
Optimizing the Forces of Climbing Robots 

by 

Ausama H. Ahmed 

M.Sc., Academy of Higher Education, Libya 2007 

B.Sc., Altahadi University, Libya 2004

Thesis Submitted in Partial Fulfillment of the 

Requirements for the Degree of  

Doctor of Philosophy 

in the 

School of Engineering Science 

Faculty of Applied Sciences 

 Ausama H. Ahmed  

SIMON FRASER UNIVERSITY 

Summer 2016 



 

ii 

Approval 

Name: Ausama Ahmed 

Degree: Doctor of Philosophy 

Title: Optimizing the Forces of Climbing Robots 
 

Examining Committee: Chair: Michael Sjoerdsma 
Senior Lecturer 

Carlo Menon 
Senior Supervisor 
Associate Professor 

 

Edward Jung Wook Park 
Supervisor 
Professor 

 

Flavio Firmani 
Internal Examiner 
Lecturer 
School of Mechatronic Systems 
Engineering 

 

Alessandro Gasparetto 
External Examiner 
Professor 
Department of Electrical, Management 
and Mechanical 
University of Udine  

 

Date Defended/Approved:                                             July 12, 2016 
 



 

iii 

Abstract 

Climbing robots have the potential to be used in diverse applications, such as cleaning 

sky scrapers, maintaining of maritime structures, and conducting search and rescues. 

The focus of this thesis is on optimizing the forces of a climbing robot loitering on vertical 

surfaces. The optimization is primarily achieved through on minimizing the maximum 

normal adhesion force on the tips of the legs of a six-legged climbing robot as well as 

the maximum torque experienced by the joints. In this theses, the model of a six legged 

robot is simplified into a two dimensional structure with three legs. Furthermore, this 

simplified robotic model was validated by the use of biomimicry; in which the stance of 

the ants is analyzed using the same model and verified that their posture indeed 

minimizes the maximum adhesion on the tips of their legs. The optimal normal adhesion 

force for a climbing robot is calculated using a closed form solution. For robots with 

position controlled legs, the effects of different geometrical parameters and the stiffness 

of the materials, used to build the structure of the robot are investigated with a focus on 

maximum normal adhesion. Calculation of the forces on the structure uses the Finite 

Element Method (FEM). For robots with force/torque controlled legs, the effect of 

geometric parameters, specifically the height and, the length of the robot and the 

position of the middle leg, are also investigated with emphasis on maximum normal 

adhesion. The effects of the investigated parameters are summarized and presented as 

guidelines for the design of climbing robots. Also, the non-linear and non-differentiable 

problem of minimizing the maximum torque on the joints of the robot, that uses the 

optimal normal adhesion force on the tips of their legs, is addressed only for robots with 

force/torque controlled legs. Finally, a transformation that converts the problem into a 

linear form is presented. The proposed method was found to outperform three other 

widely used algorithms in terms of speed and accuracy. 

Keywords:  Climbing robots; finite element method; biomimicry; normal adhesion 
optimization; maximum torque optimization 
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Chapter 1.  
 
Motivation and Objectives 

1.1. Motivation 

Climbing robots mainly are designed to be used in situations where the 

availability of humans is risky and expensive, either it is unsafe for a human worker or it 

requires a huge amount of work/tools for the human to access and succeed at the task. 

Robots could be used in inspection and cleaning of dangerous and hard to reach places 

such as pipes, wind turbine blades and high-rises, in hazardous environments such as 

nuclear plants and space, and in security and military applications. There are over 

600,000 bridges in the US alone, and more than 10,000 skyscrapers measuring at least 

100m high world wide [1], around 225,000 turbines spinning worldwide as of 2012 [2], 

and 437 operational civil nuclear power reactors in the world [3], and these are only 

some of the structures where climbing robots could be used at. 

Climbing robots have different designs such as, legged, tank and wheel-legged. 

The success of the climbing process highly depends on the performance of the attaching 

mechanism which should be able to withstand the pulling forces required to keep the 

robot on the wall. The different mechanisms utilized by the climbing robots include 

dry/wet adhesion, suction, magnetism and spines or claws. Legged robots have the 

potential to be more dexterous than other designs, because it can traverse complex 

environments.  

A wall climbing robot is not only required to be light, but also to carry a large 

payload typically comprised of the necessary equipment to accomplish the required 

tasks. This thesis investigates increasing the payload by minimizing the maximum 

normal force, on the tips of the legs, required to adhere to the wall. Increasing the 
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payload is investigated for the case of using position controlled motors and the case of 

using torque controlled motors. Minimizing the maximum torque on the joints can also 

increase the life of the motors. Using low torque, and therefore current, decreases the 

heat generated in the motors, which in turn increases the life time of the motors. 

1.2. Objectives 

The overarching goal of this thesis is to minimize the forces on the structure of 

climbing robots, specifically, normal forces on the feet of the robot and the torques on 

the joints. Such a goal is divided into the following objectives: 

Objective 1: Minimizing the normal adhesion force on the tips of the legs of 

climbing robot. 

Objective 2: Designing the structure of the robots, with either position-controlled 

legs or force/torque controlled legs, to optimize the normal adhesion force required to 

climb vertical surfaces. 

Objective 3: Minimizing the maximum torque on the joints of the climbing robot, 

with force/torque controlled legs, without compromising the optimal normal adhesion 

force requirement on the tips of the legs. 

1.3. Thesis Layout 

Chapter two is a literature review. The first objective is presented in Chapter 

three. The second objective is extended amongst Chapters four and five; Chapter six is 

used to verify the modelling and the simplifications used in the previous chapters. While 

the last objective is studied in Chapter seven. 
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Chapter 2.  
 
Literature Review 

A review of climbing robots and the techniques used to optimize their climbing 

abilities on flat surfaces is briefly presented in this first section. The control type of the 

motors used in robots, either by position or torque, is listed also in the first section. To 

the best of the author’s knowledge, no minimization for the maximum torque of a 

climbing robot has so far been presented in literature. This problem of minimizing the 

maximum torque could be solved using different optimization techniques, which are 

reviewed in the second sub-section of this chapter. Variable stiffness materials, which 

are used in Chapter 4 to minimize the maximum normal adhesion are presented last. 

2.1. Climbing Robots 

Legged climbing robots can potentially be more versatile than those using other 

mechanisms such as wheels, frames, and treads, because they have the potential to 

handle a wide variety of terrains. Legged robots vary in the number of legs used to 

climb; ranging from; two to six, and higher, with or without the use of a tail. 

Climbing robots use different mechanisms to adhere to surfaces such as 

magnets, negative pressure, grippers, spines/claws, and electrostatics. The effect of 

different adhesion mechanisms on the climbing surface’s materials, the roughness of the 

surface, and the power consumption are listed in Table 2.1. The scope of the thesis 

focuses on the adhesions that are mounted on the tips of the legs of the robots. 
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Table 2.1.  Different attachment types 

Most two-legged robots use magnets, suction and grippers. four and six legged 

robots use all the mechanisms listed in Table 2.1, except the Vortex and the active 

electrostatic. Active electrostatic is not being used in the legged climbing robots because 

it requires a large area of contact with the surface, which makes it more suitable for tank 

type robots. Vortex adhesions are not used with legged climbing robots so far, although 

vortex adhesion should be an applicable method to use for climbing. 

Magnets have the problem of working only on ferrous surfaces, and are currently 

being used in robots that inspect and maintain large tanker ships. Spines/Claws are 

used to climb either rough surfaces such as bricks or soft materials such as textile fabric. 

The biomimetic adhesives utilize the Van Der Waals effect, observable in the way that 

geckos adhere to surfaces. Robots that utilize chemicals use materials such as duct 

tape [22] or hot glue [28] to stick to the surface. 

 Materials 
Rough/Smooth 

Surfaces 
Power 

Consumption 
Note 

Magnets [4]–[6] 
Only limited to 

ferrous surfaces 
Any Low  

negative 
pressure [7]–[9] 

Any Only smooth High  

Vortex [10] Any Any High  

Spines/Claws 
[11]–[14][15] 

Any Only rough Low 

Ultrasonic/Sonic 
Driller/Corer consumes 
high power, because it 

uses ultrasound to dig into 
rocks. 

Electrostatic 
[16], [17] 

Any Any High 
Requires large area of 

contact 

Bio mimetic 
[18]–[23] 

Any Only smooth Low  

Chemicals [24]–
[28] 

Any Any Low 
Consumes materials as it 
is used, fails if not enough 

is used. 

Grippers Any, see notes Any, see notes Low 

The ability to traverse 
materials and surfaces 

depend on the adhesion 
type used on the gripper. 
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A survey of the motors’ control for the climbing robots in the literature is listed in 

Table 2.2. The most used control type, listed in 17 out of 22 robots, is the position 

control. Robug III uses force control but not many details are available about the type of 

sensors it uses. 

Table 2.2.  Climbing robots and the type of motors used. 

Robot Force control Motor type Sensors 

REST [29] N/A Servo motors 
Encoder, proximity, and current 

sensors 

Stickybot [30] [31] Yes Servo motors Hall effect sensors 

Stickybot III [32] Yes Servo motors Hall effect sensors 

Spinybot II [14] No Servo motors No 

RiSE V2 [33] Yes DC motors 
Stress, hall effect, current, and force 

sensors 

Robug III [34] Yes Pneumatic actuators N/A 

Climbing the walls [35] No DC motors Touch sensors 

Robot by [24] No DC motors No 

Robot by [36] No Servo motors Touch, and+ infrared sensors 

Robot by [35] No Servo motors Touch sensors 

ROMA[37] No 
1 Servo motor,+ 8 AC 

motors 
No 

Robot by [38] No Servo motors No 

3Dclimber [39] No 
3 DC motors + 3 AC 

motors 
FSR sensors 

Treebot [40] No Linear motors No 

RiSE V3 [41] Yes DC motors 
Stress, hall effect, current, and force 

sensors, Force sensitive link 

Robot by [42] No Fluid actuators No 

4Steel robot [43] No 
4 Servo motors + 4 linear 

motors 
Contact, and infrared sensors 

Lemur II [44] No DC motors No 

CLIBO [45] No Servos motors Torque sensors 
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Abigaille III [19] No DC motors Potentiometers, and infrared sensors 

CLASH [46] No DC motors No 

ASTERISK [47] No Servo motors Force sensors 

Many robots in Table 2.2 utilize force sensors, but not all of the robots use them 

to gain force control. Robots indicated by [35] and [36] use touch sensors to make firm 

contact with the surface, while the 4Steel robot uses touch sensors to activate the 

suction mechanism when it comes into contact with the surface. CLIBO uses the built in 

torque measurements from the servos to check whether or not the leg is gripping to the 

climbing surface.. The only robots that use force to distribute the load between the legs 

are the RiSE and the Stickybot robots. RiSE uses force control to distribute the shear 

force among the legs, and to assure the legs remain  in contact with the surface after 

moving from the previous position. Stickybot also uses  force sensors to distribute the 

shear force amongst the legs of the robot. 

The design of some climbing robots was inspired by nature’s living organisms, 

including geckos [20], spiders [18], cockroaches [12] or a combination of different 

species, such as geckos and cockroaches [33]. The arrangement and inclination of the 

legs are not the same among different robot designs. In fact, some of the robots, 

including Spinybot II [14], have their legs incline forward, while others, including Abigaille 

III [19], have some legs incline forward and others  backward. Some robots, including 

the RiSE and Digbot [12], [48], have their legs on the sides of their bodies, while still  

others, including Abigaille II [18], have legs symmetrically distributed around their 

bodies. 

Insects as well as robots use different gaits to move and traverse obstacles. Most  

climbing robots either use a two-step gait or a gait that moves one leg at a time. Two-

step gaits are used mainly for a fast walk/run, as they require the minimum number of 

transitions for a single step. In contrast, moving one leg at a time requires  the maximum 

number of legs to be in contact with the climbing surface at a time, which provides higher 

forces for the robot to adhere to the climbing surface. 
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Most of the force analysis on the robot’s body is investigated using the quasi-

static method [4], [18], [19], [21]–[23], [49], [50] instead of the Finite Element Method 

(FEM) [51]. FEM is able to provide more accurate results as it takes into account the 

flexibility and the shape of the analyzed structure. The results provided by FEM have 

unit-less dimensions and could be scaled to fit bigger and smaller structures as long as 

the second moment of area is fixed. A survey about the optimization algorithms that 

could be used to minimize the maximum torque for a force control robot is presented in 

the next section. 

2.2.  Optimization 

Optimization has been applied to a wide variety of different industrial 

applications, including computing [52]–[54], communication [54], [55], manufacturing 

[56], and robotics and control [57], [58]. In robotics, optimization has been used in 

different aspects such as optimizing the gait cycle of walking [59]–[61] and climbing 

robots [47], motion [62], [63] path planning [64], and navigation [65]. 

Optimizing a problem with one objective could be solved using different types of 

algorithms, such as Probabilistic and Iterative algorithms. Probabilistic algorithms are 

particularly suitable when no information about the initial conditions are provided; 

Genetic algorithms [66], [67], Simulated Annealing and Ant Colony algorithm [68] are the 

most widely used probabilistic algorithms. However, they seek a near optimal solution 

and may require a long time to converge to a solution within a desired accuracy [69]. 

Iterative search techniques, such as the Nelder-Mead algorithm and the Interior-Point 

Method[52], [53], [70], can provide a solution within an accuracy specified by the user, 

which generally provides local solutions. While methods that combine probabilistic and 

iterative search techniques have been explored, their complexity is inevitably very high 

[68], [69], [71]. 
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2.3. Variable stiffness materials 

The reliability of climbing robots depends on many aspects; one important aspect 

is the efficiency of the adhesion used to keep the robot on the vertical climbing surface. 

The stronger the adhesion on the tips of the legs is, the more reliable the climbing 

process is. In this chapter, the maximum required adhesion force on the tips of the legs 

is minimized by using stiffness changing smart materials [72]–[76]. The adhesion could 

be optimized by altering the geometry of the robot, which could be done in the initial 

design stage of the robot; however, for a fixed structure, the adhesion could be 

optimized by changing the stiffness of the legs. The stiffness of the legs of the robot 

could be altered using stiffness changing smart materials. These  are being applied in 

different fields, such as aerospace applications to morph airplane wings [77] and as a 

bandage to treat lower extremity disorder [78]. Changing the elasticity of the smart 

materials could be done using different techniques, such as capacitive shunting [73], 

shape memory alloy [74] and shape memory polymers [75], [76]. Changing the stiffness 

of the smart materials is accomplished using electrical, thermal, chemical or magnetic 

stimulus [72]. 
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Chapter 3.  
 
Optimal Adhesion for Legged Robots 

3.1. Introduction 

In this chapter, the problem of how to minimize the maximum adhesion of 

climbing robots loitering on vertical surfaces is addressed. The solution of the specific 

problem is desirable, as it minimizes the amount of force required on the individual feet 

of the robot. The optimal solution for the problem allows the climbing robot to climb using 

weak adhesion attachments yet successfully walk on vertical surfaces. Using weaker 

adhesion also allows the use of motors that are weaker than those required if the 

maximum adhesion on the tips of the legs is not minimized. 

3.2. Robotic Model 

The six legged robot considered here is simplified into a two-dimensional, three 

legged robotic structure, see Figure 3.1-a. The free body diagram of the robot is shown 

in Figure 3.1-b; the model only takes into account the position of  the center of mass and 

the tips of the legs. 

In a static case, the following equilibrium of the forces must be met 

 ∑𝐹𝑋 = 𝑓𝑥𝑓 + 𝑓𝑥𝑚 + 𝑓𝑥ℎ − 𝑚𝑔 = 0 ( 3.1 ) 

 ∑𝐹𝑌 = 𝑓𝑦𝑓 + 𝑓𝑦𝑚 + 𝑓𝑦ℎ = 0 ( 3.2 ) 

 ∑𝑀𝑍 = ℎ ∙ 𝑚𝑔 + 𝐿𝑓 ∙ 𝑓𝑦𝑚 + 𝐿𝑇 ∙ 𝑓𝑦𝑓 = 0 ( 3.3 ) 
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Figure 3.1. (a) Shows the robotic model, (b) Shows the simplified model 

where 𝐹𝑋 , 𝐹𝑌 are the forces acting along the considered x-axis, y-axis respectively. 𝑀𝑍 is 

the z-axis moment around the hind leg. 𝑓𝑥𝑓, 𝑓𝑥𝑚 and 𝑓𝑥ℎ are the shear forces and 𝑓𝑦𝑓 , 𝑓𝑦𝑚 

and 𝑓𝑦ℎ are  the normal forces on the tips of the front, middle and hind legs respectively, 

𝑚𝑔 is the weight of the robot at the center of mass CoM, ℎ is the height of the robot, 𝐿𝑓 

is the distance between the hind and the middle legs and 𝐿𝑇 is the distance between the 

front and the hind legs. 
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3.3. Minimizing the Maximum Adhesion 

The fitness function Ψ(𝑥) for minimizing the maximum adhesion of the robotic 

model, given in Figure 3.1, is chosen to be as follows: 

 Ψ(𝑥) = min
𝑓𝑥𝑖,𝑓𝑦𝑖

(𝜙(𝑓)) ,     where 𝑖 = 𝑓,𝑚, ℎ ( 3.4 ) 

 𝜙(𝑓) = max(𝑓𝑦𝑓 , 𝑓𝑦𝑚, 𝑓𝑦ℎ) ( 3.5 ) 

The optimal solution for the problem is the set of forces on the tips of the legs 

that minimizes the maximum adhesion force. The problem could be solved using 

traditional optimization techniques such as the Newton method, gradient descent and 

GA. In fact, [79] used GA to solve the problem, in which the authors minimized the 

maximum normal force while using Equations (3.1) to (3.3) as constraints. However, a 

closed form solution could be derived. Equation (3.3), could be rewritten as follows: 

 ℎ ∙ 𝑚𝑔 = −𝐿𝑓 ∙ 𝑓𝑦𝑚 − 𝐿𝑇 ∙ 𝑓𝑦𝑓 ( 3.6 ) 

Assuming the weight of the robot is 𝑚𝑔 at the center of mass of the body, the 

height ℎ and the distances between the legs, i.e. 𝐿𝑓 and 𝐿𝑇, are constant. Equation (3.6) 

is a linear equation in 2-variables (𝑓𝑦𝑚 and 𝑓𝑦𝑓). The two variables are inversely 

proportional to each other, i.e. in order to decrease one variable, the other one must 

increase. The optimum of minimizing the maximum of the two variables (adhesion) could 

be achieved by equating the two variables (𝑓𝑦𝑚 and 𝑓𝑦𝑓). 

 𝑓𝑦𝑚 = 𝑓𝑦𝑓 ( 3.7 ) 

To facilitate the representation of the adhesion force, the two normal forces are 

represented as a positive value, acting in the direction of the negative y-axis. Let 𝑓𝑦𝑚 =

−𝐹𝑎𝑑ℎ and 𝑓𝑦𝑓 = −𝐹𝑎𝑑ℎ. Equation (3.6) could be rewritten as follows: 

 𝐹𝑎𝑑ℎ = (ℎ ∙ 𝑚𝑔)/(𝐿𝑓 + 𝐿𝑇) ( 3.8 ) 
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The solution to the problem is redundant, as the optimal adhesion force, in 

Equation (3.8), is independent of the shear forces, i.e. 𝑓𝑥𝑓 , 𝑓𝑥𝑚, and 𝑓𝑥ℎ. In other words, 

the forces 𝑓𝑥𝑓 , 𝑓𝑥𝑚 and 𝑓𝑥ℎ on the tips of the legs could have any value as long as they 

satisfy Equation (3.1). The redundancy of the solution is used in Chapter Seven to 

minimize the maximum torque on the joints of a climbing robot without compromising the 

optimal adhesion force. 

3.4. Generalization 

The solution to the problem of minimizing the maximum adhesion of a three 

legged robotic structure could be expanded to include structures with higher numbers of 

legs. Assuming that  a robot has 𝑛 middle legs, with a total of (𝑛 + 2) including the front 

and the hind legs, such as that shown in Figure 3.2, the equilibrium of forces equations 

are as follows: 

 ∑𝑭𝑿 = 𝒇𝒙𝒇 + ∑ 𝒇𝒙𝒎𝒊

𝒏
𝒊=𝟏 + 𝒇𝒙𝒉 − 𝒎𝒈 = 𝟎 ( 3.9 ) 

 ∑𝐹𝑌 = 𝑓𝑦𝑓 + ∑ 𝑓𝑦𝑚𝑖

𝑛
𝑖=1 + 𝑓𝑦ℎ = 0 ( 3.10 ) 

 ∑𝑀𝑍 = ℎ.𝑚𝑔 − ∑ (𝐿𝑓𝑖
∙ 𝑓𝑦𝑚𝑖

)𝑛
𝑖=1 − 𝐿𝑇 ∙ 𝑓𝑦𝑓 = 0 ( 3.11 ) 

where 𝑓𝑦𝑚𝑖
 and 𝑓𝑥𝑚𝑖

 are the normal and the shear forces at the tip of the 𝑖𝑡ℎ middle leg 

respectively, and the 𝐿𝑓𝑖
 is the distance between the 𝑖𝑡ℎ middle leg and the hind leg. 

Similar to the case of the three legged robot, the minimum adhesion is when the 

𝑛 legs undergo the same adhesion force value, which must satisfy 𝑓𝑦𝑚1
= 𝑓𝑦𝑚2

= ⋯ =

𝑓𝑦𝑚𝑛
. Replacing the normal forces with one symbol, 𝑓𝑦𝑚𝑖

= −𝐹𝑎𝑑ℎ, where 𝑖 = 1,2, . . . , 𝑛, 

the optimal value of the normal adhesion force would be found using the following 

equation: 

 𝐹𝑎𝑑ℎ = (ℎ ∙ 𝑚𝑔)/(∑ 𝐿𝑓𝑖

𝑛
𝑖=1 + 𝐿𝑇) ( 3.12 ) 
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Figure 3.2. A robotic structure with (𝒏 + 𝟐) legs 

3.5. Discussion 

The model used to calculate the optimal adhesion force assumes the legs to be 

weightless, and their weight is concentrated at the center of mass of the body. This 

assumption already considers the worst scenario as the center of mass of the whole 

robot is assumed to be at the highest point, i.e. the center of mass of the body. 

Consequently, the optimal normal adhesion force is higher than when considering the 

weight of the links of the legs to be distributed on their respective links. A higher center 

of mass generates larger moment on the body of the robot, which in turn causes the 

adhesion to be higher. Also, the model ignores the height of both the feet and the 

adhesion mechanism used to adhere to the vertical surfaces. 
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The equation of the maximum adhesion, Equation (3.12), minimizes the 

maximum adhesion. However, minimizing the sum of the normal adhesion forces on the 

tips of the legs, as shown in Equation (3.6), would concentrate the force on only one leg, 

i.e. the front leg, because the front leg in Equation (3.6) has the highest coefficient, as 𝐿𝑇 

is greater than 𝐿𝑓. 
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Chapter 4.  
 
Adhesion optimization using variable stiffness 
materials 

4.1. Introduction 

In this chapter, the normal adhesion requirements are minimized by changing the 

elasticity of the legs. The change in elasticity is assumed to be utilized using variable 

stiffness materials. The robotic structure studied is simplified into 2-dimensional structure 

and analyzed using the finite elements method (FEM), specifically the stiffness method. 

FEM is used to calculate the reaction forces of the tips of the legs of the robot on 

climbing surfaces; which corresponds to the adhesion force required to keep the robot 

loitering on a vertical surface. The elasticity of the legs is presented in this chapter as a 

ratio to the body’s elasticity to generalize the results for the usage of any material [80]. 

4.2. Robotic Model 

Hexapod robots such as Digbot [12], Abigaille II [18] and Abigaille III [3] generally 

have an axis of symmetry parallel to the forward walking direction, shown in Figure 4.1. 

Such robots can be simplified and studied in 2-dimensions, as long as the left and the 

right parts of the robots are symmetric. 
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Figure 4.1. Abigaille III [3] walking upward of a surface. 

The robot is considered to be loitering, as it is attached to the vertical surface. In 

this configuration, the motors of a robot would exert a constant torque on their legs to 

keep them in place and avoid detachment. From a quasi-static analysis perspective, 

each leg can therefore be considered as a part of a rigid structure. In order to simplify 

the analysis and draw conclusions that could be generalized to most six-legged robots, 

each robotic leg was arbitrarily simplified to be a straight equivalent beam. It should be 

noted that the effect of taking the weight of the legs into account without changing the 

overall weight of the robot would only slightly affect the shear and normal force 

distribution in the feet. Specifically, the shear forces would be more evenly distributed 

among the legs. The normal forces on the feet would instead slightly decrease given the 

center of mass of the robot would be closer to the surface. In this work, the weight of the 

robot is assumed to be equal to one unit in all of the performed calculations in order to 
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conveniently represent the forces on the tips of the feet as a percentage of the applied 

load. This normalization is used to generalize the results obtained in this work to a large 

variety of robots having different values of weight and dimensions. Figure 4.2 shows the 

simplified equivalent model that was considered. It should be noted that the legs of the 

robot were assumed to not transfer moment to the vertical surface, as commonly done in 

the literature [18], [19], [21], [22], [50], [81]–[84]. In this and the subsequent two 

chapters, the joints that connect the different straight links are referred as nodes, and the 

links are referred as beams. 

  

Figure 4.2. The 2D simplified model of Abigaille III [19]. 
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4.3. FEM Analysis 

The robotic structure presented in the previous section is analyzed using FEM, 

specifically the stiffness method [51], which uses the beams’ stiffness relations to 

compute the forces and the displacements of the structure. The overall relationship 

between the forces applied to the structure (axial loads, shear loads and bending 

moments) and the resulted displacements is given by: 

 𝑭 = 𝑲𝑫  ( 4.1 ) 

where K is the structural stiffness matrix, 𝐹 is a vector representing both the known 

forces applied to the structure and the unknown reaction forces of the nodes and 𝐷 is a 

vector comprising the known and the unknown displacements of the nodes. 

The structure of the robot is divided into 6 separate beams, see Figure 4.2. 

Specifically, three beams represent the legs. Specifically, one beam, connecting nodes 1 

and 5, is the hind leg. A second beam, connecting nodes 3 and 6, is the middle leg. A 

third beam, connecting nodes 4 and 7, is the front leg. Additionally, a fourth beam is 

used to connect the hind leg, node 1, and the center of mass (CoM), node 2, a fifth 

beam connects the center of mass, node 2, with the middle leg, node 3, and a sixth 

beam connects the middle leg, node 3, with the front leg, node 4. The case when the 

middle leg is located between the hind leg and the center of mass is also formed using 

six beams. The only difference is that the front leg is directly connected to the CoM using 

a beam, and the hind leg is connected to the middle leg using a beam. 

The known displacements are those of the constrained nodes, namely those of 

the hinges (𝐻ℎ, 𝐻𝑚, 𝐻𝑓) in x and y axes (see Figure 4.2), are equal to zero. The unknown 

degrees of freedom are the distance the unconstrained nodes moved after applying the 

known forces on the structure; from Figure 4.2, the unknown degrees of freedom are the 

linear movement of nodes 1, 2, 3 and 4, and the rotation movement of all of the nodes, 

namely nodes 1, 2, 3, 4, 5, 6 and 7. The known forces are the weight of the robot at the 

center of mass, and the linear force components of all of the unconstrained nodes, 

namely nodes 1, 2, 3 and 4 along with the moment on all of the nodes, namely nodes 1, 

2, 3, 4, 5, 6 and 7, are equal to zero. The unknown forces are the reaction forces at the 
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hinges, namely 𝐹ℎ𝑥, 𝐹ℎ𝑦, 𝐹𝑚𝑥, 𝐹𝑚𝑦, 𝐹𝑓𝑥 and 𝐹𝑓𝑦, which are shown in Figure 4.2. Equation 

(4.1) can therefore be written as: 

 [
𝑭𝒌

𝑭𝒖
] = [

𝑲𝟏𝟏 𝑲𝟏𝟐

𝑲𝟐𝟏 𝑲𝟐𝟐
] [

𝑫𝒖

𝑫𝒌
]  ( 4.2 ) 

where 𝑭𝒌 is the vector of the known forces, 𝑭𝒖 is the vector of the unknown forces, 𝑫𝒖 is 

the vector of the unknown displacements and 𝑫𝒌 is the vector of the constrained 

displacements. 

From Equation (4.2) , the unknown displacements 𝑫𝒖 can be calculated as 

follows: 

 𝑫𝒖 = 𝑲𝟏𝟏
−𝟏 ∙ 𝑭𝒌 − 𝑲𝟏𝟏

−𝟏 ∙ 𝑲𝟏𝟐 ∙ 𝑫𝒌  ( 4.3 ) 

The unknown forces, that are the reaction forces between the tips of the legs and 

the climbing surface, are calculated using: 

 𝑭𝒖 = 𝑲𝟐𝟏 ∙ 𝑫𝒖 + 𝑲𝟐𝟐 ∙ 𝑫𝒌  ( 4.4 ) 

Substituting Equation (4.3) into Equation (4.4) yields: 

 𝑭𝒖 = 𝑲𝟐𝟏 ∙ [𝑲𝟏𝟏
−𝟏 ∙ 𝑭𝒌 − 𝑲𝟏𝟐 ∙ 𝑫𝒌] + 𝑲𝟐𝟐 ∙ 𝑫𝒌  ( 4.5 ) 

The known distances 𝑫𝒌 are the displacements of the constrained nodes which 

are equal to zero; as such, the above equation can be rewritten as: 

 𝑭𝒖 = 𝑲𝟐𝟏 ∙ 𝑲𝟏𝟏
−𝟏 ∙ 𝑭𝒌  ( 4.6 ) 

Equation (4.6) is a closed form equation to calculate the reaction forces. Such an 

equation is implemented on a code developed in MATLAB environment. It should be 

noted that the force distribution depends on the stiffness of each beam relative to the 

other beams and not to the absolute stiffness value of each beam (see Appendix A). 

Therefore, the results obtained in this work can be generalized to robots having any 
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material and stiffness. Also, the lengths of the different beams are unit less and 

applicable to bigger and smaller structures. 

Commercially available finite element method (FEM) software, i.e. ANSYS 

(V14.0), is used to verify the correct implementation of the stiffness method. Specifically, 

the beam element BEAM188 based on Timoshenko beam theory is used to analyze 2D 

structures [85]. The MATLAB code is tested against the ANSYS software by comparing 

randomly selected cases solved using MATLAB with the same cases solved using 

ANSYS.  

4.4. Elasticity Investigation 

This section presents the procedure used to investigate the effect of changing 

the elasticity for the different legs. The FEM used in the analysis, presented previously, 

is used to show the effect of changing the elasticity of the legs. The robotic structure 

assumes the height (ℎ) to equal 100, and the length of the body (𝐵𝑓 + 𝐵𝑚 + 𝐵ℎ) to equal 

200. All the measurements are dimensionless so the system could be scaled to bigger 

and smaller sized structures. The weight of the robot is considered to be applied at the 

center of mass and is equal to one in order to present the forces on the tips of the legs 

as a scale per one unit of the weight of the robot; for example, the forces at different 

weight, assumed to be 𝑤𝑑, equals the forces at unit weight times the weight of the 

robot 𝑤𝑑. 

Investigating the legs’ elasticity is done by changing the elasticity of two legs at a 

time depending on the location of the middle leg. The effect of changing the elasticity of 

the middle and the front legs are investigated when the middle leg is located at the front 

half of the robot, see Figure 4.3. While the effect of changing the elasticity of the middle 

and the hind legs is investigated when the middle leg is in the rear half of the robot, see 

Figure 4.3. 
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Figure 4.3. The stiffness of the hind and the middle leg is varied when the 
middle leg lies in the rear half, highlighted in green. The stiffness of 
the front and the middle leg is varied when the middle leg lies in the 
front half, highlighted in red. 

4.4.1. Stiffness Change for the Middle and Hind Legs 

The elasticity for the middle and the hind legs are varied while keeping the 

elasticity of both the front leg and the body fixed at 1, and the maximum adhesion is 

recorded. Figure 4.4 shows the maximum adhesion for different middle and hind legs’ 

elasticity values at middle leg’s position of 0.15, chosen arbitrarily, of the total distance 

between the hind and the front legs. A middle leg’s position of 0 means that the middle 

leg is positioned at the hind leg and a position of 1 means that the middle leg is 

positioned at the front leg. The maximum values are shown as a curve highlighted in 

magenta, call it optimal elasticity curve. It corresponds to elasticity values where any 

elasticity values outside of that curve will require higher maximum adhesion force than 

the force resulted from using elasticity values on the optimal elasticity curve. It is worth 

mentioning that the adhesion value of the optimal elasticity curve is the absolute optimal 
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force value which is the same value if Equation (3.8) is used to calculate the optimal 

force. 

 

Figure 4.4. The maximum adhesion force required for different stiffness values 
of middle and hind legs’ stiffness values. The optimal elasticity 
curve is highlighted in magenta. 

The optimal elasticity curve for different middle leg’s positions, placed between 

the hind leg and the center of mass, is shown in Figure 4.5. The colored lines represent 

the normalized different middle leg’s positions. For example, selecting the optimal 

elasticity values for the middle and front legs for a middle leg position of 0.36, showed as 

a dashed line in Figure 4.5-b, of the total body length could be achieved by selecting any 

value on the corresponding curve, the dashed red line in Figure 4.5-b. 
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Figure 4.5. Optimal elasticity curves for different middle leg’s positions. (b) is a 
zoomed in view of (a) 

4.4.2. Stiffness Change for the Middle and Front Legs 

The same procedure, used in the previous sub-section is followed here to find 

the curves of optimal elasticity for the positions of the middle leg located between the 

middle and the front legs. The elasticity values for the middle and the front legs that 

allow the robotic structure to use the optimal adhesion are shown in Figure 4.6. The 

range of the elasticity, which provides the optimal adhesion force, for the middle leg is 

bounded between 0 and 0.5 for any front leg’s elasticity value. 
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Figure 4.6. Optimal elasticity curves for different middle leg’s positions. 

4.5. Discussion 

The improvement in the adhesion force requirement is a result of distributing the 

load on the front and the middle legs evenly by changing the elasticity of the legs. In 

Figure 4.4 for example, changing the elasticity of the hind and the middle legs to the 

optimal value, improves the required maximum adhesion force over 4 times compared to 

using legs with elasticity equals to that of the body’s. The studied robotic structure has a 

height of 100 and a body length of 200 which has an aspect ratio of 1:2. This 

investigated case represents the exact behaviour of structures with any dimension as 

long as it has a height to length aspect ratio of 1:2 and the same second moment of area 

as the one with the height of 100 and the length of 200.  

The behaviour of climbing robots with different structures is similar to the 

investigated case. Specifically, varying the elasticity of the hind and the middle legs 

improves the adhesion force requirement when the middle leg is positioned in the rear 

half of the robot; while varying the elasticity of the middle and the front legs improves the 

adhesion force requirement when the middle leg is positioned in the front half of the 

robot. The optimal adhesion values, which corresponds to the value of the optimal 
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elasticity curves, are the same as using Equation (3.8) to calculate the values of the 

optimal adhesion or the specific height and legs’ tip positions. 

This chapter considers robots with single straight beams. The effect of the 

geometrical shape of the legs is not included in the FEM analysis. Multi-beam legs are 

essential as they are required in order for the robot to move along the vertical surface. 

However, the optimal adhesion force would be attainable for any structure with multi-

beam legs by varying the stiffness of the legs. 
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Chapter 5.  
 
Adhesion Optimization by Changing the Geometry 

5.1. Introduction 

In this chapter, a number of parameters, namely the (1) height of the robot, the 

(2) length of its body, the (3) position of its legs, the (4) thickness of the beams forming 

the robot, and the (5) body and the (6) legs’ inclination, are investigated to assess their 

effect on the adhesion requirements needed for the robot to stay attached to a wall. 

Predictions of the developed mathematical model are validated using ANSYS, a FEM 

commercial software [86], [87]. 

In order to simplify the analysis and draw conclusions that could be generalized 

to most six-legged robots, similar to the simplifications carried in the previous chapter, 

each robotic leg was arbitrarily simplified to be a straight equivalent beam, with stiffness 

approximately equal to that of the robotic leg. In order to account for the different 

possible values of stiffness that different robots or different leg’s configurations could 

have, the cross-section area of the equivalent beam is varied. A similar consideration 

was done for the body of the robot, which was also modeled with a straight beam and 

whose stiffness was changed by changing its cross-section area. By considering the 

legs and body to be weightless and assuming the mass of the robot to be concentrated 

at its center of mass (CoM), which is consistent with the existing literature [18], [19], [21], 

[22], [42], [50], [82], [83], [88], the variation of the cross-section area did not affect the 

weight of the robot and a comparative analysis was therefore possible. 

The FEM method presented in the previous chapter is used in this chapter also 

to minimize the normal adhesion required by the robot to stay attached to a vertical 

surface, i.e. 𝐹ℎ𝑦, 𝐹𝑚𝑦 and 𝐹𝑓𝑦 in Figure 4.2. The adhesion considered here is dry 
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adhesion, although other adhesion types could be considered. The normal force 

adhesion is investigated by examining different geometrical parameters of the simplified 

robotic structure. 

For structures with infinite stiffness, only the height to body length ratio and the 

middle leg’s position are studied. The shape of the beams, and the body and legs’ 

inclinations are not taken into account as they have no effect on such structure. 

5.2. Effect of Height to Length Ratio and the Middle Leg’s 
Position 

In this section, the effect of the height to length ratio and the position of the 

middle leg on the maximum adhesion are studied in this section. The case when the 

structure of the climbing robot has a finite stiffness is presented first, while the case 

when the structure has an infinite stiffness is presented second. 

5.2.1. Finite stiffness structure 

This section describes the effect of changing the body height to body length 

aspect ratio and the effect of the position of the middle leg on the adhesion force 

requirement on the tips of the legs. For the robot shown in Figure 4.2, 𝐵𝑓 is the distance 

between the middle and the front legs, (𝐵𝑚 + 𝐵ℎ) is the distance between the middle and 

the hind legs and ℎ is the height of the robot. The length of the body, (𝐵𝑓 + 𝐵𝑚 + 𝐵ℎ), is 

arbitrarily chosen to be 200, while the radius of the beams are assumed to be the same 

and equals to two, and the height is in the 2.1-2000 range, which corresponds to a range 

of height to body length ratio of 0.0105-10. The obtained results are applicable to both 

bigger and smaller structures as long as the ratio of the height to the length is within the 

range and the radius is kept fixed. Distribution of the calculated normal force, 

representing the adhesion force requirement, for the change in the height to length 

aspect ratio and the position of the middle leg is shown in Figure 5.1. Three different 

configurations are compared with ANSYS and plotted over the curve (see circles in 

Figure 5.1) obtained by using MATLAB. The average error between simulations 

performed in MATLAB and ANSYS is 0.61%. 
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Figure 5.1. Shows the required normal force at different height to length aspect 
ratio and different middle leg’s positions for (a) front leg, (b) middle 
leg and (c) hind leg. Circles represent simulations performed using 
ANSYS. 

The x-axis in Figure 5.1 represents the position of the middle leg, where 0 means 

that the middle leg is positioned at the back of the robot. In this configuration the middle 

leg has the same position as the hind leg. The value of the x-axis increases as the 

middle leg gets closer to the front leg and the value equals 1 when the middle and front 

legs have the same position. The y-axis represents the height to length aspect ratio and 

the z-axis represents the normal force per body weight. From Figure 5.1, increasing the 

body height to body length ratio, on the x-axis, requires higher force to keep the robot 

attached to the vertical surface because, a robot with higher height and fixed weight 

causes an increase in the torque applied to the robot’s structure due to gravity which 

needs higher forces on the tips of the legs to keep the robot in equilibrium than that 

required by a robot with lower height. 

The normal force in Figure 5.1 has 2 peaks located at middle leg positions of 

0.07 and 0.93; the first peak is located at the hind leg with a maximum of 64.16 and the 

second is located at the middle leg with a maximum of 56.66. The peaks can be 

explained by analyzing the shear and normal forces distributions for a specific robotic 

structure with fixed height to length aspect ratio. The shear force distribution due to 

changing the middle leg’s position and the normal force distribution resulting from 

changing the middle leg’s position are explained in Appendix B. 
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The design that requires the least adhesion force for a robot with parallel body 

and perpendicular to the climbing surface legs can be found from Figure 5.1. The 

maximum adhesion needed by any of the legs at different heights and different middle 

leg’s positions is shown in Figure 5.2. An optimization is performed to identify the optimal 

height and middle leg’s position of the robot; the optimal structure found has an optimal 

height of 2.1 and an optimal middle leg’s position at 0.335. 

 

Figure 5.2. The maximum adhesion force for different height to length ratios 
and different middle leg’s positions 

The optimizer is configured to search for the optimal middle leg’s position within 

the range of 0 to 0.95 in order to prevent the optimizer from converging to the global 

optimum at 1. In fact, the global optimum is not considered to be the most desirable 

value as a small variation from the minimum causes a dramatic increase in the adhesion 

requirement. In fact, in Figure B.3, a small variation of the leg from its optimal position 

causes the maximum adhesion requirement to increase dramatically. For example, a 

0.01 variation in position causes a more than 250 fold increase in the required adhesion. 
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It should be noted that the 2.1 is the smallest height that is considered in this 

study. In fact, the radius of the structure is assumed to be two and a minimum gap 

between the robot and the surface is assumed to be 0.1. As expected, it can be 

concluded that the height should be as low as possible. 

5.2.2. Infinite stiffness structure 

The effect of the height, the length of the structure and the middle leg’s position 

on the maximum normal adhesion for infinite stiffness structures is presented here. 

Equation (3.8) is used in this section to show the effect of the three parameters, on the 

maximum adhesion on the tips of the legs. In Equation (3.8), let 𝐿𝑓 = 𝑐 ∙ 𝐿𝑇 ,  where 0 ≤

𝑐 ≤ 1, as the position of the middle leg is always between the front and the hind leg 

which could be presented as a fraction. 𝑐 = 0 when the middle leg is positioned at the 

farthest back, i.e. the same position as the hind leg, as 𝑐 increases the middle leg’s 

position gets closer to the front. 𝑐 = 1 is when the middle leg is positioned at the most 

front, i.e. the middle leg has the same position as the front leg. The equation could be 

rewritten as follows: 

 𝐹𝑛𝑓 = 𝑚𝑔 ∙ ℎ/(𝐿𝑇 ∙ (1 + 𝑐)) ( 5.1 ) 

The equation shows that the maximum adhesion is directly proportional to the 

height and inversely proportional to the length of the robot. The position of the middle leg 

𝑐, i.e. the distance between the middle and the front legs, is inversely proportional with 

the maximum adhesion. 

Using the results obtained here is not possible on robots with position controlled 

motors as there is no infinite stiffness materials that could be used to build a climbing 

robot. However, these results are applicable to robots with force/torque control 

implemented on their feet. 



 

31 

 

Figure 5.3. The optimal maximum adhesion force required on the tips of the 
legs 

5.3. Effect of Body and Legs Thickness 

The change in the cross sectional area is investigated to cover a change in the 

stiffness of the legs. As changing the radius of the legs shows a similar effect to 

changing the stiffness of the legs; the greater the cross sectional area is, the greater the 

legs’ resistance to compression and torsion. 

A structure with body length of 200 and a height of 100 is arbitrarily chosen to 

explore the effect of changing the cross sectional area on the normal force distribution of 

a robot. Results drawn from this specific geometry are generalized in a subsequent 

section.   

The cross sectional area and the area moment of inertia are varied, while the 

weight of the robot is considered to be fixed at one and applied at the center of mass. 

The area moment of inertia is calculated to be equivalent to that of a circle; the radius is 

calculated from the cross sectional area, and the area moment of inertia is then 

calculated accordingly. The normal force distribution is calculated for different cross 

sectional area values for the legs, between 0.0001 and 3.16 × 104, while keeping the 

cross sectional area of the body, formed by the horizontal beams in Figure 4.2, fixed at 
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one. It has similar effect to changing the stiffness of the legs while keeping the stiffness 

of the body fixed. The normal force required for each leg to stick on the wall for different 

legs’ cross sectional area and middle leg’s position is shown in Figure 5.4. Three 

different configurations are compared with ANSYS and plotted over the curve obtained 

in Figure 5.4; the test points have an average absolute error of approximately 2%. 

 

Figure 5.4. Normal forces required by the feet of the robot for different legs’ 
cross sectional areas and different middle leg’s positions with the 
body’s cross sectional area fixed at 1. Circles represent simulations 
performed using ANSYS. 

The range of the cross sectional area in Figure 5.4 is selected to be from 0.0001 

to 3.16 × 104. Simulations performed considering the values of the cross sectional area 

outside this range showed that variation of the cross sectional area had little effect 

(variation smaller than 0.01%) on the force distribution. The three sub-figures in Figure 

5.4 are combined to show the minimum normal forces among the front, middle and hind 

legs in Figure 5.5, which represents the maximum adhesion required to keep the robot 

attached to the wall. 

The best position for the middle leg, in the range between 0 and 0.99, is located 

between 0.3 and 0.42 for the range of legs’ cross sectional area from 0.045 to 100, while 

the best range for smaller cross sectional area, less than 0.045, jumps to be at 0.99, see 

Figure 5.5-b. For any cross sectional area, the best position of the middle leg is when it 

overlaps the front leg, i.e. the middle leg has a position equals to one for any cross 

sectional area value. 
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Figure 5.5. Shows, for a range of values of legs’ cross sectional area and 
middle leg’s positions (a) Maximum adhesion force requirement, (b) 
maximum adhesion force within -0.5 and -0.1 of the maximum 
normal force/body weight. 

In summary, the optimal configuration when the body is parallel and the legs are 

perpendicular to the vertical surface is when the structure has a minimum legs’ cross 

sectional area of 0.0001 and a middle leg’s position of 0.99. Changing the body’s cross 

sectional area and fixing the legs’ cross sectional area has an opposite adhesion force 

requirement behavior to that shown in Figure 5.4; the lowest point of the graph is when 

the body cross sectional area is at minimum, which equals 10−4, and the maximum point 

is when the radius at maximum, which equals 3.16 × 104. 

5.4. Effect of Body Inclination 

The robot considered in this section is also assumed to have a height to body 

length ratio of 1:2. Results drawn from this specific geometry are generalized in a 

subsequent section.   

Using a robot with height to body length ratio of 1:2 implies that collision occurs 

when the body inclination is either over 45𝑜 or less than −45𝑜, where 0𝑜 inclination is 

defined when the robot’s body is parallel to the climbing surface (see angle 𝜃𝐵 in Figure 

5.6). The height and the distance between the front and the hind legs are considered to 
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be fixed to keep the height to length ratio fixed at every inclination, see Figure 5.6. As 

discussed earlier, no units are used, as the results can be scaled up/down. 

 

Figure 5.6. Robotic structure with a body inclination angle of θB. 

The effect of changing both the position of the middle leg and the inclination of 

the body is shown in Figure 5.7. Three different configurations are compared with 

ANSYS and plotted (see circles) over the curve obtained by using MATLAB in Figure 

5.7, with an average error of approximately 1.29%. 
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Figure 5.7. Shows the normal forces for different body angles and different 
middle leg’s positions for (a) front leg, (b) middle leg, (c) hind leg. 
Circles on the plot represent simulations performed using ANSYS. 

The maximum adhesion force required by each leg for the different angles of the 

body is shown in Figure 5.8. The optimal structure in Figure 5.8 is found to have a body 

angle of approximately 28.25𝑜 and a middle leg’s position of 0.99, where the middle leg’s 

position is bounded in the 0.01-0.99 range. 

 

Figure 5.8. The maximum adhesion force required by any foot for different body 
angles and different middle-leg positions. 

The inclination of the body by a positive angle 𝜃𝐵 (counter clockwise angle in 

Figure 5.6) causes the beams of the front half body of the robot to become longer and 

therefore more flexible, whereas the beams on the hind half body (see Figure 5.6) to 

become shorter and therefore stiffer. A negative body inclination angle causes an 
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opposite effect. In other words, the body inclination affects the stiffness of the different 

parts of the robot. This general behavior can be generalized to robots having different 

height to length ratios. It should be noted that a robotic structure with a smaller height to 

length aspect ratio would have a smaller inclination range, thus limiting the choice of 

optimal body inclinations.  

5.5. Effect of Legs Inclination 

The effect of having the legs inclined instead of perpendicular to the climbing 

surface is investigated in this section. Similar to the previous sections, the adhesion 

force required to keep the robot on a perpendicular surface is assumed to be minimized. 

The robot’s structure is the same as that used in the previous section (assumes a 

body length of 200 and a height of 100). The legs are arranged so they are inclined 

outward, i.e. the front leg is inclined forward and the hind leg is inclined backward to 

mimic climbing arthropods such as ants, cockroaches, and spiders. In this section two 

cases for the middle leg are considered. In the first case, the middle leg is inclined 

towards the front of the robot with inclination angle equals to the front leg’s inclination 

(see the solid lines in Figure 5.9). While, in the second case, the middle leg is inclined 

towards the back of the robot with inclination angle equals to the hind leg’s inclination 

(see dashed lines in Figure 5.9). Figure 5.9 shows a diagram of a robot, where 𝑑𝐵 is the 

length of the body, 𝑑𝑇 is the distance between the tip of the front leg and the tip of the 

hind leg which is kept fixed at 200, the angles of the front, the middle, and the hind legs 

make (𝜃𝑓 , 𝜃𝑚 and 𝜃ℎ) respectively with the body. 

The range of the front leg’s angle is from −90𝑜 to −45𝑜, and the hind leg’s angle 

to range from −135𝑜 to −90𝑜. At the maximum inclination, i.e. 𝜃𝑓 = 𝜃𝑚 = −45𝑜 and 𝜃ℎ =

−135𝑜, all of the three joints are located at the center of mass. A wider inclination range 

at this height is not feasible without increasing the distance between the tips of the front 

and the hind legs. 
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Figure 5.9. Shows the robot with the inclined legs. 

The case when the middle leg’s inclination equals the front leg’s is considered 

first. An inclination angle 𝜃𝑖𝑛𝑐 is introduced to represent the inclination of the legs. All the 

legs are perpendicular to the climbing surface at 𝜃𝑖𝑛𝑐 = 0𝑜, and the front and the middle 

legs have a −45𝑜 angle with the body and the hind leg has −135𝑜 with the body at 

𝜃𝑖𝑛𝑐 = 45𝑜. The angle of the front and the middle legs can be represented using the 

following equation: 

 𝜃𝑓 = 𝜃𝑚 = −90 + 𝜃𝑖𝑛𝑐  ( 5.2 ) 

The hind leg’s angle can be represented as a function of 𝜃𝑖𝑛𝑐 as follows: 

 𝜃ℎ = −90 − 𝜃𝑖𝑛𝑐  ( 5.3 ) 

The normal force distribution for the range of 𝜃𝑖𝑛𝑐 with different middle leg 

positions is shown in Figure 5.10. Three different configurations are compared with 

ANSYS and plotted over the curve obtained by using MATLAB, with an average error of 

approximately 0.14%. The position of the middle leg’s joint (𝐽𝐻𝑚) is represented as a 

fraction of the distance 𝑑𝑇 where the value 0 is positioned at the hind leg’s tip and 1 
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being at the front leg’s tip. The curves of the different legs’ positions have different 

lengths, because the range available for the hip position of the middle leg decreases as 

the angle 𝜃𝑖𝑛𝑐 increases. 

 

Figure 5.10. The normal force distribution with the middle leg inclines forward for 
different θinc values and different middle legs’ positions, on (a) the 
front leg, (b) the middle leg and (c) the hind leg. Circles represent 
simulations performed using ANSYS. 

The maximum adhesion force applied by the robot to the vertical surface can be 

identified by analyzing Figure 5.11, which combines the three subplots of Figure 5.10. It 

can be noted that inclining the middle leg forward improves the adhesion requirement 

when the position of the middle leg is greater than 0.38 (see red circle and legend in 

Figure 5.11-b). Bringing the middle leg closer to the front leg, with the optimal inclination 

for that position, results in requiring less adhesion force. 
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Figure 5.11. (a) The maximum adhesion required by the robot at different legs’ 
inclinations and different middle leg’s positions. (b) Zoomed in view 
of plot (a). The red circle in (b) shows the closest middle leg’s 
position to the hind leg that improves with forward inclination of the 
middle leg. 

The case when the middle leg inclines backward, i.e. has the same inclination 

angle as the hind leg’s angle, is investigated similar to the previous case; an inclination 

angle  𝜃𝑖𝑛𝑐 is used to represent the inclination of the legs. The equation of the inclination 

angle for both the front leg, Equation (5.2), and the hind leg, Equation (5.3), are the 

same as in the previous case; while the inclination angle for the middle leg is the same 

as the hind leg’s equation, i.e. Equation (5.3). The normal force distribution for the range 

of 𝜃𝑖𝑛𝑐 with different middle leg positions is shown in Figure 5.12. Three different 

configurations are compared with ANSYS and plotted over the curve obtained by using 

MATLAB, the circles in Figure 5.12, in which they have an average error of 

approximately 0.13%. 
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Figure 5.12. The normal force distribution on the legs of the robot for different 
legs’ inclinations and different middle legs’ positions on (a) the front 
leg, (b) the middle leg and (c) the hind leg, with the middle leg 
inclined backward. Circles represent simulations performed using 
ANSYS. 

The maximum adhesion force required for all of the configurations is constructed 

by combining the three sub-Figures of Figure 5.12, and their plot is shown in Figure 

5.13. The lower plot in Figure 5.13 is a zoom of the upper plot in Figure 5.13. 

From Figure 5.13, the backward inclination of the legs improves the adhesion 

requirement when the middle leg’s position is below 0.38 (see red circle in Figure 5.13-

b). The backward legs’ inclination for any other position will cause an increase in the 

required force. The effect of legs’ inclination for different height to length ratios has the 

same effect as the investigated structure with 1:2 height to length aspect ratio. With the 

exception that the point that improves with the backward legs inclination is varied to be 

between 0.38 and 0.41 for the range of heights considered earlier. 
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Figure 5.13. (a) The maximum adhesion required by the robot at different legs’ 
inclinations and different middle leg’s position. (b) zoomed in view 
of (a). The red circle in (b) shows the farthest middle leg’s position 
to the hind leg that improves with backward inclination of the middle 
leg. 

An optimization using Genetic Algorithms (GA) is carried out to find the optimal 

configuration for the structure. It is assumed that the distance between the front and hind 

tips of the legs and the height are kept fixed at 200 and 100 respectively, and the 

variables are the position of the middle leg 𝑑ℎ and the inclination of all of the legs, 

assuming the angles of the legs are given by Equations (5.2) and (5.3), and the range 

of  𝜃𝑖𝑛𝑐 is from 0𝑜 to 45𝑜 

 min
𝑑𝑚,𝜃𝑖𝑛𝑐

max(𝐹𝑦ℎ , 𝐹𝑦𝑚, 𝐹𝑦𝑓) ( 5.4 ) 

The optimal configuration found is when the inclination of the front and the middle 

legs is at the maximum front, at −45𝑜, and the hind leg is at the maximum from the 
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perpendicular, at −135𝑜. This result is similar to that found by Yasong et al [18] with the 

assumption that the structure has infinite stiffness. 

5.6. Optimal Robotic Structure 

An infinite number of configurations of the robot can be identified when different 

inclinations of both the body and the legs are considered. The space of the optimal 

configurations can be summarized in Figure 5.14. For the sake of clarity, this figure 

shows optimal curves when all the legs have the same absolute value of inclination, and 

a body inclination range between −30𝑜 and 30𝑜. In Figure 5.14-a, the front and the 

middle leg points forward whereas the hind leg points backward. In Figure 5.14-b, the 

front leg points forward whereas the middle and hind legs point backward. Points on 

each curve of these figures represent equally optimal configurations from the 

perspective of minimizing the needed maximum adhesion for the robot to stay on a 

vertical surface. It should be noted that the maximum required adhesion decreases as 

the middle leg is positioned closer to the front leg; in fact, the optimal configuration is the 

one that has the middle leg aligned with the front leg. In Figure 5.14, points on the green 

curve at the normalized position 0.99 therefore yield the smaller maximum adhesion 

required for the robot to adhere to vertical surface than any other point presented in this 

figure. 

 

Figure 5.14. Optimal body-legs inclination curves for a number of middle legs 
positions when (a) the middle leg is inclined forward, (b) the middle 
leg is inclined backward. 
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A few optimal configurations chosen from Figure 5.14, for different positions of 

the middle leg and different body and leg inclinations, are shown in Figure 5.15. 

Specifically, Figure 5.15-a shows five different optimal configurations when the 

inclination of the legs was kept constant (configurations shown in Figure 5.15-a were 

obtained by intersecting the curves of Figure 5.14-a with the vertical black solid line 

shown in this latter figure). Figure 5.15-b shows five different optimal configurations 

when the body inclination was kept constant (configurations shown in Figure 5.15-b were 

obtained by intersecting the curves of Figure 5.14-a with the horizontal dashed black line 

shown in this latter figure). Figure 5.15-c shows five different optimal configurations 

when the distance between the tips of the legs on the vertical surface was kept constant 

(configurations shown in Figure 5.15-c were obtained by intersecting the blue curve of 

Figure 5.14-a with middle leg’s position of 0.69 – see legend of Figure 5.14-a). 

 

Figure 5.15. Shows few optimal configurations. Subplots a-1 to a-5 are different 
optimal configurations along the vertical solid black line of Figure 
5.14-a when legs are inclined at -82o. Subplots b-1 to b-5 are 
different optimal configurations along the horizontal dashed line of 
Figure 5.14-a when the body inclination is -10.5o. Subplots c-1 to c-5 
are different optimal configurations at middle leg’s position of 0.69 
in Figure 5.14-a. 
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In Figure 5.15, the optimal robotic configurations that have larger middle leg 

position values use less normal adhesion forces than those with lower middle leg 

position values. Structures that have the same middle leg position require the same 

normal adhesion forces although they have different body and legs inclinations. 

5.7. Equivalent Leg Design 

The robots considered in the previous sections assume that each leg is made up 

of one single straight beam. However, multi-beam legs are necessary to allow smooth 

movement for legged robots. In this section, the one-beam leg, see Figure 5.16-a, is 

replaced with multi-beams leg, see Figure 5.16-b, that allow the robots to use the 

optimal normal adhesion force on the tips of the legs. The main idea in this section is to 

change the characteristics of one or more legs to allow the use of optimal normal 

adhesion for a specific configuration. The one-beam legs of a robotic structure, obtained 

from the previous section, are used to show the validity of replacing them with multi-

beam legs. For the sake of simplicity, only two-beam legs equivalent to the single beam 

legs are considered, see Figure 5.16. 

yy

xx

L

1L

2L

1

2



(a)                                                       (b)
 

Figure 5.16. (a) one-beam leg. (b) two-beams leg. 

The following parameters could be used to find two-beams leg designs 

equivalent to the one-beam legs: 
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• The geometry of the legs. 

• The stiffness of the legs. 

• The cross sectional area. 

• The second moment of inertia. 

• The thickness of the legs. 

An optimal robotic model, randomly chosen from Figure 5.14-a  and shown in 

solid white color in Figure 5.17-a, is used to demonstrate finding two-ink legs equivalent 

to the single-beam legs. The height to length ratio of the structure is 100:200. The tip of 

the middle leg is assumed to be positioned at 0.77 of the overall distance between the 

hind and front legs. The beams of the structure are assumed to have a circular cross-

sectional area with a radius of 1. Any three-legged robotic structure requires six angles 

to define the design of its three two-beam legs, i.e. two angles per leg. Here, it is 

assumed that the front and the middle legs have the same leg design, i.e. 𝑎2 = 𝑎3 and 

𝑏2 = 𝑏3 in Figure 5.17-a, because they originally had the same length and inclination. 

The values of 𝑎1 and 𝑎2 are considered as fixed, which reduces the number of the 

variables to two (𝑏1 and 𝑏2). The problem is found to be redundant, as there is an infinite 

number of solutions for this problem if the two variables, (𝑎1 and 𝑎2), are optimized. 

Because of that, Genetic Algorithms are used to find the angles of 𝑎2 for a range of 

𝑎1 angle values using the following fitness function: 

 Υ = min
𝑎2

(max(𝐴𝑑ℎ)) ( 5.5 ) 

where 𝐴𝑑ℎ is the normal adhesion on the tips of the legs of the robot. 

The solution when both 𝑎1 and 𝑎2 are equal to 30𝑜 is shown in Figure 5.17-b. The 

solution is color-coded, i.e. each leg’s configuration with the same color is one solution. 

In other words, the solution for every inclination angle 𝑏1 of beam 𝐵1 is the angles 𝑏2 and 

𝑏3 of beams 𝐵2 and 𝐵3, drawn with the same color.  Alternately, Figure 5.17-c shows the 

different solutions when the values of 𝑎1 and 𝑎2 are 20𝑜 and 40𝑜 respectively. 



 

46 

Hind leg

Middle leg

Front leg

cg

1a

2a

3a

1b

2b

3b

1B

2B

3B

(a)                                                     (b)                                                    (c)

 

Figure 5.17. (a) Shows the robotic structure with the corresponding two-beams 
legs. (b) Shows few possible solutions of having two-beams legs 

when 𝒂1 = 𝒂2 =  𝒂3 = 30o. (c) Shows few possible solutions of having 
two-beams legs when 𝒂1 = 20, 𝒂2 =  𝒂3 = 40o. 

The investigation of the other four parameters is done using the same structure 

shown in Figure 5.17-a; for the sake of simplicity, the three legs are considered to have 

two-beams, right angled legs structures. Genetic Algorithms are used to change the 

investigated parameter of only the front leg in order for the robot to use the optimal 

normal adhesion force. The parameters are investigated for only one leg as it is the 

smallest number of legs that needs to be changed in order to minimize the maximum 

normal adhesion and produces a single solution. 

Table 5.1 summarizes the results of changing the four parameters independently; 

the shaded cells highlight the investigated parameter in each row.  The first row shows 

the values of the parameters before the optimization. In which the maximum adhesion is 

not the optimum, as the legs of the structure are constructed using right angled two-

beam legs. The shaded cell in Row 2 shows the optimal stiffness of the leg that 
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produces the optimal normal adhesion force. The stiffness of the leg is presented as a 

fraction of the stiffness of the beams constructing the rest of the structure. The 

parameters used for the optimization in the third and the fourth rows are the cross 

sectional area and the second moment of inertia, respectively. In the last row, the 

thickness of the front leg is optimized. The optimal radius value of the front leg is found 

to be 1.248. The fifth row shows a change in both the cross sectional area and the 

second moment of inertia. Both parameters are varied because, a change in the 

thickness of the leg, assuming the beams have circular cross section, will change both 

values of the cross sectional area and the second moment of inertia. The validity of the 

optimal values is done by calculating the normal adhesion force using ANSYS. In fact, 

the maximum error, amongst the five cases, is found to be 0.03% of the maximum 

adhesion value. 

Table 5.1. Investigated parameters for front leg design 

Row 
# 

Optimized 
parameter 

stiffness 
Cross 

sectional area 

Second 
moment of 

inertia 

Max. 
adhesion 

Max. 
Adhesion 
(ANSYS) 

1 None 1 3.14 0.78 0.54 0.54 

2 Stiffness 0.41 3.14 0.78 0.28 0.28 

3 
Cross sectional 

area 
1 8.25 × 10−4 0.78 0.28 0.28 

4 
Second moment 

of inertia 
1 3.14 0.32 0.28 0.28 

5 Radius 1 2.01 0.32 0.28 0.28 

5.8. Discussion 

The effect of the different geometric parameters on the normal adhesion force 

requirements on robots with finite stiffness materials is investigated. However, only the 

height to length ratio and the middle leg’s position are investigated for robots with infinite 

stiffness materials. Only the position of the tips of the legs are considered without taking 

into account the shape of the legs.  

In the case of 90𝑜 inclination legs, i.e. perpendicular to the climbing surface, the 

best position for the middle leg is when it is positioned approximately close to 0.32. The 
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maximum adhesion increases as the middle leg’s position gets closer to the front leg. in 

fact, the maximum is when the middle leg is very close to the front around 0.98 of the 

distance between the hind and the front legs. However, the maximum adhesion 

decreases as the middle leg gets closer to the front leg as long as the body or the legs 

inclination angle changes to minimize the adhesion. The high adhesion in case of legs 

inclined at 90𝑜 is a result of the moment at node 3, in Figure 4.2, which induces tension 

in the front leg and compression in the middle leg, see Appendix B. The moment in node 

3 when inclining the body and the legs has less effect than that in the perpendicular 

case. Because, the effect of the moment is distributed along longer beams, which 

resulted from the inclination of the legs or the body. The Maximum adhesion found in 

Figure 5.8 and Figure 5.11 matches with that in Figure 5.3 for any middle leg position. 

Provide the use of the optimal inclination angle for each middle leg position. It could be 

concluded from this is that, if the front leg has higher adhesion than that of the middle 

leg’s, then the body, the legs or both should be inclined to distribute the adhesion 

amongst the front and the middle legs. 

In case of infinite stiffness structures, the optimal maximum normal adhesion 

force requirement decrease as the middle leg is positioned close to the front leg. While, 

the maximum normal adhesion force dramatically increases when the middle leg gets 

close to the front leg for structures with finite stiffness materials. The high normal 

adhesion force is due to the stresses in the structures. The effect of the stress could be 

decreased by using more flexible legs, one way is by using thinner legs. Figure 5.5 

shows that using small radius legs, close to 10−2, permits using low adhesion forces on 

the tips of the legs for middle legs positions very close to the front. 

The effect of changing the geometrical parameters on the normal adhesion force 

requirement is summarized in the Table 5.2. The first column is for structures with torque 

controlled motors, the second column is for structures with position controlled legs and 

perpendicular legs, and the third column is for structures with position controlled legs 

and inclined legs and body. Note that the leg and body inclinations do not affect the 

normal adhesion force for infinite stiffness structures. This is because such structures 

depend only on the position of the tips of the legs with respect to the CoM and not on the 

shape of the structure. 
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Table 5.2. The effect of changing the different geometrical parameters on the 
normal adhesion force 

Property 
Infinite stiffness 

structures 

Finite stiffness 
structures 

(perpendicular 
legs) 

Finite stiffness 
structures (inclined 

legs and body) 

Lowering the 
height 

Normal adhesion  
reduces 

Normal adhesion 
reduces 

Normal adhesion 
reduces 

Increasing the 
body length 

Normal adhesion 
reduces 

Normal adhesion 
reduces 

Normal adhesion 
reduces 

Increasing the 
normalized 
middle leg 
position 

Normal adhesion 
reduces 

As the position goes 
away from 0.3 

position, the normal 
adhesion increases 

Normal adhesion 
reduces 

Legs inclination No influence Not applicable See Figure 5.14 

Body inclination No influence Not applicable See Figure 5.14 

The presented results yield the following guidelines to design an optimal robot 

structure, which minimizes the maximum adhesion on the tips of the legs, with a 1:2 

height to length aspect ratio, loitering on a vertical surface: 

1. For a fixed body length, all the legs of the robot should incline outwards, and 
extend as far as possible to increase the distance between the front and the 
hind tips of the legs. 

2. The position of the tip of the middle leg should be as close as possible to the 
front leg and the inclination should be forward for a middle leg’s position 
between approximately 0.4 to 1, and backward otherwise. 

3. The best middle leg’s tip position is found when the middle leg’s tip position is 
at the same position as the front leg’s; this finding is confirmed through an 
optimization performed using GA, see Equation (5.3). 

4. Depending on the height to length ratio, tilting the body mostly improves the 
adhesion requirement for the robot. 

5. The optimal body and legs inclination for any middle leg’s position could be 
chosen from Figure 5.14. 
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6. Finding a proper leg design by either finding optimal geometric legs or by 
using any desired geometry and then tune the design by changing one of the 
variables in Table 5.1. 

Points 1 to 4 is applicable to any robot with any height to length aspect ratio. 

While points 5 and 6 are required to be recomputed for the robot with the desired height 

to length ratio. 

It is shown that the thickness of the body of the robot should be maximized and 

the one of the legs minimized. Since the analysis was performed by considering a 

constant mass of the robot, the above-mentioned result implies that the stiffness of the 

body of the robot should be higher than that of the legs.  

An interesting remark is that by decreasing the stiffness of the legs, a better 

approximation introduced by connecting the legs to the vertical wall via hinges is 

obtained.  

Similar to the model used in Chapter 3, the FEM model used here considers the 

worst case scenario in terms of weight distribution. It assumes the weight to be 

concentrated at the center of mass of the body, rather than being distributed on the legs 

of the robot which brings the CoM closer to the vertical surface. Moreover, the shape of 

the feet is simplified to be one point per leg similar to Chapter 3. 
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Chapter 6.  
 
Assess if the FEM Analysis of the Robot is Viable 

6.1. Introduction 

To verify our assumptions and calculations, the simplified developed model, in 

the previous chapter, is used to investigate the stance of the ants when loitering on 

vertical surfaces. Ants are chosen for this study because they are good climbers and 

they also have a configuration similar to the studied six-legged robot [87]. 

6.2. Ants Model Simplification 

The ant along with the equivalent robot structure, highlighted in yellow, are 

shown in Figure 6.1-a. The legs are simplified to be consistent of one beam, as the ant is 

in state of no-motion, and one hinge at the connection with the surface to simulate the 

(tarsus and pre-tarsus) of the ant’s leg. The measured parameters used to simplify the 

structure of the ants to match the robot’s are shown in Figure 6.1-a and Figure 6.1-b, 

where: 

𝑇𝐵 is the distance between the front and hind legs’ tips. 

𝑆𝐵 and 𝑇𝑐𝑚 are the body’s length and position respectively. 

𝑆ℎ is the position of the middle leg’s coxa. 

𝑇ℎ is the position of the middle leg’s tip. 

ℎ is the height. 

𝑟, not shown in Figure 6.1, is the body and legs’ thickness. 
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Figure 6.1. Shows the parameters measured from the ants, (a) Lateral view, (b) 
Dorsal view. 

The length of the body 𝑆𝐵 is measured as the distance between the front and the 

hind legs’ first segments, called coxas, see Figure 6.2. The position of the body 𝑇𝑐𝑚 is 

measured as the distance from the center of the body’s length to the hind leg’s tip. The 

measurement of the middle leg’s coxa position 𝑆ℎ is represented as the distance 

between the coxa of the hind leg and the coxa of the middle leg. When the ratio equals 

0, then the middle leg’s coxa is at the same position as the hind leg’s coxa. The position 

of the coxa approaches the front leg’s coxa as the value of  𝑆ℎ approaches 1. 
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Figure 6.2. The different parts of ant. 

6.3. Carried Experiment 

The ants are photographed when they are standing still to feed off honey drops 

on a surface of vertical surface. A small model, made of plexi-glass, that has a square 

cross section is built to facilitate photographing the ants from different orientations, see 

Figure 6.3. The base of the model was designed to be bigger than the top, to make it 

easier to put the model over the ant(s) without harming them. A cap is used to close the 

top of the structure to facilitate cleaning and allowing the ants to exit; moreover, the cap 

has holes to allow the ants to breathe. In total 150 ants are used, where 91 ants are 

photographed from either the top or the bottom, similar to that shown in Figure 6.1-b, 

and 59 ants are photographed from the side, similar to that shown in Figure 6.1-a.  
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Figure 6.3. A CAD model for the setup used to photograph the ants. 

In both of the photographed positions, i.e. from above and the side, the following 

parameters are measured:𝑇𝐵, 𝑆𝐵, 𝑇𝑐𝑚, 𝑆ℎ ,and 𝑇ℎ (see Figure 6.1). The height is 

measured only using the photos captured from the side. The photos captured from 

above are used to make sure that the ants are standing up vertically with an angle range 

of ±20o from vertical, since a change in the orientation of 20o would decrease the force 

pulling an ant to the back, due to gravity, by only ±6%. 

The position of the middle leg’s tip 𝑇ℎ is the distance between the front and the 

hind legs’ tips. The height of the robot ℎ is presented as the distance from the petiole to 

the climbing surface, which is considered the point of force application. The Petiole is 

chosen because it is the point by which the gaster (which has a large weight ratio) is 

attached to the body, see Figure 6.2. The average thickness of the legs  𝑟 is measured 

graphically. Specifically, the thickness of each segment of the leg is averaged over the 

length of the leg. The thickness is calculated using the following equation: 

 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 =
∑ (𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠∙𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑎𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡)𝑛

𝑖=1

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑔
 ( 6.1 ) 
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where 𝑛 is the number of segments in the leg.  

All of the measurement data is presented as ratios to overcome the variation in 

ants’ sizes. 𝑇𝐵 is considered as a measuring unit for all of the measurements, i.e. 𝑇𝐵 = 1, 

except for 𝑆ℎ which is measured with 𝑆𝐵 as the measuring unit. 

Assuming a robot with 𝑇𝐵 = 200, which has the same 𝑇𝐵 as the robots 

investigated earlier, the parameters of the robot equivalent to the ants’ geometry are 

calculated and shown in Table 6.1. The weight of the ant is considered to be a unit to 

facilitate the representation of the force to be a fraction of the overall weight. 

Table 6.1. Parameters measured experimentally and the equivalent values 
used in calculations. 

6.4. Ants’ Middle Leg’s Position 

The developed mathematical model presented earlier is used to compute the 

maximum required adhesion force for 𝑆ℎ and 𝑇ℎ while keeping all the other parameters 

fixed. The value of 𝑆ℎ is varied within the full range of 0 to 1, with the middle leg’s coxa 

coinciding with the hind leg’s coxa when 𝑆ℎ = 0, and coinciding with the front leg’s coxa 

Parameter 
Experimentally Value 

𝑇𝐵 1 200 

𝑇ℎ 0.62 124 

ℎ 0.1439 28.78 

𝑆𝐵 0.169 33.8 

𝑆ℎ 0.358 12.1 

𝑇𝑐𝑚 0.616 123.25 

𝑟 0.022 4.4 
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when 𝑆ℎ = 1. Similarly, the value of the middle leg’s tip position 𝑇ℎ is considered to be 0 

when the tip is aligned with the hind leg’s tip, and 1 when the middle leg’s tip is aligned 

with the front leg’s tip, i.e. the distance to the hind leg’s tip is 200. 

The maximum required adhesion at different values of 𝑇ℎ  and 𝑆ℎ for a unit force 

representing the weight at the center of mass is shown in Figure 6.4. It is noted that the 

smaller the distance between the middle and hind legs’ coxas is, the less the maximum 

required adhesion force is. From the photos of the ants, the middle and the hind legs’ 

coxas are as close as possible to each other; in fact, the mid and the hind coxas are in 

contact with each other. The ratio of the distance between the center of the middle leg’s 

coxa and the center of the hind leg’s coxa to the distance between the centers of the 

hind and the front coxas is 0.358. 

 

Figure 6.4. Shows the adhesion requirement for different middle leg’s coxa and 
tips positions. 

Figure 6.5 shows the maximum normalized adhesion force when a ratio between 

𝑆𝐵 and 𝑆ℎ  of 0.36 is considered. The different lines in this figure represent forces for the 

different heights the ants had in the recorded images. The black line in Figure 6.5 shows 

the force for the median height of the ants. The position of the middle leg’s tip used by 
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the ants is plotted as a solid red line, with its standard deviation plotted as a red dashed 

line. The optimal position for the tip is at 0.69, which corresponds to the highest point on 

the black curve marked with yellow circle in Figure 6.5, is not far from that found 

experimentally with the ants. In fact, the ants’ average position of the middle leg’s tip is 

different by only 8% away from the calculated optimal tip position. 

 

Figure 6.5. The normal force requirement at different heights, in colors varies 
from green to blue. The black line is the normal force requirement at 
the median height, the middle leg’s tip position obtained 
experimentally is shown in solid red line and its standard deviation 
in dashed red lines. 

Curves of maximum normal force for a range of heights for the robot are shown 

in Figure 6.5, colored with shades varying from blue to green; the different heights are 

added to the figure to analyze the effect of changing the height, because the authors 

noticed that the ants change their body height while loitering. The magenta line in Figure 

6.5 is obtained by intersecting all the curves in this figure and considering their lower 

values for each middle leg’s tip position. It therefore represents the maximum normal 

adhesion requirement for each position of the middle leg’s tip at different heights. It 

should be noted that the maximum value of this line is close to the averaged middle leg 

position of the ants (vertical red line in Figure 6.5). The maximum point on that curve, 

marked with a cyan circle, represents the position of the middle leg’s tip that experiences 
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the minimum adhesion force requirement for the different heights theoretically. That 

point is different by only 6% from the middle leg position used by the ants 

experimentally. 

The thickness of the body used in the calculations is approximated to be 5 times 

the thickness of the legs. The effect of body thickness on the curve of the maximum 

adhesion and the position of the minimum adhesion point is shown in Figure 6.6. 

Although the curves are not identical between the considered thicknesses, the point that 

requires the minimum adhesion is still the same for the different radius values. 

 

Figure 6.6. Shows the maximum normal force requirement for different body 
thicknesses at different middle leg’s position. The considered body 
thicknesses are 1, 2, 5, 10, 20 and 50 times the thickness of the legs, 
they are highlighted in gradient colors from blue to green. The body 
thicknesses of 5 and higher overlap. The solid red line is the middle 
leg’s tip position obtained experimentally and the dashed red lines 
are the standard deviation. 
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6.5. Discussion 

The steps used to investigate the effect of the different parameters on the 

structure of the robot are used to analyze the stance the ants use on vertical surfaces. 

Analytically, it is found that the closer the middle leg’s coxa is to the hind leg’s coxa the 

less the adhesion force is over the entire range of the middle leg’s tip position. 

Interestingly, the coxas of the middle and the hind legs are touching each other in ants, 

that is they are as close as their size allow. The distance from the center of the coxa of 

the middle leg to the center of the coxa of the hind leg is 33% of the body length on 

average on the collected ants. The optimal middle leg’s tip position is at approximately 

61% of the distance between the tips of the hind and front legs pointing forward. It could 

be concluded, from Figure 6.5, that the ants position their legs at approximately 0.61 to 

optimize the adhesion force requirement while they are loitering on vertical surfaces. 
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Chapter 7.  
 
Maximum Torque Minimization as Secondary 
Objective 

7.1. Introduction 

This chapter presents minimizing the maximum torque on the joints of climbing 

robots, with force/torque controlled legs, while keeping the maximum normal adhesion 

force at minimum. That is possible because, the description of the system, given by 

Equations (3.1) to (3.3) presented in Chapter 3, has 6 variables; moreover, it also has 

one constraint equation, i.e. Equation (3.8), which combined produces a system with two 

degrees of freedom. This optimization is important because, it can be utilized to use 

weaker and smaller motors help decrease the mass of the robot and in turn the adhesion 

requirements, see Equation (3.8); using weaker motors helps decreases the cost of 

building the robot, as weaker motors are mostly cheaper than the stronger ones. 

Deriving the joints using low torque is equivalent to using low current which helps in 

increasing the life cycle of the motors. In this chapter, the maximum torque on the joints 

of the robot is minimized, without compromising the optimal adhesion requirements on 

the tips of the legs, while climbing a vertical surface [89]. 

7.2. Minimizing the Maximum Torque 

Minimizing the maximum torque for a robotic structure is a problem that is non-

linear, and non-differentiable which could be solved by a non-linear optimizer such as 

the Genetic Algorithms. However, the problem could be transformed to a linear quadratic 

form and solved faster and more accurately than using other optimizers. Transforming 
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the non-linear problem into linear is presented first and a comparison with other three 

widely used optimizers is presented second. 

7.2.1. Robotic Model 

The legged robot investigated in this work is assumed to be a three legged, 2-

dimensional simplified version of a six legged robot, similar to that of ants. The robot is 

assumed to have identical right and the left halves, which is the reason for the 

simplification. Figure 7.1 shows the robot with a rigid structure and three legs attached to 

a vertical surface. Each leg has two revolute joints, equipped with revolute motors. The 

six motors exert torque on the six joints to keep the robot in position and to withstand the 

force of gravity (gravity is pointing to the negative x-axis in Figure 7.1).  

The identification of the set of the torques that minimize the maximum torque 

applied by each motor is generally desired in order to minimize the torque requirements 

of the motors. By reducing the torque requirements, the size of the motors to be selected 

decreases, and in turn the mass of the robot decreases. Minimizing the mass of climbing 

robots is relevant in order to increase their climbing performance [18]. 

The relationship between the forces on the tips and the torques applied by the 

joints is calculated using the Jacobian [90], which, for a two-link mechanism, is given by: 

 [
𝜏𝑖1

𝜏𝑖2
] = 𝐽𝑖

𝑇 ∙ [
𝑓𝑖𝑥
𝑓𝑖𝑦

] (8.1) 

 𝐽𝑖 = [
−𝑑2 ∙ 𝑠𝑖1,𝑖2 − 𝑑1 ∙ 𝑠𝑖1 −𝑑2 ∙ 𝑠𝑖1,𝑖2

𝑑2 ∙ 𝑐𝑖1,𝑖2 + 𝑑1 ∙ 𝑐𝑖1 𝑑2 ∙ 𝑐𝑖1,𝑖2
] (8.2) 

where  𝜏𝑖1, 𝜏𝑖2 are the torques in leg 𝑖 for the first, the closer to the body, and the second, 

the further away from the body, joints respectively;   𝑓𝑖𝑥 is the x-axis force component at 

the tip of leg 𝑖;  𝑓𝑖𝑦 is the y-axis force component at the tip of leg 𝑖; 𝐽𝑖 is the Jacobian for 

leg 𝑖; 𝑑1, 𝑑2 are the length of the first and the second links of leg 𝑖; 𝑠𝑖1 is the sine of the 

angle of the first joint in the 𝑖𝑡ℎ leg,  𝑠𝑖1 𝑖2 is the sine of the sum of the first and the 
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second angles of the 𝑖𝑡ℎ leg; 𝑐𝑖1 is the cosine of the angle of the first joint of the 𝑖𝑡ℎ leg 

and 𝑐𝑖1,𝑖2 is the sine of the sum of the first and the second angles of the 𝑖𝑡ℎ leg. 

 

Figure 7.1. Three-legged robot climbing a vertical wall. 

The torque equations for the robotic structure are: 

 𝜏11 = |(−𝑙12 ∙ 𝑠11,12 − 𝑙11 ∙ 𝑠11) ∙ 𝐹1𝑥 + (𝑙12 ∙ 𝑐11,12 + 𝑙11 ∙ 𝑐11) ∙ 𝐹1𝑦| (8.3) 

 𝜏12 = |(−𝑙12 ∙ 𝑠11,12 ) ∙ 𝐹1𝑥 + (𝑙12 ∙ 𝑐11,12) ∙ 𝐹1𝑦| (8.4) 

 𝜏21 = |(−𝑙22 ∙ 𝑠21,22 − 𝑙21 ∙ 𝑠21) ∙ 𝐹2𝑥 + (𝑙22 ∙ 𝑐21,22 + 𝑙21 ∙ 𝑐21) ∙ 𝐹2𝑦| (8.5) 
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 𝜏22 = |(−𝑙22 ∙ 𝑠21,22 ) ∙ 𝐹2𝑥 + (𝑙22 ∙ 𝑐21,22) ∙ 𝐹2𝑦| (8.6) 

 𝜏31 = |(−𝑙32 ∙ 𝑠31,32 − 𝑙31 ∙ 𝑠31) ∙ 𝐹3𝑥 + (𝑙32 ∙ 𝑐31,32 + 𝑙31 ∙ 𝑐31) ∙ 𝐹3𝑦| (8.7) 

 𝜏32 = |(−𝑙32 ∙ 𝑠31,32 ) ∙ 𝐹3𝑥 + (𝑙32 ∙ 𝑐31,32) ∙ 𝐹3𝑦| (8.8) 

where 𝑙𝑖1, 𝑙𝑖2 are the lengths of the links of the leg 𝑖 for the first link, the closest to the 

body,  and the second, the furthest away from the body. 

In a static case, the following equilibrium of the forces and torques must be met: 

 ∑𝐹𝑋 = 𝑓𝑥1 + 𝑓𝑥2 + 𝑓𝑥3 − 𝑚 ∙ 𝑔 = 0 (8.9) 

 ∑𝐹𝑌 = 𝑓𝑦1 + 𝑓𝑦2 + 𝑓𝑦3 = 0 (8.10) 

 ∑𝑀𝑍 = 𝐻 ∙ 𝑓𝑥1 + 𝐻 ∙ 𝑓𝑥2 + 𝐻 ∙ 𝑓𝑥3 − 𝑥1 ∙ 𝑓𝑦1 − 𝑥2 ∙ 𝑓𝑦2 − 𝑥3 ∙ 𝑓𝑦3 = 0 (8.11) 

where 𝐹𝑥 and 𝐹𝑦 are the forces acting along the x-axis and the y-axis on the robot’s 

center of gravity, 𝑚 is the mass of the robot,  𝑔 is the gravitational acceleration, 𝐻 is the 

height of the robot and 𝑥1, 𝑥2  and 𝑥3 are the x-axis coordinates of legs 1, 2 and 3 

respectively, 𝑑1, 𝑑2 and 𝑑3 are the distance between legs 1, 2 and 3 respectively to the 

center of mass along the body of the robot. 

7.2.2. Problem Definition 

The investigated problem can be defined as finding the minimum of the 

maximum of 𝑚 number of absolute value equations in 𝑛 variables, which can be written 

as follows: 

 𝜓(𝑥) = min
x

(𝜙(𝑥)),    𝑥 ∈ ℝ𝑛 (8.12) 

where 

 𝜙(𝑥) = max(𝑓1(𝑥),… , 𝑓𝑚(𝑥)) (8.13) 
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where each of the objective functions 𝑓𝑖(𝑥) is an absolute value linear function: 

 𝑓𝑖(𝑥) = |𝑔𝑖(𝑥)| (8.14) 

where , 𝑖 = 1,… ,𝑚,     𝑔𝑖: ℝ
𝑛 → ℝ 

Equation (8.14) can be formulated as follows: 

 𝑓𝑖(𝑥) = max(𝐹1𝑖(𝑥),   𝐹2𝑖(𝑥)) (8.15) 

where 

 
𝐹1𝑖(𝑥) = 𝑔𝑖(𝑥)

𝐹2𝑖(𝑥) = −𝑔𝑖(𝑥)
,     𝑖 = 1,… ,𝑚 (8.16) 

An example of the functions 𝑓𝑖(𝑥), 𝐹1𝑖(𝑥), and 𝐹2𝑖(𝑥) for a low dimensional case is 

shown in Figure 2, with 1 absolute value equation (𝑚 = 1) in one variable (𝑛 = 1). 

By using the formulation presented by (8.12) – (8.15), the function that gives the 

maximum of a set of absolute linear functions is: 

𝜙(𝑥) = max(𝑓1(𝑥),… , 𝑓𝑚(𝑥)) = {
𝐹1(𝑥)  𝑖𝑓    𝐹1(𝑥) ≥ (𝐹2(𝑥) ∨ …∨ 𝐹2𝑚(𝑥))      

⋮ ⋮
𝐹2𝑚(𝑥)   𝑖𝑓   𝐹2𝑚(𝑥) ≥ (𝐹1(𝑥) ∨ …∨ 𝐹2𝑚−1(𝑥))

 (8.17) 
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Figure 7.2. Two dimensional example representing the function fi(x) in (i) and 
the functions F1i and F2i in (ii). 

In order to find the function 𝜙, we define wedge, 𝑊, as the intersection of two 

upper hyperspaces, where an upper hyperspace 𝐻 is defined as the space bounded 

between a hyper-plane and +∞ [91]. The upper hyperspace 𝐻 can be represented by 

the following equation: 

 𝐻 = {𝑥 ∈ ℝ𝑛|𝐴𝑥 ≥ 𝑏} ( 8.18 ) 

where 𝐴  is a vector of constant coefficients and 𝑏 is a constant coefficient. For instance, 

Figure 7.2 shows the upper hyperspaces  𝐻1𝑖 and  𝐻2𝑖 respectively generated by the 

hyperplanes 𝐹1𝑖 and 𝐹2𝑖, see Equation (8.15). Figure 7.2 also shows the wedge 𝑊𝑖 for a 

low dimensional space, which is generated by the intersections of the hyperspaces 𝐻1𝑖 

and 𝐻2𝑖. 

For example, in the low dimensional case, Figure 7.3 for instance shows 𝜙 

defined by the intersection of six half-planes 𝐻𝑗𝑖, 𝑗 = 1,2, 𝑖 = 1, 2, 3 (intersection of 3 

wedges 𝑊𝑖, 𝑖 = 1,2,3). The surface 𝜙 is an open convex shape, shown using solid lines in 

Figure 7.3, and the solution 𝜓 is shown as a point.  
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In higher dimensions, the intersection of the wedges form a high dimensional 

open convex shape represented by 𝜙 in Equation (8.12). The vertices of the open 

convex shape can be found by calculating the intersection points generated by the half 

planes. 





x

( )jiF x

1 11 21W H H

2 12 22W H H
3 13 23W H H

 

Figure 7.3  𝝓 is bounded by solid lines is generated by the intersection of three 
wedges W1, W2 and W3. 

Any intersection point in (𝑛 + 1) dimensional space (𝑛 variables problems), 

needs at least (𝑛 + 1) non-parallel hyper-planes. For example, an intersection point in 

two dimensional space (one variable problem) can be formed using two non-parallel 

half-planes, and in three dimensional space (two variables problem), three non-parallel 

half-planes are needed to form an intersection. 

The intersection points of (𝑛 + 1) hyper-planes can be computed by writing the 

equations to be solved as 𝔸𝑿 = 𝑩, where 𝔸 is the matrix containing the vector of 

constant coefficients 𝑨, and 𝑩 is a vector that contains the constant coefficients 𝑏 for the 

hyper-planes. The solution can be computed by  𝑿 = 𝔸−1𝑩, which will have a solution 

only if 𝔸 is full rank.  If 𝔸 is not full rank, the hyper-planes do not intersect in a point, they 

either intersect in a dimension higher than one point or do not have a common 

intersection space. 

The constraints could also be taken into account, assume the constraints are 

given as follows: 
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 𝐹𝑐(𝑥) ≥ 𝑏𝑐 ( 8.19 ) 

where 𝐹𝑐(𝑥) is the matrix containing the coefficients of the constraints and 𝑏𝑐 is the 

vector of constant coefficients. The intersection points that do not satisfy the constraints 

would be rejected as they are not valid solutions. In Figure 7.4, the points 𝛾3, 𝛾4, 𝛾7 

and 𝛾8, are not a solution because they are not satisfying the constraints. The optimum 

point in Figure 7.4 is 𝛾9, since it is the maximum of the minimum that satisfies all of the 

constraints. The constraints are used as equations to be optimized, i.e. adding them to 

the 2𝑚 equations. 

The problem is convex in nature. The intersection of the wedges, wedges are 

convex in nature, is convex. Also the intersection of the convex shape resulted from the 

intersection of the wedges with the constraints, which are convex, is convex. 
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Figure 7.4 Shows absolute linear equations with constraint Fc(x) 

7.2.3. Numerical Example 

In order to show the performance of the formulation and linear programming 

algorithm comparing to other optimizers, arbitrary geometrical parameters of the robot 

were selected. Specifically, the body of the robot in Figure 7.1 was assumed to be 1m 

long and the hip joints 𝜃𝑖1, 𝑖 = 1,2,3, were assumed to be positioned 0.5m apart. The first 

segment of each leg, 𝑙𝑖1, 𝑖 = 1,2,3, was 0.5m long and the second segment, 𝑙𝑖2, 𝑖 =

1,2,3, was 0.6m long. The height of the robot was assumed to be 0.9m, and the x-axis 

positions of the legs 1, 2 and 3 were 0.9m, 0.4m and -0.9m respectively, considering 
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zero is at the center of gravity. The weight of the robot was assumed to be 500N. The 

robot is assumed to use adhesive pads to stay attached to the wall, and each pad can 

withstand a maximum force of 150 N. Which poses the following constraints: 

 𝐹𝑖𝑦 ≥ −150,      𝑖 = 1,2,3 (8.20) 

The mentioned numerical values of the problem’s parameters, the torque 

Equations (8.3) to (8.8) and the equality constraints, Equations (8.9) to (8.11) yield the 

following equations: 

 𝜏11 = |−0.9 ∙ 𝐹2𝑥 − 0.9 ∙ 𝐹3𝑥 + 1.04 ∙ 𝐹3𝑦 + 90| (8.21) 

 𝜏12 = |−0.6 ∙ 𝐹2𝑥 − 0.6 ∙ 𝐹3𝑥 + 300| (8.22) 

 𝜏21 = |0.9 ∙ 𝐹2𝑥 − 1.44 ∙ 𝐹3𝑦 + 360| (8.23) 

 𝜏22 = |0.6 ∙ 𝐹2𝑥| (8.24) 

 𝜏31 = |0.9 ∙ 𝐹3𝑥 − 0.4 ∙ 𝐹3𝑦| (8.25) 

 𝜏32 = |0.6 ∙ 𝐹3𝑥| (8.26) 

subject to the following inequality constraints: 

 𝐹3𝑦 ≥ 288.4615 (8.27) 

 𝐹3𝑦 ≤ 291.6667 (8.28) 

The torques in the previous equations are treated as absolute, since it could be 

either clock wise or counter clock wise. Widely used optimization algorithms for 

constrained optimization such as Genetic Algorithms and the Interior-Point Method could 

be used to minimize the maximum absolute torque amongst (𝜏11, 𝜏12, 𝜏21, 𝜏22, 𝜏31 and 𝜏32). 

However, such algorithms either take a long time to converge to a solution or highly 

dependent on the initial solution. In the next section, the problem is formulated to allow 

the use of linear programming algorithms. 
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7.2.4. Fitness Function Formulation 

Although the problem could be solved using non-linear optimizers such as GA, 

nonetheless the problem could be reformulated to be efficiently solved using Linear 

programming. The reformulation could be accomplished as follows: 

Let (8.21) to (8.26) be written in a matrix form as follows: 

 Τ = 𝐴ℱ + ℬ (8.29) 

where Τ is a vector carrying the torques on the joints of the robot, 𝐴 is the coefficient 

matrix ℱ is the forces on the tips of the legs of the robot and ℬ is a vector contains the 

constant coefficients of the torque equations. 

In order to use linear programming, the problem of minimizing the maximum of 

absolute value equations was transformed into the linear programming standard form: 

 min𝑐𝑇𝑦 (8.30) 

 𝑠. 𝑡.  𝑨𝑦 ≥ 𝒃 (8.31) 

 𝑦 ≥ 0 (8.32) 

First, the nonlinear equations were transformed into linear, by removing the 

absolute sign from the equations and adding the same equations while changing the 

sign of the absolute terms, using Equation (8.15). Second, the max operator is removed 

by replacing (8.13) with one variable 𝑌𝑓 and the equations are rewritten in inequality 

equation format [70]. The function to be minimized is 𝑌𝑓 and the inequality equations are 

used  as constraints. Finally, because linear programming works only with lower 

bounded variables, a lower bound on the variables was used. It was done by introducing 

another variable 𝑦𝑖, which is subtracted from every variable 𝑥𝑖. The terms of the linear 

programming form in (8.12), can be written as follows: 

 𝑦𝑇 = [𝑌𝑓 𝑥1 𝑥2 … 𝑥𝑖 𝑦1 𝑦2 … 𝑦𝑖] (8.33) 
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where   𝑖 = 1,2,… , 𝑛 

 𝑐𝑇 = [1 0 0 … 0] (8.34) 

 𝑨 = [
𝐼𝑣 𝒜 −𝒜
𝐼𝑣 −𝒜 𝒜

] (8.35) 

 𝒃 = [
ℬ

−ℬ
] (8.36) 

where 𝑐 is a (2𝑚 + 1) vector, with its elements are all zero except the first element. 𝐼𝑣 is 

an 𝑚 × 1 vector, with its elements all ones. ℬ is a vector contains the constant 

coefficients of 𝐹𝑖𝑗(𝑥). 

7.2.5. Solving with Different Algorithms 

The problem is solved by using Genetic Algorithms, Pattern Search Algorithm, 

Nelder Mead Algorithm and a linear programming Algorithm, specifically, the Simplex 

algorithm. The stopping criteria for all of the algorithms except GA, were chosen to 

depend on the accuracy of the solution, while GA’s stopping criteria was set to be based 

on time. The time was chosen to be the time required by the slowest of the other three 

algorithms to find a solution. Specifically, the maximum time for convergence was 

selected to be the time our algorithm took to find the exact solution of the problems 

considered. For Nelder Mead and Pattern Search algorithms, a random starting point is 

generated for every iteration of the 1000 tested runs. 

The problem is solved using MATLAB on an Intel® Core® 2 Duo 2 GHz 

computer with 4GB DDR2 RAM. The precision of the software environment was up to 16 

digits after the decimal point, which complies with the standards IEEE 754 for double 

precision used by MATLAB. To use the 16 digits accuracy, only the first 14 digits after 

the decimal point were used since the 16th digit had rounding error carried from the 17th 

digit. The term exact solution is used in the following text to refer to the solution 

associated to an error of 10−14. 
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Table 7.1. The performance of the algorithms used to solve the problem 

Comparison 
Property 

Simplex    
Algorithm 

Nelder-Mead 
Algorithm 

Pattern Search 
Algorithm 

Genetic    
Algorithm 

Time (sec) 0.0125 0.053 0.2945 0.2945 

Error 

(Best Solution) 
0 2.27*10-13 0 128.4158 

Error 

(Average Solutions) 
0 130.027 27.3996 136.6092 

Error 

(Worst Solutions) 
0 5.09*103 89.9295 151.0992 

The optimal solution for the problem is 𝐹2𝑥 = 166.6667, 𝐹3𝑥 = 166.6667, and 

𝐹3𝑦 = 291.1992. The optimal solution yields a maximum torque of 100. Table 7.1 shows 

the result of using the different algorithms to solve the robotics problem. It could be 

clearly seen that the fastest method to solve such a problem is the Simplex Algorithm, it 

was more than 4 times faster than the next fastest algorithm. The Simplex Algorithm’s 

speed in finding the solution makes it suitable for real time applications. 

The Simplex Algorithm also found the exact solution every run of the 1000 tested 

runs. The GA was not able to find an exact solution. If more time is given for the GA, it 

would produce a better solution. The worst solution is found by the Nelder-Mead 

algorithm because it highly dependent on the initial solution. 
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Chapter 8.  
 
Conclusion and Future Work  

This manuscript has investigated methods of optimizing the forces on climbing 

robots that use position controlled legs or force/torque controlled legs. This optimization 

is applicable for robots that use position controlled legs as well as force/torque controlled 

legs and seeks to minimize the maximum normal adhesion force on the tips of the legs. 

The maximum torque on the joints of the legs is also minimized for robots with 

force/torque controlled legs, while keeping the normal adhesion values on the tips of the 

legs of the robot at optimum levels.  

Objective one, which is the minimization of the maximum normal adhesion force, 

is met by presenting a closed form solution, which computes the optimal normal 

adhesion force required on the tips of the legs of a climbing robot in order  to adhere to 

vertical surfaces. The solution is found to depend on the position of the tips of the legs 

and the height of the robot, i.e. the distance between the center of mass and the 

climbing surface. 

In order to meet objective two, the effect of a number of geometrical parameters 

on the maximum normal adhesion have been investigated independently. The robot was 

simplified into a two-dimensional structure with each leg simplified into a single straight 

beam. This simplification was validated by explaining the stance the ants use while they 

are loitering on vertical surfaces. It was found that ants position their middle legs’ tip at 

approximately 0.61 to minimize the maximum normal adhesion force required to keep 

them on vertical surfaces. The effect of height, length, and the middle leg’s position were 

investigated for both force/torque controlled robots and position controlled robots, while. 

the thickness of both the body and the legs and the inclination of the body and the legs 

were investigated for position controlled robots. The single-link legs were then replaced 
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with equivalent two-link legs. Calculating the normal adhesion force on the tips of the 

legs was done using FEM. Lastly, guidelines to design an optimal robotic structure that 

minimize the maximum normal adhesion are presented at the end of Chapter 5. 

The problem of minimizing the maximum normal adhesion force of three-legged 

robots is a redundant problem with 2 DOF. Objective three uses this redundancy to 

minimize the maximum torque, for climbing robots with force/torque control legs, without 

affecting the optimal normal adhesion on the tips of the legs of the climbing robot. The 

optimization is carried out by transforming the non-linear problem into linear and solve 

the problem using the Simplex Algorithm. This method is found to be much faster, and 

more accurate compared to three widely used optimization algorithms. 

The work presented in this manuscript opens up potential leads for further 

research: 

 This work studies optimizing the forces on climbing robots considering the robots to 

be in a no motion state. Optimizing the forces while the robot is moving is an obvious 

extension to the presented work. This may include studying structures with four and 

five legs in order to design a suitable gait that minimizes the maximum adhesion 

force. It may also include designing a leg by choosing a proper links length, or joint 

placements, in order to optimize the torque on the joints. 

 In Chapter 5, the inclinations angle of the legs are considered to be equal. An 

extension is to study the effect of using legs with different inclination angles. 

 The two-links leg designs presented in Chapter 5 requires the use of an optimization 

algorithm to find an equivalent two-beams leg design to a single link leg. An 

extension is to find a closed form solution that computes the multi-beams design for 

any single-beam leg. Also, it would be interesting to see the effect of designing legs 

that have more than two-links. 

 The analyzed robotic model considers each foot to be one single point on the 

climbing surface and considers no transfer of moment between the feet and the legs. 

An extension is to design the whole feet. The design could take into account the 
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height, the shape, and the stiffness of both the feet and the connection joint between 

the feet and the legs.  

 The Simplex Algorithm used in Chapter 8 is tested on a dual core processor clocked 

at 2GHz with 4GB of memory. A challenging problem is to implement the 

optimization on microcontroller(s), such as Arduino Due, the fastest of the Arduino 

family, which has a single CPU clocked at 84MHz and a memory of 96KB, and allow 

it to run in real (or close to real) time. 

In this thesis, the maximum normal adhesion force and the maximum torque are 

minimized. Minimizing the maximum normal adhesion force allows the use of weaker 

attachment mechanisms. That allows the climbing robots to both climb vertical surfaces 

with higher weight or payload, and increase the force that secures the robot on the 

climbed vertical surface. Minimizing the maximum torque allows using weak motors 

which reduces cost and weight. 
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Appendix A. 
 
Stiffness of the materials does not affect the force 
distribution (Proof)  

In this Appendix we show that the use of different materials does not change the 

results of the geometrical optimization that is performed. In fact, the stiffness matrix for 

one beam is given by: 

 𝑭 =
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where 𝐸 is the elasticity coefficient, 𝐴 is the cross sectional area of the beam, 𝐿 is the 

length of the beam and 𝐼 is the inertia of the beam. Assuming all of the cross sections of 

the beams is a circle; the second moment of inertia for a circular cross section is: 

 𝐼 =
𝜋𝑟4

4
=

𝐴𝑟2

4
 (A2) 

Factoring out 𝐸, 𝐴 and 𝐿 can be written as: 
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 𝐹 = [
𝐴∙𝐸

𝐿
∙ 𝐾𝐸] ∙ 𝐷 (A4) 
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𝑲𝑬  is the stiffness matrix multiplied by  
𝐿

𝑨∙𝑬
. In the same way, 

𝑨∙𝑬

𝐿
 can be taken as 

a common factor from all of the elements of the stiffness matrix in Equation (4.6), which 

can be rewritten as: 

 𝑭𝒖 = [
𝐴∙𝐸

𝐿
∙ 𝑲𝑬𝟐𝟏] ∙ [

𝐴∙𝐸

𝐿
∙ 𝑲𝑬𝟏𝟏]

−𝟏
∙ 𝑭𝒌 (A5) 

 𝑭𝒖 =
𝐴∙𝐸

𝐿
∙ 𝑲𝑬𝟐𝟏 ∙

𝐿

𝐴∙𝐸
∙ 𝑲𝑬𝟏𝟏

−𝟏 ∙ 𝑭𝒌 (A6) 

The above equation can be written as: 

 𝑭𝒖 = 𝑲𝑬𝟐𝟏 ∙ 𝑲𝑬𝟏𝟏
−𝟏 ∙ 𝑭𝒌 (A7) 

It can be seen that Equation (A7)  is independent of the elasticity coefficient 𝐸. In 

other words, the elasticity of the beams relative to each other is what causes the change 

in the force distribution. 

  



 

83 

Appendix B 
 
Normal and Shear Force Distribution 

Shear force distribution due to middle leg’s position 

A structure with a height to body length aspect ratio of 1:2 is arbitrarily selected 

to explain the behavior of the normal force distribution due to changing the middle leg’s 

position. The shear force distribution on the legs of a robot with body length of 200, and 

height of 100 is shown in Figure B.1. The behavior of the force distribution for a three-

legged robot is similar for different height to length ratios. The shear force distribution for 

the middle leg always has a peak at middle leg’s position of 0.5, while the front leg has a 

maximum at middle leg’s position of 0, and the hind leg has a maximum at middle leg’s 

position of 1. The normal force, in Figure 5.1, for the middle leg has a minimum and a 

maximum at middle leg’s position value close to 0 and 1 respectively, the front leg has 

one peak close to middle leg’s position of 1 and the hind leg has one negative peak at a 

middle legs position of 0. 



 

84 

 

Figure B.1. Shear force distributions on the tips of the three legs for different 
positions of the middle leg. 

A rationale to understand the behavior shown in Figure B.1 is hereafter 

presented. Let us consider a robot on a vertical surface (See Figure B.2-a). Due to the 

effect of its weight, the legs deflect backward and act as springs with equal spring 

constants. Therefore, the 𝑐𝑔, the hip joints of the front leg (𝐽𝐻𝑓), the middle leg (𝐽𝐻𝑚) and 

front leg (𝐽𝐻ℎ) are displaced backward by a distance 𝛿𝑐𝑔, 𝛿𝑓 , 𝛿𝑚 and 𝛿ℎ respectively (see 

Figure B.2-b). The induced shear forces on the tips of the legs are directly proportional 

to the displacements 𝛿ℎ , δm and 𝛿𝑓, because the legs are assumed to be identical to 

each other. 
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Figure B.2. The deflection in the robot’s structure due to its weight when 
loitering on a vertical surface (a) the un-deflected structure, and (b) 
the deflected structure. 

Figure B.2, which is obtained through an ANSYS simulation, shows the 

deflections in the structure. In Figure B.2, 𝐵𝑚 is the beam connecting 𝐽𝐻𝑚 to  𝑐𝑔. 𝐵𝑓  and 

𝐵ℎ are instead the beams connecting  𝐽𝐻𝑓 to  𝐽𝐻𝑚 and  𝐽𝐻ℎ to  𝑐𝑔 respectively when the 

middle leg is located between 𝑐𝑔 and 𝐽𝐻𝑓. These two parameters, that is 𝐵𝑓 and 𝐵ℎ, are 

the beams connecting  𝐽𝐻𝑓 to  𝑐𝑔 and  𝐽𝐻ℎ to  𝐽𝐻𝑚 respectively when the middle leg is 

located between 𝑐𝑔 and 𝐽𝐻ℎ. 

When the middle leg is located between the center of mass and the front leg, the 

body’s deflection creates a compression in 𝐵𝑚 and  𝐵𝑓 and an expansion in 𝐵ℎ thus 

causing the distances 𝛿𝑓 , 𝛿𝑚 and  𝛿ℎ to be less than 𝛿𝑐𝑔. The distance  𝛿ℎ is equal to the 

compression in  𝐵ℎ subtracted from 𝛿𝑐𝑔; also, 𝛿𝑚 is equal to the elongation in  𝐵𝑚 

subtracted from 𝛿𝑐𝑔, and 𝛿𝑓 is equal to the compression in  𝐵𝑓 subtracted from 𝛿𝑚.  
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The maximum distance that 𝐽𝐻𝑚 travels is when it is located at the center of mass 

𝑐𝑔, which corresponds to the maximum force it experiences. The expansion in 𝐵𝑓 and 

the compression in 𝐵ℎ cause 𝛿𝑓 and 𝛿ℎ to be less than 𝛿𝑚; these expansion and 

compression generate less shear force in the hind and the front legs than that in the 

middle one (see Figure B.1when the middle leg’s position is at 0.5). The front and middle 

legs have the same shear force when the middle leg’s position is at 1, because, 𝛿𝑚 and 

 𝛿𝑓 are equal. The amount of expansion in 𝐵𝑓 increases with the length, causing 𝛿𝑓 to be 

smaller than 𝛿𝑚 and thus generating less shear force in the front leg than that in the 

middle one (see Figure B.1 for a middle leg’s position ranging between 0.5 and 1). 

The case when the middle leg is located between the center of mass and the 

hind leg could be analyzed as done previously. The main difference is that the beam 𝐵𝑚 

undergoes compression instead of expansion. 

Normal-force distribution due to middle leg’s position 

The normal force distribution at different middle leg’s positions is shown in Figure 

B.3. The distribution of the force on the tips of the legs can be explained by dividing the 

robot into two sub-structures at  𝐽𝐻𝑚. The first sub-structure, when the middle leg’s 

position is located between 0.5 and 1, is composed of the middle leg, 𝐵𝑓 and the front 

leg while the second sub-structure is composed of 𝐵𝑚, 𝐵ℎ and the hind leg. The first sub-

structure, when the middle leg is positioned between 0 and 0.5, is composed of the 

middle leg, 𝐵ℎ and the hind leg and the second sub-structure is composed of 𝐵𝑚, 𝐵𝑓 and 

the front leg. 
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Figure B.3. Normal force distribution on the tips of the legs for different middle 
leg’s positions. The maximum adhesion force follows the profile of 
the green line in the 0-0.38 range and the blue line in the 0.38-1 
range. 

The second sub-structure, formed by the hind leg, 𝐵ℎ and 𝐵𝑚, when the middle 

leg’s position between 0.5 and 1, applies a wrench to the first sub-structure, formed by 

the middle and the front legs with 𝐵𝑓; the wrench is comprised of  𝐹𝐿 which has the same 

direction as the gravitational force towards the negative x-axis, a shear 𝐹𝑃 towards the 

positive y-axis, and a torque  𝜏 applied at  𝐽𝐻𝑚. The effect of the wrench can be analyzed 

by considering the structure that contains the middle leg, the front leg and  𝐵𝑓 in Figure 

B.4. The effect of the individual components of the wrench is explained as follows: 

First, the effect of 𝜏𝐿: applying a torque  𝜏𝐿 at  𝐽𝐻𝑚 causes a tension force to be 

generated in the front leg and a compression force in the middle leg. A decrease in the 

length of 𝐵𝑓, due to a change in the middle leg’s position towards the front, causes an 

increase in the tension and the compression magnitude in the front and middle legs, and 

vice versa. 



 

88 

 

Figure B.4. Structure of a 2-legged robot 

Second, the effect of 𝐹𝐿: applying force  𝐹𝐿 at 𝐽𝐻𝑚 causes a tension force to be 

generated in  the middle leg and a compression force in the front leg. A decrease in the 

length of 𝐵𝑓 , due to a change in the middle leg’s position, causes an increase in the 

amount of the tension and compression, and vice versa. Third, the effect of  𝐹𝑃: applying 

force 𝐹𝑃 in the positive direction of the y-axis at 𝐽𝐻𝑚 causes a tension force in only the 

middle leg, i.e. a decrease in the normal force of the middle leg. 

Each of the first two wrench components, namely 𝜏𝐿 and 𝐹𝐿, cause opposite 

forces along the middle and the front legs, thus causing the big difference in the normal 

forces of the middle and front legs, which are colored green and blue in Figure B.3. The 

difference in the forces is a result of the opposite forces generated in the middle and 

front legs by 𝜏𝐿 and 𝐹𝐿.  

The case when the middle leg is positioned between 0 and 0.5 can be analyzed 

similarly. The second sub-structure, formed by  𝐵𝑚, 𝐵𝑓 and the front leg, applies a 

wrench to the first sub-structure, formed by the middle leg, 𝐵ℎ and the hind leg, at  𝐽𝐻𝑚 

while the normal force at the tips is a result of the wrench applied. The deflected shapes 

for different configurations of the robot are shown in Figure B.5. 
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Figure B.5. This figure shows the deflection of the structure of a robot for 
different heights and middle leg’s positions. The body has body 

length of 200, elasticity of 𝟏. 𝟏𝟐 × 𝟏𝟎𝟗  and a unit weight. (i) The 
height is 30 and 𝒅𝒓 is equal to 40. Note that  the deflection is 

magnified by 𝟏. 𝟗𝟓 × 𝟏𝟎𝟓 times. (ii) The height is 50 and 𝒅𝒓 is equal to 
190. Note that the deflection is magnified by 626.7 times. (iii) The 

height is 100 and 𝒅𝒓 is equal to 110. The deflection is magnified by 
8928.4 times. 

 

  




