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Abstract 

The objective of this thesis is to describe the implementation of an innovative agent-based 

architecture of controllers for stand-alone DC microgrids. The controllers have to regulate 

voltage to the required level and manage energy flow in the system. In addition, they 

should maintain a deterministic time frame on the order of a few tens of milliseconds for a 

system with tens of power electronic converters with no limitation in the number of events 

which might happen concurrently. Optimal power sharing ensures minimum transmission 

and distribution loss while enforcing constraints such as generators’ capacity limits. 

Multiple agents take part in the process to determine optimum power sharing for the 

converters. The thesis compares system complexity using numerical analysis of different 

distributed lookup algorithms based on defined metric values for a standalone DC 

microgrid including 32 converters. The numerical analysis results aid in choosing a 

publish-subscribe model as the most efficient and scalable solution for developing agent 

technology for standalone DC microgrids. Application of publish-subscribe agent-based 

control is presented for real-time coordination of power converters in a defined microgrid. 

To test the design, a sample DC shipboard microgrid with eight converters is used as a 

case study. Results of implementing the agent-based publish-subscribe control system 

using Java Agent DEvelopment Framework (JADE) are illustrated in the thesis. Simulation 

results affirm the accuracy of numerical analysis results. The results show that the upper 

time limit for task management is consistent and independent of the number of converters. 

The results of this research are published in seven articles, a list of which is included in 

Appendix D. 

Keywords: Distributed algorithms, Distributed computing, Coordinated control, 
Energy storage, Load flow control, Microgrids, Multi-agent systems, 
Power systems, Publish-subscribe, Smart Grid, Supervisory control, Real-
time power systems 
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Introduction and Literature Review 

The utility industry across the world is experiencing numerous challenges, 

including energy conservation, generation diversification, demand response, optimal 

deployment of expensive assets, and reduction of the industry’s overall carbon footprint. 

These issues have led to the emergence of the smart grid concept in power distribution 

systems [1] since they cannot be satisfactorily addressed by the existing electricity grids. 

Conventional power systems convert only one-third of the fuel energy into electricity 

without recovering the waste heat. Regarding their hierarchical topology, the existing 

electricity grids suffer from domino effect failures. In addition, almost 20% of the generation 

capacity is used to meet the peak demand, while 8% of the output is lost in transmission 

lines [2].  

The next generation of electricity grid, known as the “smart grid” or “intelligent 

grid,” is expected to address the major shortcomings of the existing grid. In essence, a 

smart grid needs to provide utility companies with monitoring and pervasive control 

over their assets and services. A smart grid is required to perform energy transactions 

over power devices, and to be capable of self-healing. Smart grid is emerging as a 

convergence of power system engineering with information and communication 

technologies. To increase the capability of power grids, the first step is to incorporate 

enabling technologies in data management and communication at the distribution 

side. These ingredients  place a layer of intelligence over the  utilities’ infrastructure by 



defining architectures, protocols, and standards towards the smart grid. The main

capabilities of smart grid will be built on integration of applications located in the 

upper layer of the automation system. Some of these technologies are known as 

Distributed Management System (DMS) [3], Energy Management System (EMS), 

Substation Automation (SA), and Advanced Metering Infrastructure (AMI), which 

have been developed to make distribution networks more reliable and efficient [4].  

Furthermore, the massive electrification in the developed world has exposed the 

distribution systems to a wide variety of unpredictable load profiles, with 

potentially negative and even unsafe levels of impact on the quality of service delivered 

to customers. 

To counter such impacts, electric power utilities strive to employ new 

technologies to not only guarantee a certain level of quality of service (QoS) to their 

customers, but also to save energy, reduce distribution losses, and minimize operational 

costs. The smart grid replaces a hierarchical concept of generation, transmission, and 

distribution of power grids with an end-to-end intelligent and fully integrated 

environment. In these systems, distributed command and control strategies apply to all 

geographies, components, and functions. Smart Grid also can be defined as an 

interconnected network of microgrids with distributed control [5]. 

Microgrids are clusters of energy sources, storage systems, loads, local 

networks, real-time technologies, and load controllers that are organized to offer an 

energy solution for a community while connected to power grids or operated as an 

electrical island [6]. A microgrid may have numerous multi-functional power electronics 

converters connecting sources, loads, and energy storage systems to the bus. Systems 

in which converters are the interface between several energy sources and load centers 

have the possibility to direct the flow of energy if the control of converters is coordinated 

[7]. Figure 1.1 displays a sample islanded DC microgrid used in this research. Because 

microgrids are smaller and more flexible than power grids, different optimization 

algorithms were evaluated in both connected and islanded modes [8].  
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1.1. Research Objectives 

In an autonomous microgrid, in order to make coordination among all converters, 

flow of power components need to be optimized. The optimization mechanism can 

include some functions such as minimizing power loss, balancing load flow, increasing 

stability and reliability, and reducing fuel cost.  To achieve these functions, a 

comprehensive and coordinated control system is required to independently enable load 

control of each power component [9]. Since in the islanded mode of operation, voltage in 

a microgrid may suffer from low inertia and imbalance, the control system should 

include a method to control power quality at the load bus [10], [11]. In addition, for 

managing the coordination among local controllers, a higher control layer is required. 

The controllers have to regulate voltages to the required levels and balance load flow 

in all devices.  

3 
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Figure 1.1. Example of a Microgrid Structure 

Another important feature is the capability to maintain a deterministic time frame 

of a few tens of milliseconds for a system with tens of concurrently operating devices. A 

distributed coordination system approach can enable system-level control by avoiding 

single points of failure that are inherent in a centralized and hierarchical control system. 

The system should also be robust and expandable [12], [13].  

Research performed in the area of distributed control indicates that a control based 

on agent technology has the potential to add extra advantages in terms of scalability, 

flexibility, and fault-tolerance compared with centralized structures [14]. It was shown in 

[15], [16] that the behaviour of the overall system using agent technology is considerably 

less affected by the failure of components. Another important advantage is that the 

modularity of the decentralized agent-based system can simplify the initial design stage 

and also facilitate the later addition of new elements to the system. With distributed 

processors, such systems can provide enhanced speed in terms of computation since 

there can be parallel processing of tasks with their own dedicated resources. This is 
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particularly true when a power system is islanded and low inertia and where speed can be 

a critically important consideration for real-time systems. 

In this document, a novel method for coordination of power converters in a 

medium-sized microgrid using agent technology is presented. The thesis contributions 

include application of the proposed agent technology in 1) Regulation of voltage to the 

required level in all converters; 2) Balancing load flow; 3) Obtaining a deterministic time 

frame for coordination on various number of converters in the sample microgrid. Since 

distributed systems deal with communication and computation of physically separate 

nodes, measuring message exchange is important and the number of message 

exchanges is defined as metric value. Applying different agent technologies for 

coordination among converters and comparing system complexity for different methods 

using metric values, help us to choose the most efficient and scalable agent-based 

solution for aforementioned controller actions. 

1.2. Categorizing Microgrids Based on Their Main 
Specifications 

Microgrids can be divided into different groups based on their specifications. There 

is no common definition of how to differentiate among different types of microgrids. The 

intersection of size (large or small) and grid connectivity (connected or remote) results in 

the following four main microgrid types (although the last type probably deserves further 

categorization):  

1. Large grid-connected microgrids, such as those used in military bases and large
campus applications, are connected to a traditional utility but are capable of
operating in island mode. They have multiple generators and may have a
substantial distribution system and sophisticated controls.

2. Small grid-connected microgrids have a single Distributed Generator (DG)
which is supplemented with storage and renewable energy resources, as
appropriate. Grid-connected microgrids are typically used in areas with
unreliable grids where a backup generator is frequently used. One may not
consider these to be microgrids, but they own common characteristics with
other types of microgrids. Since they can independently operate in the grid,
they are a valid and potentially important form of microgrid.
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3. Large or medium remote microgrids, such as those used in island utilities, have
multiple generators and a substantial distribution.

4. Small remote microgrids usually have one DG, or instead of DG they have
sources such as battery-based storage or fuel cells17. Some of the very small
ones may have DC distribution. Innovations in billing and payment methods
could greatly enhance the potential to use these types of microgrids [18].

Shipboard microgrids are often categorized as large size, remote microgrids, and 

a smaller size of the main system is considered as a case study. An optimization of power 

flow will be performed that minimizes system losses.  

1.3. Control Technologies in Microgrids 

Different control architectures for power grids have widely been in use based on 

central and hierarchical methods. Considering their higher efficiency and reliability, 

recently decentralized and fully distributed controllers such as intelligent controllers have 

been beginning to appear [19]. Intelligent controllers are rarely used due to complications 

in their control coordination. In addition, less complicated controllers such as proportional-

integral-derivative (PID) are generally preferred, although they have some disadvantages 

such as the difficulty in controlling nonlinear features. Table 1.1 compares some of the 

main specifications of centralized and distributed controllers in a medium-sized distributed 

microgrid [20].  

While the central controller may be most suitable for small-scale systems, 

distributed control systems provide a more reliable strategy to control the local devices in 

a large-scale system. As mentioned in section 1.2, the size and status of power systems 

are the main parameters for choosing a suitable control method (Figure 1.2).  
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Table 1.1. Comparison between central and distributed control systems for a 
medium-sized distributed microgrid 

Central Control System Distributed Controlled System 

Pros Control algorithm is relatively  simple Relieved the computational load for a single 
controller 

Ease of heavy data exchange demand 

Single point of failure will not necessarily 
affect the others 

Cons Computational limitation of central 
controller 

Communication limitation of central 
controller 

Single point of failure will affect the 
entire system 

Only part of the system states are available 

   to each distributed controller 

Normally need complex algorithms and 

  designs 

Usage Normally more appropriate for small 

  systems with simple control 

More appropriate for large-scale systems 

 which need sophisticated control 

CC

Device 2 Device 3 Device n

LC

Device 1 Device 2 Device 3

Centralized Control Level 

MC

Device 1 Device 2 Device 3

LC LC

Device n

LC LC LC
LC

Device 1

LC

Figure 1.2. Demonstration of Different Control Structures (LC: Local Controller, 
MC: Middle Layer Controller, CC: Central Controller) 
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Smart grids utilize a combination of centralized and decentralized (distributed) 

control systems [21]. Centralized control systems have the highest performance in small- 

scale power networks and deliver power in one direction (i.e., from substation to loads). 

Nowadays, evolution of some routines in power distribution systems such as distributed 

power storages and generation requires deploying smart control systems. Distributed 

command and control systems can use agent technology to implement their control 

strategies. It is worth mentioning that most traditional power control systems act 

preventively or reactively to events, in which the current control systems add active control 

options to their control strategies [22]. 

The growth in shared information resources requires information systems that can 

be distributed on a network and interoperate with other systems. Such systems cannot be 

easily realized with traditional software technologies because of the limits of these 

technologies in coping with distribution and interoperability. The agent-based technologies 

may be an answer to facilitate the realization of such systems because they were invented 

to cope with distribution and interoperability [23].  

1.4. Agent–based Technologies and Multi-agent System 
(MAS) 

An agent is a software (or hardware) entity that is situated in an environment and 

is capable of autonomously reacting to changes in that environment. An agent is designed 

to deliver its design objectives based on dynamic environmental requirements. The 

environment can be physical (e.g., a protection switch), or computing space (e.g., a 

software program) [24], [25]. MAS is a system comprised of two or more agents or 

Intelligent Agents (IAs) [26]. Agents may or may not be able to communicate with each 

other but IAs must communicate together. MAS are mostly designed, implemented, and 

used in distributed systems. The combination of three technologies including web 

services, grid computing, and intelligent systems are used in MAS. 

Distributed systems have many interesting technical aspects such as 

decentralized control, self-organization, adaptation, and scalability. There are currently 
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many projects aimed at constructing distributed applications and understanding more   

issues and requirements [27]. One of the key problems in the control of large-scale 

distributed applications is the provision of efficient algorithms for object location and 

routing within the network. An efficient control algorithm seeks to minimize the distance 

messages travel, according to the scalar proximity metric, such as the expected number 

of routing hops and the number of messages exchanged among system nodes. Multi-layer 

control technologies are one of the most common solutions for distributed systems. 

Considering multi-layer control technologies, three types of distributed control 

architectures are commonly defined for power systems: hierarchical (functional), 

heterarchical, and hybrid architectures. Hierarchical architecture requires communication 

among N control layers, which are connected to each other as a client-server. There is no 

direct communication between modules of the same level. While this architecture 

proposes a hierarchical modeling methodology for real-time scheduling, its feasibility and 

optimality are not proven. The heterarchical control architecture is based on full local 

autonomy (distributed control) resulting in a control environment in which autonomous 

components co-operate in order to reach global objectives through local decision making 

[28]. In a distributed heterarchical model where each agent represents an individual 

resource, each agent individually implements these low-level control algorithms for all the 

resources they represent. Duffie in [29] explains about some of the other advantages of 

heterarchical architectures including reduced complexity, increased flexibility, and 

reduced costs. Figure 1.3 displays a model of different control technologies applied to a 

microgrid. 

The quality of distributed computational node technologies are compared based 

on some parameters such as scalability, fault management, and convergence. Table 1.2 

compares five different technologies for distributed systems based on the aforementioned 

factors. As seen, agent control technology is a combination of advantages of centralized, 

distributed, and hybrid controls technologies. 
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  Figure 1.3.  A Model of Different Control Technologies Applied Microgrids; 
Hierarchical, Heterarchical, and Hybrid (Hierarchical + Heterarchical) 

Control Technologies 

Table 1.2. Comparison between control technologies 

Reviewed 
Control 
Technologies 

Flexibility of 
Adding and 
Removing Nodes 
(Scalability) 

Ability of Fault 
Management (Self-
Healing) 

Real-time 
Convergence Rate 

Centralized Low Low Medium 

Hierarchical High High Medium 

Heterarchical Medium Medium Medium 

Hybrid High High High 

Agent Tech. High High High 

A multi-agent control system provides a higher degree of efficiency and reliability 

which works within a real-time and fully distributed system, where each node can be 

connected to other nodes at the same or different layers. These communications can be 

scheduled on-demand based on their tasks such as self-healing and data mining. It could 

define valid ranges of data, detect out-of-range data, and transfer the data and fault 

messages to the destination [30]. Multi-agent systems are distributed networks, containing 

intelligent hardware and software agents, that work together to achieve a global goal. To 
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enable agents to work together in order to achieve power system objectives. As shown in 

Figure 1.4, MAS allocates a local view of the power system to each agent, empowering a 

group of agents to control a wide distributed power system. Furthermore, MAS has an 

event-driven real-time architecture where a group of agents work together to optimize a 

parameter of the distributed network. The system needs to be flexible in adding and 

removing distribution nodes, and it is desirable to self-heal after fault occurrence.  

 

 

Figure 1.4. An Schema of Agent-based Control Technology 

 

1.4.1. Mathematical Model of Agents 

 Agents and MAS are mathematically modeled based on their definitions. 

Assume the environment may be in any of a finite set 𝐸 of discrete, instantaneous states: 

 
𝐸 =  {𝑒0, 𝑒1, 𝑒2, . . . }                                                       (1.1) 
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Agents have a range of possible actions (Ac), which transform the state of the 

environment:    

    
𝐴𝑐 =  {𝛼0, 𝛼1, 𝛼2, … }                       (1.2)  

     

 
A run of an agent is a sequence of an interleaved environment states and actions: 

 

𝑟: 𝑒0
𝛼0
→ 𝑒1

𝛼1
→  𝑒2

𝛼2
→ 𝑒3  ⋯ 𝑒𝑢−1

𝛼𝑢−1
→    𝑒𝑢                                                                (1.3) 

                                   
   

   
𝑅 is the set of all possible finite sequences: 

 

𝑅 =  { 𝑟1, 𝑟2, 𝑟3, … }                                            (1.4) 
     

 

An environment 𝐸𝑛𝑣 is dependent to triple parameters:    

  
𝐸𝑛𝑣 = 𝐸,  𝑒0,                            (1.5)                          

  

where:  

 𝐸 is a set of environment states 

 𝑒0 𝐸 is the initial state of 𝐸𝑛𝑣 

 And 𝜏 is a state transformer function represents behavior of 
environment. It maps a run-ending action to a set of environmental 
states. Considering that environments are history dependent, and 
non-deterministic: 

o 𝜏(𝑟): 𝑅 →  𝑃(𝐸) 

o If 𝜏(𝑟) = ∅,  there are no possible successor states to 𝑟, it 
means that the system has ended its run. 

 

Agent is a function which maps runs to actions. An agent makes a decision about what 

action to perform based on the history of the system that it has witnessed to date: 
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𝐴𝑔: 𝑅 → 𝐴𝑐                                (1.6) 

MAS will be the set of all agents: 

𝑀𝐴𝐺 =  {𝐴𝑔1, 𝐴𝑔2, 𝐴𝑔3, … }                                      (1.7) 

Agent control loop has the following steps and shown in Figure 1.5: 

1. Agent starts in some initial internal state 𝑖0 

2. Observes its environment state 𝑒 

3. Generates a percept 𝑠𝑒𝑒(𝑒) 

4. Internal state of the agent is then updated via next function, becoming 

𝑛𝑒𝑥𝑡(𝑖0, 𝑠𝑒𝑒(𝑒))                                     (1.8)  

5. The action selected by the agent is 

𝑎𝑐𝑡𝑖𝑜𝑛(𝑛𝑒𝑥𝑡(𝑖0, 𝑠𝑒𝑒(𝑒)))                                                         (1.9) 

6. Repeat from 2. 

 

 

Figure 1.5. Agent Control Loop Diagram 

The committee on Visionary Manufacturing Challenges for 2020 has identified IAs 

as one of the key enabling technologies that will help companies to overcome one of six 

of their grand challenges and remain productive and profitable in the year 2020. This grand 

challenge is to instantaneously transform information from a vast array of diverse sources 

into useful knowledge and effective decisions [31]. 

Agent-based technologies cannot realize their full potential, and will not become 

widespread, until standards to support agent interoperability are available and used by 

agent developers and adequate environments for the development of agent systems are 

available. Several researchers are working towards the standardization of agent 
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technologies such as the Foundation for Intelligent Physical Agents (FIPA) [32], and in the 

realization of development environments to build agent systems such as JADE [33].  

In addition, Agent Communication Languages (ACLs) are considered as one of the 

most important specifications of MAS. Agent communication is based on message 

passing, where agents communicate by formulating and sending individual messages to 

each other. FIPA-ACL (Foundation for Intelligent Physical Agents - Agent Communication 

Language) specifies a standard message language by setting out the encoding, 

semantics, and pragmatics of the messages. The standard does not set out a specific 

mechanism for the internal transportation of messages. Instead, since different agents 

might run on different platforms and use different networking technologies, FIPA specifies 

that the messages transported between platforms should be encoded in a textual form. It 

is assumed that the agent has some means of transmitting this textual form [34].  

Until recently, MAS has been rarely used in energy distribution applications. For 

example, an ontology design using three tools of Matlab, JADE, and RT-Lab with FIPA-

ACL was employed for monitoring voltage regulation in power distribution networks. JADE 

is a software framework for developing agent-based applications in compliance with the 

FIPA specifications for interoperable intelligent multi-agent systems. The goal is to simplify 

development while ensuring standard compliance through a comprehensive set of system 

services and agents. JADE can then be considered an agent middleware that implements 

an agent platform and a development framework. It deals with all those aspects that are 

not peculiar to the agent internals and that are independent of the applications, such as 

message transport, encoding and parsing, or agent life cycle. Table 1.3 summarizes some 

of the specifications of FIPA, JADE, and ACL, which were mentioned previously in this 

chapter. They are considered the most common standards/applications used for agent 

design, development, and communication respectively. In section 1.5, FIPA is explained 

in detail. 

 

 



15 

Table 1.3. Some of the most common standards/applications used in agent-
based systems 

Standards/Application Task in Agent-Based 

Systems 

Specifications 

FIPA Standard for  Design Ontology design, high  flexibility, and 
capability of  using three applications: 
MATLAB, JADE and RT- Lab 

JADE Development environments to 
build system platforms 

Using Java programming code with extra 
JADE libraries 

ACL  Transfer light weight encoded 
messages between agents      

Transfer Java messages but it 

 also converts another message 

 types to Java ACL Message 

1.5. Foundation for Intelligent Physical Agents (FIPA) 
Specifications 

FIPA is an international non-profit association of companies and organizations 

sharing the effort to produce specifications of generic agent technologies. FIPA is 

envisaged not just as a technology for one application but as generic technologies for 

different application areas, and not just as independent technologies but as a set of basic 

technologies that can be integrated by developers to make complex systems with a high 

degree of interoperability. FIPA is based on two main assumptions. The first is that the 

time to reach consensus and to complete the standard should not be long, and, mainly, it 

should not act as a brake on progress rather than an enabler, before industries make 

commitments. The second is that only the external behavior of system components should 

be specified, leaving implementation details and internal architectures to agent 

developers. In fact, the internal architecture of JADE is proprietary even if it complies with 

the interfaces specified by FIPA [35]. 

The first output documents of FIPA, called FIPA97 specifications, specify the 

normative rules that allow a society of agents to inter-operate, operate and be managed. 
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The specification describes the reference model of an agent platform. It identifies the roles 

of some key agents necessary for the management of the platform and specifies the agent 

management content language and ontology. Three key mandatory roles are identified 

into an agent platform: Agent Management System (AMS), Agent Communication 

Channel (ACC), and Directory Facilitator (DF). AMS is an agent that exerts supervisory 

control over access and use of an agent platform; it is responsible for the authentication 

of resident agents and control of registrations. ACC is an agent that provides the path for 

basic contact between agents inside and outside the platform. DF is an agent that provides 

a yellow page service to the agent platform. Note that no restriction is given to the actual 

technology used for the platform implementation: e-mail based platforms, Common Object 

Request Broker Architecture (CORBA) based, and Java multi-thread applications could all 

be FIPA compliant implementations. 

FIPA supports common forms of inter-agent conversations through the 

specification of interaction protocols, which are patterns of messages exchanged by two 

or more agents. Such protocols include ranges from simple query-request protocols, to 

the well-known contract net negotiation protocol and English and Dutch auctions. Other 

parts of the FIPA standard specify other aspects, in particular the agent-software 

integration, agent mobility and security, ontology service, and the Human-Agent 

Communication. Agents employ different behaviours to communicate with each other. In 

the following chapter some of these behaviours are explained.  

1.6. Communication among Agents in MAS Using Three 
Different Behaviours 

As Figure 1.6 depicts, architecture of MAS used in power systems consists of three 

different layers: reactive layer, modeling (coordinator) layer and planning (deliberative) 

layer [36], [37], [38]. Each agent designed in an MAS is placed in different layers based 

on its task (e.g., the coordinator layer agent is assigned to the middle layer and applied as 

a bridge to communication processes [39]. Therefore, each agent used in the power 

systems could be found in one of the three layers in Figure 1.6. 
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Agents are located in the reactive layer if they are pre-programmed to do certain 

tasks. Moreover, agents are placed in the planning layer if they are context dependent, 

cooperating in their local tasks and competing with similar agents in other nodes in 

pursuing global goals. In addition, coordinator agents may communicate with agents in 

the other two layers. Communication among agents allows a cooperative-based approach 

to system control in microgrids. This enables utilization of an MAS approach to converter 

coordination of different power devices including energy storage.  

                                           

       Figure 1.6.      Three Layers of MASs 

In MAS, each agent is capable of different behaviours based on design 

requirements such as brokerage, facilitating, and matchmaking [40]. As Figure 1.7 depicts, 

broker behavior manages the sharing process by receiving information from the other 

agents and allocating the protocols for agents to communicate with the brokers [41]. 

Agent1 as Broker Agent (BrAg) initiates communication with all the other agents to detect 

the lowest cost path. In the next step, all of the other three agents propose their costs. 

Upon choosing the compatible agent, Agent1 informs all the other agents. Facilitator Agent 

(FacAg) communicates with all the agents to establish the path. It detects the suitable 

agents for running any task. In addition, it uses a Matchmaker Agent (MchAg) to establish 

collaborative sub-systems of agents.  
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A matchmaker agent pairs two agents of service provider and service requester 

for matching given requests of requester agents with appropriate advertised services of 

registered provider agents. In contrast to the functionality of both the broker and facilitator, 

it simply returns a ranked list of relevant provider agents to the requesting agent. 

Consequently, the requester agent has to contact and negotiate with the relevant provider 

agent itself for getting the services it desires. This direct interaction between requester 

and selected provider agents is performed independently from the matchmaker. It avoids, 

for example, data transmission bottlenecks or single point of failure at the matchmaker but 

increases direct communication overhead between matched requester/provider agents 

[42].  

Therefore, a collaborative subsystem of agents is established using the MchAg. 

The individual agents start to communicate directly with each other through established 

links and data do not need to pass through MchAg anymore. 

         

 

Figure 1.7. Communication among Agents Using Three Different Behaviours 
(Broker, Facilitator, and Matchmaker) 

Referring to the categorizing real-time control agent technologies in the Brennan paper 

[43], it is realized that the facilitator and MchAgs are the most appropriate options for the 

sample power system. The matchmaking algorithm is used to establish links among 

agents and delete the MchAg after establishment. A facilitator agent also is required to 

provide reliable network communication among agents. In other words, the broker 

technology doesn’t seem to be a good choice for real-time middle-sized microgrids 
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because all the messages have to communicate with one single source or server, and it 

decreases the communication time. Moreover, in some networks such configuration may 

not offer adequate scalability. Furthermore, it does not provide a satisfactory level of fault-

tolerance since crashing a single broker may result in a large number of state transfer 

operations during recovery. Also there is another agent technology that is called  publish-

subscribe which includes a combination of facilitating and matchmaking behaviours. In the  

chapter 3 the efficiency of aforementioned agent technologies using defined metric 

(number of message exchanges0metricvalue for  a test system.  

1.7. Thesis Structure including the Application of Three 
Microgrids as Case Studies and their Associated Agent 
Control Models 

In this thesis, consideration will be given to three types of microgrids as case studies; 

one of them is a medium-sized islanded DC microgrid including 32 converters. It is used 

for numerical analysis and selection of the most efficient coordinator control for islanded 

DC microgrids and is called MicroGrid-32 (MG-32). The second case study including eight 

converters called MicroGrid-8(MG-8) which is a smaller size of the same type of microgrid. 

It is used as a case study for evaluating proposed agent-based control platform, modeled 

in the MATLAB. The last test system used in this research is a hierarchical agent-based 

model, which is developed and employed for Volt-VAR Optimization (VVO) in a small-

sized connected AC microgrid. The system is including 16 power devices and it is called 

MicroGrid-16 (MG-16). 

As explained in section 1.6, each agent designed in an MAS is placed in different 

agent layers of planning, coordinator, and reactive based on its tasks. When real-time 

tasks are required, they are usually handled using reactive layer’s agent because they are 

closely associated to power electronic devices such as converters [44]. This thesis 

proposes an MAS to coordinate distributed power generators, optimize real-time, agent-

based algorithms, and achieve higher degrees of efficiency and reliability. In this thesis 

two different agent technologies are used in microgrids including: Volt-Var Optimization 

(VVO) for a grid-connected AC microgrid and coordination among power converters for 



20 

 

an islanded DC microgrid. Their capabilities are compared based on each microgrid’s 

requirements: 

 VVO model is defined on a broad timing range of 1-15 minutes while an 
islanded DC microgrid is considered as soft real-time systems with a 
deterministic time frame of a few tens of milliseconds. 

 VVO is a small-sized microgrid including eight smart meters and a couple 
of other power devices like capacitor banks, but DC microgrid is a medium-
sized microgrid including tens of converters. 

 Optimization is applied in all three agent layers of planning, coordinator, 
and reactive layer for the VVO test system, while the islanded DC microgrid 
deployed coordinator and reactive layers. 

 

For the first test system used in this research, an agent-based control system for 

voltage regulation among converters in a defined DC microgrid. Two different agent 

platforms are developed in this thesis. Considering that the islanded DC microgrid has a 

low inertia, the designed agent platform needs to perform a very fast convergence among 

power electronic devices. In this research, agent technology is applied for control action 

in middle-sized DC microgrids as one of the most efficient and scalable solutions [45].  

The second test system is on the design and development of a hierarchical agent-

based model is developed and employed for Volt-VAR Optimization (VVO) in an AC 

microgrid. VVO is one of the main techniques which is traditionally applied in power 

systems to reduce losses in distribution feeders [46]. It is an advanced method that 

optimizes voltage and/or reactive power (VAR) of a distribution network based on a 

predetermined aggregated feeder load profile. Due to the effects of load profiles on the 

quality of delivered energy to the customers, effective technologies need to be developed 

to monitor and control the amount of reactive power and energy losses in distribution 

systems. This research proposes a real-time adaptive approach for an integrated VVO in 

a smart grid applying a distributed command and control platform with IAs. It presents a 

primary MAS topology and structure with respect to the VVO application. In chapter 6, the 

design and implementation procedures of VVO agent technology is presented. 



21 

 

Table 1.4 compares some of the specifications of VVO and DC shipboard microgrid 

which lead to the selection of different agent technologies for these two test systems. 

Figure 1.7 categorized MAS into three types of broker, facilitator, and matchmaker based 

on communication among agents in an MAS based on their behaviour. While control 

requirements for the VVO test system are addressed using facilitator agent design, control 

requirements for the DC Shipboard microgrid are provided deploying matchmaker agent 

technology. Table 1.5 describes the tasks and naming of three case studies that are 

grouped in two test systems. 

 

Table 1.4. Comparison between two test systems: VVO and DC Shipboard 
microgrid (DG: Distributed Generators, LTC: Load Tab Changer, CB: 

Capacitor Bank) 

Features of Test 
Systems 

VVO DC Shipboard Microgrid 

Size of System 

 

Small-sized with less than 16 power 
devices including 8 smart meters, 2 
CBs, and 2 LTC 

Medium-sized with tens of converters 
connected to the all power devices 
including DGs 

 

Timing  

 

Broad with a cycle of running system 
within one  minute for agents in 
reactive layer and 15 minutes for 
agents in planning layer 

Soft real-time with a constrain on 
having deterministic time frame of a 
few tens of millisecond 

 

Associated Agent 
Layer  

Planning, Coordinator, and Reactive                                                                                                                                               Coordinator, and Reactive  

Applied Agent 
Technology                                                                                                                                                                                                                                 

Facilitator Publish-Subscribe  
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Table 1.5. Description of Test Systems and Case Studies in Thesis 

Test System - 
Case Study 

 Microgrid Model  Associated Agent Platform 
 

   System Task 

1-1  MicroGrid-32 (MG-32) 

 Medium-sized islanded 
DC  

Real-time Coordinator of 
Power Converters with 32 
Agents (RCPC-32) 

 

Used for numerical analysis 
and selection of the most 
efficient coordinator control 
for islanded DC microgrids 

1-2  MicroGrid-8 (MG-8) 

Small-sized islanded 
DC 

Real-time Coordinator of 
Power Converters with 8 
Agents (RCPC-8) 

Used for evaluating proposed 
agent-based control platform 

2-1  Microgrid-16 (MG-16) 

Small-sized connected 
AC 

Volt-VAR Optimization (VVO) Developed and employed for 
Volt-VAR Optimization (VVO) 
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 Evaluating Commonly used Distributed 
Agent Control Technologies for Microgrids (First  
Case Study)  

Agent-based technologies are still immature, and few truly agent-based systems 

have been realized [47]. Agent-based technologies cannot realize their full potential, and 

will not become widespread, until standards to support agent interoperability become 

available and used by agent developers and until adequate environments for the 

development of agent systems are developed. Several researchers are working towards 

the standardization of agent technologies (see for example, the work by Knowledge 

Sharing Effort [48], OMG [49] and FIPA [50]) and in the realization of development 

environments to build agent systems (see, for example, RETSINA [51]).  

However, the use of a common communication language is not enough to easily 

support interoperability between different agent systems. The work of FIPA, as explained 

in section 1.5, is in the direction to allow an easy interoperability between agent systems. 

FIPA’s task can be summarized as follows: 1) FIPA standardizes agent communication 

language (ACC); 2) It specifies the key agents necessary for the management of an agent 

system (AMS); 3) It declares the required ontology for the interaction between systems 

(DF); 4) It defines the transport layer of the protocols. In this thesis, JADE is used as a 

software framework to develop agent applications in compliance with the FIPA 

specifications for interoperable intelligent multi-agent systems.  

A Real-time Coordinator of Power Converters (RCPC) system is defined as a 

control model for the sample microgrid. To test the applicability of the RCPC optimization 

method, an MG-32 model is used as a case study for numerical analysis, which is called 

RCPC-32. In chapter 3, where a simplified case study including eight converters (MG-8) 

is used for simulation, its associated agent-based control system is called RCPC-8, which 

is basically a smaller size of RCPC-32. Different control designs are employed in an MG-

32 system and their efficiency and scalability is compared. A detail explanation about 

aforementioned systems is included in Appendix B. In this section, RCPC-32 is designed 

as an agent-based system to combine the predictability of the centralized and hierarchical 
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control architectures with the agility and robustness against disturbances and high degree 

of adaptability of the heterarchical control architectures [52].  

Figure 2.1 illustrates the application of agent technology in an RCPC-32 system. 

Each Converter Agent (CA) is connected to one of 32 converters using Ethernet 

communication protocols (TCP/IP or UDP/IP) located in the lower layer. A group of CAs 

is assigned to each middle layer agents. The number of Middle Agents (MAs) and the 

topology of their connection to both CAs at the lower layer and Planning Agent (PA) which 

also known as MchAg at the upper layer is varied for different agent algorithms. There is 

only one PA that is responsible for saving and mapping system plans. 

In the following sections, a few of the most efficient algorithms extracted from 

literature are reviewed and two of them customized for an RCPC-32 system (Figure 2.1). 

In addition, they are clarified using a case study, and their efficiencies are compared based 

on defined metrics. The aforementioned algorithms include: 

1. Belief, Desire, Intention (BDI) Architecture, using bidding algorithms;  
Designed for Game Theory and simulated Robotic Arms [53]. 

2. Holonic Control Architecture (HCA); Designed for global data centric 
such as internet distributed networks [54], [55]. 

3. Intelligent Distributed Autonomous Power System (IDAPS); Designed 
for Smart Grids. 

4. A combination of publish-subscribe and a decentralized 
synchronization mechanism including Distributed Hash Table (DHT) 
and Consistent Hash Table (CHT); Applied for different distributed 
systems. 

The two latter ones use FIPA agent design standard. In the following four sections, 

each of the aforementioned optimization algorithms are explained and the first and the last 

one are clarified using the case study and their efficiencies are compared using defined 

metrics. Based on the research hypothesis, the selected optimization algorithm should 

maintain a deterministic time frame of a few tens of milliseconds for a system with tens of 

converters with no limitation in the number of events which might happen concurrently.  
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Figure 2.1.  Communication Design between Three Types of Agents in RCPC-32 
System Applied for Coordinator Control of Converters in MG-32 

2.1. Belief, Desire, Intention (BDI) Architecture over Bidding 
Algorithm 

This algorithm is mainly designed for game theory and simulated robotic arms, and 

includes three main parts: belief, desire, and intention. It has been developed based on 

hierarchy architecture and customized for an RCPC-32 system. 

 Beliefs: current information of agents that consists of: 

o Perceiving the Environmentfor example: 

 Receives terms of current decomposition from Power 
Electronic Building Block (PEBB), which are defined as power 
converters 
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 Analyzes operating conditions to detect violations of power 
quality requirements [56] 

o Itself:  

 Apparent power limit 

 Current utilization (as computed from current measurement) 

 Ability to contribute to correction of imbalance load (based on 
energy storage availability) 

 Ability to contribute to active power compensation 

o Peer agent: Manages sharing process by receiving information from other 
agents and allocating compensation among them. 

 Desires: set long-term goals that agents want to achieve, such as: 

o Effective and flexible management of energy flow throughout microgrids. 

o Distributed implementation to avoid single points of failure that makes it 
robust and expandable. 

 Acts as higher level controller of its assigned converter, 
feeding the compensation parameters to the controller. 

o Agent immediate commitment to handle events by looking for plans that 
match the events and lead to desires. 

 Intentions: make a plan and become committed to its intention. 

o As it executes a plan, it may generate new events that require handling. 

2.1.1. Bidding Algorithm 

Figure 2.2 compares the results of the three bidding algorithms computed with 

similar data values using the cost formula (3.1), (3.2). It is clear that the sequential 

algorithm has the least complexity and therefore is the most efficient and persistent 

approach. Computational weight for each iteration is O(mn), where n and m are the 

numbers of agents and tasks, respectively. Considering the worst case scenario by 

assuming that all of tasks are being run in parallel, then m=n. Therefore, the bidding cost 

can be calculated from (3-1) to (3-3) for simultaneous, sequential, and dynamic bidding 

algorithms respectively. System requirements for the defined microgrid requires running 

concurrent events on systems’ agents, so simultaneous algorithms are chosen as the 
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preferred method for this research.  The computational weight for each iteration is O(n*m) 

where n is the number of the auctioneer and m is the number of bidders. Considering the 

worst case scenario, when all the agents are bidding concurrently, the bidding cost is 

calculated from (3.1). 

      

Figure 2.2. Comparison among Bidding Lookup Algorithms Based on 
Complexity  

 

For Simultaneous Bidding Algorithm:                          

𝐶𝑜𝑠𝑡 ≤ (𝑛 ∗ 𝑚)     &   𝑚 = 𝑛 ⇒  𝐶𝑜𝑠𝑡 ≤ (𝑛 ∗ 𝑛) = 𝑛2                       (3.1) 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 ≤ 32 
 

For Sequential Bidding Algorithm: 

𝐶𝑜𝑠𝑡 ≤ (𝑛 +𝑚)    &  𝑚 = 𝑛 ⇒  𝐶𝑜𝑠𝑡 ≤ (𝑛 + 𝑛) = 2𝑛                         (3.2) 
𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 ≤ 32    

 

For Dynamic Bidding Algorithm: 

𝐶𝑜𝑠𝑡 ≤ (2𝑛 log 3)  ⇒  𝐶𝑜𝑠𝑡 ≤ (2𝑛×1.58)              (3.3) 

 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑛 ≤ 32    
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2.1.2. Case Study for BDI Algorithms 

As mentioned before, a microgrid including 32 power converters is considered as 

a testbed for the design of BDI control algorithms. Figure 2.3 illustrates the agent 

management schema for the case study. 

    

X1

Y2

Y1

X2

(1,1) (8,1)

(1,4) (8,4)

MAg1 MAg2

MAg3 MAg4

E1

E2

 

      Figure 2.3.      Agent Management Schema 

 

Environment: Four MAgs equally coordinate 32 CAgs and each MAg is connected 

to a power converter [57]. Each agent can directly handle its local events or other events 

received from adjacent agents (contest simulator). Figure 2.4 demonstrates the 

transaction between MAg and its environment.  
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Figure 2.4. Transaction among a Middle Agent and Its Environment 

 

The following scenario is defined in communication among peer MAs (Figure 2.5): 

1. MA1 allocated at (1, 1). 

2. MA1 detects E1 (event1) at (3, 1). 

3. MA1 goes to (3, 1). 

4. MA1 announces to PA that E1 is at (3,1). 

5. MA1 announces to MA2, MA3, and MA4 its situation. 

6. MA1 detects E2 at (2, 2). 

7. MA2, MA3, and MA4 bid for handling event.  

8. MA1 reports E2 (2, 2) to MA3 (which is the closest agent to the area). 

9. MA3 wins the bid (because it is the closest agent to the area and has lowest 

cost) 

10. MA3 goes to (2, 2). 

11. MA3 announces its current situation to MA1, MA2, and MA4.  
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Figure 2.5. Communication among Peer Agents 

 

Jason IDE and JADE agent programming language are used to define and 

program MAgs with their associated IP addresses as their unique (Agent IDs) AIDs. They 

are able to communicate with each other and exchange data. The canvas on the right of 

Figure 2.6 provides a graphical representation of the messages exchanged between 

sniffed agents, where each arrow represents a message and each color identifies a 

conversation. When the user decides to sniff an agent or a group of agents, every 

message directed to, or coming from, that agent/group is tracked and displayed in the 

sniffer GUI. Each of the colors stand for one type of message: 

 Purple: initialing data transfer and data from initiator agent (e.g., MAg); 

 Blue: exchanging data among running agents; 

 Yellow: sending final data value to initiator agent (e.g., MAg); 
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 Black: stopping agents. 

Some of the most commonly used message types are inform, request, agree, not 

understood, and reject. They capture the essence of most forms of basic communication. 

As all the agents are installed on home IP Address and communicate through the same 

port, their socket numbers are an identical number of :129.252.22.129:1099. Port number 

1099 is associated for agents by networking standards, so each time that an agent-based 

program runs, it gets occupied and should be cleared before running the next program. 

   

 

 

Figure 2.6. Communication among Middle Agents Using a JADE Sniffer Tool in 
a Jason Application 
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2.1.3. Advantages and Disadvantages of BDI 

Here are the advantages and disadvantages: 

Advantages: 

 Bidding procedure runs for four MAgs in less than 1.25 seconds for an MG-32 
system; 

 A Jason platform is already used in the implementation of MAS as a 
successful application. 

Disadvantages: 

 The bidding algorithm is used for choosing the winner agent; therefore, the 
system speed decreases exponentially by increasing the number of MAs 
(Figure 2.2), so it is not efficient for middle and large size microgrids. 

2.2. Holonic Control Architecture (HCA) 

In a hierarchical architecture, there are multiple layers of master/slave agent 

relationships where agents at one layer of the hierarchy are slaves to a master agent at 

the next highest layer of the hierarchy. In the Holonic manufacturing community, a 

hierarchy of agents (holons) is called a holarchy58 [59]. A holon is distinguished from a 

software agent by adding a physical processing part, such as a converter, to an 

information processing part, which is an MAS in this thesis [60]. The IEC 61499 standard 

can be used for functional blocks in a distributed automation of a Holonic design [61]. 

Since it uses a Low Level Control (LLC), the system response time is between 10100 

milliseconds, which is an acceptable time for running an RCPC-32 system. Figure 2.7 

displays a simple schema of a Holonic control system. 
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   Figure 2.7. Holonic Low-level Control Architecture for an RCPC-32 System 

 

 

2.2.1. Advantages and Disadvantages of HCA 

Advantages: 

 The processing time is between 10100 milliseconds for each event (e.g., 
changing the system load); 

 The hardware and software connection is defined based on an IEC 61499 
protocol, which is an international standard for distributed systems 

Disadvantages: 

 It only works with software and hardware that meet the IEC 61499 standard; 
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 Some of the most common lookup algorithms, such as the bullying algorithm, 
which is required for MAS, have never been tested for Holonic control 
architecture; 

 Agents are designed to be coded using JADE, but any special platform is 
recommended to be compatible with other algorithms and an IEC 61499 
protocol. 

2.3. Intelligent Distributed Autonomous Power System 
(IDAPS) 

IDAPS has been used as a potential backup for system protection in microgrids. It 

properly works in the island mode. By design, the IDAPS is a specialized microgrid that is 

set up at the level of end-use customers to allow electricity trading among neighbors [62]. 

During a power outage, an IDAPS cell will island itself from the grid and start to operate 

autonomously. Critical loads will first be served by their internal sources, and any shortfall 

can be made up through open market purchases. It is also possible to buy and sell 

electricity among different IDAPS microgrids [63]. As Figure 2.8 displays, the main 

operation characteristics of IDAPS are: supply-driven demand, multi-agent technology, 

and web-based communication architecture.  

In IDAPS, a multi-agent system was developed using JADE, a microgrid was 

simulated in Matlab, and a TCP/IP server was implemented to allow a single TCP/IP 

connection to an external system at a time. All agent actionsfrom detecting the fault, 

disconnecting the main circuit breaker, disconnecting the noncritical loads to stabilizing 

the gridcan be accomplished within half an electrical cycle (i.e., less than 0.008 seconds 

for a 60-Hz system); that is one of the biggest advantages of applying this system for 

protection. 

Advantages: 

 Taking less than 10 milliseconds for processing a task in a 60-Hz 
power system; 

 Implementing an integrated system for hardware, software and user 
interface.  
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Disadvantages: 

 Only one single TCP/IP connection was allowed to an external system at a 
time. As a result, a middle server was developed later on to allow multiple 
TCP connections to the external MAS. But this server can only get multiple 
commands from MAS to transfer to microgrid. Thus, it would not be able to 
address more than one event at the same time. 

Microgrid hardware 
simulated in MATLAB

Multi-agent system 
(IDAPS)

Middle 
Server

TCP Connection

TCP Connection

TCP Connection

TCP Connection

 

Figure 2.8. IDAPS System Total View 

2.4. Publish-Subscribe Using DHT 

Publish-subscribe is a messaging pattern in which message senders (publishers) 

do not program the messages to be sent directly to specific receivers (subscribers). 

Published messages are categorized into classes. The subscribers express interest in one 

or more classes, and only receive messages that are of interest. This is a novel method 

of task allocation among multi-agent systems. The unique concept of publish-subscribe 

systems is that messages are addressed by content rather than by destination. This idea, 

often called subject-based addressing, is used to divide the network into a loosely coupled 

association of anonymous data producers and data consumers [64]. As a compatible 

algorithm, hash tables have been used for efficient message routing among agents.  

In the publish-subscribe algorithm, the following metrics have been identified to 

measure the performance: latency, total number of messages generated for Resource 

Lookup Queries (RLQs), response time, and routing hops. As seen, message count is the 

most common metric value among the parameters; thus, it has been chosen as a unique 

metric value for evaluating algorithms in an RCPC-32 system. The measurement 

parameters, such as RLQs and routing hops, are averaged over all the broker service in 

the system. This process of routing the event to the peer responsible for managing it takes 
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𝑂(𝑑𝑁1/𝑑  ) overlay hops on average, where N is the number of peers in the system and d 

is the dimensionality of the cartesian space [65]. 

Publish-subscribe systems are becoming increasingly popular in building large 

distributed information systems. In such systems as shown in Figure 2.9. A, subscribers 

specify their interests to the system using a set of subscriptions [66]. Publishers submit 

new information into the system using a set of publications. Upon receiving a publication, 

the system searches for matching subscriptions and notifies the interested subscribers. 

Unlike the client/server model, the publish-subscribe model decouples time (Figure 2.9. 

B), space, and flow between publishers and subscribers, which may lead to benefits such 

as reduced program complexity and resource consumption.  

        

 

Figure 2.9. Overview of Publish-Subscribe on Broker Overlay 
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There are at least two major classes of publish/subscribe systems which are shown 

in Figure 2.9.C&D:  

1. Topic-based subscribers join a group containing a topic of interest. Publications 
that belong to the topic are broadcast to all members of the group. Therefore, 
publishers and subscribers must explicitly specify the group they wish to join. 
Topic-based systems are similar to the earlier group communication and event-
notification systems (e.g., in newsgroups). 

2. In content-based publish/subscribe systems, the matching of subscriptions and 
publications is based on content and no prior knowledge is needed (e.g., the 
set of available topics). Therefore, these systems are more flexible and useful 
since subscribers can specify their interests more accurately using a set of 
predicates [67], [68]. 

However, the main difficulty in building distributed content-based systems is the 

design of an efficient distributed matching algorithm. Existing distributed content-based 

systems typically rely on a small number of trusted brokers that are inter-connected using 

a high-bandwidth network (Figure 2.9) [69]. In some scenarios, such configurations may 

not offer adequate scalability. As well, they do not provide a satisfactory level of fault-

tolerance since crashing a single broker may result in a large number of state transfer 

operations during recovery.  

Content-based systems support a wide set of queries including prefix, suffix, 

containment, equality predicates on strings, and range and comparison predicates on 

numerical-typed attributes. P2P data networks may be very useful to build queries using 

the publish-subscribe paradigm. A comprehensive infrastructure is contributed which 

supports efficiently and scalability a rich set of operators on string and numerical-typed 

attributes. The matching of publications (a.k.a. events) to subscriptions (a.k.a. interests) 

is done based on the content (values of attributes). In addition, in content-based model , 

the  publisher is given the ability to express their interest by specifying a period of defined 

values over different attributes. Thus, the subscribers of content-based publish-subscribes 

are made of {attribute, operator, value} tuples, where the operator can be one of {<, =, >, 

≤, ≥}, and the publishers are a set of {attribute, value} pairs [70], [71]. 
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Recently, DHTs have emerged as an infrastructure for efficient, scalable resource 

lookup in large peer-to-peer distributed networks. Such systems are decentralized, 

scalable, and self-organizing (i.e., often, as well, they automatically adapt to the arrival, 

departure, and failure of nodes in the network) [72]. Such characteristics make DHTs 

attractive for building distributed applications. In fact, DHTs have successfully been used 

in several application domains, such as distributed file systems.  An overlay network is a 

network which is made on the top of an existing network. They are a good solution for 

supporting distributed algorithms such as publish-subscribe systems. DHT is an overlay 

network which is designed on an application layer of a TCP/IP internet network.  

The above method uses a hash table functionality to manage, join, and leave the 

nodes in a wide-area environment. The sets of (key, value), which are defined in hash 

tables, help users to retrieve a value corresponding to a given key. The application of 

publish-subscribe over DHT in large-scale distributed systems has been studied by 

several authors. It might be argued that in small-scale systems, publish-subscribe can be 

implemented on a centralized overlay network protocol with lower cost. However, DHT 

does not require any changes in system architecture for adding the nodes to the system 

over time [73]. Therefore, the ability to scale up the system size easily and with low cost 

will retrieve the usage of DHT as a system infrastructure [74]. 

Ratnasamy, and Francis [75] presented an approach that is able to support string-

attribute predicates with message complexity 𝑂(𝑟 × log2𝑏 𝑛) (where 𝑟 is the average 

length of string values, 2𝑏 is a configuration parameter with typical value of 2, and 𝑛 is the 

number of nodes) for publishers and 𝑂(log2𝑏 𝑛) for subscriptions. The size of the populated 

portion of the routing table (approximately [log2𝑏 𝑛] × (2
𝑏 − 1)  entries) and the maximum 

number of hops required to route between any pair of nodes ([log2𝑏 𝑛]). For instance, with 

a value of b=4 and n=106, a routing table contains on average 75 entries, and the expected 

number of routing hops is 5, whilst with 109 nodes, the routing table contains on average 

105 entries, and the expected number of routing hops in 7. 

As briefly mentioned in section 2.1, considering 32 nodes and one prefix for each 

member of the routing table, the expected number of rooting hopes will be equal: 
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[log2𝑏 𝑛] = [log21 2
5] = 5 for content-based rooting of publish-subscribe algorithm. The 

routing table size calculates from: [log2𝑏 𝑛]  × (2
𝑏 − 1) = [log21 32] × (2

1 − 1) = 5 × 1. 

Based on section 2.1.1, the number of message counts for a simultaneous bidding 

algorithm in a brokerage messaging pattern is calculated by 𝑛2, which grows faster than 

a publish-subscribe method by increasing the number of nodes. A computational 

comparison between agent technologies shows that the publish-subscribe mechanism 

displays consistent distributed control in the upper time limit for a microgrid with a variation 

from 1 to 50 converters. Figure 2.10 illustrates that a variable number of converters 

between 1 and 50 affects the number of message exchanges in a publish-subscribe model 

slightly compared to one of the most used agent technologies known as bidding algorithm. 

Section 2.6 explains the design of a case study system based on a publish-subscribe 

model, followed by the application of DHT as an infrastructure in this case study.  
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Figure 2.10.  A Comparison between Complexity of Bidding and Publish-
subscribe Agent Designs Considering Maximum Length of 

Messages (r=7, and r=44) 

 

2.5. Searching Algorithm Based on DHT for First Case 
Study 

Any DHT could be utilized for routing of n-dimensional index. In the Chord method 

that is the most popular DHT structure, the complexity for routing table, lookup, and peer 

joint/leave are O(log n), O(log n), and O((log n)2) respectively [76]. The main idea of DHT 

is partitioning tables. Each node gets an identity by hashing its IP address, and keys are 

also hashed into the same space (Figure 2.11 ). A key(k) with a hashed ID k is assigned 

to the first node whose hashed ID is equal to or follows k in a circular space:  

Successor (k), Put (key, data) → Lookup (key) → data 
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Distributed Application

Distributed hash table (Chord)

put (key, data) get (data)

node node

lookup (key)

node

data

 

                        

 Figure 2.11.  Put/get Interface of DHT 

In addition to a faster searching speed, this algorithm has some other advantages 

compared with the same lookup algorithms, previously reviewed in this document, e.g., 

good load balancing, high efficiency (O(log n) messages per lookup), and robustness. In 

this algorithm, choosing a list of successors for each node depends on the number of 

agents as well as the ability of self-healing in the case of failing half of the converters at 

the same time. Figure 2.12 displays the process of assigning 32 converters to seven MAs. 

1. Thirty-two converters are installed in two buses. 

2. All of the converters have the capability to become an MA. 

3. A variable number of converters are assigned to each MA based on the 
converters’ load value and event and history of event happening history. The 
MchAg has planned this information. 

4. A different number of converters might be working within each IP address range 
every time. 

5. Each added converter will find its place using lookup algorithms in DHT. 

6. Each MA has information of its three successors, which leads to ability of self-
healing even after failure of half of the working converters. 

Only one shortcut in each search is allowed. Figure 2.13 illustrates detailed steps 

for searching for a destination converter using DHT, while the flowchart of the look up 

process is displayed in Figure 2.14. The other processes, such as managing load balance 

in case of adding and deleting a converter, have also been studied, and it is realized that 

they have similar flowcharts. As observed, DHT and publish-subscribe are considered to 

be the most efficient methods for implementing an RCPC-32 system [77]. 
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Figure 2.12.  Assigning CAs to MAs using DHT for 32 Converters and 7 
MAs (CA: Converter Agent, MA: Middle Agent) 
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Figure 2.13.  Lookup Process in DHT Algorithm (CA: Converter Agent, MA: 
Middle Agent) 
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Figure 2.14.  Lookup flowchart using DHT searching algorithm (CA: Converter 
Agent; MA: Middle Agent; MchAg: Matchmaker Agent; MAL: Middle 

Agent List) 

 

One of the most important characteristics of DHT is its ability of self-healing and 

flexibility of scaling. It means the system automatically adapts to the arrival, departure, 

and failure of nodes. Thus a single point of failure will not necessarily affect the entire 

system. Furthermore, the system is robust in the case of adding nodes. Figure 2.15 

displays the flexibility of an RCPC-32 system for handling the changes in the number of 

converters. In this Figure, the steps of handling a node failure and replacing it with another 

node is explained in detail. As mentioned before, the complexity of calculation is less than 

(𝑙𝑜𝑔2 32 )
2 for handling peer joint/leave in DHTs. 
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Figure 2.15. Management of Adding and Failure of Converter in a DHT 
model (Self-healing and Scalability) 

 

2.6. Designing and Development of Publish-Subscribe over 
DHT for First Case Study 

In this section, an MAS is introduced using publish-subscribe and a DHT for 

maintaining a sufficient voltage level during supply overload voltage. As depicted in Figure 

2.1, each of the 32 nodes is connected to a converter agent through a converter, and a 

group of CAs based on system topology is assigned to each MA. Table 3.1 introduces 

seven MAs and their associated CAs in RCPC-32. MAs are categorized based on their 

node types including critical load (CL), semi-critical load (SCL), non-critical load (NCL), 

and distributed generator (DG). Publishers and subscribers exchange messages during 

their matching process. Figure 2.16 illustrates a message structure included the following 

segments: 1) a converter agent number (CAn) which is an integer between 1 and 32, 2) 

an Sid(Subscriber Id) for subscriber message types (3.4), or an Eid (Event Id) for publisher 
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message types (3.5). At the last part of message, attributes and their values using 

operators have specified (3.4)-(3.11). 

 

Table 2.1.  Definition of Middle Agents for Case Study 

Node 
ID 

Key Nodes Successor Nodes 
Type of Nodes 

1 MACL CA1, …., CA7 Critical Load (CL) 

2 MASCL CA8, …., CA17 Semi-Critical Load (SCL) 

3 MANCL CA18, …., CA28 Non-Critical Load (NCL) 

4 MAG1 CA29 DG1: Main Generator(MG) 

5 MAG2 CA30 DG2:MG 

6 MAG3 CA31 DG3:Auxilary Generator(AG) 

7 MAG4 CA32 DG4:Capacitor Bank (CB) 

Load balancing is applied to the system in order to cope with the active power 

contribution of the nodes after load changes. In this case study, the usage of agent 

technology for load balancing is described on the RCPC-32 system. Table 3.2 displays 

the numerical values and descriptions of 32 nodes in sample system.   

 

 

Figure 2.16.  Publish-Subscribe Message Structure (CAn :Converter Agent 
Number, Sid: Subscriber/Consumer Id,  Eid: Publisher/Event/Producer Id) 

 

𝐸𝑖𝑑𝑖𝑗𝑘  (1 ≤ 𝑖 ≤ 7, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 8)                             (3.4) 

𝑆𝑖𝑑𝑖𝑗𝑘  (1 ≤ 𝑖 ≤ 7, 1 ≤ 𝑗 ≤ 4, 1 ≤ 𝑘 ≤ 8)           (3.5) 

Where:  

i is node type, i.e., CL, SCL, and NCL, DG1, DG2, DG3, DG4 
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j is physical area of nodes which is considered as four equal slides of microgrd based on 

its physical shape. e.g. A circle shaped microgrid can divide among four equal quarter  

k is priority based on arrival time of message  

 

Table 2.2.  Nodes’ Value and Description for Case Study (CAn: Converter 
Agent Number, CL: Critical Load, SCL: Semi-Critical Load, NCL: 

Non-Critical Load) 

CAn Node 
Type 

P(kW) 
CAn Node 

Type 
P(kW) 

1 CL 20 17 SCL 25 

2 CL 30 18 NCL 3 

3 CL 110 19 NCL 11 

4 SCL 2 20 NCL 38 

5 SCL 5 21 NCL 24 

6 SCL 3 22 NCL 3 

7 SCL 135 23 NCL 5 

8 SCL 40 24 NCL 2 

9 SCL 1.2 25 NCL 83 

10 SCL 10 26 NCL 7 

11 SCL 40 27 NCL 49 

12 SCL 95 28 NCL (PL) 12000 

13 SCL 50 29 DG1(MG) 36000 

14 SCL 20 30 DG2(MG) 41000 

15 SCL 95 31 DG3(AG) 4000 

16 SCL 1.2 32 DG4(CB) 520 

 

The following steps are taken by agents for finding the match pairs of events and 

subscriber among all the 32 nodes. A publish-subscribe algorithm over a DHT 

infrastructure is applied for finding the match nodes: 

1. Both of MG-related agents subscribe to the load MAs (MACL, MASCL, MANCL) 
(3.6), (3.7). As Figure 2.17 displays, six total message counts for this step are 
calculated. 
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2. Auxiliary power resources subscribe to both main power resources (3.8), (3.9) and 
add four more message counts to the system complexity (Figure 2.17). 

𝑆1 =  (𝑆𝑖𝑑411, 0 ≤ ∆𝑃 ≤ 200)                 (3.6) 

𝑆2 =  (𝑆𝑖𝑑432, 0 ≤ ∆𝑃 ≤ 100)                                                            (3.7) 

𝑆3 = (𝑆𝑖𝑑621, 0 ≤ ∆𝑃 ≤ 4000)                (3.8) 

𝑆4 =  (𝑆𝑖𝑑741, 0 ≤ ∆𝑃 ≤ 520)                       (3.9) 
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Figure 2.17.  Matching Process between Publishers-subscribers (First step) 

 

3. Load events realise from converter agents at an overload situation that happens 
whenever the load value increases more than 15%, which is defined as the 
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threshold for the test system, so the generator needs to provide extra power. Four 
different loads (# 3, 15, 20, and 23) experience the overload at the same time. 
Converter agents route the events (E1, E2, E3, and E4) to the related load MAs 
based on the first digit of their Eid numbers. So E1, E2, and E3, and E4 go to MACL, 
MASCL, and MANCL respectively (3.10)-(3.13). Routing happens based on the 
numerical coefficient of Sid and Eid message IDs (Figure 2.18) 

 

                        

Figure 2.18.  Matching Process between Publishers-subscribers (Second step) 

 

𝐸1 = (𝐸𝑖𝑑111, ∆𝑃 = 16.5)                                               (3.10) 

𝐸2 =  (𝐸𝑖𝑑221, ∆𝑃 = 14.25)                                     (3.11) 

𝐸3 =  (𝐸𝑖𝑑341, ∆𝑃 =  0.57)                                         (3.12) 

𝐸4 =  (𝐸𝑖𝑑321, ∆𝑃 = 0.75)                     (3.13) 

𝐸5 = (𝐸𝑖𝑑431, ∆𝑃 = 3600)                       (3.14) 
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 where ∆P is the absolute value of load changes:   

∆𝑃 = |𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃𝑛𝑜𝑚𝑖𝑛𝑎𝑙|                             (3.15) 

 

a) All of the load converter agents divide the Eid messages among three load MAs 
based on their first coefficient values that it can be 1 for critical loads (CL), 2 for 
semi-critical loads (SCL) and 3 for non-critical loads (NCL) from NodeID in Table 
3.1. 

b) Consequently, load MAs forward the messages to the physically closest generator 
by checking the second coefficient value. 

c) In the subscriber MAs (MAG1 and MAG2), events are listed in a queue based on 
their load type and their arrival order, which can be specified using the first and 
third coefficient value of their Eid number.  

d) The arrival coefficient (3rd number) sets in each agent individually; this means that 
for each publisher and subscriber agent there is a queue where events will be 
place based on their arrival time to that specific agent. In this step another 10 
messages are added to the system message count.  

4. After completing matching steps, each generator agent includes a routing table with 
publisher event IDs. As the infrastructure is made on DHT, the complexity of routing 
lookup messages according to the previous section is at most equal: (O(log2 𝑛) =
O(log2 32) = 5 ) message counts, which are very efficient compared to the other 
searching algorithms. Since four events are matched in this part, six message 
counts are added to the previous system complexity based on system metrics 
(Figure 2.19). CA3 and CA15 receives their required extra power from associated 
generators. 

5. The generator agents issue an event if the generator power falls less than 10% of 
its normal (average) value. As Figure 2.20 illustrates, E5 is realized in this situation 
(3.14). 

6. Based on the algorithm definition, both S3 and S4 subscribers are eligible to provide 
the required power for the system because they are both physical neighbors of 
MAG1 and are subscribed to its agent. Although considering the ∆P values of both 
subscribers, S3 has priority and it is matched to the E5. In this step, a total of two 
message counts are added to the system complexity. Therefore, in the whole 
process of the case study, a few tens of messages are delivered using agents for 
a system with tens of converters with no limitation in the number of events which 
might happen concurrently.  
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Figure 2.19.  Matching Process between Publishers-subscribers (Third Step) 

 

 

                

Figure 2.20.  Matching Process between Publishers-subscribers (Fourth Step) 
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In this case study, the results of modeling a multi-agent system using different 

algorithms are analyzed numerically. It was found that the combination of publish-

subscribe and DHT searching methods were the most efficient, scalable optimization 

algorithms for the defined medium-sized microgrid. As shown, an increase in the number 

of converters from 1 to 50 slightly affected the upper time limit of message exchange 

among converters. Furthermore, the management of adding and deleting converters 

based on a DHT infrastructure displays the same level of efficiency as the lookup process.  

As a result, in section 4.2, a topic-based publish-subscribe method is modeled 

using the Jason Platform and the topic is chosen based on nodes’ IP Addresses. However, 

since a topic-based model has been advanced to a content-based publish-subscribe 

model because of its advantages and flexibility, the Jason platform is not a suitable 

platform for implementing the case study. JADE is identified as the most flexible and 

capable agent platform which is also compatible with the FIPA standard [78]. Therefore it 

is used for developing a multi-agent control system in this thesis, and design processes 

and simulation results will be presented in the following chapters. 
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 Topology of DC Microgrid and 
Optimization Algorithm (Second Case Study) 

Figure 3.1 displays the DC shipboard microgrid that is selected as a testbed for 

this research. This system is one of the most complicated cases to be addressed because 

it is islanded, has all sources connected via converters, and includes energy storage units. 

Islanded mode means that, in the case of scheduled or forced isolation, the microgrid must 

have the ability to operate stably and autonomously. 

 Islanded mode is challenging since a high inertia grid is not present. In addition, 

since all the sources are interfaced through power electronic converters, they can have 

very low inertia, resulting in fast control time constants compared to large synchronous 

machines. Finally, the presence of energy storage means that some sources can be 

considered bidirectional (charging and discharging). The system is basically a smaller size 

of MG-32 which is called  MG-8 because it is including eight converters. The associated 

agent-based control system is called RCPC-8 that is designed based on publish-subscribe 

agent technology over DHT searching algorithm. System functionality and details are 

explained in section 3.1. 
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  Figure 3.1.  Architecture of a Simplified DC Shipboard Microgrid 

3.1. System Configuration 

In order to validate the distributed optimization and control method presented in 

this thesis, a simplified shipboard DC power system is used for case studies. The results 

of application of centralized control on this system  are presented in [79], so it is an 

appropriate model to evaluate the agent-based control system developed in this thesis. 

The shipboard system is an isolated microgrid with converters between all sources of 

energy and the main buses as well as between all load centers and the main buses [80]. 

The example system, shown in Figure 3.1, has both fuel-based generators (of different 

ratings) and an electrochemical Energy Storage System (ESS). ESS can serve the 
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microgrid both as source and load depending on the system need and battery State of 

Charge (SOC) condition [81]. The microgrid has two zones of utility loads and two 

converters referred to as Power Conversion Modules (PCMs) in each of the zones share 

the zonal load demand. 

A bus is a conductor that connects multiple circuits or loads to a common voltage 

supply. Large loads and power distribution panels are connected to a bus via a breaker 

that is designed to trip the power flow in an overcurrent situation. There are different types 

of breakers in shipboard systems including bus-tie, load beakers that control the current 

of different buses such as Port side and Starboard side buses. Cross-tie breaker works 

when an imbalance load on one bus can affect the other bus, and possibly resulting in 

loss of all power. 

Zonal and main bus level control systems enable flexible routing of energy within 

the test system. Each zone is managed by a zonal level control with a master-slave 

sharing scheme. The zonal PCM converter designated as the master regulates in-zone 

voltage while the slave PCM converter tracks a designated percentage of the master 

converter's output (sharing percentage). System control above the zonal level designates 

which converter is the master as well as the sharing percentage. Sharing of zonal load 

may vary from 0% to 100% depending on the system level optimizer decision. The PCMs 

connected with the load center are assumed to be unidirectional converters. 

Control of the system energy flow above the zonal level is accomplished by the 

main bus level control. Within the main bus level control, a bus cluster control system 

regulates the total bus-tie current for the sum of all parallel bus-tie branches connecting 

two bus clusters. Thus the system level control can dictate how energy flows into each 

zone and how energy flows across the bus-tie. Two main buses (Starboard side bus and 

Port side bus) are connected by two cross-tie disconnects. These disconnects are used 

to connect the two bus-bars, control flow of inter-bus energy, maintain voltage levels, and 

disconnect them as necessary. 

To demonstrate energy flow across the shipboard system, the ESS and Pulsed 

Load are located on different buses. Each zone or load center would introduce one 
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variable (sharing variable; if one zonal converter carries (x)% of the zonal load, then the 

other converter would carry (1-x)% for system optimization. Storage as well as bus-tie 

current also introduces variables into the cost function. These variables determine the role 

of ESS, the inter-flow of energy between the two main buses, and the branch energy flow, 

and thereby determine the generators’ operating points. An optimization algorithm will be 

presented that dynamically determines the global optimal values of these discretized 

variables in a distributed fashion in order to minimize system losses.  

3.2. Requirements for Converter Coordination by Multi-
Agent Control in a Microgrid 

Hossain and Ginn presented a unique optimization algorithm for real-time 

distributed coordination of power electronic converters In DC microgrids [82]. Optimal 

power sharing ensures minimum transmission and distribution loss while enforcing 

constraints such as sources’ ramp rates and capacity limits. The algorithm prunes off a 

significant number of search trees, distributes work load among the distributed control 

evenly, and determines the global optimal solution every time. An even distribution of work 

load makes the parallel system very reliable from a synchronism point of view. It offers 

scope to use other aggressive pruning off methods within its structure, which makes it 

useful for larger power systems as well. Aggressive truncations may not provide globally 

optimal solution always, but guarantee closer sub-optimal set-points. Convergence is 

ensured in any case. This algorithm is envisaged as part of a group project that aims at 

increasing the efficiency of the sample DC microgrid by controlling different parameters 

such as decreasing the convergence time among converters. In the following two sections, 

the usage of algorithms for microgrid system is described. 

3.2.1. System Loss 

In a power grid, system loss is mainly due to fuel usage inefficiency and the waste 

of energy due to the impedance of the transmission line. Determining fuel usage set-points 

is commonly called Economic Dispatch Problem (EDP). The objective of EDP is to 

schedule the committed generating unit’s output so as to meet the required load demand 
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at minimum cost, satisfying all unit and system operational constraints. The EDP problem 

can be generally expressed as:  

𝑃𝑓𝑢𝑒𝑙 = 𝑎𝑃
2 + 𝑏𝑃 + 𝑐                                     

𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠, 𝑎𝑛𝑑 𝑃 𝑖𝑠 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 (𝑘𝑊), 𝑎𝑛𝑑  

𝑃𝑓𝑢𝑒𝑙  𝑖𝑠 𝑃𝑜𝑤𝑒𝑟 𝐿𝑜𝑠𝑠 𝑐𝑎𝑢𝑠𝑒𝑑 𝑏𝑦 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑘𝑊) 

 𝑃𝑓𝑢𝑒𝑙 = 𝑎(𝑉𝐼)
2 + 𝑏(𝑉𝐼) + 𝑐  

𝑃𝑓𝑢𝑒𝑙 = (𝑎𝑉
2)𝐼2 + (𝑏𝑉)𝐼 + 𝑐          (2.1) 

𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑜𝑛𝑙𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 𝑖𝑓 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟𝑠’ 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 

 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑠 𝑎𝑟𝑒 𝑐𝑙𝑜𝑠𝑒 𝑒𝑛𝑜𝑢𝑔ℎ [83].  

 

The waste of energy due to the impedance of the distribution system is called 

transmission loss. In a power system where there are many sources, loads, storages, and 

numerous transmission lines, transmission loss minimization becomes a strongly coupled 

optimization problem. Electrical conversion of the example microgrid of Figure 3.1, 

assuming idealized behavior of the lower level converter control systems, is shown in 

Figure 3.2. Transmission loss of the microgrid can be expressed as: 

 

𝑃𝑡𝑟 = 𝑥
2𝐼1
2(𝑅1 + 𝑅1

′ + 𝑅2 + 𝑅2
′ ) + 𝑦2𝐼2

2 (𝑅2 + 𝑅2
′ )  

    + 𝑧2𝐼3
2 (𝑅2 + 𝑅2

′ + 𝑅3) + 𝑢
2𝐼4
2 (𝑅2 + 𝑅4)    

       − 2𝑥𝐼1(𝐼1𝑅1
′ + 𝐼1𝑅2

′ + 𝐼2𝑅2
′ + 𝐼𝑃𝐿𝑅1

′ + 𝐼𝑃𝐿𝑅2
′ ) 

       − 2𝑦𝐼2(𝐼1 + 𝐼2 + 𝐼𝑃𝐿)𝑅2
′ − 2𝑧𝐼3(𝐼1 + 𝐼2 + 𝐼𝑃𝐿)𝑅2

′  

       + 2𝑥𝑦𝐼1𝐼2(𝑅2 + 𝑅2
′ ) + 2𝑥𝑧𝐼1𝐼3(𝑅2 + 𝑅2

′ ) − 2𝑥𝑢𝐼1𝐼4𝑅2 

       + 2𝑦𝑧𝐼2𝐼3(𝑅2 + 𝑅2
′ ) − 2𝑦𝑢𝐼2𝐼4𝑅2 − 2𝑧𝑢𝐼3𝐼4𝑅2 

      + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡                     (2.2) 

  

 𝑤ℎ𝑒𝑟𝑒 𝑃𝑡𝑟 𝑠𝑡𝑎𝑛𝑑𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑙𝑜𝑠𝑠,  

𝑎𝑛𝑑 𝑅𝑖  𝑖𝑠  𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑙𝑖𝑛𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑎𝑐ℎ 𝑏𝑢𝑠 𝑎𝑛𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 
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The constraints are: 

{

𝑥𝐼1 + 𝑦𝐼2 + 𝑧𝐼3 + 𝑢 𝐼4 ≤ 𝑀𝑎𝑖𝑛_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                
(1 − 𝑥)𝐼1 + (1 − 𝑦)𝐼2 + 𝐼𝑃𝐿 − 𝑧𝐼3 ≤ 𝐴𝑢𝑥𝑖𝑙𝑎𝑟𝑦_𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦  
𝑀𝑎𝑖𝑛_𝐺𝑒𝑛_𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑡 ≤ 𝑀𝑎𝑖𝑛_𝐺𝑒𝑛_𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑡−1 + 0.1 𝑝𝑢                            
𝐴𝑢𝑥_𝐺𝑒𝑛_𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑡 ≤ 𝐴𝑢𝑥_𝐺𝑒𝑛_𝑆𝑒𝑡𝑡𝑖𝑛𝑔𝑡−1 + 0.1 𝑝𝑢                                 

       (2.3) 

Here I1 is the load of Zone1, I2 of Zone2, IPL of pulsed load. I4 is the maximum 

charging/discharging current of ESS and I3 is the maximum allowed cross-tie (inter-bus) 

current. The variables x, y, z, and u are ratios that would determine the flow of energy 

through all the branches and must be optimized by the system controllers in a distributed 

fashion that would ensure minimal loss of the system. The value of x and y may vary from 

0 to 1 with a step size of 0.1 (as zonal converters are unidirectional). On the other hand, 

z and u may have any value between -1 and +1 with a step size of 0.2 (as bidirectional). 

  The EDP problem as seen in (2.1) can be readily consumed into the transmission 

loss problem of (2.2) without any approximation. So, if the problem in (2.2) can be globally 

optimized, transmission loss plus EDP also can be optimized altogether. In section 3.2.2., 

the optimization of transmission loss will be described in detail. 

3.2.2. Optimization Algorithm 

As was mentioned in section 1.3, the quality of distributed control technologies are 

compared based on some parameters such as scalability, fault management, and 

convergence rate. Similarly, there are several properties such as required convergence 

time and distribution rate that measure the quality of a distributed optimization algorithm. 

In any real-time dynamic system, the required time for convergence is one of the most 

important properties to be considered. Failure to converge within the time boundaries 

means that the system would run with old settings for an indeterminate interval which may 

violate constraints and destabilize the grid. If the algorithm doesn’t ensure convergence to 

optimal points, then its efficiency becomes low. 
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Figure 3.2.  Electrical Representation of the Sample DC Microgrid 

Finally, the distribution rate of workload ensures system expandability within the time 

limit. Keeping all these in mind, a unique algorithm has been devised here that evenly 

distributes the optimization task among the intelligent software modules of EMS, while 

reducing the computational requirements significantly to ensure minimum time 

requirements. Optimality and convergence are guaranteed by this algorithm. If the 

microgrid has many zonal load centers and a large number of variables, some other 

pruning techniques such as “check and eliminate,” “reduction of variables,” and “sliding” 

can be adopted to ensure convergence with sub-optimality. 

3.2.3. Scaling and Change of Variables 

 Hossain and Ginn calculated loss by using a quadratic function in which all the 

variables are coupled (2.4). As the variables are not loosely coupled, the basic objective 

function in the straightforward expression is not applicable for distributed control. This type 
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of problem falls within the category commonly named Mixed Integer Problem (MIP). 

Depending on the nature of constraints, MIPs are sub-divided. MIP models with quadratic 

constraints are called Mixed Integer Quadratically Constrained Programming (MIQCP) 

problems. Models without any quadratic features are often referred to as Mixed Integer 

Linear Programming (MILP) problems. MIP models with a quadratic objective function but 

without quadratic constraints are called MIQP problems. As seen in equations (2.4), (2.5), 

(2.6) and (2.7), the constraints are not quadratic. Thus the above problem falls within the 

category of an MIQP problem. All the variables are tightly coupled with one another in 

(2.4). To alleviate this, a conversion process called “Scaling and Change of Variables” is 

used to make the system unidirectional interacting, which orients the variables as a leader-

follower system. This method is briefly described below. The following cost function can 

be considered 

𝑃𝑡𝑟 = 𝐶𝑜𝑛𝑠𝑡 + 𝑎11𝑥1
2 + 𝑎22𝑥2

2 + 𝑎33𝑥3
2 + 𝑎44𝑥4

2 + 𝑎1𝑥1 

       + 𝑎2𝑥2 + 𝑎3𝑥3 ++ 𝑎4𝑥4 + 𝑎12𝑥1𝑥2 + 𝑎13𝑥1𝑥3 

       + 𝑎14𝑥1𝑥4 + 𝑎23𝑥2𝑥3 + 𝑎24𝑥2𝑥4 + 𝑎34𝑥3𝑥4                                          (2.4)  

 

where x1, x2, x3, x4 are variables and the rest are load dependent constants. Let 

 

𝑧1
′ = 𝑏1𝑥1              (2.5) 

𝑧2
′ = 𝑐1𝑥1 + 𝑐2𝑥2             (2.6) 

𝑧3
′ = 𝑑1𝑥1 + 𝑑2𝑥2 + 𝑑3𝑥3                   (2.7) 

𝑧4
′ = 𝑒1𝑥1 + 𝑒2𝑥2 + 𝑒3𝑥3 + 𝑒4𝑥4              (2.8) 

Now using this ‘ 𝑧′𝑖 ’ domain variables, the basic cost function can be converted as follows 

𝑃𝑡𝑟 = 𝐶𝑜𝑛𝑠𝑡 + 𝑧1
′2 + 𝑘1𝑧1

′ + 𝑧2
′2+ 𝑘2𝑧2

′ + 𝑧3
′2 + 𝑘3𝑧3

′ + 𝑥4
2 + 𝑘4𝑧4

′             (2.9) 

where 

𝑎11 = 𝑏1
2 + 𝑐1

2 + 𝑑1
2 + 𝑒1

2`          (2.10) 

𝑎22 = 𝑐2
2 + 𝑑2

2 + 𝑒2
2                                 (2.11) 

𝑎33 = 𝑑3
2 + 𝑒3

2                       (2.12) 

𝑎11 = 𝑒4
2             (2.13) 
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Again, 

𝑧1
′2 + 𝑘1𝑧1

′ = [𝑧1
′ +

𝑘1

2
]
2
− [

𝑘1

2
]
2
= 𝑧1

2 − [
𝑘1

2
]
2
        (2.14)  

Where, 

𝑧1 = [𝑧1
′ +

𝑘1

2
]                                    (2.15) 

𝑧2 = [𝑧2
′ +

𝑘2

2
]                                                              (2.16) 

𝑧3 = [𝑧3
′ +

𝑘3

2
]                                                                                      (2.17) 

𝑧4 = [𝑧4
′ +

𝑘4

2
]                      (2.18) 

Equation (13) then converts to the form 

𝑃𝑡𝑟 = 𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2 + 𝐶𝑜𝑛𝑠𝑡           (2.19) 

Equation (2.19) is the converted cost function that needs to be optimized instead of (2.4) 

or (2.9). In this equation, z1 is independent and z2, z3 & z4 follow it with unidirectional 

dependency. All variables are squared in the converted cost function, which creates loss 

in the form of a parabola. It gives us an advantage to prune off a significant number of 

search trees. The loss, due to the variable z1, takes the form shown in Figure. 3.3. 

Loss due to z1 is z1
2 would always have a positive value with a parabolic shape  as 

shown in Figure 3.3. The value of z1, which makes the loss component minimum, is very 

important because all values of z1 either on the right or the left to it would be pruned out. 

Which side values (either right or left to absolute minimum of z1) would be pruned off, 

depends on the constraint. If the constraints are less than or equal, the right side values 

would be pruned off. If constraints are greater than or an equal type, it is the left side 

values. Pruning, as shown in Figure 3.3, reduces the iteration number significantly and 

does not introduce any approximation or sub-optimality. Each value of existing z1 would 

cause to initiate a search tree, so another span of z2 values would get a corresponding 

loss component of every z1. Values of z2 would also be pruned, as was done for z1 values, 

and the same would be done for others.  
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Figure 3.3. Loss Values in Two Situations of Normal Loss, applying an MIQP 
Sub-optimal Algorithm 

Capacity constraint would truncate the span of z4 values, and there would be no 

need to consider all the available values of z4. Subsequently, the value of z4 would be 

picked corresponding to the smallest value of z4
2. One search tree is shown in Figure 3.4 

along with pruning and an optimal solution. Red ones are pruned without introducing any 

approximation. It provides significant advantage in computation level. If there are four 

variables each with 11 steps as in the discussed case:  

 Number of computation tree without pruning =11*11*11*11=14641 

 Number of computation (around, as observed) tree with pruning 
<= 4*6*5*1=120 
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  Figure 3.4. Running Optimization Formula Using Agents 

There are some aggressive pruning techniques such as “Check and eliminate,” 

“Sliding over variables,” which can further truncate a search tree and provide either a 

global or closest sub-optimal solution. These aggressive centralized optimization 

algorithms will decrease the loss while running on top of an MIQP-distributed and sub-

optimal solution. However, they apply centralized optimization on top of distributed 

optimization, which are not considered in this work.  

 

 



64 

 

 Designing a Publish-Subscribe 
Distributed Control Model over a DHT Searching 
Algorithm for Second Case Study 

Based on the results extracted from chapter 2 on design and development the publish-

subscribe agent platform (RCPC-32), the agent-based control platform for the second test 

study(RCPC-8) is designed and implemented. In the following two sections the procedures 

of choosing the most suitable software application for developing agent platform, and the 

design of UML classes using the selected software are described. 

4.1. Exploring a Powerful Software Platform for developing 
Multi-agent Systems 

Developing multi-agent system control model for power systems is a 

multidisciplinary research area involving three major disciplines of Power Systems, 

Telecommunication, and Computer Engineering. In each of these areas, the following 

sections are developed: 

 Telecommunication Engineering 

o Assigning a suitable networking protocol for communication among 
agents such as TCP/IP; 

 Computer Engineering 

o Designing System Use Cases; 

o Using a multi-agent development platform like JADE for developing 
agent-based control systems; 

o Designing an applicant based on system requirements for integrating 
power systems and agent-based control platforms, e.g., JMAtlink; 

 Power Systems 

o Developing a power system model using a strong computational 
engine such as MATLAB. 

Different technologies are used in academic and industrial systems to develop agent 

technologies. Some of the academic tools are: RT-lab [84], Matlab, and JADE, while three 
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samples of industrial tools are: SICAM PAS, which is a power automation system 

developed in Siemens [85], [86], and Real Time Digital Simulator (RTDS) that is the 

world’s benchmark for performing real time power system simulation [87]. An industrial 

sample called the KCP&L (Kansas City Power and Light Company) project is located in a 

number of Kansas City neighborhoods [88]. It is a five-year project established in 2009 

that is funded by the U.S. Department of Energy ($48 million). The project benefits 

approximately 14,000 utilities customers in the area, with six main industrial vendors 

including Siemens. The main achievements of the project include: VAR control, voltage 

regulation, data management, outage management systems, and power quality to meet 

the range of customers who need energy efficiency. 

Some companies market API platforms using publish-subscribe for developing agent 

technology including [89]:  

• SIENA: Using Java and C# for topic-based; 

• Hermes: Using XML and Java for topic and content-based; 

• Xmessages: Using Java, C++ for topichannel- and content-based; 

• Gryphon: Using Java Message Service (JMS) for topic and content-based. 

For developing an RCPC-32 system, a group of open-source agent platforms are 

reviewed and evaluated for their compatibility with an RCPC-32 system design. In the 

following section, four of them are explained: JMS, Jason, NetLogo, and JADE. 

4.1.1. Java Message Service over JBoss Server  

The Java Message Service (JMS) agent gateway is a utility designed to allow 

agents within a JADE platform to interact with a JMS provider [90]. A JMS toolbox is one 

of the most common APIs for developing both topic-based and content-based publish-

subscribe technologies. It can also be considered as a Point-to-Point messaging mode. 

JMS uses FIPA as an interaction protocol and JADE as an implementation protocol.  The 

following steps have been completed for testing JMS in the RCPC-32 system. 

• JBoss v5.0 at localhost (192.127.0.1) which is installed and started 
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• Developing producer (publish) and two sample consumers (subscribe) using JMS: 

o ------Entering JMS TopicProducer------- 

o --------Entering JMS Example TopicConsumer1---- 

o --------Entering JMS Example TopicConsumer2---- 

o  Incoming message: message 1 from TopicProducer----- 

o  Incoming message: message 2 from TopicProducer----- 

o  Incoming message: message 3 from TopicProducer----- 

o --------Exiting JMS Example TopicConsumer2---- 

o --------Exiting JMS Example TopicConsumer1---- 

There are some pros and cons in using JMS as an agent developer for an RCPC-

32 design. Facilitating implementation of publish-subscribe is one of the main advantages 

of JMS, but its non-flexibility for communicating with Simulink removes it from the 

candidate’s list. The programming language is JADE although it requires a JBoss server 

for communication among publisher and subscribers, so it does not really meet the 

distributed control requirement for RCPC-32. 

4.1.2. Jason 

Another API that uses the JADE platform is Jason [91]. Jason is an interpreter for 

an extended version of AgentSpeak. It implements the operational semantics of that 

language and is available as open source. Jason provides a platform for the development 

of multi-agent systems with many customizable features for users. The case study 

discussed in section 3.1.3 for evaluation of a BDI model, was developed using the last 

version of Jason (v1.4.2) platform [92]. Three agents are communicating through a Jason 

platform using a bidding algorithm. Figure 4.2 displays a snapshot of communication 

among four agents for running a bidding algorithm in the sample MAS developed in a 

Jason platform. A bidding algorithm is cost effective for microgrids with less than 10 nodes, 

but it is not cost effective for larger microgrids, as is shown using numerical analysis results 

in Figure 2.9. 
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Figure 4.1. A Snapshot of Communication among Three Agents in a Sample 
MAS a Using a Jason Platform 

 

Jason is a topic-based agent programming language that has been developed 

based on a JADE library. It is compatible with BDI agent architecture and it also is 

integrated with agent console and sniffer. The disadvantages of Jason are that it cannot 

be connected to MATLAB, which is used for developing the RCPC-32 microgrid model, 

and it is not compatible with publish-subscribe technology.  

4.1.3. NetLogo 

NetLogo is a multi-agent programmable modeling environment. Its programming 

language is a Logo dialect extended to support agents. It is used by tens of thousands of 

students, teachers, and researchers worldwide [93], [94], [95]. Since a NetLogo platform 

works individually and cannot integrate to the hardware devices or hardware simulators 

for developing power devices, it is required to define a function for each of them and 

control the functions using agents. As an advantage, it is compatible with publish-

subscribe modeling because it has been around since 1999. But based on the concept of 

publisher, NeLogo doesn’t accept a message structure for publisher and subscriber as 
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defined in section 3.2.2. In addition, in this platform, it might not be possible to measure 

message count as metric value because it was not designed for real-time systems, so the 

quality of messages are more important than their numbers. Figure 4.3. displays a 

snapshot of running an Agentset Efficiency program in NetLogo. The application has 

optimized the arrangement of blocks using agent technology. 

 

 

   Figure 4.2. A Snapshot of Running an Agentset Efficiency Program in NetLogo 

4.1.4. JADE 

The Java Agent DEvelopment Framework is an open source platform for peer-to-

peer agent-based applications. JADE is a software framework fully implemented in the 

Java language. It simplifies the implementation of multi-agent systems through a 

middleware that complies with FIPA specifications and through a set of graphical tools that 

support the debugging and deployment phases [96]. A JADE-based system can be 

distributed across machines (which do not even need to share the same operating 

system), and the configuration can be controlled via a remote GUI. The configuration can 

even be changed at run-time by moving agents from one machine to another, as required. 
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JADE is completely implemented in Java language and the minimal system requirement 

is the version 5 of Java (the runtime environment or the JDK). Besides the agent 

abstraction, JADE provides a simple yet powerful task execution and composition model, 

peer to peer agent communication based on the asynchronous message passing 

paradigm, a yellow pages service supporting a publish-subscribe discovery mechanism, 

and many other advanced features that facilitate the development of a distributed system 

97. 

Since JADE is capable of developing communication with hardware devices and 

simulators such as MATLAB/Simulink, it is a good platform for the RCPC system. In 

addition, JADE is compatible with a FIPA agent design and publish-subscribe agent 

technology. All of the Java libraries are accessible through JADE and increase the power 

of it. Although developing MAS using JADE is complicated because of its advantages, it 

has been selected as the agent platform for development of the RCPC system. Table 4.1 

summarizes and compares the four aforementioned agent platforms. The evaluation is 

based on RCPC system requirements and the JADE platform is chosen as the most 

compatible one with the RCPC system design. RCPC-8, which is simplified version of 

RCPC-32, is selected as the test system for developing integrated platform. 

Table 4.1. Comparison among some of the most well-known agent 
development platforms  

S/W Platform 
for Developing 
MAS 

Advantages Disadvantages 

JMS Compatible with Publish-Subscribe 

  Developed based on JADE library 

Needs JBoss server to run 

Low flexibility for connecting to MATLAB 

Jason Developed based on JADE Library 
Integrated with Agent Console, and Sniffer 

Developed based on BDI model  

Low flexibility for connecting to 

  MATLAB and developing publish-
subscribe 

Doesn’t accept a message format for 

  publish-subscribe 
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S/W Platform 
for Developing 
MAS 

Advantages Disadvantages 

NetLogo Compatible with publish-subscribe, but its  
concept for publisher means multicast 

Integrated with Agent Console 

A function for each of the devices should be 
defined to replace Matlab model 

 

JADE Flexible for adding any toolbox to connect to 
H/W Devices/Simulators 

Compatible with publish-subscribe  

Developed based on FIPA standard 

Integrated with Agent Console, and Sniffer 

Hard to develop because all the 

  communication classes and console 

  should be developed  

    

 

4.2. Designing JADE Classes based on Publish-Subscribe 
design for Second Case Study 

As explained in section 3.4, the subscribers design pattern is made of {attribute, 

operator, value} tuples, where operators can be one of {<, =, >, ≤, ≥}, and the publisher is 

a set of {attribute, value}. Since Ag1, the agent that associates to the first search tree 

based on design, usually generates the minimum confident values, it is chosen as 

subscriber. The other agents calculate zi values for their search trees and publish to 

subscriber agents only if they meet the conditions in (5.6), (5.7), and (5.8). Each search 

tree is denoted by 𝑆𝑇 𝑖 where 𝑖 ∈  𝑆 = {𝑎 | 𝑎 𝑖𝑠 𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑧 𝑖 𝑣𝑎𝑙𝑢𝑒𝑠}    

𝑥 = 𝑓( 𝑧1)                      (5.1) 

𝑦 = 𝑓( 𝑧1, 𝑧2 )                                    (5.2) 

𝑧 = 𝑓( 𝑧1, 𝑧2 , 𝑧3)                                                                                        (5.3) 

𝑢 = 𝑓( 𝑧1, 𝑧2 , 𝑧3, 𝑧4)                    (5.4) 

Definition of subscriber agents: 

𝐴𝑔1 = (𝑆𝑇1| 𝑥 ≤  𝑧1, 𝑦 ≤ 𝑧2, 𝑧 ≤ 𝑧3, 𝑢 ≤ 𝑧4)                             (5.5) 
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Definition of publisher (event) agents: 

𝐴𝑔2 =  (𝑆𝑇2|  𝑧1, 𝑧2, 𝑧3, 𝑧4)                                                                 (5.6) 

𝐴𝑔3 =  (𝑆𝑇3|  𝑧1, 𝑧2, 𝑧3, 𝑧4)                                                                 (5.7) 

𝐴𝑔4 =  (𝑆𝑇4|  𝑧1, 𝑧2, 𝑧3, 𝑧4)                                                   (5.8) 

 

Graphical model of publish-subscribe agents applying (5.1)- (5.8) is shown in Figure 4.4. 

The searching area of subscribe agent (Ag1) is decreased from big rectangular in each 

period of time to the smaller rectangular of S1, and S2. As a result the publisher Agents 

(Ag2, Ag3, And Ag4) are able to publish their service request using P1 and P2 to the 

limited areas of S1, and S2 respectively. 

   

Figure 4.3. Application of Publish-Subscribe for Finding Global Optimization 
Ratios 
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In this JADE platform, based on publish-subscribe design a couple of main classes 

are developed for clarification of agent behaviors. For each agent, one individual Java 

class is created to communicate with other agent classes and exchange data based on 

the publish-subscribe algorithm. Figure 4.4 illustrates two agent classes and three main 

Java classes (AgentCoordinator, filterBehaviour, and monitorBehaviour) including their 

attributes and methods. Agent classes are represented with Agent1 and Agent2 in this 

case study. Each agent class gets its associated converter load through a signal attribute. 

As shown, signal1 and signal2 attributes are associated to Agent1 and Agent2 

respectively. The message contents are transferred through these signals using filter 

behavior. In addition, variables “agentsSubscribed” and “agentsPublishing” work based 

on monitor behavior to count the number of message exchanges.  

 

 

Figure 4.4. UML of Communication between Java Classes in a JADE 
Platform 

 

Different Java classes are used for developing the RCPC-8 controller platform 

including a couple of core classes for the coding agent environment. These core classes 

are: AgentCoordinator, AgentServer, TimeStepData, and UsefulAgentMethods. Also there 
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are specific agents’ classes defined based on each agent’s task named as Agent1, 

Agent2, Agent3, and Agent4. These classes are illustrated in the Unified Modelling 

Language (UML) diagrams of Figure 4.5. UML is a standard used for representing the 

code structure of computer programs. AgentCoordinator is one the main components of 

the agent environment, which acts as a bridge between Simulink and the ATF. It is 

instantiated as an agent itself for ease of communication in the JADE framework, and so 

there is the possibility to sleep while idle.  

The AgentCoordinator, in its setup method, registers its service with the DF of 

JADE, which is the provision of updates to agents when new data arrives. It also starts up 

the AgentServer and then initializes the ATF. Through its monitorBehaviour, and with the 

help of the DF, the AgentCoordinator maintains communication links with the agents 

wishing to receive incoming data. When the AgentCoordinator receives an array of data 

from Simulink, it broadcasts this to the agents registered to its service. When these agents 

have finished working with the data, they return it back to the AgentCoordinator, which 

passes the processed data on to Simulink. 

The other core class, which is critical for the RCPC-8 real-time system, is 

TimeStepData class. One restriction currently imposed by the model is that the agents 

have to work in synchrony with each sample period of Simulink. This was done for ease 

of implementation rather than out of necessity. Given that the agents finish their operations 

over various lengths of time, the AgentCoordinator instantiates TimeStepData as an object 

to store information as and when agents from the Agent Task Force (ATF) send their 

processed data back. The AgentCoordinator stores new information, arriving from 

Simulink in this object, and then sends a copy of it out to all the agents. On receiving the 

TimeStepData object, the agents process the information it contains, update its contents, 

and return it. 
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  Figure 4.5.  UML diagrams for some core Java classes including TimeStepData, 
AgentCoordinator, UsefulAgentMethods, Agent1, and Agent2 
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The ATF consists of all the agents that jointly operate on the data arriving from 

Simulink in order to accomplish some tasks. All of these agents will have setup() and 

takedown() functions and probably some behaviour functions. However, with the 

exception of communication protocols with the agent environment, the implementation of 

the functions will take on very different forms depending on the particular task the designer 

wishes them to achieve. A snapshot of an ATF file in the RCPC-8 control system is 

provided in Figure 4.6. The name of the task agents (Agent1, Agent2, Agent3, and 

Agent4), the number of input (e.g. i1, i2, iPL) and output (e.g., x, y, z, u) signals and the 

frequency of running the RCPC-8 control platform (e.g., 120 Hz) are shown in this 

snapshot. 

There can be any number of agents running concurrently and each has the ability 

to communicate with the other agents of the task force through AgentCoordinator using its 

associated signali object. Therefore, each agent extracts only its relevant element of data, 

shares it with the subscribed agents, does its arithmetic, and sends the new data back to 

Simulink, again via the AgentCoordinator. 

        

    Figure 4.6.  A Snapshot of an ATF File for the Agent1 Project 
Developed for Optimization of the Case Study 
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Figure 4.7 displays the steps for design and implementation of the RCPC-8 system 

that are taken in this research. 

 

   

 

              Figure 4.7. MAS Design Process 
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 Implementation of RCPC-8 Agent 
Platform on a Developed Simulator; Integrating 
RCPC-8 and MG-8 

In this chapter, the steps are presented for developing an integrated RCPC-8 

system based on a proposed algorithm, which is developed in section 2.2. It discusses 

one of the main contributions of this thesis, which addresses how several requirements 

can be met in a single platform design. In this chapter, the following actions are 

performed: 

1. Implementing an agent-based platform using designed UML models for the 
publish-subscribe communication algorithm developed by JADE programming 
in Eclipse IDE 

2. Developing a four-converter microgrid model on Simulink 

3. Developing a real-time communication tool for integrating the hardware 
microgrid model in Simulink and multi-agent control systems. The 
communication tools should be able to run multiple agents simultaneously. 

5.1. Implementing an Agent Platform based on a Publish-
Subscribe method using JADE  

Publisher and subscriber agent classes are implemented using JADE. The 

adopted communication paradigm is the asynchronous message passing. Receiver 

(subscriber) agents send messages to supplier (publisher) agents to request a variable. 

Each agent has a type of mailbox (the agent message queue) where the JADE runtime 

posts messages sent by other agents. Whenever a message is posted in the message 

queue, the receiving agent is notified (Figure 5.1). A receiver agent, which is previously 

subscribed for a particular content, activates an action method to start communication if 

there is any matching message, while ignoring all non-matching messages.  

Figure 5.2 shows the work-flow diagrams of running agent platform by receiving 

trigger from Simulink model. Figure 5.3 displays the top-level flowchart of running the 

agent-based control system integrated to MATLAB, which is known as RCPC-8.  Load 

values measured by the converter activate the agent model. As shown, the microgrid 
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sends the load values to a S-Function block called MACSim (Multi-Agent Control for 

Simulink), which will be explained in section 5.2. This trigger initializes the process of 

optimization within the JADE platform. The frequency of running optimization processes 

in a JADE Platform is defined by a number between 1 and 120 cycles per seconds for the 

case study. This agent-based control system generates global optimized values.  

 

 

Figure 5.1.  A JADE Asynchronous Message Passing Paradigm using the 
Content -based Publish-subscribe Design 
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Figure 5.2.  Work-flow Diagrams of Running Agent Platform by Receiving Trigger 
from Simulink Model 
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Figure 5.3. Individual Agents (Ag#) Life Cycle during Establishing 

Communication and Data Transfer among Agents in the RCPC-8 System 

Figure 5.4 displays the flowchart of the RCPC-8 control system emulated using 

JADE in Eclipse. Load values detected by the converter activate the agent model. 

Consequently, the JADE platform creates four individual agents called Ag1, Ag2, Ag3, and 

Ag4, upon trigger receipt. Since all of the agents run simultaneously, they concurrently 

extract zi optimization values from input values (current values of Zone1, Zone2, pulsed 

load, ESS, and bus-tie that are represented as I1, I2, IPL, bat_c, and fdbk respectively in 

Figure 5.4). 
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Figure 5.4. Running Optimization Algorithm on Four Agents Concurrently in the 

RCPC-8 System 

The agents communicate and exchange data based on a publish-subscribe 

design. After each agent optimization routine has completed, agents with the minimum zi 

values locate received data from peer agents. This agent calculates x, y, z, u values and 

sends them back to Simulink through a coordinator agent (AgCo). After receiving the 

confirmation of data delivery, each agent terminates and finishes its life cycle. These 

agents use individual search trees to optimize values of z1, z2, z3, and z4. The mathematical 

definition of a publish-subscribe design for communication and exchanging data among 

agents is explained in (5.1) − (5.8).  

In addition, the coordinator agent is developed to facilitate communication among 

Simulink ports and the agent platform. Optimized values then return to the converters 
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through Simulink ports. All of the routing tables are located in the coordinator agent, which 

communicates with the other agents at the beginning and end of the optimization 

processes. Figure 5.5 illustrates a snapshot of a message exchange among agents. Each 

of the four aforementioned agents registers to the DF agent of the JADE platform to 

receive its agent number and locate its local data provider. An individual agent performs 

all of the required calculation before using data from other agents. Each agent then sets 

the data structure information in to be passed to the subscribed agents using an 

associated signali attribute.   

Agent1 gets signal1 from its input

Agent1 subscribes to the three 
other agents 

Agents send Global optimized 
values  back to Simulink

Agent1 terminates

agentCoordinator confirms the 
receiving of data by specified ports 

in Simulink

Agents exchanges the local 
optimized values

 

 

Figure 5.5. A Snapshot of a Sniffer Showing Communication between Agents 
with the Application of Publish-Subscribe Architecture in a JADE Platform  
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5.2. Bridging the Gap: MACSim Block 

Whilst Simulink is very effective for carrying out simulations, it falls short of offering 

the tools necessary to set up an agent platform. One very useful aspect of Simulink, 

however, is that it provides a work-around for adding functionality in the form of S-

functions. These allow programs to be written in other languages, particularly C, that can 

be encapsulated in the Simulink environment and then used where desired, running in 

their native language [98]. 

Despite this prospect of a solution, where the agents could be created through C++ 

or Java code in one of these functions and run in Simulink, there is a further setback. S-

functions are unable to handle multiple threads of execution and they become unstable if 

several processes run concurrently inside Simulink. Unfortunately, this functional property 

is essential for a multi-agent system. To overcome this problem, a program called 

MACSim is used and customized so that it still utilizes the S-function ability of Simulink, 

but only as a gateway to pass data to a completely separate program where multi-agent 

development is possible. MACSim, which was originally developed by Mendham [99], 

provides an extension enabling an interface between Simulink and JADE for modelling 

hardware run by software agents. 

MACSim, or the Multi-Agent Control for the Simulink program, was purposely 

developed as a medium through which a program for implementing agent designs 

developed in C/C++ or Java might pass data to and from Simulink [100]. Although 

MACSim is written primarily in C++, it includes a wrapper to enable interaction with Java 

programs. MACSim has a client-server architecture, where the client part is embedded in 

Simulink through an S-function, and the server code is then incorporated in the separate 

program as indicated in Figure 5.6. In addition, as shown, publish-subscribe architecture 

is used in this thesis for the design of a JADE control platform. 
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Figure 5.6. Structure of MACSim for RCPC-8 [112] 
    

The communication between the client and server is then performed through the 

use of pipes in Windows. Use of MACSim circumvents the multi-threading issue because 

a separate program can now be used with protocols in place to ensure synchronicity if so 

desired. Later on, Robinson created MACSimjx, which is compatible with a JADE platform. 

MACSimjx and four JADE libraries are installed on a JADE platform to facilitate creating 

agents’ classes and connecting them to the MACSim S-function on the Simulink model 

[101]. MACSimJX provides MATLAB models developed in Simulink with access to JADE, 

a powerful development environment for modelling MAS. In this thesis, MACSimJX is used 

for developing agent platform and, for simplicity, is called MACSim. 

One of the major contributions of this thesis is the development of a multi-agent 

controller on the server side of MACSim to allow the JADE controller to interact with the 

Simulink model in a real-time matter. The JADE template in this thesis is made of two 

significant sections: 1) Agent Environment, which is the extension of the MACSim server 

and is slightly modified from the original version [102] developed by Robinson at the 

University of York; 2) A multi-agent control system that is developed for operating on data 

arriving from Simulink through the Agent Environment. The second part of MACSim 

developed in JADE is described in the following section. 

5.3. Designing an Integrated Testbed for Implementation in 
the Case Study 

In addition to the time limitation, the RCPC-8 system has other constraints such as 

a maximum number of concurrent running tasks and asynchronous running speeds 
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between hardware and software platforms. Hardware is a DC microgrid including eight 

converters that are simulated in MATLAB, and a software platform is an agent-based 

publish-subscribe control system implemented using a JADE platform. The two parts are 

connected to each other via MACSim block. Figure 5.7 illustrates a high level design of 

the RCPC-8 system.   

 

Figure 5.7. An integrated Agent-based System including a Matlab Model in the 
Lower Section and a JADE Platform in the Upper Section, Joint 

using MACSim Toolbox 

 

Eight converters are individually assigned to converter agents that communicate 

through the JADE API platform. Converter agents communicate with each other inside 

main containers based on the system design. Regarding the FIPA standard definition in 

chapter 1, three other agents including DF, AMS, and ACC run in the main container.  DF 

provides a directory that announces which agents are available on the platform. AMS is 
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the only agent that is able to create and destroy other agents, destroy containers, and stop 

the platform. 

5.4. Modeling a Microgrid with Eight Converters in 
MATLAB/Simulink 

In this section, the implementation results obtained from the JADE platform are 

presented. To be able to perform experiments on a microgrid model, an agent environment 

was also developed, permitting experiments with up to 100 converters. All simulations 

were performed on an Intel® Core™ i7 processor (860 2.80 GHz CPU) with 16GBytes of 

main memory, running Windows 7 64-bits Enterprise. MACSim provides an extension 

enabling an interface between Simulink and JADE for modelling hardware run by software 

agents originally developed for MATLAB 2010 (32 bits), and JDK 32-bits. The JADE 

controller was configured to run in a single Java Virtual Machine. An agent-based control 

platform critically reduces convergence time among converters compared to the classic 

control model running on Matlab and developing the same algorithms. 

The effectiveness of the distributed optimization algorithm and the proposed agent-

based control method were verified by a proof-of-concept testbed and pilot 

implementations. The microgrid model shown in Figure 5.8, as described in Chapter 3, 

has two zones of utility loads and two power conversion modules (PCMs) in each zone, 

sharing the zonal load demand. Sharing of the zonal load may vary from 0% to 100% 

depending on the controller decision. The load center PCMs are assumed to be 

unidirectional. The Pulsed Load is one of the highest priority loads of the microgrid. Two 

main buses from the backbone of the microgrid are connected by two cross-tie 

disconnects. These disconnects are used to connect the two bus bars, control flow of inter-

bus energy, maintain voltage levels and disconnect them as necessary.  

Based on the optimization method in section 2.2, transmission loss of the sample 

microgrid can be simplified using a MIQP algorithm using the following cost function: 

𝑃𝑡 = 𝑧1
2 + 𝑧2

2 + 𝑧3
2 + 𝑧4

2 + 𝐶𝑜𝑛𝑠𝑡               (5.9) 



87 

 

where in the ‘𝑧𝑖 ’ domain objective function, losses due to each variable form the shape of 

a parabola which gives a clear indication of the optimal region. Each ‘𝑧𝑖 ’ value in (5.9) is 

calculated by an associated agent which is using x, y, z, and u parameters. Each agent 

can solve its portion independently without overlap. At the end of the computation, all of 

the agents concurrently update their load level using calculated optimal values. Load 

changes and corresponding results of the dynamic optimization of the converter set point 

is shown in Figures 5.8, and 5.9. 

 

 

 

Figure 5.8. A Snapshot of a Shipboard DC Microgrid Modeled in Simulink 
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      Figure 5.9. Load Changes in the Shipboard System 

 

 

Figure 5.10. Converter Operating Points Dictated by the Load Changes  

 

Figure 5.9 displays the changes of load levels in the microgrid model that are 

sensed by the agent control system during the time period of the running system 

simulation. Simulation results of load ratio adjustments are presented in Figure 5.10. As 

explained in Section 2.2, variables x, y, z, and u represent Zone1 ratio, Zone2 ratio, bus-

tie situation, and command storage respectively that follow input load change values 

shown in Figure 5.9. The pulsed load storage system is charged rapidly at time t=0.7sec. 

Consequently, in Figure 5.10, at the same time x increases from 0.6 to 1.0, so one 
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converter carries 100% of the zonal load and the other one runs at no load (0% load). ESS 

increases by 20% to maintain the load balance and provides the extra required load of 

Zone1. At time t=2sec when Zone1 load changes, all system configuration changes. To 

ensure maximum efficiency, the Zone1 sharing variable decreases from 1 to 0.8, the 

Zone2 sharing variable increases twice from 0.3 to 0.6 to flow the changes in x values, the 

ESS increases its supply to its maximum limit of 1.0, and the Starboard side bus provides 

20% of its maximum allowable inter-bus energy flow to the Port side bus.  

    

Figure 5.11. Load Sharing Measured in Zone 1 

 

Sharing of load between Zone1 and Zone2 converters is shown in Figures 5.11 

and 5.12. As is seen, sharing the variable of Zone1 and Zone2 carries (x)% and (y)% of 

the zonal load respectively and is illustrated with red lines diagrams. As the value of x 

increases in Figure 5.11, the corresponding change in load sharing is seen in Figure 5.12. 

At around 0.8 sec when x becomes 1, one converter carries 100% of the Zone1 load and 

the other one runs at no load (0% load). Zone1 load changes at t=2 sec, so does the ratio 

x. Similar change in load sharing is observed in Figure 5.12. Then, the other converter 

carries (1-x)% and (1-y)% of the load sharing and is presented with blue lines. Zonal 

voltages are shown in Figure 5.13. These voltages are maintained at 400V DC. It is seen 

that some minor shifts are occurred due to a change in loads and operating points, which 

are quickly recovered by the controllers. 
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Figure 5.12. Load Sharing Measured in Zone 2 

 

             

Figure 5.13.  Zonal Voltages 

 

5.5. Analysis of Simulation Results 

Similar to chapter 5, the simplified cost function in (5.1) based on MIQP is used for 

calculating transmission loss of the sample microgrid. Hossain and Ginn presented the 

results of simulation using the same optimization algorithm applying a centralized control 
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system developed in MATLAB [103]. The results are shown in Figure 5.14 and Figure 

5.15, which are exactly the same as Figure 5.19 and Figure 5.10 respectively.  

 

Figure 5.14.  Load Changes in the Shipboard System  

 

 

Figure 5.15. Converter Operating Points Dictated by a Centralized Control System 
Developed in MATLAB 
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5.6. Time Saving 

A comparison between the results of running an optimization algorithm in MATLAB 

with and without application of integrated agent-based control systems shows that the load 

sharing ratios for Zone1 and Zone2 are related and adjust their values based on each 

other’s changes. However, Figure 5.16 illustrates the critical time difference between 

adjusting the ratio of load sharing in controllers that were developed by MATLAB, with and 

without using the JADE platform.  

    

Figure 5.16. Results of Time Analysis During Coordination Time; Agent-based(f), 
and Agent-based(t) Stand for Frequency and Time of Running 

Agent-based Control Model, Centralized(f), and Centralized(t) Stand 
for Frequency and Time of Running Centralized(MATLAB) Control 

Model 

For the case study, while the coordination time in the first model takes about five 

minutes (1000 milliseconds), it takes less than three seconds for the later one, which is 

only 1% of the time consumed in the centralized controlled model. More importantly, the 

optimal frequency value of running the agent controller within the Simulink model is set for 

120 cycles per second and can be modified based on system requirements. This means 
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that the RCPC-8 real-time control system is able to check the changes in less than one 

millisecond by keeping the consistency of the upper time limit of the optimization process. 

Figure 5.17 compares the number of message exchanges that resulted from the 

simulation in Figure 5.5 with the numerical analysis data extracted from Figure 2.10. As 

mentioned in Section 2.4, the numerical analysis graph is calculated based on the publish-

subscribe architecture. Also, as explained in the introduction of chapter 4, the number of 

message exchanges for numerical analysis calculated from (5.10) for the RCPC-8 system 

by definition of  𝑛 and 𝑟 values that are based on the system design [104], [105]:  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 = 𝑟 𝑙𝑜𝑔2 𝑛               (5.10) 

{
𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 ( 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑔𝑒𝑛𝑡𝑠 ):  3 ≤ 𝑛 ≤ 8  
 𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑠𝑡𝑟𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠 ∶ 𝑟 =  44                                             

 

        

    

 

Figure 5.17. Comparison between Numbers of Message Exchanges for the 
Publish-Subscribe Method that Resulted from Numerical Analysis 

(Figure 2.10) and Simulation (Figure 5.5) 
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The blue line in Figure 5.18 displays the number of message exchanges for a 

variation between 3 to 8 agents using numerical analysis. The red line displays the number 

of message exchanges extracted from the simulation results. As shown, the simulation 

results confirm the numerical analysis outcomes; the most optimal number of agents is 

from 4 to 7, which is chosen in our design for eight converters. When the number of agents 

increases, they run more parallel treads which are expected to improve the system 

efficacy. However, considering the amount of overhead in message exchanges, it does 

not practically advance the efficacy of the system. In this thesis, as explained in chapters 

4 and 5, five agentsfour Converter Agents(CAgs) along with one Coordinator 

Agent(CoAg)are designed and implemented for coordination control of the sample 

microgrid. 

Figure 5.18 displays a comparison among the time period of adjusting the 

optimization values after applying load changes to the system. As table 5.1 illustrates, with 

a frequency of 120, the coordination time among agents is 0.0083 seconds. The results 

are reasonable by considering the sampling time rate for the Simulink model that is defined 

as 120 cycles per second. Although the frequency of running the JADE platform can be 

increased, the accuracy of running the controller will not exceed the MATLAB sampling 

rate.  

Table 5.1. Relation between frequency of running agent-based control model 
and time-delay of adjusting load changes  

Frequency 
(Hz) 

Load Changes 
(Applied  

at T=2 Sec) 

Load Changes 
(Applied  

at T=1 Sec) 

Difference 

 for Time 
Adjustment 

1 3 2 1 

10 2.1 1.1 0.1 

15 2.0667 1.0667 0.0667 

20 2.0333 1.0333 0.0333 

30 2.025 1.025 0.025 

50 2.0167 1.0167 0.0167 

100 2.0167 1.0167 0.0167 

130 2.0083 1.0083 0.0083 

150 2.0083 1.0083 0.0083 
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Frequency 
(Hz) 

Load Changes 
(Applied  

at T=2 Sec) 

Load Changes 
(Applied  

at T=1 Sec) 

Difference 

 for Time 
Adjustment 

240 2.0083 1.0083 0.0083 

 

 

 

 

Figure 5.18. Comparison among Adjusting Load Level of Converters after 
Applying Changes in Different Times 

Different microgrids have different operational requirements and goals. Agent 

technologies are deployed to meet these requirements based on system design. 

Microgrids can have unidirectional or bidirectional energy flow, and require soft real-time 

or hard real-time control systems. Hermann Kopetz defines [106] a real-time system as “a 

computer system where the correctness of the system behavior depends not only on the 

logical results of the computations, but also on the physical time when these results are 

produced. System behavior means the sequence of outputs in time of running a system." 

A real-time power system requires the real-time data provision and communication 
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between the power system control and operation framework [107]. A system is working in 

hard real-time if its operation depends on both the logic correctness and its performance 

time. It means missing a deadline causes system failure. Soft real-time tolerates delay but 

operates with reduced service quality. Fast power system monitoring and regulation are 

hard real-time operations because their delay can cause power system dynamic stability 

problems or failures in power system operation [108]. The system goals for both test 

systems used in this research are selected such that they are soft real-time because delay 

can increase the loss of system and affect negatively their functionality, but it doesn’t 

cause failure of operation. 



97 

 

 Developing an Agent Platform for 
Adaptive Volt-VAR Optimization (VVO) as Third 
Case Study 

The current generation of electricity systems are expected to have capabilities 

such as DMS and EMS to improve their efficiency. Due to the effects of load profiles on 

the quality of delivered energy to customers, new technologies need to be developed for 

monitoring and control of reactive power and energy losses in distribution systems. One 

of the main techniques traditionally employed to reduce losses in distribution feeders is 

Volt-VAR Optimization (VVO) [109], [110], [111]. VVO is an advanced method that 

optimizes voltage and/or reactive power (VAR) of a distribution network based on 

predetermined aggregated feeder load profile. This is normally done using Load Tap-

Changers (LTCs), Voltage Regulators (VRs), Capacitor Banks (CBs) and other existing 

Volt-VAR control devices in distribution substations and/or distribution feeders [112]. The 

configuration of traditional VVO systems is essentially based on offline techniques while 

only a few studies have considered VVO or CVR for real-time applications. Conservation 

Voltage Reduction (CVR) is also used to save delivered power, while keeping the 

delivered voltage within the acceptable American National Standard Institute (ANSI) 

prescribed range [113], [114]. Attempts have been made to employ IAs for real-time 

command and control capabilities required to transform conventional static VVO systems 

into real-time, adaptive, and dynamic VVO solutions. 

Recently, new approaches towards VVO have been studied by research groups 

[115] and some utilities’ companies such as BC Hydro [116] and Hydro-Quebec [117]. 

Nevertheless, most such works are still in their initial phases of development. Given the 

need to incrementally modernize the assets of distribution substations, studies of real-time 

adaptive VVO have become critically important. The approach in that regard is to develop 

new VVO optimization algorithms based on load profiles calculated using real-time 

measurements of service quality at the point of delivery to customers. Smart grids have 

been objected to use a combination of centralized and decentralized (distributed) control 

systems [118]. Centralized control systems have the best performance for small scale 

power networks and delivering power in one direction (i.e., from substation to loads). This 
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section proposes an MAS to optimize an adaptive real-time VVO algorithm and achieve 

higher degrees of efficiency and reliability. Figure 6.1 depicts the IA system for VVO 

application. Real-time optimization and control in this system is performed by VVO Engine 

(VVOE). 

 

 

 

Figure 6.1.  Agent-based VVO Structure in a Distribution Network 
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6.1.1. MAS Proposed for VVO 

The proposed MAS employs capabilities of other software applications (e.g., 

interaction with a multi-task software) to enable the optimization of Volt-VAR values [119]. 

A supervisory agent for communication between agents using MPI (Message Passing 

Interface) was defined for integrated control and asset management of petroleum 

production facilities [120]. As a constituent component of the work in this thesis, a control 

system for Volt-VAR optimization of substation automation is designed using an agent 

technology based on IEC 61850’s Goose Messaging protocol.  

As Table 2.2  lists, IAs are classified into five types based on their profile: 1) a VVO 

data transmitter IA which is responsible for message transactions between the VVO server 

inside the substation, controller IA, and data filtering IA; 2) a VVO event receiver IA which 

captures alarm messages from all other IAs; 3) a data collector IA which collects required 

data types from Smart Meters (SMs) in defined rolling intervals through a Modbus protocol; 

4) a data filtering IA which processes, filters, and transfers data to VVO IAs; and 5) a 

controller IA which is responsible for applying optimal reconfigurations to Volt-VAR control 

devices, analyzes results, and sends feedback to VVO IAs. The required data captured 

by IAs include, but are not limited to, active power, reactive power, and voltage. The IAs 

communicate with each other using an ACL which is compatible with the IEC 61850 

standard.  

Upon completion of optimum settings for its assets, Multi-agent control system 

reconfigures the network by sending configuration controls to Volt-VAR control devices 

such as CBs, VRs, and LTCs. Due to limited bandwidth and higher efficiency 

requirements, message packets are loaded with an optimum amount of data display 

agents such as voltage, active, reactive power, etc. Moreover, the other parameters are 

calculated in the VVO IA inside the substation server. In addition, each parameter in a 

Smart Meter has a unique code (similar to a MAC Address) that is registered in the network 

after connection and is signed out after exit. More details about this system can be found 

in the two papers published on this topic [121], [122] . 
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Table 6.1. Capabilities and data parameters to be controlled with each Agent; 
Active power (P), Reactive power (Q), Voltage (V), Current (I), and 

Power factor (PF). 

Agent’s Name Capabilities Data 
Parameters 

Associated 
Agent Layer  

VVO Data 
Transmitter 

Receiving data, sending commands, optimizing Volt-VAR P, Q, V, I, PF Planning 

VVO Event 
Receiver 

Receiving alarms, optimizing Volt-VAR P, Q, V, I, PF Reactive 

Smart Meter/ 
Data  

Collector 

                                                                                                                                                                                                                                         

Receiving data, alarms and commands P, Q, V Reactive 

Data Filtering Receiving and sending data, processing data,  generating 
and sending alarms, applying ANSI  band, sending event, 
receiving command 

P, Q, V Coordinator 

Controller Receiving command and data, processing data,  applying 
control commands and sending data and  alarm 

V, I Coordinator & 

Reactive 
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 Conclusions and Future work 

In order to optimize various control parameters in an autonomous microgrid, 

controllable devices, such as power sources, should be closely coordinated using a 

compatible control technology. This work proposed the application of multi-agent systems 

for cooperative control in microgrids. Two control agent platforms were developed in this 

thesis to apply the optimization functions to two separate test systems. The first test 

system was a connected AC microgrid which used an agent platform for Volt-VAR 

Optimization (VVO) among power devices, while the second test system was an islanded 

DC shipboard microgrid which deployed another agent platform to coordinate power flow 

among power electronic converters. Considering different requirements for the design of 

the aforementioned agent-based control models, different agent technologies are applied 

for two individual test systems. 

The VVO test system was a small-sized grid-connected AC microgrid including 

eight smart meters and other power devices such as capacitor banks. The system was 

geographically distributed along the substation and customers’ houses and used for 

optimizing power losses where voltage and reactive power were defined as controllable 

parameters.  In the other test system, a DC shipboard system was defined as a medium-

sized islanded microgrid including tens of converters. The agent-based controller 

successfully determined the optimum power sharing among converters to ensure 

minimum transmission and distribution loss while enforcing constraints such as the 

sources’ capacity limits. The two test systems had very different time requirements. The 

VVO model had a broad time range of 1-15 minutes while the islanded DC microgrid was 

considered as a soft real-time system with a deterministic time frame of a few tens of 

milliseconds. Different timing requirements led to the application of different agent layers 

in the optimization processes. 

It was mentioned in section 1.6 that agents are located in the reactive layer if they 

are pre-programmed to do certain tasks. Also, they are placed in the planning layer if they 

are context dependent, cooperating in their local tasks and competing with similar agents 

in other nodes in pursuing global goals. When real-time tasks are required, they are 
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usually handled using a reactive layer’s agent because they are closely associated to the 

power electronic devices such as converters. In this thesis, while all three agent layers of 

planning, coordinator, and reactive are deployed for the VVO test system, the islanded 

DC microgrid only used coordinator and reactive layers. Consequently, while publish-

subscribe agent technology was extracted as the most efficient agent platform for the DC 

shipboard microgrid, the VVO agent-based control platform was designed and developed 

using the facilitator model which meets all the requirements of that system. A summary of 

comparison among two test systems is explained in Table 2.1. 

For the first test system, an agent platform was developed and employed for VVO 

in a connected AC microgrid. The advantages of using MAS were stated and the design 

methodology, architecture, and interactions among the five employed agents were 

discussed. This agent platform was tasked with processing smart metering data, 

determining probable events which have produced that date, and communicating their 

findings with the VVO Intelligent Agent, which in turn can determine the new configuration 

settings for the VVO components in the system. 

In the path to extract the most efficient agent-based distributed control technology 

for the second test system, a medium-sized DC shipboard microgrid with 32 electrical 

converters was used for numerical analysis. Different agent technologies including Belief, 

Desire, Intention, and Holonic were presented and analyzed numerically using an agent 

platform (RCPC-32). Furthermore, the management of adding and deleting converters 

based on Distributed Hash Table (DHT) infrastructure displayed a consistent and high 

level of efficiency for the test system. Therefore, a combination of the publish-subscribe 

agent platform and the DHT searching algorithm was opted as the most efficient, scalable 

technology for real-time coordination of power converters in the defined microgrid. It was 

shown that an increase in the number of power converters from 1 to 50 did not visibly 

affect the upper time limit of message exchange.  

Another main contribution of this thesis has been to develop an integrated system 

for checking the optimization algorithm. It includes a microgrid model, agent-based control 

platform and integration block which had to be able to run multiple optimization processes 

simultaneously. A simplified version of a DC shipboard microgrid, including eight 
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converters, was developed and simulated in MATLAB/Simulink as the case study (MG-8). 

Simulink is usually used for modeling optimization algorithms in microgrids, but it cannot 

implement the multithreaded agent architectures using agent development tools and 

standards that are available in other languages such as JAVA. Therefore, Simulink was 

coupled with other tools to realize an overall agent simulation platform. 

A Java Agent DEvelopment Framework (JADE) was chosen for developing an 

agent platform because it provides a set of internationally recognised standards defined 

in FIPA. JADE is particularly well suited for building multi-agent systems and can address 

the weakness in Simulink, but the two programs must be synchronously linked in order to 

facilitate interaction among their combined attributes through Java classes. The content-

based publish-subscribe method has been modeled for this system using the JADE 

Platform. The content is defined for each publisher and subscriber based on the required 

data for running an optimization formula by each agent. To aid the design process for 

decentralized data fusion using agents, an interface called MACSim has been customized, 

re-programmed, and used that integrates Simulink and JADE. Thus an integrated multi-

agent software system is available for the development, testing and analysis of the 

shipboard case study. 

In the publish-subscribe model, the number of message exchanges extracted from 

the simulation agree with the analytical results. The agent platform deployed distributed 

optimal power-sharing algorithms while maintaining a deterministic time frame of a few 

tens of milliseconds for a system with tens of converters. In addition, there was no 

limitation in the number of events which might happen concurrently. Results of 

implementing the agent-based publish-subscribe control system using JADE were 

illustrated in this thesis. 

In summary, the application of the publish-subscribe agent technology led to 

balancing load sharing upon the changes in the system load flow. Moreover, the JADE 

platform critically increased the flexibility of the system. In the centralized control model, 

which was developed using MATLAB, agents were performing optimization sequentially, 

so it took about 1000 milliseconds. While agents in the JADE model were running 

simultaneously and simulation time decreased to less than 10 milliseconds for 
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coordination among the same number of power converters, increasing the number of 

agents in the JADE model did not affect the upper time limit of optimization process. The 

agent-based strategy achieves coordination in a time frame acceptable for the defined soft 

real-time application. 

7.1. Future Work 

Since the real-time agent-based simulator is already developed, it can be used to 

overcome operation, control, and protection challenges that are caused by deployment of 

distributed power units in microgrids such as the integration of electric vehicles [123]. The 

tremendous growth of electric vehicles will affect the secure and steady operation of power 

systems. In order to make power systems stable, it is essential to analyze the impact of 

electric vehicles on distribution networks. A research can be defined to analyse the impact 

of charging stations on distributed power networks. For each charging mode, including 

normal and fast charge in charging stations, distributed coordinators can be developed 

using intelligent technology. All of the designed models will be tested on the integrated 

JADE platform for verification. 
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Appendix A.  
 
Structure of Integrated Systems: RCPC-8, RCPC-32, MG-
8, MG-32) 

The In this thesis, two types of microgrids are used as the case study. One of them 

is a middle-sized microgrid including 32 converters, which is used for numerical analysis 

and selection of the most efficient coordinator control for DC microgrids, called MicroGrid-

32 (MG-32) and shown in Figure A.1. The other one is a sample microgrid including eight 

converters which is used as the case study, modeled in MATLAB, which is called 

MicroGrid-4 (MG-8) and shown in Figure A.2. 

        

Figure A.1. The Structure of Integrated  
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System Including RCPC-32 and MG-32  
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Figure A.2. The Structure of an Integrated System Including RCPC-8 and MG-8  

 

A Real-time Coordinator of Power Converters (RCPC) system is defined as a 

control model for the sample mocrogrid. To test the applicability of the RCPC optimization 

method, an MG32 model is used as a case study for numerical analysis which is called 

RCPC-32. In chapter 6, where a simplified case study including eight converters (MG-8) 

is used for simulation, its associated agent-based control system called RCPC-8, which is 

basically a smaller size of RCPC-32. Different control designs are employed in an MG32 

system and their efficiency and scalability is compared. In this section, RCPC-32 is 

designed as a hybrid system to combine the predictability of the centralized and 
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hierarchical control architectures with the agility and robustness against disturbances and 

a high degree of adaptability of the heterarchical control architectures [1]. Figure A.2 

illustrates the application of agent technology in an RCPC-32 system. Each Converter 

Agent (CA) is connected to one of 32 converters using Ethernet communication protocols 

(TCP/IP or UDP/IP) located in the lower layer. A group of CAs is assigned to each middle 

layer agent. The number of Middle Agents (MAs) and the topology of their connection to 

both CAs at the lower layer and Planning Agent (PA)/MatchMaker Agent (MchAg) at the 

upper layer is varied for different agent algorithms. There is only one PA that is responsible 

for saving and mapping system plans. 
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Appendix B.  
 
The Steps Taken for Implementing the Integrated 
Control System (RCPC-8) 

Implementing the testbed for simulating RCPC-8 takes place in three main steps, detailed 

in the following sections. The steps are: 

1. Developing MAS using JADE in Eclipse. Its shorten pseudo code is 
explained in Appendix C. 

2. Installing MACSim libraries on Eclipse and creating an Agent Task 
Force class inside the project. Since the original MACSim block should 
be run through the Windows32 command line, setting this part is 
complicated and will be explained in detail. 

3. Developing the microgrid model on Simulink 

4. Running the Simulink model from MAS through MASCimThis is a fairly 
complex piece of software with many dependencies. Steps 2 through 4 
are explained in the following sections. 

Installing MACSim on Eclipse 

In this research, Eclipse 32 bits v.4.3.0 is opted for developing the case study because of 

its features. As an MACSim block is only compatible with Windows 32 bits, the path setting 

of Windows 64 bits is modified to read the system files from a Windows32 folder. In 

addition, a compatible version of JDK and Eclipse with Windows 32 bits is installed and 

used for programming. Before deciding to choose Eclipse, a few other main agent 

development platforms such as Jason, Netlego, and NetBeans are tested and some of 

their specifications are compared in Table 4.1. As a result, Eclipse is chosen and used for 

developing a multi-agent control system through the following steps: 

1. Add external agent jar files to the Eclipse library. The jar files are: 
commons-codec-1.3.jar, commons-codec-1.9.jar, http.jar, iiop.jar, 
jadeTools.jar, macsim.jar, macsimjx.jar 

2. Killing the previous processes is running on port 1099 (Jade port) 
using CurrPorts 

3. Creating an Agent Task Force (ATF.txt) script in the JADE project 
including: project name, number of input and output signals, number 
of agents, and frequency of running agent model  
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Running the RCPC-8 System 

For running the DC microgrid model, the following steps are required: 

1. Running MACSim through Eclipse and selecting the specific Agent 
Task Force. It opens the JADE remote agent manager. 

2. Running macsimjx.jar as a Java application. This task opens the 
MACSimjx agent platform which calls system pipes. 

3. Running the coded agent file through the MACSim platform. Here the 
file is called Agent1 and its UML is displayed in Figure 4.9. 

4. Opening and running the microgrid model in Simulink. 

 

Troubleshooting  

 

1. Displaying error message: “java jade.boot -gui jade is closing down” 
means the program could not run JADE API from the command line. 
The error was caused because port number 1099, which is assigned 
for running JADE programs, is already occupied. To fix the error, an 
application called “CurrPorts” is used to kill the process running on 1099 
and free the port so the IDE jade starts to work properly.  

2. Displaying the error message: "Error in S-function 'example/S-
Function': S-Function 'MACSim' does not exist"? means the path is not 
in MATLAB. It can be fixed by adding this folder to the MATLAB path: 
C:\macsimjx\MyTools\MACSim\client\. 
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Appendix C.  
 
Pseudo Codes 

 

Initialize agent: 

Set up necessary variables (particularly for MIQP optimization algorithm eqs.). 
Determine the number assigned to this agent (provided by AgentCoordinator; it should 
be unique for each agent). 
Set variable: “FirstRun” as true. 
Set initial values for a posteriori estimates, 
by referring to SystemAttributes class. 
Register with DF agent to receive Simulink 
data from AgentCoodinator. 
Start agent behaviour. 

 
Agent behavior: 
 

Initialize data structure (named tsd) using 
TimeStepData class (as template for reading and storing incoming data). 
If an “UpdateData” message is received: 

If this is the FirstRun: 
Get address of AgentCoordinator agent. 
Set variable “FirstRun” as false. 

Transfer data from message to tsd data structure. 
Extract z matrix from data structure. 

Calculate local filter estimate: 
Use PredictStage class to calculate 
a priori estimate then use 
this, along with the z matrix to 
determine a posteriori estimate 
using UpdateStage class. 

Amend tsd data structure with a posteriori estimate.  
 
Return tsd in a message (with ID “ProcessedData”) to the sender agent 
(likely to be AgentCoordinator). 
 Update the values for previous a posteriori estimates with the current  
ones. 

If a “DataAmended” message is received: 
(AgentCoordinator has successfully updated its data store with the estimate.) 
Reply with “ProcessingComplete” to finish the estimation process for this sample. 

If a “Shutting Down” message is received: 
Remove this agent from the program. 
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