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ABSTRACT 

 

In today’s world, people are widely using technology to make their lives more comfortable and 

better. The development of semiconductors technology is making Integrated Circuits(IC) smaller 

and smaller in size, thus allowing IC designer to include more and more functionalities in their 

products. This development of technology has allowed a large diffusion of semiconductor devices 

in all aspects of human life, leading to the concept of “embedded” computation, described as the 

practice of including the small processor devices in all spaces of our world, from our houses, to 

our cars, to even “wearable electronics” that we carry around as we move. 

In particular, floating point computation (FP) is a feature of computers that, at the price of 

significant additional hardware complexity and sometimes at the price of result accuracy, provides 

a much larger range of usable numbers, thus significantly enhancing the flexibility and usability of 

our computation.  The additional hardware complexity imposed by FP units imposed a relevant 

price in Silicon Area (making the IC more expensive) and especially in terms of power 

consumption. In turn, energy consumption is a very severe issue in semiconductor technologies: 

first, it causes unreliability of the IC technology. Secondly, IC energy consumption leads to 

greenhouse gas emission: IT-related consumption is well above 20% of GHG highly in developed 

countries. Finally, many IC systems are battery operated and high consumption may jeopardize 

the system usability and/or user experience. 

One very significant category of embedded processors is that of embedded sensors. Embedded 

sensors produce relevant quantities of raw data that needs to be adequately classified in order to 

provide significant information, and Machine Learning is often applied as a strategy for sensor 

data classification: most machine learning strategies requires floating point computation as a 

mean to handle the complex dynamics of the data to be classified 

This MENG project aims at exploring design strategies for low-power FP computation. In the 

following, we will introduce the design of a hardware FPU unit whose sub-blocks can be 

programmed to change dynamically the computational speed with the change in the voltage. This 

enables the FPU to adapt their consumption to the requirement of the environment, offering high 

performance (and high consumption) whenever needed by the environment, but adapting to low 

power, low speed mode whenever intensive processing is not necessary. 
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1. INTRODUCTION 

 

Intel developed the first microprocessor IC in 1970. From 1980 onwards, the microprocessor 

entered our houses in the form of phones, computers and then tablets. Historically, 

microprocessor have been designed to perform at the highest possible speed, while energy 

consumption was not considered a significant design constraint until the early 2000s, with the 

diffusion of embedded computing and the commercial issues of battery-operated devices. Since 

then, due to the diffusion of this energy-sensitive markets such as cell phones and tablets, 

microprocessor designers have been introducing low-power design strategies such as clock and 

power gating, near threshold computing, and low power circuits. The main feature of the 

aforementioned strategies is to involve a change in the way the circuit are designed. The designer 

needs to choose upfront, depending on the target application field, whether to implement a HIGH-

SPEED or a LOW-POWER design. 

In particular, to meet very aggressive implementation constraints, microprocessors have been 

steadily evolving from the late 1990s into complex Systems-on-Chip where a single IC integrates 

all components of a computer system including memory, peripherals, and bus architectures. In 

this context, a very common strategy to increase the computational capabilities of a 

microprocessor while mitigating the related power consumption is "Hardware/Software co-design” 

(6), intended as the practice of mapping a part of the computation normally deployed in software 

by a microprocessor into a specialized Hardware unit that is embedded in the microprocessor’s 

own chip. Such computation units are usually defined “Hardware Accelerators”. Classic example 

of kernels that are often mapped on hardware accelerators are graphic engines for cell phones 

and Floating Point Units in embedded microprocessors. 

A second important change of perspective, is taking place in the last few years, when the 

processor market shifting focus towards the so called Internet of Things (IoT) (1)(2)(3). The 

Internet of things requires the distribution of sensor devices in almost any space related to our 

lives. Sensors monitor our environment, and generate very large quantities of data. While the 

ultimate goal of such data collection is to process information in a centralized server on the so-

called “Cloud”, the amount of data to be processed is so large that a first step of processing must 

necessarily take place in the sensor itself in some form of embedded processor.  In the following 

of this report, we will define an IoT processor as a small Integrated Circuit (IC) containing a 

sensing/actuating logic and an embedded microprocessor core. Depending on the conditions in 

the environment where the sensor is located in the physical system it works with, it may need to 

work very fast for a short critical transitory, while and otherwise it would need to work as a low 

power circuit. For example, a capacitive proximity sensor that is mounted on robots to detect the 

presence of humans and avoid unwanted robot-human accidental collision such as the one 

described in (4) may spend long times processing data at low speed when no object is 

approaching the sensor. When the sensor detects an approaching object, the computation speed 

must be augmented dramatically while the processor tries to classify whether the object at risk of 

collision is a human body or a different category of objects that do not require the same safety 

precautions. Similarly, a security camera for an industrial site such as the one described in (5)  

may spend long times processing data at low speed when no moving object is detected in the 

camera’s field. When the camera detects an approaching body, the computation speed must be 

augmented dramatically while the processor tries to classify whether the object at risk of collision 
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is a human body or a car (possibly a thief) or a different category of objects (such as a cat or a 

leaf) that do not require the same level of alarm. 

 

The focus of this projects is to design hardware accelerators for microprocessor units that are 

small enough to fit into a sensing/actuator logic, capable to work at low power low speed for most 

of the time, but yet capable to deliver enough computational power in case of peaks where the 

sensing activity and related data classification needs fast and accurate data acquisition. 

 

1.2   IoT Protocol Stack and Architecture of IoT Processors 

Following the definition introduced above, IoT processors are small integrated circuits massively 

distributed across our living space. They occupy the lowest hierarchical level in the “Internet-of-

things (IoT)” communication chain and, because of this: we will address them in this document 

as “IoT LEAVES”. As described in (1), (2), (3) the IoT is an embedded protocol stack comprising 

software processing, hardware sensors and network connectivity. The IoT protocol can be 

described as a 3-level hierarchy (Figure 1): the above comprise the lowest level described the IoT 

leaves. The second level is the Gateway node used to connect, merge and route the flow of 

information coming from the leaves. The third level of hierarchy is represented by the cloud data 

center.  

 

Figure 1: A representation of the IoT protocol stack 

This work specifically targets the lowest level in the IoT hierarchy. In particular, the design of IoT 

processors:  microprocessor devices embedded in the same IC with the IoT sensor, or anyway 

tightly coupled to it. The features that are desirable in IoT processors are briefly described in the 

following: 

1. IoT processors extract information from a physical system, classify that and route it to 

the cloud. In some cases, they can also actuate commands from the cloud on to the 

physical system. They are physically connected to the other leaves and to the HUB 

nodes in the network. Depending upon the application, the connectivity can be wired or 

wireless. The IoT processors need to be small devices so that they can be easily 

embedded in the physical system without affecting it.  
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2. If there is no power supply available in the system, for example, sensors in human body 

or public space, they must be designed in such a way that they consume little energy or 

are even able to scavenge it from the physical system. 

3. IoT processors need to provide long-term reliability, since the physical system may be 

located in accessible locations where it is difficult and costly to reach and fix the IoT leaf. 

4. The basic functionality of the IoT processors is to sense, gather, and store and process 

sensor information. In order to minimize data bandwidth to the cloud, IoT processors 

need to perform locally a first processing stage. Such processing may include 

classification. Pattern detection and encryption of collected data  

 

Figure 2 shows a representation of the IoT Processor system-on-chip architecture outlined 

above. This project focuses on the uP core that is at the heart of the SoC. The following section 

will focus on the features of such uP core, and provide guidelines for its design, that will be the 

subject of the following chapters of this report. 

 

Figure 2 A Representation of an IoT processor System-on-chip, composed by the 
microprocessor, the bus/memory architecture, external connectivity and embedded or tightly 

coupled Sense/Actuation logic 

 

1.3 Power Consumption in IoT Devices 

Power consumption is an aspect of microprocessor design that historically had not been 

considered the foremost priority: in the design of traditional desktop or laptop, microprocessors 

from the 1970s to the 1990s computational performance and clock speed have always considered 

more important than consumption. Only later, with the advent of hand/held or portable electronic 

devices and embedded microprocessors, power consumption suddenly became a fundamental 

constraints, and low power design started attracting relevant interest both in the scientific 

community and in the industry. Moderate power consumption became a fundamental marketing 

vehicle to assert the success of a processor design. The large diffusion of the ARM processor 

architecture is a clear example of this trend. 



4 
 

Later still, due to advances in latest technology node development, power consumption has 

become, other than a marketing issue, a very critical concern for IC reliability. In CMOS-VLSI 

technology nodes with channel length <65 nm, the most of the causes of IC malfunctioning are 

related to the power consumption/energy dissipation in the chip area (7). 

The IoT leave concept introduced in the previous pages represent a very specific case of 

embedded system. IoT leaves are invariably located in the human living space, and must be small 

and portable. Often, they may also be located in some inaccessible position, with no direct access 

to the power plug. 

Referring to the points introduced in the previous sections: 

1. IoT leaves must sustain severe peak computation requirements that require a 

computationally strong architecture: IoT leaves may need to be reprogrammed to support 

different sensing patterns or different classification algorithms. Such upgrades may be 

required after the embedded sensor has been located in the environment, so that it cannot 

be easily reached and substituted. For this reason, any ASIC hardware acceleration 

cannot be too specific and not flexible enough. 

2. On the other hand, area, energy and design cost constraints pose many limitations on 

what designers can do to get better/high performance. In principle, in a processor 

architecture, performance can be obtained architecturally, i.e., Superscalar or multicore 

features to use heavy pipelining, at circuit/layout level(use of high-speed CMOS circuits) 

with the use of a more aggressive technology (i.e. FinFET or SOI technologies, deep sub-

micron channel lengths), or using higher reference voltages (i.e. supply and substrate 

voltage scaling) 

 

All methodologies introduced above impact severely the power consumption of the device. In 

budgeting the IoT leaves, the power consumption can be a severe issue. The effects of power 

consumption can be three-fold: 

 

1. Localized- Since the size of the IoT leave chips should be small, power consumption may 

impose an undesired complexity to the chip. In many IC designs, especially in the case of 

small circuits such as IoT devices, the number of IO pads rather than the size of internal 

circuits define the floorplan area. High power consumption would require a higher number 

of pads to ensure an appropriate current feed. In turn, more pads will require more pins in 

the package and will increase the overall system complexity, making it costlier and less 

practical. 

 

2. Globalized- The energy consumption related to Information technology (IT) in developed 

nations is steadily increasing across the years, increasing and is becoming a major cause 

of greenhouse gasses emissions. In 2013, the energy consumed by ICT was already more 

than 10% of the total consumption in many developed countries, and is on track to 

increase to 20% (8). Studies predict that by 2030, if current trends continue, electricity 

consumption caused by Internet-related devices will increase up to 30X, and energy prices 

will grow substantially (2). We are indeed approaching a paradox, where the IoT will be 

essential to enable smart energy utilization to minimize Green House Gas (GHG) 
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emissions (2),(3), but in turn will be in itself cause for severe increase in energy 

consumption and consequent GHS emissions. IoT leaves are numerically largely 

dominant with respect to other ICs that contribute to the IoT infrastructure. Hence, a careful 

attention to low-power design is essential. On the other hand, this cannot be obtained 

compromising performance, due to Real-Time constraints. 

 
3. Reliability of Integrated Circuits- Reliability is defined as the capability of Integrated 

Circuits to work correctly for the time-span it is required to, and in the working conditions 

where it is expected to operate. Reliability is a major issue. It affects the design and 

manufacturing costs. Low reliability decreases the profit margins, and affects the trust of 

customers on the specific product, and towards the use of IoT services in general. The 

issues that can affect CMOS reliability can be categorized into spatial and temporal 

unreliability effects (7). 

3.1 Spatial Unreliability Effects- These effects are mainly dopant fluctuations, edge 

roughness and gradient effects, which are visible after the production. They affect 

yields by altering the geometry and structure of the circuit. 

3.2 Temporal Unreliability Effects- These effects can be seen when there is a change in 

the operating conditions: supply voltage, temperature, and computation workload. 

These are further classified into aging effects and transient effects: 

3.2.1 Aging Effects- Examples of the aging effects include Negative Bias 

Temperature instability, Hot-Carrier injection, Electro-Migration 

3.2.2 Transient Effects- Examples of transient effects include Static and Dynamic 

Voltage drops, Simultaneous Switching nodes, Thermal Runaway and 

temperature related timing degradations. 

 

Spatial effects are visible immediately after production, so that they can be detected during post-

fabrication tests: of course, they influence design costs, as they force to discard a portion of the 

manufactured silicon. However, once sorted, remaining ICs will be fully functional. Temporal 

effects are much more critical in terms of IC design for IoT because they are unpredictable, 

undetectable malfunctioning that can appear (or not) at any moment in time during the device 

lifetime, leading to transient malfunctioning or permanent ruptures. Such effects are difficult to fix, 

as they would require unplanned physical access to the device. In fact, the majority of temporal 

effects are due power dissipation effects in the IC and time varying peaks in the current distribution 

of across the IC power grid. The best way to ensure high reliability, especially against temporal 

effects, is to design in order to minimize power dissipation in general, and transient current peaks 

in particular. 

 

1.4 Low Power Design Opportunities for IoT Processors 

There are many ways to reduce the power consumption of a microprocessor circuits. Low power 

circuits and/or micro-architecture design are very popular and well established in the state of the 

art. Unfortunately, these approaches are not applicable to the IoT leaves, as they require 

modification of libraries and design flows, which in turn can increase the manufacturing cost.  
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Most importantly, low power circuits and micro-architectures achieve substantial power mitigation 

at the expense of lower peak performances. This is completely unacceptable in the IoT context 

where the sensing system, mostly working at very low rates, must be able to sustain at times 

sudden substantial performance peaks. 

Other well-known practices for low power design are power gating and clock gating, and dynamic 

voltage and frequency scaling. 

 

1.4.1 Power Gating 

Power gating can be described as the practice to turn off the power supply voltage of a given 

digital block when the digital block is unused for a long time.  The main drawback of this approach 

is that turning on the digital block from the off state requires very strong current transistors to 

charge the capacitance of the Vdd supply network. The On-chip current gradients are dangerous 

and to avoid the current gradients, specific current limiting regulators can be embedded at the 

expense of increasing design cost. Power gating can be applied in IoT processors, especially in 

the case where a specific accelerator in the processor architecture is not used for a long time. An 

example of such case could be the Square Root of the Divider accelerator in a floating-point 

processor as described in chapter 2 of this document. As square root and divider may not be used 

for long times in a given computation, they could be power gated to the advantage of the overall 

power consumption. Although this technique can be useful in the context of this work, it is well 

established in literature and will not be the focus of this activity 

 

1.4.2 Clock Gating  
Clock gating can be described as the practice to turn off the clock of a digital block when the 
digital block is not used. As opposed to power gating, clock gating is much easier to apply as it 
possible to activate or de-activate it in a single cycle. In addition, it requires minimal hardware 
overhead for its application.  
Clock gating is fully embedded in modern HDL-based design flows and as such can be added on 
top of other strategies. In chapter 3, clock gating will be utilized to minimize the power 
consumption of HW accelerators.  The main drawback in the application of clock gating is that its 
contribution, although useful, is typically moderate and does not offer substantial advantages.  
 

 1.4.3 Dynamic Voltage/Frequency Scaling (DVFS) 

DVFS can be described as the practice of dynamically adapt the clock and voltage supply of a 

digital circuit to the computational load that the circuit is requiring, increasing the clock and voltage 

supply when the circuit needs to operate at high frequency and decreasing the same when a low 

rate of computation is sufficient to meet the real time constraints. In brief, in DVFS, the clock rate 

and consequently the power dissipation is dynamically driven by the real time constraints imposed 

on the circuit by the external world. This will help in saving power, as every part of circuit will 

always deliver the exact amount necessary to meet timing constraints. This strategy may be 

applied to the full circuit, or with a finer granularity providing independent clocking and voltage 

supply to different portions of the circuit. This is very appealing in the design of a microprocessor 

that features embedded hardware accelerators, such as the floating-point processor that will be 

described in Chapter 2 of this document. Every accelerator could be dynamically tuned to a high 
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speed, high power state during computational peaks requiring that particular accelerator, or to a 

low speed, low power state when the accelerator is used only sporadically. 

In this second case, opportunities for power saving are significantly higher, but they come at the 

price of additional design cost: 

1. Architecture Design- Explicit synchronization circuitry is required in order to support the 

crossing of different clock domain boundaries. 

2. Physical Design- During the floorplan phase, separate power supply grids need to the 
defined. In order to ensure the smooth electrical transition between different voltage levels, 
level shifter cells must be inserted in between the domains 

3. Timing Characterization- The timing constraints are normally verified in all digital designs 
worst (setup checks) and best (hold checks) operating conditions. DVFS require the digital 
design to be operative in a significant range of Vdd conditions. Timing closure then must 
be repeated for each condition. Most importantly, timing libraries will have to be 
characterized in all desired voltage operating points. 
 

Regardless the costs outlined above, DVFS is a very appealing technique for power reduction in 
IoT processors. Although DFVS is less effective, in terms of sheer power reduction, as compared 
to low power circuits or microarchitectures, the most considerable advantage of DVFS is that, 
thanks to its dynamic nature, it enables power reduction WITHOUT IMPACTING  
(or as little as possible) PEAK PERFORMANCE. This is visible in a real case, for example, in 

Figure 14, where the behavior of the same hardware unit with or without application of DVFS is 

shown. As it is evident from the figure, although the power consumption at different frequencies 
is different (and lower for the DVFS case), the maximum frequencies achieved by the two 
solutions is the same. 
 
This feature is particularly suited to the operating environment of IoT processors that, as 
described in the previous pages, are intrinsically subject to intrinsically variable real time 
constraints. 

 
 

1.5 GALS design style and advantages for IoT processors 
 
GALS (Globally Asynchronous Locally Synchronous) is a design methodology largely applied in 
today’s Systems-on-Chip designs. The term GALS refers to the practice of partitioning a digital 
design in different portions, each of whom runs with an independent asynchronous clocking 
scheme.  
The extensive use of GALS is the natural enabling factor for the deployment of a fine-grained 
DVFS as described in the previous subsection. The advantages of this design option in the context 
of IoT processors are outlined in the following: 
 

1. Since clock edges are not “centralized” across the IC, but different regions of the design 
have independent asynchronous clocks, the current peaks induced by the clock edge have 
a smoother behavior and they compensate with each other. A smoother current ensures 
a much higher level of reliability of the IC. Figure  

2. Every region of the IC can run at the clock frequency imposed by the Real Time 
Constraints. This in turn avoids the need to over-design components that, due to their 
nature, may run at low speed but in a single-clock design need to be sped-up to match 
the frequency of other components. An example of such situation is the peripheral bus of 
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a high-performance DSP: while the DSP core needs to run at several hundred MHz to 
ensure high-end computation, peripherals such as UART or SPI may easily run at 
frequencies <100MHz. But, if the design has a single clock, they would need to be over 
constrained to meet chip-level specifications 

 

 
Figure 3: Power Supply waveforms in a GALS design. Red waveforms are currents due to a 

synchronous clock; Blue waveforms are cur-rents due to fully asynchronous clocks. 

 
The application of the GALS design style and fine-grained DVFS offers the opportunity for 
significant power reduction. When writing software code for a processor applying GALS, the 
programmer (or the operating system) in the position to dynamically increase clock frequency and 
supply voltage of a hardware accelerator or communication peripheral to accommodate sudden 
demands in computation efficiency, only to tune it down when the transitory has exhausted or is 
not a priority any more. In processor systems featuring a solid RTOS, power as a design 
parameter would be simply one of the different factors involved in task scheduling.  
 
In this section, power consumption was identified as a foremost priority in the design of embedded 
processors for IoT applications, in particular for the lowest level of the IoT protocol stack that is 
composed by IoT leaves, small systems-on-chip comprising sensing logic and a small-embedded 
microprocessor for first-order data classification.  Power consumption mitigation, though, cannot 
be obtained at the expense of peak performance: while IoT leaves are expected to function for 
their largest part of their product lifetime in a quasi-idle state, they must be able to sustain brief 
but very intense transitory period of high computational demands. 
 
In particular, clock gating and dynamic voltage and frequency scaling appear to be the more 
appealing strategies to obtain power mitigation without affecting peak performance.  
The MENG project described in this document was part of a larger research effort targeted at the 
design of an open source processor architecture for IoT applications. In particular, this project 
focused on the application of specific modifications to the processor architecture in order to 
highlight and augment the benefits offered by the methodologies described above on the 
processor computation units. Although in this work two well-known floating point accelerators (a 
32-bit IEEE single precision floating point adder and a 32-bit IEEE single precision floating-point  
multiplier) were used as test case, the proposed methodology can be applied to any kind of 
pipelined hardware accelerators in different design contexts. 
 
In the following, chapter 2 will describe the floating-point processor design that is the context of 
this MENG project. Chapter 3 will describe the work performed and the proposed modifications 
to the floating-point accelerators pipeline. Chapter 4 will describe the numerical results derived 
from the proposed modifications, and Chapter 5 will draw the conclusions.  
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2. CONTEXT OF THIS MENG PROJECT 

 

The aim of this work is to demonstrate in a “realistic” application case the benefit of applying 

clock gating and DFVS to a processor design targeted at IoT application, and to propose 

specific modifications to the processor’s hardware accelerator units in order to emphasize the 

benefit of such techniques. Choosing a specific microprocessor architecture for embedded 

systems, this work will evaluate what type of architectural modifications may maximize the 

energy gain made available by clock gating and DVFS and measure the available energy gain 

enabled by such modifications given a well-known standardized application commonly used in 

sensor data classification. 

The application that will be used as a benchmark during this work is the Linear Discriminant 

Analysis (LDA) algorithm. LDA is a Machine Learning Algorithm normally used to organize 

sensor data in classes based on criteria extracted from a set of pre-classified “training data”. 

LDA is commonly considered the simplest and computationally lighter machine-learning 

algorithm. For this, it appears particularly suited to embedded systems and to sensor data 

classification in particular. Due to the intrinsic large range of the sensed data, Machine Learning 

algorithms are typically based on floating point numbers. Since we have to deal with sudden 

computation peaks with stringent real time constraints, we can consider that software emulation 

of floating point operation to be highly redundant and too power-hungry, so our reference 

system architecture will be a Processor unit with hardwired Floating Point acceleration. 

 

2.1  The “Crescent Beach” Floating Point processor 
 

As reference processor architecture, we will use the RISC-V instruction set. RISC-V is an open-

source processor ISA for embedded systems made available by the RISC-V foundation at 

University of California, Berkley. RISC-V (pronounced RISC-five) represent a sort of de-facto, 

free standard for embedded processors, and supports a solid Floating Point extension. The 

implementation of the RISC-V instruction set that we will be using in this work is an open-source 

VHDL suite of the RISC-V processor developed as an educational and research tool in Simon 

Fraser University. The release of the processor including Floating Point support is described in 

Figure 4 and is code-named “Crescent Beach (CB)”. CB is organized as a standard RISC 

processor composed of Instruction Decode, Register File, ALU, Multiplier and PC-control logic.  

On top of this standard configuration, CB features an embedded hardware FP unit organized as 

a coprocessor, with an independent FP instruction decode, an independent FP Register file, and 

independent FP acceleration units (but without program counter control that is reserved to the 

main core).  The supported FPU units are adder/subtractor, multiplier, and divider, and square 

root, integer to float and float to integer conversion 
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Figure 4: Schematic representation of the open-source "Crescent Beach" architecture based on 
the RISC-V instruction set 

 

This MENG project has taken place in the context of a larger research effort that includes the 

full design and implementation of the Floating Point processor, its characterization in different 

working points to enable DVFS and voltage scaling, and the mapping of the LDA algorithm as a 

relevant test case.  In particular, this work was oriented at the VHDL simulation and testing of 

the floating-point units, and the estimation of their performance.  Another important contribution 

of this work has been the definition, implementation and measurement of “configurable 

pipeline”. In order to support high design speeds most of the Floating Point units in the 

processor feature a pipelined design. In particular, the adder/subtractor implements a 4-stages 

pipeline, and the Multiplier implements a 3-stages pipeline, the divider supports a 9-stages 

pipeline and the Square Root unit implements a 12-stages pipeline, while the int-to-float and the 

float-to-int units complete their computation in one cycle. 

 

2.2 Register locking support for GALS design 

In a standard RISC architecture (11), every computational instruction operates on internal 

registers, reading operands from the internal register file and writing back their results on the 

same register file.  All instructions complete their execution in the same amount of pipeline 

cycles. In order to accommodate the presence of hardware accelerators with heterogeneous 

latency, the “Crescent Beach”(9)(10) processor architecture has been modified with respect to a 

standard RISC architecture, while respecting the RISC-V instruction set. A “Register Locking” 

strategy has been applied: every time an instruction starts computation on any unit, the 

destination register of such instruction is “locked” on a specific table. If (and only if) one of the 

following instructions needs to use the same register as source operand, the processor is 

stalled until the hardware unit that locked the register has completed its computation. Upon 

completion of the computation, the destination register is written with the operation result and 

the lock is removed. This hardware mechanism ensures that the regular flow of the program is 

maintained regardless the latency of every unit. For example, if the square root unit is activated 

by the assembly instruction “SQRT R1, R2”, no following assembly instruction can use the 

register R1 (the destination of the SQRT instruction), until the hardware SQRT unit has 
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completed its computation. Given the numbers introduced above, this would happen 12 cycles 

after the locking  

The relevant advantage of this solution in the context of the design of IoT processors is that the 

latency of the hardware accelerators embedded in the processor architecture DOES NOT 

NEED TO BE SET AT DESIGN TIME, as the locking ensures that no instruction can be started 

before all necessary operands are available. This enables a widespread application of the 

GALS concept described in the previous chapter: the speed (and Voltage) of each hardware 

accelerator can be increased or decreased at computation time depending on how often the 

specific accelerator is currently being used. Thanks to the register locking mechanism, the 

regular flow of the program will never be compromised. If, for example, the MUL operator has 

been set in very low power mode, so that its latency is actually 6 cycles instead of three, the 

register locking will ensure that its result is never read before being available. The worst thing 

that can happen is that the following instructions are stalled waiting for the MUL to complete, 

thus delaying the completion of the code running on the processor.  If the MUL is part of a 

computational peak that must be rapidly resolved due to real time constraints, the voltage of the 

MUL unit can be increased so that it only takes two cycles to complete, instead of the nominal 3, 

and the following instruction will be unlocked earlier leading to faster computation. 
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3. Description of the work performed in the MENG project 

 

The Crescent Beach processor was designed in Simon Fraser University as RTL VHDL code, 

and is distributed as an Open-Source hardware IP. Its architecture design was a prerequisite, 

rather than the focus of this specific MENG project. This MENG project focused on three specific 

aspects of the overall processor realization: 

1) Verification of the Floating Point Accelerators, that were imported as IPs from a different 

IP project (12), and implementation on FPGA and CMOS-VLSI technology  

2) Characterization of the benefits made available by clock gating and DFVS in the context 

of the Crescent Beach architecture, in particular for the implementation of the LDA 

algorithm 

3) Modification of two of the Floating point accelerators in order to implement a “Configurable 

pipeline” that could emphasize the power mitigation benefits of clock gating and DVFS 

described above 

 

3.1 Target Technologies 

Since the floating-point processor that is the target of this MENG work is an open source 

computation suite written in VHDL, the two classic design environments for VHDL design were 

chosen as target technologies: FPGA technology and CMOS-VLSI technology. 

Of course FPGAs do not allow (or only vey marginally allow) to reap the benefits introduced by 

the DFVS techniques introduced in the previous section. Voltage scaling on FPGAs is still at a 

very immature stage, and although possible (13), (14), it is not well supported by commercial EDA 

tools so that it is not within the focus of this MENG work.  Similarly, FPGAs do not really meet the 

prerequisites outlined in the previous sections for IoT processors.  Nevertheless, FPGAs 

represent an essential prototyping step for any design effort targeted at VLSI technology, 

including the design of IoT processors where this MENG work can be categorized: so it is useful 

to port the proposed processor on FPGA support, in order to enable efficient further work on 

algorithm implementation. In fact, future MENG theses in the same research context will be 

targeted at the mapping of algorithms on the FPU processor using FPGAs. 

For the FPGA solution that is mostly used as a prototyping and reference environment an Altera 

board was selected (15). Logic Simulation and synthesis was deployed using the EDA tools 

distributed by Altera. 
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Figure 5: Schematic description of the SOI technology process 

For the CMOS-VLSI, the selected technology is the one where today the benefit of DVFS are 

more evident, that is CMOS028-FDSOI (16). SOI (Silicon-Oxide-Insulator) is a flavor of the 

standard CMOS process where a thin oxide layer (Usually labeled buried oxide or BOX) is added 

underneath the conductive channel of the transistors as described in Figure 5. This allows for a 

much better control of the channel currents from the gate terminal, and limits the leakage 

component of the CMOS structures. The technology used in this work is a planar SOI CMOS, but 

the SOI option is often used even in more aggressive finFET technologies. 

The result section of this work will include results for both FPGA and CMOS28FDSOI 

technologies described above. 

 

3.2  The “Configurable Pipeline” strategy 

We define “pipelining” as the practice to add flip-flops (FF) in a digital design, in order to beak a 

single critical path in multiple smaller ones. This, at the price of a higher data latency, allows the 

hardware units to work at a higher clock frequency. 

This price is acceptable (and very willingly paid in essentially any digital design) to allow the 

computational units to increase their working frequency, and consequently the number of data 

processed per time unit (throughput). As introduced above, this happens at the expense of a 

longer latency between the start and the end of the computation of a given set of data. The 

presence of the pipeline in the Floating point accelerators that compose the “Crescent Beach” 

processor is indispensable for achieving the high work frequency that is required in case of 

sudden computational peaks. Unfortunately, it involves two unpleasant issues: 

1) Unwanted power consumption: pipelining a design involves the addition of register in order 

to break critical paths thus creating different stages. This creates a relevant power 

overhead: FF are very power hungry components, and on top of their own specific 

consumption, they require the transmission of the clock signal. In turn, the clock signal is 

by definition the signal that creates the larger consumption, having a toggling rate of 2 

changes per cycle (200%), as opposed to data signal that have typically toggling rates 

<10% .  

2) Unwanted computation latency:  as described above, the FFs implementing the pipeline 

stages induce a larger latency to the design. Thanks to the register locking mechanism 

implemented on the processor architecture, this does not cause any problem in the 

precedence of computed instructions. Hence, this is a price we can happily pay at high 
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speeds, in order to increase our computation throughput (increasing throughput at the 

expense of latency is the typical positive effect of pipelining). On the other hand, it may be 

cause of significant overhead at low speeds. 

 

For the two reasons outlined above, ideally, it would be nice to have the FFs in the design when 

the units are required to work at high frequencies, and remove them when the unit is required to 

work at low frequency.  This is of course not physically possible if the same circuit is required, 

such as in the case of IoT devices, to work at low speed when in quasi-idle mode and at high 

speed during computational peaks.  

 

 

Figure 6: Description of the Bypass channel added during this MENG work to all pipeline FF in 
the FP Adder/Subtractor and the FP multiplier unit to enable power savings by means of a 

"Configurable Pipeline" 

 

The FFs are edge triggered and the inputs are enabled when there is a transition in the clock 

signal. This will help to control the timing in the circuit as the edge of the clock triggers the FFs. 

The FFs will always be part of the circuit, and will always affect the design area.  The next best 

thing to not having the FFs as part of the design is to avoid the relevant power consumption 

related to their presence in the circuit. This is possible, only paying a moderate overhead in the 

circuit design, by adding a BYPASS circuitry to each pipeline FF in the design as described in 

Figure 6: Activating the bypass signal, the FF is BYPASSED, and the circuit works as if the FF 

was not part of the design. This significantly increases the critical path of the design, while 

decreasing the related latency (because removing the pipeline only one cycle is required for the 

computation). Most importantly, if the FFs are BYPASSED, they do not need to receive the clock 

signal. As a consequence, the clock transmitted in the function unit when the bypass is active can 

be switched off (or, more appropriately, gated) leading to a significant power save (again at the 

expense of the related speed). It should be noted that clock gating normally has a modest impact 

because only the FF of a block that is NEVER used are gated, while in this context also FFs of 

units that used in low power mode are gated. 
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3.3  Design and Verification of Hardware accelerators 

 

The Front End step of a Digital Design involves HDL Coding, Simulation and Synthesis. In this 

work, HDL codes for all floating-point accelerators were made available in form open source HDL 

blocks from the work described in (12)1). The focus of the project was to verify the correctness of 

the operators, modify the code in order to implement the “configurable pipeline” strategy outlined 

in section 3.2, and evaluate the available mitigation in power consumption. 

Mentor ModelSIM was used as HDL simulation tool. Altera Quartus II and Synopsys dc_shell 

were used for synthesis. As described in the previous sections, the FPU is composed by six main 

sub-blocks- int2single, single2int, adder, multiplier, divider and square root.  

The first step was to perform all the necessary modification to the open source HDL to enable the 

bypass architecture described in section 3.2. The Bypass signal was added to the main entity of 

the FPU blocks, and a combinational Mux was added in front of every pipeline register in the 

design (controlled by the bypass signal) as described in Figure 6. In addition, the clock signal was 

gated, again depending on the bypass signal, so that no clock would be distributed in the FP 

components in case bypass was activated. 

RTL simulation was performed in three different configurations: (a) before the insertion of the 

bypass mux, (b) utilizing the pipeline registers through the bypass mux, and (c) bypassing the 

registers. More precisely, for the FP adder and multiplier, the simulation was performed in all three 

configurations. On the other hand, since the division and square root operator were not relevant 

for the LDA algorithm that is the focus of this MENG work, for the divider and square root, 

simulation was only performed in the case (a).   

In the two sets of simulations with and without bypass=’1’ the simulated blocks yielded identical 

results, the only difference being in terms of Latency.  

Table 1: Adder Simulation Results for a set of exemplar inputs 

 

 

As it can be observed from Figure 7, and Figure 8 the adder output is independent from the 

bypass input. However, the latency is different: Latency of the original VHDL code = 3 cycles, 

Latency for the modified VHDL with Bypass=0   = 3 cycles, Latency of the modified VHDL with 

bypass=1 = 0 cycles (as the system bypassing the pipeline FFs becomes combinational) 
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Figure 7: Adder simulation results in the case bypass='1' 

 

 

Figure 8: Adder simulation results in the case bypass='0' 

As it can be observed from Figure 9 and Figure 10, the multiplier output is independent from the 

bypass input. However, the latency is different: Latency of the original VHDL code= 4 cycles, 

Latency for the modified VHDL with Bypass=0 = 4 cycles, Latency of the modified VHDL with 

bypass=1 = 0 cycles (as the system bypassing the pipeline FFs becomes combinational) 
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Table 2: Multiplier Simulation Results for a set of exemplar inputs 

 

 

 

 

Figure 9: Multiplier simulation results in the case bypass='0' 

 

Figure 10: Multiplier simulation results in the case bypass='1' 
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Table 3: Square Root Simulation Results for a set of exemplar inputs 

 

 

 

In the case of the Square Root and the Divider, the HDL code was verified, but it was not modified 

to support the “configurable pipeline”. Table 3, Table 4, and describe the simulation activity on 

the two accelerators. The latency of the Square Root is 12 cycles that of the divider is 9 cycles. 

 

 

Figure 11: Square root simulation results 
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Table 4: Divider Simulation Results for a set of exemplar inputs 

 
 

 

Figure 12: Divider Simulation results 

 

3.4  Physical Implementation of the Hardware accelerators 
 
The synthesis process transforms behavioral RTL code into a real circuit based on pre-designed 

cells that depend on the chosen target technology. In this work, implementation was provided 

for only the FP adder and the FP Multiplier. After the synthesis step, we can evaluate the 

performance of the circuit based on the following parameters: 

 

1.        AREA: The area reports provide a list of the cells used during synthesis, and the 

occupation of the same 

2.        TIMING: timing reports are used in order to understand how fast a given design can 

perform its task. A faster circuit will perform more computations that leads to a better 

performance in terms of FLOPS (Floating point Operations per Second). 

3.        POWER:  Power reports depict the power consumption dissipated by the circuit. Power 

consumption is normally classified in terms of Dynamic power that depends on the clock 

frequency and the variation of the inputs, and Leakage power that is normally constant across 

all computation, and is represented by the consumption of the circuits when the clock and the 

inputs are constant 
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In this work, as reported in the previous sections, synthesis was targeted on two different 

technologies: Altera Cyclone FPGAs and CMOS 28nm FDSOI. Synopsys dc_shell was utilized 

for the CMOS-VLSI implementation of the FP operators and Altera Quartus II for the FPGA 

implementation. The circuit was synthesized on both technology targets both BEFORE and 

AFTER the insertion of the bypass functionality to enable a fair comparison.  

This chapter will describe the timing / area result, while a comprehensive power analysis will be 

provided in chapter 4. 

 

 

 

 

3.4.1: Synthesis on FPGA Technology 

 
On FPGA support, the area occupied by the computational accelerator is provided in terms of the 

required utilization of FPGA elements (Logic Elements and embedded registers). In the case of 

the Adder, due to its intrinsic complexity, Alters Cyclone ICs utilized the synthesis tools for 

implementing pipeline registers; has embedded SRAM memory blocks 

 

Table5: Synthesis performance of the FP Multiplier on Altera Cyclone FPGA technology 

Accelerator 
Version 

Logic 
Elements 

Registers Memory 
Blocks 

Maximum 
Frequency 

No Pipeline 1065 0 0 40 MHz 

Pipelined 1175 251 0 87 MHz 

With Bypass 1328 251  85 MHz 
(Bypass=0) 
30 MHz 
(Bypass=1) 

 

Table6: Synthesis performance of the FP Adder on Altera Cyclone FPGA Technology 

Accelerator 
Version 

Logic 
Elements 

Registers Memory 
Blocks 

Maximum 
Frequency 

No Pipeline 5348 0 0 20 MHz 

Pipelined 5046 370 198 37 MHz 

With Bypass 5759 370 192 34 MHz 
(Bypass=0) 
18 MHz 
(Bypass=1) 

 

 
From the results reported above, we can see that the adder is way more complex than the 

multiplier, which could be expected as floating point addition involves a normalization step that 

is absent in FP multiplication. The addition of the pipeline provides significant speedup (40 to 

87MHz for the multiplier, 20 to 57 MHz for the adder) that could be expected, at a moderate 
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hardware cost. This is due to a peculiar feature of the FPGAs: as every logic element in the 

FPGA feature an embedded register, the addition of pipeline registers is sometimes possible in 

FPGA using the LEs already utilized for the computation, so that pipelining is possible ad 

moderate cost. Most interestingly, the addition of the bypass functionality comes at a very 

moderate cost (~10%) in terms of both area and timing. If this modification allows power saving 

(this aspect will be analyzed in detail in chapter 4) then given its affordable hardware cost the 

proposed modification appears definitely appealing for the design of a dynamically power aware 

architecture. 

 

 

 

3.4.1: Synthesis on VLSI-CMOS Technology 
When synthesizing on FPGAs, the area occupation of the circuit is not very sensitive on the 

target frequency. On the other hand, the CMOS-VLSI solution can show very significant area 

variation depending on the target frequency. In order to evaluate fully the design tradeoff 

between area occupation and available clock speed, the CMOS synthesis process was 

repeated on a set of different clock periods. Note that for clocks below 2 ns (500MHz), the 

timing constraints are violated. As described in Table 7, Area, leakage power, and dynamic 

power predictably show similar trends vs. frequency, as the power of course strongly depends 

on the number and size of standard cells composing the design:  all plots gradually increase 

when the frequency raises. Then they go through a stable region until the frequency goes up to 

400MHz. After that figure, all of them increase sharply as frequency increases. To select the 

best tradeoffs among timing, area, and power consumption, the target frequency for this design 

should be around 400MHz, where we have a higher frequency as well as reasonable area and 

power consumption. 

The better values of power and area suggest this option, event though technically the design 

could be pushed up to 500 MHz. Similar evaluations, not reported in this document for brevity, 

led to the estimation of 230MHz as the best speed vs area tradeoff for the FP adder design. 

Table7: Evaluation of the ideal area/speed tradeoff in the multiplier design 

Period  Frequency Area (um2) 
Leakage 
power 

Dynamic 
Power Slack Status 

10 100 7482.230386 64.0328 780.2682 6.9 Met 
8 125 7483.372786 64.0567 974.0652 4.9 Met 
6 166.6666667 7477.171186 63.9901 1298.7 2.9 Met 
4 250 7512.585586 64.1843 1952.4 0.89 Met 

3.5 285.7142857 7632.2112 65.3802 2228.9 0.4 Met 
3.4 294.1176471 7685.4144 62.5269 2322 0.3 Met 

3 333.3333333 7734.864005 62.833 2631.3 0.1 Met 

2.5 400 7886.640003 82.8534 3194.98 0 Met 

2 500 8656.438405 125.6647 4430.9 0.01 Met 
0.5 2000 9299.13603 811.6769 55337.5 -0.42 Violated 
0.2 5000 9804.566427 870.0426 155338 -0.74 Violated 

       
 

Figure 13: Area, Leakage and Dynamic power vs Timing period in ns for the FP multiplier 
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Table 8: Synthesis performance of the FP Multiplier in cmos28 FDSOI Technology. Working conditions are slow, 
0.85V, 125C 

Accelerator 
Version 

Area (mm2) Area 
(Kgates) 

Maximum 
Frequency 

Peak Speed 
degradation due 
to bypass 

No Pipeline 5940 28 440 MHz  

Pipelined 7260 36 880 MHz  

With Bypass 7886 39 820 MHz 
(Bypass=0) 
400 MHz 
(Bypass=1) 

6.9 % 

 

Table9: Synthesis performance of the FP Adder in cmos28FDSOI Technology. Working conditions are slow, 0.85V, 
125C 

Accelerator 
Version 

Area (mm2) Area 
(Kgates) 

Maximum 
Frequency 

Peak Speed 
degradation due 
to bypass 

No Pipeline 22101 110 310 MHz  

Pipelined 28240 141 640 MHz  

With Bypass 29876 149 480 MHz 
(Bypass=0) 
290 MHz 
(Bypass=1) 

7.5% 

 

In order to describe the area occupation of a design in a Technology-independent way, very 

often in VLSI the metric “Equivalent Kilogates” is used. An equivalent gate is described as the 

area of a basic NAND gate. The area of the FP multiplier is in the rage of 35/40Kg (which is 

roughly 2 times the area of an integer 32x32 bit multiplier, or 8 times the area of a standard 

ALU, which is very reasonable.  

Of course, the reported values are much higher of that in the FPGA case, but this could be 

expected. Other than being the FPGA a programmable device, hence very redundant with 

respect to the CMOS alternative, this CMOS implementation makes use of a very aggressive 

technology node, that provides low area and very low interconnect capacitance between cells, 

thus leading to very aggressive timing results. It should be noted that the results provided here 

are only after synthesis, so that a degradation of 20/30% can be expected after the place and 

route step. 

In conclusion, from the reported values, we can again determine that the overhead in both 

timing and area related to the addition of the Bypass functionality is relatively low (<10%) so that 

the methodology appears affordable. The overhead introduced by the pipeline is very relevant, 

as in every CMOS-VLSI technology given the large area of FF cells, but as described in detail in 
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the previous section the pipeline is indispensable to provide high-speed during the peaks of high 

computation demand. Our aim, in the context of this work, is to try to mitigate the power 

consumption imposed by the pipeline during low-speed computation, while affecting as little as 

possible the top speed. In this case, the addition of the bypass functionality only affected the top 

speed by roughly 7.5% for both accelerators, which can be considered acceptable in presence 

of significant power mitigation. 

 

  



24 
 

4 POWER MEASUREMENTS  

The aim of this MENG project was to introduce to a processor architecture a minor modification 

to the pipeline of two hardware accelerators, in order to provide the higher possible power 

saving without significantly affecting the peak performance of the device. 

Figures reported in chapter 3 demonstrated that the proposed modification has a very marginal 

impact on the area of the accelerators, and most importantly affects only up to ~7.5% the peak 

computation speed of the two accelerators. It is now interesting to investigate if the applied 

modification does provide the expected gain in power consumption. 

Differently from area and timing, power measurement in digital circuits is a very tricky topic, as 

the consumption depend strongly on the inputs. In the case discussed in this document, this is 

even more important because the techniques that were applied in the design under evaluation, 

clock gating and Dynamic Voltage and Frequency Scaling strongly depend on the state of the 

inputs. For this reason, in order to provide a reliable power estimation, we need to refer to a 

specific application case and in this context; we will utilize the LDA machine-learning algorithm 

(17). LDA is a simple, yet largely utilized reference for the classification of sensor data in the 

realm of embedded systems. The critical kernel of LDA reside in the calculation of an inverse 

matrix of floating point numbers, and in particular in the calculation of the matrix determinant. As 

such, LDA requires the computation of a set of consecutive FP multiplications, followed by a set 

of additions. The number of consecutive multiplications and additions on the critical computation 

kernel depend on the software implementation of the determinant algorithm. In this analysis, we 

focused on a case that involves the determinant of a 3x3 matrix:  

 

det(A)=A11(A22A33−A23A32)−A12(A21A33−A23A31)+A13(A21A32−A22A31) 

 

This calculation involves 6 consecutive Multiplications, 3 sums, 3 more multiplications and 3 

more sums. This information is relevant, because it justifies at high speed the use of a pipeline: 

The 6 multiplications trigger once per cycle without need to wait for the relative result to appear. 

If there were a dependency between the result of a multiplication and the input of the next, the 

pipeline would not be applicable.  

We assume that the processor will perform the same computation both during peak 

performance and in quasi-idle state, only at a different speed. The quasi-idle speed is 

conventionally set at 20MHz for both the FPGA and VLSI solution, while the peak speed is the 

top speed allowed by the technology. 

It should be noted that the consumption of the memory accesses required to perform the 

computation would be relevant. Nevertheless, in a comparative analysis, it would be the same 

for all the solutions indicated below so it can be neglected from the reporting.  
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4.1: Power Measurements on Altera Cyclone IV FPGA 

Running the calculation introduced above on the “Crescent Beach” floating point processor, we 

obtain the following consumption numbers for the accelerators (Table 10, Table 11): 

  

Table10: Power Consumption of the floating-point multiplier accelerator on Altera Cyclone 
FPGA computing the algorithm described above. Working conditions are typical, 1V, 25C. 

 Standard Pipeline Configurable Pipeline  

Dynamic 
(Bypass=0)  

0.23 mW/MHz 0.27 mW/MHz  

Dynamic 
(Bypass=1) 

 0.16 mW/MHz  

 

Table11: Power Consumption of the fp adder accelerator on Altera Cyclone FPGA computing 

the algorithm described above. Working conditions are typical, 1V, 25C. 

 Standard Pipeline Configurable Pipeline  

Dynamic 
(Bypass=0)  

2.73 mW/MHz 3 mW/MHz  

Dynamic 
(Bypass=1) 

 1.6 mW/MHz  

 

When running at the maximum speed, the accelerators need to sustain the maximum speed: 85 

MHz for the multiplier and 35 MHz for the adder. The total dynamic consumption at full speed is 

Multiplier => 0.23 * 85 = 19.55 mW for the standard pipeline 

=> 0.27 * 85 = 22.55 mW for the configurable pipeline 

Adder => 2.73 * 35 = 95.5 mW for the standard pipeline 

                  3 * 35      = 105 mW for the configurable pipeline 

 

The slight increase at full speed is justified by the gain at low speed, where the pipeline can be 

bypassed thus leading to significant power gain. At the conventional rate of 20 MHz 

Multiplier => 0.23 * 20 = 4.6 mW for the standard pipeline 

                        0.16 * 20 = 3.2 mW for the configurable pipeline 

Adder => 2.73 * 20 = 54.6 mW for the standard pipeline 

                   1.6 * 20   = 32 mW for the standard pipeline 

Since we can expect that the peak computation will be active on less than 1/100 of the device 

lifetime, the net power consumed by the proposed architectural modification is around 60% of the 
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standard architecture in the case of the adder, and 70% in the case of the multiplier, which can 

be considered a very positive result. 

 

4.2: Power Measurements on VLSI - CMOS 28 FDSOI 

 
As described in the previous sections, CMOS 28 FDSOI is an advanced CMOS technology 

node that provides significant space for power optimization using DVFS. The node allows very 

high speeds using the nominal voltage: the single precision floating-point multiplier described in 

section 3 can reach up to 820 MHz of clock frequency when making use of the full pipeline. If 

the full speed of the device is not needed, the voltage can be scaled down to smaller voltages, 

allowing to obtain the same performance at lower power. This trend is described in Figure 14: 

the blue plot shows the power consumption of the Multiplier in uW when working at the nominal 

supply voltage of Vdd=1.0 V. We can describe the power consumption of a digital CMOS circuit 

as 

 

Total Power(uW) = Leakage(uW) + Dynamic(uW/MHz) * FREQ 

 

The leakage component is very low (~100uW) so that the overall consumption is essentially a 

linear function of the working frequency. 

 

 

 

Figure 14: Power consumption related to the FP Multiplier accelerator unit as a function 
of the working frequency 
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The red plot shows the benefit of applying DVFS to the FP multiplier unit: when the working 

frequency is lower, it is possible to provide a lower Voltage supply to the unit, completing the 

computation at a significantly lower power consumption. This DVFS methodology is commonly 

used in SoC design today, and does not represent any element of novelty.  

 

Figure 14 also highlights a well-known limitation of the DFVS approach for lower frequencies. In 

particular after 400 MHz, the pipeline is completely useless and represents a heavy burden: in 

fact, as specified in Table  (section 3 of this document), at 400 MHz and below the multiplier 

completes its calculation without any need of using a pipeline.  Applying the modifications 

described in section 3 of this document, that are the core of this MENG project, the pipeline 

registers of the multiplier unit are “frozen”, and the related clock tree is stuck at a ‘0’ logic value. 

As a result, as shown in the green plot in Figure 14, below 400MHz the power consumption of 

the multiplier unit featuring the “Configurable Pipeline” is lower than the one of the red plot, 

representing the multiplier with a standard pipeline. 

Of course, the circuit overhead necessary to support the “Configurable Pipeline” induces slightly 

higher consumption than the standard case at frequencies > 400 MHz. This is described in 

Figure 14 by the fact that the green plot is slightly higher than the red plot for that frequency 

range.  

But, according to the analysis provided in section 2 of this document, the design of the 

accelerators analyzed in this project is targeted at IoT applications. In this class of application, it 

can be assumed that the device will be in a high speed mode for a very small percentage of its 

lifetime (<1/100). In this conditions,  

 

As an example, let us suppose that for 1/50th of the time the system works at the peak speed of 

600 MHz (which is a very conservative case, as the ration could be much higher in real life 

applications): 

 

Standard Pipeline:          3.4 mW 

Configurable Pipeline: 3.6 mW 

 

In the remaining 49/50th of the time, the system will work in a quasi-idel state at 40MHz 

performing the same computation 

 

Standard Pipeline:  120 uW 

Configurable Pipeline:  64 uW 

 

Supposing 50s of computation, 1 of which is performed at high speed, the overall energy 

consumption would be  

 

Standard Pipeline: 120uW*49s + 3.4mW*1s = 9.280 mW 

Configurable Pipeline: 64uW*49s + 3.6*1s    = 6.736 mW 

 

In conclusion, the proposed power mitigation strategy enables on the circuit used as reference  

a net energy decrease of ~30% at the price of minimal overhead in terms of timing and area 

overhead. 
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Similar results could be extracted for the floating point Adder/Subtractor accelerator. 

Unfortunately, the power analysis of the adder could not fit in the timeline of the present work 

and will be performed in the context of the following steps of the processor design. 

 

                 



29 
 

5 CONCLUSIONS  

This MENG project was realized in the context of the design of a Floating Point processor for 

Internet-of-Things application. The processor, code named “Crescent Beach”, is being 

developed as an open source hardware IP in Simon Fraser University, and is based on the well-

known RISC-V instruction set developed at University of California-Berkeley.  

The processor is targeted at the processing and classification of data derived from embedded 

sensors of various nature. The main specification of the processor is to be capable to deliver 

high peak computational power, while being able to function for long periods in a low-power 

mode. 

The specific activity of this MENG project was to  

1) Verify the functionality of all Floating Point accelerators embedded in the design 

2) Implement the same accelerators in FPGA Altera Cyclone Technology and VLSI-CMOS 

28nm FDSOI 

3) Apply to two highly utilized hardware floating-point accelerators that are part of the 

processor design a peculiar technique, defined “configurable pipeline”. The technique 

consists in adding a programmable bypass channel to every pipeline register in the 

accelerator architecture in order to exclude during computation the pipeline from the 

device functioning when the desired data rate allow that, enabling significant power 

saving by means of power gating or dynamic voltage and frequency scaling. 

While showing a moderate overhead on the accelerators area and timing performance (<10% 

both on Altera FPGA and CMOS 28nm SOI technology), the proposed strategy allowed to  

 On FPGA, reduce power consumption on FPGAs to 60%/70% of the original 

consumption using the Linear Discriminant Analysis (LDA) algorithm as reference (LDA 

is widely used for data classification in embedded sensors systems).   

 On CMOS VLSI technology, the application of the configurable pipeline mechanism on 

top of the well-known Dynamic Voltage and Frequency Scaling allowed to reach a power 

saving of ~30% on an exemplar test case again based on the LDA algorithm. 

 

This strategy applied to processor architectures is to the best of the author’s knowledge not 

reported in any related literature, and represent an element of innovation that may lead to 

promising applications in the design of pipelined hardware accelerators. As such, it represents 

the most significant result of this MENG project. 
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