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Abstract

We present heuristic algorithms for minor embedding planar graphs in grids. Our work is
motivated by the development of quantum computing hardware that performs quantum an-
nealing. This hardware can be used to solve hard combinatorial problems, but requires the
graph of each problem instance to be minor embedded in a graph that models the hardware.
Hence, there is a need for practical minor embedding algorithms. We restrict our attention
to planar graphs, and thus are able to make use of existing graph drawing methods. We
present two algorithms for minor embedding planar graphs in grid graphs, and provide an
experimental evaluation of one.

Keywords: Simon Fraser University; Planar embedding, Minor-embedding, D-Wave, Adi-
abatic quantum annealing, Planar graphs, Grid graphs
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Chapter 1

Introduction

One of the recent approaches toward solving NP-hard problems is adiabatic quantum com-
puting. D-Wave Systems Inc. is the first company to produce a commercially available
computing device which uses quantum annealing, a type of adiabatic quantum computing.
This device, named D-Wave Two, solves NP-hard problems and can achieve good quality
solutions, as good as the other known conventional devices such as CPLEX, but much faster.
On the other hand, before using this device, we need to overcome a few challenges. The
main challenge is the restricted formatting for feeding the problem instance to the device.
We have to minor embed a graph representing the problem instance in a graph representing
the hardware. The minor embedding of two given graphs is a NP-hard problem itself.
This thesis studies the slightly restricted problem of minor embedding an input planar graph
in a target grid graph. Without any knowledge or information regarding the structure and
attributes of the input graph, the probability of success in obtaining a feasible minor embed-
ding of good quality can be very low. Therefore, we approached this challenge by exploiting
the existing graph drawing techniques. These techniques can provide valuable insight and
information for the minor embedding process.
The material in Chapter 4 except subsection 4.4.2 is based on a joint work with another
master student, Ehsan Tavakoli, with approximately equal collaboration. His thesis can be
found in [52].
The upcoming section explains the motivation behind this research which is followed by a
short description of our contributions. Subsequently, we review the literature on planarity
based algorithms for drawing and minor embedding graphs. The last section provides an
outline of the next chapters.

1.1 Motivation

Various real life problems, such as scheduling, financial analysis, machine learning, and so
forth can be modeled as non-deterministic polynomial time (NP) problems. The classic
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computing is trying hard to keep up with the complexity of recent problems and the on-
going growth of data. In the past decades, scientists have begun investigating alternative
approaches toward computing. Among them, quantum computing, processing data based
on quantum mechanics, has been through a great theoretical and practical progress in the
past years. The quantum computers have the potential to solve problems which would take
years to solve, much more faster than the classic computers.
Consider a classic computer with a memory of n binary bits. A quantum computer has a
sequence of qubits, each equivalent to a bit with quantum information, which can be 0, 1,
or a superposition of these two states which makes this computer similar to probabilistic
computers. The sum over all states should be 1 for both types of computers. On the other
hand, the difference between two consecutive states conveys a message, if it occurs for a
qubit, whereas this difference is meaningless in a probabilistic computer.
While the idea of quantum computers is highly intriguing, they are still going through im-
provements. In 2011, D-Wave Systems introduced a commercially available device, designed
to exploit quantum computations. This device is a step forward which requires minor em-
bedding algorithms to fulfill its potentials.
We can obtain a minor of a given graph G by eliminating edges and vertices, and contract-
ing edges. Graph minors and their interesting properties were first noticed and explored
by Wagner [54], and thoroughly discussed by Robertson and Seymour [39]. Graph minors
have many applications, but there may have been few concrete applications of the problem:
Given a graph G, find a minor embedding of G in H where H is from some special family.
This lack of applications might have been a disadvantage in attracting researchers in the
past years. But with emergence of the D-Wave machine, minor embedding algorithms are
essential to take advantage of its vast computing powers. Given a graph G representing
the problem we are trying to solve, G needs to be minor embedded on the graph structure
modeling D-Wave hardware.
Before explaining how that mapping works, consider a general optimization problem, in
which there are some constraints and some variables. The goal is to either minimize or
maximize a certain value that can be achieved by changing the variables. On the other
hand, the constraints limit the changes we are allowed to make to the variables. Now the
D-Wave hardware solves an optimization problem by first modeling it as quadratic opti-
mization, called Ising models, with real coefficients, and binary variables representing qubits
[8]. A quadratic optimization refers to an optimization problem with a quadratic function
of several variables where the constraints on these variables are linear. Assuming h ∈ Rn

and J ∈ Rn×n, then the goal is to minimize the following energy function:

E(z) = hT z + zTJz
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where z ∈ [−1, 1]n. The system starts from an initial state, and undergoes various states
until it reaches the final state, which is the solution to the input problem. Being restricted to
Ising models, the D-Wave device is not a universal quantum computer, but it can compete
with the best of the existing classical algorithms [8]. There is also further limitation on
Ising models due to engineering conditions. Processors in the D-Wave machine can vary
in the number of functional qubits: some of the low quality qubits are not engaged in the
computing process, and hence, we refer to them as missing qubits. Now consider an Ising
model (h, J) as a graph where variables z1, z2, ..., zn represent the vertices, and for any
Jij 6= 0, zi and zj are adjacent. We need to map this graph to the D-Wave hardware.
Variable zi, referred to as logical qubit, is represented by a connected subgraph of one or
more qubits in the hardware, referred to as physical qubits. For instance, suppose z1 is
mapped to q1, q2, and q3. These three physical qubits should be all connected, setting
Ji,j = − inf such that i 6= j and i, j ≤ 3 (Ji,j = −1 in practice), so that they take the
same value in the hardware Ising model. This way, for each pair of zi and zj with non-zero
Jij , the corresponding subgraphs of (physical) qubits should be connected. Therefore, the
only way a problem can be solved by the D-Wave hardware is that its corresponding Ising
model graph is a minor of the hardware’s graph. In other words, D-Wave’s machine can
solve a problem instance if we can answer the following question, "given an input graph H
and a target graph G, can we find a minor of G isomorphic to H?". The desired output
would be a set S of subgraphs of G representing the vertices of H such that the subgraphs
corresponding to adjacent vertices of H are connected in G. This problem is NP-hard. An
algorithm which solves this problem can be viewed as a translator that enables us to solve
any NP problems.
Assuming H is fixed, there is a polynomial time algorithm that decides whether G contains
a minor of H [32]. This assumption corresponds to fixing the problem instance we are trying
to solve, hence, the mentioned algorithm is not of use here. The currently best algorithm,
for the NP-hard version of the problem in which G and H are both input, has exponential
running time in branchwidth ofG [2]. Consider the graph representing the D-Wave hardware
which is called ChimeraTM. This graph has 8K2 vertices, made by replacing each node in
a K ×K grid graph by a complete bipartite graph K4,4. These K4,4s are connected to each
other so that the inner vertices have degree 6, and the vertices on the border have degree 5
[16, 37]. Now, Chimera is a sparse graph which makes it possible to find shortest paths in
linear time. On the other hand, its large treewidth makes it unsuitable for exact algorithms.
Based on these attributes of Chimera, and its large automorphism group, we should aim
for heuristic algorithms [8].
It is noteworthy that even though the Chimera is the ultimate target graph, it is neither

considered as a fixed input for the minor embedding problem, nor a concept it can be based
on. Due to the inconsistent pattern of the hardware, described earlier, and possible chances
of different structures for future versions, the practical minor embedding algorithm should
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Figure 1.1: A Chimera graph [37]

Figure 1.2: Another view of a Chimera graph [8]

not be dependent on the target graph’s exact structure.
In this thesis, we have explored a restricted version of the original problem. If H represents
the question we are trying to solve with a quantum computer, then we have set a condition
on the input graph H to be planar. On the other hand, since the target graph G which H
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will be mapped onto is the ChimeraTMgraph and can be considered as several grid graphs
on top of each other, we redefine G to be a grid graph. The problem is still NP-hard, and
can be formally stated as follows: "Given an input planar graph H and a target grid graph
G, is there a minor of G isomorphic to H?". As before, the desired output is a set of vertex
models representing the vertices in H in G such that adjacent vertices in H correspond to
distinct vertex models connected by an edge in G. This work can be extended in future to
include non-planar input graphs H by breaking them into planar components and minor
embedding those in different layers of Chimera. Then, the remaining edges can connect
those components together.

1.2 Contributions

Based on the recent progress in quantum physics and quantum processors, there is a need
for efficient minor embedding algorithms to bridge the gap between the existing hardware
and the solutions we are looking for. As mentioned in [57], to realize the full potential of
the adiabatic quantum computers we need to design application-specific algorithms. Here,
we have limited the problem to planar input graphs and grid graphs as targets. With the
restriction on planarity, we can employ existing planarity algorithms.
We present two minor embedding approaches for planar graphs. The first algorithm is
inspired by the Chrobak and Payne [14] straight line drawing algorithm. Our algorithm
places the vertices on the grid according to the output of the straight line drawing algorithm.
Then, based on the canonical ordering, in every step of the algorithm, edges incident to each
vertex and its neighbors below are found by a path finding algorithm and embedded in the
grid. The output minor embedding consists of long paths, and hence, is inefficient in terms
of space. The process of forming the vertex models is dependent on the grid structure which
limits its application to a specific type of target graphs (grids). On the other hand, this
process and the coordinates of vertices provided invaluable insight and perspective for us
which helped toward developing the next algorithm. Given the triangulated structure of the
straight line drawing which is preserved during the minor embedding process, optimizing
the output or modifying the vertex placements is not trivial. Nevertheless, an optimization
technique is presented that attempts to reduce the size of embedding after a feasible solution
is achieved. The core idea of this optimization is simple, but it can effectively improve the
worst cases when combined with a good heuristic. Given the challenges we faced with this
algorithm, we chose to pursue another approach.
The second algorithm is founded on visibility representation of the input graph. Given the
visibility representation, it can minor embed all planar graphs successfully and efficiently.
The major component influencing the minor embedding quality is the employed technique
for managing the vertex models. By deferring the decisions in the process, the algorithm
can make better and more informed choices. This technique is not dependent on the target
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graph, and hence, can be deployed in other minor embedding algorithms as well. We also
present an optimization method, able to shrink the minor embedding successfully. The
range of improvement by the optimization method depends on the structure of the input
graph. The second algorithm addresses the shortcomings of the first algorithm such as
dependency on the target grid graph, lack of success in minor embedding all planar graphs,
and inefficient outputs.
The experiments were mostly conducted on the second algorithm and an existing algorithm
in [8]. These two algorithms were evaluated on graphs of different families and sizes. The
results are presented here and demonstrate the consistent success of the second algorithm in
minor embedding, whereas the existing algorithm fails on most cases as the size or density
grows.

1.3 Related Work

Minor embedding for planar graphs is a kind of graph drawing, and graph drawings can be
evaluated in different categories based on diverse factors including size, aesthetics, readabil-
ity, angular resolution, and so forth. There are different types of graph drawing for different
applications:

• In straight line drawing, edges are represented by straight-line segments.

• An orthogonal drawing is a drawing comprised of only vertical and horizontal line
segments as edges.

• In polyline drawings, each edge is represented by a set of line segments for which there
are no restrictions on being straight, vertical, or horizontal. The drawing may include
bend points, meaning the edges can bend with angles between 0◦ and 180◦.

When vertices and bend points are mapped to integer coordinates, then a grid drawing is
produced. On this grid, the area of the smallest rectangle that contains the drawing and is
aligned to the axes, is the area of grid drawing.
Following the contributions of Wagner [54] in proving the existence of straight line drawings
for planar graphs, Tutte [53] was the first to introduce an algorithm for constructing such
drawing. The need for precise arithmetic operations made that algorithm and the ones
presented by Chiba et. al. [10] and [11] too complex. Rosenstiehl and Tarjan [40] proposed
the idea of drawing in a grid to avoid the complicated arithmetic operations. On the other
hand, considering a grid as the output framework makes it possible to measure the area
used for the drawing.
De Fraysseix et. al. [22] was the first to present a polynomial time algorithm for drawing
in the grid based on an incremental approach using a vertex ordering, called the canonical
ordering, and without the previous high-precision operations. The algorithm was defined
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Table 1.1: Straight Line Drawing Algorithms

Authors Time Area of Grid Drawing

de Fraysseix, Pach, and
Pollack[22] O(nlogn) (2n− 4)(n− 2)

Chrobak and Payne[14] O(n) (2n− 4)(n− 2)

Schynder [41] O(n) (n− 2)(n− 2)

Kant[31] O(n) (2n− 4)(n− 2)

for maximal planar graphs, but was later improved by Kant [31] to process tri-connected
graphs. Later, Gutwenger and Mutzel [26] made it possible to include bi-connected graphs.
In 1995, Chrobak and Payne [14] presented a linear time algorithm for drawing a planar
graph of n vertices in a grid. The size of the grid enclosing the drawing is (2n−4)× (n−2)
for both the algorithms in [22] and [14], but the running time has improved from O(nlogn)
to O(n). The latter algorithm employs two main components: the canonical ordering and
shifting sets. The shifting sets are more of an algorithmic or technical component to enable
vertices to move dynamically on the grid during the construction of the drawing. Table 1.1
provides a summary of running times and size of the grid enclosing the drawing for some of
the straight line drawing algorithms mentioned here.
Later, Schnyder [41] presented a more intricate algorithm that also works on triangulated
graphs in the same way as [14], but draws the graph in a smaller grid of (n− 2)× (n− 2).
His algorithm uses relative positions of vertices, and then, three barycentric coordinates
represent each vertex’s actual position.
Different approaches have been proposed for orthogonal drawings. The key features of 90
degree angle between edges incident to one vertex, and the intersection-free edges are inter-
esting for various applications such as VLSI circuit design. The earlier orthogonal drawing
methods were focused on decreasing the number of bends but did this by sacrificing size and
efficiency. Tamassia and Tollis [50] have proved the existence of orthogonal drawings for 4-
planar graphs (planar graphs with maximum degree 4); however, recent improvements such
as rectangular regions have addressed the issue of limited vertex degree. Figure 1.3 depicts
six possible cases of embedding vertices of degree 4 in an orthogonal drawing. Tamassia
[48] also proved an orthogonal drawing of minimum number of bends from a given 4-planar
graph can be obtained using a network flow algorithm. The introduced algorithm had a time
complexity of O(n2 logn), but was improved by Garg and Tamassia [23] to O(n

7
4
√

logn)
which recently, was reduced to O(n

3
2 logn) by Cornelsen and Karrenbauer [15] .

Later on, visibility representations revolutionized these algorithms by decreasing the run-
ning time down to linear while also reducing the size. The first algorithms to compute a
visibility representation in linear time were introduced in [50, 40]. Boyer introduced a more
efficient method of computing a visibility representation in [6] which we have employed in

7



Figure 1.3: a) Six possible cases for a vertex of degree 4 b) Their corresponding orthogonal
drawing

our experiments.
In orthogonal drawing, we are restricted to graphs of maximum degree four. This limi-

tation can be addressed in polyline drawings, where the focus is mainly on angles between
edges not degrees of vertices. The most common components among these drawing methods
are exit port assignments and some sort of vertex ordering. As an example, Duncan and
Kobouro [20] presented a one-bend algorithm, meaning each edge is allowed to bend at most
once, by employing the canonical ordering and shifting sets. The vertices and bend points
are on a 2D grid with each dimension linear in the number of vertices.
Regarding the number of bends, network flow algorithms can guarantee the lowest number
of bends in a very small area by using up almost quadratic time [20].
As for polyline drawing, Gutwenger and Mutzel [26] introduced an algorithm, called the
mixed-model algorithm, mainly for bi-connected graphs. Their proposed ordering assigns two
points to each edge, an inpoint and an outpoint, e.g., for e = (v, w) : ein = (xin, yin) eout =
(xout, yout). Using this method, the line connecting v and w is actually made of the following
smaller components: from v to eout, from eout to (xout, yin) vertically, from (xout, yin) to ein
horizontally, and then finally to w. This method generates more aesthetical drawings.
All the mentioned drawing algorithms admit only planar graphs, and report failure if the
planarity condition is not met. Some algorithms actually output the subgraphs obstructing
planarity. These algorithms are sometimes referred to as planarity testing algorithms. Ac-
cording to West [55], a graph is planar if it admits a planar drawing. On the other hand, if
it has a K5, or K3,3 minor, it is non-planar, see Figure 1.4. A subdivision of graph H can
be obtained by subdividing its edges successively. The edges have been replaced by disjoint
paths, see definition 2.1.3. Therefore, an arbitrary graph either admits a planar drawing,
or one of its Kuratowski subgraphs are reported by the planarity testing algorithm.
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Figure 1.4: a) Kuratowski subgraphs (K5 and K3,3) b) A subdivision of K3,3

Hopcroft and Tarjan [29] introduced the first linear time planarity testing algorithm in
1974. The linear algorithm runs a depth-first-search on the input graph, and then assigns
weights to edges incident to each vertex. Then, it runs another depth-first-search on the
weighted graph to generate an embedding. The algorithm, sometimes referred to as path
addition, is complex, and there are a few expository articles such as [56] offering alternative
explanations.
Another approach toward planarity testing is the use of st-numbering. Given a graph G =
(V,E) such that |V | = n and s, t ∈ V , an st-numbering of G is a function π : V → {1, ..., n}
where π(s) = 1, π(t) = n, and ∀v 6= s, t ∈ V : π(v) = j, 1 < j < n such that v is adjacent to
two other vertices numbered j + 1 and j − 1. The first algorithm using this approach was
introduced by Lempel et. al. [35] and runs quadratic in time. The following contributions
lead to linear algorithms based on s-t numbering. Even and Tarjan [21] presented a lin-
ear time algorithm for obtaining an st-numbering, and Booth and Lueker [3] introduced a
planarity testing algorithm based on PQ-trees which keep required information for flipping
and altering vertices before and after embedding. Since the algorithm verifies planarity by
checking whether adding a new vertex to the current partial embedding violates planarity
or not, it is referred to as the vertex addition algorithm.
Another interesting data structure used in planar embedding algorithm is PC-tree which
is rather generalized version of the PQ-trees. This data structure enabled Shih and Hsu
[43, 44] to introduce the first vertex addition planarity algorithm based on the bottom-up
view of depth-first-search. The algorithm tests for planarity conditions on P-nodes and
C-nodes instead of processing the complex PQ-tree templates.
Depth-first-search and its "backtracking" attribute can provide valuable information regard-
ing a graph’s structure. Tarjan [51] originally discovered this concept and presented several
linear time graph algorithms using it. Later, Boyer and Myrvold [5] proved the planarity
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testing algorithm from [3] can proceed using the information regarding cut vertices and
bi-connected components, extracted by depth-first-search, rather than the PQ-trees.
Another contribution of Boyer and Myrvold is the introduction of the linear edge addition
technique in [7], inspired by PQ-tree implementation of [3] of the vertex addition algorithm
[35]. This algorithm considers an edge as a unit of addition and tests planarity conditions
by making localized decisions. It produces a planar embedding if the input graph is planar;
otherwise, it outputs a Kuratowski subgraph. According to [7], some of the presented tech-
niques can be employed to optimize PC-trees.
The graph minor theorem, presented by Robertson and Seymour [39], is one of the most
interesting and complicated concepts in graph theory. The recent employment of this the-
orem in quantum computers, invented by D-Wave Systems, has attracted a new wave of
researchers. The quantum computer is expected to solve NP-hard problems in seconds in
comparison to years for classic computers. In this era, this processor can be the solution to
Big Data. Companies like Google and NASA have already started taking advantage of this
powerful processor to solve problems in machine learning, artificial intelligence, astronomy,
and so forth.
Choi [12] presented how an NP-hard quadratic optimization problem represented as a graph
G can be reduced to finding a minor of G in the hardware graph U of a quantum computer.
In intuitive terms, D-Wave’s processor maps an optimization problem to a landscape, then
searches for the point with the minimum value. This process consists of two steps: finding
the minor embedding, and setting the parameters. The latter is the subject Choi explored
in [12]. Based on the mentioned reduction, the quantum computer can solve a problem if
its representing graph can be minor embedded in the hardware graph. Therefore, the hard-
ware graph should be designed in a way that given the physical limitations already known
to us, it still includes minors of various families of sparse graphs. Choi studied the problem
of designing such a hardware graph in [13], and it is still an open problem. The current
hardware suffers from missing qubits. This requires the minor embedding algorithms to be
able to produce feasible solutions without using these specific qubits. For instance, Klymko
et. al. presented two algorithms in [34] that are resilient to hardware’s missing qubits. The
first algorithm attempts to minor embed the input graph, and if it fails, it tries again using
a smaller set of functional qubits. The second algorithm uses matching within qubits on
the diagonals to find a minor embedding with the minimum number of logical qubits that
their representations in the hardware include missing (physical) qubits.
In 2014, Cai et. al. [8] introduced the first heuristic probabilistic approach with running
time O(n.n′.m(m′+ n′logn′)) where the number of vertices and edges of H are represented
by n and m, and for G by n′ and m′, respectively. Given graphs H and G as inputs, the
algorithm either succeeds in minor embedding H in G, or reports a failure. While indepen-
dent of the input graphs’ structures, it requires H to be much smaller than G [8]. All in all,
this randomized algorithm, implemented on D-Wave’s machine, minor embeds large sparse
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graphs successfully.
In 2016, Zaribafiyan et. al. [57] introduced another heuristic algorithm that explores
the structure of both input and target graphs. They formulate the problem instances as
quadratic unconstrained binary optimization (QUBO) problems, and then they represent
them as Cartesian products of two complete graphs. According to [57], there is a regularity
in QUBO problem formulation of most families of NP-hard optimization problems. Hence,
in each family, we can reuse the embedding of one graph for the rest of them. By Cartesian
product of two graphs C and G we mean the graph C�G with the vertex set V (C)×V (G)
and (v1, v2) and (u1, u2) are adjacent if i)v2 = u2 and u1 is adjacent to v1 in C, or ii) v1 = u1

and u2 is adjacent to v2 in G [55].
Considering the problem of Cartesian product of complete graphs (CPCG), their embed-
ding strategy divides the minor embedding problem into two subproblems: first, choosing
an appropriate complete graph Km (in Km�Kn), and second, placing n copies of Km and
then connecting them together. The introduced algorithm was compared to the heuristic
algorithm by Cai et. al. [8] and also another algorithm introduced by Boothby et. al. [4]
specialized to minor embed cliques in Chimera. Given a fixed size ideal Chimera as target
graph and limited running time, the Cartesian based product outperformed the other two.
The required gap between the sizes of input and target graphs for Cai’s algorithm in [8] puts
it at a disadvantage in compare to other algorithms. Here, given a hardware graph CN,N,4,
the algorithm introduced by Zaribafiyan et. al. [57] can embed graphs up to K8 ×KN−1.
This size goes than to K8 × KN/2 for Boothby’s algorithm [4]. The performance of Cai’s
algorithm [8] is not predictable due its probabilistic behavior, but in these experiments
stands between the two aforementioned algorithms.

1.4 Outline of the Thesis

The next chapter reviews essential concepts of this thesis. Subsequently, Chapter 3 in-
troduces the minor embedding algorithm based on straight line drawing and explains the
challenges we face in minor embedding a planar graph on a grid. Then, Chapter 4 presents
a minor embedding algorithm based on visibility representation, along with an efficient
technique to better handle and optimize the output. Chapter 5 discusses the conducted
experiments to evaluate the performance of the introduced and existing algorithms. All is
concluded in Chapter 6, and a few ideas are suggested for future work.
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Chapter 2

Review of Basic Concepts

This chapter provides a brief overview of the fundamental concepts applied in our algo-
rithms. After defining a few basic terms, each section explores a different concept in details.

Definition 2.0.1. A graph G is defined with a set of vertices V and a set of edges E such
that E ⊆ V 2, meaning each edge e ∈ E is a 2-element subset of V [18].

Two vertices are adjacent, or neighbors, if they are the endpoints of an edge. An edge is
a loop if its endpoints are identical. A graph G is simple if it has no loops.
One way to represent a graph is by using its adjacency matrix. Given simple graph G =
(V,E) such that |V | = n, the adjacency matrix of G, written A(G), is an n-by-n boolean
matrix which the entry ai,j equal 1 if there is an edge between vi and vj ∈ V . The degree
of a vertex v is the number of edges incident to it.
A graph G = (V,E) is directed if its edges have directions, otherwise it is undirected.

Definition 2.0.2. A cut vertex of a graph G is a vertex v such that removal of v from G

increases the number of its connected components. A subgraph G′ = (V ′, E′) of G = (V,E)
is a graph for which V ′ ⊆ V and E′ ⊆ E. G′ is an induced subgraph if E′ = {(u, v) ∈
E|u, v ∈ V ′}.

A simple graph G with n vertices is a clique or a complete graph, written Kn, if and
only if all of its vertices are of degree n− 1. Consider a graph G composed of two disjoint
sets of vertices V and U such that no two vertices in one set are adjacent. If every pair of
vertices (v, u) such that v ∈ V, u ∈ U are neighbors, then G is a complete bipartite graph
[55].

2.1 Planarity

Definition 2.1.1. (Drawing): Consider a function f that maps each vertex v ∈ V to a
distinct point f(v) on the plane R2, and maps each edge e = (u, v) ∈ E to one and only
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one curve in the plane with f(u) and f(v) as endpoints. This function is a drawing of G.
If e ∩ e′ = ∅ but f(e) ∩ f(e′) 6= ∅ then a point p in f(e) ∩ f(e′) is a crossing [55].

Definition 2.1.2. (Planar drawing): A drawing is planar if no two images of the edges
intersect, except possibly at their endpoints. A graph that admits a planar drawing is planar.
A planar embedding is a planar drawing, where the drawing preserves the adjacency and
non-adjacency of vertices, with a certain clockwise ordering for edges incident to all vertices
[55].

Theorem 2.1.1. (Euler’s Theorem): Let G = (V,E) be a simple planar graph such that
|V | = n and n ≥ 3. Then, |E| ≤ 3n− 6.

Theorem 2.1.1 shows that the so-called Kuratowski subgraphs, K3,3 and K5, are nonpla-
nar.

Definition 2.1.3. Given a graphG = (V,E), if we replace each edge (u, v) ∈ E with disjoint
paths between its endpoints u and v, the new graph is an G-subdivision or a subdivision of
G [18].

Theorem 2.1.2. (Kuratowski Theorem): A graph is planar if and only if it does not contain
a subdivision of K3,3 and K5.

A proof of this theorem can be found in [55].

Definition 2.1.4. (Region): Consider a set U ⊆ R2. U is an open set if, for any point
x ∈ U , there exists a real number ε > 0 such every point y ∈ R2 whose Euclidean distance
from x is smaller than ε is also in U .
A region in the plane is an open set U such that for every pair of (u, v) ∈ U , U contains a
curve with u and v as its endpoints. The faces of an embedding of a planar graph are the
maximal regions of the plane that do not contain any point of the embedding [55].

A planar embedding of a planar graph can have many faces, but it can only have one
unbounded face, called the outer face, assuming the embedding of the graph is bounded
(meaning a sufficiently large circle C can enclose it). Therefore, the face containing R2

minus the surface of C is the outer face. The other faces are called inner faces.

Definition 2.1.5. (Isomorphism): Assume G = (V,E) and G′ = (V ′, E′) are two graphs.
If and only if there exists a bijection φ : V → V ′ such that ∀u, v ∈ V , if (u, v) ∈ E then
(φ(u), φ(v)) ∈ E′, then φ is called an isomorphism, and G and G′ are isomorphic, written
as G ' G′.

A simple graph G is k-connected (k > 0) if after removing any t < k vertices, it is still
connected. In the special case of k = 2, the k-connected graph is called bi-connected.
A maximal planar graph is a graph that will be non-planar if we add one more edge to it.
A k-planar graph is a planar graph whose maximal degree is k.
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2.2 Grid Graphs

In graph theory, we can generate new graphs by applying a product operation on two graphs
G and H. The product operation is called the Cartesian product, and written as G�H.
The vertex set of G�H is V (G)× V (H), the Cartesian product of the vertex sets of G and
H, and its edge set is formed in the following way: (x, y) and (x′, y′) are adjacent in G�H
if and only if one of these two conditions hold [30]:

• x = x′, and y and y′ are adjacent in H

• y = y′, and x and x′ are adjacent in G.

The edge set can also be defined as the following set:

E(G�H) =
(
E(G)× V (H)

)
∪
(
V (G)× E(H)

)
Consider a tree of n vertices such that 2 vertices are of degree 1, and the other n− 2 are of
degree 2. Such a graph is called a path graph, written as Pn, and can be drawn on a straight
line on the plane. Now let us define a grid graph [25].

Definition 2.2.1. A m× n grid graph, or a complete grid graph, is the Cartesian product
of two path graphs Pm�Pn [30].

A m× n grid is a graph on vertices {v1, ..., vmn} with edge set {(u, v)(u′, v′) : |u− u′|+
|v − v′| = 1} [18].
Grid graphs have unique characteristics. For instance, every planar graph is a minor of
some grid [18]. Another example is their particular planar representations. The m×n grid
has a specific planar representation, consisting of perpendicular straight lines (m rows and
n columns), see Figure 2.1. If the planar representation can be viewed as a set of square
tiles, then it is called a square grid.

2.3 Graph Minors

Given a graph G = (V,E), we can perform three types of operations: edge deletion, vertex
deletion, and edge contraction. Edge deletion simply refers to removing an edge from E.
Vertex deletion refers to the removal of a vertex v from V and all edges incident to v from
E. Edge contraction is defined below.

Definition 2.3.1. Let e = (u, v) be an edge in a graph G = (V,E). If we contract e, u
and v will be substituted by a new vertex ve, and we will have a new graph G′ = (V ′, E′)
in which ve is adjacent to all the vertices previously adjacent to u and v. Formally,

• V ′ = (V − {u, v}) ∪ ve s. t. ve /∈ V ∪ E, and
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Figure 2.1: Planar representation of a grid graph Gm,n generated by Cartesian product of
two path graphs Pm and Pn

• E′ = {(x, y) ∈ E|{x, y} ∩ {u, v} = ∅} ∪ {(ve, x)|(u, x) ∈ E − {e} or (v, x) ∈ E − {e}}
[18].

Based on these operations, we define graph minors.

Definition 2.3.2. G′ is a minor of G, written G′ � G, if it can be obtained from G by
means of a sequence of vertex and edge deletions, as well as edge contractions [18].

Any subgraph of G, including G itself, is a minor.
Informally, based on the structure we preserve, we can embed a graph in another graph in
different ways. An embedding of H in G is an one-to-one map φ : V (G) → V (H). If φ
preserves the adjacency of vertices, then H is embedded as a subgraph. If φ preserves both
the adjacency and non-adjacency of vertices, then H is embedded as an induced subgraph.
Further, if φ maps vertices of H to disjoint connected vertex sets in G, and in addition
maps the edges (u, v) to independent paths in G such that φ(u) and φ(v) are its ends, then
H is embedded as a minor.

2.4 Path Finding Algorithms: Dijkstra and A*

Consider an arbitrary graph G = (V,E) with non-negative weights (distances) assigned to
all edges, and the problem of finding the shortest path between two given nodes (vertices)
s and g . Let d(s, g) be the length of the shortest path from s to g.
The Dijkstra’s algorithm finds the shortest-path distances of s to all other nodes in the
graph, including g as follows. The algorithm is initialized by setting d(s, u) to zero for
u = s and to inf for all other nodes. Then, it marks s as the current node, and all other
vertices as unvisited. At each step, the algorithm evaluates the costs of the shortest paths
between the current node and its unvisited neighbors, and updates a tentative distance if
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the new value is smaller. After processing all the neighbors, the current node is marked
visited and will never be processed again. The algorithm then moves on to the neighbor
with minimum cost, unless one of the following stopping criteria has been met: there is no
unvisited node left, we had set a goal, and it has been already processed, or the smallest
cost of getting to the next unvisited node is infinity, meaning the part of graph containing
s is disconnected from the part containing the unvisited nodes [33].
Dijkstra’s correctness can be proved by induction and its running time isO

(
|E|+|V |log(|V |)

)
[33].

A-star (A*) is also a path finding algorithm which traverses a graph from a given start
node to a given goal. It is considered as an extension of Dijkstra’s algorithm. It iteratively
evaluates all the shortest paths possible and chooses the one with minimum cost. Its
popularity is due to use of heuristics to lead the algorithm toward the cheapest path faster
by prioritizing the ones which seem to lead to the desired path.
In any iteration, the path from s to g is comprised of two parts: the part from s to some
discovered node u, and the part from u to g. By then, the algorithm has already computed
the cost of the shortest s − u path, but not the u − g path. Therefore, the cost of the
shortest path at each step is the sum of the actual cost of the s−u path plus an estimation
of the cost for the u − g path. This computation is presented in the following function:
f(u) = g(u) + h(u), where u is the current node, g(u) the cost of the partial path already
chosen, and h(u) estimation of the cost to traverse from u to g based on the heuristic [27].
The criterion for choosing a vertex among undiscovered vertices is similar to Dijkstra: any
un-visited vertex minimizing the function f is chosen to be processed. If each node keeps
track of its previously chosen neighbor, then the whole path can be retrieved in the end.
Given a graph with finite branching factor and positive weights, the algorithm is optimal
and complete if its heuristic is admissible, meaning it does not overestimate the costs. This
algorithm is linear in the size the set of vertices in the best case scenario, and in the worst
case scenario, it is exponential in l which is the length of the shortest path. Let b be the
average number of choices the algorithm can make at each node. Then, in the worst case
scenario, meaning the desired shortest path between two points is the last possible choice
of the algorithm, the running time will be O(bl) [28].

2.5 Algorithm D: Existing Heuristic

In 2014, Cai, Macready, and Roy [8] introduced a heuristic algorithm for minor embedding a
given graph H in another graph G. The algorithm, referred to as Algorithm D henceforth,
starts processing the vertices in a random order, and places them close to their already
embedded neighbors, if any. It either generates a feasible minor embedding, by which we
mean a minor embedding without crossings, or reports a failure.

Definition 2.5.1. A model of H = (VH , EH) in G = (VG, EG) is a φ : VH → VG such that
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• for u, v ∈ VH where u 6= v, φ(v) and φ(u) are disjoint,

• for each v ∈ VH , there exists a subtree T of G with VT = φ(v),

• and for each edge (u, v) ∈ EH incident to v, there is an edge (x, y) ∈ EG with x ∈ φ(v)
and y ∈ φ(u).

Algorithm D has two phases. In the first phase, it embeds all the vertices. Sometimes,
a part of G is used in more than one vertex model. Such occurrence is considered as a
crossing. While crossings are penalized, they are not prohibited. In the next phase, the
algorithm attempts to resolve all the crossings by re-embedding the vertices in an attempt
to generate a feasible embedding. If the algorithm fails to generate a feasible embedding,
it attempts to decrease the total size of vertex models, and failing that, it tries to decrease
the size of the largest vertex model.
The final stopping criteria is achieving vertex models of maximum size 1 (smallest vertex
models possible), or having no improvement for a certain number of consecutive iterations
(set to 10 according to [8]).
Let φ(x) be the vertex model for vertex x ∈ V (H). φ(x) is a desirable vertex model if i)
it is representing x exclusively, meaning it does not intersect with any other vertex model,
and ii) it is connected to all its neighbors while using as few vertices of the target graph as
possible.
The main principles of Algorithm D are explained below.
Placing a vertex close to its already embedded neighbors: Let u be the vertex we are
trying to place, and y1, y2, ..., yk are its already embedded neighbors as φ(y1), φ(y2), ..., φ(yk).
At this step, the shortest path distance between any unused vertex g ∈ V (G) and φ(yj),

1 ≤ j ≤ k, should be computed. Then c(g, j) =
|φ(yj)|∑
t∈φ(yj)

c(g, t). The root of the new vertex

model g∗ will be the one with the minimum
∑
j c(g, j) =

∑
j

( |φ(yj)|∑
t∈φ(yj)

c(g, t)
)
. Then, the

union of the shortest paths connecting g∗ to its neighbors forms the new vertex model φ(u).
The process of computing the distances between every single grid node and all vertices
in every vertex models is not very efficient. Therefore, when computing the distance of a
vertex g to a vertex model φ(yj), we add a dummy vertex ŷj adjacent to all vertices in
φ(yj). Then, we compute the cost of the shortest path between g and ŷj .

Representing one vertex exclusively: There are not always unused vertices avail-
able to provide the closest location to neighbors of a vertex being processed. Therefore,
Algorithm D allows more than one vertex model to contain a certain node of the target
graph. On the other hand, to discourage the algorithm from doing so, we assign a penalty
to vertices being used more than once:

wt(g) = D|{j:g∈φ(yj)}|
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where g ∈ V (G) and D is the diameter of the target graph.
This way of assigning weights to vertices can be an issue for path finding algorithms, due
to them being able to process weighted edges. This issue can be resolved by considering a
directed graph with the weight of edge equal to the weight of its head.

Assigning shortest paths to vertex models: Upon choosing a vertex g∗ as the root
of the current vertex model φ(u), along with the shortest path connecting it to its neighbors,
we have to decide which parts of the discovered paths should be assigned to φ(u) or the
neighbor it is connecting to (φ(yj)). Algorithm D settles this decision based on the number
of vertex models using that specific node of the target graph. If the node is included in
more than one shortest path, emanating from u, then it is assigned to φ(u). But if it is only
included in the shortest path to φ(yj), then it is added to φ(yj). The reason is if u uses
that particular node to connect to more than one of its neighbors, then adding that vertex
to φ(u) instead of more than one vertex models of its neighbors serves in minimizing the
size of vertex models. On the other hand, in case that node is only used to connect u and
some neighbor yj , assigning it to φ(yj) means giving a chance to φ(yj) to use it in future
for connecting to neighbors of yj .

Random choice of roots: To avoid getting stuck in local optima, once in a while,
Algorithm D chooses a random node of the target graph as g∗ with the probability propor-
tional to exp(cost(g)), instead of choosing the one with minimum distance to the neighbors.

Considering the weights based on inclusion: Evaluating the weight of the shortest
path between a node g and a vertex model φ(yj) depends on whether g ∈ φ(yj) or not.
If g /∈ φ(yj), then there is a path (v1 = g, v2, ..., vk−1, vk ∈ φ(yj)) where vk ∈ φ(yj), and
the weight of vk should not be included in c(g, j). This way, assuming g is chosen as the
root, then only (v1 = g, v2, ..., vk−1) belong to the new vertex model. On the other hand,
if g ∈ φ(yj), then the shortest path between the new vertex model and φ(yj) would be
(vk = g), and hence, its weight should be included in c(g, j) = c(vk, j). The node g will be
a part of both the new vertex model and φ(yj).

To improve the running time, the authors [8] introduced a localized version of the algo-
rithm. The most consuming part of Algorithm D is the shortest path computation at each
iteration between every node of the target graph and every vertex model. To fix this issue,
two variations were proposed:

• Multisource Dijkstra: According to [8], the choice of roots at each iteration do not differ
from the previous iteration. Therefore, the series of shortest path computations to
every vertex model is substituted by one simultaneous computation of shortest path
to each vertex model, which is referred to as multisource Dijkstra. The Dijkstra’s
algorithm has been explained in Section 2.4. Here, multiple trees are formed, starting
from the sources, and grow every iteration until there is a node v∗ that has been
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reached by all trees. While minimizing the maximum weight of shortest paths, this
process is searching only a subset of the entire target graph.

• A* : Dijkstra is replace by the A* algorithm, described in Section 2.4. The heuristic
is set to the unweighted distance between any two vertices which can be precomputed
in advance. The target for vertex yj is the root of the vertex model φ(yj). Hence,
there is no target in the first iteration.

The impact of using multisource A* in the second phase of Algorithm D is evident when
the choice of the new root from the target graph nodes has failed the condition on reducing
the number of represented vertices (or the number of vertex models including a certain
node). At this point, Algorithm D will quickly place the new root close to the previous one.
But if there was a chance to improve the embedding by choosing a node representing fewer
vertices, then the process would be carried out in approximately the same duration.
The other impact is on the success rate of the algorithm which is made worse by using
A*. Dijkstra is able to minimize the overlap among vertex models by minimizing the sum
of the shortest paths, whereas A* minimizes the maximum shortest path. In other words,
Dijkstra considers all the overlaps, not just the worst case, and that is why it is more time
consuming than A*.
The running time of the original algorithm is bounded to 2eH times of running Dijkstra with
running time O(eG + vG log vG) for each iteration. In the worst case, it would take nHnG
iterations to obtain a feasible embedding, coming to a running time of O(nGnHeH(eG +
vG log vG)). Algorithm D was studied for grid graphs, random cubic graphs, and complete
graphs.
The success rate of Algorithm D is similar to a sigmoid function. All in all, it could be said
that the algorithm’s behavior is more erratic for complete graphs, which might be due to
their complex nature.
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Chapter 3

Minor Embedding Algorithm
Based on Straight Line Drawing

In this chapter, a minor embedding algorithm is introduced based on a straight line drawing
of the input graph, obtained from the algorithm presented in [14]. A straight line drawing
is a type of planar embedding which represents edges with non-intersecting straight lines.
In this approach, the output of the drawing algorithm helps us determine "where" to embed
each vertex so that a path finding algorithm can find a way from each vertex to its neighbors
without introducing crossings. Either the path finding algorithm succeeds, or it reports a
failure.
We begin this chapter by discussing the straight line drawing algorithm in detail and defin-
ing its components. Later, we explain how the minor embedding process is carried out given
the output of straight line drawing algorithm. In the last section, we analyze the introduced
approach and evaluate its strong and weak points.

3.1 Straight Line Drawing

In 1990, de Fraysseix et. al. [22] proposed an incremental algorithm for drawing a graph in
a grid based on the canonical ordering with running time O(n logn). Later, their method
was improved and simplified by Chrobak and Payne [14], and its running time reduced to
O(n). The drawing algorithm and its proof are both based on the canonical ordering of
vertices of a planar graph [17]. The output of this algorithm can be embedded in a grid
with dimensions (2n− 4) by (n− 2) [17].
These algorithms are only applicable to maximal planar graphs. Later, this restriction
was loosened to some extend to include tri-connected and bi-connected graphs by [26] and
[31]. Nevertheless, we chose the Chrobak and Payne algorithm due to the availability of
implementation and ease of use. The implementation deployed in this thesis is taken from
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[24]. We must carry out the extra step to make the input graph maximal planar, in case
it is not. Since there exist linear-time algorithms to add extra edges to a given planar
graph to the point of maximal planarity [14], this process will not impact the overall time
complexity. On the other hand, the extra line segments, representing the added edges, can
be eliminated from the output of the straight line drawing.
Before further discussion of canonical ordering, we repeat the definition of maximal planar
graphs given in Section 2.1. A planar graph which loses its planarity if we add one more
edge to it, without making changes to the set of vertices, is called a maximal planar or a
triangulated graph. At this point, based on Theorem 2.1.1, if the graph has n ≥ 3 vertices,
it also has 3n−6 edges and 2n−4 faces, each of which is surrounded by exactly three edges
[42].
Here, we will briefly explain the straight line drawing algorithm in [14], and then, we provide
formal definitions for its vital components. The algorithm uses a certain ordering of vertices
VG, called the canonical ordering, and embeds the vertices in that order by connecting them
to their already embedded neighbors. Readjusting the positions of a subset of vertices is an
essential technique to embed edges as straight line segments. The embedding process starts
with the first three vertices in the order v1, v2, v3 taking place on the grid at the following
coordinates: (0, 0), (2, 0), and (1, 1). If at the current stage, a vertex v is the next vertex in
the sequence to be added to the outer face of the embedded subgraph, its neighbors that
have already been processed form a simple path on the cycle bounding the outer face of the
embedded subgraph. During the minor embedding process, it is important to keep track
of a list of vertices to be relocated if the coordinates of an already embedded vertex are
altered. The change of coordinates happens when a vertex needs to move further from its
neighbors to preserve the property that edges are straight lines. Any vertex influenced by
this movement has a set of dependent vertices, so the algorithm moves all the necessary
vertices to right by 1 or 2 points in the grid, and eventually connects the new vertex to each
of its neighbors using straight lines. Based on this explanation, the two main components
of the algorithm are the vertex ordering, called the canonical ordering and the sets of
locationally-dependent vertices, called the shifting sets.
The canonical ordering can be defined as follows [14, 9, 20]:

Definition 3.1.1. Assume G = (V,E) with |V | = n is a maximal planar graph, and
µ = (v1, v2, v3, . . . , vn) is an ordering of vertices. Let Gi ( 1 ≤ i ≤ n) be a plane subgraph
of G, induced on the vertices v1, v2, . . . , vi, and Ci be the cycle enclosing the outer face of
Gi such that Ci = (v1 = w1, w2, . . . , wj = v2). µ is a canonical ordering if

• the counter-clock wise order of v1, v2, and vn forms the external face of G

• ∀i, 2 < i < n, Gi is a bi-connected triangulated subgraph of G, and

• ∀i, 2 < i < n, vi is included in Ci and adjacent to at least one vertex in G−Gi.
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Figure 3.1: The reverse canonical ordering is generated by eliminating vertices one by one
a) The vertex v6 is about to be removed from the outer cycle of the graph. b) Elimination
of the vertex v5. c) Elimination of the vertex v4. d) The final ordering of the vertices.

Theorem 3.1.1. Every maximal planar graph has a canonical ordering that can be com-
puted in linear time and space.

Theorem 3.1.1 was proven in [22, 14]. Here is a brief explanation; Consider a triangu-
lated graph G. Assume we are processing Gi+1 with Ci+1 as the current outer cycle. If we
eliminate a vertex vi+1, adjacent to at most two other vertices on the external face, we will
create the new subgraph Gi, and its corresponding external face Ci which includes all the
neighbors of vi+1. This repetitive process can produce the reversed canonical ordering in
linear time, see Figure 3.1.
Let µ be a canonical ordering. As described before, the drawing starts with v1, v2, v3 form-
ing a triangle, and then iteratively new vertices vi+1 are inserted along with the edges
connecting them to their neighbors on the external face Ci, forming the new face Ci+1,.
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The neighbors of vi+1 can be labeled wx, wx+1, ..., wy, being a sequence on the external
face, where in this sequence, wx is the leftmost and wy the rightmost neighbor.
The iterative nature of the algorithm calls for adjustable variables such as dynamic ver-
tex coordinates. Therefore, when inserting a new vertex vi+1, it might be necessary to
shift the leftmost and rightmost neighbors and increase the space between them. However,
because those vertices are connected to other vertices themselves, we need to track depen-
dent vertices to avoid intersection among edges. This sort of adjustment can be revised
based on different applications. The promise of keeping straight line edges results in more
space usage, essential to algorithms like Chrobak and Payne’s [14] but inessential to minor
embedding.

Definition 3.1.2. Given a canonical ordering µ, for each vertex wk on the external face of
Ci, 3 ≤ i ≤ n, the shifting set Mi(wk) ⊆ V is defined as follows [49, 20]. M3(v3) = {v3},
M3(v2) = M3(v3) ∪ {v2}, M3(v1) = M3(v2) ∪ {v1}. Let wy and wx be the rightmost and
leftmost neighbors of vi+1 such that 3 ≤ i < n. Then the following states hold:

• ∀k ≤ x,Mi+1(wk) = Mi(wk) ∪ {vi+1},

• ∀j ≥ y,Mi+1(wj) = Mi(wj), and

• Mi+1(vi+1) = Mi(wx+1) ∪ {vi+1}.

No shifting sets are defined for x < k < y because those vertices are covered, by which
we mean they are no longer on the external face. Figure 3.2 illustrates an example of how
shifting sets are updated through iterations.
More details regarding the proof of correctness and the implementation of the algorithm

can be found in [14]. However, the following points are important to note regarding the
output straight line drawing.

• All vertices are embedded on the grid points in the plane and have integer coordinates.

• All edges are embedded as straight lines.

• The first two vertices in the canonical ordering are always connected to each other
with a horizontal line of length (2n− 4) units of grid-edge length.

• The last vertex to be embedded has y = (n− 2) which effectively bounds the area of
the grid to (2n− 4)(n− 2).

Figure 3.3 depicts a straight line drawing of a graph, known as the wheel graph with 5
vertices.
Our approach to the minor embedding problem was to use the coordinates of the vertices in
a straight line drawing of the input graph H = (VH , EH). Based on these coordinates, we
generate new coordinates to make a minor embedding of H in a grid graph G = (VG, EG).
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Figure 3.2: Construction of the shifting sets as the vertices are embedded in the grid. The
highlighted vertices represent the shifting sets. a) The shifting set M6(v3). b) The shifting
set M7(v3). v7 is inserted and this changes the outer cycle. c) The shifting set M6(v5).
d) The shifting set M7(v7). v7 is inserted and this changes the outer cycle. M7(v5) is the
union of M6(v5) and v7 because wx+1 = v5 as mentioned in the third state.

In a nutshell, the root of the vertex model for each vertex v ∈ VH is a vertex of G, and each
edge e ∈ EH is mapped to a path p ⊆ EG. There must exist at least one way of assigning
the vertices of G, the ones forming the shortest paths, to vertex models of VH , in a way
that the resulting assignment is a feasible minor embedding of H in G.
The first phase of the minor embedding algorithm, called the SLM Algorithm from here-
inafter, includes the following linear-time operations: triangulating the graph, obtaining
the straight line drawing, and removing the extra edges to retrieve the original set of edges.
Linear MATLAB implementations of all these operations can be found in [24] and have
been deployed in our experiments.
In the straight line drawing algorithms discussed above, including Chrobak and Payne’s
[14], the only obligation the grid forces on the algorithm is the integer coordinates for ver-
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Figure 3.3: Wheel graph with 5 vertices (W5). a) A planar representation of W5 b) A
straight line drawing of W5

tices while the edges are embedded on the plane R2. But for minor embedding on a grid
graph G, in addition to integer coordinates for vertices, the edges are to embed on the grid,
meaning for a minor graph H, EH ⊆ EG. This situation is similar to the conditions for
orthogonal drawing algorithms. Each embedded edge on the grid is a path between two
vertices u, v ∈ VH , consisting of some number of horizontal and vertical grid edges. Parts
of this path may be used again for connecting one of the two vertices u, v to one or more
neighbors. This process will be explained in more details, in the following section.

3.2 Minor Embedding Based on a Straight Line Drawing

3.2.1 The minor embedding technique

In our algorithm, the process of minor embedding a graph H = (VH , EH) in a grid graph
G = (VG, EG) consists of the two following phases: placing the root vertices (the roots of
vertex models) for each v ∈ VH on VG, and embedding the edges EH using a path finding
algorithm (which includes generating the vertex models). Each phase consists of smaller
steps which will be discussed shortly.
As mentioned earlier, the purpose of applying the straight line drawing algorithm is to obtain
tentative coordinates for placing vertices on the grid. But using the same exact coordinates
of the straight line drawing may cause complications and crossings due to dealing with a
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Figure 3.4: Two vertices on the grid, and their perimeters highlighted. The perimeters of
vertices with Manhattan distance less than three will overlap.

fixed angle between edges when minor embedding or orthogonal drawing versus straight
line drawing. Therefore, these coordinates must be altered to meet the new needs of our
application.
For any vertex v ∈ VH , assume φ(v) is the vertex model, and rv the root of this vertex
model. Then, let Pi be the coordinates of the root of the ith vertex v ∈ VH in the canonical
ordering. For each rv∈VH

, there are at most four gateways in G. Each vertex v, its immediate
neighbors are the gateways. Each path connecting rv to any other vertex in G passes exactly
one gateway of v. Generally, if earlier discovered paths or roots of other vertex models are
blocking all paths from rv to one of its neighbors, v’s status is stated as trapped. It is trivial
that assigning a gateway of vertex v to represent the root of another vertex model will
increase chances of trapping v, and we need to prevent this from happening.
A trivial way to avoid getting trapped is to simply multiply the drawing coordinates of
vertices by three. Since the distance between any immediate pair of vertices on the same
grid row or column is always an integer multiplied by the length of a grid edge, it is evident
in Figure 3.4 that embedding roots of vertex models at least three grid edges far from each
other will guarantee that no two roots will be placed on the gateways of each other, or
share their gateways. This approach will effectively make the grid area needed for minor
embedding 9 times bigger than that of the straight line drawing. However, at the final stage
of the minor embedding, this area will be reduced. Therefore, in the first phase, for any
vertex v ∈ VH ,

• if (xi, yi) is the coordinates of v in the output straight line drawing, then the coordi-
nates of the root vertex rv is set to Pi = (3xi, 3yi), and

• any vertex g ∈ VG, adjacent to rv that satisfies |yg − 3yi|+ |xg − 3xi| = 1 is labeled as
a gateway and added to φ(v).

In the second phase, we iterate over the vertices of H in the canonical ordering, and for each
vertex v use the A* algorithm to find a shortest path between v and each of its neighbors

26



prior to v in the canonical ordering. The correctness of the final solution is guaranteed
by the weights of edges in G which are passed to A*. All edges in EG originally have the
default unit weight. The only exception to the default weights are a set of 12 edges for each
vertex model. Those 12 edges are the four edges connecting a root to its gateways, and the
eight edges connecting the gateways together. We call this set of edges, the perimeter of
each vertex, illustrated in Figure 3.4.
For a vertex g ∈ VG, we can make g unavailable or inaccessible by setting the weights to
infinity for all or some of the edges incident to g. Similarly, for an edge e ∈ EG, we can
make e unavailable and prohibit it from being included in a shortest path by simply setting
its weight to infinity. In order to make g, available again, we need to reverse the changes,
made to make the vertex unavailable in the first place. Depending on the desired status for
g, available or not available, the weights associated to some or all of the edges incident to g
should be modified. For instance, in the initialization phase of the SLM algorithm, for all
vertices in VH , we make the roots and perimeters unavailable.
Generally, in our algorithm, when a vertex is being connected to its neighbors below, the
vertex models are formed or updated for the neighbors. The potential vertex model of each
neighbor u can be pictured as a subtree, rooted in ru, which grows its branches upward.
Suppose we are processing a vertex v adjacent to u and placed above it. In order to connect
these two vertices, v can reach down to the subtree of u which is a temporary version of
the vertex model φ(u). So the subtree includes the vertices that have been used once, and
the SLM algorithm has a preference for using them again, and hence, called the available
branches and written AB. We have implemented this concept by a data structure which
allocates D slots to each vertex, where D is the maximum degree of the input graph H.
Each slot holds one branch that connects u to one of its neighbors. The details will be
explained shortly through an example.
Consider the process of connecting the vertex v ∈ VH to its neighbors. Let Nv be the
set of vertices adjacent to v and embedded below rv in the grid. In other words, it is
the set of vertices adjacent to v which precede it in the canonical ordering. To connect
v to a neighbor u ∈ Nv, we start by making the perimeters of rv available, and then, we
check whether there is a grid vertex g ∈ ABu in available branches of u closer than ru

to rv. Such a grid vertex can replace ru as the destination of the A* search. By setting
the source and destination of the path finding algorithm to vertices other than roots, we
can partially merge edges incident to each vertex and hence, take better advantage of the
minor embedding concept. Therefore, the SLM algorithm computes the Manhattan distance
between rv and each vertex in ABu. The vertex g with the minimum Manhattan distance
from rv will be the new destination of A*. It is crucial to make sure that in making a vertex
available we do not make the available branches or perimeters of other vertices accessible.
Assume the existence of g sets a flag called alternate goal to true, and it is false, otherwise.
We will explain the different actions the SLM algorithm takes based on the status of this
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flag.
Assume the alternate goal is true. Then, g is the destination for A* because it is closer to v
than ru, and having smaller paths is one of our criteria toward a better minor embedding.
Hence, we will make sure g is accessible. This way, A* can find the shortest path between
rv and g. Consider the following scenario: a path p connecting a pair of vertices s and t.
The grid vertices on p are available to both vertices. Then, if another vertex r adjacent to
s connects to a point m ∈ p, then it splits the path in two: the part between rs and m,
and the rest of the path up to rt. The first part belongs to s but the second part should
be inaccessible to s. Therefore, here, ABu is split in two, and like cutting a branch, we
eliminate the vertices that come after g in that specific slot. In other words, we eliminate
the grid vertices that should no longer be used by u. This helps us maintain the correctness
of the minor embedding as we build it, avoiding any mix up among vertex models.
Now lets consider the case when the alternate goal is false. Then, ru is the destination for
A* and should be made available. After A* finds the shortest path, the grid nodes forming
that path are added to a free slot of u, except for the ones in the perimeters of u and v.
Before moving on to the next neighbor of v in Nv, the available branches and the perimeter
of the current neighbor ru are made unavailable. Once all members of Nv are processed,
same procedure occurs for rv. We also make sure that each grid node in each ABu, where
u ∈ Nv, has only been used once.
So far, we mentioned running A* search for path finding between vertices. Here, we discuss
the details on how to modify the path finding step to decrease both the running time and the
possibility of entrapping other vertices. Based on the description of A* algorithm in Section
2.4, in the worst case, it covers the whole search space. Therefore, by reducing the size of
the search space, A* will find the shortest path faster. Further, the methodical modification
of the search space does not prevent A* from finding a feasible solution. Consider finding
a shortest path between any two vertices u, v ∈ VG. We define the search space to be
the smallest rectangular area C in G, containing the perimeters of both vertices, and we
make the rest of the grid outside this area inaccessible. In order to do so, we require four
parameters to set the corners of this rectangle: minx, maxx, miny, and maxy. Assume
the bottom-left vertex in the grid is the origin of the xy-plane with coordinates (0, 0), and
each edge in the grid have the same unit length. In the Cartesian coordinate system, minx
is the minimum value of x among all vertices in the perimeters of u and v. Other three
values are defined, similarly. This way, two vertices in G with coordinates (minx,miny) and
(maxx,maxy) are the two opposing corners of C. By setting the weights of all edges incident
to vertices outside of C to ∞, we limit A*’s search to inside C’s boundaries. In a way, we
are forcing the SLM algorithm to transform a straight line, representing a particular edge,
to a path consisting of vertical and horizontal grid edges which fits in the same rectangle
as the straight line.
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To prevent crossings, the following actions are taken during an iteration embedding a vertex
v ∈ VH :

• when finding a shortest path between v and a neighbor u, making the perimeters
of other vertices (including other neighbors of v) unavailable will guarantee that no
vertex from other vertex models will be added to the path.

• the vertices forming all the discovered paths, connecting v to its neighbors, are made
unavailable at the very end of this iteration. All the new members of available branches
are also made unavailable before moving on to the next vertex in the order.

It might seem that these precautions encourage the SLM algorithm to employ more and
more new grid vertices for embedding and hence, increases the size of vertex models. But
on the other hand, during an iteration in which a vertex is being connected to its lower
neighbor u, the grid vertices in ABu can be re-used for this connection. Relatively, merging
the edges incident to one vertex will decrease the collective size of all vertex models more
than it could increase it by avoiding other vertices’ perimeters.
It is noteworthy that according to [14], in a straight line drawing, adjacent vertices cannot
be embedded on the same y coordinates in the grid. This condition implies that the ith

vertex in the canonical ordering vi will connect to some of its neighbors vj<i in the ith

iteration, and the rest of them vk>i will connect to vi in later iterations.
Algorithm 1 provides a summary of the SLM algorithm.
Now lets discuss the heuristics used by the A* search algorithm. To improve the search

process of A*, we studied two heuristics: the Euclidean and the Manhattan distance between
two points in the Cartesian plane.
For each two points P1 = (x1, y1) and P2 = (x2, y2) in the plane, the Euclidean distance
between P1 and P2 is defined as follows:

dE(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2

This value measures the length of the straight line connecting the two points together. In
an arbitrary grid, in which all edges have the same weight, the number of distinct shortest
paths between vertices with coordinates (0, 0) and (p, q) is [46]:(

p+ q

p

)
or

(
p+ q

q

)

The reason is that the cost of the shortest path is exactly p+q, and the shortest path itself is
a sequence of p edges parallel to the horizontal axis (moves to the right) and q edges parallel
to the vertical axis (moves towards the top). The number of shortest paths is determined
by the number of distinct selections of edges constituting the paths which define a move to
the right (or top).
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Algorithm 1 The SLM Algorithm: Minor embedding algorithm based on straight line
drawing

1: Input: A planar graph H = (VH , EH) and a grid graph G = (VG, EG)
2: Output: Failure or a minor embedding of H in G
3: Compute a canonical ordering O = v1, v2, . . . , vn of VH .
4: Let (X,Y ) be vectors of the x and y coordinates of a straight line drawing of H.
5: for all v ∈ VH do
6: rv = g ∈ VG such that the position of g in the grid is Pg = (3Xv, 3Yv).
7: Make the perimeter of rv unavailable.
8: end for
9: for all v ∈ O in order do

10: Make the perimeter of rv available.
11: for all u ∈ Nv do
12: Find vertex u∗ ∈ ABu with minimum Manhattan distance to rv and let Sind denote

the slot that includes u∗
13: if u∗ is closer than ru to rv then
14: Set goal = u∗ as the destination of the A* search.
15: else
16: Set goal = ru as the destination of the A* search.
17: end if
18: Make goal available, and make the enclosing rectangle C of rv and goal inaccessible

to the vertices outside of it.
19: Attempt to find a shortest path p between rv and goal.
20: if There is no path between rv and goal then
21: return Failure
22: else
23: Add the vertices included in p to a pool Π, except the vertices in the perimeters

of u and v.
24: end if
25: if goal = u∗ then
26: Delete the vertices in ABu(Sind) that come after u∗.
27: else
28: Add the vertices in p to a free slot of ABu .
29: end if
30: Make the isolated enclosing rectangle C available again.
31: Make the perimeter of ru and ABu unavailable.
32: end for
33: Make sure all the grid vertices in ABu, u ∈ Nv, have only been used once, if not,

remove them.
34: Make all g ∈ Π, as well as the perimeter of v unavailable.
35: end for
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Figure 3.5: Minor embedding of 7×7 grid graph in a grid of size 141×282 using the straight
line drawing algorithm and Euclidean distance as the heuristic function for A*.

In our application, depending on the results of earlier iterations, a number of the possible
shortest paths might be feasible, and A* will return the first-found shortest path. Therefore,
if the Euclidean distance is chosen as the heuristic for A*, the selected shortest path will be
the closest feasible path to the straight line connecting the two vertices. Figure 3.5 depicts
the minor embedding of 7 × 7 grid graph in the grid, using the Euclidean distance as the
heuristic.
In a sequence of edges constituting a path between two points of a grid, a bend refers to
a subsequence of only horizontal (vertical) edges, being followed by a vertical (horizontal)
edge. As illustrated in Fig. 3.5, Euclidean distance roughly maximizes the number of bends
in every shortest path. The definition of the Manhattan distance of P1 and P2 follows:

dM (P1, P2) = |x2 − x1|+ |y2 − y1|

This value is exactly equal to the cost of the shortest path between P1 and P2, if all edges in
EG have a unit weight. Therefore, the selected shortest path will only have necessary bends
unless A* is manipulated to randomly examine the possible options at each iteration, or the
order of appearance for edges in the adjacency list is not the same for all the vertices in the
grid. For instance, if all edges in the grid are available, using Manhattan distance as the A*
heuristic to find the shortest path from the point (0, 0) to (p, q) will lead to a sequence of
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Figure 3.6: Minor embedding of 7×7 grid graph in a grid of size 141×282 using the straight
line drawing algorithm and Manhattan distance as the heuristic function for A*.

horizontal(vertical) edges of size p (q), followed by q (p) vertical (horizontal) edges. Figure
3.6 illustrates the result of replacing Euclidean distance with Manhattan distance for the
example depicted earlier in Figure 3.5.
Our objective is to find a minor embedding with vertex models as small as possible. How-
ever, the results obtained by the two different heuristics do not demonstrate any meaningful
differences in the sizes of vertex models. On the other hand, an easy post-embedding op-
timization is desirable, and hence, deploying Manhattan distance is preferable. As for the
embedding with Euclidean heuristic, we have no reason to prefer that. Next, we will present
a very simple technique to reduce the sizes of vertex models. This technique is much more
effective when deployed with Manhattan distance as the A* heuristic.

3.2.2 The optimization technique

The post-embedding phase targets the long paths which we are prone to, mainly due to
multiplying the coordinates of all vertices by three in the first phase of the SLM algorithm.
This optimization technique will be referred to as Algorithm O in the rest of this text, and
its details are as follows.
Each m × n grid has m columns of n − 1 vertical edges, and n rows of m − 1 horizontal
edges. Consider one column in the grid after the embedding is finished. If none of the
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Figure 3.7: Minor embedding of 7 × 7 grid graph by the SLM algorithm: the columns in
the red rectangle and the rows in the green rectangle are a sample of unused columns and
rows.

vertical edges of this column is a part of at least one of the shortest paths, then we can
eliminate the column from the grid without affecting the feasibility of the final solution.
Same status holds for a row which none of its horizontal edges have been used in the shortest
paths. Figure 3.7 indicates a few columns in a red rectangle that can be removed from the
embedding of the 7 × 7 grid graph. Removing these columns, or the rows in the green
rectangle, shortens the paths, and hence, decreases the size of the vertex models without
losing the feasibility of the solution.
Consider a feasible minor embedding which is a collection of vertex models. When removing
a column, all the parts on the right side of that column should slide left. If that particular
column crosses the point (i, 0) of the grid, all vertices v of the minor embedding with
(xv > i, yv) are removed and replaced by vertices with coordinates (xv − 1, yv). A similar
statement holds for removing a row of the grid. Each eliminated row or column reduces the
area consumed by the embedding, and also reduces the total size of vertex models by the
number of shortest paths orthogonal and crossing to that row or column.
Algorithm O can be implemented with the following approach. Rows and columns of the
grid essential to the embedding are marked as the shortest paths are being computed. When
the SLM algorithm has successfully minor embed the graph, an offset is assigned to each
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row r which indicates the number of inessential rows closer than r to the origin of the grid
at point (0, 0). To determine the offset for each row, a counter of removed rows c is set to
zero, then the rows of the grid are iterated over, from the closest row to the farthest one
from the origin. For each row r

• if r is to be removed, increment c,

• else, set a shift offset Sr := c that determines the offset to be subtracted from yv for
each vertex v on that row.

A similar procedure is conducted for the columns. Each procedure runs in O(m + n) <
O(|VG|) time. Next, the algorithm iterates over all vertices in all vertex models. For each
vertex v, ∀g ∈ φ(v)

• if g is on a row or a column, which is to be deleted, exclude g from the corresponding
vertex model,

• else, find the vertex g′ on the obtained coordinates by subtracting the corresponding
offsets from the coordinates of g. Replace g with g′ in the vertex model.

The complete process runs in O(|VG|) time.
For instance, in case of the 7 × 7 grid with |V | = 49, the minor embedding based on the
straight line drawing coordinates requires a 3(2(49)−4)×3(49−2) = 282×141 rectangular
area in G. Figures 3.6 and 3.5 depict the minor embedding using Manhattan and Euclidean
distance, respectively. Applying Algorithm O to the former embedding reduces its size
down to 64 rows and 55 columns, while for the later, the optimization only compresses the
embedding to 114 rows and 179 columns. This huge difference is in favor of Manhattan
distance and fewer bends in shortest paths which is expected based on the definition of this
optimization method.
The experimental results, provided in Table 3.1, demonstrate that using Manhattan dis-
tance will yield better or equally good optimization results comparing to the Euclidean
heuristic, particularly for larger graphs. In addition, the comparison between pre- and
post-optimization area shows that a great number of columns can be eliminated due to the
triangular structure of minor embedding, an unnecessary attribute for the solution.

3.2.3 Time complexity

As stated before, obtaining a canonical ordering and a straight line drawing of H are linear
time operations [14]. The time complexity of the algorithm is mostly determined by running
A* per each edge e ∈ EH . We can employ priority queues to handle the vertices and the
estimation of their distances. For a priority queue of size |VG| storing the distance estimates,
we can remove the minimum value and update any in O

(
log(|VG|)

)
. Each A* search has
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Table 3.1: The effectiveness of the post-embedding optimization on outputs of two different
versions of the algorithm, one deploying Euclidean, and the other Manhattan distance as
A* heuristic.

Graph Name |VH | |EH |
Pre-optimization

Area

Post-optimization
Area

(Manhattan distance)

Post-optimization
Area

(Euclidean distance)

Area Optimization
Percentage

(Manhattan distance)

Area Optimization
Percentage

(Euclidean distance)

7× 7 Grid 49 84 141× 282 64× 55 114× 179 55%× 81% 20%× 37%

Ladder 20 40 58 114× 228 106× 101 111× 110 7%× 56% 2.5%× 52%

Markström 24 36 66× 132 56× 66 63× 97 15%× 50% 4.5%× 26.5%

Frucht 12 18 30× 60 26× 25 28× 34 13%× 58% 6.5%× 43%

Dürer 12 18 30× 60 27× 28 29× 47 10%× 53% 3%× 21.5%

Bidiakis
Cube 12 18 30× 60 27× 31 29× 43 10%× 48% 3%× 28%

Herschel 11 18 27× 54 22× 20 22× 20 18.5%× 63% 18.5%× 63%

O(|VG|) steps in which the vertex of minimum distance estimate is chosen and eliminated
from the priority queue and its (at most 3) neighbors are updated. Therefore, the running
time of a single A* search is O

(
|VG| log(|VG|)

)
. Hence, the time complexity of the minor

embedding algorithm will be O
(
|EH | × |VG| log(|VG|)

)
. This statement can be simplified as

follows based on the upper bound of the straight line drawing output [14] and planarity of
H (using Theorem 2.1.1): |VG| = 9(2|VH | − 4)(|VH | − 2), and |EH | ≤ 3|VH | − 6, then the
running time can be restated as O

(
|VH |3 log(|VH |)

)
.

In practice, the SLM algorithm’s performance is much better than the mentioned upper
bound. As discussed in Section 2.4, the worst case time complexity of A* is O(bl), where b
is the branching factor, and l the length of the shortest path. It is evident that for finding
the shortest path between two vertices of a sparse graph, such as a grid with maximum
degree of 4, the branching factor will be relatively small. In fact, if the heuristic is optimal,
meaning it demonstrates the exact distance between start and destination, then the effective
branching factor would be 1 [45]. Here, both the Manhattan and Euclidean distances are
optimal heuristics. Even if there are unavailable edges in the target grid to increase the
length of the shortest path, these heuristics are still acceptable as part of the A* path finding
search in the SLM algorithm. Therefore, the embedding phase of the SLM algorithm runs
in almost linear time in |EH |.

3.3 Analysis

In this section, we analyze the performance of the SLM algorithm. Even though the exper-
iments are limited and were not continued further, due to reasons we will discuss shortly,
they set the path for the next step of our research. The SLM algorithm had a high rate of
success with graphs of maximum degree smaller than 10, and its rate of success dropped as
the graphs became more dense.
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Figure 3.8: Blue(circle) vertex is adjacent to other vertices, and the minor embedding algo-
rithm embeds the edges incident to the green (triangle), red (square), and orange (pentagon)
vertices, respectively. The root vertices are identified by thick black edges. Figures depict
the results of two possible strategies for adding vertices to the vertex models.

Unnecessary Long Paths: According to [8], long paths are not desirable in a minor
embedding. But in a straight line drawing, vertices are embedded in a triangular shape, to
make embedding of edges as straight line segments possible. To create these triangles, the
vertices, particularly the ones closer to the bottom of the triangle, are pushed to the right
side of the y axis. On the other hand, the coordinates of the straight line drawing provide
beneficial information for placing the vertices such that the possibility of crossing is low.
Considering the challenging NP-hard problem we are dealing with, graph drawing algo-
rithms can guide us by providing some information regarding the input graph and its
structure. In the next chapter, we will explore another technique which is not limited
by conditions such as straight edges, or triangulated graphs.

Assignment of Vertices Constituting the Paths to Vertex Models: The current
approach is very simple and guarantees the feasibility of the solution. However, the decision
regarding the choice of vertex model to include a vertex influences the quality of minor
embedding and the size of vertex models. Consider the example illustrated in Figure 3.8, in
which the difference between the various decisions and their impact can be observed. Both
Algorithm D [8] and our method make a choice and assign the vertices right after finding
the shortest paths. In the next chapter, we will explain that in many cases, this decision
can be delayed, and deferring the definite assignment of a vertex v ∈ VG to a vertex model
can contribute to better solutions.
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Hard to Optimize: The output minor embedding is not optimal in terms of the size of
vertex models and the area of minor embedding (the rectangle enclosing the embedding,
see Section 1.3). Algorithm O, despite making progress, is still limited. Its performance is
better for paths with fewer bends. However, since the triangular structure of the drawing
is maintained throughout the minor embedding, all neighboring vertices have different dis-
tances from the x and y axes. Unless the graph is fairly sparse, this structure will abstain
many rows and columns of the grid from being excluded.
On the other hand, the area of minor embedding depends on the embedded paths and
the areas surrounded by them. The large areas (faces) in the embedding contain a certain
number of grid vertices which are unused, and therefore, wasted. Addressing this issue
requires a more sophisticated approach toward optimization. Moving the vertices to reduce
the area of a specific face, without either increasing the area of other faces or entrapping
some vertices, is not a trivial task. Though the mentioned issue is not impossible to resolve,
given a few solutions are introduced in the next chapter, the fundamental fact remains that
the problem can be avoided if a straight line drawing is not deployed as a base for minor
embedding.

Not Always Successful at Finding a Minor Embedding: The limitations of minor
embedding in a grid were discussed earlier. The number of available paths in any area of
the grid is limited, and as the input graph becomes denser, the probability of failure in
finding a path between two vertices during an iteration of the minor embedding increases.

Strong Dependency on G Being a Grid Graph: As mentioned before, we prefer to
reduce the dependency of the algorithm on the structure of the target graph. Aside from
embedding the roots of vertex models, other aspects of the algorithm, such as perimeters
of vertices and the optimization technique, are based on the assumption that G is a grid
graph. These dependencies are not essentially weak points of an algorithm designed to
minor embed planar graphs in a grid. However, the greater objective would be to introduce
an algorithm that with a slight modification can be deployed as an independent or auxiliary
procedure to solve the minor embedding problem when G is an arbitrary graph.
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Chapter 4

Minor Embedding Algorithm
Based on Visibility Representation

In this chapter, we present a minor embedding algorithm that addresses the problems with
the algorithm discussed in Section 3.2.1. This algorithm, called VRM, is able to embed all
planar graphs into grid, with no limitation in regards to their degree or density, by using a
different approach to selecting the coordinates of vertices and forming the vertex models.
The VRM algorithm has two phases: minor embedding and optimization. In the first phase,
the algorithm takes advantage of visibility representations, which are a kind of orthogonal
drawing on the plane, to obtain the coordinates of root vertices. It uses a technique we call
dynamic arm assignment to manage the vertex models efficiently. This technique provides
an opportunity to modify vertex models while the embedding is being constructed and this
improves the minor embedding quality. Later, in the second phase, this technique enables
us to optimize the minor embedding in the grid by reducing the area used for embedding
and the total size of vertex models. The optimization phase has two stages. The first stage
can be described as a method for shrinking the faces of the minor embedding. The second
stage can be pictured as vertical and horizontal sweeps that eliminates unused rows and
columns. The first optimization method is referred to as the primary algorithm. The second
is Algorithm O which was introduced in Section 3.2.2.
In Section 4.1 we will define visibility representations and review an existing algorithm
that computes a visibility representation of any planar graph. Then, we will introduce
the dynamic arm assignment and explain its benefits relative to our algorithm discussed
in Chapter 3 and Algorithm D from [8]. With these two concepts, we can move on to
explaining the minor embedding phase in the third section. Section 4.4 provides a detailed
description of the optimization phase and its two optimization methods. Finally, Section
4.5 evaluates the correctness and running time of VRM. The overall algorithm is as follows.
The first phase employs two embedding methods. One, which we call the simple method,
always produces an embedding. The other method, called the advanced method, attempts
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to produce an efficient embedding. The embedding phase executes the advanced method,
and uses the simple method only if the advanced method fails. The second phase runs both
the primary optimization method and Algorithm O.

4.1 Visibility Representation

The concept of visibility representation was first introduced by Otten and van Wijk [38],
and later on, various researchers modified it and proved its generality for all planar graphs
[19, 40, 50, 47]. Being used in various planar embedding algorithms [47, 36, 58], visibility
representations are a kind of orthogonal drawing with no restriction on degree.
Let Γ be a set containing horizontal line segments in a plane. Any pair of segments α and β
are called visible if they can be connected by a vertical line segment that does not intersect
any other line segments [50].

Definition 4.1.1. Let G = (V,E) be a planar graph. A visibility representation for G is a
function Θ(G) : V ∪ E → 2R2 that

1. maps each v ∈ V to a non-intersecting horizontal line segment Θ(v), called the vertex
segment for v that does not intersect with the vertex segment Θ(u) for any u 6= v

2. maps each e = (u, v) ∈ E to a vertical line segment Θ(e), called the edge segment for
e, such that Θ(e) intersects with the vertex segments Θ(u) and Θ(v), representing its
endpoints, and does not intersect any other vertex segment [50].

Different planar graphs can admit distinct types of visibility representations according
to [47]. These types of visibility representations are presented here:

• Weak visibility representation (w-visibility): This is the default type of visibility rep-
resentation, and corresponds to Def. 4.1.1.

• Interval visibility representation (ε-visibility): Similar to w-visibility except that the
vertices are mapped to intervals instead of segments, and those intervals can be con-
nected to each other using vertical line segments if and only if the corresponding
vertices are adjacent.

• Strong visibility representation (s-visibility): Similar to w-visibility except any pair of
adjacent vertices can be connected to each other using a vertical line segment that
do not intersect any horizontal line segment other than these two. In other words,
any vertical line between any pair of non-adjacent vertices intersects with at least one
other horizontal segment.

Figure 4.1 illustrates the three types of visibility representations just described for a sample
graph. Several characteristics can be deduced about a graph based on the type of its
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Figure 4.1: Types of visibility representations a) A sample planar graph. b) w-visibility
representation. c) ε-visibility representation. d) s-visibility representation.

visibility representation. For instance, a graph admits a ε-visibility representation if it has
a planar embedding in which all the cut vertices are on the external face boundary [47].
To compute visibility representations, we employed Boyer’s implementation [1] of the plane
embedding algorithm from [7] which also computes visibility representations in linear time
[6]. Figure 4.2 illustrates a sample visibility representation produced by Boyer’s algorithm.
The output is in the ASCII format with the vertex segments all having unique horizontal
coordinates and specific vertical positions.

4.2 Dynamic Arm Assignment

In this section, we explore the different situations that might occur when connecting two
vertices on the grid, and introduce an efficient technique to manage the vertex models, along
with an explanation regarding how it gives us more control toward optimizing the minor
embedding. To make a distinction between a vertex in the grid or in the input graph, the
word node has been used here to refer to a vertex in the grid.
In the SLM algorithm in the previous chapter, similar to Algorithm D in [8], when processing
a vertex v, the nodes forming the shortest path are assigned to a vertex model as soon as
the path is chosen. But here, we start with partial assignments of nodes and delay the final
decisions to gather more information regarding the structure of the input graph.
Assume v is the current vertex which needs to be connected to its neighbors u1, ..., uk.
Suppose that when connecting v to ui (1 ≤ i ≤ k), A* discovers the shortest path (g1 =
v, g2, ..., gm = ui) between them. Then, the VRM algorithm should decide how to assign
the nodes gt, 2 ≤ t ≤ m − 1, to vertex models. The algorithm uses two data structures.
The first one stores the grid vertices assigned to each vertex model, and hence is called the
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Figure 4.2: ASCII art of a visibility representation of a random Apollonian network of 18
vertices and 48 edges

available points or arm, denoted Av for vertex v. The term "available point" of v refers to a
node that will be available later as a potential destination for A* when embedding an edge
incident to v in the input graph, instead of the vertex v. Similar to the SLM algorithm,
we avoid crossings by changing the weights of the grid edges, making nodes available or
unavailable at certain steps of the VRM algorithm. When connecting a vertex v to another
vertex model, the nodes forming that vertex model will be available, and the closest of
them to v will be the destination of A* for that connection. The sets of available points is
initialized to the roots of vertex models. In this method, we do not require the perimeters we
presented for the SLM algorithm, but if we did, we would have also included the vertices on
the perimeters. The sets of available points are modified through out consecutive iterations.
They shrink and expand until the input graph is successfully minor embedded in the grid.
We also employ another data structure, called the point permit and denoted P , to record
all vertices ever using any node of the target grid G. Given the input graph H, P is
a Boolean matrix of size |VG| × |VH |, initialized to be all zeros. For each g ∈ VG, each
non-zero element P (g, y) of this matrix identifies to a vertex y ∈ VH that uses g and
includes it in its vertex model φ(y). The union of vertices using a node g is denoted
Pg = ∪

(
{y ∈ VH |g ∈ φ(y)orP (g, y) = 1}

)
. We employ this information to check whether

a vertex y is permitted to include a node in its vertex model φ(y). In other words, this
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information guides us to make consistent decisions when modifying the available points.
After placing the roots of vertex models in the grid, those nodes are assigned to the vertices
they represent, as a part of initialization. Then, considering the mentioned shortest path
(g1 = v, g2, ..., gm = ui), the first time a node gt, 2 ≤ t ≤ m − 1, is employed to connect a
pair of vertices v and ui, the entity P (gt, v) and P (gt, ui) will be set to 1. gt is also added
to both available points of v and ui. The second time gt is included in a shortest path, it
is either connecting v to another neighbor, or another vertex w is connecting to ui. gt is
unavailable to any vertex other than the two vertices listed as its point-permits. Whichever
vertex, v or ui, that needs this node for the second time, is the one that will permanently
include it in its vertex model. Lets assume here that ui is using gt again (the case for v will
be similar). Then, the algorithm proceeds with the following operations:

• set P (gt, v) back to zero,

• eliminate gt from Av

In general, Pgt can have one of the following three states. It can be empty, meaning gt
does not belong to any vertex model yet. It can be a matrix of size one, meaning gt has
been permanently assigned to a particular vertex model; and it can be a matrix of size two,
meaning gt is assigned to two vertex models, which are adjacent, and the assignment is not
yet final. In this case, the node can be eliminated from either vertex model, and hence,
become a permanent part of the other. Based on the mentioned states, since each root is
assigned to one vertex in the initialization, its status never changes.
In minor embedding we can use a node on multiple paths from a vertex v. A node g in the
set of available points Av can be reused for connecting v to some other vertex u, unless it
has already been included in the vertex model of some other vertex y. Nevertheless, after
processing the vertex v, all the nodes in its available points are made unavailable before
processing the next vertex in the order to prevent A* from using them and mixing the
vertex models mistakenly.
After iterating over all vertices, there might be still nodes assigned to two vertex models.
One way to make sure the vertex models are exclusive would be to assign the nodes based
on the chosen shortest path. We can simply assign the nodes constituting half the path
to one vertex, and the others to the other vertex. Another approach would be coming up
with an agenda for optimizing the minor embedding based on our application. For instance,
in order to minimize the maximum size of vertex models, we can assign the nodes to the
two vertex models, starting with the smaller one, to avoid increasing the maximum size of
vertex models, if possible.

Figure 4.3 illustrates an example of the dynamic arm assignment. Assume the objective
is to embed the following edges: (v1, v2), (v1, v3), and (v4, v2). The VRM algorithm connects
each vertex to its neighbors below. There is no vertex below v1, hence, we start with v2.
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We connect v2 to v1 as in Fig.4.3.b and the nodes in the shortest path are added to both
available points because they have not been employed before. The point-permits of these
nodes is now a set of two {v1, v2}. Then, we move on to the next vertex v3. There are two
shortest paths between v3 and v1, but only one of them uses nodes already added to either
φ(v1) or φ(v3). That path is our preference to prevent the algorithm from increasing the
size of vertex models. Reusing a node to connect v3 and v1 will lead to the following actions:
the node is permanently assigned to the vertex which needs it for the second time (here v1)
meaning its point-permit will be {v1}, and it is eliminated from the available points Av2 .
The results is shown in Fig. 4.3.c. The last vertex v4 is adjacent to v2. Similar to the case
of v3, v4 is connected to its neighbor by reusing some nodes and hence, those nodes are
permanently assigned to v2, as in Fig. 4.3.d. The node in the middle of v2 and v1 can be
assigned to either one of these two vertices based on our desired criteria and application.

4.3 Minor Embedding Algorithm - First Phase

In this section, we introduce two alternative methods of minor embedding a planar graph
using a given visibility representation.
The visibility representation can be considered a minor embedding in the grid. Consider
laying the visibility representation on a grid such that all the endpoints of line segments
(horizontal and vertical) lie on grid nodes, and the segments themselves lie on some sequence
of grid edges. This way, any vertex model φ(v) of a vertex v includes the horizontal vertex
segment representing v. The vertical segments, now comprised of one or more grid edges,
are divided and assigned to the vertex models of the vertices they connect. Figure 4.4 repre-
sents a visualization of this abstract idea (it is not generated by the VRM algorithm). This
way, we can always obtain a minor embedding in the grid using a visibility representation.
This approach is called the simple method, due to its simple process of minor embedding a
planar graph.
We will now discuss some details. Given the visibility representation, we compute the lo-
cations of the roots for vertex models. Consider the visibility representation in a Cartesian
space. Then, all the segments can be described by Cartesian coordinates. Starting with
vertex segments, their unique vertical locations are interpreted as unique coordinates on the
y-axis. The distance between the two closest consecutive vertex segments can be considered
as the unit of measurement for the Cartesian coordinates. As for the vertical edge segments,
their unique locations on the x-axis can be measured based on the chosen unit. We have
implemented a parser tailored for this application. We feed the visibility representation as a
text file, and parse each line from the top. If the line contains a horizontal vertex segment,
its index will be considered as the y axis coordinate for the vertex it is representing. In
addition, the horizontal distance from the beginning of a line to the middle point of a vertex
segment in that line amounts to the x coordinate of that vertex. In doing so, the vertex on
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Figure 4.3: Example of Dynamic Arm Assignment technique: minor embedding the edges
(v1, v2), (v1, v3), and (v4, v2). a) Initial state. b) After connecting v2 and v1. c) After
connecting v3 and v1 and assigning all "reused" nodes to v1. d) Connecting v4 and v2 and
allocating the reused nodes to v2.
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Figure 4.4: A sample of simple visualization of embedding a visibility representation in a
grid - this figure is not generated by the VRM algorithm.

top of the visibility representation will be the first vertex to be embedded in grid.
Using the mentioned process, a visibility representation of graph H = (V,E) can be embed-
ded in a grid of size |VH | × |EH |. Therefore, the simple method is complete based on these
two facts: i) a visibility representation of any planar graph can be computed by [1], and
then, ii) it can be easily transformed into a minor embedding in a grid of the mentioned
size.
The simple method, though always successful, is not space efficient. The visibility repre-
sentation embeds the edges incident to a vertex as disjoint lines, where they can partially
merge and form a subtree connected to all the endpoints, see Figure 4.2. With this type of
modifications, the overall area of embedding can be reduced without losing the feasibility.
Therefore, we present the advanced method which minor embeds the input graphs using the
dynamic arm assignment technique (in the previous section) to better handle the vertex
models.
The outline of the advanced method is explained in Algorithm 2. We start with the

visibility representation, computed by any existing implementation. Our approach toward
processing the vertices is inspired by the bottom-up approach of the canonical ordering in
the SLM algorithm. It means that after computing the coordinates of vertices, we sort
the vertices in an increasing order based on their positions on the vertical axis. Then, ac-
cording to the computed order, all vertices are processed and connected to their neighbors
that precede them in the order. For instance, when processing a vertex v of degree more
than one, its neighbors below are sorted and stored in NBv in an increasing order of the
distances between each root and rv. We start by embedding the edge e = (ui, v), incident
to the closest neighbor ui ∈ NBv. If there are any nodes in the available points of either v
or ui, their weights are set to 1, and hence made available before running the path finding
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Algorithm 2 Pseudocode of the advanced method in the embedding phase of the VRM
algorithm
Input: Visibility representation θH of the input graph H = (VH , EH) and a target grid
graph G with dimensions |VH | × |EH |
Output: The set of vertex models in a feasible minor embedding of graph H in a grid
graph G, along with the roots, available points, and point-permits of nodes in G
Initialization:
Compute the coordinates for VH and the vertical order of vertices O based on θH
for all v ∈ VH do
Place rv in the grid based on θ(v)
Set Av = {rv}, Prv = {v}, and make rv unavailable
Store the neighbors placed below v in NBv and sort them in a descending order based
on their positions on the vertical axis

end for
for all i = 1 to |VH | do
v = O(i)
for all w ∈ NBv do
if Av is not empty then
make those grid nodes in Av available to the algorithm to be used in the embedding

end if
if Aw is not empty then
make the grid nodes in Aw available to the algorithm to be used in the embedding

end if
Run the path finding algorithm (A*) with Manhattan heuristic from rv to rw
Apply the dynamic arm assignment technique on the grid nodes forming the shortest
path
Make the grid nodes in Av and Aw unavailable

end for
end for

algorithm (A*). After A* discovers the shortest path based on Manhattan distance heuris-
tic, the dynamic arm assignment technique manages the assignment of the nodes forming
that path to the vertex models. At the end, the updated available points decide which grid
nodes and edges should be inaccessible in subsequent iterations, and their weights are set
to infinity.
The key components here are the vertex models. By manipulating the vertex models, we
can achieve all the mentioned objectives. Therefore, in order to improve the minor em-
bedding, we introduce the following optimization techniques to modify the vertex models.
Essentially, the optimization phase takes its chance by re-embedding the vertex models. The
details of this process are explained in the upcoming sections.
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4.4 Optimization Method - Second Phase

4.4.1 First stage

The objective of the minor embedding algorithm is to generate a valid embedding of the
input graph, and preferably, optimize it. Dependent on application, the goal of optimization
can vary. For instance, the goal could be generating an embedding in as small a grid
as possible, or with minimum grid nodes possible. Looking at Figure 4.5.a, one visible
barrier in embedding this certain graph in a smaller grid would be the areas confined by
the embedded edges. Here, we present a post-processing algorithm, called the primary
optimization method, to minimize these areas, and therefore the total area required for the
embedding, while reducing the size of vertex models to address both mentioned goals.
The primary optimization method attempts to improve the minor embedding in a certain
number of rounds, each of which consists of processing and re-embedding all vertices of VH .
Every iteration in one round processes one vertex model and consists of three major steps:
i) finding a new root, ii) safe elimination and preparation, and iii) re-embedding a certain
set of edges. On the other hand, this optimization method can be described with its two
key techniques. The first technique chooses a new root in the first step, and the second
technique offers an alternate procedure for re-embedding the edges in the third step.
Relocating the roots of vertex models, followed by new paths representing the edges, alters
the relative positions of vertices (vertically and horizontally). With this alteration, the
conditions of visibility representation no longer holds, and therefore, there is no guarantee
of a successful minor embedding. The vertex models and the paths connecting them might
trap each other. To preserve the feasibility of the solution, when processing a vertex, if at
any stage we face a problem, we change everything back to the last valid state. This way,
the successful modifications of vertex models will lead to a better minor embedding, and
the solution stays feasible.
Consider processing the vertex vi ∈ VH in the ith iteration with r as the root of its vertex
model φ(vi). In the first step, the goal is to find a node r′ in Avi , permanently assigned to
vi, as the new root which should be closer to the neighbors than the current root. Given
a fixed vertex model, the process can be described as a simple re-assignment of the label
’root’ to a new node closer to the neighbors. With this condition, we are trying to preserve
the faces of the minor embedding and take a chance to improve it, rather than making
drastic changes which with a high probability may result in crossings. In order to compare
the nodes in Avi , we introduce a parameter, called the proximity value, to calculate the
distance between a node to the arms of neighbors:

ψ(u) = max
w∈Nvi

(
min
x∈Aw

dE(u, x)
)

(4.1)
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where u ∈ Avi permanently, Nvi represents the set of vertices in VH adjacent to vi, and dE
the Euclidean distance between two points in the grid G. The vertex minimizing Equation
4.1 will be chosen as the new root r′vi

= argminu∈Avi ,|Pu|=1
(
ψ(u)

)
. Since the nodes in

the finalized subset of Avi are connected to all the neighbors, the new root will likely find
new shortest paths to embed these connections. On the other hand, there is a chance that
a neighbor might get trapped which will impede the algorithm from embedding all the
connections successfully. Then, the change is discarded.
After the choice of the new location for the root rvi , the algorithm proceeds to the second
step which is the safe elimination of the currently employed nodes, and releasing them.
The main objective is to clear Avi (and φ(vi)) which includes two categories of nodes:
permanently assigned to vi, and shared between vi and some other vertices adjacent to it.
The required operations vary for these two types:

• for a node t permanently assigned to vi: we just need to simply delete t from Avi ,
alter the point permit from Pt = {vi} to ∅,

• and for a node s shared between Avi and Aw where w ∈ Nvi : we need to remove s
from both available points Avi and Aw, change the point permit Ps = {vi, w} to ∅.

Further, any edge (h, g) incident to a node g ∈ Avi is also made available and its weight set
to 1. Finally, Avi = r′vi

, and Pr′ = {vi} for a permanent allocation of r′ to vi.
In the third step, we want to re-embed the edges incident to vi. The process is similar
to the embedding phase of the algorithm, but with the difference that we prioritize some
edges over other available ones to further encourage the algorithm to reuse the grid nodes.
We mentioned this concept as a distinguishing principle between minor embedding and
orthogonal drawing, and is implemented by altering the weights of grid edges. As stated,
the weight of the grid edges accessible to the path finding algorithm (A*) are set to 1. Here,
we set the weights to ε > 0 for those whose corresponding end points are already in the
vertex models. Therefore, A* is further persuaded to choose the already discovered paths
versus choosing new grid nodes. In the experiments, we discuss the great success of this
process in reducing the size of vertex models.
Algorithm 3 illustrates a pseudo code for the primary optimization method.

4.4.2 Second stage

There are cases for which the embedding might need some obvious alterations. For in-
stance, Figure 4.5 illustrates a sample minor embedding of a grid graph based on visibility
representation. In Fig. 4.5. b, a naive approach would be to eliminate all the columns and
rows whose removal will not cause any loss of information. Therefore, we employ Algorithm
O, introduced in Section 3.2.2, to further optimize the embedding. The algorithm can be
summarized as follows: We iterate over all rows and columns of the grid, and while finding
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Algorithm 3 Pseudo code of the primary optimization method
Input: Feasible minor embedding Jof graph H
Output: A feasible optimized minor embedding K of graph H
for A certain number of rounds do
Generate a random order for vertices O
for all v ∈ O do
for all u ∈ Av such that Pu = {v} do
Compute ψ(u) based on Equation 4.1

end for
rv = argminu∈Avi ,|Pu|=1

(
ψ(u)

)
for all u ∈ Av do
for all w ∈ Pu do
Eliminate u from Aw

end for
Set Pu = 0
for all (x, u) ∈ EG such that Px = 0 do
Set the weight to 1

end for
end for
Set Av = {rv} and Prv = {v}, then make rv unavailable
for all t ∈ Nv do
Compute dE(rv, rt)

end for
Initialize a priority queue q to prioritize the neighbors with minimum Euclidean
distance to rv
while q not empty do
t = Find and eliminate the minimum vertex in q
Make Av and At available by changing the weights of an appropriate set of edges
to ε
Run A* with Manhattan heuristic to discover the shortest path between rv and
rt.
Manage the vertex models and the nodes in the chosen path by the dynamic arm
assignment technique
Set the weights back to inf to make the edges inaccessible

end while
if the process is not successful then
Discard the change of the root vertex

end if
end for

end for
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Figure 4.5: The output of the VRM algorithm for a 7×7 grid graph. a) Before optimization
b) After the first stage of optimization c) After the second stage of optimization

the ones that should be eliminated, we assign a shift offset to those essential to the em-
bedding. In other words, the shift offset of a certain row r is equal to the number of rows
marked to be eliminated preceding r while we iterate over all rows, from the closest row
to the farthest one from the origin (0, 0). The same process happens to compute the shift
offsets for columns. As mentioned, the explained operation runs in O(|VG|) time.

4.5 Correctness and Time Complexity

The VRM algorithm is always successful in minor embedding a planar graph H = (V,E)
in a grid graph of size |VH | × |EH |. Its completeness can be proved based on the first phase
of the algorithm. As mentioned before, in the first phase, the VRM algorithm attempt to
minor embed the input graph using the advanced method. If it fails, the simple method
will minor embed the graph. The simple method is complete, as explained in Section 4.3,
based on the existence of a visibility representation for any planar graph.
In the second phase, the VRM algorithm iterates over vertices VH and attempts to improve
the solution. In each iteration, a change is acceptable if it improves the solution without
making it infeasible. Therefore, a feasible solution will be obtained at the end of the second
phase.
As for the time complexity, we can analyze the two phases separately. The visibility repre-
sentation can be computed in linear time [6], if it is not given to us. After that, the running
time of the embedding phase is mainly dominated by the A* search. Similar to our argu-
ment for the SLM algorithm in Section 3.2.3, there are |EH | runs of A* on a grid with |VG|
vertices. Each stage of A* can take time up to O(log(|VG|)), and there are O(|VG|) stages.
So, the running time of the first phase is O

(
|EH |×|VG| log(|VG|)

)
. Since |VG| = |VH |×|EH |,

the running time can be presented as O
(
|EH |2 × |VH | log(|VH | × |EH |)

)
. If H is a planar
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graph with |VH | ≥ 3, based on Theorem 2.1.1, |EH | ≤ 3|VH | − 6. This way, we can rewrite
the upper bound to be O

(
|VH |3 log(|VH |)

)
. Further, similar to the SLM algorithm, since G

is a grid graph, Manhattan distance is an optimal heuristic for A*. Then, the branching
factor is close to 1, and practically, we can expect a running time of close to linear in |EH |.
The second phase consists of the primary optimization method and Algorithm O. The run-
ning time of Algorithm O was shown in Section 3.2.2 to be O(|VG|) which in this case it can
be rewritten as O(|VH | × |EH |) < O(|VH |2). As for the primary method, we have a certain
number of rounds each of which is |VH | iterations. Consider one iteration in one of the
rounds. The algorithm takes three major steps: i) finding a new root, ii) safe elimination
and preparation, and iii) re-embedding a certain set of edges. Here, we analyze each of
these steps individually.
Consider processing the vertex v ∈ VH . The first step attempts to find a new location for
the root vertex rv needs |Av|

∑
u∈Nv

|Au|O(1) computations of Euclidean distance between
vertices. Here, |Av| denotes the size of the set of available points of v, and Nv is the set of
vertices adjacent to v.

∑
u∈Nv

|Au| can be upper bounded by C1|VG|, where C1 is a constant
so the first step of each iteration runs in time |Av| × C1|VG|. The second step removes the
current vertex model to make room for the new one, hence, it runs in time O(|Av|). Finally,
the third step runs A* to embed each edge incident to v. This step requires O(|VH |) to
initialize a priority queue for neighbors which can be updated in O(log(|VH)). Other than
that, it is similar to the embedding phase which makes its running time O

(
|VH |3 log(|VH |)

)
.

Now if we consider one round, we have
∑
v∈VH

[
(
|Av| × C1|VG|

)
+ |Av| + |VH |3]. The term∑

v∈VH
|Av| ≤ C2|VG|, where C2 is a constant so the whole statement can be rewritten as

O(|VG|2 + |VH |2). Since |VG| > |VH |, the running time is O(|VG|2) = O(|VH |4).
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Chapter 5

Experiments

5.1 Outline of the Experiments

In this chapter, we will discuss two sets of experiments. The first set evaluates the perfor-
mance of VRM and the impact of its two optimization techniques on the quality of solutions.
The second set experiments on Algorithm D, described in Section 2.5, to compare its per-
formance with that of VRM for a better perspective. Both algorithms have been assessed
on 145 instances including a set of individually known graphs and instances from 6 different
families. The comparison is mainly in terms of success rate and the average size of vertex
models.
The data presented as the output of the primary optimization method, as well as the output
of Algorithm D, is the same as the contents of Tavakoli’s thesis [52].
The upcoming plots and tables are presenting the instances by their number of vertices.
The reason is that for most instances, the complexity and density (as in the number of
edges) increase with the number of vertices.
Our measuring criteria are defined below, followed by brief descriptions of the different
families of graphs we have tested on the algorithms, and how they were generated.

Measuring Criteria

The performance of the algorithms is assessed based on the following criteria:

• Total size of vertex models (solution size): This criterion is the primary factor
in our assessment, assuming the algorithm is successful in minor embedding the input
graph. It was also included in [8], and its minimization is the objective because it
represents the efficient use of resources.

• Area of embedding (embedding area): This refers to the area of the smallest
rectangle enclosing the embedding. As the optimization algorithm succeeds in gener-
ating a denser and smaller embedding, a greater decrease in area of grid embedding is
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expected which is a huge step toward space efficiency. This measurement was inspired
by the grid drawing concept in [20].

• Probability of success: It is defined by the ratio of the number of successful runs to
the total number of attempts for a single instance. This factor helps us to evaluate the
performance of Algorithm D which often fails in minor embedding different graphs.

• Ratio of area used to upper bound: This criterion indicates how much area is
used by the minor embedding at the end with respect to what is allocated to it in
the beginning. Recall that for an input planar graph H = (V,E), we can compute
its visibility representation that can be embedded in a |VH | × |EH | grid, and hence,
|VH | × |EH | is the upper bound on the required area for embedding. That is, the
measure is area of embedding

|VH |×|EH |=|VG| .

Instances

We studied several instances of the following families of graphs.

• Random Apollonian graphs: If we divide a triangle into 3 smaller triangles recursively,
an Apollonian graph (or Apollonian network) will be generated. Apollonian graphs
are known for their particular properties and applications such as being chordal, fol-
lowing a power law distribution of vertex degrees, and so forth. To generate random
Apollonian graphs, we start with one triangle, and for a certain number of iterations,
we place new vertices in random faces of the graph, and then connect each vertex to
the three vertices bounding the specific face it is in.

• (Square) Grid graphs: Grid graphs are interesting to study since they can be embedded
optimally in a grid, given the right choices have been taken.

• Random Series Parallel (random sp) graphs: Consider a graph with two vertices, s
and t, distinguished as source and sink. Any pair of such graphs, called st-graphs,
can be converted into a new st-graph by the following operations: i) the sources of
the two graphs are merged, as well as their sinks; ii) the source and sink of one graph
are merged with the sink and source of the other graph. These operations are called
parallel and series compositions. The st-graph generated by these operations is a
series-parallel graph (sp-graph). A random sp-graph is generated by a random number
of operations on st-graphs of size 2 (path graph P2) where the types of operations are
also chosen randomly.

• Maximal Series Parallel (maximal sp) graphs: If adding an extra edge to a sp-graph
results in the loss of its status as a sp-graph, then that graph is a maximal sp-graph.

• Wheel graphs: A wheel graph Wn of n vertices consists of n− 1 vertices of degree 3,
forming a cycle, all connected to a vertex of degree n− 1 in the center .
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• Random planar graphs: For generating a random planar graph G = (V,E), given a
pair of fixed values for the size of |V | and |E|, we start with an empty graph such
that E = ∅. Then, we randomly add more edges, while preserving planarity, until we
reach the limit.

• The following collection of graphs from the literature: Durer graph, Errera graph,
Frucht graph, and Bidiakis cube.

In order to obtain a better analysis of random planar graphs and random sp graphs, for
each fixed pair of values for the size of vertices and edges, ten graphs were generated, and
the outputs of all of them were taken into account to compute an average.

5.2 Evaluation of the VRM algorithm

This section discusses the success rate and efficiency of the VRM algorithm and its com-
ponents. The VRM algorithm is implemented in MATLAB2014a. It also employs existing
implementations from the MATLAB BGL library [24]. Since we need to feed the visibility
representation of the input graph to the VRM algorithm, we have deployed software written
by Boyer [1] which is available to public and coded in C++. Given the outline and detailed
steps of the algorithm in Chapter 4, we only need to set the number of rounds for the
primary optimization method, and it is set to 25. Further, for a better perspective of the
random behavior of the algorithm, we run it more than once for each instance, exactly 20
times. Therefore, throughout these experiments, the reported data for any instance is an
average of 20 runs.
Considering the input graphH = (V,E), a target grid of minimum size (|VH |+2)×(|EH |+2)
is required by the implementation to ensure a successful minor embedding. The extra 2 rows
and columns were merely added for a simpler experimental implementation by allowing us
to reuse our previous implementations of other algorithms we studied. We will demonstrate
shortly that our optimization techniques not only omit these two rows and columns, but also
can shrink the embedding (in most cases) to use about or less than half of the |VH | × |EH |
grid that is initially assigned to it based on the theoretical upper bound. Therefore, we
made the choice in favor of a simpler implementation.
Another issue regarding the implementation concerns the running time of the algorithm.
We mentioned the use of priority queues in the primary optimization technique (Algorithm
3), but in the implementation, we have chosen a slightly less efficient approach, in favor
of simplicity, but a safe one, because this alteration does not impact the output of the
algorithm.
Further, we have run Algorithm O to optimize a couple of instances separately. The results
will provide an insight toward the role of each optimization technique.
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5.2.1 Results and analysis

Among the measuring criteria, the size of vertex models and embedding area are the pri-
mary concerns, and minimizing them is the objective. Therefore, the following plots present
the performance of the VRM algorithm in terms of these two factors. As mentioned in the
previous chapter, the VRM algorithm is complete, so the probability of its success is not an
issue here. We stated in Chapter 4 that the algorithm first attempts to minor embed the
input graph with the advanced method, and if it fails, the simple method will surely minor
embed the graph. It is noteworthy to mention, in our experiments, the advanced method
was always successful in minor embedding the instances.
Figure 5.1 illustrates the results of the VRM algorithm for random Apollonian graphs of
11, 14, 18, and 25 vertices. The optimization techniques reduced the average size of ver-
tex models for all instances which indicates their effectiveness in improving the quality of
embedding. Together, they have reduced the sizes up to 54%, and evidently, Algorithm
O has been more effective for larger graphs. The gap between the results of the primary
optimization method and Algorithm O becomes clearer as the graphs grow larger. As for
the embedding area, we have an average 60% decrease by the optimization methods.
Next, the results for grid graphs of 9, 16, 25, 36, and 49 vertices are presented in Figure
5.2. The average 78% reduction in the embedding area is impressive for this family of
graphs, especially for larger ones. Here again, the gap between the results of the primary
optimization method and Algorithm O grew larger with the size of instances. Figure 4.5
depicts the minor embedding of a grid graph with 49 vertices. The optimization phase was
able to reduce its embedding area by 79%.
We generated random SP graphs with 13, 16, 19, 21, and 27 vertices. The algorithm’s per-
formance in terms of average size of vertex models and embedding area versus the number
of vertices is depicted in Figure 5.3. An instance of this family of graphs with n vertices is
a graph with two vertices of degree n − 1, and n − 2 vertices of degree 2. This attribute
results in a sort of "stairway" structure in their visibility representation, and hence, in the
minor embedding. Due to this structure, the optimization algorithm is not able to reduce
the area as much as it can for other families. Figure 5.4 illustrates embedding of a random
series parallel graph of size 27 before and after optimization with only 30 percent decrease
in its embedding area.
The following table, Table 5.1, illustrates two observations regarding the embedding area

based on the output of the algorithm. The first row states the average decrease of the
embedding area, caused by the primary optimization method alone, for different families of
graphs. It is evident that we can achieve at least 50% decrease of embedding area except
for the case of the maximal series-parallel graphs with their particular "stairway" structure.
The second row in Table 5.1 presents the ratio of the final size of the minor embedding to
the initial upper bound based on the input visibility representation. As mentioned before,
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Figure 5.1: Apollonian graphs: Average size of vertex models before optimization and
after each optimization method, in addition to the area of embedding before and after
optimization as a function of the number of vertices

Figure 5.2: Grid graphs: Average size of vertex models before optimization and after each
optimization method, in addition to the area of embedding before and after optimization
as a function of the number of vertices

for an input planar graph H = (V,E), we can compute its visibility representation which
can be embedded in a |VH | × |EH | grid, and hence, |VH | × |EH | is the upper bound on the
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Figure 5.3: Random Series Parallel graphs: Average size of vertex models before optimiza-
tion and after each optimization method, in addition to the area of embedding before and
after optimization as a function of the number of vertices

Figure 5.4: The output of the VRM algorithm for a random series parallel graph with 27
vertices. a) Before optimization b) After the second stage of optimization

required area for embedding. In other words, the described ratio refers to the ratio of the
area of the rectangle enclosing the final embedding (eg. the embedding in Fig. 4.5.c) to the
area of the rectangle enclosing the initial embedding (eg. the embedding in Fig. 4.5.a).
To investigate the sole impact of Algorithm O, we have to isolate it from the primary op-
timization method. Therefore, for a couple of instances, after obtaining a feasible minor
embedding, we directly run Algorithm O. For instance, for the 7 × 7 grid, only a 42% de-
crease in the embedding area resulted, as depicted in Figure 5.5, versus the 79% achieved
by both optimization techniques, depicted in Figure 4.5. Further, Algorithm O was not
able to improve the instances of series-parallel graphs due to their specific structure. The
primary optimization method is able to improve this type of embedding, despite their struc-
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Table 5.1: Average impact of optimization techniques of VRM algorithm on embedding area
for instances of each graph family. The numbers in the first row demonstrate the effect of
the primary optimization technique in reducing the embedding area in terms of the ratio
of decrease after optimization to initial state before optimization. As for the second row,
the numbers state the overall impact of both optimization methods to shrink the output
embedding for each instance in terms of the ratio of final embedding area to initial state
before optimization (which is the upper bound).

Graph Family Random
Apollonian Grid Random

Planar
Random
SP

Maximal
SP Wheel Named

Graphs

Average Area
Decrease After
Optimization
(Percentage)

60.42 78.68 70.92 50.56 32.55 52.56 67.49

Average Ratio of
Embedding Area
to Upper Bound
(Percentage)

46.42 23.82 33.65 56.23 74.76 47.81 36.30

Figure 5.5: The sole impact of the second optimization method (Algorithm O) on the minor
embedding of a 7× 7 grid graph. a) Before optimization b) After applying Algorithm O

ture, because it changes the relative placements of vertices and breaks the structure, while
preserving feasibility. On the other hand, Algorithm O just shifts vertices on horizontal or
vertical lines. The effect of Algorithm O is essential as it tidies up the minor embedding and
compresses it as much as it can, but it cannot replace the sophisticated random behavior
of the primary optimization method.
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5.3 Comparison between Algorithm D and the VRM algo-
rithm

We also implemented Algorithm D [8] in MATLAB2015b to compare its performance with
the VRM algorithm. The existing implementations in the BGL library [24] were employed
for some graph algorithms, such as A*. The same planar graphs and their corresponding
target graphs were given to Algorithm D as input. The size of the target grid graphs are
exactly the same as the ones given to the VRM algorithm, meaning they include the two
extra rows and columns.
Recall that Algorithm D has two phases, as described in Section 2.5. In the first phase,
the input graph is embedded, and in the second phase, Algorithm D attempts to make the
embedding feasible and improve it. The second phase is a loop which stops when there is
no sign of improvement for t consecutive iterations. In these experiments, t has been set to
10, as in [8].
Further, the description of Algorithm D in [8] was ambiguous in parts. For instance, the
multi-source A* was introduced in [8] to place a root vertex and generate its shortest path
tree which connects it to its neighbors, as explained in Section 2.5. In order to make sure
the implementation obtains the desired goal, which is minimizing the crossings and distance
function, in addition to implementing the well-presented sections of [8], we also implemented
the Dijkstra algorithm for finding the shortest paths.
Due to the random heuristics in Algorithm D, as for the VRM algorithm, we ran it 25
times for each instance to provide averaged values for size of vertex models and success
rate. The success rate refers to the ratio of successful attempts out of 25 runs. We will
observe shortly that the success rate of Algorithm D was generally low, and it was only able
to embed the smaller graphs. When it did succeed, its embedding was usually smaller than
the embedding produced by the VRM algorithm.

5.3.1 Results and analysis

Algorithm D failed to embed any Apollonian graph, as depicted in Figure 5.6, meaning it
was unable to embed this type of graph in a grid of fixed size without crossings.
Figure 5.7 demonstrates the results of Algorithm D for grid graphs. It was able to embed
the grids of size 9, 16, and 25, but its success rate dropped drastically from 96% to 8% with
the increase in the number of vertices from 9 to 16. Finally, the algorithm was unable to
embed grids of 36 or more vertices. On the other hand, it is evident that when Algorithm
D succeeds, the size of vertex models are noticeably smaller. In fact, Algorithm D was able
to embed the 3× 3 grid perfectly (with each vertex mapped to a vertex model of size 1 and
each edge to a path of size 1).
Figure 5.8 illustrates the results of Algorithm D for random SP graphs. While being able to
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Figure 5.6: Apollonian graphs: Comparison between VRM and Algorithm D on the size of
vertex models as a function of the number of vertices

embed the three smaller graphs with 13, 16, and 19 vertices, still the average sizes of vertex
models are close to the results obtained by the VRM algorithm. Moreover, the success rate
starts from almost 27% and decreases monotonically.
The next table, Table 5.2, gives the average size of vertex models obtained by the VRM
algorithm and Algorithm D for instances which Algorithm D was able to embed at least
once. The smaller is the graph, the higher is the success rate and the gap between the
values obtained by the two algorithms.
As evident in the discussed plots, the greedy nature of Algorithm D, which places each
root vertex as close as possible to its already embedded neighbors, makes it more difficult
to find feasible embeddings, but when it is successful, the outputs are quite desirable. To
analyze the impact of the size of target graphs on the performance of Algorithm D and its
probability of success, we repeat the experiments and double the dimensions of the given
target graph for each instance, and run the algorithm 25 times. Table 5.3 presents the
results. The sets of instances in both tables 5.2 and 5.3 are the same. Based on this fact,
we can conclude that providing four times bigger target grids does not lead to non-zero
success rates regarding the instances, which Algorithm D failed to embed in the previous
conditions (with original target graphs). Therefore, the failure of Algorithm D is not a
result of giving it too small a grid.
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Table 5.2: Comparison of results obtained by VRM and Algorithm D where Algorithm D
was able to minor embed the input graph successfully. The target graph given to Algorithm
D is of equal size of the one given to VRM.

Graph
Family

No.
of
Vertices

Avg. Size of
Vertex Models
Before
Optimization
(VRM)

Avg. Size of
Vertex Models
After
Optimization
(VRM)

Avg. Size of
Vertex Models
(Algorithm D)

Success Rate
(Algorithm D)

Grid 9 49 33.5 19.1 64%

Grid 16 141 73.1 17 8%

Grid 25 322 142.7 30 4%

Wheel 5 24 17 14.5 88%

Wheel 10 70 55.8 24 4%

Maximal
Series-
Parallel

5 29 14.7 15 68%

Dürer 12 101 66.6 47.5 8%

Frucht 12 83 52.4 56.8 28%

Random
Series-
Parallel

13 79.90 57.3 50.8 26.8%

Random
Series-
Parallel

16 104.5 75.6 55.7 19.2%

Random
Series-
Parallel

19 137.6 101.1 100.5 0.4%

Random
Planar 19 144.5 104.6 79 4%
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Table 5.3: Comparison of the results obtained by VRM and Algorithm D where Algorithm
D was able to minor embed the given input at least once. The target graph given to
Algorithm D is four times larger than the one given to VRM.

Graph
Family

No.
of
Vertices

Avg. Size of
Vertex Models
Before
Optimization
(VRM)

Avg. Size of
Vertex Models
After
Optimization
(VRM)

Avg. Size of
Vertex Models
(Algorithm D)

Success Rate
(Algorithm D)

Grid 9 49 33.5 17.8 68%

Grid 16 141 73.1 74 8%

Grid 25 322 142.7 74.6 12%

Wheel 5 24 17 17.4 88%

Wheel 10 70 55.8 24 4%

Maximal
Series-
Parallel

5 29 14.7 15.1 72%

Dürer 12 101 68.6 49 48%

Frucht 12 83 52.4 56.8 28%

Random
Series-
Parallel

13 79.9 57.3 57.7 44.6

Random
Series-
Parallel

16 104.5 75.6 69.6 38.6

Random
Series-
Parallel

19 137.6 101.1 133 5.3

Random
Planar 19 144.5 104.6 161.9 6.6
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Figure 5.7: Grid graphs: Comparison between VRM and Algorithm D on the size of vertex
models as a function of the number of vertices

Figure 5.8: Random Series Parallel graphs: Comparison between VRM and Algorithm D
on the size of vertex models as a function of the number of vertices
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Chapter 6

Conclusion and Future Work

In this thesis, we investigated the problem of minor embedding planar graphs in grid graphs.
The introduced algorithms are composed of three sections. The first section of each algo-
rithm pre-processes an input graph using planarity drawing algorithms that provide us with
a higher chance to obtain a feasible embedding in a bounded target graph. The second sec-
tion concerns the minor embedding process where each algorithm uses a unique approach
to form the vertex models. The third section of each algorithm is a post-embedding process
to improve the quality of the embedding.
We presented two heuristic algorithms. The first algorithm (SLM) minor embeds a planar
graph H of n vertices in a 9(2n− 4)× (n− 2) grid. The SLM algorithm uses a straight line
drawing algorithm to place the root vertices on the grid. Then, the path finding algorithm
A* connects each vertex to its neighbors below. We used perimeters and gateways to indi-
vidualize the vertex models. We also explained the impact of the choice of heuristic in the
A* algorithm on the output minor embedding and optimization process. The introduced
optimization process, Algorithm O, works better with Manhattan heuristic. The output of
the SLM algorithm suffers from unnecessary long paths and dependency on grid structure.
Based on these conditions and the inconsistent success of SLM in minor embedding planar
graphs, we decided to pursue another approach.
The second algorithm (VRM) minor embeds a planar graph H in a |VH | × |EH | grid. We
use an already existing implementation to compute the visibility representation of the input
graph in linear time. The VRM algorithm processes a visibility representation in two phases:
minor embedding and optimization. The embedding phase is carried out efficiently due to
the introduced technique, the dynamic arm assignment, for managing the vertex models.
Unlike the first algorithm, this technique enables us to defer the final assignment of vertices
to vertex models to gather more information regarding the input graph structure. This
technique can be used in any algorithm where we have the root vertices and want to con-
nect them using a path finding algorithm. After obtaining a feasible embedding, we apply
the two presented optimization methods. One optimization method uses the dynamic arm
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assignment technique to re-embed the vertices closer to each other. The other optimization
method shrinks the embedding by eliminating the unused rows and columns. These opti-
mization methods are able to improve the embedding by reducing both the size of vertex
models and the area of embedding. We compared the VRM algorithm with an existing
minor embedding algorithm, Algorithm D. The VRM algorithm outperformed Algorithm
D in terms of consistency in obtaining feasible minor embedding for different families of
graphs and various sizes. Algorithm D was only able to embed the small instances.

For future extension of the work in this thesis, the following ideas are suggested:

• Recall the two main components of the Chrobak-Payne straight line drawing algo-
rithm: the canonical ordering and the shifting sets. In Chapter 3, we employed the
output coordinates of the straight line drawing and the canonical ordering to minor
embed planar graphs. The coordinates proved to be undesirable due to the long paths
in the minor embedding. Therefore, we suggest using the combination of the shift-
ing sets, as a horizontal order of vertices, in addition to the canonical ordering, as a
vertical order. These two can guide the minor embedding process toward obtaining a
feasible embedding without keeping the restrictions of the straight line drawing. Fur-
ther, the dynamic arm assignment is suggested to be employed in any future minor
embedding algorithm because of its efficiency in forming the vertex models.

• In implementing the two introduced algorithms, our focus was mainly on correctness
and success rather than efficiency of the running time. Use of appropriated data struc-
tures and pre-computations are suggested to improve both algorithms, particularly the
optimization phase of the VRM algorithm .

• As mentioned in Section 4.4, regarding the primary optimization method, before re-
embedding a vertex v, we eliminate both permanent and non-permanent parts of its
vertex model. We also eliminate the sections shared between v and its neighbors from
the neighbors’ vertex models. We did not pursue the impact of this modification on
the permanent sections of these vertex models. The nodes are permanently assigned
to a vertex model φ(v) when they have been used to connect the root vertex rv to
more than one neighbor. When the neighbors change their locations, the permanent
section of φ(v) might not be useful anymore for connecting rv to its neighbors. These
extra vertices might be included in several vertex models throughout the optimization.
We suggest two approaches to address this issue. One option would be to add a post-
processing step to identify and remove these extra vertices. Another option would to
modify the primary optimization method to update the vertices during the process.
These updates are based on the current number of vertices using the permanent section
of a vertex model. If that section is used to connect only two vertices, its labels should
change to non-permanent.
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