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Abstract

This thesis addresses three topics in modern financial economics. In econometrics, we pro-
pose a consistent estimator for a model with both smooth structural changes and abrupt
structural breaks. Our methodology is particularly well-suited for modern high frequency
data. In market microstructure, we show that the traditional paradigm is no longer appli-
cable in general, in light of recent technological evolution in trading and associated change
in market behavior. In financial networks, we consider determinants of systematic risk that
is due to the structure and stability of the network underlying the financial system. We
propose a pricing factor that captures the diversification vs. contagion risk trade-off of the
interconnectedness of the network.

Keywords: Financial Economics, Econometrics
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Chapter 1

Introduction

This thesis consists of three chapters covering contemporary topics in financial economics
and econometrics. An outline of each chapter is provided below.

Wavelets and High Frequency Econometrics In Chapter 2 we propose an estimation
technique for a linear model with a time-varying parameter. Viewing the time-varying
parameter as a functional parameter lying in an infinite-dimensional function space, our
estimation techniques use properties of wavelets to achieve minimax estimation. Owing to
the fact that wavelets form unconditional bases for a wide variety of function spaces, our
model can accommodate serially correlated error term and arbitrary structural breaks in the
time-varying parameter; it is applicable to a wide variety of situations where the economic
data generating process departs abruptly from stationarity in the mean. As an empirical
exercise, we apply our model to understand behavior of time-varying market risk.

A common technical thread that emerges in the structural change literature is the ma-
chinery of continuous-time stochastic processes. In order to estimate or test for a change-
point, a necessary model assumption is that the sampling frequency increases with sample
size. In the in-fill asymptotic framework, continuous-time processes appear in the large sam-
ple limit by applications of the Functional Central Limit Theorem. This theme extends of
high-frequency econometric extends to the next chapter, where the high frequency datasets
used in empirical microstructure investigations demand fitting general Itô semimartingales,
rather than discrete-time time series models.

Market microstructure Financial markets is an indispensable part of the modern econ-
omy. They serve the crucial function of transferring risk across economic agents (individual
investors, corporations, financial institutions, and governments) and across time and across
geography. Economic growth is impossible without properly functioning financial markets.
Given its macroeconomic implications, the microeconomics of the financial market as a
price-formation and information aggregation mechanism has long been of great interest to
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economists and regulators. This area of financial economics is known as market microstruc-
ture and distinguishes itself from other fields of financial economics by viewing the market
through the highest resolution possible with respect to time, market structure, and market
participant behavior.

The increasing pervasiveness of high speed electronic trading means that we can now ob-
serve this economics of incentive and information occurring at increasingly high—nanosecond,
in some cases—frequency. This new phenomenon has given renewed impetus to re-examination
of microstructure theories, which are still coming to grips with the new species of algorith-
mic traders whose trading is predicated on speed. The associated emergence and increasing
dominance of the new breed of traders whose trading is predicated on speed –the high fre-
quency traders (HFT’s)– have fundamentally overturned traditional market microstructure
paradigm. HFT now account for over half of the volume traded on stock, futures and op-
tions exchanges in the U.S. The U.S. Securities and Exchange Commission (SEC) describes
HFT as “one of the most significant market structure developments in recent years” (SEC,
2010). It is a central issue of modern financial economics to better understand the economic
role of HFT’s and their impact on market quality and social welfare.

On the one hand, HFT seem to improve market efficiency by impounding economic in-
formation into prices at a faster rate. On the other hand, they exploit their speed advantage
and engage in predatory trading, which has led to catastrophic events like the May 2010
Flash Crash –with nearly one trillion dollars disappearing from the US economy in a mat-
ter of minutes—and the Oct 15, 2014 bond market flash crash. The enhanced liquidity—as
measured by traditional microstructure metrics—provided by HFT’s may not be innocuous.
It has been well documented that HFT’s attempt to manipulate the market in a variety
of ways. Some tactics used by high frequency traders for market manipulation are “stuff-
ing", “smoking", and “spoofing". For example, “spoofing" is a bait-and-switch tactic which
involves submitting and cancelling orders with no intention of execution, with the goal of
swaying prices in a favorable direction. Another example, “quote stuffing", involves quickly
entering and withdrawing a large number of orders in an attempt to temporarily slow down
processing capacity of exchanges as well as deny access to other market participants.1

In Chapter 3, using approximately 500 million limit order book snapshots sampled at tick
frequency we examine the interplay between market microstructure effects and the impact
of algorithmic trading in the FX context. We reconcile the apparent improvement in market
efficiency offered by algorithmic traders and their predatory market making activity—the
first in the academic literature to do so, to the best of my knowledge.

1All of the above practices constitute high frequency spam, a mirage of specious high frequency liquidity
overflow that is never intended to be executed. An immediate concern is whether these predatory strategies
impede efficient price formation and damage the health of financial markets—and if so, what the appropriate
regulatory response should be. The dearth of systematic knowledge on the occurrence and impact of high
frequency spamming is therefore particularly alarming for regulators and exchanges. One can, witness, for
example, the haphazard remedy of the SEC the day after Flash Crash and recent ad hoc microstructure
rules adopted by some exchange aimed at curbing high frequency spam.
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Asset pricing and financial networks While the same technological evolution in fi-
nancial markets associated with the growth in electronic trading has led to a fragmentation
of the financial market, on the flip side of the same coin it has also made interconnectedness
between various trading platforms, market centers, and market participants an increasing
important factor in market behavior. As electronic communications networks reduce search
friction, increase heterogeneity of market participants. and lead to wider scope of trading,
the emergence of traditional trading strategies and activities also makes network systematic
and systemic risk considerations more relevant.

In Chapter 4, we extend traditional beta-pricing models to include a network pricing
factor. By incorporating the network structure between assets into the portfolio decision
problem, we define an asset pricing model whose components contain both a network ana-
logue of stochastic discount factor and a corresponding pricing factor. An affine relationship
is shown to hold between the network stochastic discount factor and network pricing factor.
The theory thus meets a key formal benchmark. We find that exposure to the network pric-
ing factor has two countervailing effects: diversification vs. susceptibility to undiversifiable
economic shocks. Our theory predicts that the diversification effect dominates. Exposure
to the network pricing factor therefore entails a risk discount, rather than premium.

3



Chapter 2

Wavelets and High Frequency
Financial Data

2.1. Structural Change: An Brief Overview

Instability of parameters is an issue confronted by econometricians everyday. Coefficient
instability reflects, for example, an economic system undergoing structural changes or an
economic agent exhibiting behavioral changes (the latter as pointed out by [88]). Empirical
literature has found models with constant parameters to be unsatisfactory in various con-
texts and devised various models to accommodate such structural changes in the underlying
data generating process.

In this chapter, we consider a linear model where parameter non-constancy is restricted
to a single time-varying parameter. To the best of our knowledge, theoretical estimation
literature on linear models with time-varying coefficients predominantly employs predomi-
nantly kernel smoothing methods. See, for example, [29], [30], [82], and [34]. The kernel ap-
proach requires that the time-varying parameters be globally smooth over the sample period,
thus ruling out abrupt structural breaks or jump behavior. While our model only admits
a single time-varying parameter, the standard smoothness assumption on the time-varying
parameter is dropped completely.1 Moreover, local smoothing estimates of time-invariant
parameters may show spurious time-varying behavior when applied to a misspecified model
where some time-varying parameter are not globally smooth.2 In this sense there is no
trade-off between the number of time-varying parameters and type of time-varying behav-
ior allowed between our model when compared to existing methods. When the time-varying
coefficient corresponds to an intercept term, our model is a linear model with arbitrary time

1Formally, this means that the functional space containing the functional parameter is enlarged significantly.
See Section 2.3.

2See Section 2.5, in particular Figures 2.11c, 2.11d, 2.11e, and 2.11f.

4



trend in the intercept term and overlaps with the partial linear model from [100] in the time
series setting.3

Our approach consists of two steps. The time-invariant part of the model is estimated
consistently by kernel method. With these consistent estimates in hand, the problem of
estimating the time-varying parameter is converted into a nonparametric regression prob-
lem. In the second step, one has a time series of noisy observations of the time-varying
parameter. The objective is then to remove the noise from the time series to reveal the
true underlying trend. In our case, this trend may be an arbitrary function of time that
is, for example, nonlinear and has jumps. We apply an orthogonal series estimator to this
problem. In particular, we choose the orthonormal basis to be a wavelet basis and make
use of their descriptive power in encoding spatial-inhomogeneity in the parameter, such as
varying degree of smoothness between possible discontinuities.

Wavelets was first discovered by Daubechies in seeking an orthonormal basis for square-
integrable functions that is both compactly supported and has certain smoothness properties
(see [42]). The multi-resolution structure inherent in their construction makes the associated
linear filters natural tool in time series analysis from a spectral perspective. A sizable body
of results now testifies to the effectiveness of wavelets in this regard. For example, the
unit root test of [53] and serial correlation test of [58] originate from this perspective. In
contrast, the ability of wavelets to represent parsimoniously a wide variety of functions
remain relatively unexplored in the econometrics. [86] introduces a test of serial correlation
for covariance stationary time series based on a linear wavelet estimator of the spectral
density. This nonparametric approach via wavelets allows for testing for serial correlation
of arbitrary form, without smoothness assumptions on the spectral density, resulting in a
powerful test. This was extended to the panel model setting by [75]. Our approach applies
the same principle in the context of estimation.

In our methodology, following [44], we make use of a nonlinear wavelet estimator that
is both minimax over a wide Besov scale and preserve the smoothness properties of the
underlying true parameter with probability one asymptotically. The language of Besov
spaces allows one to speak precisely of smooth properties more general than differentiability,
or, indeed, continuity ([19]), and this language translates the ability of the wavelet estimator
to faithfully extract true jump from a noisy signal containing many spurious jumps. In
addition to satisfactory theoretical properties, the nonlinear wavelet estimator also offers
computational advantages due to the pyramid structure of the associated filter algorithm.

We also exploit the whitening effect of wavelets on serially correlated processes in making
a finite sample adjustment in extracting the time-varying trend. In this respect, the utility
of wavelets is two-fold: first to de-correlate serial correlation in error terms, second to encode
efficiently the underling time-varying coefficient. Both of these properties derive from the

3The model in [100] is a random design model while we consider a fixed design model.
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time-frequency localization of wavelets, which is unique among available basis. Bases such
as the classical Fourier basis or B-splines do not have this property.

There is also extensive literature on testing for structural breaks. The flexibility of
wavelet estimator can complement existing testing methods by supplying supplemental
information within the class of models being considered. The seminal paper [10] introduced
tests for structural break in a general partial sample general method of moments framework.
The Andrews test is formally designed against alternatives where the structural change
occurs in a specified interval. However, information about location of change point for the
parameter in question may not be available to the econonometrican. For example, the issue
at hand could be general model adequacy. Or the structural break may be caused by a
policy change, the lag-effect of which is is unknown. For the class of model considered in
this paper, the Andrews alternative is the special case where the time-varying coefficient
is a piecewise constant function of time. An estimator that captures the true jumps can
be useful in providing possible locations of structure breaks in the Andrews alternative.
When the time-varying coefficient is piecewise constant, our model is also a special case
of the linear models with partial structural breaks considered in [13] and [95]. For finding
the number of breaks, [13] provides a test that proceeds stepwise by considering, for each
l, whether the model has l versus l + 1 structural breaks. In procedures of estimating the
number and then locations of the breaks, considerable computation may be circumvented by
inspecting the a consistent (in the appropriate sense) estimate of the time-varying parameter
as a preliminary step.

In empirical research, the parameter instability might be addressed by either introducing
time series specifications for the parameter or fitting elaborate non-linear alternatives. Nei-
ther approach directly confronts the issue if the true source of misspecification is parameter
instability in time. Furthermore, the econometrician may be forced to impose additional
structures on the model. In such situations, a simple linear model that allows for both
abrupt structural breaks and smooth structural changes, should one be available, deserves
consideration before other alternatives. To cite one example, [91] rejects via the Chow test
a constant relationship between real house prices and real disposable income, which can be
attributed to changes to the economy during the period examined such as financial deregu-
lation and interest rate fluctuation. Similarly, [65] found evidence of susceptibility of United
States housing prices to structural changes. As a remedy, various time series specifications,
such as state space or GARCH models, have been devised (see, for example, [27]). Such
time series specifications introduces additional structure in the model that is not implied by
rejection of the Chow test. A linear model with structure breaks is the Chow alternative.

The rest of this chapter is organized as follows. In Section 2.2, we specify the model
and recall necessary facts in estimating the time-invariant part of the model. Section 2.3
summarizes relevant aspects of wavelet theory. Section 2.4 discusses our approach to the
nonparametric regression problem for the time-varying parameter. Certain facts regarding
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the classical nonparametric model is recast in a way that makes clear the superiority of
the wavelet approach relative to other estimators. In a model with weakly dependent
data, there is a wavelet estimator that preserves the smoothness of the true parameter
in large sample and we derive its rate of convergence. We also consider a finite sample
adjustment where a model with long range dependence decomposes asymptotically into
white noise models across different scales. This suggest naturally a scale-dependent wavelet
estimator. Section 2.5 contains simulation results and also demonstrates existing methods
(local smoothing and spline) breakdown when parameters are not smoothly varying in time.
Section 2.6 applies our method to financial data in estimating high frequency systematic
risk. Appendix A contains the proofs.

2.2. Model and Estimation of Time-Invariant Parameters

In this section we state model assumptions and describe how the time-invariant part
of the model can be consistently estimated by a Nadaraya-Watson local regression. We
consider the linear model with time series data

Yt =
m∑
i=0

βixt + γ(t)xm+1,t + εt, (2.1)

with the following model assumptions:

Assumption 1.

(i) The parameter β = (β0, · · · , βm)′ ∈ Rm+1 is time-invariant.

(ii) (x1,t, · · · , xm+1,t, εt)′ = (X ′t, εt)′ is an α-mixing.

(iii) sup1≤i≤m+1 supt |xi,t|4+δ <∞ for some δ > 0.

(iv) inft ‖E[XtX
′
t]‖ > η > 0.4

(v) E[Xtεt] = 0 for all t.

(vi) suptE[|εt|4+δ′ ] <∞ for some δ′ > 0.

(vii) The time series {(x1,t, · · · , xm+1,t, Yt)} is sampled at the rate 1
n on the interval [0, 1],

i.e. at times 1
n ,

2
n , · · · , 1.

(viii) The time-varying parameter γ(t) is Riemann integrable on [0, 1].

Under the above assumptions, the time-invariant part of the model β can be estimated by
drawing t0 ∈ (0, 1) at random and carrying out a local kernel regression. Let K(t) denote

4For an n1 × n2 matrix A, ‖A‖ denotes the operator norm ‖A‖ = supv∈Rn2 , ‖v‖≤1 ‖Av‖. ‖A‖ can be
characterized as the square-root of largest singular value of A.
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the kernel used and Kh(t) = 1
hK( th) corresponding to bandwidth h. Then β̂n,hn is obtained

by minimizing weighted sum of residual squares:

(β̂′, γ̂(t0))′n,hn = argmin
(b′,c)′

n∑
t=1

Khn(t− t0)(Yt −X ′t(b′, c)′)2. (2.2)

Standard assumptions are made regarding the kernel K:

Assumption 2.

(i) K is symmetric, has compact support, and continuous with
∫
K(t)dt = 1.

(ii) The kernel bandwidth hn satisfies hn → 0 and nhn →∞.

Assumptions 1 and 2 are (weaker than, in parts) standard assumptions in the time-
varying parameter estimation literature. The data generating process need not be station-
ary. Assumption 1(ii) does not impose any size restriction on the α-mixing coefficient. As-
sumption 1(iv) is a uniform non-multicolinearity assumption slightly stronger than uniform
positive-definiteness. The latter gives consistency in the non-weighted regression. Similarly,
while 1

n

∑n
t=1E[Xtεt]→ 0 is sufficient to achieve consistency in the non-weighted regression,

contemporaneous exogeneity of regressors—Assumption 1(v)—is needed to accommodate
the use of a kernel.5 Assumption 1(viii) ensures that the time-varying parameter γ is
continuous Lebesgue-almost everywhere, therefore making it suitable for Nadaraya-Watson
regression. The moment restrictions Assumptions 1(iii) and 1(vi) can be relaxed slightly
at the expense of Assumption 1(ii) being strengthened to φ-mixing. Assumption 1(vii) and
2(ii)—which amounts to that the sampling frequency within a kernel bandwidth can be
made arbitrarily high as sample size becomes large—are necessary in general for consistent
estimation.6

Theorem 2.2.1. Under Assumptions 1 and 2, the kernel estimate β̂n,hn defined by Equa-
tion 2.2 at any t0, randomly chosen with respect to the uniform distribution on [0, 1], is a
consistent estimator of β.

2.3. Wavelets and Function Spaces

Having estimated the time invariant part of the model by local smoothing, we now
estimate the time-varying parameter γ by global smoothing. Specifically, a non-linear or-
thogonal series estimator will be used, with wavelets as chosen basis. Unlike other families of

5Regressors in our model can be endogenous if instrumental variables are included as part of the data
generating process. The consistency result for the time-invariant parameters, Theorem 2.2.1, remains true
with minor modification of arguments. Subsequent results only rely on consistency of β̂n,hn and are not
affected.

6See, for example, [101].
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basis such as the Fourier basis or splines, wavelets allow γ to have unrestricted time-varying
behavior. We summarize in this section relevant aspects of wavelet theory.

Let ψ be a Daubechies mother wavelet of compact support having r vanishing moments,
r continuous derivatives and unit L2-norm (see [42]). An orthonormal basis of the Hilbert
space L2(R) is generated using ψ by integer translations and dyadic dilations by defining
(Z denotes the integers):

ψjk = 2
j
2ψ(2jx− k), j, k ∈ Z.

For a function in L2(R), its wavelet decomposition is f(x) =
∑
j,k θjkψjk(x) where θjk =∫

f(x)ψjk(x)dx. For L2[0, 1], an appropriate modification can be made on a subset of Z×Z
so that the resulting {ψjk} form an orthonormal basis of L2[0, 1], which contains the time-
varying parameter γ in our model (see [39]).

Wavelets give rise to a multiresolution analysis, a Gram-Schmidt type algorithm for
the Hilbert space L2([0, 1]), which yields numerically fast computations involving the or-
thonormal basis {ψjk}. It can be shown that there exists a Z-indexed nest of subspaces
· · ·V1 ⊂ V0 ⊂ V−1 ⊂ · · · such that ∩nVn = {0}, ∪Vn = L2[0, 1], and f(·) ∈ Vj if and only if
f(2·) ∈ Vj−1. The subspace Vj−1 is of resolution twice that of Vj .7 The map f(x) 7→ 1√

2f(2x)
is an isometric embedding from Vj to Vj−1. There exists a function φ0,0 ∈ V0 such that
{φ0,k(·) = φ0,0(· − k)} is an orthonormal basis of V0. The orthonormal basis {ψj,k}j,k∈Z
generated using the mother wavelet has the property that where for each j, {ψj,k}j∈Z is
an orthonormal basis of the orthogonal complement Vj−1 	 Vj .8 In our context, the multi-
resolution analysis of the time-varying parameter γ is used in a finite sample adjustment
for serial correlation in the error term.9

Wavelet bases are unconditional bases for a wide variety of functional spaces which
are convenient in modelling spatially inhomogeneous functions. Empirically, this means
that wavelets provide parsimonious representation of functions whose smoothness can, for
example, vary between possible discontinuities. We work with Besov spaces and refer to [90]
and [107] for more details on functional analytic properties of wavelets. Unlike the classical
Sobolev or Hölder spaces, Besov spaces go beyond continuity and allow one to quantify
smoothness of, for instance, cádlág functions. Allowing γ to lie in a Besov space means that
our model accommodates structural breaks of arbitrary type.

The Paley-Littlewood definition of Besov space is as follows ([90]). Let S ′ be the space
of tempered distributions, i.e. the topological vector space dual of the Schwartz space
S of C∞-test functions ([56]). Fix Ψ, {Φn}n≥0 ⊂ S such that their Fourier transforms
F(Ψ), {F(Φn)} form a partition of unity subordinate to the open cover A0 = (−1, 1),
7More generally, the scaling constant 2 can be replaced by any integer.
8There exists a function φ0,0 ∈ V0, called the father wavelet, such that its integer shifts, {φ0,k(·) =
φ0,0(· − k)}, is an orthonormal basis of V0. One can then write φ0,0 =

∑
k∈Z hkφ−1,k. For j = 0,

ψ0,0 =
∑

k
(−1)kh−k+1φ−1,0 and ψ0,k′ (·) =

∑
k
(−1)kh−k+1φ−1,0(· − k′). This specifies {ψj,k}j,k∈Z.

9See Section 2.4.1.
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An = {2n−1 < |ξ| < 2n+1}. So an element f ∈ S ′ can be written as f = Ψ∗f+
∑
n≥0 Φn ∗f ,

with ∗ denoting convolution. f is said to lie in the inhomogeneous Besov space Bα
p,q if

‖Ψ ∗ f‖Lp + (
∑
n≥0

(2nα‖Φn ∗ f‖Lp)q)
1
q <∞.

As a corollary of (sufficiently smooth) wavelets forming an unconditional basis for Bη
p,q, f

lies in the inhomogeneous Besov space Bη
p,q if

∑
j≥j0

(
2jq(η+ 1

2−
1
p

)‖θjk‖lp
)q
<∞. (2.3)

Example In the model being considered, let the time-varying parameter γ(t) = 1[0, 1
2 ](t),

the indicator function on [0, 1
2 ]. This is a parameter that has an abrupt structural break at

t = 1
2 but constant otherwise. Such a γ might be, for instance, an alternative hypothesis of

the Chow test. Let F(γ) denote the Fourier transform of γ, then

F(γ)(ξ) = 1
4e
−2πi· 14 ξ ·

sin πξ
4

πξ
4

.

Choose p = 2, then in the above notation, the L2-norm of the n-th Paley-Littlewood term
is, up to a multiplicative constant independent of n,

‖Φn ∗ g‖L2 ≈ 2−
n
2 .

Therefore γ ∈ Bη
2,q if and only if

∑
n

2n(η− 1
2 )q <∞,

For q ∈ [1,∞], this is true whenever η < 1
2 . For η = 1

2 , one must have q =∞.
More generally, almost all sample paths of a Lévy process, which can be, for example,

a càdlàg function where each continuous piece is a Brownian sample path, lie in a Besov
space ([72]). Almost all sample paths of a Brownian motion belong to the suitable Besov
spaces Bη

p,q with 1 ≤ p, q ≤ ∞, 1
p < η ≤ 1

2 . Such sample paths have the property, for
example, of crossing 0 infinitely many times on the time interval (0, ε) for ε arbitrarily
small. From a practical perspective, this descriptive power of Besov spaces means that, our
model places no restrictions on the time-varying parameter γ, allowing for features such as
smooth structural changes, abrupt jumps, or combinations thereof.

The family of Besov spaces contains both L2-Sobolev spaces (the cases p = q = 2)
and Hölder spaces (the case p = q = ∞). The assumption of twice-differentiability that
is common in the time-varying coefficient literature correspond to the case η = 2 and
p = q =∞.
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2.4. Estimation of Time-Varying Parameter

Plugging in the consistent estimates of β1, · · · , βm given by Theorem 2.2.1 and re-writing
the model of Equation 2.1 gives, for t = 1, · · · , n,

Yt −
∑
i β̂ixi,t

xm+1,t
= Yt −

∑
i βixi,t

xm+1,t
+
∑
i(βi − β̂i)xi,t
xm+1,t

= γ(t) + εt
xm+1,t︸ ︷︷ ︸

De-noising problem

+
∑
i(βi − β̂i)xi,t
xm+1,t︸ ︷︷ ︸

Estimation error of β1, · · · , βm

. (2.4)

The above expression suggests that the problem of estimating γ is, conditional on the true
time-invariant parameters, a nonparametric regression problem with additional estimation
error from the plug-in first step. We first consider the nonparametric regression problem,
showing the faithfulness of the wavelet estimator with respect to the smoothness of γ and
establishing its minimax rate of convergence, before incorporating estimation error.

2.4.1. The Nonparametric Regression Problem

Assumption 3.

(i) The time-varying parameter γ lies in a Besov space Bη
p,q[0, 1] as defined in Equa-

tion 2.3.

(ii) The marginal distribution of the regressor xm+1 has support bounded away from zero.

(iii) (xm+1,t, εt)′ is α-mixing of size − r
r−2 for some r > 2, E[εt|xm+1,t] = 0 for all t, and

E[( 1√
n

∑n
t=1

εt
xm+1,t

)2]→ σ2.

Assumption 3(iii) strengthens Assumption 1(ii), which places no restriction on mixing rate,
and Assumption 1(v), regarding the components (xm+1,t, εt)′ of the data generating process
(X ′t, εt)′. From a modelling point of view, while endogeneity of xi,t, 1 ≤ i ≤ m is still
allowed in the model, to obtain minimax estimation of γ we now insist that the regressor
xm+1,t corresponding to the time-varying parameter be contemporaneously strictly exoge-
nous. A sufficient condition for convergence of E[( 1√

n

∑n
t=1

εt
xm+1,t

)2] is, for example, strict
stationarity of (xm+1,t, εt)′.

The term γ(t) + εt
xm+1,t

from Equation 2.4 can be viewed as noisy observations of γ. In
more compact notation, we rewrite it as

Zt = γ(t) + ut, (2.5)

where ut = εt
xm+1,t

. Allowing for jumps at unknown times necessarily means that one must
abandon the notion of pointwise consistency. Instead, we measure the loss by the norm

11



‖ · ‖L2 on L2[0, 1]. The corresponding risk is the mean integrated square error (MISE). For
a given estimator γ̂, the MISE is

E[‖γ̂ − γ‖22] = E[
∫ 1

0
|γ̂(t)− γ(t)|2dt].

The benchmark is the minimax risk over an infinite dimensional collection of possible γ’s.
The (asymptotic) minimax risk over a subset F (e.g. a subspace such as Bα

2,q or a family
of subspaces) is defined by

lim inf
n→∞

inf sup
γ∈F

E[‖γ̃ − γ‖22],

where inf γ̃ denotes infimum over all F-valued maps measurable with respect to data.

Mixing {εt}

The nonparametric regression of Equation 2.5 with homoskedastic white noise ut and
the infinite dimensional Gaussian sequence model of Equation 2.6 below are shown formally
to be statistically equivalent by [28]. We offer a development showing these two models
have the same minimax risk, in the non-stationary setting, that explicates the utility of
wavelets, first as the basis used in an orthogonal series estimator and second in facilitating
the extension to {ut}, from Equation 2.5, with long range dependence.

From nonparametric regression to filtering model: For a given n, define a stochastic
process on [0, 1] as follows:

F
(n)
t = 1

n

dnte∑
i=1

Zi = 1
n

dnte∑
i=1

γ(t) + 1
n

dnte∑
i=1

ut.

Viewed as a sequence of probability measures on the space D[0, 1] of càdlàg functions
on [0, 1], the drift term 1

n

∑dnte
i=1 γ(t) ⇒

∫ t
0 f(t)dt, where ⇒ denotes weak convergence of

probability measures.10 We recall the following Functional Central Limit Theorem ([110]):

Theorem 2.4.1. Under Assumptions 1(vi) and 3,

1√
n

dnte∑
i=1

ut ⇒ σBt,

where σ2 is as in Assumption 3(iii) and Bt is the standard Brownian motion on [0, 1].

In practice, the error variance σ2 is estimated from the highest level wavelet coefficients,
the most noisy part of the noisy observations of γ.

10D[0, 1] is equipped with the Skorokhod metric and the corresponding Borel σ-algebra.
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By Theorem 2.4.1, the sequence of processes {F (n)
t } is asymptotically equivalent to the

sequence of the Itô processes

dFt = γ(t)dt+ σ
1√
n
dBt, t ∈ [0, 1].

From filtering model to Gaussian sequence model: We make use of the Lévy-
Ciesielski-Îto construction ([87], [38], [79]) of the Brownian motion Bt.11 Let {ψj} of L2[0, 1]
be an arbitrary orthonormal basis, then the standard Brownian motion on [0, 1] can be
expressed as

dBt =
∑
j

wjψj(t)dt

where {wj} is standard Gaussian white noise and the series converges in the mean square
sense.12 Therefore

∫ 1

0
ψj(t)dFt =

∫ 1

0
ψj(t)γ(t)dt+

∫ 1

0
ψj(t) · σ

1√
n
dBt

where
∫ 1

0 ψj(t) · σ
1√
n
dBt = σ 1√

n
wj by orthonormality of {ψj}. Therefore, in this stochastic

sense, the Fourier transform of the filtering model taken with respect to {ψj} is the Gaussian
sequence model

Xj = θj + ej , (2.6)

where (θj) ∈ l2(N), ej ∼ N (0, σ2

n ), j = 1, 2, · · · .13

We summarize the above in a theorem:

Theorem 2.4.2. Under Assumptions 1(vi), 1(vii) and 3, the following three (sequences of)
models have the same asymptotic minimax risk:

(i)
Zt = γ(t) + ut

where Zt is sampled at the rate 1
n for a given n.

(ii) The filtering model where the drift of the Itô process

dFt = γ(t)dt+ σ
1√
n
dBt

is to be estimated, sampled at the rate 1
n for a given n.

11We recall the details of this construction in the Appendix.
12Strictly speaking, we take a modification of the process

∑
j
wjψj(t)dt that has continuous sample paths.

13l2(N) denotes the Hilbert space of square summable sequences.
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(iii) The Gaussian sequence model

Xj = θj + ej ,

where (θj =
∫ 1

0 γψj) ∈ l2(N) for any orthonormal basis {ψj}, ej ∼ N (0, σ2

n ), j = 1, 2, · · · .

Remark 2.4.3. The above development, with passage through the intermediate filtering
model, generalizes to the case of long range dependent {εt}. In the mixing case, model
equivalence holds for any basis, as stated in Theorem 2.4.2(iii), with the means of the re-
sulting Gaussian sequence model being the expansion coefficients with respect the chosen
basis. The effectiveness of wavelet lies in that a wide variety of functions can be parsimo-
niously encoded by their wavelet coefficients. The long range dependent case, however, the
additional property of wavelets to de-correlate serial dependence is required to arrive at a
similar Gaussian sequence model.

The sequence (θj) are the expansion coefficients of γ with respect to the chosen basis
(ψj) whose empirical counterpart is (Xj). The seminal estimation result in this setting is
due to Pinsker, who used the classical Fourier basis and showed that minimax risk can be
achieved over Sobolev ellipsoids by shrinking the empirical Fourier coefficients ([96]). While
a shrinkage estimator is natural in this setting, it is impossible to extend the minimax
result beyond Sobolev spaces.14 Wavelets, however, allows one to extend beyond continuous
functions. Define the soft threshold function ηλ with threshold λ by

ηλ(x) = sgn(x)(|x| − λ)+.

The wavelet universal threshold estimator γ̂n, where n is sample size, applies ηλ(·) to each
empirical wavelet coefficient with threshold λ = σ̂

√
2 logn
n , where σ̂ is the median abso-

lute deviation estimate of σ from the highest level of wavelet coefficients. It was shown in
[44] that not only does wavelet universal threshold estimator achieve minimax risk over a
Besov scale (up to a log factor), the estimated function γ̂ is as smooth as γ with proba-
bility approaching 1.15 The minimax property in turn passes through the equivalence of
Theorem 2.4.2:

Theorem 2.4.4. Suppose Assumption 1(vi), 1(vii) and 3 hold. Let ψ, the mother wavelet
that generates the wavelet basis used, have r vanishing moments and r continuous deriva-
tives, where r > max{1, η}. Let Rn(p, q, η, L) denote the minimax risk over the Besov ball
Bη
p,q(L). Then the wavelet universal threshold estimator γ̂n for the nonparametric regression

model has the following properties:
14We have the following fact from Fourier analysis: For any g ∈ L2[0, 1], there exists a continuous h on [0, 1]
such that all the Fourier coefficients of h are larger than those of g ([81]). Therefore shrinking the Fourier
coefficients does not in general preserve smoothness.

15Strictly speaking, the statements from [44] applies to the sequence of truncated finite dimensional Gaussian
sequence models. The gap with our formulation is bridged with Lemma A.1 in the Appendix.
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(i)

supγ∈Bηp,q(L) E[‖γ̂n − γ‖2]
Rn(p, q, η, L) = O(2 logn+ 1)

for all 1 ≤ p, q ≤ ∞, 0 < L <∞, and η0 < η < r where

η0 = max{1
p
, 2(1

p
− 1

2)+}.

(ii) There exists a constant C such that

Prob{‖γ̂n‖Bηp,q ≤ C‖γ‖Bηp,q} → 1.

Even as one does away with the notion of pointwise estimation, Theorem 2.4.4(ii) guar-
antees that the estimate γ̂n is as smooth as the true γ, as measured by the Besov norm
‖ · ‖Bηp,q , with probability approaching 1. Empirically speaking, there are no spurious jumps
in the estimate.

Long range dependent {ut}

The model equivalence described in Theorem 2.4.2 and the corresponding wavelet thresh-
olding estimator of Theorem 2.4.4 allows for a quite general dependence structure for the
data generating process in theory, where the nonparametric regression problem is asymp-
totically equivalent to estimating the means of a sequence of independent Gaussian random
variables, i.e. the expansion coefficients of γ with respect to an orthonormal basis. It covers,
for example, covariance stationary time series {εt} with short range dependence, i.e. one
whose autocorrelation function ρ(h) is absolutely summable with

∑+∞
−∞ |ρ(h)| < ∞, and

Gaussian innovations. In such cases we would have the sequence of random functions

t 7→ 1
n

dnte∑
i=1

ut

equivalent to a sequence of Brownian motions τ√
n
dBt where τ2 =

∑+∞
−∞ |ρ(h)| (see [43]).

In simulations, however, we found that estimates of γ in the presence of short range
dependence to be noisier than the white noise case. In finite sample, serial correlation may
dissipate slowly relative to sample size. As a finite sample adjustment, we therefore consider
the situation where the nonparametric regression problem features long range dependent
errors. The resulting level-dependent wavelet thresholding estimator outperforms the uni-
versal wavelet thresholding estimator of Theorem 2.4.4 in simulations, shown in Figure 2.3.

Assumption 4. In the nonparametric regression problem of Equation 2.5, ut is Gaussian
and stationary with long range dependence, i.e. its autocorrelation function ρ(h) has sub-
hyperbolic decay: ρ(h) ≈ A

|h|α for some 0 < α < 1 and A > 0.
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The trade-off with allowing for long range dependence is that one may need Gaussianity
as a distributional assumption.16 Unlike the short range dependent case, the whitening
effect of wavelets, not shared by other basis, is now required to establish asymptotic model
equivalence. In this setting, the limit process is now the fractional Brownian motion dBH

t

with Hurst index H, which is determined by H = 1 − α
2 ∈ (1

2 , 1). dBH
t is a mean-zero

Gaussian process that behaves like (∆t)H for small time increments ∆t, and self-similar in
the sense that BH(ct) and cHBH(t) have the same distribution. For H = 1

2 , dB
H
t is the

Brownian motion. Unlike the Brownian motion, dBH
t does not have independent increments

in general nor is it a semi-martingale. (The Appendix contains a precise definition of dBH
t .)

By a Functional Central Limit Theorem for long range dependent processes of [106], the
observation and error partial sum processes satisfy

n1−H(F (n)
t −

∫ t

0
γ(s)ds)→ τBH

t

where the asymptotic variance τ2 = 2A
(1−α)(2−α) . This gives the long-range filtering model

dFt = γ(t)dt+ τ

(
√
n)αdB

H
t .

Unlike the case of Brownian motion, where the Îto isometry yields i.i.d. Gaussian sequence
for any basis of L2[0, 1], the long memory situation require unique properties of wavelets to
decorrelate the fractional Brownian motion. By performing a principal component analysis
on the reproducing kernel of dBH

t using wavelets, we obtain a Lévy-Ciesielski-Îto type
representation (details provided in Appendix):

dBH
t =

∑
jk

wjkvjk(t)dt,

where vjk is approximately orthogonal to {ψjk}. The stochastic integrals

∫
ψjkdFt =

∫
ψjkγ(t)dt+ τ

(
√
n)αψjkdB

H
t

give a Gaussian sequence model whose error terms are approximately white noise, with
level-dependent error variance.

Theorem 2.4.5. Denote the empirical wavelet coefficient by Xjk =
∫
ψjkdFt. Then

(i)
Xjk = θjk + τ

(
√
n)ασjejk,

where, at each level j, σj = 2−j(1−α).

16In fact FCLT’s for time series with long range dependence, which is all that we require in this discussion,
have been established in much more general cases where Gaussianity does not hold. See, for example, [84].
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(ii) The random variables ejk = 1
σj

∫ 1
0 ψjkdB

H
t have mean zero, variance 1, and are

approximately uncorrelated in the sense that 0 < c0 ≤ Var(ejk|ej′k′ , (j′, k′) 6= (j, k)) ≤ 1.

It was shown in [45] that a Gaussian sequence model whose noise satisfies the approxi-
mate uncorrelated condition of Theorem 2.4.5(ii) has the same asymptotic minimax risk as
a model with independent noise. In other words, asymptotically the model is equivalent to
the sequence

Xjk = θjk + τ

(
√
n)ασje

′
jk

where e′jk’s are i.i.d. standard normal. Since for a fixed resolution level j, the equivalent
model is a Gaussian sequence model with homoskedastic independent noise for which the
universal wavelet threshold estimator achieves minimax risk, as a corollary of Theorem 2.4.4
we arrive at a level-dependent thresholding estimator in the long memory case.

Theorem 2.4.6. Suppose Assumptions 1(vi), 1(vii) and 4 hold. Let ψ, the mother wavelet
that generates the wavelet basis used, have r vanishing moments and r continuous deriva-
tives, where r > max{1, η}. In the nonparametric regression problem of Equation 2.5, let
Rn(p, q, η, L) denote the minimax risk over the Besov ball Bη

p,q(L) and γ̂n be the estimate
obtained by applying the universal wavelet threshold estimator to each level j. Then

(i)

supγ∈Bηp,q(L) E[‖γ̂n − γ‖2]
Rn(p, q, η, L) = O(2 logn+ 1),

for all 1 ≤ p, q ≤ ∞, 0 < L <∞, and η0 < η < r where

η0 = max{1
p
, 2(1

p
− 1

2)+}.

(ii) There exists a constant C such that

Prob{‖γ̂n‖Bηp,q ≤ C‖γ‖Bηp,q} → 1.

Also by asymptotic equivalence, the (non-adaptive) minimax rate of convergence of the
wavelet threshold estimator is therefore the same as that obtained in [46] for the Gaussian
sequence model with level-dependent noise

Xjk = θjk + τ

(
√
n)ασje

′
jk,

under the assumption that the time-varying parameter γ is sufficiently regular relative to
the correlation structure of the limit process dBH

t .
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Theorem 2.4.7. (A la Donoho and Johnstone 1998) Under Assumptions 1(vi), 1(vii) and
4, suppose η + 1

2 −
1
p >

α(2−p)
2p , then the wavelet level-dependent threshold estimator for the

nonparametric regression problem is rate-optimal and its asymptotic risk satisfies

lim inf
n→∞

sup
γ∈Bηp,q(L)

E[‖γ̂n − γ‖2] = O(n−r)

where r = 2 ·
(η+ 1

2−
1
p

)·α2
η+ 1

2−
1
p

+α
2
.

2.4.2. Estimation Error and Asymptotic Rate

This section derives estimating error from our two-step procedure and the resulting
asymptotic risk for the time-varying parameter. As one would expect, the rate of con-
vergence is the slower of the two resulting from each step. To have a concrete discus-
sion of asymptotic risk, we consider time-varying parameters which are piecewise Hölder-
continuous.

Assumption 5.

(i) There exists a finite partition 0 = t(0) < t(1) < · · · < t(m) = 1 of [0, 1] such that γ
satisfies |γ(t)− γ(s)| ≤ L|t− s|ρ on each interval (t(j), tj+1) for all j = 1, · · · ,m− 1,
for some ρ > 0 and 0 < L <∞.

(ii) The error term {εt} is conditional heteroskedastic of the form εt = σ(Xt, t)wt, where
|σ(·, t)− σ(·, s)| ≤M(·)|t− s| on Rm+1 × [0, 1] with ‖M(·)‖∞ <∞.

(iii) (Xt, wt) is α-mixing of size − 2r
r−1 for some r > 1.

(iv) The kernel K is Lipschitz continuous.

From the modelling perspective, there is little loss of generality in specializing Assump-
tion 1(i) to Assumption 5(i).17 The points of discontinuity 0 = t(0) < t(1) < · · · < t(m) = 1
depends on γ and are unknown to the econometrician. Assumptions 5(ii) and (iii) make
characterizations of asymptotic distributions possible. We use Assumption 5 in refining
consistency of the first step, described in Theorem 2.2.1, to obtain a statement regarding
rates of convergence of the asymptotic mean square error in estimating the time-invariant
part of the model.18

Theorem 2.4.8. Under Assumptions 1 and 5, the mean square error of β̂ satisfies

17Assumption 5(i) still certainly does not impose any smoothness assumptions on γ. For example, the non-
differentiable sample paths of an independent sum of Brownian motion and a finite activity jump process,
which are piecewise Hölder with Hölder exponent ρ < 1

2 .
18Twice-differentiability of γ would give the standard rate Op(n−

4
5 ) with optimal bandwidth selection (see,

e.g. [21]).
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‖β̂ − β‖22 = O(n−
2ρ

1+2ρ ),

with optimal selection of bandwidth hn.

Sincem is finite, the norms ‖β‖2 and ‖β‖∞ = max
1≤j≤m

|βj | on Rm are equivalent. Therefore

‖β̂ − β‖∞ is also of order Op(n−
ρ

1+2ρ ). So as a corollary of Theorem 2.4.8, the estimation
error term in Equation 2.4 satisfies

|
∑
i(βi − β̂i)xi,t
xm+1,t

| = Op(n−
ρ

1+2ρ )

for each t. Therefore

Yt −
∑
i β̂ixi,t

xm+1,t
= γ(t) + εt

xm+1,t
+Op(n−

ρ
1+2ρ ). (2.7)

With γ̂n denoting the noisy γ obtained by plugging in β̂, let ˆ̂γn be the wavelet threshold
estimator applied to Equation 2.7. By continuity of the wavelet threshold operator,

ˆ̂γn = γ̂n +Op(n−
ρ

1+2ρ ),

in L2[0, 1], which gives the following:

Theorem 2.4.9. Suppose Assumptions 1, 2, 3, and 5 hold. If η + 1
2 −

1
p >

α(2−p)
2p , then

the wavelet threshold estimator ˆ̂γ for time-varying parameter γ in the model given by Equa-
tion 2.1 has asymptotic risk satisfying

lim inf
n→∞

sup
γ∈Bηp,q(L)

E[‖ˆ̂γn − γ‖2L2 ] = O(max{n−r, n−
2ρ

1+2ρ })

where r = 2 ·
(η+ 1

2−
1
p

)·α2
η+ 1

2−
1
p

+α
2
.

In other words, combining the two steps together, one achieves the worst of the two rates
from the time-invariant and time varying parts of the model. Similarly, since ‖ˆ̂γn‖Bηp,q =
‖γ̂n‖Bηp,q +Op(n−

ρ
1+2ρ ), the no-spurious-jumps result of Theorem 2.4.6(ii) extends to the full

model:

Theorem 2.4.10. Under Assumptions 1, 2, 3, and 5 and in the same notation as Theo-
rem 2.4.6(ii),

Prob{‖ˆ̂γn‖Bηp,q ≤ const · (‖γ‖Bηp,q + n
− ρ

1+2ρ )} → 1.

Estimation Procedure To summarize, our proposed estimator consists of the following
two steps:
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1 Estimate the time-invariant part of the model consistently by local smoothing kernel
methods at a randomly chosen t0 ∈ (0, 1), as specified by Equation 2.2 and plug in
resulting estimates to obtain γ̂.

2 Apply a non-linear wavelet orthogonal series estimator to obtain ˆ̂γ as described in
Section 2.4.1.

2.5. Monte Carlo Simulations

2.5.1. White noise {εt}

We simulate the following model

Yt = α+ β1x1,t + β2x2,t + β3x3,t + γ(t)x4,t + εt, (2.8)

where

• The value of the time-invariant parameters are α = 7, β1 = 5, β2 = −6, β3 = 2.

• The functional parameter γ : [0, 1]→ R is defined by

γ(t) =

 cos π2 t if t ∈ [0, 1
2 ]

cos 8πt+ (cos π4 − cos 4π) if t ∈ [1
2 , 1]

.

γ is a continuous but not C1, being not differentiable at t = 1
2 . Figure 2.1a contains

a plot of γ. This simulated data generating process has a structural change from low
frequency to high frequency oscillation at t = 1

2 .

• The regressors and error term have the following independent distributions:

– x1,t ∼ i.i.d. χ2
2.

– x2,t ∼ i.i.d. N (0, 1).

– x3,t is a realization of a ARMA(1, 2) time series with AR parameters 0.1 and MA
parameters (1,−1). The underlying innovation is standard normal white noise.

– x4,t has i.i.d. distributions which is a χ2
2 distribution shifted to the right by 1,

making it bounded away from zero.

– εt ∼ i.i.d. N (0, 4).

The sample size used is 1, 000. We now describe a typical estimate. Using the Epanech-
nikov kernel, the estimates of time-invariant parameters are

α̂ = 6.640, β̂1 = 5.058, β̂2 = −6.082, β̂3 = 2.023.
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(a) The functional parameter γ.
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(b) Zt obtained by plugging in consistent estimates
of time-invariant parameters.
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(c) Zt in comparison with true γ.
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(d) Estimate γ̂ given by the universal wavelet
threshold estimator.

Figure 2.1: Estimate of γ by universal wavelet thresholding from a typical realization of
data generated by the model of Equation 2.8. The errors {εt} in the simulated DGP is i.i.d.
N (0, 4) white noise.

Plugging in gives the noisy version of γ to be wavelet-thresholded, shown in Figure 2.1c,

Zt = Yt − α̂− β̂1x1,t − β̂2x2,t − β̂3x3,t
x4,t

.

Even though Zt is very noisy compare to γ, wavelet thresholding removes most of the noise,
with estimate shown in Figure 2.1d. The average mean square error (AMSE), the empirical
counterpart to mean integrated square error (MISE), in this case is

1
n

∑
t

(ˆ̂γ(t)− γ(t))2 = 0.02.

On the other hand, the L2-norm of γ is 1
n

∑
t γ(t)2 = 0.7, making the relative error approxi-

mately 4.2%. This is in spite of a very large noise-to-signal ratio of 2.041884, as measure by
the ratio of empirical variances of (Zt) over that of γ(t). Relative errors from a Monte Carlo
simulations of 1, 000 repetitions are shown in Figure 2.2, with mean of approximately 6%
and standard deviation 0.05. From the same 1, 000 simulations, the noise-to-signal variance
ratios have a relatively large mean of 2.00 and standard deviation 0.096.
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(b) Noise-to-signal ratio from 1000 simulations.

Figure 2.2: Monte Carlo simulation of 1000 repetitions. The average relative error is ap-
proximately 6%, which is small considering the amount of noise faced by the estimator.

2.5.2. Short-range dependent {εt}

As described in Section 2.4.1, in theory asymptotic minimaxity of the universal thresh-
old estimator in the nonparametric regression problem extends to models with short range
dependent error {εt} of Equation 2.8. However, in simulations we found that the universal
threshold estimator gives somewhat noisy estimates of γ when {εt} has short range de-
pendence. Figure 2.3b shows one such estimate. The simulated DGP satisfies all previous
conditions except {εt} is now an AR(1) time series with AR parameter 0.5. Noticeably
more noise survives universal thresholding than in the white noise case. We view this as
empirical evidence that while the observation partial sums processes still converge to the
Brownian motion, serial dependence slows down the speed of convergence considerably. In
comparison, applying the level-dependent threshold estimator specified in Theorem 2.4.6 to
the same set of data gives an visually improved estimate, which is shown in Figure 2.3c.
Figure 2.4 shows a results from 1, 000 simulations using the level dependent threshold es-
timator; Figure 2.4a shows the distribution of relative errors and Figure 2.4b shows the
distribution of the noise-to-signal ratio faced by the wavelet estimator in the de-noising
problem.

2.5.3. Small sample

Figure 2.5 contains simulation result of 1, 000 repetitions with sample size reduced from
1, 000 to 250. For comparison, Figure 2.5b shows the level-dependent threshold estimate and
Figure 2.5c shows the universal threshold estimate for the same realization of Figure 2.5a .
The level-dependent threshold estimator is used, as an empirical adjustment. As expected,
the quality of estimates worsens with smaller sample size but it is still acceptable in our
view.
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(a) Noisy γ in comparison with true γ.
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(b) Universal threshold estimate of γ when {εt} has
short-range dependence.
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(c) Level-dependent threshold estimate of γ.

Figure 2.3: The wavelet universal and level-dependent threshold estimators applied to data
with short-range dependent errors.

2.5.4. Discontinuous γ

Consider now a γ that undergoes simultaneously smooth structural change and abrupt
structural break at t = 1

2 , plotted in Figur 2.6a:

γ(t) =

 cos π2 t if t ∈ [0, 1
2)

cos 8πt+ 3 if t ∈ [1
2 , 1]

.

With a sample size of 1, 000 and short range dependent errors, typical estimates using the
level-dependent threshold estimator and the universal threshold estimator are shown in
Figures 2.6c and 2.6d, respectively. Both capture well the true jump at t = 1

2 , although the
universal threshold estimate is visually more noisy as expected. It is the level-dependent
estimator that is used in the 1, 000-repetition Monte Carlo simulation whose results are
shown in Figure 2.7. The average relative error of approximately 2.13% is approximately
the same as the 2.08% obtained for a γ that is continuous, in Figure 2.4. The noise-to-
signal ratio is approximately the same in the two cases. Thus the performance of the
wavelet estimator is unaffected by possible discontinuities in γ. Whereas other estimators
may breakdown in the presence of discontinuity, the wavelet estimator can actually exploit
the additional spatial inhomogeneity in γ. With a smaller sample size of 250, the wavelet
estimate still retains the essential features of true γ as shown by results in Figure 2.8. Again
comparing to the case where γ is continuous with the same sample size of 250, discontinuity
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Figure 2.4: Monte-Carlo simulation of 1, 000 repetitions with short range dependent errors.

in γ causes no discernible degradation on the quality of the estimate, with the noise level
being comparable.

2.5.5. Comparison with other methods

Local smoothing While local kernel regression theory does not accommodate discon-
tinuities, in an empirical setting it may nevertheless be applied in ad hoc manner to the
model of Equation2.1.19 This is done for the model of Equation 2.8 with Monte Carlo
results shown in Figure 2.9. As measured by MISE, the results are comparable with the
wavelet estimator, with wavelet estimator slightly better. Figures 2.11a and 2.11b show
the two estimates for one sample.20

More importantly, when applied to a model that violate smoothness assumptions, the
local smoothing estimator may result in false discovery of time trend in a parameter when
none exists. The time-varying parameter γ in the simulated model of Equation 2.8 has
an abrupt jump at t = 1

2 with the other parameters being constant. The range of vari-
19In principle, one may measure the performance of a local smoothing estimator by MISE rather than
pointwise convergence. We do not know of any such theoretical consideration in the literature.

20We used the Epanechnikov kernel. Bandwidth h is selected between 0.02 and 0.2 in steps of 0.02 using the
Akaike Information Criterion

AIC(h) = log(RSS) + n+ tr(S∗)
n− (tr(S∗) + 2)

where RSS =
∑n

t=1 Yt − Ŷ (h)t and S∗ is the linear smoothing operator in the kernel literature (see, for
example, [70]).

In our Nadaraya-Watson case, S∗(h) = [S1(h), · · · , Sn(h)]′, where

St(h) = At(h)′Xt,

and

At = (X ′Wt(h)X)−1X ′Wt(h), Wt = diag(Kh(t1 − t), · · · ,Kh(tn − t)).

In producing Figure 2.9a, this bandwidth selection procedure is applied for each of the 1,000 realizations.
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(a) One realization of noisy γ with AR(1) {εt}.
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(b) Corresponding level-dependent threshold esti-
mate of γ with AR(1) {εt}.
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(c) Corresponding universal threshold estimate of γ
with AR(1) {εt}.
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(e) Noise-to-signal ratio, mean = 1.868884, sd =
0.1902459.

Figure 2.5: Monte-Carlo simulation of 1000 repetitions with short range dependent errors.
Sample size reduced from 1, 000 to 250.

ability of γ, |maxt∈[0,1] γ(t) − mint∈[0,1] γ(t)|, coincides with the magnitude of the jump
| lim

t→ 1
2

+ γ(t)− lim
t→ 1

2
− γ(t)| = 3. However, the kernel estimates of the time-invariant pa-

rameters can exhibit a range of variability similar to, or possibly exceeding, the estimated
γ or true γ. Figures 2.11c, 2.11d, 2.11e, and 2.11f show two estimates for α and β2 each.
Figure 2.11c shows that, as one might expect, a distortion of estimate around t = 0.5 where
the data generating process is discontinuous. In addition, even when away from the point of
discontinuity, local smoothing may suffer distortion, as shown more clearly around t = 0.8
in Figure 2.11d. When compared with estimates of γ in Figure 2.11e and 2.11f, the erratic
estimates would suggest the misleading conclusion that α and β2 vary in time as much as γ.
Monte Carlo results for the variability of time-invariant parameter estimates are shown in
Table . The reason lies in the fact that any optimal bandwidth selection (e.g. AIC, BIC, or
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(a) γ with discontinuity.
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(b) One realization of noisy γ with AR(1) {εt}.

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

Time

G
am

m
a

(c) Level-dependent threshold estimate of γ with
AR(1) {εt}.
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(d) Universal threshold estimate of γ.

Figure 2.6: Discontinuous γ with short range dependent errors.

cross validation) is necessarily a global procedure. Discontinuity results in misspecification
that distorts such attempts to achieve optimal bias-variance trade-off. Along with absence
of theoretical justification, this shows that the added generality of possibly multiple time-
varying parameters of the local smoothing approach does not extend a a model with abrupt
parameter changes.

Splines Another commonly considered nonparametric techniques is the use of splines.
Similar to local smoothing, using splines presupposes that the underlying parameter is
smooth.21 As in the kernel case, we compare an ad hoc application of splines with the
wavelet estimator.

We follow standard practice in spline literature by using cubic splines φk, placing a
knot at each data point, and applying a roughness penalty.22 Empirically, expand γ into
γ(t) ≈

∑K
k=1 φk(t). The working model is then

Yt ≈ α+ β1x1,t + β2x2,t + β3x3,t +
K∑
k=1

φk(t)x4,t + εt,

The estimates and the length of expansion K are determined by penalized least squares
criterion

21Sobolev spaces are, for example, function spaces commonly associated with splines.
22See, for example, [99].
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Figure 2.7: Monte-Carlo simulation of 1, 000 repetitions with short range dependent errors
and γ with discontinuity.

n∑
t=1

(Yt − b′X̃t)2 + λb′Rλb,

where X̃t = (1, x1,t, x2,t, x3,t, φ1(t), · · · , φK(t))′, and R is the roughness penalty matrix of
order K defined by R = diag(I4, [

∫
φ′′i φ

′′
j ]1≤,i,j≤k). The roughness penalty coefficient λ is in

turn selected by the generalized cross validation criterion

GCV (λ) = n ·RSS
(n− df(λ))2

where the effective sample size df(λ) = traceX̃(X̃ ′X̃+λR)−1X̃ ′, from 0.005 to 0.01 in steps
of 0.0005.

Figures 2.12b and 2.12c show two typical spline estimates, with visible severe over-
smoothing. Smooth splines are unable to capture discontinuity in the parameter. Fig-
ures 2.12d shows the results of Monte Carlo with 1,000 repetitions, which are clear inferior
to that of wavelet estimator.23

2.6. Time-Varying Systematic Risk

As an empirical exercise, we apply our methodology to estimate time-varying systematic
risk of securities. Our model specializes to a capital asset pricing model (CAPM) with
time-varying beta. Ample empirical evidence exists for the inadequacy of the static CAPM
model and the asset pricing literature contains extensive investigations of the CAPM model
with time-varying betas. [35] extracts the component of the unsystematic risk due to
nonstationary beta under the random walk assumption on beta. One can also adopt a model

23Splines are also computationally much more expensive. In our case, the 1,000 repetitions used in producing
Figure 2.12d took approximately 90 hours. Similarly, the 1,000 repetitions for Figure 2.9b using local
smoothing required approximately 47 hours. In contrast, the same simulation of the wavelet estimator can
be done in well under 1 hour.
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(a) One realization of noisy γ with AR(1) {εt}.
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(b) Corresponding level-dependent threshold esti-
mate of γ with AR(1) {εt}.

0.0 0.2 0.4 0.6 0.8 1.0

1.
0

2.
0

3.
0

Time

G
am

m
a

(c) Corresponding universal threshold estimate of γ
with AR(1) {εt}.
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Figure 2.8: Monte-Carlo simulation of 1, 000 repetitions with short range dependent errors
with discontinuous γ. Sample size reduced from 1, 000 to 250.

where the returns follow a time series specification as in [24]. Time series specifications carry
the implication that changes in the joint distribution of all the securities in the market are
captured by the parameters within the model. This may prove to be inadequate, either
due to simple misspecification or that the time series parameters themselves may vary in
time. [59] shows that the latter case does indeed arise. It was shown that when both
the static model and a parametric time-varying beta model are misspecified, there are
situations where the static model outperforms the parametric time-varying beta model
in pricing risk. Non-constancy of time-series parameters may result in sufficiently severe
misspecification to overcome any additional flexibility gained by allowing for parametric
time-variation. Modelling beta as a arbitrary, not necessarily smooth, function of time
removes such misspecification issues. Also of interest is a model allowing for time-varying
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Figure 2.9: Monte-Carlo comparison of 1000 repetitions with short range dependent errors.
Sample size = 1, 000.
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(a) Local Smoothing.
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(b) Wavelet Estimate.

Figure 2.10: Comparison of Local Smoothing and Wavelet Estimates, Sample size = 250.

alpha rather than beta. For example, [49] shows that the contribution of time-varying beta
to variation in returns is small compared to the contributions of changing risk premia.

We apply the wavelet estimator to daily returns of 10 U.S. stocks in the year 2010, from
January 1 to December 31, in the time varying beta CAPM specification

rt = α+ βtmt + εt, (2.9)

where rt is return of a given security and mt is market return, proxies by that of S&P
500 index. All stocks are inluded in the S&P 500 index. Sample size is 255 trading days.
Results are shown in Figure 2.13. Rather than requiring months or years of past return data,
Equation 2.9 is a high frequency formulation that captures daily variation in systematic
risk.24

24In contrast, for example, the Bloomberg Professional service computes beta using weekly data over a two
year period using a constant beta regression, while Yahoo! Finance uses monthly data over a three year
period. This may be of limited relevance for the increasing number of market participants who have a
trading horizon that is much shorter, e.g. intraday.
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Table 2.1: Spurious Time-Variability

Sample size n = 250 α̂ β̂1 β̂2 β̂3

Mean of max - min 4.96 1.34 2.69 1.36
Mean of estimates at t = 0.5 6.85 5.02 -5.99 2.00
sd of estimates at t = 0.5 2.45 0.63 1.15 0.62
Mean of estimates at t = 0.8 7.00 4.98 -5.97 1.99
sd of estimates at t = 0.8 1.21 0.29 0.52 0.29

Sample size n = 1, 000 α̂ β̂1 β̂2 β̂3

Mean of max - min 4.31 1.08 2.35 1.13
Mean of estimates at t = 0.5 6.98 5.01 -5.98 1.99
sd of estimates at t = 0.5 2.31 0.50 0.96 0.51
Mean of estimates at t = 0.8 7.03 4.99 -6.01 1.99
sd of estimates at t = 0.8 0.87 0.20 0.39 0.23

Monte Carlo of kernel estimates are carried out in 1,000 repititions for sample sizes of
250 and 1, 000. The rows labeled “Mean of max - min" show the Monte Carlo estimates
of estimate variability of time variant part of the model when using kernel smoothing.
The time variability of true γ is |maxt∈[0,1] γ(t)−mint∈[0,1] γ(t)| = 3. For both sample
size of 250 and 1,000, all estimates suggest time-varying behavior from constancy when
none exists.

2.7. Summary

In this chapter we provide a framework for functional estimation of a time-varying pa-
rameter in a linear regression model. Leaving the paradigm of pointwise estimation, we
estimate the parameter over the entire observed period simultaneously. Our approach is
in enabled by incorporating the use of wavelets. Wavelets stand out as the only family
of basis functions that can both efficiently encode spatial inhomogeneity and whiten serial
correlated time series. Both properties are exploited in our methodology. By transforming
the estimation problem into one of estimating wavelet coefficients, we make use of the fact
that the wavelet decomposition of spatially inhomogeneous functions are concentrated at
a few relatively large coefficients. Furthermore, the estimation problems are statistically
independent across resolution levels even when the error terms feature serial correlation.
The allowance for jumps, abrupt breaks, and smooth trends of any type is in contrast with
local smoothing methods, which imposes smoothness assumptions. Local smoothing also
may suggest time-varying behavior when none exists. Wavelets also offer significant com-
putational advantages. In this more general setting with respect to time-varying behavior,
important characteristics of the parameter such as the locations of possible discontinuities
and different types of time trending behavior are captured by the wavelet estimate. Possible
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empirical applications besides the one considered in Section 2.6 include using our technique
to investigate structural breaks in financial market quality (e.g. price impact, liquidity, and
informational efficiency) during an events such as May 6 2010 Flash Crash and the October
15th 2014 bond market flash crash. The latter event lasted approximately 15 minutes dur-
ing which the yield on the 10-year Treasury plunged an unprecedented amount. Techniques
designed for smoothly varying parameters would not be suitable in such a setting where
there is clear evidence of abrupt changes.
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(a) Local Smoothing, optimal bandwidth h = 0.06.

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

t

Wa
ve

let
 th

reh
old

 es
tim

ate

(b) Wavelet Estimate.
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(c) Local Smoothing estimate of α.
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(d) Local Smoothing estimate of β2.
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(e) Spurious time trend in α̂.
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(f) Spurious time varying trend in β̂2.

Figure 2.11: Spurious Time Trend from Local Smoothing, Sample size = 250.
Figures 2.11c and 2.11d show the kernel estimates of a time-invariant parameters α
and β2 respectively, with spurious time-varying behavior. Figures 2.11e and 2.11f
compares kernel estimates of the time-invariant parameters (shown in red) with that
of the time-varying parameter γ (shown in green).
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(a) Wavelet Estimate.
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(b) Smoothing Spline Estimate, roughness penalty
λ = 0.0035.
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(c) Smoothing Spline Estimate, roughness penalty
λ = 0.002.
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Figure 2.12: Comparison of Spline and Wavelet Estimates, Sample size = 250.
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Figure 2.13: Time-varying beta of 10 U.S. stocks, estimated using 2010 daily returns.
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Chapter 3

High Frequency Microstructure

3.1. A Need for Re-examination

Market microstructure literature is still coming to grasp with rapid progression of the
modern market toward higher speed and lower latency, with particular impetus stemming
from events such as the May 6, 2010 flash crash, and the October 15, 2014 bond market
flash crash. Much of this fundamental transformation is driven by the specie of traders—
more precisely trading algorithms—who operate at the edge of the evolving speed envelope.
As pointed out by [92], microstructure research is confronted with basic questions ranging
from the nature of information, scope of market data, and suitability of existing empirical
measures and techniques in analyzing market quality. The literature lacks agreement re-
garding the principal issue on whether algorithmic trading has positive impact on market
quality. Empirical studies offer opposing conclusions. Previous studies based on economet-
ric approaches present results favorable to algorithmic trading. For example, based on a
regression of spread-based measures on a proxy for algorithmic trading activity, [71] con-
clude that that algorithmic trading enhances the informativeness of quotes and improves
liquidity in NYSE limit order books. [26] show similar findings for NASDAQ. In estimating
an econometric model of price using NASDAQ data, [69] concludes that algorithmic trading
activity contributes more to the efficient martingale component and also lowers short-term
volatility and decreases spreads. On the other hand, putting aside econometric evidence,
tactics used by algorithmic traders for market manipulation have also been documented.
For example, [20] discusses “stuffing", “smoking", and “spoofing" on platforms including
NYSE and NASDAQ.1 In this chapter we offer, in a single setting on one trading platform
where these two apparently contradictory findings come together. We reconcile the findings
by arguing that the apparent improvement in market quality measures is observed precisely
because of certain predatory trading behavior by algorithmic traders.

1For example, “spoofing" is a bait-and-switch tactic which involves submitting and canceling orders with no
intention of execution, with the goal of swaying prices in a favorable direction.

35



We make use of a microstructure event that intensified algorithmic trading activity
in a main foreign exchange (FX) interdealer trading venue. As an asset class, the FX
market is the largest market in the world. The spot FX market daily turn over, 1.5 trillion
USD in 2013, is approximately 7 times that of equity markets.2 A significant portion of
this volume, estimated at 35%, are interdealer trades between large financial institutions.
Given the immensity of the FX market and its potential impact, how microstructure impacts
informational relationship between FX market participants is an important question. On
March 7, 2011, Electronic Broking Services (EBS), one of the two main interdealer FX
trading platforms, implemented a change of tick size, i.e. minimum price increment, from
four to five decimal places —from pip to decimal pip pricing, in FX market vernacular.3

Using this microstructure change which increased algorithmic trading activity, we study
the changes in measures of adverse selection and analyze trader behavior that using high-
frequency limit order book evolution.

As our data is at 100 millisecond frequency, we treat the exchange rate as a continuous-
time semimartingale rather than a discrete time series. From the microstructure point of
view, order flow represents noisy information flow, from liquidity consumers/market takers
to liquidity providers/market makers (see. e.g. the seminal papers [83], [62] and their
descendants). In a limit order book market, the jump component of the semimartingale price
process directly captures the most conspicuous part of market taker’s liquidity consumption.
Jumps in prices are caused by large market orders.4 Serial correlation properties of jump
component of price therefore indicate the information content of large order flows. For
example, staggered jumps in the same direction arriving in a clustered manner show that
the market orders responsible for the jumps are driven by market taker’s private information.
Conversely, a jump time series which is white noise means large market orders convey no
information. Such jumps are caused by market orders placed for exogenous liquidity reasons.
Analyzing the price process spanning the entire two years of 2010 to 2011, we find that the
jump time series reject strongly the null hypothesis of no serial correlation before tick size
change and there is no serial correlation in large order flow after adoption of decimal pip.
Similar to [69], we find that price becomes more martingale-like as algorithmic trading
activity intensifies.

In addition to the exchange rate process, the econometric component of our analysis
considers the entire limit order book during the same period. Decomposing the quoted
spread into components due to transaction cost, inventory risk, and adverse selection shows

2See the Bank for International Settlements (BIS) report: http://www.bis.org/publ/rpfx13fx.pdf. The
spot market makes up 37% of the global FX market. Other currency related instruments include FX swaps,
forwards, currency swaps, and options.

3“Pip" is abbreviation for Price Increment Point.
4To the best of our knowledge, price jumps caused by market makers adjusting quotes by large discrete
increments –known as price “gapping"– are rare occurrences for electronic order book markets in general,
apart from singular catastrophic events like the Flash Crash. We do not observe any price gapping in our
data.
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that the adverse selection component decreases after tick size change. We also consider an
empirical proxy of adverse selection defined using the effective spread and realized spread.
We find clear negative level shift in the proxy time series after tick size change. Therefore,
adverse selection measures decrease unconditionally for market makers, not just conditional
on large orders.

In line with previous studies, uniform improvement in market quality measures might
suggest that the speed of algorithmic traders improves liquidity and efficiency of prices,
resulting in a positive shift in market quality. On the other hand, we also observe emergence
of high-frequency predatory trading behavior by algorithmic traders after tick size change.
We show that algorithmic traders exploit trading options made avaiable by tick size change
at the expense of other traders. After tick size change, the shape of the limit order book
exhibits pronounced price clustering at previous tick size. Our data suggest strongly that
this peculiar shape is due to manual market makers’ failure, or inability, to adapt to new
decimal tick size. The refusal of manual market makers to adapt to new decimal tick
size accentuates the easiness with which algorithmic market makers can employ the queue
jumping strategy already made available by tick size change.

Based on exogeneity of tick size change in this setting, our results is a case study on how
a microstructure event affect the informational relationship between market participants
and how algorithmic trader behavior may distort market quality measures. This is the
first paper to reconcile the apparent improvement in market quality due to the presence of
algorithmic traders and their predatory market making activity.

The rest of this chapter is organized as follows. Section 3.2 reviews related literature
covering the three strands of technical part of our analysis: high frequency continuous-time
econometrics, limit order book econometrics, and tick size change. Section 3.3 summarizes
relevant institutional details of the interdear FX market. Section 3.4 gives a description of
EBS order book data. Section 3.5 considers the structural change in the jump component
of the price processes before and after tick size change. En route to our analysis of serial
correlation of jumps, we confirm stylized facts regarding the foreign exchange market. Sec-
tion 3.6 discusses components of the quoted spread before and after tick size change. In
addition to adverse selection, we confirm the market maker’s inventory risk decrease after
tick size change as expected. Section 3.7 discusses the realized spread before and after tick
size change and its implication on information asymmetry. Section 3.8 explains the observed
reduction in adverse selection by presenting an analysis of the shape of the order book and
its implications regarding market participants behavior.
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3.2. Related Literature

As appropriate for our high-frequency data, we model the price process by a continuous-
time semi-martingale.5 The econometric analysis of such processes is first considered by
[15] which separates quadratic variation into its continuous and jump components. The
quadratic variation is estimated by realized variance and integrated volatility estimated
by realized bipower variation, with the difference between the two provides a consistent
estimate of the jump contribution to price variation. [16] provide an asymptotic distribution
theory to construct non-parametric tests for the presence of jumps; this is the test we use in
testing for jumps. Finite sample refinements have been offered by [78] and [17]. Studies that
apply this methodology to data (see e.g. [6], [7], and [8] in the context of equity markets)
have been confined to jump and volatility estimation. Rather than merely detecting jumps,
we focus on the informational implications of jump behavior. We do, however, confirm
stylized facts regarding seasonality of high frequency markets en route.

In dealing with the trade-off between approaching the high-frequency limit and facing
contamination by microstructure noise, we adopt the same approach of [6] in comparing the
difference between realized volatility and bipower variation, which consistently estimates
the jump contribution to price variation in the absence of microstructure noise, across
different sampling frequencies. Our sampling frequency is every 30 seconds; we are not
aware of any other studies that samples the price process at a frequency higher than every
5 minutes. An alternative approach introduced by [80], [98] and [97] is to exploit the data
at the highest frequency but uses local pre-averaging to produce noise reduced observations.
[36] construct noise –and outliers– robust estimator using pre-averaging method. Rather
than merely seeking to escape the frequency zone occupied by microstructure noise, local
pre-averaging requires statistical assumptions on the nature of microstructure noise that
might not be empirically justified for the EBS market we consider.

Microstructure theory divides the quoted spread into three components: expected loss
due to adverse selection ([62], [41]), inventory risk ([105], [5], [73]) and transaction cost
([102]). The trade indicator model of [76] has been used extensively in analyzing components
of the spread, in the context of equity markets. For example, [108] examine the NYSE and
NASDAQ spreads for the same stocks. An alternative way to estimate adverse selection in
the market is [48] (see also [47]), probability of informed trading model. Their volume-based
approach bypasses the spread and is suitable for markets where algorithmic brokerage is
prevalent. Considering the make-up of marker participants in the inter-dealer FX market,
we use the [76] model in decomposing the spread.

The microstructure perspective on foreign exchange markets originated with [89], which
tests validity of structural microstructure models and confirms both the informational and
inventory-control aspects of market maker in reaction to incoming order flow. In this paper,

5Asset pricing theory postulates that in an arbitrage-free market, prices necessarily follow a semi-martingale.
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we focuses on the informational aspect. [94], using the variance decomposition methodology
of [68], showed that adverse selection contributed to 60% of quoted spread in one week
USD/DEM data from Reuters D2002-2 dealing system. [23] find also that adverse selection
component makes up for a large portion of spread in the trade indicator model of [76],
although dealer’s own prices do not reflect inventory control effort. In this paper, we
investigate the change of adverse selection component due to a specific microstructure event,
namely tick size change.

Tick size drew the attention of microstructure literature as the minimum price incre-
ment in the US equity markets moved from one-eighth to one-sixteenth, and finally decimal
pricing (see, for example, [11], [63], and [104]). Extensive studies have been done on the
relationship between tick size and informational structure for equity markets, with a di-
verse array of conclusions reached. [67] advances empirically the position that small tick
size benefits professional traders at the expense of large order traders and public traders
who use limit orders. [60] examines NYSE data from approximately two months before
and after decimalized pricing of January 29, 2001. Also using methodology of [76], they
found that adverse selection component of the spread did not change significantly across
decimalization, with the possible explanation that pre-decimalization spread was artificially
too large, allowing dealers to charge excessive order processing cost. To the best of our
knowledge, there is no discussion in the literature on effect of tick size on adverse selection
in the FX market. We provide a multi-faceted analysis on effect of tick size change on ad-
verse selection and an empirical explanation, based on a detailed examination of the limit
order book, for the observed results.

Our analysis of the limit order book shows that price clustering becomes a distinguishing
characteristic of manual trader behavior only after tick size change. The price clustering
phenomenon has previously been observed in equity markets (see e.g. [77] and [93]) and
derivative markets ([66]). Microstructure literature offers four conjectures as possible rea-
sons for price clustering. According to the price resolution hypothesis proposed by [14],
traders resist quoting at higher resolution when facing greater uncertainty about an asset’s
fundamental value. The negotiation hypothesis of [85] posits that a small set of prices eases
the negotiation process by precluding frivolous offers and counter-offers. The attraction
hypothesis of [64] states that traders quote-cluster at certain prices due to their specific
preferences. Finally, the collusion hypothesis proposes that dealers may collude to quote at
larger price increments in order to get larger profits ([37]). Price resolution, negotiation and
collusion hypotheses can be immediately rejected in our context. The attraction hypothesis
is similar in spirit to what we observe. On the price clustering aspect of our analysis, this
paper is different from previous studies in that we show the price clustering preference of a
sub-population of market makers–the manual traders–is revealed by tick size change.
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3.3. Interdealer FX Market

While algorithmic trading has become a pre-requisite for market making in equity mar-
kets, manual traders still play an important role in the interdealer foreign exchange market,
where large banks and institutions trade with each other in units of million, as liquidity
suppliers.6 Also in contrast to the highly fragmented equity market, the FX market practice
of trading via “vehicle currencies" leads to liquidity concentration not just in trading venues
but a handful of currency pairs.7 Trading in the interdealer FX spot market is dominated
by two venues. Reuters Matching is the primary trading venue for commonwealth and
emerging market currencies and EBS is the leading liquidity provider for currency pairs
EUR/USD, USD/JPY, EUR/JPY, USD/CHF and EUR/CHF.8

Given the monopoly of the EBS platform in the interdealer market on major currencies,
manual traders–whom we observe to be forced to concede trading options–did not relocate
their trading after tick size change. Given the structure of the market, an individual manual
trader has no incentive to transfer his liquidity elsewhere alone and there is positive network
externality only if all manual traders coordinate to move their trading activity en masse.
It is difficult to implement such a coordinated move given the current structure of the
interdealer market.9 On the contrary, limit order book evidence points to manual traders
remaining in the market after tick size change.

The causal relationship between the changes we observe and intensified algorithmic
trading behavior is based on exogeneity of tick size change in the FX institutional environ-
ment. First, we address the possibility that tick size change is correlated with macroeco-
nomic factors. Specifically, as the primary source of information impacting the FX market
is significant macroeconomic events, of possible concern to us is the possibility that tick
size change coincided with a reduction in intensity or number of economic informational
events. It is unlikely that reasons behind a microstructure change is correlated with the
macroeconomy. Furthermore, significant economic events that impact the FX market are
directly visible via exchange rate volatility and we do not observe any changes in volatility
patterns–see Figure 3.5, Figure 3.6, and Table 3.1 before and after tick size change. On
the microstructure level, it is unlikely that anticipation effect drives the changes we ob-
serve in trader behavior that are relevant to our results. The potential quote-placement

6For example, the Swiss National Bank was an active manual trader on the EBS platform during the period
we analyze.

7For example, a trader converting Canadian dollar to Mexican Peso will probably first trade Canadian dollar
for a more liquid vehicle currency such as the US dollar then trade US dollar for Peso. The two dominant
currencies are the US dollar and Euro. The EUR/USD currency pair accounts for 28% of global FX
turnover. Individually the US dollar and Euro are involved in approximately 75% and 46% of all spot
transactions respectively. See, for example, the BIS report: http://www.bis.org/publ/rpfx10.pdf.

8FX market convention is to list base currency first. For example, EUR/USD should be read as “US dollar
per Euro".

9The proliferation of algorithmic trading on EBS and Reuters led a group of leading FX banks to consider
the possibility of forming a bank-only trading platform called FXPure in 2011. This project was eventually
abandoned due to lack of interest.
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strategies of both manual and algorithmic traders arguably remained the same after tick
size change. In fact for manual traders, their actual quote-placements did not change. For
trading algorithms, cost in adjusting to decimal pip is likely to be low. Jumping in front of
static orders may already be part of existing repertoire of a trading algorithm but binding
spread prior to decimalization prevented execution of such tactic.10 More importantly, it is
highly unlikely that algorithmic traders were anticipating trading options made available by
manual trader behavior–manual traders would have to alert algorithmic traders in advance
of their concession of trading options.11

3.4. Description of Data

The data used in this study is the EBS limit order book at highest resolution available,
which includes 10 levels of quotes on both the bid and ask sides at 100 milliseconds frequency
for EUR/USD currency pair. This is the same as tick-by-tick snapshots of limit order book
seen by traders. The deal time is rounded to the nearest 100 millisecond and only best
buyer or seller initiated transactions are reported. Orders in EBS must be submitted in
units of millions of the base currency. The period we analyze is the entire two year period
from January 2010 to December 2011. There are approximately 500 million snapshots of
the EUR/USD order book and approximately 18 million recorded deals. FX markets trade
continuously and each trading day in EBS is 24 hours beginning and ending at 17:00 US
Eastern Standard Time (21:00 Greenwich Mean Time). We exclude thin weekend trading
periods and holidays as the liquidity tend to be extremely limited during these periods.
The time stamps in the data are in GMT which varies due to daylight savings. We control
for daylight savings time and standard time.12 We present our results on the EUR/USD
currency pair.13

3.5. Jumps

3.5.1. Semi-martingale Model of Price

According to asset pricing theory, an arbitrage-free price process must be a semi-
martingale. Following [6] and [4], for econometric tractability we assume the prices, currency
exchange rates in our case, follows an Itô-semimartingale. In this section, we summarize
the model of price and econometric methodology.

10In our sample, the binding probability of spread was approximately 60% during the 14 months before tick
size change and 1% during the 10 months after.

11Not only is there no anticipation effect, changes in adverse selection measures as well as the pattern
of trading behavior between manual and algorithmic traders we describe below persist throughout our
sample—10 months after tick size change was instituted.

12Similar conventions were adopted by [9] and [33].
13Results on the other four major currency pairs do not differ qualitatively from EUR/USD.
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An Itô semi-martingale is a stochastic process of the form14

y(t) = α+
∫ t

0
σ(s)dw(s) +

N(t)∑
i=1

ji

where the summand processes are independent and

1 α is a process for which almost all paths are continuous and of finite variation.

2 w is standard Brownian motion.

3 The Itô integrand σ, the spot volatility process, is pathwise strictly positive, cádlág,
and locally bounded away from zero.

4 N(t) is a finite activity, simple counting process with, for all t > 0, N(t) <∞ almost
surely and {ji} is a countable family of non-zero random variables.15

5 (α, σ) is independent of w.

Assumptions 1 and 2 describe general Itô-semimartingales. The strict positivity of the
spot volatility process can be assumed per Assumption 3 because thin weekends and holidays
are excluded from our data. Assumption 4 specifies that, with probability 1, sample paths
of the price process have finitely many jumps on [0, t] for all 0 < t <∞.16 This assumption
is empirically justified by that average time-between-trades in our data is approximately
2.5 seconds. Assumption 5 precludes leverage effect, i.e. the negative correlation between
volatility and returns. The FX market is subject to factors such as central bank interventions
that make the existence of leverage effect not apparent.

3.5.2. Estimation of Volatility and Jumps

Denote the jump component of y(t),
∑N(t)
i=1 ji = y(t)− y(t−), by ∆y(t). The integrated

variance of y(t) is c(t) =
∫ t

0 σ
2(s)ds < 0 for all t <∞.17 The quadratic variation, or square

bracket process, of y(t) is defined as

[y](t) = c(t) +
∑
s∈[0,t]

(∆y(s))2

and can be consistently estimated by realized volatility

[y](t) = plimM→∞

M∑
j=1

(y(tj)− y(tj−1))2

14Adaptedness with respect to an underlying filtration is assumed throughout this section. We suppress
notation for readability. Similarly, stopping times are measurable with respect to the underlying filtration.

15{ji}, and the inter-arrival times of N(t) are therefore time series and analyzable using discrete-time
techniques, as is done in 3.5.6.

16A semimartingale can have infinitely many jumps on a compact interval, e.g. an infinite activity Lévy
process.

17By Itô isometry, c(t) = V ar(
∫ t

0 σ(s)dw(s)).
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where t0 = 0 < t1 < · · · < tM = t are stopping times with limM→ sup1≤j≤M tj − tj−1 → 0
almost surely.18 We use the bipower variation technology of [16] for separating integrated
volatility and jump contribution.19 Define the notation

µr = E[|u|r] = 2
r
2

Γ(1
2(r + 1))
Γ(1

2)
, where u ∼ N (0, 1)

where u ∼ N (0, 1) and Γ denotes the Gamma function. For r ∈ (0, 2),
1

µrµ2−r
{yM}[r,2−r]i

p→
∫ hi

h(i−1)
σ2(u)du

The difference between realized volatility and bipower variation can therefore be used to
detect jumps. According to [16], under the null that the sample paths have no jumps,

log(
∑[ t

δ
]−1

j=1 y2
j )− log( 1

µ2
1

∑[ t
δ

]−1
j=1 |yj ||yj+1|)

(0.6091 ·max{ δt ,
∑[ t

δ
]−3

j=1 |yj ||yj+1||yj+2||yj+3|

(
∑[ t

δ
]−1

j=1 |yj ||yj+1|)2
})

1
2

converges in law to N (0, 1).

3.5.3. Microstructure Noise

To choose a sampling frequency, we compare the difference between realized volatility
[y] and bipower variation 1

µ2
1
{yM}[1,1]

i across different frequencies. In the absence of mi-
crostructure noise, the difference consistently estimates the quadratic variation of the jump
component:

{yM}[2]
i −

1
µrµ2−r

{yM}[r,2−r]i
p→

N(h(i))∑
k=N(h(i−1))+1

j2
k

The stabilization of the difference with respect to frequency therefore indicate absence of
microstructure noise. For all five major currency pairs in the EBS market, hourly averages
over the entire year of 2011 are computed for both realized volatility and bipower variation.
It is interesting to observe that the difference {yM}[2]

i − 1
µrµ2−r

{yM}[r,2−r]i stabilizes around
the same frequency, every 30 seconds, for all five pairs. Figure 3.1 shows the results for
EUR/USD and Figure 3.2 for USD/JPY. The magnitude of the stabilized gap, however,
decreases with respect to the degree of liquidity empirically observed in the market. The
most liquid currency pair, EUR/USD has the smallest difference between realized volatility
and bipower variation at the stabilized frequency of 30 seconds. In other words, empirically,
microstructure noise disappears at the same frequency for all five major currency pairs. The

18In our specific case, we choose to sample at regular time intervals. So the stopping times are in fact
deterministic.

19Informally, the bipower variation does not see the contribution of jump component because large jumps
do not occur between two adjacent intervals as the intervals become sufficiently small.
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more liquid a currency pair, the more of its variation is due to the continuous part of the
exchange rate process, instead of the jump component.

Figure 3.1: RV - BP, EUR/USD
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Figure 3.2: RV - BP, USD/JPY
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3.5.4. Confirmation of Stylized Facts

En route to our results on serial correlation, we confirm two stylized facts regarding
the foreign exchange market. Unlike the U-shaped volatility smile of (US) equity market,
the FX market intraday volatility typically is hump-shaped with two peaks (see also [57],
Figures 6.1 and 6.2). While trading can be done at any time, peak volatility occur at
the opening times of US and European markets. There may be a smaller third peak that
coincides with the opening of Asian markets. Two sample days, one before and one after
tick size change, are shown in Figures 3.3 and 3.4. Furthermore, extreme high volatility
–orders of magnitude larger than that of the typical intraday seasonality– tend to coincide
with macroeconomic news releases or otherwise significant economic events. We show some
representative instances of such news-driven high volatility periods for EUR/USD currency
pair. Figures 3.5 and 3.6 show the estimated hourly integrated volatility of EUR/USD
of 2010 and 2011 respectively. The integrated volatility time series show clearly visible
peaks, the eight highest of which are circled in red. All eight periods of extreme high
volatility coincide with significant economic news or events. Table 3.1 lists them below in
chronological order, along with coincident economic events. The hourly periods of estimated
extreme high volatility are given in Greenwich Mean Time (GMT), as is customary in FX
market.
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Table 3.1: EUR/USD Extreme Volatility Periods

Date GMT Corresponding economic Event

2010/05/06 18:00-19:00 The Flash Crash.
2010/05/19 14:00-15:00 Germany surprises the market by unilaterally banning short-selling against stocks and

bonds, including sovereign bonds.
2010/05/20 17:00-18:00 European stocks plunge amid split over response to sovereign debt crisis.
2010/11/03 18:00-19:00 The Federal Reserve announces major quantitative easing plan to buy $600 billion in

long-term treasuries over the next eight months.
2011/06/29 12:00-13:00 The Greek parliament passes new austerity package measures amid unrest.
2011/08/09 18:00-19:00 The Federal Reserve announces it intends to keep interest rate at exceptionally low

levels –between 0 to 0.25 percent– through mid-2013.
2011/09/06 08:00-09:00 The Swiss National Bank announces decision to no longer tolerate EUR/CHF below

CHF 1.2.
2011/11/30 13:00-14:00 The Federal Reserve and central banks around the world announce joint policy to

alleviate the Eurozone crisis.

All macroeconomic news announcements are captured on the hour. For example, the
Federal Reserve announcement regarding the Fed Funds rate are consistently made within
a few minutes of 2:15pm US Eastern Standard Time (EST) of FOMC meeting day, which
is 18:15 GMT. The joint announcement on 2011/11/30 by the Federal Reserve, Bank of
Canada, Bank of England, Bank of Japan, European Central Bank, and Swiss National
Bank occurred on 8:00am EST, which is 13:00 GMT as shown in the table.20 Similarly, the
Flash Crash occurred on 2:45pm EST, which is 18:45 GMT. We point out that, unlike equity
markets, where price discovery is driven within-firm factors such as corporate governance
and idiosyncratic innovations as well as industry wide shocks, exchange rate dynamic in the
FX market reflects informational events such as central bank announcements.

20See, for example, http://www.federalreserve.gov/newsevents/press/monetary/20111130a.htm and
https://www.ecb.europa.eu/press/pr/date/2011/html/pr111130.en.html for corresponding press re-
leases of the Federal Reserve and European Central Bank respectively.
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Figure 3.3: Intraday Seasonality of EUR/USD, 2010
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Figure 3.4: Intraday Seasonality of EUR/USD, 2011
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Notes:Intraday seasonality of EUR/USD volatility before and after tick size change.

Figure 3.5: Integrated Volatility of EUR/USD, 2010 Figure 3.6: Integrated Volatility of EUR/USD 2011

Notes: 2010-2011 estimates of hourly integrated volatility of EUR/USD before and after tick size change.
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3.5.5. Jumps Before and After Tick Size Change

We first show the empirical findings from applying the jump estimation methodology

outlined in Section 3.5.1. For each currency pair, we estimate the size and timing of the

jumps for the two years 2010 to 2011 at the frequency of every 30 seconds. In other words,

given the observed sample path of y(t), we estimate the realization of the jump time series

{ji} (indexed by random arrival times of the counting process N(t)). Figures 3.7 and

3.8 show the histogram of estimated realization of {ji} for EUR/USD, i.e. the empirical

distribution of jump sizes before and after tick size change, respectively. Not surprisingly,

introduction of decimal pip cuts out a neighborhood around zero from the distribution

of jump sizes. Figures 3.11 and 3.10 show the histograms of estimated inter-arrival times

before and after tick size change. Both can be reasonably fitted by exponential distributions.

Figures 3.11 and fig:Daily-Jumps-After shows the daily time series of number of jumps,

spanning the years 2010-2011.

3.5.6. Serial Correlation Properties of Jumps

The serial correlation properties of the jump component ∆y of the currency pair EUR/USD

are reflected in the serial correlation properties of the jump time series {ji} and inter-arrival

times of jumps. We test {ji} for serial correlation and fit appropriate time series models

to the inter-arrival times. The data generating process of jumps undergoes unambiguous

structural change in serial correlation properties before and after tick size change. The

reduction (complete dissipation, in the case of {ji}) of serial correlation in both jump time

series and inter-arrival times means the jump component
∑
s∈[0,t] ∆y(t) of exchange rate

becomes significantly more martingale-like after tick size change.21

Inter-arrival times Inter-arrival times exhibit autocorrelation both before and after tick

size change. Fitting auto-regressive models to the before and after inter-arrive times series

yields AR(27) and AR(8) models, respectively. Therefore the autoregressive lag decreases

sharply across tick size change. Diagnostic tests of residuals, shown in Figures 3.13 and

21For example, jump sizes and inter-arrival times of the compound Poisson process –a basic building block
of Lévy processes– are both white noise time series.
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3.14, confirm model specification of the autoregressive model. The arrivals of jumps are

significantly less clustered after tick size change.
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Figure 3.7: Jump Sizes of EUR/USD, Before Tick Size Change
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Figure 3.8: Jump Sizes of EUR/USD, After Tick Size Change
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Notes: Figures 3.7 and 3.8 show the histograms of jump sizes before and after tick size change.

Figure 3.9: Jump Inter-Arrival Times Before Tick Size Change, EUR/USD
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Figure 3.10: Jump Inter-Arrival Times After Tick Size Change, EUR/USD
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Notes: Figures 3.9 and 3.10 provide the histograms of jump inter-arrival times before and after tick size change. Exponential distributions are fitted, with results
shown in 3.2.
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Figure 3.11: Daily Number of Jumps of EUR/USD, Before Tick Size Change
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Figure 3.12: Daily Number of Jumps of EUR/USD, After Tick Size Change
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Notes: Figures 3.11 and 3.12 illustrate the number of daily jumps before the tick size change respectively.

Figure 3.13: Jump Inter-Arrival Times, Before Tick Size Change
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Figure 3.14: Jump Inter-Arrival Times, After Tick Size Change
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Notes: Autoregressive time series fit and diagnostics for jump inter-arrival times. The Akaike Information Criterion achieves the minimum value of zero for the
AR orders chosen.
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Distribution of jump sizes Jump size distributions are centered near zero both before

and after tick size change. The kurtosis of the distribution shows heavy tail both before

and after tick size change. Nonparametric Mira test for symmetry rejects the unconditional

jump size distributions before tick size change at p < 2.2 × 10−16 and does not reject

the distributions after tick size change at 1% level of significance. Jumps sizes having a

symmetric distribution centered at zero imply that, in the long run, large market orders

have zero permanent price impact, implying no information content.

Jump time series Taking the time series dimension into account, the Box-Ljung serial

correlation test rejects the jump sizes time series {ji} before tick size change at 1% sig-

nificance level with p = 0.005544. After tick size change, the jump sizes time series has

p = 0.8185. The time series sample sizes are 10,150 and 4,214 before and after respectively.

The lag chosen for the Box-Ljung test is 40.22 Results are summarized in Table 3.2. A

jump process driven by market taker’s private information necessarily has serial correlation

both in direction and arrival times. Less clustering of jump arrivals, increased symmetry

and disappearance of serial correlation in jump sizes all point to a reduction in informa-

tion content in jumps, in both time and direction dimensions. We can conclude that for

the EUR/USD currency pair, large liquidity consumption after tick size change is much less

likely to be driven by market taker’s private information than before.23

3.6. Components of Quoted Spread

Jumps in currency prices only directly captures large liquidity consumption activity. To

provide further evidence of curtailment of information asymmetry across tick size change,

we examine the limit order book using the model of [76]. The model posits that

∆Pt = δ + S

2Qt + (α+ β − 1)S2Qt−1 − α(1− 2π)S2Qt−2 + εt

22The less powerful non-portmanteau Box-Pierce and Durbin-Watson tests are also performed. Although
they are unable to reject, both p-values increase after tick size change.

23While serial correlation of large order flow may also be due to traders splitting up larger orders, it not
clear that occurrence of order splitting in the interdealer FX market is as common as in equity market.
For example, EBS offered no iceberg order type—a common microstructure product on equity trading
venues—during the two year period we analyze, possibly due to lack of demand. In any case, the main
driver that we argue to be behind the drastic reduction in serial correlation— manual market makers being
forced to take the market after tick size change—is orthogonal to order splitting considerations.
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Table 3.2: Jump Component of EUR/USD Process Before and After Tick Size Change

Inter-arrival times Before After

Daily average number of jumps 33.28105 19.60094
Arrival intensity (exponential fit) 0.0003982155 0.0002353829
Autoregressive order 27 8

Jump sizes Before After

Mean 6.286406× 10−6 1.059269× 10−5

Standard deviation 0.000368071 0.0004490323
Skewness 1.191105 −0.1275948
Kurtosis 67.60528 4.543458
Mira symmetry test p < 2.2× 10−16 p = 0.01928
Box-Ljung Test p = 0.005544 p = 0.8185
Box-Pierce Test p = 0.3558 p = 0.468
Durbin-Watson Test p = 0.1767 p = 0.2297

where Pt is the transaction price, S is the traded spread, Qt is the trade indicator process,

1 if buyer initiated and −1 if seller initiated. The parameter α is the portion of S due to

adverse selection, β is the portion of S due to inventory risk, and π is the probability of a

trade flow reversal. The trade indicator process is assumed to follow a Markov process

E[Qt−1|Qt−2] = (1− 2π)Qt−2

The error term εt contains both public information and the difference between traded

spread S and the quoted spread. The latter may include, for instance, rounding error. The

model is estimated using generalized method of moments (GMM). To enter a frequency

where microstructure effects are explicitly present, we choose to aggregate the data every

5 seconds. Table 3.3 shows the results for EUR/USD. The traded spread before the tick

size change is estimated to be approximately 6.4 decimal pips, while the minimum possible

quoted spread is 1 pip. This agrees with the fact that there was binding pressure on the

spread prior to tick size change. Before tick size change, the quoted spread was binding

approximately 60% of the time.24 The estimates of α and β sum to greater than 1 is also

likely due to pressure on quoted spread. The average quoted spread is approximately twice

that of estimated spread. Scaling the estimates of α, and β, before tick size change by

24In contrast, the binding probability of quote spread after tick size change is 1%.
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0.5 still shows a significant reduction in adverse selection component of spread across tick

size change. After tick size change the estimated traded spread is around 8.5 decimal pips,

which is very close to the average quoted spread.

Table 3.3: Estimated EUR/USD components of spread, 5-seconds, Sample size = 163, 069.

Components of the Spread Before After

α 0.85 0.17
β 1.05 0.23
π 0.21 0.31
S 0.00006 0.00008
δ 0.00014 -0.00059

All estimates are significant at 1% level of significance.

The estimated adverse selection component α decreases across tick size change. Esti-

mates of the other parameters are also of interest. The inventory risk component β also

decreases across tick size change. This is as we expect, since decimalization means market

maker suffers smaller loss in disposing potentially toxic order flow. The probability of trade

flow reversal π increases after tick size change. Therefore trade direction becomes less per-

sistent not just for large liquidity consumers, as shown in Section 3.5.6, but for all liquidity

consumers. The change in α and π are consistent with our hypothesis that tick size change

attenuates the market maker’s adverse selection problem.

3.7. Realized Spread

In addition to econometric evidence, we consider the empirical measure of realized spread

of the order book before and after tick size change. Realized spread at time t, denoted by

RSt, is defined:

RSt = 2Qt(Pt −Mt+s)

where Pt is the transaction price at time t, Qt is the trade direction indicator, and Mt+s is

the midpoint at time t+ s for some chosen time interval s.25 RSt is the difference between

current deal price and the quoted midpoint at a future time. After a transaction at time
25Customary choice of lag s of realized spread is 5 minutes (e.g. [71]). This is not appropriate in our
high-frequency setting.
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t, price movements favorable to the market maker from t to t + s results in positive RSt,

and vice versa.26 According to our analysis in Section 3.5.3, microstructure effect ceases

to be present at frequency lower than every 30 seconds. Our computation shows that the

realized spread exhibits the same behavior across tick size change at all frequencies higher

than every 30 seconds, that is, under different degrees of microstructure effect.

Figures 3.15 and 3.17 show the daily average realized spread of EUR/USD currency pair

for 2011, before and after tick size change at frequencies of every 5 and 10 seconds. There is a

clear positive shift in realized spread across tick size change. For EUR/USD, price movement

for the market marker tend to be unfavorable with negative realized spread before tick size

change, while realized spread is nearly zero after tick size change. The effective spread at

time t is defined by ESt = |Pt −Mt|. ESt measures the revenue of the market maker from

supplying immediacy. As a proxy for adverse selection of market making, we use the limit

order book statistic

ESt −
RSt

2
i.e. revenue from supplying immediacy minus loss due to adverse price move. Similar to

that of realized spread, the behavior of the adverse selection proxy is consistent with respect

to different levels of microstructure effect. Figures 3.16 and 3.18 show a clear downward

shift for EUR/USD across tick size change at frequencies of every 5 and 10 seconds.

26Realized spread was shown to not reflect informed order flow by [40] in a specific equity setting where the
informed trader is a corporate raider with long-lasting private information on how she may create value
by influencing corporate governance. The information governing the FX exchange rates is fundamentally
different—with the source of information being mostly macroeconomic events, as implied by the analysis
in Section 3.5.4—and there is no analogous scenario in our setting. In our high-frequency setting, we take
the restrictive definition that information is that regarding order flow. Realized spread increases after tick
size change because it creates additional uninformed order flow from former market makers.
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Figure 3.15: EUR/USD Realized Spread, Five Second Frequency
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Figure 3.16: EUR/USD Adverse Selection Proxy, Five Second Frequency
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Notes: Realized spread is measured at 5 seconds lag in Figure 3.15 and computed using 1.3 million deals before the tick size change and 7.3 million deals after the
tick size change. Time series of daily averages are plotted. Tick size change is demarcated by blue line. Adverse selection proxy before and after tick size change
in Figure 3.16 shows clear downward level shift.

Figure 3.17: EUR/USD Realized Spread, Ten Second Frequency
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Figure 3.18: EUR/USD Adverse Selection Proxy, Ten Second Frequency
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Notes: Realized spread is measured at 10 seconds lag in Figure 3.17 and computed using 1.3 million deals before the tick size change and 7.3 million deals after the
tick size change. Time series of daily averages are plotted. Tick size change is demarcated by blue line. Adverse selection proxy before and after tick size change
in Figure 3.18 shows clear downward level shift.
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3.8. Market Participant Behavior

First we fix terminology by using the classification of traders in FX market given in

the BIS 2011 report.27 Market participants are divided into two major categories, Manual

Traders and Automated Traders. Manual Traders use proprietary EBS workstations, for

manual order management.28 Automated Traders place orders algorithmically with little or

no human intervention.29 Automated Traders are capable of placing orders at a frequency

far exceeding that for Manual Traders. Manual and automated market makers make up

two distinct species of liquidity providers on the EBS platform. Manual market makers

place limit orders for inventory or liquidity reasons, whereas their automated counterparts

engage in opportunistic market making. Perhaps surprisingly, in sharp contrast with equity

markets, manual trader presence dominates the interbank FX market. Using EBS client

identity data, [103] makes the following observations:

• 75% of all traders in the EUR/USD pair are manual traders in 2011.

• The orders of manual market makers are filled in about 50% of the time before can-

cellation. In contrast, algorithmic market makers cancel 93% of their quotes.

• Manual market makers place large limit orders while automated market makers tend

to submit orders of the minimum size one million. In fact, all orders larger than 4

million are from the manual market makers.

The clear reduction in adverse selection we observed in Sections 3.5.6, 3.6, and 3.7 can be

explained by market participant behavior before and after tick size change. To infer market

participant behavior, we now undertake an analysis on the evolution of shape of the limit

order book. While we do not possess trader identities, a snapshot-to-snapshot inspection

of the book shows clearly the behavior of automated market makers. Distributions of order

27See http://www.bis.org/publ/mktc05.pdf for more details. The same classification is adopted by EBS
(see e.g. [103] and [32]).

28See http://www.ebs.com/access-methods/ebs-workstation.aspx for details on EBS workstations pro-
vided to Manual Traders.

29See http://www.ebs.com/access-methods/ebs-ai.aspx for details on EBS interface technology for au-
tomated trading.
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sizes and quote price placements obtained from our anonymous data set are both consis-

tent with snapshot-to-snapshot activity of automated traders and known characteristics of

traders cited above. The tick size change revealed distinct preferences of the two species of

market makers. Our results indicate that, while automated market makers engage in queue

jumping after tick size change, manual market makers did not make use of newly available

decimal prices in placing quotes.

Tick size change made one additional decimal place, the fifth, available to the market

maker. The best bid and ask prices are predominantly concentrated at the old pip pricing

levels after tick size change. Before tick size change, the last digits of the best digit prices

are distributed uniformly as shown in Figures 3.19 and fig:Digit-Bid-After. The clear uni-

form distribution shows that all market makers make equal use of available prices in placing

quotes. The distribution of last digits undergoes a clear, and somewhat surprising change

after tick size change. After tick size change, the last digits of best limit prices are concen-

trated at 0, around 30% for both the best ask and the best bid as shown in Figures 3.21 and

3.22. While we have summarized the distribution of all snaps shots of the limit order book

in our data before and after tick size change respectively, the two distinct distributions are

stable at the daily level. This points to a significant portion of market makers who did not

adapt to decimal pip pricing.

Our analysis suggests strongly that it is the manual traders who did not adapt. Table 3.4

shows the average order size at the best bid. Before tick size change, the average order size

is uniformly distributed with respect to last digits, suggesting again that all traders make

equal use of all available price levels when submitting quotes. After tick size change, average

order size at prices with last digit zero, that is, at old pip pricing levels, is twice as large

as those at the newly available decimal levels. In fact, orders placed at the newly available

decimal pip levels have average size very close to the minimum order size of one million.

Table 3.5 shows very similar results for the best ask. As automated market makers tend to

submit orders of minimum size, this supports our claim that manual traders price-clustered

at pip pricing –and, occasionally, half-pip pricing– levels.
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Figure 3.19: Best Bid Last Digits, Before Tick
Change
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Figure 3.20: Best Bid Last Digits, After Tick
Change
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Figure 3.21: Best Ask Last Digits, Before Tick
Change
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Figure 3.22: Best Ask Last Digits, After Tick
Change
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Table 3.4: Size of Average Order (Million) at the Best Bid

Last digit of quoted price 0 1 2 3 4 5 6 7 8 9
Before tick size change 1.59 1.43 1.57 1.52 1.54 1.61 1.54 1.60 1.50 1.41
After tick size change 2.12 1.06 1.05 1.08 1.08 1.48 1.15 1.11 1.07 1.10

Table 3.5: Size of Average Order (Million) at the Best Ask

Last digit of quoted price 0 1 2 3 4 5 6 7 8 9
Before tick size change 1.53 1.32 1.62 1.59 1.45 1.54 1.53 1.54 1.43 1.48
After tick size change 2.19 1.23 1.22 1.10 1.09 1.32 1.06 1.04 1.07 1.09

Automated market makers, on the other hand, have no reason to not take advantage

of decimal pip pricing. Indeed, we show that automated market makers engages in queue
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jumping. Queue jumping exploits the likely favorable price movement precipitated by a

large static order, which also limits the loss for the queue jumper under unfavorable price

movement. Static limit orders placed by manual traders at old pip pricing, with last digit

zero, are vulnerable to queue jumping strategy by automated traders. On the ask side,

such queue jumping is done by submitting an order with last digit 9 and the buy side by an

order with last digit 1. Looking at ask side through the course of one trading hour, 36,000

snapshots of limit order book, at tick frequency, after tick size change shows that 43% of limit

orders are at pip pricing levels (see Table 3.6). Conditional on the best ask being at old pip

prices, the probability that the next snapshot shows one tick size improvement is 55%, with

average order size around minimum order size. One or two tick size improvement makes up

70% of next-snapshot possibilities at the best ask, all with around average minimum order

size. Same pattern is mirrored on the buy side of the book. As time between snapshots is

100 milliseconds, this directly exposes price clustering tendencies at pip prices—a behavior

that can only be reasonably attributed to manual traders —and subsequent queue jumping

activity by automated traders.

Table 3.6: Queue Jumping in One Trading Hour After Tick Size Change

Number of limit order book snapshots 36,000

Best ask at old pip pricing 15,490
One tick price improvement next snapshot 8,485 (avg order size 1.06)
Two tick price improvement next snapshot 2,289 (avg order size 1.04)

Best bid at old pip pricing 14,668
One tick price improvement next snapshot 7,767 (avg order size 1.03)
Two tick price improvement next snapshot 2,055 (avg order size 1.02)

The decreasing pattern shown in Figure 3.20 of last digit distribution of best ask price

can be explained by the interaction we describe between traders. An initial static quote

might be placed at a pip price by a manual traders. Automated traders queue-jump first

the manual trader quote then leap frog each other as they compete for top of the book. Fig-

ure 3.22 tells the same story on the other side of the book. The already dramatic inequality

in speed between manual and automated traders is accentuated by the tick size change.

Clinging to old pip pricing makes limit orders submitted by manual market makers prey to
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the queue jumping strategy. Decimalization of tick size therefore changes the information

balance between market makers and takers in the market.

3.9. Summary

Analyzing both the price process and the limit order book, we showed that the degree of

information asymmetry exhibited a discrete change across tick size change and provided an

explanation on the relationship between these two events. A smaller tick size has two text-

book counteracting effects on volume of informed order flow. Larger minimum tick means

the spread is more likely to bracket the fundamental value, decimalization incentivizes the

market taker to become more informed. On the other hand, as smaller tick size encourages

predatory market making and makes informed trading less profitable, the market taker has

less incentive to acquire information. However, the ecology of the interdealer FX markets,

with no evidence of trader emigration or immigration across tick size change, gives rise to a

different response driven by interaction between two distinct subspecies of market makers.

Automated market makers crowd out their manual counterparts from the top of the book.

Current literature concerning the issue of the effect of algorithmic trading on market

efficiency for the FX market have generally been favorable. For example, using EBS data

from 2004 to 2008, [32] showed empirically that high frequency returns are serially uncor-

related and conclude that algorithmic trading activity improves market efficiency. There

has also been some evidence that algorithmic trading contributes to the speeding up of the

price discovery of exchange rates with respect to macroeconomic news (see e.g. [9] and

[54]), which is partially corroborated by our analysis of periods of extreme volatility shown

in Table 3.1.30,31 To the best of our knowledge, this is the first paper that considers market

efficiency and algorithmic trading from a microstructure perspective by analyzing compre-

hensively the impact of a specific microstructure event. In contrast to previous studies, our

30[32], [9] and [54] all use discrete time models and sample at lower frequencies.
31According to EBS itself: automated trading “...is a key component of the professional spot FX market
place, offering efficient price discovery and 24-hour access to tight liquidity..."—http://www.ebs.com/
access-methods/ebs-ai.aspx.
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findings do not support the position that algorithmic trading improves market efficiency.32

In our high frequency continuous-time setting, the price semi-martingale is the independent

sum of a finite-variation process, a continuous martingale, and a jump process. In other

words, the exchange rate has a locally riskless component, an informationally efficient com-

ponent, and a jump component. While the unequivocal whitening of the jump component

moves exchange rate closer to the martingale property that characterizes an informational

efficient market ([50]), this is not a verification of market efficiency—despite observing

uniform reduction in traditional measures of adverse selection in addition to whitening of

jumps. This abatement of adverse selection is an artifact of market microstructure and al-

gorithmic trader behavior, rather than genuine dissemination of information across market

participants. Our study highlights that traditional microstructure metrics, though often

indicative of the general market conditions, need to be complemented by analysis of market

participant behavior to obtain a meaningful picture of the state of market, especially given

the increasing pervasiveness of high-speed electronic trading.33

32Given the likely vast difference in preferences between a large institutional FX dealer and an algorithmic
trader trading under prime brokerage, one may conclude that conceding the top of the limit order book
is the optimal choice for manual traders optimizing against market microstructure and algorithmic trader
behavior. However, EBS introduced an order type–“pip discretion rule"–in late 2011 that is explicitly
designed to curb queue jumping. Conversations with traders suggest the introduction of pip discretion rule
is due to manual trader complaints. See http://www.ebs.com/~/media/Files/I/Icap-Ebs/infosheets/
EBS-Market-info-sheet-Mar-2013.pdf.

33Having called attention to the inadequacy of current financial econometric techniques in addressing the
impact of algorithmic trading on market quality, we hesitate to venture an opinion on the general issue of
social benefit of algorithmic trading.
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Chapter 4

Network Risk Premium

4.1. Asset Pricing and Financial Networks

This chapter contributes to the literature that lie in the intersection of financial networks

and asset pricing. There is a growing body of recent literature that considers financial

networks and systemic risk. [12] suggest that the effect of relatively large, well-connected

banks, on systemic stability scales more than proportionately with their size: the impact of

their collapse is not only due to their connectivity, but also the resulting loss of confidence

of other banks. [109] proposed that the analysis of interconnectivity and transmission

of distress among financial institutions can be decomposed into bilateral interdependence

linkages. [55] considers macro-prudential capital requirements in the context of a network

banking model. [22] performs a principal components analysis on the returns of financial

intermediaries to analyze systemic risk in the financial sector.

Also relevant is the analysis by [25] of the core-periphery structure in social networks.

[74] offers an economic network from which a core-periphery structure arises and shows there

is positive correlation between network centrality and payoffs. In this paper we propose a

network pricing factor for asset returns that is derived from centrality.

Closest to our paper is [2] which uses network centrality as a pricing factor.1 The

difference between our paper and [2] is that, rather than using centrality in an off-the-shelf

manner, we provide a microfoundation for our pricing factor and extend traditional factor
1See also [3] and [1].
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pricing models, a la [51],[52] and [31], to a network setting. While [2] suggests that shocks

might not cancel out through diversification but instead may aggregate into macroeconomic

fluctuations, we argue through a corresponding stochastic discount factor that our network

pricing factor reflects the diversification and exposure to contagion risk trade-off.

4.2. A Network Pricing Factor

We propose a network pricing factor which may reflect of contagion risk of adverse

shocks from other firms in a financial network. A financial network of cross exposures can

be represented as a weighted directed graph, with firms as vertices. We use the convention

that incoming edges represent the exposure of a firm to other firms. That is, a directed

edge from firm/vertex i to firm/vertex j indicates that firm j is exposed to firm i.2 For a

directed graph depicting a financial network of n firms, one can define an adjacency matrix

A = [aij ], where aij is the amount of exposure of firm i to firm j.3 Now a corresponding

Markov Chain can be obtained by normalizing the directed edges outgoing from each firm

so the edge weights sum to 1. In other words, the transition matrix T of this Markov chain

is obtained by normalizing A column-wise so that each column sums to 1. The network

pricing factor we propose fν is the stationary distribution of the Markov chain given by T .

fν is characterized by the eigenvalue equation

Tfν = fν .

and fν is has non-negative entries. It follows from the Perron-Frobenius theorem that fν is

a Perron-Frobenius eigenvector of the matrix T (see, for example, [18]).4

The factor fν captures the likelihood that a firm in the network may be affected by

an economic shock that originates within the network. A number of measures constructed

using the Markov transition matrix T that purport to measure different types of network

2In this convention, the direction of an edge is the direction of possible travel of an adverse shock as it
transmits through the network.

3In our notation, aij denotes the entry of A at i-th row and j-th column.
4Perron-Frobenius theorem is applicable subject to the technical condition that the corresponding graph is
strongly connected.
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flows are available. Remarks on the appropriateness of our choice in capturing contagion

risk are in order. Other measures include degree, closeness, and betweenness. To choose

the appropriate measure for the transmission of potential shocks in an economic network,

one must consider the assumptions that underlie each measure. Network traffic could be

assumed to follow a walk (an unrestricted sequence of nodes and links), a trail (a sequence

in which no link is repeated), a path (a sequence in which no link or node is repeated), or

a geodesic path (the shortest path between two nodes).5 Furthermore, network traffic may

spread serially (through only one path at a time), or in parallel (through multiple paths at

the same time). Though making generalizations about the economic shocks is problematic,

one can make a few reasonable assumptions about how shocks may flow from one firm

to another. We consider the following two assumptions reasonable (see also [2]). First,

regardless of how an economic shock is defined, it is unlikely to follow a geodesic path.

Only traffic that has a known destination follows a geodesic path through the shortest

distance (e.g., a courier delivering a package). In contrast, economic shocks that transmit

across an economy do not have final recipients and are unlikely to follow the shortest path

between firms/industries/economic sectors. This means that closeness and betweenness

centrality are inappropriate for economic shocks since they implicitly assume that traffic

follows geodesic paths.6 Second, economic shocks are likely to have feedback effects. A

supply shock in one firm could affect the supply of downstream firms, which eventually

could flow back to the original firm. Thus, economic shocks are unlikely to be restricted

to follow paths or trails, in which nodes and links are not repeated. This rules out degree

centrality. Given that the paths of propagation of economics shocks are unrestricted, and

that the Markov transition matrix T serves as a good proxy for contagion probabilities, the

long run distribution fν of the Markov chain is a suitable measure of contagion risk. It

is the stationary distribution that would arise as a shock transitioned from one sector to

another an infinite number of times, with no restriction on propagation paths. It measures

the likelihood that a firm will receive a random shock that transmits across the network.

5[25] provides an overview of network flow measures and their classification based on assumptions about
how traffic flows in a network.

6See [25] for further discussion on this point
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4.3. Corresponding Network Stochastic Discount Factor

In addition to arguing for the validity of our network pricing factor on intuitive grounds,

we define a corresponding network stochastic discount factor and show that it has an affine

relationship with the network pricing factor, as expected when one relates a stochastic

discount factor to a beta pricing model. We formulate a portfolio choice problem where an

investor takes into account the mutual exposures between different firms.7 The agent in

our model can be, for example, an institutional investor who considers an firm/industry’s

exposure to other firms/industries as part of her ex ante credit risk assessment at origination.

Our reasoning extends arbitrage pricing theory to incorporate network structure of mu-

tual exposures. As in the classical case, first one establishes that no arbitrage holds by

showing the existence of a network stochastic discount factor (SDF). With a network SDF

in hand, a cross-sectional regression with returns being the dependent variable becomes

a beta pricing model with the regressors being risk premia. We first show the existence

of a network SDF and state its comparative static properties with respect to the network

structure.

4.3.1. Arbitrage Pricing

To make the analogy clear, we summarize relevant facts of arbitrage pricing theory

before proposing a network counterpart. Consider a market with two periods t = 0, 1,

finitely many securities, and finitely many states. The market is said to admit a beta

pricing model with factor f if there exists constants Rz and λ such that, for all attainable

state-contingent returns R,8

Et[R] = Rz + λ
Cov(f,R)
V ar(f) .

7In practice, mutual exposures is available as part of information disclosed to regulators as firms demonstrate
they satisfy capital requirements and to shareholders. In the United States, this is required of firms by
Regulation SFAS No. 131 since 1997

8Throughout the paper, Et[·] denotes the conditional expectation operator with respect to information set
at time t, V ar(·, ·) the variance operator, and Cov(·, ·) the covariance operator.
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If f is a return and there is a risk-free return Rf , then Rz = Rf .9 Cov(f,R)
V ar(f) is the risk, or

beta, with respect to f , and λ is the risk premium of f -risk. The CAPM is a beta pricing

model with f being the market return.

Arbitrage pricing theory is the observation that an approximate beta pricing model can

be obtained if the market admits no arbitrage, i.e. there exists a stochastic discount factor

(SDF). A SDF is a random variable M such that, for all attainable state-contingent claims

R,

E[MR] = 1.

We assume there is a risk-free return Rf , so that E[M ] = 1
Rf

. If a SDF exists, then a

cross-sectional regression

Ri = E[Ri] + Cov(f,R)
V ar(f) (f − E[f ]) + εi

with exogenous and cross-sectionally uncorrelated error term εi gives an approximate beta

pricing model:

E[Ri]−Rf = −RfCov(f,M)Cov(f,Ri)
V ar(f) − E[Mεi]

E[M ] .

If the error terms εi’s have uniformly bounded variance, the pricing errors δi = −E[Mεi]
E[M ]

tend to zero as the number of securities becomes large.10 With the idiosyncratic risk εi

diversifiable to zero,

,

E[Ri]−Rf ≈ −RfCov(f,M)Cov(f,Ri)
V ar(f) .

is a beta pricing model where −RfCov(f,M) is the risk premium for the risk factor f and
Cov(f,Ri)
V ar(f) is the beta.

When an SDF is not formally available, in practice one establishes a factor model by

empirically verifying the converse of APT (see e.g. [51] and [31]). In this paper we obtain

9More generally, Rz is the expected return of a zero-beta portfolio.
10More precisely,

∑
i
δ2
i <∞.
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a network SDF that only depend on the network structure and corresponds to the pricing

factor fν . More formally, we decompose the states ω of the world into (ν, ω′) where ν

captures the network structure and ω′ all other aspects of uncertainty in the economy. The

network SDF and network pricing factor fν are then random variables that depend only

on ν with ω′ integrated out. The network SDF and network systematic factor are directly

related in that they stem from the centrality measure of a firm in the network.

4.3.2. Network SDF

Consider an agent who faces a portfolio problem of allocating his total wealth w among

n-assets, indexed by i = 1, · · · , n. Let agent have utility function u(w1, · · · , wn) for wi

invested in asset i. Agent’s utility function u is fully general, up to standard regularity

assumptions such as quasi-concavity. Therefore u can reflect any heterogeneity of firms,

according to the agent’s preference. For example, investment in different assets may be

pairwise complementary or substitutes.

Suppose the assets are securities issued by n firms with cross-holdings described by

network adjacency matrix

A =



0 a12 · · · a1n

a21 0 · · · a2n
...

...
...

...

an1 an2 · · · ann


.

The diagonal elements of A are zero. The network structure can reflect a variety of empirical

creditor-obligor relationships. For example, the firms can be countries and the network

represents cross-holdings of sovereign debts, with the agent choosing a portfolio of sovereign

bonds. Another example is a network that represents supplier-consumer relationships. In

deciding whether to purchase a security, the investor assesses the firms’ consumer and

supplier relationships in his risk-return analysis.
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Recall our convention that the entry [aij ] correspond to firm i’s exposure to firm j.11

Consider, for example, firm 1, whose exposure profile is (0, a12, · · · , a1n). We assume that

for every $1 the investor allocates to firm 1 a certain amount gets passed to firms 2, · · · , n

as determined by mutual exposures. Several empirical scenarios fit this description. For

example, firm 1 may need to appropriate part of its equity as risk capital buffering against

credit risk. We assume the relative proportion of amounts that get passed by firm 1 to firms

2, · · · , n is determined by firm 1’s manager, therefore exogenous to the investor. We also

model the relative proportion in a reduced form way and assume it is proportional to the

exposures (a12, · · · , a1n).

The agent’s maximization problem with respect to firm 1 is therefore

max u(w1, w2, · · · , wn)

subject to the constraint

Phw1 + Pd(w2 + · · ·+ wn) = w, (w2, · · · , wn) = t(a12, · · · , a1n), t > 0.

The prices Ph and Pd are the equilibrium prices paid by the investor per $1 allocated to

firm 1 and its debtors respectively. The two prices might differ because, for example, the

investor might demand different returns due to different level of credit risk from amounts

lent that gets passed on to other firms. We will see that the relative price Pd
Ph

is in fact

endogenously determined via the network structure.12

Assuming an interior solution exists, in particular, at the optimum t > 0. Agent’s first

order condition with respect to firm 1 is

u2a12 + · · ·+ una1n = Pd
Ph
u1,

where uj denotes partial derivative of u with respect to j-th argument, at the investor’s

optimal portfolio choice with respect to firm 1.

11The opposite interpretation of firm i’s asset held by firm j is equally available, by replacing the adjacency
matrix A with its transpose A′.

12The relative price Pd
Ph

arises as the Perron-Frobenius root of the network adjacency matrix A.
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Therefore, putting the FOC’s of investor with respect to all firms together, we have the

matrix equation 

0 a12 · · · a1n

a21 0 · · · a2n
...

...
...

...

an1 an2 · · · ann





u1
...
...

un


= Pd
Ph



u1
...
...

un


.

If the vector of marginal utilities

v =



u1
...
...

un


(4.1)

is entry-wise positive, then it must be the Perron-Frobenius eigenvector of the adjacency

matrix A corresponding to Perron-Frobenius root Pd
Ph

.13

The centrality vector of marginal utilities v is the network stochastic discount factor. In

an asset pricing setting without network considerations, a SDF is agent’s state-dependent

marginal rate of substitution. Similarly, v is the agent’s firm-dependent marginal rate of

substitution. A SDF in a dynamic asset pricing model gives the equilibrium relationship

between consumption and asset price arising from utility-maximizing agent’s behavior and

allows assets to be priced by taking consumption as exogenous. In our setting, the additional

ingredient of a network structure makes the relative price Pd
Ph

endogenous. An SDF is

determined by the market structure and independent of agent’s attitude towards risk. The

same holds for the network SDF v, which is uniquely determined by the network structure

and independent of investor preference.

Further analogy with asset pricing theory can be drawn. A SDF is the Radon-Nikodym

derivative of an equivalent risk neutral measure after suitable normalization. In our setting,

a suitably normalized network SDF v is a network martingale measure on firms.14 Under
13The is part of the Perro-Frobenius theorem characterizing the Perron-Frobenuis root. An eigenvalue with
an eigenvector whose entries are all strictly positive must be the Perron-Frobenius root.

14We assign uniform distribution on firms in the absence of network structure. For strongly connected
networks, the probability measure on firms obtained by normalizing v is then absolutely continuous with
respect to the uniform distribution with the network SDF v being the Radon-Nikodym derivative.
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the risk neutral measure, discounted prices form a martingale and risk-adjusted discounted

excess return is therefore zero. In the network setting, rewriting the equation defining v,

Equation 4.1, as


0− 1 Ph

Pd
a12 · · · Ph

Pd
a1n

...
Ph
Pd
an1 − 0 Ph

Pd
an2 − 0 · · · 0− 1




v1
...

vn

 = 0.

shows that the expected discounted “excess network return" is equal to zero under the

network risk neutral measure.

4.3.3. Affine Relationship with Network Pricing Factor

As outlined in Section 4.3.1, given a SDFM , any affine transformation ofM is a pricing

factor in a beta pricing model: if M = a + bf for some constants a and b, then for any

return R

E[R] = 1
E[M ] − b

1
E[M ]Cov(f,R)

is a beta pricing model with factor f and factor premium −bV ar(f)
E[M ] . Conversely, given a

beta pricing model with respect to factor f and expected zero beta return Rz 6= 0, there is

a corresponding SDF M that is an affine function of f :

M = 1
Rz

(1− λ

V ar(f)(f − E[f ]))

is a SDF. Numerical simulations suggest that a parallel affine relationship also exists between

the network SDF v and network pricing factor fµ, up to small errors. Figure ?? shows the

plots of fµ against v for 1000 financial networks with 60 firms whose mutual exposures are

randomly drawn using different classes of distributions.

Diversifiability and network externality The positive relationship between network

SDF v and the pricing factor fν shown in Figure ?? is in contrast to more familiar beta

pricing models, where the factors are themselves returns. This is due to the fact that ex-
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posure to the network pricing factor has two countervailing effects. A firm in the network

trades off between contagion risk and diversification within the network. Without consider-

ing the network structure, diversification is achieved by an idealized portfolio as the number

of assets becomes large. In our setting, diversification is relative to the network structure.

A firm that is well-diversified by having many connection in the network may also have

high network contagion. Depending on the network structure, a firm may more likely to

suffer contagion precisely because it is well-connected. The positive relationship between

the network structure (therefore T ) and the network pricing factor fν is a reflects this ob-

servation. In a more formal representation where a general state ω = (ν, ω′) of the world

where ν captures the network structure, a general cross-sectional shock of the economy may

be uncorrelated at the level of ω but not necessarily uncorrelated once ω′ is integrated out

and the network factor is isolated.

4.3.4. Comparative Statics of Network SDF

As further analysis on properties of network SDF v, we examine its comparative statics

with respect to network structure. The comparative statics properties reinforces results

from Section 4.3. In addition, using the positive affine relationship with fν , they shed light

on on diversification vs. susceptibility to adverse shock trade-off captured by the network

pricing factor.

A network is said to be strongly connected if any two firms can be connected by a

directed path.

Proposition 4.3.1. In a strongly connected financial network, suppose firm i increases its

exposures in other firms. Let v and v′ be the network SDF before and after the increase in

firm i’s exposures profile, then

log v′i − log vi > log v′j − log vj , ∀j 6= i.

Proposition 4.3.1 gives a partial monotonicity characterization of the highly nonlinear

relationship between network SDF and network structure. In our setting, the investor
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demands higher marginal utility as it becomes more central—e.g. when the success of a

project depends on the performance of multiple subsidiaries, etc. The same is applicable to

network pricing factor.

Next we have a smoothness result, i.e. there are no abrupt changes in network SDF as

the network structure varies. Since any financial network can be arbitrarily approximated

by strongly connected networks15, the smoothness property in turn implies assuming strong

connectedness is without loss of generality.

Proposition 4.3.2. Let ∆r be a vector with non-negative entries. Consider the perturba-

tions of the network where are firm i increase his exposures by η ·∆r with network SDF v(η).

Then there exists δ > 0 such that, on [0, δ), vj(η) is a decreasing differentiable function of

η, for j 6= i.

Example 4.3.3. We give an numerical example of the smoothness property stated in Propo-

sition 4.3.2. Consider a financial network with 4 firms and a ring configuration, depicted

in Figure 4.2(a). The network adjacency matrix is

A =



0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


.

This give network SDF

v =



1
4

1
4

1
4

1
4


Suppose now firm 1 increases its exposure to firm 2 by $ε, as shown in Figure 4.2. The

resulting network SDF from this perturbation of the network structure is

15More formally, we identify a network with its adjacency matrix. Under this identification, strongly con-
nected networks are dense in the class of networks under consideration, in the unique locally convex
topology on matrices.
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

λ3

1

λ

λ2


where λ = (1+ε)

1
4 > 1. As the one who assumed additional exposure, firm 1’s network SDF

gets the most increase by a factor of λ3. The effects on the other firms is determined by the

degree of connectedness to firm 1. The second highest increase in network SDF is incurred

by firm 1’s immediate debtor, firm 4, with successively less increases for firms 3 and 2.

We have a natural extension of Proposition 4.3.2 to the case where more than one firm

increases their exposures.

Proposition 4.3.4. In a strongly connected network, if a group of firms i1, · · · , im increase

their exposures, then

∀j 6∈ {i1, · · · , im}, log v′j − log vj < max
i∈{i1,··· ,im}

log v′i − log vi.

Finally, we formally consider the case where one firms increases its exposures in the

network while a second one undergoes a reduction in exposure:

Proposition 4.3.5. Consider a strongly connected financial network where firm i firm j

increases and decreases hers. Then for all firms k,

(i) If Ph
Pd
≤ P ′h

P ′
d
, log v′k − log vk ≤ log v′i − log vi.

(ii) If Ph
Pd
≥ P ′h

P ′
d
, log v′k − log vk ≥ log v′j − log vj.

(iii) If Ph
Pd

= P ′h
P ′
d
, log v′j − log vj ≤ log v′k − log vk ≤ log v′j − log vj.

Example 4.3.6. This numerical example illustrates Proposition 4.3.5. Suppose now firm

1 incurs $ε more exposure while firm 3 reduces its exposure by η, as shown in Figure ??.
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This two changes have competing effects on the network SDF. Firm 1’s additional exposure

causes his network SDF to increase, with attendant propagation effects downstream to firms

for whom he is a obligor. Firm 3’s reduction has the opposite effect. If ε is large relative

to η, i.e. there is a net increase in exposures in the network, then the relative prices Ph
Pd

of deposits increases. Deposits become less attractive across the network as net exposure

increases. This is case (i) of Proposition 2. Conversely, if ε is small relative to η, this

results in case (ii). The adjacency matrix is

A =



0 1 + ε 0 0

0 0 1 0

0 0 0 1− η

1 0 0 0


Ph
Pd

= (1 + ε)
1
4 (1− η)

1
4 . The network SDF is, up to normalization,



(1 + ε)
1
4 (1− η)

1
4

(1−η)
1
2

(1+ε)
1
2

(1−η)
3
4

(1+ε)
1
4

1


.

If (1 + ε)(1 − η) > 1, then firm 1’s network SDF undergoes the most relative increase.

Although Theorem 4.8 In this particular case firm 3’s network SDF decreases, in relative

terms. Conversely, if (1 + ε)(1− η) < 1, the effect is in the opposite direction.

4.4. Summary

We have provided a microfouned network pricing factor that captures the trade-off

between diversification benefits and exposure to contagion risk. A priori diversifiable risk

need not remain diversifiable once non-network uncertainty is integrated out and only the

network structure remains. A well-connected firm with many connections in the network
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can very well have high network risk. In the point argued formally in Section 4.3.3, however,

we have shown that diversifiability does compensate for exposure to contagion risk.

Our model can tested empirically, which is planned for future research, using the classical

Fama-French-MacBeth approach—first sorting firms and form portfolios based on network

pricing factor then performing cross-sectional regressions along the lines of [51]—using, for

example, a consumer-supplier network.16 Some empirical flexibility is embedded in our

formulaton. For example, depending on convention used in writing down the adjacency

matrix, the network risk factor can reflect the vulnerability of a firm to contagion risk

either as a supplier or consumer.

Another empirical test ground for the model is credit spreads of firms in a financial

network of cross holding. Conventional credit risk approach posits that an industry that

replies on just a few suppliers has greater credit risk than an industry with multiple suppliers.

The reason given is that, from the supply side, monopoly suppliers have higher bargaining

power to capture a higher portion of total surplus—sometimes dubbed the power of supplier

by credit analysts. A larger number of (more competitive) suppliers helps an industry

keep input prices in check. Similarly, on the demand size, an industry that relies on a

few consumers is subject to more powerful forces—e.g. the consumers demanding better

product and lower price—driving it toward s zero profit. Such linear portfolio-level analysis

ignores macro-level nonlinear network feedback effects captured by the network risk factor.

16US Regulation SFAS No. 131 requires firms to report selected information about operating segments
in interim financial reports issued to shareholders. In particular, firms are required to disclose certain
financial information for any industry segment that comprised more than 10% of consolidated yearly sales,
assets, or profits, and the identity of any customer representing more than 10% of the total reported sales.
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Figure 4.1: Affine Structure
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Figure 4.2: A Ring Financial Network.
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Figure 4.3: A Simultaneous Adjustment of Two Firms’ Exposures in the Ring Network Configuration.
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Chapter 5

Conclusion

This thesis discusses three interweaved topics of modern financial economics—high fre-

quency econometrics, market microstructure, and financial networks. The new research

frontiers in both market microstructure and financial networks have been brought about by

fundamental, and ongoing, technological innovation that drives an increasing interconnected

global financial market. In addition to shifting market behavior and economic perspectives,

the same technological innovation also makes available high frequency data that demands

new econometrics methodology. It is an exciting time to be a student of financial economics.

We hope that each of the three essays has made a contribution to their respective topics

and will serve as stepping stones for future research.
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Appendix A

Proofs for Chapter 2

Proof of Theorem 2.2.1: Let κ(t) = (β′, γ(t))′. We give an argument for consistent
estimation of κ(t0) for any t0 ∈ (0, 1) at which κ is continuous.

Assume without loss of generality that the K has support [−1, 1] so that Kh(· − t0) has
support [t0 − h, t0 + h]. Then

‖κ̂(t0)− κ(t0)‖ ≤ ‖( 1
n

n∑
t=1

Khn(t− t0)XtX
′
t)−1( 1

n

n∑
t=1

Khn(t− t0)XtX
′
t1{|t−t0|≤hn}δhn‖︸ ︷︷ ︸

R1

+ ‖( 1
n

n∑
t=1

Khn(t− t0)XtX
′
t)−1( 1

n

n∑
t=1

Khn(t− t0)Xtεt‖︸ ︷︷ ︸
R2

,

where, by continuity of κ at t0, δhn → 0 as hn → 0.

First we have

R1 ≤ ‖(
1
n

n∑
t=1

Khn(t− t0)XtX
′
t)−1‖‖ 1

n

n∑
t=1

Khn(t− t0)XtX
′
t‖‖δhn‖. (A.1)

By Assumption 1(ii), (Khn(t − t0)XtX
′
t) is also α-mixing, with size at least that of (Xt).

For a fixed bandwidth h, by boundedness of Kh and Assumption 1(iii), (Kh(t−t0)xi,txj,t) is
uniformly bounded in L2+2δ(R) for some δ > 0. Therefore by Weak Law of Large Numbers,

1
n

n∑
t=1

Kh(t− t0)XtX
′
t −

1
n

n∑
t=1

Kh(t− t0)E[XtX
′
t]

p→ 0.
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Since (xi,txj,t) is also uniformly bounded in L1(R) by Jensen’s inequality, ‖E[XtX
′
t]‖ ∈

O(1).1 It follows from the triangle inequality that the convex sum 1
n

∑n
t=1Kh(t−t0)E[XtX

′
t] ∈

O(1). This shows that

1
n

n∑
t=1

Kh(t− t0)XtX
′
t ∈ Op(1).

A diagonalization argument then shows that, as n→∞ and hn → 0,

1
n

n∑
t=1

Khn(t− t0)XtX
′
t ∈ Op(1).

Also, by Assumption 1(iv), for all h, infn ‖ 1
n

∑n
t=1Kh(t−t0)E[XtX

′
t]‖ > η > 0. This implies

( 1
n

∑n
t=1Kh(t− t0)E[XtX

′
t])−1 ∈ O(1). In turn,

( 1
n

n∑
t=1

Kh(t− t0)XtX
′
t)−1 − ( 1

n

n∑
t=1

Kh(t− t0)E[XtX
′
t])−1 p→ 0

implies 1
n

∑n
t=1Khn(t−t0)XtX

′
t)−1 ∈ Op(1). Therefore R1 ∈ op(1). Similar argument shows

that R2 ∈ op(1). This proves the theorem.

Lemma A.1 for Theorem 2.4.4 For Bα
p,q(L) with space of wavelet coefficients Θ ⊂

l2(N), [44] considers a sequence of truncated Gaussian sequence modelsMn

Xj = θj + ej , where ej ∼ N (0, σ
2

n
), 1 ≤ j ≤ n,

where for each n, (θj) ∈ Θ ∩ Rn (as it is irrelevant for the argument in this case, we
suppress the double indices for wavelet coefficients). γ̂n is constructed by estimating the n
coefficients. We show that this is without loss of generality for our global L2-formulation. As
any γ ∈ L2[0, 1] can be approximated by its truncations γn, it is without loss of generality
to estimate γn. Furthermore, estimating γn from its first n empirical coefficients does
not increase risk: In the filtering model, let Pγ and P0 be the probability measures on
C[0, 1] corresponding to the processes G = dGt = γndt+ 1√

n
dBt and dBt respectively. By

Girsanov’s Theorem ([61]), the likelihood ratio is

dPγ

dP0
= e

1
n

∑n

j=1 θjXj−
1

2n
∑n

j=1 θ
2
j ,

which is measurable with respect to the first n empirical coefficients X1, · · · , Xn. By
Jensen’s inequality, for any estimator θ̂j(G) where 1 ≤ j ≤ n,

1Here we use the uniqueness of locally convex topology on a finite dimensional vector space. Boundedness
entry-wise is equivalent to boundedness in operator norm.
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Eγ [(θ̂j(F)− θj)2] = E0[dPγ

dP0
(F)(θ̂j(F)− θj)2]

= E0[E0[(θ̂j(F)− θj)2|X1, · · · , Xn]dPγ

dP0
]

≥ E0[(θ̄j(X1, · · · , Xn)− θj)2dPγ

dP0
]

= Eγ [(θ̄j(X1, · · · , Xn)− θj)2],

where θ̄j(X1, · · · , Xn) = E0[θ̂j(F)|X1, · · · , Xn]. Therefore Theorem 1.1 and Theorem 1.2 in
[44] imply Theorem 2.4.4.

The Lévy-Ciesielski-It̂o construction of Brownian motion This construction was
used in passing from the filtering model to the Gaussian sequence model in Section 2.4.1
and generalized to fractional Brownian motion en route to proving Theorem 2.4.5. Let
ε′j ∼ N (0, 1) be i.i.d. random variables defined on a probability space (Ω,F , P ). Let H be
the Hilbert subspace of L2(Ω,F , P ) generated by {ε′j}. Define an Îto isometry by

ε′j ∈ H
Ψ7→ ψj ∈ L2[0, 1].

The resulting stochastic process t 7→ Ψ(1[0,t]) has the same finite dimensional distributions
as standard Brownian motion:

1 The increment Ψ(1[0,t]) − Ψ(1[0,s]) = Ψ(1[s,t]) for any 0 ≤ s < t ≤ 1 is distributed
N (0, t− s), being the mean square limit of normal random variables.

2 Two increments Ψ(1[s,t]) and Ψ(1[s′,t′]) are uncorrelated, therefore independent by
normality.

It then follows from standard facts that Ψ(1[0,t]) has a modification with almost surely
continuous sample paths.

Definition of fractional Brownian motion We recall here the precise definition of the
fractional Brownian motion, which is the limit process for the Functional Central Limit
Theorem used in Section 2.4.1. The fractional Brownian motion with Hurst exponent H
BH(t), t ∈ R, is a zero-mean Gaussian process with covariance function

γ(s, t) = VH
2 (|s|2H + |t|2H − |t− s|2H)

where
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VH = var(BH(1)) = −Γ(2− 2H) cos(πH)
πH(2H − 1) ,

and Γ(·) is the gamma function.

Proof of Theorem 2.4.5: Fix a wavelet basis {ψjk} that is continuously differentiable
up to r > H + 3

2 times. Let ∆ = d2

dx2 be the Laplace operator on [0, 1]. For Hurst exponent
H ∈ (1

2 , 1), the operatorKH = (−∆)H+ 1
2 is the reproducing kernel of the reproducing kernel

Hilbert space of dBH
t .2 The functions K−

1
2

H ψjk diagonalizes KH , which gives a Karhunen-
Loéve decomposition of fractional Brownian motion

BH
t =

∑
jk

wjkK
− 1

2
H ψjk

where {wjk} is a Gaussian white noise. Define

vjk = d

dt
K
− 1

2
H ψjk = (−∆)

1
4−

H
2 ψjk.

Then we have a representation:

dBH
t =

∑
jk

wjkvjk(t)dt.

The random variables ejk in the statement of the theorem can be expressed by

ejk = 1
σj

∫
ψjkdB

H
t = 1

σj

∑
j′k′

wj′k′
∫
ψjkvj′k′(t)dt.

The near-independence property of ejk can now be shown using the time-scale localization
property of wavelets: By normality, the conditional mean êjk = E[ejk|ej′k′ , (j′, k′) 6= (j, k)]
must lie in the l2-span of {ej′k′ , (j′, k′) 6= (j, k)}: êjk =

∑
(j′,k′)6=(j,k) aj′k′ej′k′ . So

2The reproducing kernel Hilbert space of dBHt consists of f ∈ L2[0, 1] for which

∫ 1

0
KHf(t)f(t)dt <∞.

For standard Brownian motion, the case H = 1
2 , this space is the Cameron-Martin space of Brownian

motion: the Sobolev space of absolutely continuous functions f with f(0) = 0 and f ′ ∈ L2[0, 1].
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ejk − êjk = −
∑
j′,k′

[
∫
vj′k′(t)

∑
j′′,k′′

1
σj′′

aj′′k′′ψj′′k′′dt]wj′k′ (A.2)

= −
∑
j′,k′

[
∫
ψj′k′(t)

∑
j′′,k′′

1
σj′′

aj′′k′′vj′′k′′dt]wj′k′ , (A.3)

where the second equality follows from the symmetry of the operator (−∆)
1
4−

H
2 . Using the

fact that {ψjk} is an orthonormal basis,

Var(ejk − êjk) =
∑
j′,k′

[
∫
ψj′k′(t)

∑
j′′,k′′

1
σj′′

aj′′k′′vj′′k′′dt]2 (A.4)

= ‖
∑
j′′,k′′

aj′′k′′ ·
1
σj′′

vj′′k′′‖2L2 (A.5)

= c0‖
∑
j′′,k′′

a2
j′′k′′‖ (A.6)

> 0. (A.7)

This proves Theorem 2.4.5.

Proof of Theorem 2.4.6: Let f (j) be the L2-projection of f onto the j-th resolution
detail subspace, and R

(j)
n (p, q, ζ, L) be the minimax risk of the corresponding Gaussian

sequence model with independent noise. By Parseval’s equality

E[‖f̂n − f‖2] =
∑
j

E[‖f̂ (j)
n − f (j)‖2],

and

Rn(p, q, ζ, L) =
∑
j

R(j)
n (p, q, ζ, L).

Therefore Theorem 2.4.6 follows immediately from Theorem 2.4.4 and the truncation argu-
ment of Lemma A.1.

Proof of Theorem 2.4.8:

Lemma A.2. Under Assumptions 1 and 5,

nhE[( 1
n

n∑
t=1

Khn(t− t0)Xtεt)2] = Op(1),

where εt = σ(Xt, t)wt.
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Proof of Lemma A.2: This can be proven using an argument similar to that from Lemma
3 of [29]).

Proof of Theorem 2.4.8: A similar argument as that in Theorem 2.2.1 shows that, using the
same notation,

κ̂(t0)− κ(t0) +Op(hρ) = ( 1
n

n∑
t=1

Khn(t− t0)XtX
′
t)−1( 1

n

n∑
t=1

Khn(t− t0)Xtεt),

where ( 1
n

∑n
t=1Khn(t− t0)XtX

′
t)−1 ∈ Op(1).

By Lemma A.2,

κ̂(t0)− κ(t0) = Op(hρ) +Op(
1√
nh

).

Therefore

‖κ̂(t0)− κ(t0)‖2 = Op(h2ρ) +Op(
1
nh

)

and the theorem follows by minimizing with respect to h.
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Appendix B

Proofs for Chapter 4

We first fix notation: Rm1×m2
+ denotes the set of m1 × m2 matrices with non-negative

entries and (·)T is the transpose operation on matrices. Whenever applicable, A = [aij ] and
A′ = [a′ij ] will denote the adjacency matrices of a network before and after a perturbation
with respective maximal eigenvalues λ and λ′. For twom1×m2 matrices A and B, A−B ≥ 0
means A−B ∈ Rm1×m2

+ .

The following fact will be used repeatedly: Let A,B ∈ Rn×n+ with maximal eigenvalues λA
and λB respectively. Then B ≤ A implies λB ≤ λ with strict inequality if A is irreducible.

Proof of Proposition 4.3.1 Suppose there is a j 6= i such that d′j
dj
>

d′k
dk

for all k 6= j. Let
rj ∈ R1×n

+ be the j-th rows of A and A′ (only the i-th rows of A and A′ differ). Then

d′j
dj

= λrjd
′

λ′rjd
<
rjd
′

rjd
=
∑n
k=1 ajk

d′k
dk
dk∑n

k=1 ajkd
′
k

<
d′j
dj
,

which is impossible. 2

Proof of Proposition 4.3.2 Let x P7→ Px denote the linear map on Rn where Px is the
vector obtained by setting the i-th entry xi of x to 0. The assumptions A′d′ = λ′d′ and
di = 0 imply

PAPd′ = λ′Pd′.

This implies the maximal eigenvalue λ′′ of PAP is ≥ λ′. But λ′′ ≤ λ. So λ ≥ λ′ ≥ λ, i.e.
λ = λ′. So

A′d′ = λd′

Since A,A′, A− A′ ≥ 0, we have Ad′ = λd′. By the uniqueness of maximal eigenvector up
to scalar multiples, the proposition holds. 2
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Proof of Proposition 4.3.4 Let ∆r ∈ Rn+ be the additional liability incurred by firm i.
By assumption, (∆r)Td = 0. If we normalize so that di = d′i = 1, then d ≥ d′ by Theorem
Proposition 4.3.1 and a continuity argument. So (∆r)Td′ = 0 and,

Ad′ − λ′d′ = ei(∆r)Td′ = 0

i.e. Ad′ = λ′d′. So λ ≥ λ′ ≥ λ. Same argument in the previous proof now shows that d and
d′ must be the same. 2

Lemma B.1. If T ∈ Rn×n+ has maximal eigenvalue λ and α > λ, then α − T is invertible
and (α− T )−1 ≥ 0.

Proof. Since µ is an eigenvalue of T if and only α − µ is an eigenvalue of α − T , α − T is
invertible. Without loss of generality, assume α = 1, then the hypothesis 1 > λ implies the
series

I + T + T 2 + · · ·

converges (entry-wise); its limit is necessarily (1 − T )−1. Since T ≥ 0, it is clear that
(1− T )−1 ≥ 0.

Lemma B.2. If invertible matrices T and S ∈ Rn×n are such that T − S ≥ 0, T−1, and
S−1 ≥ 0, then S−1 ≥ T−1.

Proof. We have the general algebraic expression S−1 − T−1 = S−1(T − S)T−1. Since all
three matrices on the right-hand side are nonnegative, so is their product.

Proof of Proposition 4.3.5 Normalize so that di = d′i = 1. From Ad = λd, we have

Pd = (λ− PAP )−1PAei

where P is the projection map from the proof of Theorem 4.4. and ei is the i-th standard
basis vector. Similarly,

Pd′ = (λ′ − C)−1w′

where 0 ≤ C ≤ PAP and 0 ≤ w′ ≤ PAei, by the hypothesis that λ′ ≥ λ and the
normalization assumption on the i-th entry of d and d′. By Lemma A.1., λ′ − C and
λ − PAP are invertible with nonnegative inverses. Since λ′ ≥ λ, λ′ − C ≥ λ − PAP .
Lemma A.2 implies

(λ′ − C)−1 ≤ (λ− PAP )−1.

So
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Pd′ = (λ′ − C)−1w′ ≤ Pd = (λ− PAP )−1PAei,

which proves (i). The proof for (ii) is analogous and (iii) follows from (i) and (ii). 2
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