gelfand performs an analysis on
each data set to determine whether it appears to exhibit a variance that changes with the
mean. Because these data sets had numerous variables and potential nonlinearity, she first
fits a random forest to each data set to remove the mean trend. She then assesses the
relationship between the predicted values and the squared residuals, a procedure recom-
mended by Carroll and Ruppert[16]. Two important results emerged from these analyses.
First, Gelfand detected heteroskedasticity in 25 of the 42 datasets. Although it is not clear
whether this proportion is an unbiased estimate of the true proportion of all data sets that

14

exhibit heteroscedasticity, it is clear that heteroscedasticity is a common problem in real
data. The second observation is related to the magnitude of heteroskedasticity. Gelfand
computes the ratio between the average absolute residual of the highest 10% of predicted
means and the average absolute residual of the smallest 10% of predicted means. We will
refer to this quantity in general as the Gelfand ratio. This ratio is roughly measuring how
much the error variance changes as a function of the mean. Gelfand showed that on the
data sets identified as heteroskedastic, the median ratio was 3.08 with a first quartile at
2.00 and a third quartile at 5.51. We take from this the intuition that these are reasonable
amounts of heteroskedasticity to see in real data. Our simulations will typically showcase
a standard deviation ratio of 5 : 1.

2.5.1 Effects of Heteroskedasticity on Trees

Heteroskedasticity has been studied in the context of regression trees. Ruth and Loughin
[57] identify that the Breiman et al. algorithm for regression trees tends to make poor split
selection choices under heteroskedasticity. In particular they use a simple simulation model
to gain better understanding of the splitting performance of the popular R implementation
of Breiman et al.’s regression tree rpart. The rpart algorithm uses a default minimum
node size m of 7 and a forward stopping rule that requires each split to reduce at least 1%
of the overall SSE.

The general setup of the Ruth and Loughin work considers a single predictor variable x
and a response y. The response y is related to x through a 10-step increasing mean function;
in particular:

x = 1, 2, ...1000,

µx = d x100e,

y = µx + εx,

where µx is the mean at x. The model for εx is

εx =

N(0, 12), x ≤ 500

N(0, s2), x > 500
s = 1, . . . 10

Ruth and Loughin demonstrate the critical issue with regression trees under this setup
as s gets large. The problem is that the tree prefers to make splits in the high variance
area (x > 0.5), to the exclusion of splits in the low variance area (x < 0.5). This is because
the high variance area has more overall SSE to be reduced. Thus rpart ignores multiple
legitimate splits in the low variance area, which should be objectively quite easy to find
because the signal-to-noise ratio in the low variance area is quite a bit higher.

15

We have mentioned that rpart makes a split only if it reduces the overall SSE by at
least 1% of the total. Ruth and Loughin demonstrate cases where even if the variance in
the low-variance area is set to be 0, the default implementation still cannot find the splits.
A solution is to adjust the settings to allow the tree to split fully, requiring no improvement
in SSE to continue to make splits. However, this is not enough to fix the problem. The
cost-complexity pruning algorithm routinely removes the splits in the low variance area.

2.6 Heteroskedastic Unreplicated Factorials

In many research and quality-improvement endeavors, experiments are run using unrepli-
cated full- or fractional-factorial designs at 2 levels per factor (generically referred to here
as 2k designs, where k is the number of factors when the design is a full factorial; see
[69]). These experiments are generally intended to identify factorial effects that influence
the mean response. This identification is made difficult by the fact that the natural full
model is saturated, but many methods have been proposed to identify mean and variance
effects regardless (see [32] for a review of methods).

There may furthermore be an interest in estimating process variance and in determining
which factorial effects influence dispersion, particularly in quality improvement settings.
While unreplicated experiments are obviously ill-suited for variance estimation, efforts have
nonetheless been made to try to extract this information from the data. Box and Meyer [7]
developed a seminal procedure to test for “dispersion effects” in data from a 2k experiment
using residuals from a given location model. Several authors have followed this approach
by developing improvements or extensions to the Box-Meyer test (e.g., [67]; [5]; [12]; [47]).
For a nice review of these procedures see [15].

All of these procedures use the same basic approach of first fitting a selected location
model, and then using residuals from the location model to test for dispersion effects. The
resulting tests are well known to be sensitive to the starting location model, so that different
location models can yield completely different impressions regarding which dispersion effects
are important ([53]; [12]; [47] [48]; [54]). In particular, there is potential for confounding to
occur between location and dispersion effects: two active location effects that are excluded
from the location model can impart a spurious dispersion effect or can mask a real dispersion
effect at their interaction ([53], [47]). Thus, it is critical to have the correct model for
location before attempting to identify dispersion effects. However, all of the procedures for
identifying location models in unreplicated factorial designs are prone to missing small- or
moderate-sized real effects [32]. In Section 3.3 we show several studies that have each been
analyzed by different authors; in two of these, different “best” models have been identified
from the same set of data.

Sequential approaches begin with some method for identifying location effects. They
then use the chosen location model to form residuals, which are used for identifying disper-

16

sion effects. The methods for identifying the two models are generally completely separate;
that is, typical dispersion-effect identification methods assume that the correct location
model has been identified, without concern for possible error in the model. We briefly
review one procedure for identifying location effects, and three procedures for identifying
dispersion effects. These methods are chosen based on performance and apparent popular-
ity.

We present details from the perspective of a full 2k factorial experiment, although iden-
tical results hold for any fractional factorial using n = 2k runs in the equivalent design. Let
W be the n × n design matrix including all main effects and interactions. We use +1 or
just + to denote the high level of a factor and −1 or − to represent the low level. Consider
a model consisting of p location effects and q dispersion effects, with p, q = 0, 1, . . . , n− 1.
Denote the corresponding sets of location and dispersion effects by L and D, respectively,
so that a joint location-dispersion model can be represented by (L,D). Let X ⊆W be an
n × (p + 1) matrix containing the columns corresponding to the effects in L, and U ⊆W
be an n× (q+ 1) matrix containing the columns corresponding to the effects in D. Both X
and U contain a lead column of ones.

The Lenth test [40] is found by Hamada and Balakrishnan [32] to be in the class of best
methods for identifying location effects in unreplicated 2k factorials, and it is notable for
its simplicity. Assume that responses arise from the model

Y = Xβ + ε

where Y is the n × 1 vector of responses, β = (β0, β1, . . . , βp)′ is a vector of parameters
corresponding to location effects, and ε are i.i.d. errors. We assume that ε ∼ N(0, σ2I),
where 0 is an n×1 vector of zeroes, σ2 is the error variance, and I is an n×n identity. Note
that the Lenth procedure assumes that no dispersion effects are present. This is typical of
location-effect identification methods.

Location effects are estimated using ordinary least squares. Because of the orthogonal-
ity of the columns in W , estimated location effects from the saturated model X = W ,
β̂1, . . . , β̂n−1, are independent when there are no dispersion effects. Thus, the estimates for
a particular column of X do not depend on which other columns from W are in X. With
this in mind, Lenth calculates a “pseudo standard error” (PSE) for the effect estimates
as follows. Assuming effect sparsity (see, e.g., [69]), suppose that all estimated effects of
median magnitude and lower are not from active effects. Then the PSE is calculated as

PSE = 1.5 ∗median{j:|β̂j |<2.5s0}|β̂j |,

where s0 = 1.5∗medianj |β̂j |. The statistic tj = |β̂j |/PSE is used to test H0 : βj = 0 for each
j = 1, . . . , n− 1. Lenth suggests comparing tj to a t(n−1)/3 distribution, although Loughin
[41] and Ye and Hamada [70] find better critical values by simulation.

17

Box and Meyer [7] use residuals from a chosen location model, assumed known, to
identify active dispersion effects. Let r1, . . . , rn be the residuals from any model fit, Ŷ =
Xβ̂. Assume that U has only one column in it besides the lead column of ones, and suppose
that it corresponds to column d ofW . Let d+ and d− be the sets of observations for which
wid = +1 and wid = −1, respectively. Then the Box-Meyer statistic is

Fd =

∑
i∈d+

r2
i∑

i∈d−
r2
i

.

Although this statistic looks like it should have an F distribution, the residuals in the nu-
merator and denominator are not necessarily independent. Thus, the sampling distribution
of Fd is not clear.

Bergman and Hynén [5] amend the Box-Meyer test by augmenting the location model
in such a way that the residuals contained in d+ and d− are independent. The augmented
model consists of the original model plus all effects formed by the interaction of these
effects with d. The Bergman-Hynén test statistic, DBH

d , is structurally identical to Fd,
except that it uses the residuals from the augmented location model rather than the original
model. Assume that the original location model is correct, so that it contains all active
location effects. Also assume that d is the only possible dispersion effect. Then DBH

d

has an F distribution with degrees of freedom depending on the number of effects not in
the augmented location model. Note that this may be different for each d. Pan [53] and
McGrath and Lin [47] show that this test can have inflated type I error rate or diminished
power when the original location model fails to identify location effects of moderate size.
Loughin and Malone [42] describe a testing approach based onDBH

d that provides a measure
of safety against this phenomenon.

Harvey [33] proposes a method for estimating dispersion effects in a general linear re-
gression setting. Let u′i, i = 1, . . . , n be the ith row of U . Harvey uses the model

σ2
i = exp(u′iδ), (2.11)

where δ = (δ0, δ1, . . . , δq) is a (q + 1) × 1 vector of unknown parameters representing dis-
persion effects. From this model, he writes log r2

i = u′iδ + vi, where vi = log(r2
i /σ

2
i), and

by analogy with a linear model, uses least squares to estimate δ. In the context of a 2k

factorial design, Brenneman and Nair [12] show that this results in

δ̂d = log


∏
i∈d+

r2
i∏

i∈d−
r2
i


1/n

= n−1

∑
i∈d+

log r2
i −

∑
i∈d−

log r2
i

 .

18

Brenneman and Nair [12] study the bias in several dispersion-effect identification meth-
ods. They show that all are biased, with the severity of bias depending on whether an
additive or a log-linear model is assumed for the variances. They also show that the bias
in the Harvey method is reduced or eliminated when the residuals are computed from the
augmented location model used by Bergman and Hynén [5]. They refer to this as the “mod-
ified Harvey” method and recommend it for general use because its bias is limited to certain
specific cases.

2.7 Maximum Likelihood and Variance Modeling Methods

Regression trees are normally estimated using what amounts to ordinary least squares.
However, they have also been recast in a maximum likelihood framework, which then per-
mits their later extension to other models. Su et al. [62] build a regression tree based on
the assumption that the data are drawn from a normal distribution with homoskedastic
variance structure. They demonstrate that their tree uses the same splits as the RPAB
algorithm, and thus the only difference is in the pruning method, which we describe next.
For the sake of simplicity, we assume that AIC is to be used in the algorithm, but any IC
could be used instead.

Let Th be the subtree rooted at internal node h, let T̃h be the set of terminal nodes
in subtree h, let |T̃h| be the cardinality of the set of terminal nodes in subtree h, and let
L(Th) be the log-likelihood of model rooted at Th. They give the following formula for the
fitness of a subtree, which is a likelihood based analogue of Breiman et al’s cost complexity
pruning [62]:

AIC(Th) = −2L(Th) + 2(|T̃h|+ 1)

This is connected this to AIC by observing the second term is supposed to be related to the
number of parameters in the model. In this case, |T̃h| is the number of separate means that
are fit, and one term is added for the common variance. Although Su et al. observe that
the split point, s, is obtained via maximum likelihood, they omit it from the AIC formula.
We discuss this omission in detail during Chapter 4. For the time being we use the term
‘AIC’ to indicate the result of this equation rather than a true AIC that recognized all the
parameters in the model. The maximized likelihood is simply a function of the SSE on the
training data, and they write:

AIC(Th) = c+ n · ln
∑
t∈T̃h

∑
yi∈t

(yi − ȳt)2 + 2|T̃h|

19

where they sum over the terminal nodes with t ∈ T̃h and over the observations inside a
given terminal node during yi ∈ t. Note that c is a constant across all models and discarded
for the purposes of model comparison.

Now that an AIC can be evaluated on a given subtree, the approach proceeds as follows.
Define the full tree as T0, and consider subtrees Th for an internal node h. The goal is to
prune the node h such that removing the subtree rooted at node h yields a tree T0 − Th
with the best AIC. This is equivalent to pruning the subtree Th with the maximum AIC
value. By removing this subtree we arrive at T1 = T0 − Th. We use the same approach to
find a new weakest link and obtain a sequence of trees : T0, T1...TM , where TM is the tree
containing no splits.

Choosing between the various trees is considered a model selection problem ([66]). Su
et al. choose the best tree based on a holdout set, despite using an IC approach. The mean
squared prediction error (MSPE) evaluated on a test set should be an unbiased estimate
of each model’s true MSPE. However, rather than selecting the model with the best SSE
or MSPE on the test set, they strangely opt to add an additional IC penalty to the SSE.
IC penalties correct a bias that results from using the maximized log-likelihood from the
training set as a measure of the corresponding expected log-likelihood. This bias is not
present when the same quantity is evaluated on a test set. Therefore, it is not clear why an
additional penalty term is applied in their pruning procedure. The result of this unnecessary
correction is that their pruning procedure should systematically favour models that are
smaller than they need to be

Finally, Su et al. show some simulations where their method performs better than RPAB
and one where it performs worse. It comes as no surprise that under their simulation setups,
their method outperforms RPAB on models where the optimal number of splits is small,
and performs materially worse when approximating the true mean function requires a large
regression tree.

In general, we agree with the principle that a likelihood-based tree-fitting algorithm is
an appealing substitute for the standard splitting and pruning approach based on SSE. In
Chapter 4 we also use Maximum Likelihood to choose splits among variables, and we also
use IC’s to determine which subtrees to prune. The difference is in the details: when we
model means in the tree, we apply the IC directly on the training data, eliminating the need
for a holdout set. We also use a different formula for the IC (ours is simulated), and ours
takes into account the splitting process (whereas theirs ignores it in the penalty formula).

2.7.1 Trees for Modeling Variance

Su et al. [61] give an approach for modeling the variance with regression trees. The
approach is comparable to the early work on heteroskedastic factorials, in the sense that
it assumes that the mean function is correctly specified before working on the variance
model. They claim “In practice, variance modeling is a procedure that comes after the

20

mean regression model fitting”; we argue in Chapters 3-5 that modeling the mean and
variance simultaneously is preferable.

Their approach consists of creating a regression tree that models the squared residuals
after a suitable mean model is found. For their purposes they demonstrate the approach
on linear regression, though there is no particular restriction; any mean model suffices.
They follow the usual RPAB approach: fit a tree to the squared residuals, construct a
nested sequence of subtrees via pruning, and choose the ‘best’ one via cross validation. An
interesting and promising approach they take is that they allow splits to either be of the
form “Is Xj ≤ c”, or of the form “Is µ̂ < c”, where µ̂ represents the estimated mean function.
The advantage of this is that this tree can easily model a common type of heteroskedasticity,
where the variance is related to the mean [16].

Pruning is done in the spirit of Breiman et al. by defining the objective function
Gα(Th) = G(Th) − α|Ih|, where Ih is the number of interior nodes in some subtree Th,
α > 0 is a tuning parameter, and G(Th) is the sum of the SSE of the squared residuals in
the terminal nodes of Th. They show that for a split, the relevant fraction to consider is
G(Th)
|Ih| . By ordering the interior nodes by this quantity (higher being better), one arrives at

a nested sequence of trees considered to be optimal for their size.
To choose among the trees of various sizes, they propose to use a holdout set and evaluate

the likelihood function. They show that the log-likelihood is, up to an additive constant:

Lp = −1
2

∑
t∈T̃h

nt ln σ̂2
t

where t represents a terminal node. We have argued before that a principled approach is
to choose the model that produces the maximum evaluated log likelihood on the test data.
Su et al. however propose to choose the best tree via ‘BIC’. In particular, they evaluate:

−2Lp + ln(n)(p+ |T̃h|+ 1)

for every model, and choose the one with the minimum value. We have argued before that
this approach unnecessarily chooses smaller trees.

2.7.2 Bayesian Additive Regression Trees

Bayesian Additive Regression Trees (BART) ([20]) is an alternative, Bayesian approach to
the Random Forest. The general concept is to model up the response y as a sum of the
predictions from K different trees. In a sense this means that each tree tries to model
the residuals from the remaining K − 1 trees, much like the generalized additive models
[34]. One of the nice features of the Bayesian approach (compared to Random Forests) is
the ability to construct credible intervals and predictive intervals. The main drawback of

21

the Bayesian approach is speed, although this issue is mitigated to an extent with a good
implementation [37].

Bleich [6] improved BART by incorporating the ability to model variance effects in
a procedure he calls HBART. BART explicitly estimates a single variance σ2 across all
observations in the training data. When the data are heteroskedastic, this leads to poor
credible and predictive intervals (too wide in the low variance area, too narrow in the high
variance area) [6]. BART also suffers from some of the same problems described in Ruth
and Loughin [57] in that it prefers to make excessive splits in the high variance area [6]. This
problem can corrected by additionally modeling the variance as well as the mean. Bleich’s
model for the variance is a simple log linear model:

ln σi2 = ln σ2 + ziγ

where zi is a column vector of covariates and γ is a row vector of coefficients. Bleich’s main
argument in favour of modeling the variance is to provide better posterior credible/predictive
intervals, not necessarily better mean estimation. However, Bleich does note improved
performance in an RMSE sense using a simulated example with a single variable. The
Gelfand ratio in his simulation setup is about

√
270 = 16.4, which is materially above

Gelfand’s third quartile of effect size. Bleich further notes that in a different, 3 variable
setup where a substantial component of the variance is unrelated to the mean, his HBART
method outperforms BART in a RMSE sense. In Chapters 4 and 5 we consider a similar
simulation model where the variances of the responses are not directly related to the means.

22

Chapter 3

Joint Location and Dispersion
Modeling for Heteroskedastic
Factorials

3.1 Introduction

In many research and quality-improvement endeavors, experiments are run using unrepli-
cated full- or fractional-factorial designs at 2 levels per factor (generically referred to here
as 2k designs, where k is the number of factors when the design is a full factorial; see
[69]). These experiments are generally intended to identify factorial effects that influence
the mean response. This identification is made difficult by the fact that the natural full
model is saturated, but many methods have been proposed to accomplish this goal (see [32]
for a review of methods).

There may furthermore be an interest in estimating process variance and in determining
which factorial effects influence dispersion, particularly in quality improvement settings.
While unreplicated experiments are obviously ill-suited for variance estimation, efforts have
nonetheless been made to try to extract this information from the data. Box and Meyer [7]
developed a seminal procedure to test for “dispersion effects” in data from a 2k experiment
using residuals from a given location model. Several authors have followed this approach
by developing improvements or extensions to the Box-Meyer test (e.g., [67]; [5]; [12]; [47]).
For a nice review of these procedures see [15].

All of these procedures use the same basic approach of first fitting a selected location
model, and then using residuals from the location model to test for dispersion effects. The
resulting tests are well known to be sensitive to the starting location model, so that different
location models can yield completely different impressions regarding which dispersion effects
are important ([53]; [12]; [47] [48]; [54]). In particular, there is potential for confounding to
occur between location and dispersion effects: two active location effects that are excluded

23

from the location model can impart a spurious dispersion effect or can mask a real dispersion
effect at their interaction ([53], [47]). Thus, it is critical to have the correct model for
location before attempting to identify dispersion effects. However, all of the procedures for
identifying location models in unreplicated factorial designs are prone to missing small- or
moderate-sized real effects [32]. In Section 3.3 we show several studies that have each been
analyzed by different authors; in two of these, different “best” models have been identified
from the same set of data.

In all of these previous analyses, location effects are selected based on one criterion and
dispersion effects based on another. There is no direct, objective measure that allows one
to compare a model containing one set of location and dispersion effects to a model with a
different combination of these effects. The methods in this paper address this shortcoming.

As an alternative to sequential model fitting, we propose in Section 3.4 to use a joint
location and dispersion model for factor screening. This model results in a single likelihood
that is used to estimate location and dispersion effects simultaneously. The maximized
likelihood is then used for comparing models and selecting effects through an information
criterion. Information criteria whose justification is based on asymptotic approximations
are of dubious utility in this problem, where the potential number of parameters is roughly
twice the number of observations. We therefore develop an exact criterion in Section 3.4.1
based on the corrected Akaike information criterion (AICc) of Hurvich and Tsai [36]. The
form appears somewhat complex, so we simulate the penalty values for different model
structures.

The space of all possible models is large, because the presence of dispersion effects can
change the ordering of the estimated location effects. When k ≤ 4, an exhaustive search of
the model space is feasible; otherwise we propose using a genetic algorithm to search the
space for good-fitting models. Model averaging techniques ([35]; [13]) provide a measure
of the certainty associated with the importance of each location and dispersion effect and
with each model combination. In Section 3.5 our joint modeling procedure is applied to the
examples introduced in Section 3.3. In each case the procedure provides clear, interpretable
results regarding which effects are important and which models are best. In one example,
we identify a “best” model that had not previously been detected. Finally, in Section 3.6
we present results of a small simulation study comparing the joint modeling approach with
a combination of popular location- and dispersion-effect identification techniques. The sim-
ulations show that a particular sequential approach for identifying location and dispersion
models has slightly inflated type 1 error rate for identifying dispersion effects. The new
procedure experiences a substantially smaller type 1 error rate for dispersion effects while
maintaining uniformly better power.

24

3.2 Previous Approaches

Sequential approaches begin with some method for identifying location effects. They then
use the chosen location model to form residuals, which are used for identifying dispersion
effects. The methods for identifying the two models are generally completely separate; that
is, typical dispersion-effect identification methods assume that the correct location model
has been identified, without concern for possible error in the model. We briefly review one
procedure for identifying location effects, and three procedures for identifying dispersion
effects. These methods are chosen based on performance and apparent popularity.

We present details from the perspective of a full 2k factorial experiment, although iden-
tical results hold for any fractional factorial using n = 2k runs in the equivalent design. Let
W be the n × n design matrix including all main effects and interactions. We use +1 or
just + to denote the high level of a factor and −1 or − to represent the low level. Consider
a model consisting of p location effects and q dispersion effects, with p, q = 0, 1, . . . , n− 1.
Denote the corresponding sets of location and dispersion effects by L and D, respectively,
so that a joint location-dispersion model can be represented by (L,D). Let X ⊆W be an
n × (p + 1) matrix containing the columns corresponding to the effects in L, and U ⊆W
be an n× (q+ 1) matrix containing the columns corresponding to the effects in D. Both X
and U contain a lead column of ones.

The Lenth test [40] is found by Hamada and Balakrishnan [32] to be in the class of best
methods for identifying location effects in unreplicated 2k factorials, and it is notable for
its simplicity. Assume that responses arise from the model

Y = Xβ + ε

where Y is the n × 1 vector of responses, β = (β0, β1, . . . , βp)′ is a vector of parameters
corresponding to location effects, and ε are i.i.d. errors. We assume that ε ∼ N(0, σ2I),
where 0 is an n×1 vector of zeroes, σ2 is the error variance, and I is an n×n identity. Note
that the Lenth procedure assumes that no dispersion effects are present. This is typical of
location-effect identification methods.

Location effects are estimated using ordinary least squares. Because of the orthogonal-
ity of the columns in W , estimated location effects from the saturated model X = W ,
β̂1, . . . , β̂n−1, are independent when there are no dispersion effects. Thus, the estimates for
a particular column of X do not depend on which other columns from W are in X. With
this in mind, Lenth calculates a “pseudo standard error” (PSE) for the effect estimates
as follows. Assuming effect sparsity (see, e.g., [69]), suppose that all estimated effects of
median magnitude and lower are not from active effects. Then the PSE is calculated as

PSE = 1.5 ∗median{j:|β̂j |<2.5s0}|β̂j |,

25

where s0 = 1.5∗medianj |β̂j |. The statistic tj = |β̂j |/PSE is used to test H0 : βj = 0 for each
j = 1, . . . , n− 1. Lenth suggests comparing tj to a t(n−1)/3 distribution, although Loughin
[41] and Ye and Hamada [70] find better critical values by simulation.

Box and Meyer [7] use residuals from a chosen location model, assumed known, to
identify active dispersion effects. Let r1, . . . , rn be the residuals from any model fit, Ŷ =
Xβ̂. Assume that U has only one column in it besides the lead column of ones, and suppose
that it corresponds to column d ofW . Let d+ and d− be the sets of observations for which
wid = +1 and wid = −1, respectively. Then the Box-Meyer statistic is

Fd =

∑
i∈d+

r2
i∑

i∈d−
r2
i

.

Although this statistic looks like it should have an F distribution, the residuals in the nu-
merator and denominator are not necessarily independent. Thus, the sampling distribution
of Fd is not clear.

Bergman and Hynén [5] amend the Box-Meyer test by augmenting the location model
in such a way that the residuals contained in d+ and d− are independent. The augmented
model consists of the original model plus all effects formed by the interaction of these
effects with d. The Bergman-Hynén test statistic, DBH

d , is structurally identical to Fd,
except that it uses the residuals from the augmented location model rather than the original
model. Assume that the original location model is correct, so that it contains all active
location effects. Also assume that d is the only possible dispersion effect. Then DBH

d

has an F distribution with degrees of freedom depending on the number of effects not in
the augmented location model. Note that this may be different for each d. Pan [53] and
McGrath and Lin [47] show that this test can have inflated type I error rate or diminished
power when the original location model fails to identify location effects of moderate size.
Loughin and Malone [42] describe a testing approach based onDBH

d that provides a measure
of safety against this phenomenon.

Harvey [33] proposes a method for estimating dispersion effects in a general linear re-
gression setting. Let u′i, i = 1, . . . , n be the ith row of U . Harvey uses the model

σ2
i = exp(u′iδ), (3.1)

where δ = (δ0, δ1, . . . , δq) is a (q + 1) × 1 vector of unknown parameters representing dis-
persion effects. From this model, he writes log r2

i = u′iδ + vi, where vi = log(r2
i /σ

2
i), and

by analogy with a linear model, uses least squares to estimate δ. In the context of a 2k

26

factorial design, Brenneman and Nair [12] show that this results in

δ̂d = log


∏
i∈d+

r2
i∏

i∈d−
r2
i


1/n

= n−1

∑
i∈d+

log r2
i −

∑
i∈d−

log r2
i

 .
Brenneman and Nair [12] study the bias in several dispersion-effect identification meth-

ods. They show that all are biased, with the severity of bias depending on whether an
additive or a log-linear model is assumed for the variances. They also show that the bias
in the Harvey method is reduced or eliminated when the residuals are computed from the
augmented location model used by Bergman and Hynén [5]. They refer to this as the “mod-
ified Harvey” method and recommend it for general use because its bias is limited to certain
specific cases.

3.3 Examples

We use three examples from the literature to demonstrate some of the model uncertainty
that is inherent in sequential approaches to identifying location and dispersion effects in
unreplicated factorials. All three examples are 16-run designs in the 2k−l series, where k
here is the number of factors and l is the degree of fractionation. These examples have been
analyzed multiple times in the literature. Table 3.1 lists papers in which these examples
have been analyzed, along with the results from their different approaches. Note that
“Lenth/modified Harvey” refers to our re-analysis using the Lenth test for location followed
by the modified Harvey test for dispersion. The factor labels used here are those given in
first-listed citation for each example.

The first example is the Welding example, a 29−5 design attributed by Box and Meyer
[7] to a technical report by Taguchi and Wu. The general consensus among the previous
analyses is that factors B and C are active location effects, while C is an active dispersion
effect. There is some uncertainty regarding whether factors H and/or J might also be
dispersion effects, and two authors have found other location effects besides B and C.

Second is the Injection Molding experiment, a 27−3 experiment given in Montgomery
[50]. (The data given there contain four centerpoints that have been subsequently ignored by
authors analyzing this example. We also ignore these centerpoints.) Montgomery’s original
analysis identified the interaction triple A, B, and AB as active location effects, and C as
an active dispersion effect. McGrath and Lin [47] recognized that the dispersion effect C
lies at the interaction of the next two largest location effects, G and CG. They determined
heuristically that the difference between variances at the two levels of C could be largely
explained by the product of the fourth and fifth location effects that were missing from
Montgomery’s model. A more formal analysis in McGrath [46] concludes that the dispersion

27

Table 3.1: Proposed models resulting from different analyses presented in the literature for
three different examples described in Section 3.3. Note that the Lenth/modified Harvey
method may be inappropriate for the Dyestuff example, because discreteness can create
residuals of exactly zero.

Example Authors Loc. Effects Disp. Effects
Welding Box and Meyer [7] B, C C

Wang [67] B, C C, H, J
Ferrer and Romero [25] B, C C, J
Bergman and Hynén [5] B, C C, H, J
Nelder and Lee [52] B, C, J C; H or J
Pan [53] B, C, AC, AH, A, Ha —
McGrath and Lin [47] B, C C
Pan and Taam [54] B, C C; H or J
Loughin and Malone [42] B, C C
Lenth/modified Harvey B, C C, H, J

Injection Montgomery [50] A, B, AB C
Molding McGrath [46] A, B, AB, G, CG —

Loughin and Malone [42] A, B, AB, G, CG —
Lenth/modified Harvey A, B, AB, G, CG E

Dyestuff Bergman and Hynén [5] D E
McGrath and Lin [47] D E
Lenth/modified Harvey D, AB C, BC

aAC and AH were considered active; main effects of A and H were included to adhere to the marginality
principle.

28

effect disappears upon including these two extra effects in the location model. Loughin and
Malone [42] gave a different analysis of these data supporting McGrath’s results.

Last, we consider the Dyestuff data first given in Davies [23] and analyzed for dispersion
effects in Bergman and Hynén [5]. The latter authors found a location effect for factor D
and a dispersion effect for E, conclusions that were supported by McGrath and Lin [47].
Although previous analysis results are in agreement for this example, we see in Section 3.5
that this does not imply that there is no model uncertainty

All of the analyses cited in Table 3.1 were performed using sequential analysis ap-
proaches. Location effects were selected, then conditional on the location effects, dispersion
effects were identified. (McGrath [46] subsequently reconsiders any identified dispersion
effects for possible confounding with two location effects, but the dispersion effect must be
initially identified using a sequential analysis.) Thus, all of these analyses are susceptible to
errors both due to stochastic uncertainty and due to structural propagation of errors from
the location analysis into the dispersion analysis, as discussed by Pan [53], Brenneman and
Nair [12], McGrath and Lin [47] [48], and Pan and Taam [54]. McGrath and Lin [47] and
Loughin and Malone [42] show that there is information within the data that can distinguish
between two location effects and a dispersion effect. The model-selection procedure needs
to be able to weigh the value of each interpretation using some objective measure. The
analysis approach proposed in the next section does precisely that, and in addition, allows
a direct measure of model uncertainty that is novel among techniques for these data.

3.4 Effect Selection using a Joint location and dispersion
model

Using the same notation from Section 3.2, a joint location and dispersion model is

Y = Xβ + ε (3.2)

where now ε ∼ N(0,Diag(exp(Uδ))), where Diag(·) makes a diagonal matrix out of a
vector. The variance structure in this model is the same one used by Harvey [33], Cook and
Weisberg [22], [16], and others. It has been studied in the context of 2k factorial models
by Wang [67], who discussed maximum likelihood estimation and derived properties of the
estimates, as well as by Nair and Pregibon [51], Engel and Huele [24], and others. All
previous work, however, has been done under the assumption that (L,D) is known or has
been correctly identified prior to use of the model. Of course, it is unrealistic to expect that
any particular method can achieve this requirement without uncertainty, as the examples
in Section 3.3 show.

29

Parameter estimates β̂ and δ̂ from (3.2) are found using maximum likelihood as in
Harvey [33] and Wang [67]. The log-likelihood is

l((β, δ);Y) = −n2 log 2π − 1
2

n∑
i=1
u′iδ −

1
2

n∑
i=1

(yi − x′iβ)2

exp(u′iδ) (3.3)

where yi is the ith element of Y , x′i is the ith row of X, and u′i is the ith row of U .
Evaluated at the MLE this becomes

l((β̂, δ̂);Y) = −n2 (log(2πσ̂2
0) + 1) (3.4)

where σ2
0 = exp(δ0) is the variance at the centerpoint of the design space (or when all

dispersion effects are inactive). The parameter estimates for δ have closed form if q ≤ 1,
but otherwise must be estimated using iterative numerical techniques.

Because this model uses a single likelihood for estimating both sets of parameters, model
selection criteria such as Akaike’s information criterion (AIC) and the Bayesian information
criterion (BIC) are available (e.g., [13], [21]). We use the availability of information crite-
ria as the central focus for our joint location- and dispersion-effect identification method,
Exhaustive-Search Model Averaging (ESMA) described in detail in the following sections.
To outline ESMA, we (1) carry out an exhaustive search of the model space, considering
all possible viable combinations of (L,D); (2) calculate a special form of information crite-
rion on each; and (3) use an approach resembling Bayesian Model Averaging ([35]; [13]) to
identify those effects that are more or less likely to belong in the model. We can use this
approach to quantify the support in the data for any given model.

3.4.1 Exhaustive search

Our goal is to be able to provide an assessment of the model corresponding to any com-
bination of (L,D). In principle, this is not difficult to achieve. However, there are several
logistical issues that must be addressed in order to complete this task.

First is the sheer size of the problem. In an unreplicated 2k factorial, there are up to
2k − 1 location effects and 2k − 1 dispersion effects to consider. When dispersion effects
are not considered, the orthogonality and equal standard errors among the location-effect
estimates impose an ordering based on the magnitude of the estimates that does not depend
on which other effects are in the model. Thus, only models consisting of the effects with
the largest estimated magnitudes need to be considered. There are only 2k such models to
consider.

When dispersion effects are added, the location-effect estimates are no longer orthogonal,
and their ordering can change depending on which effects of both types are in the model.
Thus, there are nominally 22k+1−2 different (L,D) combinations that can be constructed.
In most of these models there is no closed-form solution to the likelihood equations, and no

30

obvious way to reduce the computations in the spirit of the leaps-and-bounds algorithm for
linear regression [29]. For k ≥ 5 no exhaustive search can be run under current computa-
tional capacity. In these cases, some kind of alternative search procedure, such as a genetic
algorithm [49], must be used (see Section 3.4.4 for details).

The second complication is that not all (L,D) combinations lead to viable models.
For one thing, n = 2k, so simultaneously estimating all location and dispersion effects is
impossible. However, even models with seemingly viable combined size p+ q+2 < n do not
always result in valid parameter estimates. Loughin and Rodríguez [44] observe that sets
D of size q = 1 cause the last term in the log-likelihood to factor into two separate sums for
independent subsets of the data. A saturated location model can be found for one of the
sums with only p = n/2−1, and fitting this model causes the dispersion effect to go to ±∞.
For example, this occurs for k = 4 when D = {A} and L = {B,C,BC,D,BD,CD,BCD},
among other cases. Thus models of total size n/2 + 2 can be constructed that lead to
unbounded likelihoods. Loughin and Rodríguez [44] also observe that sets D that consist
of two effects can combine with certain complementary location models of size p = n/4− 1
to yield a likelihood with multiple monotonically increasing ridges. For example, when
k = 4, D = {A,B} with L = {C,D,CD} causes this to occur (as does the same D with
L = {AC,AD,ACD}, {BC,BD,BCD}, or {ABC,ABD,ABCD}). Again, this means
that models of a much smaller total size than n can lead to invalid parameter estimates.

Fortunately, the combinations (L,D) where this can occur are completely predictable a
priori. Loughin and Rodríguez [44] give a series of criteria that determine whether a given
location/dispersion model can be fit to a set of data. Reducing the search to only these
models reduces the computational burden considerably.

In our implementation, we further restrict the searchable model space to models satis-
fying both p ≤ 5 and q ≤ 5. This reduces the model space by a significant fraction, and
simulations suggest that it has little impact on the results of a search when these restrictions
do, in fact, hold. We are not aware of any other procedure that is likely to perform well
when a true model does not satisfy some similar sparsity criterion.

Counting the Feasible Models and Computational Tricks We present our ap-
proach for counting the models that can be feasibly evaluated in the context of a 24 design.
Analysing any smaller design is an easy modification, and if the design is any larger (25

or more), we are unable to evaluate every model. We begin by demonstrating the ‘bitset’
paradigm, where we describe a relationship between the factorial structure and base 2. We
begin by ordering the columns of X in the following order:

{I, A,B,AB,C,AC,BC,ABC,D,AD,BD,ABD,CD,ACD,BCD,ABCD}.

31

Furthermore, we assign a 0-indexed number, 0− 15, to the columns in the same order.
Notice that a result of this is that 0 represents I, 1 represents A, 2 represents B, 3 represents
AB, and so forth up to 15 representing the ABCD interaction. Of further relevance is that
C is number 4 and D is number 8. Thus A, B, C, and D are given numbers in powers of
two: 1(A) = 20, 2(B) = 21, 4(C) = 22, and 8(D) = 23. As a consequence of this ordering
we can quickly compute the column corresponding to the interaction of two columns. This
column is computed by taking the bitwise exclusive-or (XOR) of the two columns. For
example, the interaction of the ABD effect and the ACD effect is BC. We can do this
quickly on a computer by evaluating

11 (ABD) XOR 13 (ACD) = {1011 XOR 1101} = 0110 = 6 (AC).
The effect of this is that we do not actually need to multiply the entries in the 11th

column of X and the 13th column of X to find out the interaction column. This turns out
to be useful for reducing runtime as the conditions outlined in Loughin and Rodríguez [44]
require us to compute multiple interactions per model.

We now define models in boolean form as a concatenation of the terms in L and D. We
take the additional step of replacing the 16 possible location effects and 16 dispersion effects
each with a boolean value (coded as 0/1). As an example, L = 1000000000000001 refers to
the location model of L = {ABCD}. We always put the intercept of both the location and
dispersion model into the model; as a consequence, the 1st digit and 17th digit is always 1.

An example concatenated model might be:

M = 1000000000000001− 1000000000000000

which in our shorthand would refer to the model
L = {ABCD}
D = {∅}.
The advantage of this representation is that all the models are now representable by a

32-bit integer. This is useful as it is a default datatype in many programming languages,
such as int in C.

The goal of counting the feasible models reduces to constructing a set S consisting of
a list of these 32-bit integers and finding the cardinality. We take a standard backtracking
approach, implemented with recursion. We define b and index to represent a partial model
M . A partial model consists of defined bits in M plus some undefined bits. An example
partial model be M = 10[uuuuuuuuuuuuu − 1uuuuuuuuuuuuuu], where u represents an
undefined bit. The interpretation of this partial model is that location effect A is definitely
not included in M , and everything else is undecided. We represent this partial model with
two values: b contains the values 10 and index contains the value 3—the interpretation of
index is the location of the next undecided bit.

The algorithm is:

32

• Define a function F (b, index). F constructs a set S as a list of integers.

• We initialize F (0, 0) to construct the model list.

• To evaluate F , determine whether the model defined by b is a valid model (using the
Loughin and Rodríguez conditions).

• If index is 31, we add the entry bits to the set S and we do no further work on this
branch.

• If index is less than 31, we evaluate F (bits, index+1) and also F (bits+2index, index+
1).

• If b does not give a valid model, then no superset of b will give a valid model (by
superset we mean adding any extra location or dispersion terms). We will do no
further work on this branch.

After running our algorithm, we find the cardinality of the set S is 1, 442, 837 models.
We note later that some of these models are actually still too large to be considered as
serious models. We have, however, restricted ourselves to ones where we can be sure to
avoid the pathology outlined in Loughin and Rodríguez.

3.4.2 Corrected heteroscedastic information criterion

On each model, an information criterion (IC) is computed. Information criteria are generally
based on the Kullback-Leibler (KL) information, which is a measure of the discrepancy
between a candidate model and the true structure that generated the data (Akaike [1] [2];
[38]). The KL information consists of two terms, one of which is constant for all models and
hence is discarded. The other part is −2 times the expectation of the log-likelihood of the
candidate model with respect to the true model, evaluated at the MLE. This expectation
cannot be computed because the true model is unknown. The maximized log-likelihood—
in this case (3.4)—can be used as an estimate of the expectation, but it exhibits bias that
grows as the size of the model grows ([1]). Therefore an IC generally consists of −2 times
the maximized log likelihood, say l, plus a “penalty” term that adjusts for the bias.

Akaike [1] gives an asymptotic estimate for this bias that works well for most models.
The result is the well-known AIC. Hurvich and Tsai [36] develop a small-sample estimate
of bias for homoscedastic linear and nonlinear regression models, which they use to form
the “corrected AIC” (AICc). Neither of these estimates is suitable for our problem because,
as noted above, unbounded or monotone likelihoods can be produced for models where the
total number of parameters is considerably less than n− 1. Using either of these penalties
on our problem always results in selecting one of the cases of Loughin and Rodríguez [44]
as the best model. Even when we remove these models from consideration, simulations

33

show that pathologically large likelihoods can result from models that “almost” satisfy the
Loughin-Rodríguez conditions, yielding bizarre and unrealistic IC values.

We therefore must derive a corrected IC that is appropriate for estimating both location
and dispersion effects from the heteroscedastic model (3.2). To do this, we follow the general
approach of Hurvich and Tsai [36]. To start, let a “*” superscript indicate the true value of a
parameter and for any candidate model (L,D) a hat indicates the corresponding MLE. We
assume (as do Cavanaugh [17] and Hurvich and Tsai [36]) that for any model that is fit, the
parameters contained in (β, δ) include all of those in (β∗, δ∗). When this is not the case, the
bias in −2l may be arbitrarily large in the opposite direction, and hence the model’s IC will
be much larger than for models that satisfy this assumption. It therefore suffices to consider
the true model and fitted model as having parameters of the same dimension, (p + q + 2)
with (β∗, δ∗) possibly containing some zero values. Finally, let G be the distribution of Y .

The quantity that must be estimated is

−2lE(β̂, δ̂) ≡ EG(−2l(β, δ;Y))
∣∣∣∣
(β,δ)=(β̂,δ̂)

.

The maximized log-likelihood, −2l̂(β̂, δ̂) = −2l(β̂, δ̂;Y), is used to estimate this quantity.
Thus, the “penalty” that must be calculated is the bias, B = −2EG(lE(β̂, δ̂)− l̂(β̂, δ̂)).

For model (3.2), rewriting (3.4) as

−2l̂(β̂, δ̂) = n(log 2π + 1 + δ̂0),

it can further be shown that

−2lE(β̂, δ̂) = n log 2π + nδ̂0 + Tr(Σ̂−1Σ∗) + (Xβ∗ −Xβ̂)′Σ̂−1(Xβ∗ −Xβ̂),

where Σ = Diag(exp(Uδ)), with the exponentiation taken element-wise. Thus,

B = EG[Tr(Σ̂−1Σ∗) + (Xβ∗ −Xβ̂)′Σ̂−1(Xβ∗ −Xβ̂)− n]. (3.5)

Unfortunately, except for a few special cases, this does not appear to have a closed-form
simplification that does not depend on the true, unknown values of model parameters. We
instead perform simulations to estimate the needed expectations, and corroborate these in
the cases where a closed-form solution is available.

Before beginning the simulation, we first associate each possible model (L,D) with a
prototype; that is, one model that represents all models whose model matrices are isomor-
phic under permutation of the rows. For example, it is obvious that the model structure
for any single-location-effect model is the same regardless of which location effect is used,
so ({A}, {∅}) serves as a prototype for all models of this structure. In models with one
location effect and one dispersion effect, the dispersion effect is either on the same factor

34

Table 3.2: Estimated CHIC penalty values for various common location-dispersion model
prototypes in a 24 design. A “*” indicates values that may be infinite: simulations yield
increasingly large means and standard errors with increasing numbers of runs. The subscript
is the standard error from the simulation. A subscript of “−” indicates that the value was
derived mathematically.

Location Dispersion model, D
Model, L ∅ A A,B A,B,AB A,B,C
∅ 4.9− 10.10.1 17.90.1 42.90.7 31.80.3
A 8.0− 12.8− 25.70.2 54.61.4 58.81.2
B 8.0− 16.90.2 25.70.2 54.61.4 58.81.2
A,B 11.6− 20.00.1 35.30.3 61.02.6 133.35.6
A,B,AB 16.0− 24.10.2 36.30.2 64.0− 190.76.3
C 8.0− 16.90.2 37.70.6 * 58.81.2
A,B,C 16.0− 32.30.2 80.41.6 * 332.917.1

as the location effect or on a different one; hence, ({A}, {A}) and ({A}, {B}) are the two
prototypes for this case.

Next, we need to select a true model under which simulations are to be performed.
In keeping with the assumption that the true model does not contain nonzero parameters
outside of the candidate model, then the only possible true model that is applicable to any
candidate model is (L,D) = ({∅}, {∅}). Thus, the simulation for each prototype consists
of generating a large number of data sets, each consisting of 2k independent standard
normal observations; fitting the prototype model to each data set; and computing the sum
of terms inside the expectation in (3.5). The mean of these results is an estimate of the
bias adjustment that is needed to complete the information criterion for this heteroscedastic
model. We refer to the new criterion as the “corrected heteroscedastic information criterion”
(CHIC):

CHIC = −2l̂(β̂, δ̂) +B.

The number of models under consideration for which CHIC penalties can be computed
is too large to provide a comprehensive listing of values. Some estimated values of the
bias adjustment are shown in Table 3.2 for certain common models when k = 4. Note
that exact penalties are available for the cases where (L,D) = ({∗}, {∅}), ({A}, {A}), or
({A,B,AB}, {A,B,AB}), where ∗ here means any location model.

Notice some features about these penalties:

1. The number of simulations used in this table varied depending on the estimated
standard error. We started with at least 20,000 in each case and added runs adaptively
up to a total of 100,000 as needed when the standard errors were large.

35

2. Dispersion effects are more expensive than location effects in the sense that adding
a dispersion effect to a model generally incurs a larger penalty for the additional
parameter than adding a location effect to the same model.

3. The penalties are much larger than the AIC penalty (2(p+ q + 2)), the BIC penalty
(log(16)(p+ q+ 2)), and generally also the AICc penalty, especially for larger models.

4. The penalties become extremely large before a model becomes saturated in the sense
of Loughin and Rodríguez [44]; for example, the estimated penalty for (L,D) =
({C}, {A,B,AB}) after 50,000 runs was 582, with a standard error of 148 (recall
that model ({C,D,CD}, {A,B,AB}) is “saturated”). This suggests that the under-
lying expectations in (3.5) may not be finite. We take this as an implication that
models with such large penalties are unstable, and therefore we exclude models with
estimated penalties greater than 200 in our implementations described below.

3.4.3 Model averaging

The last issue that needs to be resolved is how to use CHIC to select effects and/or models.
As with other ICs, we seek models with small values of CHIC. However, it is well understood
that exhaustive searches often lead to large numbers of models whose IC values are very close
to the minimum value (see, e.g., [13]). It is therefore often a matter of random chance which
particular model achieves the minimum IC value. Hoeting et al. [35] give a detailed review
of a notion called Bayesian Model Averaging (BMA), wherein BIC values are transformed
into approximate posterior probabilities that their respective models are correct, given the
data. From the model posterior probabilities, a probability that each parameter is needed
in the model can be computed as the sum of probabilities for all models in which the
parameter appears. This process is analogous to the fully Bayesian approach to finding
model and effect probabilities discussed in Box and Meyer [7].

Burnham and Anderson [13] discuss extending BMA to any information criterion. The
exact same calculations are used, but the results are interpreted as “evidence weights” rather
than as probabilities in a Bayesian sense. We apply this general model-averaging construct
to the joint location-dispersion models using CHIC as follows:

1. Identify theM models to be estimated and calculate CHIC on each model, say CHICm,
m = 1, . . . ,M .

2. Find the minimum CHIC value among all models. Call this value CHIC0.

3. For each model, compute ∆m =CHICm−CHIC0, and the model evidence weight

τm = exp(−∆m/2)∑M
a=1 exp(−∆a/2)

.

36

4. Compute the effect evidence weight for effect j as

ρj =
M∑
m=1

τmI(Effect j is in model m),

where we let j = 1, . . . , 2(n − 1) index the set of all location effects and dispersion
effects, and I(·) is the indicator function.

We refer to this procedure as Exhaustive-Search Model Averaging with Corrected Het-
eroscedastic Information Criterion (ESMA-CHIC).

Notice that the transformation CHIC→ τ is monotone decreasing, so that the smaller
a model’s CHIC is, the larger its model evidence weight. Furthermore,

∑M
m=1 τm = 1,

and if there is a single model whose CHIC is distinctly smaller than the rest, then its
evidence weight approaches 1. Thus, evidence weights are interpreted roughly the same as
probabilities. Similar interpretations can be applied to each ρj . Thus, a ρj ≈ 0 can be
interpreted as evidence that effect j is unlikely to influence the process.

3.4.4 Implementation details

For k ≤ 4 we have implemented ESMA-CHIC subject to the following constraints:

1. Only models with p ≤ 5 and q ≤ 5 are considered.

2. Prior to use, a full table of CHIC penalty values was computed using 1000 simulations
each.

3. Models with CHIC penalties greater than 200 are not included in the analysis.

The penalties for all models that we consider are computed in advance and stored in a file
that is accessed as needed.

For k > 4 exhaustive search is not currently feasible, even with the restrictions p ≤
5, q ≤ 5 and discarding models with penalties above 200. Indeed, the table size for the
penalty values would be larger than what we can store in memory. Instead, we have written
a genetic algorithm (GA, [49]) to perform the model search.

Our version of the GA proceeds as follows:

1. Seed the GA with M models

2. Evaluate the quality of the models in the GA

3. Sort the models by the quality

4. Keep a fraction of the top models, discard the rest. Replace the trashed models with
newly generated models

37

5. For a total of I steps, we improve the GA by repeating steps 2− 4

Details on the individual steps are given below. Note that the parameter settings below
have been tuned for performance in the 24 setting. It is possible that other parameter
settings would work better in larger experiments.

1. Seed the GA with M models

In principle, these can be randomly chosen models. In our implementation, we seed
the GA with M = 40 null models, where none of the location or dispersion effects are
present. We rely on mutation, as described below, to slowly populate the models with
effects.

2. Evaluate the quality of the models in the GA

We use the CHIC value, −2 ∗ loglikelihood + penalty, as the fitness criterion for
each model. Because the program is designed to work with experiments of all sizes,
we don’t use a table of precomputed penalty values as we do with the exhaustive
search. Instead, we estimate the CHIC penalties “on-the-fly”. As before, we simulate
the expected bias under the null model and take the average bias over the simulations.

One approach would be to use some fixed number of simulations S to estimate the
CHIC value for every model that we try. This is inefficient, however, as there are sev-
eral models for which we attain a very reasonable standard error of estimation after
very few simulations. Instead, we set fixed lower and upper limits on the potential
number of simulations, and use a stopping rule based on the ratio of the standard
error of the mean penalty estimate to the mean penalty estimate at simulation S.

Thus, there are thus four tunable parameters in our implementation of the CHIC
simulation

(a) The minimum number of simulations, Slow
(b) The maximum number of simulations, Shigh
(c) The lower threshold for the standard error, as a fraction of the mean, Tlow
(d) The upper threshold for the standard error, as a fraction of the mean, Thigh

The algorithm proceeds for at least Slow simulations and necessarily terminates after
Shigh simulations. For any value of simulations S between these two bounds, the
algorithm checks if the standard error of the CHIC penalty lies outside either thresh-
old. If the standard error is lower than the lower threshold, the simulation algorithm
terminates and returns the estimated mean penalty. If the standard error is higher
than the upper threshold, the simulation algorithm terminates and returns a value
indicating that this model should be discarded. Otherwise, the simulation algorithm

38

will terminate when it reaches Shigh simulations. Note that if Slow is set too low, it
may discard reasonable models.

In any case, the algorithm caches the result and stores it in a hash table indexed by
the model name so that we never simulate the penalty for the same model twice. The
hash table can be saved locally to speed up computation on different data sets (note
that one needs different tables for different values of k).

We use Slow = 50, Shigh = 1000, Tlow = 0.03, Thigh = 0.6. We found these to be
reasonable settings for the 24 design. Different tuning parameters may be better for
larger setups.

3. Sort the models by the quality

We sort the models in increasing order of −2 ∗ likelihood + penalty. In our imple-
mentation of the GA, we allow the possibility that the same model appears multiple
times.

4. Keep a fraction of the top models, discard the rest. Replace the discarded models
with newly generated models

We say that the top 50% of the models are “fit” models, and the remaining 50% are
“unfit”. We discard the unfit models and replace these with newly generated models.
To generate a new model, we begin by taking a location model from a randomly
selected fit model, and adding a dispersion model from a randomly selected fit model.
We splice them together to create a prototype model. The model then undergoes
mutation: each location effect can be randomly “flipped” (if it was included, it becomes
excluded, or vice-versa) with probability ML. Each dispersion effect undergoes the
same treatment with probabilityMD. We generateM/2 new candidate models in this
way.

We used ML = MD = 0.04. This means that more often than not, mutation in at
least one bit occurs in experiments with at least 4 factors.

5. For a total of I steps, we improve the GA by repeating steps 2− 4

We used I = 250 improvement steps. We record the performance of every model that
passes through the GA at some point—this allows the user to do model averaging on,
say, the top 100 models ever constructed. The GA can also easily be restarted several
times, and the best models over all restarts are easily found in a single table.

3.5 Applications

We apply the ESMA-CHIC procedure to the three examples presented in Table 3.1. The
top five models according to CHIC are shown in Tables 3.3–3.5, along with the CHIC values,

39

Table 3.3: Top five models using ESMA-CHIC and genetic algorithm and for each model
listed in Table 3.1 for the Welding data. Evidence weights and model ranks are based on
ESMA-CHIC.

Location Dispersion ESMA- Model GA
Rank Effects Effects CHIC Weight CHIC

1 B C C 12.3 0.49 14.3
2 B C J “DH”a C 16.0 0.08
3 B C D C 16.0 0.08 16.9
4 B C J “CG”a C 17.5 0.04
5 B C J C 17.7 0.03 18.0
7 B C ∅ 19.2 0.02 19.0

34 B C H ∅ 23.1 0.00 20.1
245 B C C J 30.0 0.00
409 B C AC AH A H ∅ 33.1 0.00

1094 B C J C J 52.9 0.00
>10,000 B C C H J 299.0 0.00

aAccording to Box and Meyer [7], the experimenters did not believe that any of the aliased effects
corresponding to these columns of the design matrix—DH=BJ and CG=BF=EH—would be active

Table 3.4: Top five models using ESMA-CHIC and genetic algorithm and for each model
listed in Table 3.1 for the Injection Molding data. Evidence weights and model ranks are
based on ESMA-CHIC.

CHIC Location Dispersion ESMA- Model GA
Rank Effects Effects CHIC Weight CHIC

1 A B AB G CG ∅ 72.3 1.00 72.5
2 A B AB CG ∅ 85.6 0.00 86.0
3 A B AB G ∅ 87.9 0.00 88.3
4 A B AB ∅ 90.3 0.00 89.7
5 A B AB BC CG ∅ 90.5 0.00 89.8

277 A B AB C 116.1 0.00

evidence weights, and corresponding ranks for any models suggested by past literature that
are not among the top five. We also include the top 5 models’ CHIC from performing the
same analysis using a GA rather than an exhaustive search. Finally, plots of the evidence
weights for all effects are shown in Figure 3.1.

For the Welding example, Table 3.3 shows that the top model is ({B,C}, {C}) as sug-
gested by Box and Meyer [7], McGrath and Lin [47] and Loughin and Malone [42]. This
model has 0.49 evidence weight, so the data are not conclusive in their support for this
model. However, no other model is a particular challenge for the best; this model is favored
by at least 6:1 over any other model. The other top models by ESMA-CHIC all contain
({B,C}, {C}), along with a variety of additional location effects. Models with different
dispersion effects do not fare well at all. Based on these results, it is no surprise that Figure

40

●
●

●

●
●

●
● ●

●
●

●

●

●

● ●

Effect

C
H

IC
 E

vi
de

nc
e

W
ei

gh
t

D H D
H G F

G
H

A
C A E A
H

B
H

C
G J B C

0.0

0.5

1.0

(a) Welding Location Effects

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

Effect

C
H

IC
 E

vi
de

nc
e

W
ei

gh
t

D H D
H G F

G
H

A
C A E A
H

B
H

C
G J B C

0.0

0.5

1.0

(b) Welding Dispersion Effects

● ● ●

● ● ● ● ●

●

● ● ●

●

● ●

Effect

C
H

IC
 E

vi
de

nc
e

W
ei

gh
t

A B A
B C A
C

B
C E D

C
G

B
D

A
G

A
B

D G F

D
E

0.0

0.5

1.0

(c) Injection Molding Location Effects

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Effect

C
H

IC
 E

vi
de

nc
e

W
ei

gh
t

A B A
B C A
C

B
C E D

C
G

B
D

A
G

A
B

D G F

D
E

0.0

0.5

1.0

(d) Injection Molding Dispersion Effects

●
●

●

●

●

●
●

●

● ● ●

●

●

● ●

Effect

C
H

IC
 E

vi
de

nc
e

W
ei

gh
t

A B A
B C A
C

B
C

D
E D A
D

B
D

C
E

C
D

B
E

A
E E

0.0

0.5

1.0

(e) Dyestuff Location Effects

● ● ●

●

● ● ● ● ● ● ● ● ● ● ●

Effect

C
H

IC
 E

vi
de

nc
e

W
ei

gh
t

A B A
B C A
C

B
C

D
E D A
D

B
D

C
E

C
D

B
E

A
E E

0.0

0.5

1.0

(f) Dyestuff Dispersion Effects

Figure 3.1: Plots of effect evidence weights for three example data sets: Welding (top), In-
jection Molding (middle), and Dyestuff (bottom). Larger evidence weight indicates greater
chance of an active effect.

41

Table 3.5: Top five models using ESMA-CHIC and genetic algorithm and for each model
listed in Table 3.1 for the Dyestuff data. Evidence weights and model ranks are based on
ESMA-CHIC.

CHIC Location Dispersion ESMA- Model GA
Rank Effects Effects CHIC Weight CHIC

1 D AB CD C C 117.5 0.33 119.0
2 D AB CD C ∅ 119.5 0.12 120.2
3 D AB CD C 121.3 0.05 121.2
4 D AB CD C BC ∅ 121.7 0.04 121.0
5 D AB CD C BE ∅ 122.3 0.03
8 D AB C C 122.8 0.02 121.2
15 D E 124.9 0.01

3.1a shows location effects B and C with evidence weights that round to 1 and no others
that are particularly strong. Most have very little support from the data. Figure 3.1b
shows that dispersion effect C has evidence weight 0.85. All other dispersion effects have
negligible weight.

In the Injection Molding example, Table 3.4 shows that the data are conclusive in
their preference for the model with five location effects and no dispersion effect, agreeing
with McGrath [46] and Loughin and Malone [42]. There is essentially no support for the
alternative interpretation of a dispersion effect on C rather than location effects on G and
CG. This is noteworthy, as it is the first time that these two competing models have been
compared objectively using a single criterion. It serves to highlight one of the fundamental
advantages of the ESMA-CHIC approach. Figures 3.1c and 3.1d re-express these results
by showing evidence weights of 1 on location effects A,B,AB,G, and CG, and zero for all
other effects.

The Dyestuff example represents another interesting problem. Past analyses using dif-
ferent methods by Bergman and Hynén [5] and McGrath and Lin [47] arrive at the same
conclusion of a location effect on D and a dispersion effect on E. However, ESMA-CHIC
shows that there is considerable uncertainty regarding what model best represents the data,
with only 0.33 evidence weight on the top model, ({C,D,AB,CD}, {C}). Despite the model
uncertainty, there is considerable agreement in what belongs in the best models. All five
of the top models contain location effects D, AB, and CD, and four contain C. On the
other hand, it is rather unclear whether the dispersion effect of C is needed, as it appears
in only two of the top five models. The previously identified model, ({D}, {E}) is ranked
15th with an evidence weight of only 0.01. According to the data, it is extremely unlikely
that this model describes the true process adequately.

Effect evidence weights in Figures 3.1e and 3.1f reflect these observations. Among loca-
tion effects, while D has evidence weight essentially 1, effects AB, CD, and C have evidence
weights ranging from 0.89 to 0.73, suggesting that evidence is generally in their favor but

42

0.0 0.5 1.0 1.5

0
10

20
30

40
50

60

Half Normal Quantiles

E
ffe

ct
 S

iz
e

C CD
AB

D

(a) All effects

0.0 0.5 1.0 1.5

0
5

10
15

Half Normal Quantiles

E
ffe

ct
 S

iz
e

C CD

AB

(b) All but the largest effect

Figure 3.2: Half-normal plot of location effects for the Dyestuff example. The one extreme
point in the plot on the left masks visual detection of potential location effects of smaller
magnitude, which are more evident in the plot on the right.

not overwhelmingly so. No other location effects have any appreciable support from the
data. Among dispersion effects, only C has non-negligible evidence weight, although it is
only 0.46. Note that dispersion effect E has negligible weight, and hence is not considered
to be a part of any serious explanation for these data.

Why does such a discrepancy exist between the results of ESMA-CHIC and past analy-
ses? Part of the answer can be seen from a half-normal plot of the location effects for this
example, as shown in Figure 3.2. The plot on the left shows that location effectD stands out
as an “obviously” active effect, while those for AB, CD, and C are somewhat less obvious.
Subjective assessment of this plot could either include or exclude these three effects from a
model. However, the choice becomes much clearer when we exclude the obvious outlier and
rescale the plot, as shown in Figure 3.2b. Now the three uncertain location effects are seen
to stand out a bit more clearly from the line formed by the rest of the points, corroborating
their evidence weights.

The belief that E should be a dispersion effect appears to be another example of the
location-dispersion confounding issue touched on in Section 3.1 and discussed in more detail
in Pan [53], McGrath and Lin [47] [48], and Loughin and Malone [42]. Notice that the two
largest “uncertain” location effects, AB and CD, form an interaction triple with E. Thus,
it is no surprise that failure to identify AB and CD as location effects should result in
possible spurious identification of a dispersion effect at E. Once again we see the immense
potential offered by this new ability to compare different combinations of location effects
and dispersion effects using a single criterion.

43

Finally, note that our GA implementation does reasonably well at mimicking the ex-
haustive search. Across the three examples, it identifies 12 of the 15 top models, including
the top model in each case. The additional models that it places among its top five have
estimated CHIC values are mostly competitive within the context of the exhaustive search.

3.6 Analyses of Simulated Data

To complement the results obtained on the three examples in the previous section, we assess
the performance of ESMA-CHIC using simulated data where the true models are known.

3.6.1 Methods

We generate data sets from model (3.2) for a 24 design using selected combinations (L,D).
We perform analyses using either ESMA-CHIC or a two-step procedure consisting of the
Lenth location-effect test followed by the modified Harvey dispersion-effect test ([40]; [12]).
The Lenth test is chosen due to its simplicity and its reputation for reasonably good per-
formance, even in the presence of dispersion effects ([69], [32], [71]). The modified Harvey
method is chosen because it is very similar in structure to the popular Bergman-Hynén test,
but it is specifically designed to be compatible with our loglinear model for dispersion effects
[12]. We simulate 100 data sets for ESMA-CHIC and 5000 for Lenth/modified Harvey to
achieve a balance between simulation error and run time. We summarize the simulation
results by computing the average power and type I error rate for detecting location effects
and the same measures for detecting dispersion effects. For ESMA-CHIC, effects in the
model with the smallest CHIC value are declared active. Note that ESMA-CHIC is not
calibrated to achieve any specific Type I error rate, so there is no specific expectation for its
performance in this measure. Both parts of the Lenth/modified Harvey test are conducted
using a nominal 0.05 level, with the critical values for the Lenth test taken from Loughin
[41].

We use all combinations of six true location models and five true dispersion models,
for a total of 30 different models. We choose L = {∅}, {A}, {B}, {A,B}, {A,B,C}, and
{A,B,AB,C,AC,D} because these represent five fairly typical location-model structures
and one somewhat large model. Notice that the last location model has six active effects,
which is more than the five that our implementation of ESMA-CHIC is designed to detect.
Thus, we have a check on the price we pay for assuming more stringent effect sparsity than
is actually present. We pair these location models with D = {∅}, {A}, {A,B}, {A,B,AB},
{A,B,C}.

Each active location effect is set to a level that would be detected with approximately
50% power by a Wald test using the known variance of the contrast under the true dispersion
model (McGrath 2003). This level is re-calibrated for each different location model, so that
power for all Lenth tests remains at approximately 50% regardless of the model. Each active

44

Estimate

ESMA−CHIC

Lenth/Harvey

0.0 0.2 0.4 0.6 0.8

Location
Error

Dispersion
Error

ESMA−CHIC

Lenth/Harvey * *

Location
Power

0.0 0.2 0.4 0.6 0.8

**

Dispersion
Power

Figure 3.3: Summary of estimated power and type I Error rates from Table 3.6 for detecting
location effects and dispersion effects using the ESMA-CHIC procedure (100 simulations)
and the Lenth/modified Harvey test (5000 simulations). Note that the Lenth test for
location effects has been calibrated to have approximately 0.5 power.

dispersion effect is set to a standard-deviation ratio of 5:1; i.e., the errors at the + level of
the effect are multiplied by

√
5, while those at the lower level are divided by

√
5.

3.6.2 Results

Results of the simulations are shown in Table 3.6 and depicted in Figure 3.3. Comparing
location-effect detection for the two methods, note that the Lenth test has been calibrated
to maintain both its type 1 error rate and its power. The simulations show that this is
largely achieved, although the Lenth-test error rate does decrease as model size increases.
By comparison, ESMA-CHIC has much more model-dependent type 1 error rates and power
for detecting location effects. On average, type 1 error rates are slightly larger than those for
the Lenth test, although when there are no dispersion effects they are considerably larger.
When the true location model is larger than we assume, ESMA-CHIC has type 1 error rates
that drop to around 1–2%.

Power for detecting location effects mirrors the type 1 error rates. ESMA-CHIC detec-
tion rates average close to 75%, although they are much lower when the model is too large.
In many cases, the power is quite high—over 80%—even when the observed type 1 error
rate is at or below 0.05. In contrast, the Lenth test becomes rather conservative as the size
of the location model grows and when there are dispersion effects. The re-calibration of the
sizes of the active effects allows its power to remain at 50% by increasing the sizes of the

45

Table 3.6: Estimated power (“Pow”) and Type I Error rate (“Err”) for detecting location ef-
fects (“L”) and dispersion effects (“D”) using the ESMA-CHIC procedure (100 simulations)
and the Lenth/modified Harvey test (5000 simulations).

True Model Lenth/modified Harvey ESMA-CHIC
Loc. Disp. PowL ErrL PowD ErrD PowL ErrL PowD ErrD
∅ ∅ 0.05 0.06 0.17 0.02
A ∅ 0.50 0.04 0.06 0.74 0.17 0.01
B ∅ 0.51 0.04 0.06 0.73 0.16 0.01
A,B ∅ 0.49 0.04 0.06 0.76 0.13 0.02
A,B,C ∅ 0.48 0.03 0.07 0.79 0.11 0.00
A,B,AB,C,AC,D ∅ 0.50 0.01 0.10 0.54 0.01 0.02
∅ A 0.05 0.54 0.06 0.08 0.73 0.02
A A 0.51 0.04 0.56 0.10 0.71 0.07 0.78 0.01
B A 0.50 0.04 0.28 0.06 0.86 0.10 0.50 0.01
A,B A 0.50 0.04 0.27 0.07 0.83 0.07 0.66 0.01
A,B,C A 0.50 0.03 0.20 0.07 0.85 0.09 0.25 0.01
A,B,AB,C,AC,D A 0.51 0.01 0.32 0.10 0.30 0.02 0.94 0.00
∅ A,B 0.04 0.37 0.06 0.04 0.70 0.02
A A,B 0.51 0.04 0.29 0.07 0.83 0.05 0.55 0.01
B A,B 0.50 0.04 0.30 0.07 0.86 0.05 0.60 0.01
A,B A,B 0.51 0.03 0.19 0.09 0.77 0.06 0.45 0.01
A,B,C A,B 0.51 0.03 0.18 0.08 0.71 0.06 0.18 0.03
A,B,AB,C,AC,D A,B 0.51 0.01 0.24 0.11 0.28 0.02 0.49 0.00
∅ A,B,C 0.02 0.26 0.05 0.01 0.63 0.02
A A,B,C 0.50 0.02 0.20 0.07 0.88 0.04 0.40 0.01
B A,B,C 0.50 0.02 0.20 0.07 0.87 0.05 0.39 0.01
A,B A,B,C 0.50 0.02 0.18 0.09 0.75 0.05 0.37 0.01
A,B,C A,B,C 0.50 0.02 0.20 0.09 0.67 0.06 0.16 0.03
A,B,AB,C,AC,D A,B,C 0.50 0.01 0.18 0.12 0.28 0.02 0.30 0.01
∅ A,B,AB 0.04 0.34 0.03 0.05 0.48 0.02
A A,B,AB 0.52 0.05 0.25 0.04 0.76 0.04 0.38 0.01
B A,B,AB 0.50 0.05 0.25 0.04 0.79 0.05 0.36 0.01
A,B A,B,AB 0.49 0.04 0.31 0.04 0.45 0.04 0.35 0.01
A,B,C A,B,AB 0.53 0.04 0.26 0.08 0.60 0.05 0.33 0.00
A,B,AB,C,AC,D A,B,AB 0.49 0.01 0.26 0.11 0.29 0.02 0.33 0.00

46

location effects in the larger dispersion models. ESMA-CHIC seems to have less difficulty
detecting these large location effects than the Lenth test does.

Following the Lenth test with the modified Harvey test results in slightly larger-than-
nominal type 1 error rates in most cases, with the greatest inflation occurring with the very
large location model. In that model, there are many location effects that may be missed
by the Lenth test, which creates more opportunities for spurious dispersion effects to be
detected. On the other hand, ESMA-CHIC has very low type 1 error rates for dispersion
effects. It tends to be very conservative in declaring effects active. Despite the lower type
1 error rates, its power is on average much better than the modified Harvey test, in some
cases by more than double.

3.7 Discussion and Conclusions

In this paper we have developed the first fully automated analysis procedure for 2k factorial
designs that can identify both location and dispersion effects in a single step. This is a
critical advance, as it finally provides an objective approach to choosing between models
where location-dispersion confounding may take place. Evidence of its effectiveness in this
regard comes from the simulations, where it competently detects moderately sized active
effects and avoids detecting spurious effects of both types with very reasonable frequency.

As one reviewer quite correctly points out, we cannot be sure that ESMA-CHIC would
enjoy the same relative advantage over Lenth/modified Harvey under all possible simulation
settings. However, our settings were chosen based on prior examples and without knowl-
edge of the potential results. In particular, the size of the dispersion effect is not without
precedent. Gelfand [30] studies 24 published regression data sets exhibiting significant het-
eroscedasticity. She measures the ratios of standard deviations between the top 10% and
bottom 10% of residuals and finds that their quartiles are 2.0, 3.2, and 5.5. Thus, the
ratio of 5 that we used is not particularly extreme relative to heteroscedastic regressions.
Furthermore, in the top-ranked model for the Dyestuff data, the MLE of dispersion effect C
is δ̂C = −1.61, leading to a standard deviation ratio of exp(|δ̂C |) = 4.95. Similarly, for the
top model for the Welding data, we find δ̂C = 1.55, leading to a standard deviation ratio of
exp(|δ̂C |) = 4.71. Thus, a standard deviation ratio of 5 is large, but realistic.

The Lenth/modified Harvey approach that we used for comparison was chosen delib-
erately to be a competitive alternative. In particular, the Harvey test assumes a normal
distribution with loglinear dispersion effects, which is the same model that was used for
the simulations. Thus, we gave our new method no “home-field advantage.” The main flaw
that we anticipated with the Harvey test in this context was its performance in the wake
of the inability to correctly glean the location model with complete certainty through the
Lenth test. Extended simulation results show that this issue is only one aspect of the whole
difficulty with using a sequential testing scheme like Lenth/modified Harvey. In particular,

47

several factors influence whether dispersion effects are spuriously identified by this proce-
dure. For example, in the simulations from ({A,B}, {A,B}), the combination of location
and dispersion confounding causes the AB dispersion effect to be falsely detected roughly
40% of the time—more often than either of the two active dispersion effects!

The cause of this is a complicated combination of facets that a sequential process cannot
possibly cope with. First, the dispersion effects on A and B induce a complicated correlation
structure among the location effects [31]. In our case, the size of the dispersion effects on A
and B imply that the estimates of the active location effects on A and B have correlation
0.85. Each is arranged by design to have a marginal detection rate of 0.5 by the Lenth
test. Thus, in the vast majority of simulation runs, they are either both detected or both
missed, with roughly equal probability on each joint outcome. When both are detected, the
modified Harvey test correctly determines that there is no AB dispersion effect. However,
when both are missed, their combined effect creates a spurious dispersion effect on AB,
and this effect is large enough that the modified Harvey test detects it about 2/3 of the
time. This does not happen with ESMA-CHIC, because the model with D = {A,B} can
be compared directly to the model with D = {AB}, both with and without location effects.
This is a clear example of the advantage of joint modeling using a single criterion.

Another huge advantage of the ESMA-CHIC procedure is its ability to provide assess-
ments of uncertainty regarding the importance of the model parameters. Although not true
Bayesian posterior probabilities, the evidence weights derived from the CHIC nonetheless
convey useful information about the relative importance of effects and models. In addition
to providing a listing of top models, the procedure affords an analyst who has a model in
mind prior to analysis the opportunity to examine the evidence in its favor relative to other
models. This should have great appeal to engineers and other application specialists, who
typically know something about the processes that they are investigating and might like an
objective assessment of their prior beliefs. Furthermore, the model-averaging aspect also
allows one to find more realistic measures of uncertainty on the actual parameter estimates
through unconditional variance estimates computed from the multitude of models that have
been fit [13]. These variances account for the model-selection uncertainty as well as typical
within-model sampling variability.

Unfortunately, an exhaustive search of the model space is a computationally intensive
process. As previously stated, we have shortened our computation time considerably (by
about 60%) by imposing maxima of five location and five dispersion effects on any model fit.
Even with these restrictions, analyzing one data set took an average of about 25 minutes
in R on a Quad-core 2.40GHz processor with 32GB of RAM, using 3 of the 4 cores. Some
of the code is written in C to improve runtime. Using more cores would improve run time
considerably.

The genetic algorithm implementation takes considerably longer to evaluate each model
it considers, because we must simulate penalty values for each new model created by the

48

mating phase of the algorithm. Different settings within the GA—mainly the number of
generations, number of models per generation, and mutation rate—can affect the number
of unique models considered, and hence run time. We tuned our implementation to achieve
good results in terms of both speed and power. Using these settings, analysis of a single
data set took around 30 minutes on the computer described above for each of the three
examples presented in Section 3.5. We re-examined several of the lines from Table 3.6
using the GA and got consistently very comparable results. We then tried the algorithm
on simulated data sets from various models from a 25 design using very similar settings to
those from Section 3.6. We analyzed three example data sets from a selection of models from
Table 3.6 using the same default GA tuning parameters as in the 24 case. These analyses
took about 6 hours per data set (again, this time could be reduced considerably by using
more cores). The GA provided very sensible results, generally identifying the majority of
the active location and dispersion effects and identifying spurious effects with much lower
frequency.

An argument against fully automated model-selection procedures is that they often
pay no attention to whether combinations of variables make practical sense together. For
example, our algorithm for ESMA-CHIC makes no use of effect heredity or hierarchy. Under
the circumstances, however, we do not consider this to be a particular weakness. The model-
averaging aspect of ESMA-CHIC allows an analyst to peruse the top models for those that
do make sense. If no practical models are highly supported by the data, then this may be a
signal either that something was wrong with the experiment or that something unexpected
is driving the responses. In either case, we are not aware of any other objective analysis
method that would be able to provide a sensible model for the analyst when faced with
such data, and indeed would provide far less information regarding the extent to which
“sensible” models are not supported by the data.

A final criticism is that our procedure is based on a normal model with a multiplicative
variance assumption, which means that it may be sensitive to mis-specification of that
model. We have not assessed this sensitivity, but instead can point out that practically every
other location- or dispersion-testing procedure is based on a variant of the same model (a
notable exception is the permutation test of Loughin and Noble [43]). Furthermore, its basis
in a parametric model means that there is nothing that limits the procedure to problems in
the 2k series. It could conceivably be developed to apply to other design series or even to
much more general regression problems. Of course, this would require deriving or estimating
new CHIC penalty values.

49

Chapter 4

HeaRTs : Heteroskedastic
Regression Trees

4.1 Introduction

Regression trees [11] are piecewise constant linear models with split points determined
adaptively using a “recursive partitioning” algorithm. The algorithm recursively splits data
into smaller and smaller groups, called “nodes”, creating a tree structure. Typically, splits
are carried out until some stopping criterion is reached on the nodes at the end of the tree,
called “terminal nodes.” The mean response in each terminal node is usually estimated
from the sample mean of the data within the node, although more complicated methods
have been developed (see e.g., [18] [27]. The size of the tree may be reduced (“pruned”) if
a smaller tree improves prediction accuracy.

Regression trees have desirable features. They construct interaction effects automati-
cally, naturally incorporate variable selection, fit the mean function in a flexible manner,
and have a relatively fast runtime [11]. Furthermore, the model constructed is highly in-
terpretable. Finally, they are used as base learners in several popular ensemble prediction
methods, such as random forests [9], boosted trees [26] and Bayesian additive regression
trees[19].

We explained in Chapter 2 that regression trees are a type of piecewise linear regression,
estimated by ordinary least squares (OLS). Furthermore OLS estimation is known to be
suboptimal in the presence of heteroskedasticity, in the sense that the estimates are ineffi-
cient (see e.g., [45]). This is particularly concerning because heteroskedasticity is common
in real datasets; Gelfand [30] identifies 25 data sets whose variance changes significantly
with the mean in a (non-random) sample of 42 real data sets.

As regression trees have many uses in modern statistical analysis, it is worth studying
how they behave in the presence of heteroskedasticity. Ruth and Loughin [57] analyse the
performance of the popular rpart implementation (in the software language R) of Breiman

50

et al.’s regression trees. They showed under heteroskedasticity, the default settings in the
popular R tree-fitting package rpart can cause the algorithm to make splits splits in the
high variance area, ignoring the low variance area. Upon changing some default tuning
parameters, we can coerce the tree to make splits in the low variance area, but pruning the
tree (which is almost universally a good idea, see e.g. [11]), causes these low-variance splits
to be pruned away again. We argue in Section 4.8.1 that, all else being equal, modeling the
mean function carefully in the low variance area is more important than modeling it carefully
in the high variance area. To accomplish this, we introduce HEteroskedAstic Regression
TreeS (HeaRTs), a version of a regression tree that can split on the mean, the variance, or
simultaneously on the mean and variance. We show that HeaRTs does a better job than
rpart at modeling the mean in the low-variance area when the data are heteroskedastic.

Another issue with regression trees, not discussed in Ruth and Loughin, is that regression
trees do not necessarily use the most efficient estimate of the mean under heteroskedasticity.
In particular, when different terminal nodes contain observations with materially different
variances, the unweighted average is a worse estimate of the mean than the weighted average,
where the weights are the inverse variances. This is the rationale behind weighted least
squares (WLS, see [16]), which improves on OLS estimation for heteroscedastic data. Our
novel HeaRTs method simultaneously models the mean and variance. As a consequence,
we are able to identify when predictors may affect the variance but not the mean, and
can adapt the mean estimation accordingly. We see this is particularly useful when the
predictors that impact the variance model are different from the predictors that impact the
mean model.

The chapter proceeds as follows. We begin by reviewing the standard regression-tree
algorithm of Breiman et al. [11] and related efforts to model variances in trees. We then
focus on the key mathematical differences between our method and Breiman et al.’s method,
in particular on how we make different splits. We introduce 3 different split types, and give
a demonstration of how our new splits respond to heteroskedastic data. Following this we
discuss how we select which type of split to choose at each node, and introduce the Corrected
Heteroskedastic Information Criterion (CHIC) in this context. We then demonstrate how
to use CHIC to prune the tree. We then provide a metric that allows us to measure the
quality of the model fit. Finally, we show how the HeaRTs procedure performs on some real
and simulated data sets, and discuss the effect of both our new pruning method and our
new splitting method. We show that our method is both theoretically faster than Breiman
et al.’s original pruned regression trees, and in a sense, more accurate.

4.2 Relevant Literature

Breiman et al.’s approach [11] to building a regression tree (which we refer to as RPAB:
Recursive Partitioning Algorithm of Breiman et al.) works as follows. We begin by defining

51

the responses y and predictor matrix X, where y is a length n vector and X is a n by p
matrix of predictor variables. Assume for the moment that the values within each column of
X are continuous without ties, but the method can also handle categorical variables. RPAB
begins by finding a splitting rule for the full data, which reside in the root node. A splitting
rule consists of a predictor Xj and a rule “is Xij < c” for some value c. This creates an
indicator function that is evaluated on each observation. Note that many different values
of c may result in the same partitioning of the X ′ijs. Conventionally only the values of c
that fall halfway in between two adjacent values in the sorted list of Xj are considered.
This results in n− 1 possible values of c, though for practical reasons this is usually further
reduced. In particular, a ‘minimum node size’ parameter (which we call m) forces the tree
to split at least m observations into each terminal node. The default value of m in the
popular rpart package in R is 7. Thus, for a given Xj , there are a total of n + 1 − 2m
possible values for c. For each of the p(n+ 1− 2m) splits the sample means are estimated
and the resulting sum of squares (SSE) is evaluated.

After finding the minimum SSE split for some predictor Xj and some split point c, the
algorithm sends all the data that satisfy the rule Xij < c to the left child of the root node
of a tree and the data that do not satisfy the rule to the right child. The splitting algorithm
is then applied independently to each child. All allowable splits are examined and the best
one for each child is chosen. The algorithm continues until a stopping rule is met. A default
stopping rule in the rpart package is that the best split must reduce at least 1% of the
original SSE. Obviously the algorithm will refuse to split if the number of observations in a
node is not at least 2m.

Once a full tree has been created, the sample mean for a terminal node serves as the
fitted value for each observation in that node. A new observation is predicted using the
sample mean of the terminal node within which it is evaluated to fall.

This splitting procedure can overfit the training data (e.g., [11]; [56]). After the splitting
algorithm terminates, the pruning algorithm seeks to find an optimal subtree with respect to
some optimality criterion based on out-of-sample prediction. The approach used by Breiman
et al. uses crossvalidation to estimate the test error, though there are other methods—a
good discussion is given in [66]. Unfortunately, when the data are randomly subdivided and
individual trees are fit to subsamples of the data, a different set of splits may be selected.
There is therefore no way to measure prediction error on the original tree directly without
using a test set. Instead, Breiman et al. develop an algorithm to estimate the optimal size
of the tree, and then correspondingly restrict the size of the original tree.

Breiman et al.’s pruning algorithm, called cost-complexity pruning, works by assigning
a fixed cost z ∈ [0,+∞] to each terminal node in a tree. Let T be any tree, T̃ be the set of
terminal nodes in T , and let |T̃ | be the cardinality of T̃ . Define the “fitness” of a tree to be
Q(T) = SSE(T) + z|T̃ |, where SSE(T) is the sum of the SSE in the terminal nodes of T .

52

Let the subtree rooted at h be Th for any interior node h. The fitness of Th with |T̃h|
terminal nodes is defined as: Q(Th) = SSE(Th) + z|T̃h|. The idea is to evaluate this fitness
for several values of z on all possible subtrees Th. For a fixed value of z, Breiman et al.
show that there is a unique subtree that gives the best fitness as long as ties are broken by
choosing the smaller subtree (the result essentially shows that if two trees have the same
fitness, they must be nested). By increasing z from 0 to +∞, Breiman et al. show that a
nested sequence of such optimal subtrees trees TM ≺ ... ≺ T1 ≺ T0 is obtained (T0 denotes
the full tree and TM denotes a tree with no splits). Breiman et al.’s method then chooses
among these optimal trees based on the best crossvalidation performance. Crossvalidation
performance in this context means that the optimal z is estimated via crossvalidation, and
then that penalty ẑ is applied to the original tree. An optional rule is to find the best
crossvalidation performance and then choose the smallest optimal tree with crossvalidation
performance within 1 standard error of optimal (called the 1-SE rule). Torgo [66] argues
against this rule and we do not employ this option in our analysis.

Breiman et al.’s method of minimizing the SSE on a piecewise constant model is not
the only approach to recursive partitioning; there have been many developments on the
metric used to split the trees. Alexander and Grimshaw [3] fit linear regression at the
terminal nodes instead of piecewise constants. The SUPPORT method given in [18] also
uses linear fits at the terminal nodes but additionally forces the estimated mean model to
be continuous. MARS [27] also uses the recursive partitioning framework, and provides a
continuous and polynomial fit using splines.

Su et al. [62] build a regression tree using likelihood based splits under the assumption
that the data are drawn from a normal distribution with homoskedastic variance structure.
They demonstrate that their tree uses the same splits as a RPAB algorithm, and thus the
only difference is in the pruning method. They test four different information criteria as
pruning mechanisms: AIC ([1] [2]), BIC (Schwarz 1978), AICc [36], and RIC (Shi and Tsai,
2002). They conclude that BIC or RIC are preferable for routine use with regression trees,
recommending them as superior algorithms when the sample sizes are larger, a claim which
is only moderately supported by their simulation study. However, their use of information
criteria (IC) for pruning is inconsistent with the expected use of ICs, because they apply
the IC penalty to a likelihood evaluated on data that are independent from the set used to
fit the tree (see Chapter 2).

Heteroskedasticity has been studied in the context of regression trees. Ruth and Loughin
[57] identify that the Brieman et al. algorithm for regression trees tends to make poor split
selection choices under heteroskedasticity. In particular they use a simple simulation model
to gain better understanding of the splitting performance of the popular R implementation
of Breiman et al.’s regression tree rpart.

53

The general setup of the Ruth and Loughin work considers a single predictor variable x
and a response y. The response y is related to x through a 10 step increasing mean function;
in particular:

x = 1, 2, ...1000,

µx = d x100e,

y = µx + εx,

where µx is the mean at x. The model for εx is

εx =

N(0, 12), x ≤ 500

N(0, s2), x > 500
s = 1, . . . 10

Ruth and Loughin demonstrate the critical issue with regression trees under this setup
as s gets large. The problem is that the tree prefers to make splits in the high variance
area (x > 0.5), to the exclusion of splits in the low variance area (x < 0.5). This is because
the high variance area has more overall SSE to be reduced. Thus rpart ignores multiple
legitimate splits in the low variance area, which should be objectively quite easy to find
because the signal-to-noise ratio in the low variance area is quite a bit higher.

We have mentioned that the default implementation of regression trees in R will make
a split only if it reduces the overall SSE by at least 1% of the total. Ruth and Loughin
demonstrate cases where even if the variance in the low-variance area is set to be 0, the
default implementation still cannot find the splits. A solution is to adjust the settings to
allow the tree to split fully, requiring no improvement in SSE to continue to make splits.
However, this is not enough to fix the problem. The cost-complexity pruning algorithm
routinely removes the splits in the low-variance area.

There has been some work on modeling the variance with a tree. Su et al. [61] explore
the idea of fitting a tree to the squared error residuals from a standard regression model.
The rough idea is that if a tree is constructed that models the error residuals, and after
pruning still has greater than one terminal node, then the data are not homoskedastic.
This is a very clever idea, and the method intuitively rates to be a useful diagnostic for
non-standard relationships between the data and the variance. For example, if the mean
and variance are unrelated, then a standard diagnostic plot of residuals vs predicted values
will show no heteroskedasticity, but their tree might find a relationship between some Xj

and the errors. Unfortunately, their approach suffers from two drawbacks. The first is that
their overall model for the mean is restricted to be a linear model. The second drawback is
again that they require a holdout set to determine the optimal tree size. The method we
propose is an improvement on this, allowing for a tree-based model for both the mean and
variance, and additionally not requiring a holdout set to prune the tree.

54

4.3 Adding variance splits to a regression tree

The original RPAB algorithm splits to minimize the sum of squared errors (SSE) in the
resulting nodes. Our approach is similar to that of Su et al. [62] in that we base splits on
a likelihood criterion rather than SSE. However, to split an interior node we additionally
consider a split on the variance. We will assume throughout that the values of Xj are
continuous without ties. Categorical and discrete predictors can be dealt with in the same
way as Breiman et al. [11].

For a continuous variable, the standard approach is to consider a split of the form
i : Xij < c for some constant c, resulting in n − 1 possible splits of the data for a given
variable. The RPAB algorithm considers every covariate and every split location, computes
the SSE if we split the node at that point, and takes the one that produces the minimum SSE
in the resulting children. Our approach is the same, except that we change the metric from
SSE to likelihood. A split on variable Xj at some value c of the form i : Xij < c partitions
the data. The pair Xj , c that define a split are represented by the ‘split’ parameter S;
maximizing over S refers to finding the best split across all predictors. Values in a node
that satisfy the rule of any candidate split S are sent to the left child LS , and values that
do not satisfy the rule go to the right child RS . The number of observations falling into
LS is nLS

, and nRS
is defined analogously. A sum over LS is taken to be a shorthand for

Σi:Xij≤c, and RS is defined analogously. Finally, µ̂L is the model-predicted value in the left
child, and µ̂R is the model-predicted value in the right child. The SSE criterion is:

SSE =
∑
LS

(yi − µ̂L)2 +
∑
RS

(yi − µ̂R)2

Our proposed method uses three types of splits: splitting where only the mean changes
between the child nodes, splits where only the variance changes between the terminal nodes,
or splits where both change.

4.3.1 Splitting on the Mean

When splitting on just the mean, our likelihood-based splitting procedure produces the
same splits as the SSE procedure. This is not a surprising result, and has been shown
before under various contexts (e.g., it is demonstrated in [62]). We use this opportunity to
demonstrate our framework when we split the parent node into two children with means
µL and µR and common variance σ2. The log-likelihood of the model with a mean split is:

l(µL, µR, S, σ|X, y) = −n2 ln 2π − n

2 ln σ2 −
∑
LS

(yi − µL)2

2σ2 −
∑
RS

(yi − µR)2

2σ2

It is easy to show that the maximum likelihood estimates are:

55

µ̂L =
∑
LŜ

yi
nLŜ

µ̂R =
∑
RŜ

yi
nRŜ

σ̂2 =
∑
LŜ

(yi − µ̂L)2 −
∑
RŜ

(yi − µ̂R)2

n
,

where Ŝ is the MLE of S; i.e., it is the split location that maximizes l(µL, µR, S, σ|X, y).
Consequently, the maximized log-likelihood is

l̂(µL, µR, S, σ|X, y) = −n2 ln 2π − n

2 ln σ̂2 − n

2

l̂(µL, µR, S, σ|X, y) = −n2 ln 2π − n

2 ln
∑
LŜ

(yi − µ̂L)2 −
∑
RŜ

(yi − µ̂R)2

n
− n

2 .

Clearly this function is maximized at the same split value S as the one that minimizes the
SSE. An important corollary of this is that a likelihood tree consisting entirely of mean-only
splits produces the same splits as a standard RPAB tree.

4.3.2 Splitting on the Mean and Variance simultaneously

We return to the initial likelihood formulation with a slightly different model. This time,
we require a separate mean and a separate variance in both the left child and right child:

l(µL, µR, S, σL, σR|X, y) =

− nLS
+ nRS

2 ln 2π − nLS

2 ln σ2
L −

nRS

2 ln σ2
R −

∑
LS

(yi − µL)2

2σ2
L

−
∑
RS

(yi − µR)2

2σ2
R

. (4.1)

By rearranging slightly, we obtain

l(µL, µR, S, σ|X, y) =(
− nLS

2 ln 2π− nLS

2 ln σL2−
∑
LS

(yi − µL)2

2σL2

)
+
(
− nRS

2 ln 2π− nR2 ln σR2−
∑
RS

(yi − µR)2

2σR2

)
(4.2)

Given the optimal split location Ŝ, the MLEs for the other parameters are:

56

µ̂L =
∑
LŜ

yi
nLŜ

σ̂2
L =

∑
LŜ

(yi − µ̂L)2

nLŜ

µ̂R =
∑
RŜ

yi
nRŜ

σ̂2
R =

∑
RŜ

(yi − µ̂R)2

nRŜ

Consequently, we have essentially split the data completely into two non-interacting
pieces. Both the left child and right child estimate their respective means and variances
using the usual MLEs on a single data set. Also note that the MLE’s for the means µL and
µR are the same as in the single mean split.

4.3.3 Splitting on the Variance

We return to the initial likelihood formulation with another slightly different model. This
time, we estimate two separate variances and one common mean in the left child and right
child, leading to the log-likelihood

l(µ, S, σL, σR|X, y) = −nL + nR
2 ln 2π− nL2 ln σL2− nR2 ln σR2−

∑
L

(yi − µ)2

2σL2 −
∑
R

(yi − µ)2

2σR2

Although the form of these likelihood equations is similar to the previous ones, it turns
out that this model has no closed form for the estimates of µ, σL, σR. These estimates can be
found iteratively. Our preferred optimization method is the method of feasible generalized
least squares (FGLS, [55]).

For a variance split on n observations, the goal is to estimate an n× 1 column vector µ̂
and an n× n diagonal matrix Σ. Throughout we define τi to be the inverse of the element
Σii, that is τi = 1

Σii
. For clarity, Σii is either be the value σL2 or σR2, depending on

whether observation i falls into the left or right child. The FGLS algorithm is then:

1. Initialize Σ̂ to be the identity matrix.

2. Estimate µ̂ =
∑

τiyi∑
τ̂i

, using our current estimate of τ̂i = 1
Σ̂ii

.

3. Estimate σ̂2
L =

∑
L

(yi−µ̂)2

nLS
using our current estimate of µ̂.

4. Estimate σ̂2
R using

∑
R

(yi−µ̂)2

nRS
using our current estimate of µ̂.

57

5. Repeat steps 2-4 until there is no appreciable change in the estimates of µ̂ or Σ̂.

4.3.4 Computational Efficiency of a Series of Splits

One of the major advantages of a regression tree is that it can be built quickly. Now that
we have defined the new splits that we will add, we show that we can compute our new
splits in the same asymptotic complexity as the original algorithm, so our algorithm also
enjoys the same speed capabilities. We consider the case where a node has nT observations.
Assuming for the moment that the values of each Xj are distinct, we have O(nT p) different
places we can split. Naively, the computational cost of the split must be at least O(nT),
to evaluate terms involving sums over all the local data. The naive algorithm would be at
least O(nT 2p) to find the best split for a given node.

There is an improvement to be made to the efficiency of this algorithm. The usual
approach is to sort the values of Xj for every j , which incurs a cost of O(nT p log2 nT). The
approach then changes depending on the type of split:

Fast Splits on the Mean

The relevant MLEs are:

µ̂L =
∑
LŜ

yi
nLŜ

µ̂R =
∑
RŜ

yi
nRŜ

σ̂2 =
∑
L (yi − µ̂L)2 +

∑
R (yi − µ̂R)2

nT

To quickly compute µ̂L, we need only nL and
∑
L yi. We split on some variable Xj ,

and since we have sorted Xj , we consider splits in increasing order of the values of Xj . As
a consequence, nL and

∑
L yi change in very predictable patterns. In particular, when we

move the split point by exactly 1 observation (where the corresponding response is yk), we
can update nLS

∗ = nLS
+ 1 and

∑
LS
yi
∗ =

∑
LS
yi + yk. Instead of needing to recompute

the sum over nL observations, we can compute the new value of µ̂L in O(1).
Computing µ̂R is straightforward in an analogous way. Once we have µ̂L and µ̂R, we need

to compute σ̂2. In particular, we need to quickly update
∑
LS

(yi − µ̂L)2 (and analogously
,
∑
LS

(yi − µ̂L)2). This is computed easily using the well known relation

∑
LS

(yi − µ̂L)2 =
∑
LS

yi
2 − nLS

µ̂L
2.

This formulation allows us to exploit the structure again. It is easy to maintain a running
total of

∑
L yi

2, and we are already able to compute nLS
and µ̂L easily. Similarly we keep

58

Table 4.1: Runtime summary for all mean or mean-variance splits on a node with nT nodes

Operation Time Spent
Sorting X ′js O(nT p log2 nT)
Evaluating the First Split for each of p predictors O(nT p)
Evaluating the Remaining Splits for each of p predictors O(nT p)
Total Complexity O(nT p log2 nT)

track of
∑
RS
yi

2, nRS
and µ̂R. These 6 quantities are sufficient to estimate σ̂2. Finally,

observing that the evaluated likelihood depends only on σ̂2, we are successful in evaluat-
ing every split for a given variable in a total of O(nT). Summarizing, the computational
complexity of each step in the algorithm is shown in Table 4.1. Since the most expensive
operation is sorting the X ′js, the total runtime is O(nT p log2 nT), which is much better than
the naive approach of O(n2

T p).

Fast Splits on the Mean and Variance

We will proceed using the same approach of sorting the relevant columns in X before we
start. Recall the MLEs for the Mean-Variance split:

µ̂L =
∑
LŜ

yi
nLŜ

σ̂2
L =

∑
LŜ

(yi − µL)2

nLŜ

µ̂R =
∑
RŜ

yi
nRŜ

σ̂2
R =

∑
RŜ

(yi − µR)2

nRŜ

We can maintain estimators of µ̂L and µ̂R in the same way that we did during the case for
mean splits. Finding σ̂L2 and σ̂R2 also requires running sums of

∑
LŜ
yi

2 and
∑
RŜ
yi

2. As
a consequence, splitting on both the mean and the variance have the same time complexity
as the split on just the mean. The summary of the complexity of this algorithm is therefore
also found in Table 4.1.

Fast Splits on the Variance

Unlike the previous two splits, which behave nearly identically, variance splits require an
iterative optimization routine. Let us assume that the number of iterations required is
bounded above by some constant c. The cost of evaluating the objective function is then

59

Table 4.2: Runtime summary for all variance splits on a node with nT nodes

Operation Time Spent
Sorting X ′js O(nT p log2 nT)
Evaluating the First Split for each of p predictors O(nT p)
Evaluating the Remaining Splits for each of p predictors O(nT 2p)
Total Complexity O(nT 2p)

Table 4.3: Runtime summary for a single variance split on a node with nT nodes

Operation Time Spent
Sorting X ′js 0
Evaluating one split O(nT)
Total Complexity O(nT)

O(cnT) = O(nT) (constants are excluded from the asymptotic runtime). However, we
cannot compute the estimates for successive splits by a simple updating rule. Consequently
the O(nT) optimization routine must be run for each of the O(np) splits. A summary of
the complexity of this split type is in Table 4.2

In addition to this worse theoretical runtime, we also have the practical issue that each
split takes c times longer than the other splits. Even for moderate values of nT , we can
expect that evaluating all variance splits is prohibitively costly. We do, however, observe
that evaluating one variance split is not costly compared to the time taken when evaluating
all mean splits and all mean variance splits. We therefore compromise between evaluating
all variance splits and evaluating none: we evaluate the variance split at the point where
the mean-variance split is considered optimal. This significantly reduces the runtime, and
lets us try to find a more parsimonious model. Also worth mentioning is that we no longer
need to sort columns of Xj since we are just evaluating a single split.

4.4 Example: A Single Split on Heteroskedastic Data

We refer to the algorithm described in the previous section as ‘HeaRTs’: Heteroskedas-
tic Regression Trees. While HeaRTs provides the opportunity to estimate variances that
standard regression trees do not, HeaRTs also can be used to improve mean estimation in
heteroskedastic settings. This happens because the sample mean is not the most efficient
estimator of the population mean in a heteroscedastic setting. Rather, a weighted mean
µ̂ =

∑
τiyi∑
τi

, where τi is the precision (inverse variance) of observation i, is known to be a
better estimate.

However, in order to compute this estimate, the variances for each observation must be
known [16]. This information is generally not available, which leads to the FGLS algorithm
described in Section 4.3.3 However, FGLS does not necessarily lead to more efficient esti-

60

mates than OLS in heteroscedastic settings, because the variance estimation adds variability
to the mean estimation in amounts that depend on the quality of the variance estimation
(see [65], [58]). In this section, we show how HeaRTs can improve on mean estimation using
50 simulated data sets from a simple model. In Section 4.9 we show that improvement is
often attained in real examples.

For our setup, we use n = 1000 points and a single predictor X1. The true model for Y
is:

Y =

N(0, 12), x1 ≤ 0.5

N(0, 42), x1 > 0.5
.

A dataset from this model is shown in the top panel of Figure 4.1.
We ignore split selection for this example, and simply place the split at x1 = 0.5. In

practice, HeaRTs will usually place a variance split near 0.5. We will also compare the
results to the model that makes no split, which is what we expect from RPAB since the
mean function is constant. We evaluate the quality of the splits using two error metrics.
The first is the classical Mean Square Error (MSE), and the second is the Weighted Mean
Square Error (WMSE).

MSE =
√∑

(µi − ŷi)2

WMSE =

√∑(µi − ŷi)2

σi2

where we use µi to denote the true value of the mean function at some value of x1, and ŷi is
the model estimated value. We offer some discussion later as to why we prefer the second
metric, but for the time being we provide both. Both statistics are computed on a test set
of size 1000. We repeat the modeling process on 50 different training and test sets, and
average the results. The results are shown in Table 4.4. In this setup, the mean-only split
and the mean-variance split result in the same estimated means. We therefore have three
setups to consider: no split, mean split, and variance split.

The direct comparison between no split and the mean split is fairly clear. Making no
split tends to be less efficient when modeling Y when X1 ≤ 0.5, because the estimate of
the mean using all 1000 points is ‘contaminated’ with points that have excess variability.
Cutting them out gives a better estimate of the mean. However, making no split provides
an improved model for Y when x1 > 0.5, because here we’re estimating Y with points
that have, on average, lower variability. Instead of just using the 500 observations where
X > 0.5, which have average variance of 16, the points used to estimate Y |X > 0.5 are
estimated with all 1000 points with an average variance of 8.5.

It is intuitively appealing that the mean split performs ‘equally well’ on the RWMSE
metric on X1 ≤ 0.5 and X1 > 0.5. This is reasonable, as µ̂L and µ̂R tend on average to be

61

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

● ●

●

●

●
●●●

●

●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●
●

● ●

●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

● ● ●
●● ●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

● ● ● ●

●●

●

●

● ●

●

● ●

●
●

●
●

●

●
●

●● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

● ●

●

●

●

●
●

● ●

●

● ●

●

●

●
●

● ●

●

● ●

●

● ●

●

● ●
●

●

●

● ●●●
●

●
●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●●

●

●

● ●

●

●
●

●

●
●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●
● ●●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

● ●

●

●

●

●

●

●
●

●

●
● ●

●●

●

●

●● ●

●

●

●
●
● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●
●●

●
●

●
●

●

●●

●

●
●●

●
●

●

●●

●● ●

●

●
●

●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●●

●

● ●

●

● ●

●

●
●●●

●

●

●
●

●

●

● ●●
●●

●

●
● ●●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

● ● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●●
● ●

●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ● ●
● ●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
5

10

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

1

x

y

No Split
Mean / Mean + Variance Split
Variance Split

Figure 4.1: Plot of toy setup analysing one split. Top pane shows one dataset, centered
at y = 0 with significantly higher variance when X1 > 0.5. The bottom pane shows the
resulting mean models given by the various types of splits, with a thin line at y = 0 for
reference. Worth noting is that the variance split uses a weighted average of the two mean
estimates, and tends to be a more precise estimate of the mean than simply averaging across
all the data with uniform weight.

about the same number of standard deviations away from the true mean. Recall that the
split is placed at X1 = 0.5, so µ̂L is estimated from N(0, 1) data, and µ̂R is estimated from
N(0, 4) data. Finally, it is clear from this table that for this setup, the variance split gives
much better mean estimates than its competitors.

62

Table 4.4: MSE and WMSE on the single split example for three types of split.

Split Type MSE x1 ≤ 0.5 MSE x1 > 0.5 Total MSE
No Split 0.0049 0.0049 0.0098
Mean or Mean-Variance Split 0.0010 0.0180 0.0190
Variance Split 0.0002 0.0002 0.0004
Split Type WMSE x1 ≤ 0.5 WMSE x1 > 0.5 Total WMSE
No Split 0.0049 0.0003 0.0052
Mean or Mean-Variance Split 0.0010 0.0010 0.0020
Variance Split 0.0002 0.0000 0.0002

4.5 Choosing the best type of split at a given node

Kullback and Leibler [39] derived a framework for finding the information lost when a model
g(x, θ) is used to approximate the true distribution f(x) for a random variable X. The well
known Kullback-Leibler (KL) information is:

∫
x
f(x) ln f(x)

g(x, θ) .

For the purposes of model comparison, the formula is usually split up into two terms:

∫
x
f(x) ln f(x)−

∫
x
f(x) ln g(x, θ).

By observing that the first term of the formula contains elements that depend only on the
truth (not the model, g(x, θ)), we typically seek to evaluate only the second term. We call
this the relevant part of the KL information. The relevant part can be expressed as:

Ef [ln(g(x, θ))], (4.3)

where Ef indicates that the expectation is taken under the truth.
Akaike [1] shows under some regularity conditions it is possible to approximate (4.3)

with lnL(θ̂|Y), the maximized log-likelihood of a model fit via maximum likelihood. Akaike
showed that this is a biased estimator, but the asymptotic bias is given by ν, the number of
parameters that were estimated by maximum likelihood. Akaike’s result does not specify
a model for g, which means that AIC can be applied to any model where the regularity
conditions apply. For ‘historical reasons’ [14] information criteria are typically multipled by
−2. Akaike’s formula is then:

AIC(g(x, θ)) = −2 lnL(g(x, θ)) + 2ν,

where L(g(x)) is the maximized log-likelihood of g(x, θ) on the training data.
AIC is unhelpful when samples are small. The AIC penalty approximation works asymp-

totically, and the true bias can be heavily underestimated by the AIC formula in small

63

samples [13]. There are some developments to extend Akaike’s ideas to small samples. In
general, the formulations of the small sample bias are model-dependent. Takeuchi [64] de-
velops a criterion (TIC) that works under model misspecification, however Burnham and
Anderson [13] point out that relatively large sample sizes are required to estimate the terms
to sufficient accuracy.

The small sample version of AIC for linear regression was initially proposed by Sug-
iura [63]. Hurvich and Tsai [36] named this quantity the “corrected AIC”, or AICc. They
demonstrated the superiority of AICc over AIC in small samples and additionally recom-
mend it for use on time series models and nonlinear regression. The penalty in AICc has
the form 2n/(n− ν− 1), where ν is the number of estimated parameters. This is asymptot-
ically equivalent to Akaike’s penalty (observe that by setting n >> ν, the denominator is
dominated by n, and the fraction approaches 2) but becomes much larger when the number
of parameters in a model is an appreciable fraction of the sample size.

We showed in Chapter 2 that for a heteroskedastic linear model, the relevant part of
the KL information is

Ef{−2 lnL(θ̂|X, y)} − Ef{Ef{−2 lnL(θ|X, y)}
∣∣
θ=θ̂} =

Ef
{

Tr(Σ̂−1Σf) + (Xβ −Xβ̂)′Σ̂−1(Xβ −Xβ̂)− n
}
. (4.4)

where Σ is a diagonal matrix representing the variance of y and µ is a column vector
corresponding to the means of y. In the context of evaluating the split of a terminal node,
the parameters µ and Σ each have two possible forms. For variance splits, µ is a vector of
constants, while for mean or mean-variance splits, µ contains nLS

elements µLS
and nRS

elements µRS
. Similarly, for mean splits, the diagonal elements of Σ are all equal, whereas

for variance or mean-variance splits, Σ contains nLS
elements σLS

2 and nRS
elements σRS

2.
Note, however, that this form is conditional on knowing the split location in advance.

In reality, S is another parameter that is estimated jointly with µ and Σ through max-
imum likelihood, and the IC bias needs to account for this. Unfortunately, the process
by which this is done makes it unlikely that the bias correction, Ef{−2 lnL(θ̂|Y)} −
Ef{Ef{−2 lnL(θ|Y)}

∣∣
θ=θ̂}, exists in closed form.

We therefore approximate this quantity using simulation. We generate data from a null
distribution where the true model requires no split to be made:

X1, ..., Xp
iid∼ U(0, 1)

y ∼ N(0, 1)

64

and find the best mean split, mean-variance split, and variance split. Our algorithm com-
putes p(n − 2m + 1) different mean and mean-variance splits, and a single variance split
(chosen at the same point as the best mean-variance split).

After finding the best split of each category, we then evaluate the right hand side of
(4.4), conditional on the generated columns X1, ..., Xp. By simulating many datasets drawn
from the null distribution and averaging the results from (4.4), we obtain an estimate of
the penalty term for each of the three split types. The penalty depends on split type, n, p,
and the minimum node size parameter m. We fix m = 20, a setting that was found to be
fairly good, and simulate the IC for each type of split and a variety of n, p cases with 20, 000
simulations each. The penalty values are found in Table 4.5, Table 4.6, and Table 4.7. We
also compute (not shown) an alternate table for m = 10, which tends to be a better value
on small data sets.

There are a few important points to make regarding these tables. First, note that p,
the number of predictors being searched for the optimal fit, has an extremely strong effect
on the IC. However, note that the number of parameters ν being estimated by the model is
constant within a table (consider for example the mean split, where we fit two means and
one variance no matter the value of p.). Most IC’s would therefore use the same penalty for
different values of p. Thus it is apparent that increasing the number of locations at which
the log-likelihood is evaluated to find the optimal split point exerts upward pressure on
the bias associated with using the maximum log-likelihood to estimate (4.4). Our IC takes
this into account and correctly penalizes the search procedure. Note also that unlike AICc,
the penalties seem to increase with n for fixed p. In the AICc framework, as n increases
(holding the ν fixed) we expect the penalty term to approach 2ν from above. Again, our IC
accounts for the fact that the splitting algorithm evaluates every possible split point and
chooses the best. As n increases, there are more potential splits. As a result the best overall
split is even more likely than usual to be ‘chasing the errors’ in the training set instead of
the true mean function, and the expected bias increases with n.

Table 4.5: Penalty Table for a Mean Split. Penalties were estimated using 20, 000 trials.

p

n

1 2 4 8 16 32
50 8.9 11.1 13.7 16.8 20.2 23.6
100 11.0 13.8 16.8 19.7 23.0 26.5
200 12.3 14.9 17.8 21.0 23.9 27.3
400 13.4 15.7 18.8 21.8 25.2 28.1
800 13.9 17.0 19.9 22.5 25.6 28.7
1600 14.7 17.3 20.2 23.8 26.3 29.3
3200 15.8 18.4 21.0 24.2 27.2 29.9
6400 17.2 18.8 20.6 25.0 28.1 31.2
12800 15.4 18.5 21.9 24.2 27.8 31.4

65

Table 4.6: Penalty Table for a Variance Split. Penalties were estimated using 20, 000 trials.

p

n

1 2 4 8 16 32
50 7.8 9.2 10.9 12.6 14.4 16.2
100 8.9 10.7 12.4 13.9 15.5 17.4
200 9.6 11.4 12.9 14.8 16.2 17.9
400 10.6 11.7 13.5 15.3 17.3 18.6
800 10.9 12.8 14.4 15.7 17.4 19.0
1600 11.5 12.8 14.5 16.9 17.9 19.4
3200 12.2 13.8 15.1 16.9 18.4 19.7
6400 13.5 13.9 14.3 17.4 19.0 20.8
12800 10.8 12.6 14.8 15.7 17.9 20.0

Table 4.7: Penalty Table for a Mean-Variance Split. Penalties were estimated using 20, 000
trials.

p

n

1 2 4 8 16 32
50 12.8 16.1 19.9 24.1 28.5 33.1
100 16.1 20.0 24.2 28.2 32.6 37.4
200 17.8 21.6 25.7 30.0 34.2 38.9
400 19.3 22.7 26.9 31.1 35.7 39.8
800 20.0 24.1 28.0 31.8 36.0 40.3
1600 20.9 24.4 28.4 33.1 36.5 40.7
3200 22.0 25.5 29.2 33.3 37.3 41.0
6400 23.5 26.0 28.6 33.9 37.9 42.0
12800 21.7 25.6 29.9 33.0 37.4 41.9

When querying the table with values that fall between the rows, we use bilinear inter-
polation. For values that fall outside, we use the closest point in the table. Particularly for
large values of p a more appropriate algorithm should be used. In our work we have not
analysed values of p much larger than 32 or n larger than 12800, so a better rule was not
necessary. Now that we have a penalty for each model, choosing which split type to use
is easy. We simply compute the penalized log-likelihood for each of the three splits, and
choose the one that produces the maximum penalized likelihood.

Some tree building procedures have a stopping rule that requires a split to be sufficiently
good to actually be made (e.g. in the implementation of RPAB in R, the default setting
is that a split must reduce the overall SSE by at least 1% to be considered). We use no
stopping rule of this form. Our algorithm builds the tree until every node contains fewer
than 2m observations.

66

4.6 Pruning and the Accumulated Information Algorithm

On a given data set, the more splits a tree makes, the fewer observations remain in each
terminal node to estimate means and variances. Naturally using fewer observations leads
to higher variance of these estimates, but having more terminal nodes means that the tree
can estimate means and variances with less bias. Conversely, smaller trees (with fewer
splits) have more observations in the terminal nodes, and can produce estimates that are
less variable but potentially more biased. We typically wish to find an optimal balance
between bias and variance, which may reside in a tree partway between the root node and
the full tree.

The usual approach to finding an optimal tree is to first build a large tree, and then
remove some of the splits in the tree. ‘Pruning’ is the name given to the second step of
removing nodes from the tree. Essentially pruning is imparted to minimize the probability
of overfitting the training data ([66]). Breiman et al. [11] suggested using either a hold out
set or cross-validation to estimate the quality of a set of trees with varying ‘complexity’
(i.e., size), and to pick the tree that performs the best on the test data.

Our method differs from previous pruning approaches in that our pruning doesn’t use
a tuning parameter. Our pruning algorithm simply finds the model that has the best IC.
There is no input from the user to be considered, so there is only one model (the best one) to
find. An alternative could be to work in the style of Su et al.[62], and keep a holdout set to
evaluate a series of models. We could pick the best model as the one with the maximumized
log-likelihood (not the AIC, just the likelihood) on the holdout set. Our method essentially
does this, but without needing a holdout set.

Our pruning algorithm, like our tree-building algorithm, is recursive. We therefore
illustrate the pruning paradigm in the context of a three-node tree, with a parent node
P , the left child L, and the right child R. All pruning decisions are based on three-node
subtrees. The goal is to recursively choose between two models: one for the parent node
and one for the two child nodes.

The model fit at the parent node is a normal model N(µ, σ2), which is fit to all the data.
This is compared to the best model found by the tree, which is a mean split, a variance split,
or a mean-variance split. For a mean split the model for the left child is N(µL, σ2) and for
the right child is N(µR, σ2). For a variance split the model for the left child is N(µ, σL2)
and the model for the right child is N(µ, σR2). For a mean variance split the model for
the left child is N(µL, σL2) and the model for the right child is N(µR, σR2). Initially we
obtain the evaluated likelihood of each model on the data in the node, and initially refer
tot his as the ‘information’ in the node. We denote the information of the left child as IL,
the right child’s information as IR, and the parent’s information as IP . We create an IC by
adding the appropriate penalty value to the information. Finally, the IC penalty value for

67

the model fit at the parent node is BP , and the IC penalty value for the model fit to the
children is BS .

The model for the parent node has no split, so penalty is given by the AICc (we use the
version that does not multiply the log-likelihoods by 2):

BP = p+ p(p+ 1)
nT − p− 1 .

The penalty for the children is the relevant CHIC table evaluated at nT and p, found in
4.5,4.6, or 4.7. We denote this penalty as BS = CHIC[nT , p].

The general approach is to retain a split if:

IP −BP < IL + IR −BS

and otherwise, we prune the split. When we retain a split, the intuition is that the parent’s
true value lies in its children. We therefore replace the parent’s information value IP with
the information of the children. In particular, we set:

IP new = max(IP old, IL + IR −BS +BP).

We apply this procedure recursively starting from the bottom of the tree and working up
until all splits have been evaluated and either pruned or retained.

4.7 Final Estimation of the Tree Parameters

Once a typical RPAB tree has been split and then pruned, the model parameter estimates
can be obtained by taking the sample mean at every terminal node. Our method, which is
unique in that it is able to share estimated parameters across different nodes in the tree,
needs to estimate a final set of parameters through a slightly more complicated mechanism.

Our estimation step has two stages. First, we determine which parameters are shared
across the nodes of the tree. Second, we estimate the parameters. Since means and variances
can be shared separately across the nodes of the tree, we introduce the ‘painting algorithm’
to determine which terminal nodes share means and which terminal nodes share variances.

The painting algorithm for the mean function is:

1. Begin with an arbitrary ‘colour’ for the root node

2. For every split, paint the children with either: a) the same colour as the parent or b)
two new colours

a) If the split type is a variance split, paint the children with the same colour as the
parent

68

b) If the split type is a mean split or a mean-variance split, paint the children with
two new colours

3. Beginning at the root and painting downwards, paint the mean function for the entire
tree

The painting algorithm for the variance function is:

1. Begin with an arbitrary ‘colour’ for the root node

2. For every split, paint the children with either: a) the same colour as the parent or b)
two new colours

a) If the split type is a mean split, paint the children with the same colour as the
parent

b) If the split type is a variance split or a mean-variance split, paint the children with
two new colours

3. By beginning at the root and painting downwards, paint the variance function for the
entire tree

Once we have painted the entire tree, the terminal nodes have the following properties:
some share a common mean, some terminal nodes share a common variance, and some
terminal nodes share no parameters with any other node.

Consider a group of g terminal nodes that share a common variance. Each node has
a different colour for the mean function. The goal is to first estimate g separate means,
and then construct the pooled variance estimator. Number the means µ1 through µg, the
terminal nodes t1 through tg, and the sizes of the terminal nodes n1 through ng. The MLE
for the means is given by:

µi = 1
ni

∑
j∈ti

yj .

After estimating the means, the MLE for the pooled variance is:

σ2 =

∑
j∈t1

(yj − µ1)2 +
∑
j∈t2

(yj − µ2)2 + ...
∑
j∈tg

(yj − µg)2

n1 + n2...ng

For a given group of g nodes that share a common mean but have different variances,
there is no closed form for the MLE’s of µ and σ1

2, σ2
2...σg

2. Instead, we estimate them
using the FGLS algorithm [55].

Finally, for any node that shares no parameters with another node, there is no need to
re-estimate the parameters using data from other nodes. Both the mean and variance are
easily estimated using the usual MLEs for a normal model.

69

Figure 4.2: An illustration of the painting algorithm.

Figure 4.2 gives an illustration of the painting algorithm. We begin with the mean
model. Starting at the root, we paint the root grey. We then perform a variance split.
We retain the parent’s grey for the mean and paint the children grey. The left child is
considered next. Here we make a mean split, and the children’s means are painted two new
colours (yellow and red). Finally we consider the right child of the root. Here we perform
another variance split, and these children’s means are also painted grey.

We now consider the variance model. Again we begin at the root, painting grey. Since
the root performs a variance split, we paint the children’s variances two new colours (yellow
and red). We then split the left child. Here we perform a mean split and paint the children’s
variances yellow. Finally we split the right child of the root with a variance split, and paint
the children with two new colours (light and dark blue).

Once we have painted the tree, we observe that the two leftmost terminal nodes share
a colour for the variance (yellow), and the two rightmost terminal nodes share a colour for
the mean (grey). As a consequence, these parameters are shared across the terminal nodes.

70

4.8 Simulated Examples

Having described our modifications to the RPAB algorithm, we demonstrate our technique
on a set of toy examples. We begin by showing some toy examples in detail to demonstrate
the advantages of our new methodology. In particular we identify two flaws in the RPAB
algorithm under heteroskedasticity. The first issue is that RPAB can have terminal nodes
where the observations making up the terminal node have significantly different variances.
Under this scenario, RPAB uses an inefficient estimator for the mean of the terminal node.
The second flaw is defined by Ruth and Loughin [57]. Ruth and Loughin demonstrate that
if a variable Xj affects both the mean and the variance, then the splits that RPAB creates
prefer to be on the high variance data instead of the low variance data. We show that our
HeaRTs algorithm can overcome both flaws.

4.8.1 Metrics for model performance

Before discussing our simulation setups, we need a method to evaluate how well a model
fits a heteroskedastic data set. The KL Divergence [39] is a popular method for assessing
the quality of fit of a model g to the truth f :

φ =
∫
x
f(x) ln f(x)

g(x, θ) =
∫
x
f(x) ln f(x)−

∫
x
f(x) ln g(x, θ).

For model comparison purposes we ignore the first term and focus on the second. We
approximate the integral using test data, which we assume to follow the same distribution
as the training data. The test data has ntest points y1 through yn, and we have:

φ̂ ≈ −http : //ideone.com/
n∑
i=1

1
ntest

ln g(yi, θ̂).

For the HeaRTs method, g(y, θ) is simply the normal density function with µi’s and σi’s
estimated from the training data. The RPAB method, however, is not based on an explicit
model. We cannot use the KL divergence without making further assumptions about the
model that RPAB is based upon. Considering that the RPAB produces the exact same tree
as HeaRTs does if we allow only mean splits, it seems reasonable to evaluate both algorithms
using a metric based on a normal model. Specifically, we assume that the test set can be
constructed as yi ∼ N(µi, σi2), i = 1, ..., n, where σ2

i is known. When doing simulations, σi2

is known a priori and the true value is used. On real data it is impossible to know the true
value of σi2, so we use the predicted variances from the HeaRTs algorithm as a substitute.

Under this further assumption, we can now evaluate:

φ̂ ≈ −1
ntest

i=n∑
i=1

(
− ln 2π

2 − ln σi2

2 − (yi − µ̂i)2

2σi2
)

71

Under this setup, ln 2π
2 and lnσi

2

2 are constant terms and are not necessary to evaluate for
model comparison purposes. Thus the only relevant term is:

1
ntest

∑(yi − µ̂i)2

σi2
.

We have dropped the factor of 2 for convenience and we seek to minimize this term. We call
this criterion the “Weighted Mean Square Error” (WMSE). For the purposes of the next
sections, we produce both the Root Mean Square Error (RMSE) and the Root Weighted
Mean Square Error (RWMSE). These quantities are computed by taking the square root of
the MSE and WMSE, respectively.

4.8.2 Example: Variance Splits

Having defined how the models are assessed, we continue by using an example to highlight
some of the differences between our method and RPAB. We show two setups. In the first
setup, we will show that HeaRTs and RPAB produce different splits when the variance is
unrelated to the mean. In the second example, we show the ability of HeaRTs to overcome
the problems described in Ruth and Loughin [57].

In our first example, data are heteroskedastic with a variance model that is unrelated
to the mean model. We fit RPAB with default settings (RPAB Default), RPAB with no
forward stopping rule (RPAB Full Split), RPAB with no stopping rule plus pruning (RPAB
Full Split + Pruning), and HeaRTs.

The model is:

X1...X5
iid∼ U(0, 1)

µi = 4(1Xi2>0.5 + 1Xi3>0.5 + 1Xi4>0.5 + 1Xi5>0.5)

Yi = µi + εi

εi ∼ N(0, 1 + 4(1Xi1>0.5)),

where 1 is the indicator function. Figure 4.3 shows the plot of the data in four summary
perspectives. The top left plot shows how y relates to X1 (demonstrating the degree of
heteroskedasticity). Next, in the bottom left, we show how y relates to X2. Note the step
function at 0.5 and also that the data do not appear heteroskedastic in this dimension. Third
in the top right we show the relationship between y and

∑
j=2...5 1Xj>0.5, demonstrating

the true mean function. Finally in the bottom right we show a plot of the “Theoretical
Residual Plot”. This is a plot of the data, where the horizontal axis is the evaluated true

72

mean function and the vertical axis is yi −
∑
j=2...5 1Xj>0.5. We call these two terms the

theoretical mean and theoretical residual, respectively. It is worth noting that this typical
diagnostic plot to assess heteroskedasticity would obviously fail under our setup.

Recall that one of the main observations of Ruth and Loughin [57] was that RPAB
prefers to make splits in the high variance area of the data. As the heteroskedasticity is
unrelated to the mean, this setup does not cause the problems for RPAB described in Ruth
and Loughin. The RPAB tree makes splits on the variables related to the mean, and makes
few splits on X1. The performance difference, then, between RPAB and HeaRTs is that
HeaRTs makes variance splits on X1. The metrics are tabulated in Table 4.8.

Note that the HeaRTs model, which explicitly minimizes RWMSE, does not necessarily
provide the best RMSE. In this setup HeaRTs typically starts by making a variance split
near the root of the tree, and then making several more mean splits on each half. As a
consequence, there are no shared parameters across the terminal nodes in the tree. Thus
the low variance means are estimated precisely, but the high variance means are imprecisely
estimated. HeaRTs thinks that this is a worthwhile tradeoff, as the most important (lowest
variance) points are estimated precisely. In an unweighted average, however, the estimated
means from HeaRTs are further from the truth than RPAB means.

Table 4.8: Performance on the setup with the variance unrelated to the mean. Averages
over 50 runs

Method RMSE RWMSE
RPAB - Default 1.26 0.91
RPAB - Full Split 1.48 0.96
RPAB - Full Split + Pruning 1.06 0.74
HeaRTs 1.58 0.68

In Figure 4.4 we show a predicted vs actual plot for the four different methods of
fitting these data. The horizontal axis represents the predicted values and the vertical axis
represents the mean of the actual values in the test set for a given predicted observation.
The vertical bar shows ±1σ∗, where σ∗ is the average true standard deviation of the values
at that prediction. The main observation is that HeaRTs partitions its predictions into
groups where the variance within terminal nodes is relatively homogenous, either high or
low, whereas RPAB does not. This is shown by the varying lengths of the vertical lines in
the HeaRTs plot, whereas the vertical lines in the other plots are relatively heterogeneous.
This is expected—since the variance is unrelated to the mean, RPAB has no particular
preference to split on X1.

In our second example, we show a setup comparable to the examples in Ruth and
Loughin using one of their moderate variance settings. Like them we use n = 1000, and we
consider the model

73

X1 ∼ U(0, 1)

Yi = d10xi1e+ εi

εi ∼ N(0, 1 + 4(1Xi1>0.5)).

In Figure 4.5, we see a clear demonstration of why variance splits can be useful for individual
regression trees. We first look at the HeaRTs model, which does more or less what we would
hope. For values of X1 less than 0.5, the HeaRTs model splits this data set 6 times, one
split in excess of the optimal. For higher values of X1, the HeaRTs algorithm finds only
3 splits because the high variance makes the changes in the true mean function harder to
locate. Next, the default unpruned RPAB algorithm makes too few splits, particularly in
the low variance region. Large prediction errors are worse in a RWMSE sense if they occur
in the low variance regions. RPAB with no pruning and full splitting obviously makes too
many splits, and the result is a model that has excess variance (observe that the average
distance between these points and the blue line is considerably higher over the space of X1

than for the previous two fits). Finally, the pruned model strips away most of the valuable
mean splits in the low variance portion of the data, while leaving relatively unhelpful mean
splits in the high variance region: precisely the opposite of what should be done! The
metrics are computed and shown in Table 4.9. We see that the HeaRTs algorithm is a clear
improvement over all 3 versions of RPAB both in the variance-weighted and unweighted
metrics.

What is interesting to note is that RPAB will make some splits on the variance ‘by acci-
dent’ if the relationship between the predictors and the mean is related to the relationship
between the predictors and the variance. In particular, in the case where the variance is
related to the mean, RPAB will make several of the same splits as HeaRTs. This is in con-
trast to the previous setup where RPAB clearly made no splits on variance, as the terminal
nodes all had the same variance.

Table 4.9: Performance on Ruth and Loughin Setup - Averages over 50 runs

Method RMSE RWMSE
RPAB - Default 0.80 0.52
RPAB - Full Split 1.12 0.32
RPAB - Full Split + Pruning 0.82 0.38
HeaRTs 0.61 0.21

74

4.9 Real Data Examples

We compare RPAB and HeaRTs on the same 42 datasets as in Chipman et al. [20]. The
datasets are regression setups, with n varying from 96 to 6906. Categorical variables are
coded as individual 0/1 columns. The regressions have between 3 and 28 continuous vari-
ables and 0 to 6 categorical variables. Gelfand [30] showed that many of these datasets are
heteroskedastic. An important difference between our setup and that of Chipman et al. is
that we do not use a variance-stabilizing transformation of the response Y .

To assess the quality of the fit on a given data set, we split the data 90%/10%, con-
structing a training set and test set respectively. The two methods (RPAB and HeaRTs)
are fit to the training data and the fit is evaluated on the test data. Previously we showed
three versions of RPAB: as we found that RPAB with no forward stopping rule and pruning
seems to perform best, we use that version of RPAB. To reduce the variability due to the
randomness of the splitting procedure, the data are resplit 50 times and the metrics (RMSE
and RWMSE) are averaged over all 50 resplits.

Figure 4.6 shows two boxplots of the ratio of the metrics between the two methods. For
each dataset, we compute:

RMSERPAB
RMSEHeaRTs

and

RWMSERPAB
RWMSEHeaRTs

.

Values above 1 indicate that HeaRTs performs numerically better on this dataset.
We find that the two methods perform comparably on real data in terms of RMSE.

However, on heteroskedastic data, the HeaRTs method has an obvious advantage with
respect to RWMSE. It is worth noting that a limitation of our approach is in order to
compute RWMSE, we need a variance model. We chose to use estimated variances based
on the fitted HeaRTs model. It is conceivable that this might lead to an outcome that
favours the HeaRTs algorithm. However, note that HeaRTs does not perform better in
a RWMSE sense on the datasets Gelfand found to be homoskedastic. We view this as
evidence that HeaRTs is not spuriously estimating variances and inflating the RWMSE
metric in its favour. An important, additional advantage of our method is that since our
tuning algorithm does not require crossvalidation, it runs significantly faster. All else being
equal, if k fold cross validation is used to find the best cost complexity parameter, our
pruning method is a full factor of k faster.

75

4.10 Conclusion

We propose a novel method that combines mean and variance splits in a regression tree.
We also introduce a new method of pruning that does not require crossvalidation, and as a
consequence is significantly faster than tuning via CV. We show that our method, while not
necessarily reducing RMSE, improves the quality of the model fit on real data in the low
variance portion of the data. Furthermore, our pruning algorithm executes much faster than
one based on sample-reuse, such as the cost-complexity pruning of Breiman et al [11]. Thus,
we can offer a faster algorithm for regression trees that holds its own on homoscedastic data
while showing a clear improvement over its main competitor on heteroscedastic data.

Although our focus was on modeling the mean, particularly in the low variance area of
the data, HeaRTs could potentially be used in other contexts. HeaRTs naturally constructs
an implicit variance model. One potential use of this would be to construct predictive
intervals for new observations. When modeling heteroskedastic data, it seems reasonable
to expect that HeaRTs would give better predictive intervals than a model that assumes
homoskedasticity. In Chapter 3 we discuss models where one of the objectives of the mod-
eling process is to understand the relationship between the predictors and the variance of
the response. HeaRTs can address this also, with all the advantages that a regression tree
offers (the HeaRTs tree is easy to interpret, automatically detects interactions, and can
model non-linear effects). Finally HeaRTs can potentially be used as a method for detect-
ing heteroskedasticity in datasets. By fitting a pruned HeaRTs model to a dataset, if the
HeaRTs model still has variance splits, it could be reasonable to conclude that the data are
heteroskedastic.

There is an important limitation to consider regarding the simulated penalties in CHIC.
Our computation of the penalties under the assumed ‘null model’ could be incorrect if the
data are distributed considerably differently from the assumed simulation. In particular,
we assume that the entries in X are distributed independently and uniformly, and that the
y’s are distributed as normal random variables. If the actual entries in X were correlated or
discrete, the CHIC penalties would be incorrect (in this case they would be conservative, in
the sense that the penalties will be too large and smaller models will be preferred). If the
true ys are actually drawn from a distribution quite unlike the normal, then the penalties
may be off in either direction. This can be fixed by simulating penalties under different
scenarios, but the drawback is that simulating penalties takes a considerable amount of
time.

76

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

Plot of y vs x1

x1

y

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20
30

Plot of y vs x2

x2

y

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

0 1 2 3 4
−

10
0

10
20

30

Mean function of y

sum(I{x_j > 0.5})

y

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

● ●
●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●
●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

● ●
●

●

●

● ●

●

●
●

●

●

●

● ●●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

● ●
●

●

● ●

●

●

●

● ●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●●

●
●

●
●●●

0 5 10 15

−
15

−
10

−
5

0
5

10
15

Theoretical Predicted vs
 Residual Plot

Theoretical Mean

T
he

or
et

ic
al

 R
es

id
ua

l

Figure 4.3: Plot of the data distribution where X2 through X5 are related to the mean
and X1 is related to the variance. The top left panel shows the heteroskedastic relationship
between X1 and y. The bottom left panel shows the relationship between X2 and y, and the
top right panel shows the relationship between the true mean function and y. The bottom
right panel shows a residual vs predicted value plot, used to assess heteroskedasticity. Here
we plot as a ‘residual’ yi − µi vs the theoretical mean, µi.77

●

●
●●

●

●●●

●

●●

●

●●

●

●●●

●●●

●

● ●
●

0 5 10 15 20

−
5

0
5

10
15

20

HeaRTs

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

●

●●

●●

● ● ●

●

●
●

●

●

0 5 10 15 20

−
5

0
5

10
15

20

Default CART − No pruning

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

●● ●

●●

●

●
●●●●

●

●

●●

●

●
●●●●●●●

●

●●

●●●
●
● ● ●

●

● ●

0 5 10 15 20

−
5

0
5

10
15

20

CART: cp = 0 − No pruning

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

●

●●●●

● ●●●●●●

●
●

● ●
●

●

0 5 10 15 20

−
5

0
5

10
15

20

CART: cp = 0 − Pruning

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

Figure 4.4: Population Parameters vs Terminal Nodes, plotted for four setups. The x-axis
represents distinct terminal nodes in a tree. The y-axis represents the average true mean in
the terminal node: e.g. if a node contains the subset 0.47 < X2 < 0.51, then 75% of the y’s
have a true mean of 6 and 25% of the y’s have a true mean of 10, so the displayed average
is 7. The vertical bars at each point represent ±1 true standard deviation, again taking a
weighted average of variances if the terminal node crosses the boundary X1 = 0.5

78

●
●

● ●
●

●

●

●

●

0 2 4 6 8 10

−
5

0
5

10
15

HeaRTs

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

●

●

●

●

●

0 2 4 6 8 10

−
5

0
5

10
15

Default CART − No pruning

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

●● ●●
●●●●

●●●

●

●
●

●●●

●
●●●

●

●
●

●
●

●

● ●
●

●

● ●

●
● ●

●
●

●

0 2 4 6 8 10

−
5

0
5

10
15

CART: cp = 0 − No pruning

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

●

●

●

●
●

●

●
●

●

0 2 4 6 8 10

−
5

0
5

10
15

CART: cp = 0 − Pruning

Estimated Values in
Terminal Nodes

P
op

ul
at

io
n

Tr
ut

h

Figure 4.5: Population Parameters vs Terminal Nodes, plotted for four setups under the
univariate design of Ruth and Loughin. The horizontal axis represents distinct terminal
nodes in a tree. The vertical axis represents the average true mean in the terminal node:
e.g. if a node contains the subset 0.17 < X1 < 0.21, 75% of the y’s have a true mean of 1,
and 25% of the y’s have a true mean of 2 - the displayed average is 1.75. The vertical bars
at each point represent +/− 1 true standard deviation, again taking a weighted average of
variances if the terminal node crosses the boundary X1 = 0.5

79

●

●

●

●

●

RMSE Ratio RWMSE Ratio

1.
0

1.
2

1.
4

1.
6

1.
8

Heteroskedastic Data Sets

●

●

RMSE Ratio RWMSE Ratio

1.
0

1.
2

1.
4

1.
6

1.
8

Homoskedastic Data Sets

Figure 4.6: 42 Real Data Sets from Chipman et al. Ratios computed are based on averages
of 50 sets of 90/10 subsamples. Ratios greater than 1 are in favour of HeaRTs. On the
homoskedastic datasets, RPAB and HeaRTs perform similarly. On heteroskedastic datasets,
again the RMSE is similar, but HeaRTs improves upon the RWMSE of RPAB by a mean
of 6.7% and median of 1.5%. Note that HeaRTs does not appear to give itself an advantage
in a RWMSE sense by estimating the variance and then using it in the RWMSE formula.

80

Chapter 5

Jar of HeaRTs : An ensemble of
Heteroskedastic Regression Trees

5.1 Introduction

Ensemble methods have been around at least since bagging [8], boosting [26], and arcing
[10]. Roughly speaking, an ensemble method aggregates the predictions (via an average
or weighted average) of a set of models, rather than relying on a single model. A popular
ensemble method is the random forest [9]. In the context of regression, random forests
are an aggregation of regression trees [11]. The regression trees are trained on bootstrap
samples of the data and are trained on random subsets of predictors in each split in order
to de-correlate their individual predictions. There are many versions of the random forest,
including a notable Bayesian variant called Bayesian Additive Regression Trees (BART,
[20]).

Although random forests have been improved and studied in many ways, there is a
notable gap in the study of heteroskedasticity with random forests. Recently, BART has
received some attention in this area, including the work of Bleich [6] who incorporated a
variance model into BART. There is currently no analogue for random forests.

We demonstrate how we combine the base learner HeaRTs into an ensemble, which we
call the “Jar of HeaRTs”. The key feature is that HeaRTs naturally models variance and
consequently the ensemble is also able to model variance. We show some situations where
the variance modeling is helpful compared to default random forests. We also show that
default random forests perform poorly on flat and elbow functions, and we introduce a
technique we call alpha−pruning that improves the fit.

81

5.2 Relevant Literature

Typical regression trees work by recursively splitting data into two groups, and predicting
the response using just the data inside the group. The method was popularized by Breiman
et al. [11], who proposed splitting the data using the Sum of Squared Errors (SSE) criterion.
We refer to the regression trees of Breiman as Recursive PArtitioning of Breiman et al.
(RPAB). There have been many developments on the metrics used to split the trees. Su
[62] developed maximum likelihood regression trees, showing that splits using the likelihood
are equivalent to SSE splits, although they prune the tree differently. Regression trees,
although interpretable, are considered to be unstable predictors [9] in the sense that if the
data are perturbed slightly, a completely different estimated mean structure is proposed.
Approaches like bagging [8] are intended to overcome this variability.

Random forests were first proposed by Breiman [9]. Random forests are an improvement
upon the bagging procedure. The additional observation is that the improvement obtained
by averaging over many trees is directly related to the correlation of the trees. The lower
correlation, the better. An illustration of this idea is given in [34]. Consider a set of
K identically distributed, but correlated random variables with variance σ and positive
pairwise correlation ρ. The analogue of this is using an average K trees created from
bootstrap samples of the data. They give the variance of the average of the K random
variables as ρσ2 + 1−ρ

K σ2. The term 1−ρ
K σ2 can always be reduced close to zero with a large

enough K. The relevant term is ρσ2. By keeping ρ small, very good predictive performance
is attainable.

It is therefore desirable to de-correlate the predictions from individual trees. To accom-
plish this the regression trees fit to the data are different from classic trees in two ways.
The first change is that each tree is grown on its own bootstrap sample of the data, instead
of the original data, just like bagging. The second change is that each tree can only use a
random subset of the predictor variables at a given split. The size of this subset is a tuning
parameter called r. The subset given to each split is chosen uniformly at random from all(p
r

)
possible combinations.
Random Forests possess some unique attributes that make them desirable as a prediction

method. First, as each tree is grown on a bootstrap sample of the data, each tree has an
implicit holdout set called the "out-of-bag" sample, consisting of approximately 37% of the
original sample. This built-in test set provides a direct measure of mean squared prediction
error, called the “out-of-bag error”. Breiman proves that this error estimate is unbiased for
the test error. As a consequence, the test error can be estimated without needing either
cross validation or a holdout set.

Finally, random forests consist of an aggregation of a set of non-interacting trees. The
relevant consequence of this is that the trees can each be built on a separate core/machine
and results aggregated together with minimal effort. The procedure is “embarrassingly

82

parallel”, that is, using C cores results in a speedup of a factor of roughly C (with minimal
overhead). An example of a procedure which is not embarrassingly parallel is boosting,
which works by re-weighting the residuals from the prediction of the first K − 1 trees to
create the Kth tree. Since this algorithm is sequential in nature, there is no advantage to
using multiple cores.

Breiman’s complete forest building algorithm is as follows:

• For each of K trees, grow a regression tree on a bootstrap sample of the data.

• When growing a regression tree, at every node, we pick a random subset of size r from
the p predictors.

• Find the optimal split on these r predictors and make the split

• Stop making splits on any node with no greater than m responses inside the node

• Apply no pruning to the trees

• Once all the trees are built, the predicted responses are obtained by averaging the
predictions from each individual tree

The intuition behind the approach is that the trees are built to have highly variable but
unbiased prediction of the mean surface. By averaging several trees together, the variability
is lowered and the unbiasedness remains. The effectiveness of the approach depends on the
correlation between the trees. If the prediction errors from the trees are highly correlated,
averaging over many of them does little to improve variability. Breiman writes that with
enough trees, the prediction error of the forest is no more than ρ times the prediction error
of an individual tree (where ρ denotes the average correlation of the trees).

The randomForest package in R is a common tool for fitting random forests. In this
package there are several ways to control the sizes of the individual trees. One method is
through the tuning parameter called “minimum node size”, which we call m. The tuning
parameter m is defined as the smallest node size where we can possibly make a split.
Another method to control tree size is through the “maximum nodes” parameter, which we
call |T0|. This parameter controls a forward stopping rule, which causes a tree to cease to
make splits after reaching |T0| terminal nodes. It is evident from the source code that the
splits created by the randomForest are created in the ‘Breadth first’ paradigm. That is to
say, the tree splits in levels. Define the level of the root node to be 0, and the level of a
child is the level of the parent +1. Every level is fully split before considering splits at the
next level. As a consequence, these trees with early stopping are balanced (they may not,
however, be optimal in the minimum SSE sense).

In our work we refer to a ‘default’ random forest, which we mean to be the default
settings of the implementation of randomForest. In particular, the package uses a default

83

setting of m = 5, r = bp/3c, and K = 500. To re-iterate an interesting point of the previous
paragraph, this random forest implementation routinely splits off some terminal nodes of
size 1 under the default settings.

5.3 Problems with random forests on flat functions

It is usually recommended to prune individual trees when they are used as predictors ([11],
[56], many others). Random Forests, however, are typically created as an average of un-
pruned trees. Tuning the size of the minimum nodes in a random forest is usually thought
to have relatively low effect (e.g., [34]). Random Forests do, however, exhibit a bizarre
pathology: default random forests are terrible at predicting very flat surfaces. In fact, if
the response surface is relatively flat, random forests can do much worse than RPAB.

To demonstrate this, we show a setup where:

X1...X5
iid∼ U(0, 1)

Y ∼ N(0, 1). (5.1)

We fit three models to training sets of size 1000: default random forest, pruned RPAB, and
default linear regression. We then compute the Root Mean Square Error (RMSE) on a test
set of size 1000. For observation i in the test set, each model computes a predicted mean
µ̂i. In this setup the test set mean is always 0, so the RMSE is calculated using:

RMSE = 1
1000

i=n∑
i=1

µi
2

Finally, we average the predictions over 50 runs. The RMSE’s are tabulated in Table 5.1.

Table 5.1: Performance of random forest for estimating means from a flat function. Numbers
are averages over 50 simulations from model (5.1), and have standard error ≤ 0.01.

Method RMSE
Random Forest 1.04
RPAB - Full Split + Pruning 0.13
Linear Regression 0.35

Clearly this is not the quality of performance we expect from a random forest! Intu-
itively, it is surprising that an average of regression trees is so much worse than a single
regression tree. The problem is the random forest are too variable. It is worth noting
that the number of trees is not the problem here. The problem is that the trees are grown
too large, so that the flat surface is being predicted by lots of means from small samples.
Furthermore because the trees are still somewhat correlated, the variance of the average

84

prediction remains high. One attempt to fix this is to tune the minimum node size param-
eter m. The results of tuning m are given in Figure 5.1. We see large improvement by
tuning m on this flat function.

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RMSE vs min_node for a Random Forest
 Averaged over 50 runs

min_node

R
M

S
E

Figure 5.1: Plot of RMSE vs nodesize under a model with no real effects. Smaller trees
(larger nodesize) gives significantly better performance, contrary to the usual claims in the
literature. Even with nodesize = n, the random forests still makes splits and has a RMSE
(0.18) worse than a tree from RPAB (0.13).

This behaviour can also be found by tuning the other optional parameter given in the
randomForest package, called ‘maxNodes’. We show the results of tuning the maxNodes
parameter in Figure 5.2.

Clearly flatness is a problem for random forests. We now try to determine to what
extent flatness is a problem. To vary the flatness we simulate using the truth as a linear

85

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RMSE vs Max Nodes for a Random Forest
 Averaged over 50 runs

Max Nodes

R
M

S
E

Figure 5.2: Plot of RMSE vs Max Nodes under a model with no real effects. Smaller trees
(smaller maxNodes) gives significantly better performance, contrary to the usual claims in
the literature. SettingmaxNodes = 1 is the only way to attain the same RMSE performance
(0.13) as RPAB.

model with varying slope. The idea is to try to find the point at which the default m setting
(of 5) is acceptable.

X1...X5
iid∼ U(0, 1)

Y ∼ N(Xβ, 1)

We set β = {c, c, c, c, c}T for some values of c, and for each value of c we determine the
optimal nodesize. We plot the relationship between slope and average optimal nodesize in

86

Figure 5.3, and also show the relationship between optimal nodesize and the theoretical R2

(the theoretical R2 is the average R2 when fitting the true, linear model). We note that on
low signal-to-noise relationships, it appears useful to tune the nodesize to be larger than the
default (5), and when the signal-to-noise ratio is very high, a smaller nodesize is preferable.

0.0 0.2 0.4 0.6 0.8

0
20

0
40

0
60

0
80

0

Average Optimal Nodesize for different
 values of R square in a Random Forest

 under a linear model

R Square

A
ve

ra
ge

 O
pt

im
al

 N
od

e
S

iz
e

0.0 0.2 0.4 0.6 0.8

0
10

20
30

40
50

Average Optimal Nodesize for different
 values of R square in a Random Forest

 under a linear model

R Square

A
ve

ra
ge

 O
pt

im
al

 N
od

e
S

iz
e

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0

Average Optimal Nodesize for different
 values of R square in a Random Forest

 under a linear model

Slope

A
ve

ra
ge

 O
pt

im
al

 N
od

e
S

iz
e

0 2 4 6 8 10

0
10

20
30

40
50

Average Optimal Nodesize for different
 values of R square in a Random Forest

 under a linear model

Slope

A
ve

ra
ge

 O
pt

im
al

 N
od

e
S

iz
e

Figure 5.3: The plots on the left hand side show the relationship between average optimal
nodesize and the true R2 under a true linear model. Plots on the right hand side show
the relationship between average optimal nodesize and slope. Top plots are identical to
their respective bottom plot, the only difference is the y-axis. Top plots are shown with
y ∈ [0, 1000], bottom plots are ‘zoomed in’ to y ∈ [0, 50]. We see that the default value of
nodesize (5) relies on the signal-to-noise ratio (as measured by R2) being appreciably higher
than 0.

The tuning parameter m controls a particular bias-variance tradeoff in a random forest.
Averaging over more observations in the terminal nodes leads to mean estimates with lower
variability , but the mean estimates can be biased if the mean function is non-constant

87

across the observations in the terminal nodes. Averaging over fewer observations in the
terminal nodes allows us to capture a rapidly changing mean function, but the variability
of the terminal nodes is higher.

Tuning m, furthermore, can be a blunt instrument. The problem is that there is no
particular guarantee that the true mean function exhibits the same amount of flatness
across the entire space of X. An example to illustrate this is an elbow function which
contains both a section of flatness and a section with some positive slope. Setting m to be
small results in low bias in the sloped portion of the surface, but excessive variability in the
flat portion. Conversely, setting m large results in low variability in the flat portion but
excessive bias in the sloped portion.

We show the attempts of a random forest to fit an elbow function on the following setup:

X1...X5
iid∼ U(0, 1)

Y ∼ N(10(max(0.5, X1)− 0.5), 1).

We fit random forests with varying m to these datasets. Two example plots are shown in
Figure 5.4 and Figure 5.5. It turns out that there is no particularly satisfactory value of m
for this function—the random forest has either excess variance in the low end (Figure 5.4)
or excess bias in the high end (Figure 5.5). We later demonstrate a new pruning approach
that fixes this issue.

5.4 Constructing a Jar

We follow the same approach as Breiman [9] when constructing our ensemble of HeaRTs
(Chapter 4). We call this ensemble the Jar of HeaRTs. Breiman’s original random forest
models only the mean, not the variance, and as such we make some small modifications to
our algorithm to incorporate this. Furthermore we add in a step to improve performance
on flat functions.

• For each ofK trees, we grow a regression tree on a 50% subsample of the data. We have
not found subsampling to provide different performance compared to bootstrapping,
and subsampling seems to be a preferred default [59].

• When growing a regression tree, at every node, we pick a random subset of size r from
the p predictors.

• We find optimal split among the candidate predictors, using all 3 different types of
split (Mean, Mean Variance, and Variance).

• We pick the best split using the CHIC criterion.

88

Figure 5.4: A plot of the predicted values by a random forest with m = 5, as a function
of X1, on the elbow function. The true mean function is drawn in red. The problem with
these predictions is that there is excess variability. The estimates of the mean are relatively
unbiased here: compare to Figure 5.5

• After constructing all the trees, we re-estimate the final parameters in the Jar of
HeaRTs (more details found in Section 5.6).

• We apply a pruning technique we call α−pruning (more details found in Section 5.5)
to help improve the fit on flat functions. Each time we apply pruning we re-estimate
the final parameters of the Jar.

If we turn off the ability to make variance and mean-variance splits in our method, and do
not use the α−pruning technique, we are left with a standard random forest. One additional
detail in our Jar implementation is that we do not want to make variance or mean-variance
splits and be left with one observation in a terminal node - this would make it impossible

89

Figure 5.5: A plot of the predicted values by a random forest with m = 200, as a function
of X1, on the elbow function. The true mean function is drawn in red. The problem with
these predictions is that the estimates of the true mean are biased (too high in the low end,
and too low at the high end). The variability of these estimates is much lower than Figure
5.4

to optimize the likelihood. We impose a hard constraint that any split involving a variance
must have at least 7 observations in both terminal nodes. If the node contains fewer than
14 observations, only mean splits are considered. The minimum size to split on the mean
is the same tuning parameter as in the original forest algorithm.

5.5 α−Pruning

Now that we have demonstrated the need for flexible node sizes in a random forest, we
introduce the α−pruning algorithm on the Jar of HeaRTs. This form of pruning seeks to

90

automatically tune the trees to the best possible size, as required within the context of the
entire ensemble. The rough approach is to prune the HeaRTs using the CHIC penalties,
which is a very fast approach (requiring only one pass through the data). However, pruning
using the computed CHIC penalties for a split is usually going to excessively prune. This is
because the penalties are computed under the assumption that only one tree was being used
to estimate the mean, rather than the average of many trees. Thus, the penalties balance
the bias-variance tradeoff differently from what is needed within an ensemble, where it is
better to take on some extra variability in exchange for eliminating bias. Consequently, we
typically want to use a lower penalty, allowing trees to be larger and less biased than usual.

Our solution to this is to relax the pruning criterion that is normally used by HeaRTs.
Recall from Chapter 4 that for each internal node we fit a model to the parent node and
compare the model to the model found by the best split. The model fit at the parent node
is a normal model with a single mean and variance, N(µ, σ2). This is compared to the best
model found by the tree, which is a mean split, a variance split, or a mean variance split.
The model for the children is also a normal model with either two means and one variance,
in case of a mean split, one mean and two variances if the split is on variance, or two means
and two variances if the split is on both.

Initially we obtain the maximized likelihood of each model on the data in the node, and
this is the initial value of the ‘information’. We refer to the information of the left child as
IL, the right child’s information is IR, and the parent’s information is IP . Finally, the IC
penalty value for the model fit at the parent node is BP , and the IC penalty value for the
model fit to the children is BS .

The information is a biased estimate of the true quality of the model on test data. The
model for the parent node has no split, so penalty is given by the AICc (we use the version
that does not multiply the log-likelihoods by 2):

BP = p+ p(p+ 1)
nT − p− 1 .

The penalty for the children is the relevant CHIC table evaluated at nT and p, found in
4.5,4.7, or 4.7. We denote this penalty as BS = CHIC[nT , p].

The general approach is to retain a split if:

IP −BP < IL + IR −BS

and otherwise, we prune the split. When we retain a split, the intuition is that the parent’s
true value lies in its children. We therefore replace the parent’s information value IP with
the information of the children. In particular, we set:

IP new = max(IP old, IL + IR −BS +BP).

91

We apply this procedure recursively starting from the bottom of the tree and working up
until all splits have been evaluated and either pruned or retained.

However, when creating a forest of trees, it is preferable to have higher variance, low bias
trees (see e.g.,[34]). Our approach of finding the optimal bias-variance tradeoff for a single
tree using CHIC produces trees with a mixture of bias and variance. Since the ensemble
will reduce some of the variance (but not bias), it is preferable to grow larger trees. This
means that the CHIC values need to be reduced somewhat. The α−pruning approach is to
retain a split if:

IP − αBP < IL + IR − αBS ,

where α ∈ [0, 1] is a tuning parameter. Note that setting α = 0 uses full trees with no
pruning, and setting α = 1 gives trees using the regular CHIC penalties. The updating
equation for IP new is now:

IP new = max(IP old, IL + IR − α(BS +BP)).

It is natural to assume that by adding a tuning parameter the algorithm will be slower.
However with the right approach, it is easy to either try a few values of α (or of m) with
no additional cost. The idea is to prune each tree at a fixed value of α and find the α that
minimizes a test-set error rate. First, recall that Breiman et al. showed that the OOB
error is unbiased for the test set error. Analogously, we use the OOB likelihood as our
error rate - the OOB likelihood is an unbiased estimate of the test-set likelihood. Secondly,
consider the cost of building the forest. Building a single tree is known to have cost of
O(np log2 n) (see, e.g. [68]), and we build K trees, so the total cost of building a forest is
O(Knp log2 n). Now, we compute how long it takes to evaluate the OOB error. For one
observation, we evaluate the error on O(K) trees (usually about 37% of them) at an average
height of O(log2n) per tree, so the total cost to evaluate the OOB error of all n observations
is O(nK log2 n). Pruning the trees using the CHIC criterion takes less time: for each split
made, the CHIC criterion does an O(1) calculation, and thus prunes in O(n) time per tree
for a total pruning time of O(nK).

The consequence of this is that the expensive part of tuning α or m is the computation
of the OOB error. We have shown that the cost of building the tree is Knp log2 n and
the cost of evaluating the OOB error is nK log2 n. As long as we don’t evaluate too many
different values of α orm, the runtime will not be increased substantially. As an illustration,
evaluating p different values of alpha would result in approximately twice the runtime.

The current implementation of randomForest in R does not allow for m to be tuned
as efficiently. Since the forest has to be re-fit with a new m every time to tune, the
implementation suffers a slowdown of a factor equal to the number of different values of m
that are tried. However, with a good implementation, it is possible to change the m to any

92

higher value m∗ at no additional cost. We tune m using the OOB error. To compute the
OOB error, for every observation in the training data we drop the observation through every
OOB tree until it reaches the corresponding terminal node. To change m to a new value
m∗ in this procedure, the only necessary change to this algorithm is to terminate on any
node that contains no more than m∗ observations. Thus in the same vein as α−pruning,
m can be tuned without needing to resort to crossvalidation. What is required is to simply
use a smart ‘predict’ function that can take m as a parameter.

5.6 Estimating Final Parameters of the Jar

The random forest algorithm constructs the final estimates by estimating means in the
individual trees and then aggregating means across the trees. Our Jar of HeaRTs seeks to
do the same, but the process is a little more complicated. To begin, the naive estimates for
the means and variances in the Jar of HeaRTs are unsatisfactory. The naive mean estimator,
which takes a simple unweighted average of the individual predictions from each tree, does
not use the variance information and is inefficient. The naive estimate of the variance is
also poor. Large trees naturally tend to overfit the data, and as a consequence we would
under-estimate the variance.

Therefore, we cannot simply average the means and variances across allK trees’ terminal
nodes for a given x. In particular, individual terminal nodes are not meant to provide the
best possible estimates of the respective means, because the trees are built using suboptimal
choices of variables and not pruned to an optimal level for prediction from single trees.
Therefore, the variances in these terminal nodes contain both the natural error variance of
the process and the error from mis-estimating the means.

Our solution relies on using a different residual to estimate the global variance. Terminal
node variances in a given tree are based on squared ‘local’ residuals, where local residuals
are differences between an observation and the mean estimate in its terminal node. Local
residuals change from tree to tree, so an observation’s contribution to the variance also
changes from tree to tree. We define instead a ‘global residual’, which is the difference
between an observation and its OOB mean. We base our variance estimation on the global
residual.

We deconstruct the parameters in the Jar into four separate components. The general
idea is that we will fix three of them and estimate the fourth conditional on the other 3, in
the same vein as the Feasible Generalized Least Squares (FGLS,[55]) approach to optimizing
variance. The four groups are:

• Mean models within individual trees (each tree will have several different mean mod-
els)

• OOB means for each data point in the training data

93

• Variance models within individual trees (each tree will have several different variance
models)

• Variance estimates for each data point in the training data

We initialize the algorithm with all means at 0 and all variances at 1. We then iterate
through the following steps.

5.6.1 Part 1 - Estimation of means in trees

Consider the first tree, T1. T1 has some mean splits, some variance splits, and some mean-
variance splits. We use the painting algorithm on the tree (Chapter 4) to determine which
means should be estimated together. This splits the data into a set of G groups, with
sizes n1, n2...nG. In group g, the first goal is to estimate a single mean to model all ng
observations that fall into the(se) terminal node(s)—recall that the painting algorithm may
determine that several terminal nodes share a common mean.

Consider the an arbitrary group of nodes that share the same mean. For each observation
we use the current estimate of σi2 and corresponding precision τi = 1

σi
2 , and the estimator

of the mean is given by:

µ̂ =

ni∑
t=1

ytτ̂t

ni∑
t=1

τ̂t

We repeat this for all G groups to estimate the means of the first tree. We repeat the
same algorithm to estimate the means in the mean groups for all K trees. This is the same
as the first step of the HeaRTs algorithm (see Chapter 4).

5.6.2 Part 2 - Estimation of global means and residuals

We will estimate the OOB mean for each of the n observations, denoted as µ̃i. The point of
doing this is to construct unbiased estimates of the residuals, which will be used to estimate
variances. We continue to use the current estimates of σi and τi.

Consider the first observation. For each of the j trees where this observation falls out of
bag we find the estimates of the mean and precision for each tree. For example, the mean
estimates created in step 1 of this algorithm will be what we use as the mean estimate for
the trees. We will call the means µ̂1, ...µ̂j and precisions τ̂1, ...τ̂j .

The estimate for the OOB mean is:

µ̃i =

j∑
t=1

µtτ̂t

j∑
t=1

τ̂t

94

And the residual, ri , is:

ri = yi − µ̃i

5.6.3 Part 3 - Estimation of tree variance

To estimate the variance, ideally we would know the true mean model. Since this is impos-
sible to obtain, the next best thing is to use the model predicted means. In the random
forest setting, we can get an approximately unbiased estimate of the mean for each data
point by using the OOB mean estimate [9]. For each tree, the variance model is estimated
as an average of the squared global residuals.

Consider the first tree T1, which has some mean splits, some variance splits, and some
mean-variance splits. We use the painting algorithm to determine which variances should
be estimated together. This splits the data into a set of G groups, with sizes n1, n2...ng. For
each of these G groups, the goal is to estimate a single variance to model all ng observations
that fall into the(se) terminal node(s).

Consider the first group of observations. Each observation has an estimated global
residual rt. The estimate of the variance is therefore:

σ̂2 =

ni∑
t=1

rt
2

ni

We estimate each tree variance in this way, for every group within a tree and for every
tree in the Jar of HeaRTs.

5.6.4 Part 4 - Estimation of data variances

We now focus on estimating the variance of a particular observation in the data set. By
averaging the estimated variances from the trees where the data fall out of bag, we get
an estimate of the variance of each datapoint. The main use of this is in step 1, when we
estimate the individual tree means.

Consider the first observation. For each of the j trees where this observation falls
out of bag we find the estimate of the variance and also the number of observations that
contributed to the estimate. We call these σ1...σj and n1...nj .

The overall estimate of variance for a point is given by:

σ2 =

i=j∑
i=1

σi
2ni

i=j∑
i=1

ni

95

Finally, we repeat steps 1 − 4 until convergence. We use a stopping rule that each
mean and variance estimate must have an absolute or relative change no more than 10−6 to
stop the algorithm. Generally this takes very few iterations (fewer than 20) to accomplish.
Convergence is guaranteed with the usual FGLS properties [55].

It is worth mentioning that this estimation procedure adds negligibly to the runtime of
the Jar of HeaRTs. Estimating one pass of the means and variances is done in a loop that
only considers each observation once during each phase. The runtime is O(n) per iteration,
and the number of iterations is quite small.

5.7 Simulated Examples

We now turn to see how well the α−pruning algorithm with the Jar solves the nodesize
problems that the random forest has. Furthermore, we show a setup where we attain
superior mean estimation by additionally modeling the variance.

We show three simulation setups. First, we demonstrate empirically that the α−pruning
algorithm does as good a job as nodesize tuning on linear functions. Next, we demonstrate
the flexibility of α−pruning to model the elbow function. The α−pruning algorithm removes
splits in the flat section but keeps splits in the section with a slope. Finally, we show the
ability of the Jar to model variance, and in turn achieve superior mean estimation on a
setup where the variance is unrelated to the mean.

Figure 5.6 shows the performance of 3 algorithms (Default random forests, random
forests with nodesize tuning, and Jar of HeaRTs with no variance splits) on the linear setup
with varying slopes (see Equation (5.1)). The variance splits in the Jar are turned off so that
we can see how the pruning approach performs by itself. We see that the α−pruning of the
Jar more or less mimics the nodesize tuning done for a random forest. Both are preferable to
the random forest default when the mean function is flat. We see an appreciable difference in
RMSE when the R2 is less than 0.1. It appears that for datasets with sizable signal-to-noise,
the default nodesize is a reasonable choice.

In our second setup, we explore more closely how the Jar and the random forest perform
on the elbow function. First, we test several values of nodesize on the random forest, and
also the α−pruned Jar at the optimal value of α. Then we compute the RMSE on test data.
Finally, we average the results over 50 trials. The results are tabulated in Table 5.3. For
the random forest, a nodesize of 50 is found to be the best balance of mean and variance,
with a RMSE of 0.19. The Jar, however, improves upon this by about 10%, with a RMSE
of 0.17.

To see why the Jar can outperform nodesize tuning on the elbow, we look at the in-
dividual splits that were made in each tree. We bin each split into one of ten categories
- a split can be made on any variable X1 to X5, and it can be made either above 0.5 or
below. We then tabulate across all the trees which splits were made. The methods are: a

96

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Slope

R
M

S
E

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

R Square

R
M

S
E

Figure 5.6: Plot of RMSE on a linear model by 3 methods. Top plot shows RMSE vs Slope
and bottom plot shows theoretical RMSE vs R-square. The black curve represents a default
random forest. The blue curve is the random forest with nodesize tuning. The red curve is
the Jar with α−pruning.

Table 5.2: Performance of the random forest on the elbow function for various values of
nodesize

Node Size RMSE
5 0.28
10 0.27
20 0.22
50 0.19
100 0.22
200 0.31
300 0.45
400 0.62
500 0.61
1000 0.88

default forest (with nodesize 5), a forest with nodesize 20, a Forest with nodesize 50, and
a α−pruned Jar with initial nodesize 5. Recall that only splits in the region X1 > 0.5 are
useful splits. It is worth noting that the Jar initially had the same distribution of splits as a

97

default forest, but the α− pruning mechanism removes some splits. The split distributions
are found in table 5.3.

Table 5.3: Split distribution for four methods on the Elbow Function, fit with r = 1 (recall
that r is the number of randomly selected predictors for each split). Only X1 is active, and
only splits where X1 > 0.5 are pertinent to the true mean function.

Default forest α−pruned Jar
Predictor Split < 0.5 Split > 0.5 Predictor Split < 0.5 Split > 0.5
0 4410 6140 0 195 2266
1 4362 3882 1 331 289
2 4475 3892 2 328 285
3 4034 4093 3 289 268
4 4352 4014 4 329 256

Random forest - 20 Random forest - 50
Predictor Split < 0.5 Split > 0.5 Predictor Split < 0.5 Split > 0.5
0 1405 2798 0 617 1583
1 1208 1374 1 384 375
2 910 1115 2 422 553
3 1154 1166 3 390 503
4 1131 1153 4 337 437

There are two main insights gleaned from this table. First, we compare the default forest
to the α−pruned Jar. In the areas where there are no true splits (all categories except the
top right bin), α−pruning retains just 6% of the splits. In contrast, α−pruning retains
37% of the splits in the meaningful quadrant. This has improved the proportion of useful
splits from 14% to 47%, a substantial increase. The random forest with nodesize 20 has
21% useful splits, and the random forest with nodesize 50 has 28% useful splits. Also worth
observing is that the α−pruned Jar is strictly more efficient than the optimal random forest
(with nodesize 50)—the pruned Jar contains fewer irrelevant splits and more useful splits.
The upshot is that the Jar of HeaRTs allows larger nodesizes on the flat surface and smaller
nodesizes on the sloped surface.

In our final simulated example, we demonstrate the efficiency of modeling the variance
for improving mean estimation. In our toy example, the true variance model is unrelated
to the true mean model. The full model is:

X1...X5
iid∼ U(0, 1)

Yi ∼ Xi2 +Xi3 +Xi4 +Xi5 + εi

εi =

N(0, 1), Xi1 < 0.5

N(0, 6), Xi1 > 0.5

98

To separate the idea of α−pruning from variance estimation, we directly compare our
method (using pruning) with variance splits turned on to our method with variance splits
turned off (also using pruning). The metrics (RMSE and RWMSE, see Chapter 4) are
tabulated in Table 5.4. An illustration of the Jar’s variance model for X1 is given in Figure
5.7. The upshot of this toy simulation is that we can further improve mean estimation
(over and above α-pruning or m tuning) on relatively flat mean functions (the theoretical
R-square of this setup is 0.17) by modeling the variance. The mean estimation is improved
because the Jar of HeaRTs uses a weighted mean instead of an unweighted mean.

Table 5.4: Comparing the Jar of HeaRTs with and without Variance splits. α−pruning is
used on both. Results are averages over 50 datasets.

RMSE RWMSE
Variance Splits 0.429 0.307
No Variance Splits 0.499 0.360

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●
●● ●● ●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●
●●

●

●

●

●●●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●
●

●

●

●
●

● ●
●

●
●

● ●

●

● ●

●

●

●
●

●

●

●●

●
●●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●
●●● ●

●

●

●

●

● ● ●

● ●●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●● ●●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●

●

●

● ●● ● ●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●
●

●

● ● ●

●
●

● ●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●● ●

●

● ●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●●

●

●●
●

●

●

●

● ●

●

●

●

●

●

● ●
●

● ●

●

●

●
●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

● ●

●

●
●

●
● ●

●

●
● ●

●

●

●
●

● ●

●
●

●

●●

●
●

●

●

● ●

●
●

●●

●

●
●

●

● ●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●●

●

●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●●

●●

●

●
●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

● ●●●

●

●

● ●

●

●

●● ●
●

●

●

● ●

●

●
●

●
●●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●●

●●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●
●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●
● ●●

● ●

●●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

● ●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●
●

● ●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●● ●

●

●
●

●
●

●

●
●

●

● ●

●

●

● ●●

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

25

X_1

E
st

im
at

ed
 V

ar
ia

nc
e

on
 T

es
t D

at
a

Figure 5.7: Plot of estimated variance on test data vs X1. The true model has a variance of
1 for X1 < 0.5 and a variance of 25 for X1 > 0.5. The Jar is able to estimate the variance
to a reasonable degree. As a consequence it has superior mean estimation.

99

5.8 Real Data Examples

We compare our Jar of HeaRTs procedure and the random forest on the same 42 datasets
as in Chipman et al. [20]. The datasets are regression problems, with n varying from 96 to
6906. Categorical predictor variables are coded as individual 0/1 columns. The regressions
have between 3 and 28 continuous variables and 0 to 6 categorical variables. Gelfand [30]
shows that many of these datasets are heteroskedastic. An important difference between our
study and that of Chipman et al. is that we do not use a variance-stabilizing transformation
of the response y.

To assess the quality of the fit on a given data set, we split the data 90%/10%, construct-
ing a training set and test set. We fit and evaluate three methods. We consider a default
random forest, a Jar of HeaRTs with α−pruning but no variance modeling (no variance or
mean-variance splits), and finally the full Jar of HeaRTs. Each model is fit on the training
data and the predictions are evaluated on the test data. To reduce the variability due to
the randomness of the splitting procedure, the data are resplit 50 times and the metrics
(RMSE and RWMSE) are averaged over all 50 resplits.

For each metric on each dataset we identify the best performing method of the three.
We then compute the ratio of each method’s metric against the best, resulting in a value
that is necessarily at least 1. We then present these summary ratios as 6 boxplots in Figure
5.8. We see a slight improvement in RMSE by α−pruning the random forest. In terms of
RWMSE, we see that the Jar of HeaRTs is the best performer.

We point out that the methods (random forest, α−pruned Forest, and the Jar of HeaRTs)
all share the same asymptotic runtime. As a consequence, it seems reasonable to choose
among the methods based strictly on performance. For datasets where heteroskedasticity
is known or thought to exist, we recommend the use of the Jar of HeaRTs. Even if het-
eroskedasticity turns out to be negligible, the Jar provides reasonable mean estimation. If
there is significant heteroskedasticity, the Jar rates to be the best method. If heteroskedas-
ticity is known to not exist, it is possible to remove the variance model from the Jar for
slightly improved mean estimation.

5.9 Conclusion

Although random forests are a popular and very good ensemble method, they are not
flawless. We demonstrate that random forests perform poorly on flat functions with low
signal-to-noise ratio. This can be rectified by tuning the nodesize parameter m, a tuning
parameter that is often ignored. On functions containing both flatness and signal, we show
that tuningm is not enough. Our solution is the novel α−pruning method, which essentially
allows larger nodesizes on the flat surface and smaller nodesizes on the sloped surface.

100

●

●

●

●

●

●
●
●

RF Default RF Pruned Jar of HeaRTs

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

RMSE

●

●

●

●

●

●

●

RF Default RF Pruned Jar of HeaRTs

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

1.
30

1.
35

RWMSE

Figure 5.8: Boxplots of random forest, Pruned random forest, and Jar of HeaRTs on the
Chipman bakeoff data. Left pane shows the performance of the methods in terms of RMSE.
We see that applying α−pruning to the random forest tends to be a slight improvement
over the default. On the right pane, when measuring RWMSE, we see that the full Jar of
HeaRTs is the best performing method.

Random Forests are based on regression trees, which implicitly assume homoskedasticity.
It is plausible that we can achieve superior mean estimation on heteroskedastic data with a
model that explicitly accounts for heteroskedasticity. We extend the HeaRTs procedure to
an random forest style ensemble method which we call the Jar of HeaRTs. By modeling the
variance, we show that we can improve the mean estimation when the variance is unrelated
to the mean. We test our two improvements to the random forest on simulated and real
datasets, and show that a small performance gain is achievable.

Although our focus is on modeling the mean, the Jar of HeaRTs could potentially be
used in other contexts. The Jar of HeaRTs provides explicit estimates of the variance,
which can be useful in some contexts. Variance estimates could be used to construct pre-
dictive intervals for new observations, as was done in Bleich’s work [6]. When modeling
heteroskedastic data, it seems reasonable to expect that the Jar of HeaRTs would give bet-
ter predictive intervals than the random forest model. In Chapter 3 we discussed models
where one of the objectives of the modeling process was to understand the relationship be-
tween the predictors and the variance of the response. The Jar of HeaRTs can address this

101

also, using the variable importance ideas from Breiman’s work [9] and the additional work
by Strobl [60]. Finally the Jar of HeaRTs can potentially be used as a method for detecting
heteroskedasticity in datasets. By fitting a Jar of HeaRTs model to a dataset and looking
at the number of variance or mean-variance splits made across the forest, this produces a
nonparametric heteroskedasticity test.

102

Chapter 6

Conclusion and Closing Thoughts

Throughout this dissertation, the goal has been to demonstrate the applicability of the CHIC
paradigm to variance modeling under a few different contexts. In short, the paradigm is
that we approach a joint mean-and-variance modeling problem as a model selection problem.
The problem is that choosing between different variance models when also faced with small
n can be challenging. Our approach is to tabulate a series of penalty values for each
model and fit joint mean-variance models using maximum likelihood. The penalty values
serve as an approximation to the bias incurred when the maximized log-likelihood is used
to estimate its expectation. The corrected heteroskedastic information criterion (CHIC),
which is the maximized log-likelihood − the simulated penalty, is used to choose between
multiple models. Because CHIC depends on the unknown values of the model parameters,
our procedure computes penalties under a common null model. We find empirically that
this simplification seems to be reasonable.

In Chapter 3, we specifically looked at the unreplicated factorial problem, typically of
size 24. In this case, we were able to enumerate all the models, evaluate them using CHIC,
and optionally, averaged the results. We found our ESMA-CHIC algorithm to provide
considerably better results than a recommended method in the literature. When the design
grows in size (e.g. a 25 design or larger), we show that the number of models grows super-
exponentially, and evaluating the models via brute force is infeasible. We resort to a Genetic
Algorithm which searches a random subspace of models, evaluating CHIC penalties on the
fly (we can no longer tabulate a long table of penalties - the model space is too big). We
show that our GA does a reasonable job of finding the models found by our exhaustive
search. The code is available online as an easily runable script in R, at:
http://amstat.tandfonline.com/doi/suppl/10.1080/00401706.2015.1114024?scroll=top

In Chapter 4 we switch gears to the modern statistical learning methods and the re-
cursive partitioning framework. Ruth and Loughin [57] demonstrated that the Recursive
Partitioning of Breiman et al. (RPAB) can behave unsatisfactorily when the predictors are
related to both the mean and the variance. We further show an issue with RPAB under a

103

model where the mean and variance are unrelated. To solve this, we develop Heteroskedastic
Regression Trees (HeaRTs) using the CHIC paradigm. We view the splitting and optimiza-
tion procedure as a maximum likelihood problem, and develop a table of CHIC penalty
values to assess the quality of a split. We also use the CHIC values to decide whether to
split the model on the mean, on the variance or on both the mean and variance. We show
that our trees are better able to handle heteroskedastic data, and in particular provide
superior mean estimation in regions where the variance is low.

In Chapter 5 we extend the HeaRTs to an ensemble method which we call the Jar
of HeaRTs. We introduce a new method, which we call α−pruning for improving the fit
of a random forest to flat functions with low signal-to-noise ratio. We also demonstrate
the oft-overlooked importance of tuning the nodesize on such functions. We further show
that α−pruning is superior to nodesize tuning on an elbow-type function. Finally, we
demonstrate the importance of the variance-modeling aspect of HeaRTs as a base learner
for the Jar of HeaRTs ensemble. By modeling the variance, we show that we can improve
the mean estimation when the variance is unrelated to the mean.

In both Chapter 4 and 5 we evaluated our method only in the context of mean esti-
mation. The HeaRTs and Jar of HeaRTs provide a variance model, which can be used
for multiple purposes. In particular, the variance model can be used to construct predic-
tive intervals, which we expect to be more accurate on heteroskedastic datasets. Bleich [6]
found that HBART was an improvement over BART for constructing predictive intervals
on heteroskedastic data, and we assume that HeaRTs and the Jar of HeaRTs would also
construct

We propose the CHIC paradigm as an attractive solution to model selection under
heteroskedasticity. The main drawback is the need to precompute a large table of simulated
values. Once the table is computed, however, CHIC can be used in the same way as
any other information criterion, allowing model selection without either a holdout set or
crossvalidation. As data sets become more complicated to model, and computing time is
becoming a more valuable resource, being faster is surely better.

6.1 Speculation, future work, and potential improvements

In retrospect, choosing use a single tree to estimate the mean and variance may not be
ideal. A difficulty that can arise is illustrated by a simple example, where the response
y is related to a single predictor X1. Suppose the mean function is constant within the
following intervals in X1 but different between them, e.g. E(y|X1 ∈ {0, 0.5}) = 0 and
E(y|X1 ∈ {0.5, 1.0}) = 10. Furthermore the variance model is: σ2|X1 ∈ {0, 0.7} = 1 and
σ2|X1 ∈ {0.7, 1.0} = 25. It is reasonable to split on the variance at or near X1 = 0.7. After
making this split, we travel to the left branch, and in the low variance area we need a mean
split at X1 = 0.5. What’s the problem?

104

The problem is that the estimate of the mean in the range X1 ∈ {0.7, 1.0} is actually
relatively poor, as it is estimated only from data with relatively high variance. The means
in the range {0, 0.5} and {0.5, 0.7} are estimated from low-variance data and rate to be
relatively precise. The problem is the tree has estimated two separate means that are
actually estimating the same quantity without recombining them. We saw this in Chapter
4, where HeaRTs sacrificed RMSE in the high variance area in exchange for better RWMSE.
We suspect that this is the cause. In this example, the estimation of the mean where
X1 ∈ {0.7, 1.0} is in the high variance area, and consequently the RWMSE is not affected
much. However, the RMSE deteriorates.

One approach for improvement might be to postprocess the tree. By looking for pre-
dicted means that are relatively similar and looking for similar values of Xij across the
terminal nodes, it may be possible to fix this issue by recombining some nodes and re-
estimating. An alternative approach that has potential is to use two trees: a tree for means
and a tree for variances. The proposed algorithm proceeds as follows. Begin by fitting the
mean tree in the same way as RPAB, and prune it with CHIC. Then, fit a variance tree
to the squared residuals from this model. After pruning the variance tree, throw away the
original mean tree. Build a new mean tree treating the variances as fixed and known, prun-
ing again with CHIC. By iterating back and forth between fitting a mean and a variance
model, and stopping after a fixed number of iterations, it should be possible to keep the
runtime within a fixed constant of the runtime of RPAB. The advantage of this approach is
that the variance model and mean model are kept separate, and the issue described would
not exist.

A helpful addition to the CHIC approach for HeaRTs and random forests would be to
model the tables of CHIC values. Currently the table can handle n as large as 12800 and
p as large as 32. However, the table currently offers no good extrapolation to larger n or
p. By using a model, the table could be extended and extrapolated without the expensive
upfront simulation cost. Extending this table for large datasets (Big Data) with n in the
millions would almost certainly require an approximation formula for the CHIC penalty
values.

105

Bibliography

[1] H Akaike. Information theory and an extension of the maximum likelihood principle.
Second International Symposium on Information Theory, pages 267–281, 1973.

[2] H Akaike. A new look at the statistical model identification. IEEE transactions on
automatic control, 19(6):716–723, 1974.

[3] W P Alexander and S D Grimshaw. Treed regression. Journal of Computational and
Graphical Statistics, 5(2):156–175, 1996.

[4] N S Altman. An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, 46(3):175–185, 1992.

[5] B Bergman and A Hynén. Dispersion effects from 7 unreplicated designs in the 2 k-p
series. Technometrics, 39(2):191–198, 1997.

[6] J Bleich. Extensions and applications of ensemble-of-trees methods in machine learning.
PhD thesis, University of Pennsylvania, 2015.

[7] G E P Box and R D Meyer. Dispersion effects from fractional designs. Technometrics,
28(1):19–27, 1986.

[8] L Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[9] L Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[10] L Breiman et al. Arcing classifier (with discussion and a rejoinder by the author). The
annals of statistics, 26(3):801–849, 1998.

[11] L Breiman, J Friedman, R A Olshen, and C J Stone. Classification and Regression
Trees. Chapman and Hall, New York, 1984.

[12] W A Brenneman and V N Nair. Methods for identifying dispersion effects in unrepli-
cated factorial experiments: a critical analysis and proposed strategies. Technometrics,
43(4):388–405, 2001.

[13] K P Burnham and D R Anderson. Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach. Springer, 2002.

[14] K P Burnham and D R Anderson. Multimodel inference understanding aic and bic in
model selection. Sociological methods & research, 33(2):261–304, 2004.

[15] D Bursztyn and D M Steinberg. Screening experiments for dispersion effects. In A Dean
and S Lewis, editors, Screening, pages 21–47. Springer, 2006.

106

[16] R J Carroll and D Ruppert. Transformation and weighting in regression, volume 30.
CRC Press, 1988.

[17] J E Cavanaugh. Unifying the derivations for the akaike and corrected akaike informa-
tion criteria. Statistics & Probability Letters, 33(2):201–208, 1997.

[18] P Chaudhuri, M C Huang, W Y Loh, and R Yao. Piecewise-polynomial regression
trees. Statistica Sinica, 4(1):143–167, 1994.

[19] H A Chipman, E I George, and R E McCulloch. Bayesian ensemble learning. Advances
in Neural Information Processing Systems, 19:265—272, 2007.

[20] H A Chipman, E I George, and R E McCulloch. Bart: Bayesian additive regression
trees. The Annals of Applied Statistics, pages 266–298, 2010.

[21] G Claeskens and N L Hjort. Model selection and model averaging, volume 330. Cam-
bridge University Press Cambridge, 2008.

[22] R D Cook and S Weisberg. Diagnostics for heteroscedasticity in regression. Biometrika,
70(1):1–10, 1983.

[23] O L Davies and G E P Box. Design and analysis of industrial experiments. 1963.

[24] J Engel and A F Huele. A generalized linear modeling approach to robust design.
Technometrics, 38(4):365–373, 1996.

[25] A J Ferrer and R Romero. Small samples estimation of dispersion effects from unrepli-
cated data. Communications in Statistics-Simulation and Computation, 22(4):975–995,
1993.

[26] Y Freund and R E Schapire. A desicion-theoretic generalization of on-line learning and
an application to boosting. In European conference on computational learning theory,
pages 23–37. Springer, 1995.

[27] J H Friedman. Multivariate adaptive regression splines. The annals of statistics, 19:1–
67, 1991.

[28] J H Friedman and P Hall. On bagging and nonlinear estimation. Journal of statistical
planning and inference, 137(3):669–683, 2007.

[29] G M Furnival and R W Wilson. Regressions by leaps and bounds. Technometrics,
42(1):69–79, 2000.

[30] S Gelfand. Understanding the impact of heteroscedasticity on the predictive ability of
modern regression methods. Master’s thesis, Simon Fraser University, Canada, 2015.

[31] J M Grego, J F Lewis, and T A Craney. Quantile plots for mean effects in the pres-
ence of variance effects for 2k−p designs. Communications in Statistics-Simulation and
Computation, 29(4):1109–1133, 2000.

[32] M Hamada and N Balakrishnan. Analyzing unreplicated factorial experiments: a
review with some new proposals. Statistica Sinica, pages 1–28, 1998.

107

[33] A C Harvey. Estimating regression models with multiplicative heteroscedasticity.
Econometrica: Journal of the Econometric Society, pages 461–465, 1976.

[34] T Hastie, R Tibshirani, and J Friedman. The elements of statistical learning: data
mining, inference and prediction. Springer, 2 edition, 2009.

[35] J A Hoeting, D Madigan, A E Raftery, and C T Volinsky. Bayesian model averaging:
a tutorial. Statistical science, pages 382–401, 1999.

[36] C M Hurvich and C Tsai. Regression and time series model selection in small samples.
Biometrika, 76(2):297–307, 1989.

[37] A Kapelner and J Bleich. bartmachine: Machine learning with bayesian additive re-
gression trees. arXiv preprint arXiv:1312.2171, 2013.

[38] S Konishi and G Kitagawa. Information criteria and statistical modeling. Springer
Science & Business Media, 2008.

[39] S Kullback and R A Leibler. On information and sufficiency. The annals of mathemat-
ical statistics, 22(1):79–86, 1951.

[40] R V Lenth. Quick and easy analysis of unreplicated factorials. Technometrics,
31(4):469–473, 1989.

[41] T M Loughin. Calibration of the lenth test for unreplicated factorial designs. Journal
of Quality Technology, 30(2):171—175, 1998.

[42] T M Loughin and C J Malone. An adaptation of the bergman-hynen test for dispersion
effects in unreplicated two-level factorial designs when the location model may be
incorrect. Journal of Quality Technology, 45(4):350—359, 2013.

[43] T M Loughin and W Noble. A permutation test for effects in an unreplicated factorial
design. Technometrics, 39(2):180–190, 1997.

[44] T M Loughin and J E Rodríguez. Computational issues with fitting joint loca-
tion/dispersion models in unreplicated 2k factorials. Computational Statistics & Data
Analysis, 55(1):491–497, 2011.

[45] J Neter M Kutner, C Nachtsheim and W Li. Applied Linear Statistical Models.
McGraw-Hill Irwin, 2004.

[46] R N McGrath. Separating location and dispersion effects in unreplicated fractional
factorial designs. Journal of quality technology, 35(3):306—316, 2003.

[47] R N McGrath and D K J Lin. Confounding of location and dispersion effects in
unreplicated fractional factorials. Journal of Quality Technology, 33(2):129—139, 2001.

[48] R N McGrath and D K J Lin. Testing multiple dispersion effects in unreplicated
fractional factorial designs. Technometrics, 43(4):406–414, 2001.

[49] Z Michalewicz. Genetic algorithms+ data structures= evolution programs. Springer,
New York, 1998.

108

[50] D C Montgomery. Using fractional factorial designs for robust process development.
Quality Engineering, 3(2):193–205, 1990.

[51] V N Nair and D Pregibon. Analyzing dispersion effects from replicated factorial ex-
periments. Technometrics, 30(3):247–257, 1988.

[52] J A Nelder and Y Lee. Generalized linear models for the analysis of taguchi-type
experiments. Applied stochastic models and data analysis, 7(1):107–120, 1991.

[53] G Pan. The impact of unidentified location effects on dispersion-effects identification
from unreplicated factorial designs. Technometrics, 41(4):313–326, 1999.

[54] G Pan and W Taam. On generalized linear model method for detecting dispersion
effects in unreplicated factorial designs. Journal of Statistical Computation and Simu-
lation, 72(6):431–450, 2002.

[55] R W Parks. Efficient estimation of a system of regression equations when disturbances
are both serially and contemporaneously correlated. Journal of the American Statistical
Association, 62(318):500–509, 1967.

[56] J R Quinlan. C4. 5: Programs for empirical learning, 1993.

[57] W Ruth and T M Loughin. The Effect of Heteroscedasticity on Regression Trees.
arXiv:1606.05273 [stat.ML], June 2016.

[58] A Saha, A Havenner, and H Talpaz. Stochastic production function estimation: small
sample properties of ml versus fgls. Applied Economics, 29(4):459–469, 1997.

[59] C Strobl, A Boulesteix, T Kneib, T Augustin, and A Zeileis. Conditional variable
importance for random forests. BMC bioinformatics, 9(1):1, 2008.

[60] C Strobl, A Boulesteix, A Zeileis, and T Hothorn. Bias in random forest variable im-
portance measures: Illustrations, sources and a solution. BMC bioinformatics, 8(1):1,
2007.

[61] X Su, C Tsai, and X Yan. Treed variance. Journal of Computational and Graphical
Statistics, 15(2):356–371, 2006.

[62] X Su, M Wang, and J Fan. Maximum likelihood regression trees. Journal of Compu-
tational and Graphical Statistics, 13(3):586–598, 2004.

[63] N Sugiura. Further analysts of the data by akaike’s information criterion and the finite
corrections: Further analysts of the data by akaike’s. Communications in Statistics-
Theory and Methods, 7(1):13–26, 1978.

[64] K Takeuchi. Distribution of information statistics and criteria for adequacy of models.
Math. Sci, 153:12–18, 1976.

[65] W E Taylor. Small sample properties of a class of two stage aitken estimators. Econo-
metrica: Journal of the Econometric Society, pages 497–508, 1977.

[66] L Torgo. Inductive learning of tree-based regression models. PhD thesis, University of
Porto, Portugal, 1999.

109

[67] P C Wang. Test for dispersion effects from orthogonal arrays. Computational Statistics
& Data Analysis, 8(1):109–117, 1989.

[68] I HWitten and E Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2005.

[69] C F J Wu and M Hamada. Experiments: Planning. Analysis, and Parameter Design
Optimization. Wiley, 2000.

[70] K Q Ye and M Hamada. Critical values of the lenth method for unreplicated factorial
designs. Journal of Quality Technology, 32(1):57–66, 2000.

[71] Y Zhang. A comparison of location effect identification methods for unreplicated frac-
tional factorials in the presence of dispersion effects. Master’s thesis, Simon Fraser
University, Canada, 2010.

110

	Approval
	Abstract
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Literature Review
	Linear Regression
	Trees
	Ensemble Methods
	Random Forests

	Information Criteria
	Heteroskedasticity
	Effects of Heteroskedasticity on Trees

	Heteroskedastic Unreplicated Factorials
	Maximum Likelihood and Variance Modeling Methods
	Trees for Modeling Variance
	Bayesian Additive Regression Trees

	Joint Location and Dispersion Modeling for Heteroskedastic Factorials
	Introduction
	Previous Approaches
	Examples
	Effect Selection using a Joint location and dispersion model
	Exhaustive search
	Corrected heteroscedastic information criterion
	Model averaging
	Implementation details

	Applications
	Analyses of Simulated Data
	Methods
	Results

	Discussion and Conclusions

	HeaRTs : Heteroskedastic Regression Trees
	Introduction
	Relevant Literature
	Adding variance splits to a regression tree
	Splitting on the Mean
	Splitting on the Mean and Variance simultaneously
	Splitting on the Variance
	Computational Efficiency of a Series of Splits

	Example: A Single Split on Heteroskedastic Data
	Choosing the best type of split at a given node
	Pruning and the Accumulated Information Algorithm
	Final Estimation of the Tree Parameters
	Simulated Examples
	Metrics for model performance
	Example: Variance Splits

	Real Data Examples
	Conclusion

	Jar of HeaRTs : An ensemble of Heteroskedastic Regression Trees
	Introduction
	Relevant Literature
	Problems with random forests on flat functions
	Constructing a Jar
	-Pruning
	Estimating Final Parameters of the Jar
	Part 1 - Estimation of means in trees
	Part 2 - Estimation of global means and residuals
	Part 3 - Estimation of tree variance
	Part 4 - Estimation of data variances

	Simulated Examples
	Real Data Examples
	Conclusion

	Conclusion and Closing Thoughts
	Speculation, future work, and potential improvements

	Bibliography

