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Abstract

Classifying mobile application traffics is important in many network management tasks.
Existing works rely on human expertise and reverse engineering to build classification rules.
The huge number of mobile applications make it ineffective and even infeasible to do reverse
engineering on every mobile application. In this thesis, we design a novel structure of app
identification rules. Two algorithms are developed to mine the rules from HTTP header
fields without any other external input. In addition, we also explore the function and effects
of different HTTP header fields in the identification task. An extensive empirical study on
real data verifies the effectiveness of our algorithms.

Keywords: Network Traffic Classification; Mobile Application Identification; Automated
Rule Generation
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Chapter 1

Introduction

In this chapter, we first introduce the basic idea of mobile network traffic classification
and several challenges, which are studied in this thesis. Then, we summarize the major
contributions and describe the structure of the thesis.

1.1 Motivations

Having a clear view of the traffics running in a network is important for many network
management tasks, such as capacity planning and provisioning, traffic engineering, fault
diagnosis, application performance, anomaly detection. For instance, network operators
may need to block the traffics from malicious applications or lower down the priority of the
traffics from gaming apps in an enterprise network. Those tasks all require techniques which
can classify network traffics at a per flow granularity. Many methods have been proposed
to tackle this challenge [9].

In recent years, the way people interact with the Internet has changed dramatically.
Smartphones and tablets have become a new gateway to access the Internet. People typically
download mobile applications on their devices and use them to support their daily activities.
The number of such devices in public and enterprise Wi-Fi networks is increasing rapidly
[12]. A clear and accurate view of the mobile application traffics is valuable in many
application areas.

Example 1 (Motivation - Control the Usage of Mobile Applications): Most enterprises
provide Wi-Fi hotspots for their employees and guests. Those networks are designed for
users to check their emails, read news, look up weather or some other working purposes.
However, many employees use them to play mobile games, chat with friends or watch
online videos. Such activities not only lower down their own productivity but also affect
the Internet usage of others. But, it is difficult to stop them from using those applications
because a network manager cannot monitor or control mobile apps running on people’s
devices. Partially due to this phenomenon, network management is more and more difficult.
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One way for network managers to regain control of their networks is to identify the
source apps of the traffics in their networks. For example, suppose a company wants to
stop employees from using enterprise Wi-Fi to play mobile games. Currently, the task is
hard because the network operators have no idea about which traffics are from the gaming
apps. If the operators can classify the network traffics into their source apps, they can block
the traffics generated from the targeted apps.

Clearly, classifying mobile application traffics has practical applications.
Example 2 (Motivation - Mobile Application Usage Investigation): With an ever increas-

ing number of mobile applications, recommender systems in app stores become more and
more important for users to find relevant apps. Falaki [15] has shown that people may
have different mobile app preferences at different locations. Therefore, it would be very
promising for recommender systems to consider the spatial and temporal information from
users while doing recommendation. To do that, we first need to answer questions about the
usage patterns of mobile applications, like "What are the most frequently used mobile appli-
cations at restaurants?" and "What are the most frequently used mobile applications in the
morning?". There have been studies characterizing mobile traffics [20, 51]. However, their
methods are limited in a small scope because they rely on volunteers using instrumented
phones.

One way to tackle the problem is automatically classifying mobile network traffics into
their source apps. For example, suppose we want to know the usage patterns of mobile
applications in Vancouver and do mobile application recommendations based on user loca-
tions. We can first collect anonymized network traffics in a large cellular network. After
correctly classifying the mobile network traffics into their source mobile applications, we
can collect the statistics about spatial and temporal information of the apps. Finally, the
information can be used to improve the performance of mobile application recommender
systems.

Again, we can see that classifying mobile application traffics is meaningful.
Classifying mobile network traffics has several unprecedented challenges. First, a large

number of mobile applications use HTTP/HTTPS to communicate with their hosts instead
of some specific protocols. This makes protocol or port based methods ineffective. Second,
many individual developers do not have enough money for their own hosts. Therefore, it
is very common for developers to put their apps on third-party hosts, such as AWS. This
makes it ineffective to classify network traffics simply by their IP information or domain
information. Third, the number of mobile applications is increasing dramatically every year.
According to the latest report, IOS developers submitted more than 1000 apps per day [2].

App signature or app identifier is a string that is uniquely associated with a mobile
application [52]. Figure 1.1 shows some examples of signatures, which are highlighted in
blue, included in the HTTP headers sent from their corresponding apps. Current methods
[52, 48, 10, 36] rely on reverse engineering the executable archives of mobile applications
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Figure 1.1: App identifiers in HTTP header fields share common textual structures

to find their signatures. Those methods suffer from low app coverage, since only about
half of the apps put their signatures in their executable archives. Another way to tackle
this problem is to treat each HTTP header as a set of items and apply the well-developed
discriminative pattern-based method [16] to find app signatures. One limitation of this kind
of methods is that they require a very low support threshold to find signatures of apps that
do not generate many traffics.

Yao et al. [52] found that many effective app signatures in HTTP headers are associated
with shared textual contexts. Leveraging this property, they first reverse engineer the
executable archives of mobile applications and select a set of candidate app signatures. Next,
for each flow in the training set, their method characterizes the lexical context associated
with a signature string in terms of the prefix/suffix that surrounds such occurrences. The
lexical contexts which are shared by many apps are kept to find new app signatures. Their
experiment shows that a small set of such textual structures is enough to extract app
signatures that can be used to build effective network traffic classifiers. There are two
reasons for this phenomenon:

• Third party services need to identify an app using the app name provided by the
developer or the unique app signature generated by the service provider at the time
of registration. Therefore, those services ask apps to put the assigned signatures or
their app names at some specific positions of HTTP queries [48]. For example, when
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using the service of Double-Click 1, apps are required to send their app names to the
servers as the value of the query parameter an=.

• The User-Agent string is the text that programs use to identify themselves to HTTP,
mail and news servers, for usage tracking and other purposes. By the definition
of User-Agent in RFC 2068 ( Hypertext Transfer Protocol ), this field can contain
multiple product tokens. The product tokens are listed in order of their significance
for identifying the application [23]. For example, in Figure 1.1, the app names are
put at the beginning of the strings, since they can clearly identify the applications.

Considering the above limitations and the fact that substrings contained in shared tex-
tual structures are effective app signatures. In this thesis, we aim to answer this question:
can we build effective mobile network traffic classifiers by automatically extracting app
signatures hidden in shared textual structures without any external knowledge?

1.2 Major Idea

Inspired by the observation that some textual structures persist across flows produced by
multiple applications and the signatures of those applications are hidden in the shared tex-
tual structures [52]. We propose a classification rule mining method that can automatically
find app signatures and build classification rules from the mobile network traffics. Our
algorithm starts with using sequential pattern mining techniques to find textual structures
that are shared by many apps. To evaluate the qualities of the found textual structures, we
propose a heuristic measure. The textual structures that cannot extract app signatures are
pruned. The remaining textual structures are used to extract app signatures from training
data. The extracted app signatures are used to construct traffic classification rules. For
rules extracted from each training instance, we keep the Top-K best ones according to our
measure. Finally, we build a rule-based mobile network traffic classifier with the extracted
rules.

1.3 Contributions and Organization

• We proposed a method which does not rely on any reverse engineering and manual
inspection to tackle the mobile network traffic classification problem.

• We explore different ways to ensemble identification rules learned from different HTTP
header fields.

• A performance study is conducted to evaluate our approach. We run our method on
network traffics generated by applications from Android and IOS platforms.

1https://www.doubleclickbygoogle.com/
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The rest of the thesis is organized as follows. The related work is discussed in Chapter
2. We formulate our mobile network traffic classification problem in Chapter 3. In Chapter
4, we propose two measures to evaluate the quality of app signatures and textual structures.
In Chapter 5, our algorithms are presented. We report our experimental results in Chapter
6, and conclude the thesis in Chapter 7.
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Chapter 2

Related Work

In this section, we review the existing works highly related to our study and point out the
differences.

2.1 Network Traffic Classification

The area of processing and modeling network traffics has been a fast growing research
direction and receives a lot of attentions. In this section, we review the studies related to
network traffic classification.

2.1.1 Port-based Approaches

The port-based methods are one of the most fundamental techniques. A TCP connection
usually starts with a 3-way handshake. The client first sends a SYN packet to a specific
server port of a specific application as illustrated in Figure 2.1. Therefore, the port field of
packets can be used to identify the application type. For example, this method classifies
all traffic on TCP port 80 as HTTP traffic and all traffics on TCP port 25 as SMTP. This
approach was successful because many traditional applications use port numbers assigned by
or registered with the Internet Assigned Numbers Authority (IANA) [5, 49]. The advantage
of this method is being fast as it only needs simple calculations. But today, this method is
ineffective in most cases. There are two main reasons. (1) More and more applications use
dynamically allocated port numbers, such as P2P applications. (2) Some applications hide
their traffics by using TCP port 80. According to [38], the technique can only achieve an
accuracy around 70% for the network traffic classification task.

2.1.2 Packet-based Approaches

An alternative way to tackle the problem is analyzing traffics using payload inspection.
In this type of methods, packet properties, like specific byte patterns, are used to classify
network traffics.
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Figure 2.1: SMTP applications send packets to port 25 of their servers.

In [44], Sen et al. proposed an approach for identifying P2P application traffics by using
application-level signatures. They first got the application-level signatures by manually
analyzing the network traces of some popular P2P applications. Then, those signatures
were utilized to build online identification engines. To avoid deriving signatures manually,
several works studied the problem of automatically extracting signatures from payload
contents. Kim et al. [32] presented a method that uses the frequent byte sequences in
training data to identify malicious traffic. However, this method is very sensitive to the
quality of training data. To tackle the problem, Li et al. [34] proposed Hams which is a
noise-tolerant signature generation system. Haffner et al. [25] took advantages of machine
learning algorithms to improve the accuracy of generated signatures and evaluated the
performance of their algorithm on real data.

Since most packet-based approaches suffer from demanding computing cost, many meth-
ods attempted to develop light and scalable identification engines. Erdogan et al. [14] used
bloom filter to speed up the signature matching phase. To further reduce the CPU com-
putation, they had two types of hash functions, which are ‘bad but cheap’ and ‘good but
expensive’. The ‘good but expensive’ hash functions are only calculated when the cheap
functions indicate a match. Guo et al. [24] used payload signatures and sampling techniques
to identify traffics of several P2P applications. They also investigated the relationship be-
tween sampling rate and the performance of their method.

In recent years, machine learning methods are introduced to classify network traffics.
In [39], Moore et al. illustrated an algorithm using supervised Naive Bayes estimator to
classify network traffics into predefined application groups. Several properties of packets,
like the source and destination ports, were selected as discriminators. They employed Fast
Correlation-Based Filter [53] to remove redundant and irrelevant discriminators. Auld et
al. [4] extended the work using Bayesian Neural Network. To classify TCP flows as early
as possible, Bernaille et al. [7] described a method that only uses the properties of the first
five packets of a TCP connection. This approach employs a clustering method and takes
the size and the direction of packets as features. In [8, 3], the authors used decision tree
(C4.5 [43]) to classify network traffic.

7



2.1.3 Flow-based Approaches

An essential limitation of packet-based approaches is that they require heavy computational
power since they rely on looking for the explicit signatures in a huge amount of packets.
Therefore, recent studies utilized the statistical properties of traffic flows to tackle the
problem.

Some heuristic rules were proposed to identify P2P traffics. Constantinou and Mavrom-
matis [11] used host behaviors and network diameter to detect P2P traffics. Inspired by
previous works, John and Tafvelin [29] constructed more rules to identify P2P traffics. In
addition to identification rules, another set of rules were designed to remove false positive
flows from suspected P2P traffics.

Many other works tackle the problem by finding interaction patterns between hosts.
In [30], Karagiannis et al. captured host behavior patterns and represented them using
graphs, which they call graphlets. To classify a given flow, they sought for a match of its
host behaviors in all graphlets. Iliofotou et al. [27] presented a new way to monitor, analyze
and visualize network traffics by using Traffic Dispersion Graphs (TDGs). The nodes and
edges of TDGs are designed to represent hosts and different interactions between hosts,
respectively. In [26], Iliofotou utilized TDGs to develop an application classification tool
named Graption. Graption starts with clustering network traffics. Clusters are classified
into different P2P applications based on their TDGs.

To improve the classification efficiency, statistical properties of traffic flows are intro-
duced. Bartlett et al. [6] analyzed three properties of P2P traffics, which were failed
connections, the ratio of incoming and outgoing connections, and the use of unprivileged
ports. Those properties were used to identify P2P applications in network traffics. Gomes
et al. [21] provided a new perspective for traffic classification which was based on the en-
tropy of packet sizes. They found that the entropy of P2P traffics was much larger than
the entropy of regular client-server traffics.

The aforementioned works either focus on classifying network traffics into a few prede-
fined categories, such as P2P or email, or focus on identifying some specific applications,
such as Skype or P2P. Different from previous works, our thesis works on a more general
problem, identifying applications from network traffics. Instead of classifying network traf-
fics into a few predefined coarse categories, we classify traffics into specific applications.
Comparing with the above classification tasks, our task is facing many new challenges.
First, the number of classes in our task is very large. By 2015 June, the number of IOS
application is already 1.5 million [28]. Second, the traffics of mobile applications have some
unique properties. For example, most of the mobile applications using HTTP as their
communicating protocol, which makes port based methods useless.

8



2.2 Mobile Traffic Analysis

With widespread popularity of smart phones, understanding mobile traffics becomes more
and more crucial in many aspects, such as network security, traffic mornitoring, and network
resources management. A lot of efforts have been made to get a clear view of mobile traffics.
We broadly categorize previous studies into two groups as follows.

2.2.1 Mobile Application Identification

There are two challenges in mobile app identification task. Unlike traditional PC applica-
tions, mobile applications do not use a specific type of protocol or port. Another challenge
is the huge number of mobile apps comparing to the number of traditional ones. Due to
those reasons, it is not easy to identify individual apps from network traffics.

In [51], Xu et al. proposed an approach by looking for app names in the User-Agent
field. However, this method does not work very well for Android apps, since most Android
developers do not put any explicit app signatures in the User-Agent fields. Choi et al. [10]
generated app signatures from traffics of ads or analysis services embedded in apps. But
this method suffers from low traffic coverage because ads and analysis services flows only
occur in a small fraction of total traffics.

To automatically generate signatures for apps from different platforms, Yao et al. [52]
proposed a systematic framework, SAMPLES, for generating app identification rules. Each
rule is composed of a lexical signature of an app and a lexical context of the signature.
The lexical signatures are extracted from the executable archives of mobile apps. Their
method has a high identification accuracy and a reasonable coverage. But it still has some
drawbacks. First, their method cannot deal with apps with encrypted execute archives,
since they relied on the signatures extracted from those files. Second, it is time-consuming
to reverse engineer millions of executable archives. Third, it also suffers from the application
coverage issue. According to their investigation, only about 60% mobile applications put
their explicit signatures in the executable archives.

Miskovic et al. [36] presented AppPrint, a system that can continually learn and refine
signatures of mobile applications. They created app signatures as collections of tokens,
e.g., any generic key-value pairs in URLs or any substrings of HTTP header fields, such as
User-Agents or Cookies. The algorithm keeps statistics of all individual tokens observed
in the traffics and the applications to which each token may be attributed. To identify
applications, the algorithm measures the similarity between tokens found in traffics and all
token-to-app associations learned from training data. The drawback of the system is that it
requires some seeding with explicit app identifiers. Therefore the performance is influenced
by the quality of seeds.

Mongkolluksamee et al. [37] enhanced the performance of mobile traffic identification
with communication patterns. They proposed a technique that combines the packet size
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distribution and communication patterns extracted via graphlet [30]. However, it is hard
to scale it up to the size of current app markets with hundreds of thousands of apps, since
it needs to build a graphlet for each app.

Dai et al. [13] profiled Android apps by generating state machine based signatures.
Although automated and comprehensive, their method is computationally expensive. In
the identification step, each flow needs to be compared with a set of state machines. This
operation is complicated and inefficient. Another limitation is that this method also relies
on reverse engineering of executable archives.

Unlike the previous studies, our method is designed to identify individual apps without
on device and external information. Our method has a higher recall then previous ones at
both request granularity and app granularity. In addition, our method explores the roles
different HTTP fields play in the identification job. To the best of our knowledge, our
system is the first one leveraging the unique properties of different HTTP fields.

2.2.2 Mobile Traffic Profiling

Many studies explored information in mobile traffics because having a clear view of mobile
traffic properties sheds light on both mobile and network communities.

A group of studies tried to profile users based on browsing behaviors and the applications
they used. In [41], Paraskevopoulos et al. studied call activities and mobility patterns, and
characterized the anomalous behaviors of a large set of users. Moreover, they investigated
the relationships between identified patterns and social events that were took place in the
same time period. Keralapura et al. [31] analyzed mobile user browsing behaviors by
mining distinct ‘behavior patterns’ among mobile users. In their study, they found that the
browsing behaviors of mobile users showed very strong temporal patterns. Shafiq et al. [45]
provided a fine-grained characterization of the geospatial dynamics of application usage in
a 3G cellular data network.

Identifying the source of mobile traffics can yield insights in the area we just mentioned.
With the help of a better mobile identification system, we can have a more comprehensive
and accurate view of the apps running on user devices. Thus, people can have more accurate
profiles of mobile users. For example, the work [45] can be improved to show more accurate
and comprehensive usage patterns of mobile applications, if we can accurately identify a
large scale of mobile applications in the mobile network traffics.
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Chapter 3

Problem Definition and System
Overview

In this chapter, we formulate our problem.

3.1 Problem Definition

Let I be a set of items which is the alphabet of a sequence database. α = e1 . . . en is a
sequence if ei ∈ I (1 ≤ i ≤ n). The sequence α can also be represented by < e1, . . . , en >,
where items are separated by commas. For two sequences α = e1 . . . en and β = e

′
1 . . . e

′
m,

the concatenation of β to α is the sequence e1 . . . ene
′
1 . . . e

′
m, denoted by α · β or simply

αβ. The i-th item in the sequence α is denoted by α[i]. The subsequence of α, ei . . . ej , is
denoted by α[i, j].

To represent the textual structures shared by mobile apps, we propose a new concept,
context.

Definition 3.1 (Head, Tail and Context). A sequence γ = a1...am appears in a sequence
α = b1...bn (m ≤ n), denoted by γ ⊂ α, if there exists an index 0 ≤ i < n such that bj+i = aj

(1 ≤ j ≤ m). A head of γ w.r.t. α is a sequence h = bk...bi (1 ≤ k ≤ i − 1) and a tail
of γ w.r.t. α is a sequence t = bi+m+1...bq (i + m + 1 ≤ q ≤ n). A sequence may have
multiple heads and tails w.r.t. one sequence. A context of γ is a pair C = (h, t), where h is
a head and t is a tail. C is in a sequence α, denoted by C @ α, if there exists a sequence β,
such that hβt ⊂ α. A sequence β is extracted by a context C = (h, t) from a sequence α, if
hβt ⊂ α and both h and t are not empty sequences. A sequence β is extracted from a set of
sequences Σ by context C = (h, t), if there exists a sequence α ∈ Σ, such that β is extracted
by the context C from α.

The concepts of heads and tails of the sequence f w.r.t. α are illustrated in Figure 3.1.
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Head Tail

Sequence	
  𝛼

Sequence	
  𝑓

Figure 3.1: The concepts of Head and Tail

Field Name Description Examples
Domain Host-Name The host name in URL oimg.nbcuni.com
User-Agent The string of user agent NBC/3 CFNetwork/7 Darwin/14
Query Parameters Part of URL after ? example.cn/t?name=ferret
Path Part of URL as a sequence

of segments separated by
slashes

example.com/over/there

Date The date and time that the
message was sent

Date: Tue, 15 Nov 1994 08:12:31
GMT

Non-standard request
field

Some common seen non-
standard fields

X-Requested-With:
com.talkray.ios

Table 3.1: Commonly seen HTTP request fields

Example 3.1 (Head, Tail and Context). Consider two sequences, α = abcde and β = bc,
where β ⊂ α. The sequence h = a is one of the heads of β w.r.t. α and the sequence t = d

is one of the tails of β w.r.t. α. C1 = (a, d) is a context of β. Similarly, C2 = (a, de) is
another context of β. Therefore, one sequence may have multiple contexts w.r.t. a single
sequence.

Definition 3.2 (Super Context). Consider two different contexts C1 = (h1, t1) and C2 =
(h2, t2), where C1 6= C2. C2 is called a super context of C1 if there exist two sequences α
and β, such that (αh1, t1β) = (h2, t2). A context C may have multiple super contexts.

For example, both contexts C1 = (b, feg) and C2 = (ab, f) are super contexts of C3 =
(b, f).

Definition 3.3 (HTTP Header). A header field, denoted by F = K : V , is a name-value
pair. K and V are the field name and the field value, respectively. A list of commonly seen
HTTP header fields are shown in Table 3.1. An HTTP Header, H = {K1 : V1, . . . ,Ki : Vi},
is a set of header fields. For an HTTP header H, the value of the HTTP header field Kj is
denoted by H.Kj.

Example 3.2 (HTTP Header). An example of HTTP header generated by the app Talkray
1is shown in Figure 3.2. It is represented by H. H.host refers to the value of Domain Host-
Name of H. Similarly, H.user_agent refers to the value of the User-Agent field. There are
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Domain	
  Host-­‐Name:	
  Itunes.apple.com
Path:	
  /CA/lookup?
Query	
  Parameters:	
  bundleId=com.talkray.ios
User-­‐Agent:	
  Talkray/2.1	
  CFNetwork/711.1.16	
  Darwin/14.0.0
Date:	
  Tue,	
  5	
  Apr	
  2016	
  09:12:23	
  GMT
X-­‐Requested-­‐With:	
  com.talkray.ios
Severity	
  level:	
  Chat
Group: Sequence

Those	
  fields	
  will	
  be	
  merged

Domain	
  Host-­‐Name:	
  Itunes.apple.com
Path:	
  /CA/lookup?
Query	
  Parameters:	
  bundleId=com.talkray.ios
User-­‐Agent:	
  Talkray/2.1	
  CFNetwork/711.1.16	
  Darwin/14.0.0
Date:	
  Tue,	
  5	
  Apr	
  2016	
  09:12:23	
  GMT
Additional: X-­‐Requested-­‐With:	
  com.talkray.ios&Severity	
  level:	
  Chat&Group: Sequence

Figure 3.2: An HTTP header of the app Talkray

two interesting phenomena shown in Figure 3.2. First, The app name "Talkray" is embedded
in the User-Agent field. Second, the IOS bundle id of the app, "com.talkray.ios", is used as
the value part of the query.

In our thesis, three HTTP header fields, the Query field, the Path field, and the User-
Agent field are processed separately. We process the other fields together by concatenating
them into an HTTP query like string. The concatenated string is named as "Additional
field". An example of the Additional field is shown in Figure 3.2. For values of each field,
we first replace all version numbers with the regular expression "[0-9.]+" and then process
them into a set of word sequences by using space, ‘;’, ‘(’ and so on as delimiters. Each
sequence is padded with "ˆ" and "$". Except for space, other delimiters will be kept as
items in the processed sequences. Some examples of the generated sequences are shown in
Table 3.2. Items in the sequences are separated by commas.

Definition 3.4 (HTTP Header Field Database). Let Ω be a set of mobile applications and
π be a set of HTTP headers. A database of HTTP header field n, denoted by HDBn, is a
set of tuples (sid,H.host,H.date, α,A), where H ∈ π,A ∈ Ω, sid is a unique record id and

1https://itunes.apple.com/ca/app/talkray-free-call-texts-live/id543061998
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Field Original Data Processed Sequence
User-Agent ray/2.17 CFNetwork <ˆ, ray, /, [0-9.]+, CFNetwork$>
User-Agent 49ers (iPad;) <ˆ, 49ers, (, iPad, ;, ), $>

Path /CA/lookup? <ˆ, /, CA, /, loopup, ?, $>
Query id=talkray&ts=1433340 <ˆ, id=, talkray, &, ts=, 1433340, $>

Additional VundleID:talkray&Tag:UTM <ˆ, VundleID:, talkray, &, Tag:, UTM, $>

Table 3.2: Values of some HTTP header fields and their processed sequences

SID Host Date Data App
10 H1 07/03/2016 <ˆan=, wechat, &, ts=, 14422, &, l=, en, &, $> A
20 H1 07/04/2016 <ˆan=, wechat , &, ts=, 14333, &, l=, en, &, $> A
30 H1 07/04/2016 <ˆan=, facebook , &, ts=, 14333, &, l=, en, &, $> B
40 H1 07/05/2016 <ˆan=, iphone.xia.langki.photoedit, &, $> C
50 H1 07/05/2016 <ˆlang=, en, &, $> A
60 H1 07/05/2016 <ˆlang=, en, &,$> C

Table 3.3: An example of HTTP header field database HDBquery

α is a sequence produced from H.n. For a host m, let HDBm
n = {r|r.host = m, r ∈ HDBn}

be the set of records with host m.

An example of the HTTP header field database is shown in Table 3.3. Values in the
Date column are the dates (Month/Day/Year) the traffics were generated.

Definition 3.5 (Signature). Given a sequence α ∈ I∗ and an app A, if there exists a context
C = (h, t), where h ∈ I∗ and t ∈ I∗, such that for any (sid, host, date, β, app) ∈ HDB, if
hαt ⊂ β, then app = A, we say the sequence α is uniquely associated with the app A in the
context C. A signature is a sequence that is uniquely associated with an app in a specific
context.

We consider a sequence that is uniquely associated with an app in a specific context as
a signature. The reason is that the same sequence in different contexts may have different
meanings. Therefore, the same sequence in different contexts might be the signature of
different apps. Table 3.4 shows three HTTP queries generated by three apps. The string
com.cg.tennis is the package name of the app 3D Tennis 2 which is a good signature of the
app when used in the context ("app_name=", "&"). But it is not a signature of any apps in
the context ("ea=", "&"), since it is associated with multiple apps. If we strictly require that
a signature must be uniquely associated with an app in all contexts, some good signatures,
like com.cg.tennis, will be discarded. If we treat the string app_name = com.cg.tennis

as a signature, the textual structure around the signature is ("&", "&"). Therefore, we
cannot find the valuable textual structure ("app_name=", "&") which can help us find the
signatures of many apps.

2https://play.google.com/store/apps/details?id=com.cg.tennis
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App Name HTTP Header Field Value Host
Sudoku Master . . .&ea=com.cg.tennis&. . . google-analytics.com
Unblock Car . . .&ea=com.cg.tennis&. . . google-analytics.com
3D Tennis . . .&app_name=com.cg.tennis&. . . doubleclick.net

Table 3.4: Three HTTP headers contain the same string "com.cg.tennis"

Example 3.3 (Signature). An HTTP header field database HDB is shown in Table 3.3.
The sequence en is not a signature of any classes in the context ("l=", "&"), because the
sequence l=en& is associated with A, B, and C. The sequence 1433 is not a signature of
any classes in the context ("ts", "&"). But another sequence 14422 is a signature of the app
A in the context ("ts", "&"), since the sequence ts=14422& is uniquely associated with the
app A. One sequence in HDB may contain multiple signatures of an app. For instance,
the first record contains two signatures of the app A, 14422 and wechat.

Definition 3.6 (Context Support). Given a set of record R and a context C, where
R is a subset of HDB, the support of C in the dataset R is defined as SupR(C) =
‖{app|(sid,host,date,α,app)∈R,C@α}‖
‖{app|(sid,host,date,α,app)∈R}‖ . The nominator is the number of mobile applications occur-

ring together with the context C. The denominator is the total number of mobile applications
in the dataset R.

Example 3.4 (Context Support). Given a context C =("lang=", "&") and an HTTP header
field database HDB shown in Table 3.3. The support of C is computed as SupHDB(C) =
‖{A,C}‖
‖{A,B,C}‖ = 2

3

Definition 3.7 (Mobile Traffic Classification Rule). Let Ω be the set of mobile applications.
A mobile traffic classification rule is in the form of R = {HeaderF ield : host → s ⇒ A},
where host is a host name, s is a sequence and A ∈ Ω is a mobile app. A record (sid,

ˆhost, date, α, B) is said to match a rule R, denoted by R @ S, if the sequence s ⊂ α and
R.host = ˆhost.

Example 3.5 (Mobile Traffic Classification Rule). Assume we have a mobile classification
rule R = {Query : b.scorecardresearch → com.cbsradui.cbsraduiplyer ⇒ Radio.com}.
Rule R can match all HTTP traffics sent to the host b.scorecardresearch with an HTTP
query having the string com.cbsradui.cbsraduiplyer.

The main goal of this thesis is to build an effective mobile network traffic classifier
using mobile traffic classification rules extracted from a training set. Based on the above
definitions and discussions, we present the formal definition of our problem.

Problem Definition The main input of our task is a set of labeled HTTP headers
generated by training apps. The values of header fields are processed into sequences of
items. The output is a rule-based classifier that can accurately classify mobile network
traffics into their source applications.
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3.2 System Overview

In this section, a system is proposed to solve the mobile network traffic classification prob-
lem. Figure. 3.3 shows an overview of our proposed system. The system takes labeled
HTTP network traffics as input, where labels are app names, and no additional information
is necessary. For each header field n, we build an HTTP header field database HDBn from
the input data, such as HDBpath and HDBquery. Later, mining algorithms are used to find
classification rules from those databases simultaneously. Each set of rules is used to build
a base classifier. During the classification of a new HTTP packet, the decisions of the base
classifiers are integrated together to form the final result.

Figure 3.3: Overview of The Proposed System

The workflow of our mining algorithms is shown in Figure 3.4. To find classification
rules, our system first finds a set of frequent contexts. Then, the quality of each context is
evaluated based on the signatures extracted by it. Contexts that do not satisfy the quality
requirement are pruned. After that, contexts are used to extract signatures and construct
classification rules from training data. To be specific, our method mainly consists of three
phases: mining frequent contexts, evaluating contexts and constructing classification rules.

Figure 3.4: Overview of The Mining Process
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Chapter 4

Measures of App Signatures and
Contexts

Even though many works [36, 50, 52] use app signatures to classify mobile network traffics,
there is no universally accepted definition of signature quality. Suppose we have two signa-
tures extracted from the same User-Agent field of the app San Francisco 49ers 1. They are
"49ers /[0-9.]+" and "49ers". How can we tell which one is better? Similarly, given two con-
texts, C1 = ("ˆ", "/[0-9.]+") and C2 = ("ˆ", "/[0-9.]+ CFNetwork/[0-.9]+ Darwin/[0-.9]+"),
how to select the better one? To answer these questions, we propose two heuristic measures
to evaluate the qualities of app signatures and contexts.

4.1 Measure of Signatures

A list of app signatures found in different header fields is shown in Table 4.1. The version
numbers in the User-Agent fields are replaced by the regular expression, [0-9.]+. It is
beneficial to observe that an HTTP header field may contain multiple app signatures. From
Table 4.1, we can see that there are mainly two types of bad signatures.

• Signatures with redundant parts: The signatures with redundant parts may lead
to complicated and long classification rules. As shown in Table 4.1, both "WAFB
News" and "WAFB News / " are signatures of the app WAFB Local News 2. From
intuition, "WAFB News" is better, since the other one contains an unnecessary part
"/ ". The item "/ " is widely used by a lot of apps. By removing this item, we can get
a more clear and simpler signature.

1https://itunes.apple.com/ca/app/san-francisco-49ers/id395859078
2https://itunes.apple.com/us/app/wafb-local-news/id449649021?mt=8
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App Name App Signature Field Value
WAFB Local News WAFB News WAFB News/[0-9.]+ CFNetwork/[0-9.]+
WAFB Local News WAFB News / WAFB News/[0-9.]+ CFNetwork/[0-9.]+

Daily News 1433340272222 . . . &ns_ts=1433340272222& . . .
Daily News 1439047530708 . . . &ns_ts=1439047530708& . . .
Daily News 1442261758538 . . . &ns_ts=1442261758538& . . .
Daily News Daily%20News . . . &ns_ap_an=Daily%20News&...
Univision Univision . . . &ns_ap_an=Univision&...

News 12 Mobile News12 . . . &ns_ap_an=News12&...

Table 4.1: Example App Signatures

• Temporary signatures: Some signatures are only effective in a short period of time,
such as timestamps. Even though those signatures are uniquely associated with the
apps in the training dataset, they are not effective in the future.

Based on our observations, we propose three requirements of a good signature.

• Relevant: High-quality signatures should be strongly relevant to its class. Strongly
relevant features are usually powerful in classification.

• Persistent: A signature is persistent means that its occurrences are not changed over
time. Some signatures, like cookies and timestamps, are changing over time. They
should not be regarded as app signatures, as they are only effective in a short period
of time. It is not effective or efficient to update signatures frequently considering the
huge amount of apps.

• Informative: We treat some tokens that are widely used by most apps as stop words,
such as "iPhone", "CFNetwork" and "Darwin". An informative signature should not
contain too many stop words. For instance, the app WAFB Local News has two
signatures, "WAFB News / [0-9.]+" and "WAFB News". "WAFB News / [0-9.]+" is
less informative than "WAFB News", since "[0-9.]+" and "/ " are two stop words that
appear in the User-Agent fields of most apps.

Based on the above criteria, we develop a measure of signature quality. Suppose a
sequence s is a signature of the app A. The signature s is extracted by the context C from
the training set R, where R is a subset of the records in HDB. In the computation of
contexts and signatures, we analyze signatures and contexts for each distinct HTTP host
service. This type of "signatures and contexts plus host service" analysis is based on the
fact that the meanings of some contexts and signatures are tied to specific web services.

To measure the persistence property of a signature s, we introduce a score function
D(s,A, C,R), where C is a context, s is a signature of the app A and R is the training set.
The sequence s is extracted by the context C from the dataset R.
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SID Host Date Data App
10 H1 7/3/2016 <an=, facebook, &, ts=, 1442261758, &, l=, en, & > A
20 H1 7/4/2016 < an=, facebook , &, ts=, 1433340272, &, l=, en, & > A
30 H1 7/4/2016 < an=, wiki , &, ts=, 1433340276, &, l=, en, & > B
40 H1 7/5/2016 < an=, iphone.xia.langki.photoedit, & > C
50 H2 7/5/2016 < lang=, en, & > A
60 H2 7/5/2016 < lang=, en, & > C

Table 4.2: Example Database

Let Date(s,A, C,R) = {date|(sid, host, date, α, app) ∈ R, hst ⊂ α, app = A} be the
dates we observe the sequence hst in the traffics from app A. The dates we observe context
C in the traffics of the app A is denoted by Date(A, C,R) = {date|(sid, host, date, α, app) ∈
R,C @ α, app = A}. The persistence score of a signature s is calculated as

D(s,A, C,R) = ‖ Date(s,A, C,R) ‖
‖ Date(A, C,R) ‖

D(s,A, C,R) is a number between 0 and 1. If the signature s has a strong property
of persistence, then its persistence score should be close to 1. The intuition of function
D is that if the signature s does not change over time, like the account id of an app,
‖ Date(s,A, C,R) ‖ should be close to ‖ Date(A, C,R) ‖.

Example 4.1 (Persistence Score). In Table 4.2, the sequence s1 = facebook is a sig-
nature of the app A in the context C1 = (“an = ”, “&”). The set of records in HDB

sending to host H1 is denoted by R. The persistence score of s1 is D(s1,A, C1, R) =
‖{07/03/2016,07/04/2016}‖
‖{07/03/2016,07/04/2016}‖ = 1. The sequence s2 = 1433340272 is a signature of the app A
in the context C2 = (“ts = ”, “&”). The persistence score of the signature 1433340272 in
the context C2 is D(s2,A, C2, R) = ‖{07/04/2016}‖

‖{07/03/2016,07/04/2016}‖ = 1
2 .

In [35], the authors measure the informativeness of a phrase in an article by calculating
the average inverse document frequency (IDF) [46] over words. IDF is a traditional infor-
mation retrieval measure of how much information an item provides. In our thesis, we treat
each signature as a word sequence and adopt the method in [35] to quantify the informa-
tiveness of signatures. The group of records from the same app is treated as a document.
The number of documents is equal to the number of apps in our training data. Let I be a
set of items which is the alphabet of the sequences in the training set R. The total number
of apps in database R is denoted by Ω. The IDF for an item ei ∈ I is computed as

IDF (ei, R) = log
Ω

‖ {app|(sid, host, date, α, app) ∈ R, e1 ∈ s ‖}
.

The informativeness of a signature s is computed as the average IDF over its items. It
is computed as
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Inf(s,R) = 1
‖ s ‖

∑
ei∈s

IDF (ei, R) ∗ 1
logΩ

The term 1
logN is used to normalize the informativeness scores, so the values fall between

0 and 1. In general, good signatures are expected to have not too small informativeness
scores.

Example 4.2 (Informativeness Score). The traffics sent to the host H1 in Table 4.3 is
denoted by R. The informativeness score of the signature <49ers> is Inf(49ers,R) =
log ‖{A,B,C}‖‖{A}‖ ∗ 1

log‖{A,B,C}‖ = 1. The sequence <49ers, iphone, os> is another signature of
the app. Its informativeness score is Inf(< 49ers, iphone, os >,R) = 1

3 ∗ (log ‖{A,B,C}‖‖{A}‖ +
log ‖{A,B,C}‖‖{A,B}‖ + log ‖{A,B,C}‖‖{A,C}‖ ) ∗ 1

log‖{A,B,C}‖ = 0.579.

We use Cosine [47] to measure the relevance between a signature s and an app A. As
we have discussed in Section 3.1, The meanings of sequences are influenced by the context
it is in. Therefore, when consider the relevance between the signature s and a mobile app
A, we should also consider the context of the signature s. The IS between a signature s
and an app A is denoted by IS(s,A, C,R), where s is surrounded by the context C = (h, t).
If s is a good signature of the app A, IS(s,A, C,R) should be close to 1. Mathematically,
IS(s,A, C,m) is computed as:

Cosin(s,A, C,R) = P (s,A|C,R)√
P (s|C,R) ∗ P (A|C,R)

=
√
P (s|A, C,R)P (A|C, s,R)

P (s,A|C,R) represents the probability we observe the sequence hst and the app A
appear together in the traffics having the context C. The probability P (s,A|C,R) is com-
puted as ‖{sid|(sid,host,data,α,app)∈R,hst⊂α,app=A}‖

‖{sid|(sid,host,data,α,app)∈R,C@α}‖ . P (s|A, C,R) represents the probability we
observe the sequence hst in traffics which are from the app A and contain the context
C. The probability P (s|A, C,R) is computed as ‖{sid|(sid,host,data,α,app)∈R,hst⊂α,app=A}‖

‖{sid|(sid,host,data,α,app)∈R,C@α,app=A}‖ . The
term P (A|C, s,R) represents the probability that a traffic containing the sequence hst is
generated by the app A. If the sequence s is a signature of the app A, according to the def-
inition of signature, P (A|C, s,R) should be one. Therefore, IS(s,A, C,R) can be simplified
as

√
P (s|A, C,R).

Therefore, the relevance between app A and signature s is computed as

Rel(s,A, C,R) =
√
P (s|A, C,R)

Example 4.3 (Relevance Score). Suppose we have an HTTP header database as shown in
Table 4.2. Consider the signature s1 =< facebook > of the app A. Let R1 be the set of
traffics sent to host H1. It is extracted by the context C1 =("an=", "&") from R1. The
relevance score between s1 and the app A in the dataset R1 is 1. Let us consider another
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SID Host Date Data App
10 H1 07/03/2016 <ˆ, 49ers, iphone, os, $> A
20 H1 07/04/2016 <ˆ, 49ers, iphone, os, $> A
30 H1 07/04/2016 <ˆ, iphone, $> B
40 H1 07/05/2016 <ˆ, windows, os, $> C

Table 4.3: An Example of User-Agent Database

signature s2 =< 1442261758 > of the app, which is extracted by the context C2 =("ts=",
"&"). The relevance score between s2 and the app A is

√
1/2.

Putting everything together, the quality score of s is defined as

Q(s,A, C,R) = D(s,A, C,R) ∗Rel(s,A, C,R) ∗ Inf(s,R)

There can be many different ways for us to combine the three functions, D(s,A, C,R),
Rel(s,A, C,R) and Inf(s,R). We choose product instead of other methods since it has
several advantages. First, product is easy to compute. Second, signatures with high persis-
tence scores, relevance scores or informativeness scores are more likely to have a high quality
score. Third, if one of the three values of a signature is very low, the signature is likely to
have a low quality score as well. For example, suppose we have a set of records, denoted
by R, shown in Table 4.3. Consider two signatures s1 = iphone os and s2=49ers, extracted
by the context C1 =("49ers", "$") and C2 =("ˆ", "/"), respectively. Comparing with 49ers,
the first signature is worse since it is simply the combination of two stop words and not
informative at all. According to our definition, D(s1,A, C1, R) = 1, Rel(s1,A, C1, R) = 1
and Inf(s1, R) = 0. If we define the quality score of a signature as the sum of the three
functions, the quality score of the signature s1 will be 2. Considering the maximum value
of the sum of the three functions is 3, 2 is a pretty high score. But using our definition, the
quality score of the signature s1 is 0.

Definition 4.1 (App Signature Quality). Based on the above considerations, we assume
a quality measure of app signatures. The quality of a signature s, which is extracted
from dataset R by context C, of an app A is denoted by Q(s,A, C,R) = D(s,A, C,R) ∗
Rel(s,A, C,R) ∗ Inf(s,R). This is a number falling between 0 and 1.

4.2 Measure of Contexts

In our thesis, the textual structures around signatures are denoted by context. In this
section, we introduce the measure used to evaluate the quality of contexts.

Based on our observations and the previous work [52], there are two characteristics of
good contexts.
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• Frequent: A frequent context in the training data may indicate that it is able to
extract signatures for many apps.

• Effective: A good context should be able to extract high-quality signatures. The
frequency of contexts alone is not enough to measure their qualities because some
high-frequency contexts may not be able to extract good signatures. Suppose we have
a set of User-Agent as shown in Table 4.4. Items in each sequence are separated by
commas. C1 =("ˆ", "$") and C2 =("ˆ", "/") are two contexts in Table 4.4. C1 is more
frequent than C2, but the signatures extracted by C2 is better than C1. The signature
extracted by C1 from the first record is "49ers, /, [0-9.]+, iPad, IOS, [0-9.]+". While
the signature extracted by C2 from the first record is "49ers". Obviously, the second
one is better, since the second one is shorter and has a larger quality score. Therefore,
in addition to the frequency, we also need to evaluate the qualities of contexts by
assessing the qualities of the extracted signatures.

Based on the above criteria of contexts, we propose a measure of context quality.
To evaluate the effectiveness of a context C = (h, t) on the dataset R, we developed

a score function E(C,R), where R is a set of records in HDB. The reason we do not
evaluate a context on the whole dataset is that the meanings of some contexts may be tied
to specific host services. For example, consider the query parameter id. This parameter
may have different meanings when sent to different hosts.

The set of apps in the dataset R is denoted by Ω(R) = {app|(sid, host, date, α, app) ∈
R}. The set of sequences, extracted by the context C from the traffics generated by
the app A, is denoted by S(A, C,R) = {β|(sid, host, date, α, app) ∈ R, hβt ⊂ α, app =
A}. The set of apps with the sequence hβt in their traffics is denoted by Γ(β,C,R) =
{app|(sid, host, date, α, app) ∈ R, hβt ⊂ α}. For a sequence s extracted by the context C,
if it is a signature of an app A, ‖ Γ(s, C,R) ‖ should be 1.

We use the average quality of the sequences extracted by a context C to evaluate its
effectiveness. If a sequence is not a signature of any apps, its quality is set to 0. The
effectiveness of a context C is computed as

E(C,R) = 1
‖ Ω(R) ‖

∑
A∈Ω(R)

1
‖ S(A, C,R) ‖

∑
s∈S(A,C,R)

Q(s,A, C,R)

SID Host Date Data App
10 H1 07/03/2016 ˆ, 49ers, /, [0-9.]+, iPad, IOS, [0-9.]+ $ A
20 H1 07/04/2016 ˆ, AdultSwim2, /, [0-9.]+, iPad, IOS, [0-9.]+, $ B
30 H1 07/04/2016 ˆ, ABCDisneyJr, /, [0-9.]+, iPad, IOS, [0-9.]+ $ C
40 H1 07/04/2016 ˆ, Facebook, $ D

Table 4.4: Example Database
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Q(s,A, C,R) is a piecewise function, which is defined as

Q(s,A, C,R) =

Q(s,A, C,R) ‖ Γ(s, C,R) ‖= 1

0 ‖ Γ(s, C,R) ‖6= 1

If a context C cannot extract any signatures from a dataset, the effectiveness score of
C on this dataset is 0. Similarly, if most of the signatures extracted by a context C are in
very low quality, the effectiveness score of the context C is low as well.

The support of a context C in the dataset R, SupR(C), is used to measure the frequency
of C. By combining the effectiveness score and the frequency, the quality score of a context
C is defined as

QC(C,R) = 2 ∗ SupR(C) ∗ E(C,R)
SupR(C) + E(C,R)

The above formula is a weighted average of the frequency and effectiveness of a context.
This score carries the same spirit of F1 score [22]. The constant term "2" is used to normalize
QC(C,R), so that the value falls between 0 and 1. QC(C,R) reaches its best value at 1
and worst at 0.

Example 4.4 (Quality of Contexts). We will show how to evaluate the qualities of contexts
C1 =("ˆ", "$") and C2 =("ˆ", "/") on the dataset shown in Table 4.4.

The four sequences extracted by the context C1 is {"49ers / [0-9.]+ iPad IOS [0-9.]+",
"AdultSwim2 / [0-9.]+ iPad IOS [0-9.]+", "ABCDisneyJr / [0-9.]+ iPad IOS [0-9.]+",
"Facebook" }. The sequences in the set is separated by commas. The items in each sequence
is separated by spaces.

The sequence s1 = "49ers / [0-9.]+ iPad IOS [0-9.]+" is a signature of the app A in
the context C1. The informativeness score of the signature s1 given the context C1 is 0.34.
Both the persistence score and the relevance score of the signature are 1. Therefore, the
quality score of the signature given the context C1 is Q(s1,A, C1, R) = 0.34. Similarly, we
can calculate the quality scores of other three signatures. The quality scores of the remaining
three signatures are 0.34, 0.34, and 1, respectively. By the definition above, the effectiveness
score the context C1 is computed as 0.34+0.34+0.34+1

4 = 0.505. Given SupR(C1) = 1 and
E(C1, R) = 0.505, the quality score of the context C1 is 0.67.

The four sequences extracted by the context C2 is {"49ers", "AdultSwim2", "ABCDis-
neyJr", "Facebook" }. The quality scores of the four signature are all 1. Therefore, the
effectiveness score E(C2, R) = 1. Since SupC2(R) = 3

4 , the quality score of the context
C2 = 2 ∗ 0.75

1+0.75 is 0.85.

From this example, we can see that our measure can effectively find the contexts that
is able to extract good signatures.
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Chapter 5

Proposed Method

Based on the value format of HTTP header fields, we categorize HTTP header fields into
two types, structured fields and unstructured fields. Values in the structured header fields
have a clear key-value format, like the HTTP Query and the Additional field. Values in
the unstructured header fields are in pain text format, like the HTTP User-Agent and
the HTTP Path. We developed two algorithms to find frequent contexts in structured
and unstructured header fields, respectively. In Section 5.1, we propose an algorithm to
find frequent contexts in structured header fields. In Section 5.2, we present a PrefixSpan
[42] based algorithm to mine frequent contexts in unstructured header fields. In order to
make the algorithm more efficient, we manage to avoid some unnecessary computations
by applying some pruning techniques. In Section 5.3, we introduce the way to construct
classification rules. In Section 5.4, we develop two techniques that can speed up our method.

5.1 Mining Frequent Context From Structured Data

Values in the structured HTTP header fields have a clear key-value format. For instance,
an HTTP query "an= PhotoEditor&ts=1442261758&l=en&" contains three key-value pairs,
which are "an=PhotoEditor", "ts=1442261758 " and "l=en". A value in the Additional
field, "X-Requested-With:com.talkray.ios&Severity level:Chat&Group:Sequence" has three
key-value pairs as well, which are "X-Requested-With:com.talkray.ios", "Severity level:Chat"
and "Group:Sequence". As shown in the example, the keys of the pairs are either query
parameters, such as "an=" or the keywords defined in HTTP protocol, such as "Severity
level". When mining frequent contexts in structured header fields, we take the values in
key-value pairs as potential signatures and the corresponding keys as their contexts. For
example, consider the sequence <an=, PhotoEditor, &, ts=, 1442261758, &, l=, en, &>,
generated from the above query, we only consider "PhotoEditor", "1442261758" and "en"
as potential signatures and C1 =(<an=>, <&>), C2 =(<ts=>, <&>) and C3 =(<l=>,
<&>) as the contexts. Even though the context C1 =(<an=>, "&") can extract multiple
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signatures from the example HTTP query, such as <PhotoEditor>, <PhotoEditor, &, ts=,
1442261758>, and <PhotoEditor, &, ts=, 1442261758, &, l=, en>, only the first one will
be considered. The reason is that only the first one is the value of the query parameter
"an=".

Since data in the structured head fields are already organized in key-value pairs, a simple
scan of the training set is enough to find all of the possible contexts. As we have discussed in
Section 4.1, the meanings of some contexts and signatures are tied to specific host services,
we analyze signatures and contexts for each distinct HTTP host service.

Algorithm 1: Mine frequent contexts from structured data
Input: The training dataset HDB; the minimum support min_sup
Result: A set of frequent contexts
Counter ← an empty dictionary
Let l(·) be the length of a sequence
Ω is the set of apps in R
foreach r ∈ HDB do

for i← 1 to l(r.data) do
if r.data[i] contains the symbol "=" or ":" then

C ← (r.data[i], &)
Counter[C] ← Counter[C] ∪ r.app

end
end

end
foreach context C in Counter do

if ‖Counter[C]‖
‖Ω‖ > min_sup then

Output context C
end

end

Given an HTTP header field database HDB, we first group the instances by their host
value, such that traffics sent to the same host are grouped together. The group of instances
with host hi is denoted by HDBhi . Those groups are processed one by one to find frequent
contexts for each host. Algorithm 1 illustrates the details of our frequent context mining
algorithm of structured header fields. The algorithm has two parameters. R is the set of
traffics sent to the same host. min_sup is the support threshold. If an item ei contains "="
or ":", such as "an=" and "X-Requested-With:", we regard it as the head part of a context
and construct a context C =(<ei>, <&>). By scanning the input dataset, we count the
support of each contexts and output the ones whose supports are larger than our predefined
threshold. The problem of this method is that we may output a huge number of frequent
contexts. Assume we have M hosts and each host has N query parameters. In the worst
case, we need to store M ∗N frequent contexts. In Section 5.4, we will talk about how to
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reduce the size of outputs. Let ‖ HDB ‖ be the size of the database. The time complexity
of the algorithm is O(‖ HDB ‖ ∗N).

5.2 Mining Frequent Context From Unstructured Data

In this section, we introduce the algorithm of mining frequent contexts from unstructured
header fields. In Section 5.2.1, the major idea and the mining process are illustrated with
an example. The enumeration tree of contexts is shown in Section 5.2.2. The algorithm
based on the enumeration tree is presented in Section 5.2.3.

5.2.1 Frequent Context Mining: An Example

The major idea of our algorithm is that we first find frequent sequences and use them as
context heads. Then, for each head h we find frequent sequences in h-projected database
[42] as tails of contexts. In the mining process, we directly prune infrequent contexts.

Our proposed algorithm is a variation of the PrefixSpan algorithm. PrefixSpan is pop-
ularly used for sequential pattern mining which relies on the prefix-projection of databases.
It is very efficient and scalable. Unfortunately, this method cannot be applied directly to
find frequent contexts since it aims to find frequent sequential patterns instead of frequent
sequence pairs. Another reason we cannot directly apply the algorithm is that PrefixSpan
does not consider the gaps between items, while we require that both the head and tail parts
of contexts must be consecutive subsequences. Therefore, to find frequent contexts, we need
to solve two challenges. The first one is how to find frequent consecutive subsequences. The
second one is how to efficiently find frequent combinations of the frequent sequences.

The concepts of prefix and projected database were proposed in [42]. In our thesis,
we change the definitions in the original work to forbid gaps between items and consider
multiple appearances of a sequence β in a sequence α.

Definition 5.1 (Prefix, Projection and Suffix). Given a sequence α =< e1, e2, . . . , en >, a
sequences β =< e′1, e

′
2, . . . , e

′
m > (m < n) is called a prefix of α if and only if ei = e′i for

(1 ≤ i ≤ m). A subsequence α′ of α is called a projection of α w.r.t. prefix β if and only if
α′ has prefix β. A sequence γ is called the suffix of α w.r.t. prefix β if βγ = α.

Example 5.1 (Prefix, Projection and Suffix). A sequence may have multiple prefixes. Con-
sider the sequence α =< a, b, a, d, c >. Both < a > and < a, b, a > are prefixes of the
sequence α. Different from the definition of projection in [42], the sequence α has multiple
suffixes w.r.t. to the prefix < a >. They are < a, b, a, d, c > and < a, d, c >. The suffix of
α w.r.t. the prefix < a, b, a > is < d, c >.

Definition 5.2 (Projected Database). Let α be a sequence and HDB be an HTTP header
database. For a record r = (sid, host, date, data, app) in HDB, the set of projections of the
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Figure 5.1: Suffixes of the sequence abadc w.r.t. the prefix a

sequence data w.r.t. prefix α is denoted by p(data, α). The α-projected database is denoted
by HDB|α. HDB|α = {(sid, data, host, γ, app)|(sid, data, host, data, app) ∈ HDB, β ∈
p(data, α), αγ = β}. It contains the suffixes of the projections of the sequences in HDB

w.r.t. prefix α. In the projected database, the sid of records is a pointer to the record in
HDB. Therefore, the records in α-projected database, that are generated from the same
record in HDB, have the same sid. The β-projected database of HDBα is denoted by
(HDB|α)|β or simply HDB|(α,β). HDB|(α,β) is called (α, β)-projected database.

Example 5.2 (Projected Database). An example database is shown in Table 5.1. The items
in sequences are separated by commas. The <[0−9.]+>-projected database is shown in Table
5.2. Since the sequence <[0 − 9.]+> appears twice in the record r=(50 , H1 , 07/04/2016
, <ˆ, mozilla, [0-9.]+, iphone, os, [0-9.]+, en, web, tv, $>), r generates two records in the
projected database. As another example, the <[0 − 9.]+, en>-projected database is shown
in Table 5.3.

Given the database HDB shown in Table 5.1 and the threshold min_sup = 1
2 , frequent

contexts in the database can be mined in the following steps.
Step 1: Find length-1 sequence. Scan HDB once to find all frequent items in the

database. Each of them is a frequent length-1 sequence. They are <ˆ> : 1, <[0-9.]+> : 1,
<en> : 1, <cfnetwork> : 1, <iphone> : 1, <os> : 1, <mozilla> : 1 and <$> : 1, where

ID Host Date Data App
10 H1 07/03/2016 ˆ, trader, [0-9.]+, cfnetwork, en, $ A
20 H1 07/03/2016 ˆ, beenverified, [0-9.]+, cfnetwork, en, $ B
30 H1 07/03/2016 ˆ, hype, hair, [0-9.]+, cfnetwork, en, $ C
40 H1 07/04/2016 ˆ, mozilla, [0-9.]+, iphone, os, [0-9.]+, en, web, tv, $ A
50 H1 07/04/2016 ˆ, mozilla, [0-9.]+, iphone, os, [0-9.]+, en, coastal, $ B
60 H1 07/04/2016 ˆ, mozilla, [0-9.]+, iphone, os, [0-9.]+, en, maxgo, $ C

Table 5.1: Example Database
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ID Host Date Data App
10 H1 07/03/2016 cfnetwork, en, $ A
20 H1 07/03/2016 cfnetwork, en, $ B
30 H1 07/03/2016 cfnetwork, en, $ C
40 H1 07/04/2016 iphone, os, [0-9.]+, en, web, tv, $ A
40 H1 07/04/2016 en, web, tv, $ A
50 H1 07/04/2016 iphone, os, [0-9.]+, en, coastal, $ B
50 H1 07/04/2016 en, coastal, $ B
60 H1 07/04/2016 iphone, os, [0-9.]+, en, maxgo, $ C
60 H1 07/04/2016 en, maxgo, $ C

Table 5.2: The <[0− 9.]+>-projected database

ID Host Date Data App
40 H1 07/04/2016 web, tv, $ A
50 H1 07/04/2016 coastal, $ B
60 H1 07/04/2016 maxgo, $ C

Table 5.3: The <[0− 9.]+, en>-projected database

<sequence> : support represents the sequence and its support. Those sequences are used
as heads of contexts.

Step 2: Divide search space of heads. The complete set of possible context heads
can be partitioned into the following eight subsets according to their prefixes: (1) the ones
starting with ˆ,..., (8) the ones starting with $.

Step 3: Find subsets of heads. The subsets of context heads can be mined by
constructing corresponding projected databases and mine each recursively.

Step 4: Divide search space of contexts. Let H be the set of possible heads we
find. The complete set of contexts can be partitioned into ‖ H ‖ subsets according to the
heads they have.

Step 5: Find subsets of contexts. The subset of contexts with head α can be mined
by finding all frequent sequences in the α-projected database. The process is very similar
to how we find frequent heads from the original database. The set of frequent sequences
found in the α-projected database is denoted by T . For each sequence β ∈ T , we can form
a context (α, β). More details about the mining process are explained as follows.

Let us find contexts with heads starting with the sequence < [0−9.]+ >. Only sequences
containing < [0 − 9.]+ > should be collected. In a sequence containing < [0 − 9.]+ >, all
subsequences with the prefix < [0 − 9.]+ > should be considered. For example, given the
sequence <ˆ, mozilla, [0-9.]+, iphone, os, [0-9.]+, en, web, tv, $>, both the subsequences
<[0-9.]+, iphone, os, [0-9.]+, en, web, tv, $> and <[0-9.]+, en, web, tv, $> should be
considered.
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Sequences in HDB containing < [0 − 9.]+ > are processed to form the < [0 − 9.]+ >-
projected database, denoted by HDB|<[0−9.]+>, which contains 9 records. They are shown
in Table 5.2. By scanning the first items of the sequences in the projected database, all
of the length-2 sequences with the prefix < [0 − 9.]+ > can be found. They are < [0 −
9.]+, cfnetwork >, < [0− 9.]+, iphone >, and < [0− 9.]+, en >. Since they all satisfy the
support requirement, we need to expand all of them.

Recursively, all sequences with the prefix < [0 − 9.]+ > can be partitioned into three
subsets: (1) those having prefix < [0 − 9.]+, cfnetwork >, (2) those having prefix < [0 −
9.]+, iphone >, and (3) those having prefix < [0 − 9.]+, en >. Those subsets of sequences
can be mined by constructing respective projected databases and mining each recursively
as follows.

There are three sequences in the < [0 − 9.]+, en >-projected database. They are <
web, tv, $ >, < coastal, $ >, and < maxgo, $ >. Since the items, web, coastal, andmaxgo are
not frequent, there is no hope to generate frequent sequences from the database. Therefore,
the processing of the < [0− 9.]+, en >-projected database is terminated.

The < [0− 9.]+, iphone >-projected database has three sequences, which are < os, [0−
9.]+, en, web, tv, $ >, < os, [0 − 9.]+, en, coastal, $ > and < os, [0 − 9.]+, en,maxgo, $ >.
The database leads to finding the length-3 sequence <[0-9.]+, iphone, os>.

Similarly, we can find frequent sequences with prefix <ˆ>, < en >, < cfnetwork >,
< iphone >, < os >, < mozilla > and <$>, respectively. The sequences we found in
previous steps are used as the head parts of contexts.

The complete set of contexts can be partitioned into multiple subsets according to their
heads. Those subsets of contexts can be found by constructing the projected databases of
their heads and mining them recursively.

First, let us find contexts with the head < [0 − 9.]+, en >. Only sequences containing
< [0− 9.]+, en > should be considered. The < [0− 9.]+, en >-projected database, denoted
by HDB|<[0−9.]+,en>, consists of three sequences, which are < web, tv, $ >, < coastal, $ >,
and < maxgo, $ >. Then, we need to find all frequent sequences in HDB|<[0−9.]+,en>. The
process is very similar to the method used to find frequent sequence in the original database
HDB. The sequence < $ > is the only frequent sequence in the projected database.
Therefore, the context with the head < [0− 9.]+, en > is (< [0− 9.]+, en >,< $ >).

Similarly, we can find frequent contexts with other heads by repeating the above steps.

5.2.2 Enumeration Tree of Contexts

In this section, we introduce the enumeration tree of contexts. We define a binary relation-
ship between contexts, called parent, which indicates a direct edge from children to their
parents. The relationship indicated by function parent forms a spanning tree.
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Definition 5.3 (Parent Context). Given a context C1 = (h1, t1), where t1 6= ∅, the parent
of C1, denoted by parent(C1), is the context obtained from C1 by removing the last item
from its tail. Given a context C2 = (h2, ∅), parent(C2) is the context obtained from C2 by
removing the last item in its head.

Example 5.3 (Parent Context). Given a context C1 = (abc, d), its parent is parent(C1) =
(abc, ∅). Given a context C2 = (abc, ∅), where the tail is an empty set, its parent is
parent(C2) = (ab, ∅).

Lemma 5.1 (Parent Context). For any context C, except (∅, ∅), it has only one parent.

Lemma 5.2 (Parent Relationship). For any HTTP header field database HDB, a directed
graph R = (N,E,⊥) can be formed, where N is the set of nodes, i.e., the set of all contexts
in HDB, E is the set of edges such that (C1, C2) ∈ E iff C1 = parent(C2), and ⊥= (∅, ∅)
is the root context in HDB. R must be a rooted spanning tree with root ⊥.

Proof. First, let us prove R does not have circles. We prove it by contradiction. Assume
there exists a cycle in R, n1 → . . . ni → ni+1 → · · · → nk → ni+1, where, n1, . . . , nk are
nodes in R and k ≥ 1. The cycle means ni and nk are both the parent of ni+1. But
according to Lemma 5.1, each node can only have one parent. Therefore, R does not have
cycles.

Second, let us prove R is a connected graph. Consider two random nodes ni, nj ∈ N .
By recursively applying parent function on ni and nj , both of them can be transformed to
the root node (∅, ∅). According to the definition of R, there exists a path from ni to the
root and a path from nj to the root, respectively. Therefore, R is a connected graph.

The tree mentioned in Lemma 5.2 is denoted by enumeration tree. For example, given
a sequence database shown in Table 5.4, its enumeration tree is shown in Figure 5.2.

Figure 5.2: Contexts Tree
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ID Host Date Data App
10 H1 07/04/2016 <a, b, c, a> A
20 H1 07/04/2016 <b, a, c> B
30 H1 07/04/2016 <a, b, a, d> C

Table 5.4: Example Database

Lemma 5.3 (Support of Parent Context). Given a context C and its parent Cp, their
support on the dataset HDB are denoted by SupHDB(C) and SupHDB(Cp), respectively.
SupHDB(C) ≤ SupHDB(Cp)

Proof. For any sequences containing context C. it must contain Cp as well. Therefore,
SupHDB(C) ≤ SupHDB(Cp).

Property 5.1 (Infrequent Context). If a context C is infrequent, then any super contexts
of C must be infrequent. Therefore, we do not need to expand an infrequent context.

Lemma 5.3 shows that the support of contexts has an anti-monotonicity property. If we
already fount that a context C is not frequent, there is no need for us to further investigate
its children. By applying the lemma, we can prune branches with infrequent contexts as
root while searching the enumeration tree.

In the next section, we will show an enumeration algorithm for frequent context mining.
This algorithm starts from the context (∅, ∅) and searches from shorter to longer all frequent
contexts in a depth-first search manner over the tree R.

5.2.3 Frequent Context Mining

In this section, we present an efficient algorithm of enumerating frequent contexts based on
the depth-first-search over enumeration tree.

Lemma 5.4 (Construction of Projected Database). γ, α, and β are three sequences in the
database HDB, where γ = αβ. The γ-projected database, HDB|γ, can be constructed from
HDB|α by keeping sequences with prefix β and removing β from the head of those sequences.
Therefore, HDB|γ = {(sid, host, date, δ, app)|(sid, host, date, data, app) ∈ HDB|α, βδ =
data}.

Proof. Let HDB|′α = {(sid, host, date, δ, app)|(sid, host, date, data, app) ∈ HDB|α, βδ =
data} be the database constructed from HDB|α.
∀(sid, host, date, s, app) ∈ HDB|γ , the record (sid, host, date, γs, a) must be in HDB

according to the definition of projected database. Since γ = αβ, we can write γs as αβs.
Since (sid, host, date, βs, app) ∈ HDB|α, (sid, host, date, s, app) ∈ HDB|′α.
∀(sid, host, date, s, a) ∈ HDB|′α, (sid, host, date, αβs, a) must be in HDB. Therefore,

by the definition of projected database, (sid, host, date, s, a) ∈ HDB|γ . Thus, HDB|′α =
HDB|γ .
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For instance, consider the database shown in Table 5.4. The <a, b>-project database
contains two records, which are (10, H1, 07/04/2016, <c, a>, A) and (30, H1, 07/04/2016,
<a, d>, C). By removing < a > from the head of the sequences with the prefix < a >, we
can get one new record, (30, H1, 07/04/2016, <d>, C). It forms the < a, b, a >-projected
database.

Definition 5.4 (Support Count of Contexts in Projected Database). Let C = (α, β) be
a context in the database HDB. The set of apps in HDB is denoted by ΩHDB. In
HDB|α, the set of apps in the records whose data contains the subsequence β is denoted by
ΩHDB|α. The support count of C in the α-projected database, denoted by SupHDB|α(C), is
Sup(HDB|α)(C) = ‖ΩHDB|α‖

‖ΩHDB‖ .

Lemma 5.5 (Support Count of Context in Projected Database). Consider a database HDB
and a context C = (α, β), where α and β are two sequences. SupHDB(C) = SupHDB|α(C)

Proof. The set of records in HDB matching the context C is denoted by X = {r.sid|r ∈
HDB,C @ r.data}. The set of records in HDB|α containing β is dentoed by Y = {r.sid|r ∈
HDB|α, β ⊂ r.data}. The host, date, data and app in the record HDB[sid] is denoted by
hostsid, datesid, datasid, and appsid, respectively.

For any sid ∈ X, since C @ datasid, there must exist a sequence γ, such that αγβ ⊂
datasid. Therefore, we can find two sequences η and ε which can be empty, such that
εαγβη = datasid. According to the definition of projected database, HDB|α must have the
record (sid, hostsid, datesid, γβη, appsid). Therefore, sid ∈ Y.

For any sid ∈ Y, there must exist two sequences γ ad ε, such that the record (sid,
hostsid, datesid, γβε, appsid) in HDB|α. According to the definition of HDB|α, the record
(sid, hostsid, datasid, αγβε, appsid) must be in HDB. Since the sequence αγβε matches
the context C, sid ∈ X.

The support count of a context is calculated based on the records matching the context.
Since X = Y, SupHDB(C) = SupHDB|α(C).

Lemma 5.6 (Size of Projected Databases). Sequence γ = αβ, where α and β are two
sequences. The size of HDB|γ cannot exceed the size of HDB|α.

Proof. The size of HDB|α is equel to the number of subsequences in HDB with α as prefix.
The size of HDB|γ is equel to the number of subsequences in HDB with γ as prefix. Since
γ = αβ, any sequences with prefix γ must have α as prefix as well. Therefore, the size of
HDB|γ cannot exceed the size of HDB|α.

Since forming projected database costs a lot of computing power, a technique called
pseudo-projection was introduced in [42]. This technique uses positional pointers to rep-
resent the prefix-projection, which examines only the suffix subsequences corresponding to
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Algorithm 2: Mine Frequent Contexts From HTTP Header Database
Input: The training dataset HDB; The context support threshold min_sup;
Let Ω(·) be the number of apps in a database
Find all of the frequent items in HDB, denoted by flist
foreach α ∈ flist do

PHDB|α ← PSEUDO_PROJECT(HDB, α)
MINECONTEXTS(PHDB|α, α)

end
Function MINECONTEXTS(PHDB|α, α)

foreach (sid, start,) ∈ PDB|α do
α′ ← α

⋃
datasid[start]

PHDB|α′ ← PHDB|α′
⋃

(sid, start+ 1)
expand_sequences← expand_sequences

⋃
α′

end
MINETAIL(PHDBα, α)
foreach α′ ∈ expand_sequences do

if Ω(PHDB|α′ )
Ω(PHDB|HDB) > min_sup then
MINECONTEXTS(PHDBα′ , α′)

end
end

Function MINETAIL(PHDBα, α)
Find all of the frequent items in PHDBα, denoted by flist(PHDBα)
foreach β ∈ flist(PHDBα) do

PHDB|(α,β) ← PSEUDO_PROJECT(PHDBα, β)
MINETAIL_RECURSIVE(PHDB|(α,β), α, β)

end
Function MINETAIL_RECURSIVE(PHDB|(α,β), α, β)

foreach (sid, start) ∈ PHDB|(α,β) do
β′ ← β

⋃
HDB[id][start]

PHDB|(α,β′) ← PHDB|(α,β′)
⋃

(sid, start+ 1)
expand_sequences← expand_sequences

⋃
β′

end
Output the context (α, β)
foreach β′ ∈ expand_sequences do

if Ω(PHDB|(α,β′))
Ω(PHDB|HDB) > min_sup then
MINETAIL_RECURSIVE(PHDB(α,β′), α, β′)

end
end
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the frequent prefix subsequence. For example, the < [0− 9.]+] >-projections of the record
(40, H1, 07/04/2016, <ˆ, mozilla, [0-9.]+, iphone, os, [0-9.]+, en, web, tv, $>, A) are (40,
4) and (40, 7), where 40 is the pointer to the record and both 4 and 7 are the offsets to the
suffixes. In the thesis, we also adopt the technique to mine frequent contexts.

Based on the above discussion, we can develop a divide-and-conquer mining process so
that the scale of data is shrinking.

Algorithm 2 shows details of the frequent context mining algorithm. The value in the
data column of the record HDB[sid] is denoted by datasid. The basic structure of the
algorithm is a two-nested PrefixSpan liked algorithm. The function MINECONTEXTS
first tries to find a frequent subsequence as the head part of a context. In this step,
sequential patterns grow from left to right. In each iteration, the algorithm expands a
frequent subsequence α by a frequent item in HDB|α. For each frequent sequence α, the
α-projected database is constructed and used to find tail parts of frequent contexts. In each
iteration of the second step, the function, MINETAIL_RECURSIVE, expands a frequent
pattern β by a frequent item in (HDB|α)|β. For each frequent sequence β got in the
α-projected database, we construct a context C = (α, β).

We analyze the running time as follows. Given the set of sequences S = {s1, . . . , sn},
let N =

∑n
i=1 length(si). In the worst case, the number of frequent contexts is O(2N ). To

check the support of a context C = (h, t), we need to construct HDB|(h,t). It takes O(N2)
time to construct the projected database. Therefore, the running time of the algorithm is
O(N2 ∗ 2N ).

5.3 Rule Generation

We apply the frequent contexts for app signature extraction and classification rule construc-
tion.

Figure 5.3: An example of the extracted sequence

Consider a record r in the database HDB and a context C = (h, t). The set of sequences
extracted by C1 from the record r is denoted by π(C, r) = {β|hβt ⊂ r.data}. The sequence
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extracted by the context C =(<[0-9.]+, iphone>, <[0-9.]+>) is shown in Figure 5.3. For
each sequence s ∈ π(C, r), if it is uniquely associated with an app in the context C, we
construct an app classification rule {HeaderF ield : r.host → hst ⇒ r.app}. The reason
we use the sequence hst instead of the sequence s is that as we have discussed in Section
3.1, the same sequence in different contexts may refer to different apps. Therefore, when
constructing classification rules, we need to consider both the signatures and their contexts.

Algorithm 3: Build Classification Rules
Input: The training dataset HDB; The context quality threshold min_quality;

The set of frequent contexts FC; The maximum number of rules extracted
from a record K

Output: A set of classification rules
Let S(C) be the set of sequences extracted by C
Let π(C, r) be the set of sequences extracted by C from the record r
Let Rules be a dictionary. Rules[r] stores the set of rules extracted from the record r
foreach C ∈ FC do

foreach r ∈ HDB do
foreach s ∈ π(C, r) do

S(C)←
⋃

(r, s)
end

end
end
Calculate the quality score for each context using S(C)
foreach C ∈ FC do

if QC(C,HDB) > min_quality then
foreach r ∈ HDB do

foreach s ∈ π(C, r) do
if s is associated with only one app in S(C) then

rule← {HeaderF ield : r.host→ C.head · s · C.tail⇒ r.app}
Rules[r]← Rules[r]

⋃
rule

Rules[r]← selectTopK(Rules[r], K)
end

end
end

end
end
Output rules in Rules

Many different app signatures could be extracted from the same HTTP header by dif-
ferent contexts. Therefore, one record in the database may generate a large number of
rules. For example, suppose there are two context C1 =(<ˆ>, <$>) and C2 =(<ˆ>, <[0-
9.]+>). Given a sequence <ˆ, trader, [0-9.]+, cfnetwork, en, $>, the sequence extracted
by C1 is <trader, [0-9.]+, cfnetwork, en> and the sequence extracted by C2 is <trader>.
Two classification rules can be constructed with the above two signatures. To make the
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classification rules effective and also efficient, we need to prune rules to delete redundant
and noisy information. Our method tries to find the top-K rules for each instance based on
the following ranking criteria.

According to the facility of rules on identification, a global order of rules is composed.
Given two rules R1 and R2 learned from the dataset HDB, R1 is said to have a higher
rank than R2, denoted by R1 > R2, if and only if (1) Q(R1.signature) > Q(R2.signature);
(2) Q(R1.signature) = Q(R2.signature) but QC(R1.context) > QC(R2.context) or (3)
QC(R1.context) = QC(R2.context) and Q(R1.signature) = Q(R2.signature) but the
length of R1.head·R1.signature·R1.tail is shorter than the length of R2.head·R2.signature·
R2.tail. To find the top-K rules, we build a priority queue for each training instance. Given
two rules R1 and R2, where R1 has a higher rank than R2. R2 will be pruned by R1. The
rationale is that we only need to consider rules with good signatures and contexts, and thus
rules with bad contexts or signatures should be pruned. The procedure of rule generation
is shown in Algorithm 3.

We analyze the running time as follows. Given the set of sequences S = {s1, . . . , sn},
let N =

∑n
i=1 length(si). In the worst case, the number of frequent contexts is O(2N ).

For each context, we need to compare it with the whole dataset, which takes O(N2) time.
Therefore, the running time of the algorithm is O(2N ∗N2).

5.4 Two Improvements

There are two issues in the above method. First, the frequent context mining algorithm
may output a huge number of contexts. It takes a lot of spaces to store those contexts.
Second, the rule generation step is time-consuming, which requires each context to extract
signatures from the entire dataset. Hence, the computational complexity is O(M ∗ N),
where M is the size of the dataset and N is the number of contexts. To solve the problems,
we propose two improvements of our method.

5.4.1 An Upper Bound of Context Quality

Lemma 5.7 (Extracted Sequences). Given an HTTP header field database HDB and two
contexts, C1 = (h1, t1) and C2 = (h2, t2), where C1 = parent(C2) and h1, t1, h2, t2 are all
non-empty sequences, the sequences extracted by C2 is a subset of the sequences extracted
by C1.

Proof. The set of sequences extracted by C1 and C2 are denoted by S(C1) and S(C2),
respectively. According to the definition, ∀α ∈ S(C2), there must exist a record r ∈ HDB,
such that h2αt2 ⊂ r.data. Since C1 is the parent of C2, ∀s ∈ S(C2), h1st1 ⊂ h2st2.
Therefore, S(C2) is a subset of S(C1).
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The effectiveness score of a context C is calculated based on the sequences extracted by
C. Since the sequences extracted by C2 is a subset of the sequences extracted by C1, we can
calculate an upper bound of the effectiveness score of the context C2 using the sequences
extracted by C1.

Lemma 5.8 (Effectiveness Score of Context). Consider two contexts C1 = (h1, t1) and
C2 = (h2, t2), where C1 = parent(C2) and h1, t1, h2, t2 are all non-empty sequences. Let R
be a dataset. The set of sequences extracted by C1 from R is denoted by S(C1). Let smax
be the sequence in S(C1) with the largest informativeness score. The effectiveness score of
C2 on R, denoted by E(C2, R), cannot be larger than the informativeness score of smax.

Proof. ∀s1 ∈ S(C2), such that s1 is a signature of app app A. According to the definition
of signature quality in Section 4.1, Q(s1,A, C2, R) = D(s1,A, C2, R) ∗ Rel(s1,A, C2, R) ∗
inf(s1, R). Since both D(s1,A, C2, R) and Rel(s1,A, C2, R) are smaller than or equal to
1, Q(s1,A, C2, R) ≤ Info(s1, R). s1 ∈ S(C1), because S(C2) is a subset of S(C1). Since
Inf(smax, R) ≥ Inf(s1, R), Inf(smax, R) ≥ Q(s1,A, C2, R). Since the quality scores of all
sequences in S(C2) are smaller than or equal to Inf(smax, R), E(C2, R) ≤ Inf(smax, R).

Given the dataset R, the upper bound of E(C2, R) is denoted by Eub(C2, R). We can
calculate the upper bound of the quality score of the context C2 based on Eub(C2, R) and
its support SupRC2. The upper bound of the quality score is denoted by QCub(C2, R). It
is computed as QCub(C2, R) = 2 ∗ SupR(C2)∗Eub(C2,R)

SupR(C2)+Eub(C2,R)

Lemma 5.9 (Upper Bound of Context Quality Score). Given two contexts C1 and C2, where
C1 = parent(C2) and C1, C2 do not contain empty sequences, QCub(C2, R) ≤ QCub(C1, R).

Proof. Suppose there are three contexts C1, C2 and C3, where C1 = parent(C2) and C2 =
parent(C3). Since S(C2) is a subset of S(C1) and S(C3) is a subset of S(C2), S(C3) is
a subset of S(C1). Let smax be the sequence in S(C1) with the largest informativeness
score. Based on the above discussion, E(C3, R) ≤ Inf(smax, R). According to Lemma 5.3,
SupR(C2) ≥ SupR(C3). Therefore, QCub(C3, R) ≤ QCub(C2, R).

When searching the enumeration tree of contexts, if the upper bound of the quality
score of a context C is smaller than our predefined threshold min_quality, we do not need
to check any children nodes of C.

5.4.2 Combination of Context Mining and Rule Construction

When constructing <ˆ>-projected database, the projection of the sequence <ˆ, mozilla,
[0-9.]+, iphone, web, tv, [0-9.]+, os, x, $> has two pieces of information: a pointer to
the sequence and the offset set to 2. The offset indicates that the projection starts from
position 2 in the sequence. Let us denote the subsequence <mozilla, [0-9.]+, iphone, web,
tv, [0-9.]+, os, x, $> by β. When constructing ( <ˆ>, <[0-9.]+, os> )-projected database
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from the <ˆ>-projected database, the projection of β has two pieces of information as well.
They are a pointer to the original sequence and the offset set to 9. The example is shown
in Figure 5.4.

Suppose we have a sequence α and a context C = (h, t), where C @ α. Let i be the
offset of the suffix w.r.t. the prefix h. In the subsequence α[i, ‖ α ‖], let j be the offset of the
suffix w.r.t. the prefix t. According to the definition of projected database, the subsequence
β =< α[i], . . . , α[j− l− 1] > is a sequence extracted by the context C, where l is the length
of the sequence t. In Figure 5.4, i is set to 2, j is set to 9, and the length of the tail <[0-9.]+,
os> is 2. The extracted sequence is α[2, 6] =<mozilla, [0-9.]+, iphone, web, tv>.

^ mozilla [0-­‐9.]+ iphone web tv [0-­‐9.]+ os x $

1 2 3 4 5 6 7 8 9 10

Context	
  Head	
  

The	
  signature	
  extracted	
  by	
  
the	
  context

Offset	
  :	
  2 Offset	
  :	
  9

Context	
  Tail

Figure 5.4: The indexes of the extracted signature

When constructing the pseudo-projected database PHDB|(h,t) from PHDB|h, in ad-
dition to store the offsets of the suffixes w.r.t. the sequence t, we also store the offsets in
PHDB|h. Now, each projection consists three pieces of information: a pointer to the se-
quence in the database, the ending position of h and the ending position of t. The function
PSEUDO_PROJECT_KEEP_HEADEND, which is used to construct pseudo-projected
database, is shown in Algorithm 4. In the function, the variable start is the offset of a suffix
w.r.t. the sequence α. For example, consider a record (40, H1, 07/04/2016, <ˆ, mozilla,
[0-9.]+, iphone, web, tv, [0-9.]+, os, x, $>, A) in the database HDB. The <ˆ>-projection
of the record is (40, 2), where 40 is the pointer to the sequence and 2 is the offset. When
constructing the (<ˆ>, <[0-9.]+, os>)-projected database, in addition to store the offsets
of the suffixes w.r.t. the sequence <[0-9.]+, os>, we also store the ending positions of the
sequence <ˆ>. Therefore, the pseudo-projection is (40, 2, 9).

Given a context C = (h, t) and a record in the PHDB|(h, t), we can calculate the
indexes of the extracted sequences. For example, consider the record (40, 2, 9) in the (<ˆ>,
<[0-9.]+, os>)-projected database. The ending index of the extracted sequence is calculated
as 9− 2− 1 = 6, where 2 is the length of the tail in the context. Therefore, the extracted
sequence is α[2, 6] =<mozilla, [0-9.]+, iphone, web, tv>, where α is the sequence in the
record HDB[40].
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By repeating the above steps, we can find all of the sequences extracted by the context
C with the information in PHDB|(h,t). After getting all of the extracted sequences, we can
evaluate the quality of C. If its quality score is larger than the threshold, the context C and
its extracted sequences are used to build classification rules. The rule construction steps
are the same as shown in Algorithm 3. Using PHDB|(h,t) instead of HDB to evaluate the
quality of contexts has two advantages. First, PHDB|(h,t) is smaller thanHDB. Second, we
can evaluate the quality of a context immediately after finding it. Therefore, we can prune
low-quality contexts on the fly. In order to do so, we can replace the function MINETAIL
shown in Algorithm 2 by the new version of the function. It is shown in Algorithm 4.
In the algorithm, the values in the data, host, and app columns of the record HDB[sid]
are denoted by datasid, hostsid, and appsid. Comparing to the old one in Algorithm 2,
there are two main differences. First, after finding a new context, we immediately evaluate
its quality. If the quality score is larger than the threshold, we use the context and the
extracted sequences to construct classification rules. The variable Rules is a global variable
storing the top-K rules extracted from each training instance. The second difference is that
for each potential contexts C = (α, β′), we calculate the upper bound of its quality score,
QCub(C,HDB). If QCub(C,HDB) is smaller than the threshold, the context C and its
children are pruned. After enumerating all of the valid contexts, the algorithm outputs the
rules in Rules.

Using the new MINETAIL function, we only need to store classification rules. Let
‖ HDB ‖ be the number of records in the database and K be the number of rules allowed to
be extracted from one instance. In the worst case, every record can generateK classification
rules. The maximum number of rules we find is ‖ HDB ‖ ∗K.

Similarly, we can apply the improvements to Algorithm 4 which is designed to find
classification rules from structured header fields. The new one is shown in the Algorithm 5.

We analyze the running time of the Algorithm 4 as follows. Similarly to our previous
analysis, we consider the worst case here. Given the set of sequences S = {s1, . . . , sn}, let
N =

∑n
i=1 length(si). The number of frequent contexts is O(2N ). To check the support of

a context C = (h, t), we need to construct HDB|(h,t), which take O(N2) time. We need to
scan HDB|(h,t) to calculate the indexes of the extracted sequences, which takes O(N) time.
Therefore, the running time of the improved algorithm is O((N2 +N) ∗ 2N ) = O(N2 ∗ 2N ).

We analyze the running time of the Algorithm 5 as follows. It first takes O(N) time to
build the variable Counter. Then, the algorithm need to go over every value in the Counter
to calculate the quality scores of frequent contexts. Since the maximum number of items in
the variable Counter is N , this step takes O(N) time. Therefore, the running time of the
algorithm is O(N +N) = O(N).
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Algorithm 4: Mine Classification Rules From Unstructured HTTP Header Fields
Input: Training dataset HDB; the context support threshold min_sup; A gloabl

variable Rules be a dictionary; The context quality threshold min_quality
Let Rules[r] stores the set of rules extracted from the record r
Let l(·) be the length of a sequence
Function PSEUDO_PROJECT_KEEP_HEADEND(PHDB|α, β)

foreach (sid, start) ∈ PHDB|α do
s← datasid[start : l(datasid)]
i← start
repeat

i ← s.nextOccurrence(β, i + 1)
PHDB|(α,β) ← PHDB|(α,β)

⋃
{sid, start, i}

until all β in s are processed;
end

Function MINETAIL(PHDBα, α)
Find all of the frequent items in PHDBα, denoted by flist(PHDBα)
foreach β ∈ flist(PHDBα) do

PHDB|(α,β) ← PSEUDO_PROJECT_KEEP_HEADEND(PHDBα, β)
MINERULES_RECURSIVE(PHDB|(α,β), α, β)

end
Function MINERULES_RECURSIVE(PHDB|(α,β), α, β)

Let π(C) be the set of sequences extracted by C = (α, β)
foreach (sid, head_end, start) ∈ PHDB|(α,β) do

e← datasid[start]
β′ ← β

⋃
e

PHDB|(α,β′) ← PHDB|(α,β′)
⋃

(sid, head_end, start+ 1)
expand_sequences← expand_sequences

⋃
β′

π(C)← π(C)
⋃

(sid, datasid[head_end, start− l(β)− 1])
end
Calculate the quality score QC(C) based on π(C)
if QC(C) > min_quality then

foreach (sid, s, app) ∈ π(C) do
rule← {hostsid : αsβ ⇒ appsid}
Rules[r]← Rules[r]

⋃
rule

Rules[r] ← selectTopK(Rules[r], K)
end

end
foreach β′ ∈ expand_sequences do

if Ω(PHDB|(α,β′))
Ω(PHDB|HDB) > min_sup then
C = (α, β′)
Calculate the upper bound QCub(C,HDB)
if QCub(C,HDB)) > min_quality then

MINERULES(PHDB(α,β′), α, β′)
end

end
end
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Algorithm 5: Find Classification Rules From Structured Header Fields
Input: Training dataset HDB; The minimum support min_sup; The context

quality threshold min_quality; The maximum number of rules extracted
from a record K

Result: A set of frequent contexts
Counter ← an empty dictionary
Let l(·) be the length of a sequence
Ω is the set of apps in HDB
Let S(C) be the set of sequences extracted by C
Let Rules be a dictionary. Rules[r] stores the set of rules extracted from the record r
foreach r ∈ HDB do

for i← 1 to l(r.data) do
if r.data[i] contains the symbol "=" or ":" then

C ← (r.data[i], &)
Counter[C] ← Counter[C] ∪ r.app
S(C)← S(C)

⋃
(r.data[i+ 1], r)

end
end

end
foreach context C in Counter do

Calculate the quality score for the context using S(C)
if ‖Counter[C]‖

‖Ω‖ > min_sup And QC(C,HDB) > min_quality then
foreach (s, r) ∈ S(C) do

if s is associated with only one app in S(C) then
rule← {r.host : C.head · s · C.tail⇒ r.app}
Rules[r]← Rules[r]

⋃
rule

Rules[r]← selectTopK(Rules[r], K)
end

end
end

end
Output rules in Rules

41



5.5 Potential Issues

In this section, we discuss the potential issues when deploying our proposed method into
production and the corresponding solutions.

Training time is too long. There are two possible reasons for this issue. First, the
support threshold or the quality score threshold might be too low. In this case, people
can increase the thresholds to get shorter training time. Second, the machine does not
have enough memory. Our proposed method requires loading all of the training data into
memory. If the memory cannot hold the training data, the operation system may spend a
lot of time on swapping. In this case, people need to enlarge the memory size or decrease
the training dataset.

The number of generated rules is too large. When classifying network traffics, our
method requires loading all of the rules into memory. If the machine memory is not large
enough to hold all rules, it may use the virtual memory, which decreases the classification
efficiency. To reduce the number of generated rules, people can use a larger support or score
threshold. They can also use a smaller K to reduce the number of rules generated from
each training instance.

Handle new apps. Since our proposed method does not support the incremental
learning of the classification rules, we propose a heuristic method to handle the new apps.
Given a set of new coming apps, users first need to run the apps in the app emulator and
collect training traffics. Next, our method are used to extract classification rules from the
data. Let Rnew be the set of rules generated from the HTTP traffics of the new coming
apps. The set of rules generated from the traffics of the old apps is denoted by Rold. To get
the new set of classification rules, we can incorporate the rules of new apps, we combine
Rnew and Rold together and remove the rules whose left-hand side is shared by multiple
apps.
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Chapter 6

Experimental Study

In this chapter, we evaluate our proposed system of classifying mobile network traffics. We
test the quality of rules mined from different HTTP header fields and analyze their contri-
butions in the app identification task. To test the parameter sensitivity of our algorithms,
we conduct exhaustive testing of the key parameters of our algorithms : (1) The support
threshold, minsup; (2) The score threshold, minscore; (3) The number of rules generated
from each training instance, K. We also explore the effectiveness of different ways to en-
semble rules from different HTTP header fields. To demonstrate the effectiveness of our
system, we compare our proposed methods with the state-of-the-art method , SAMPLES
[52], on the classification task. Ground truth labels are available in our datasets. We report
precision and recall of the task achieved by all methods. Below, we detail the baseline,
explain the experiments, and discuss the results.

We implement our algorithm using PyPy, which is an enhanced version of Python.
Experiments are conducted on a PC with an Intel Core(TM) i7-3779 3.40GHz CPU, 16GB
main memory and a 900G hard disk, running the Ubuntu operating system.

6.1 Datasets

According to [51], the top 5,000 apps contribute to 98% of the mobile traffics. Therefore,
we test our system on the most popular free apps in app stores. We collected 9,000 IOS
apps and 9,000 Android apps from iTunes store 1 and Google Play store 2, respectively. To
generate dataset for training and testing, we use software emulators, such as monkey-runner
[1], in a virtual system to run each app individually and capture the generated traffics. Each
time, only one app is running in the virtual system. The captured traffics are labeled by
the app name. Each app is executed at 3 different days. Finally, we captured 814,567 IOS
HTTP requests from 8,375 apps and 960,054 Android HTTP requests from 8,556 apps.

1https://itunes.apple.com/ca/genre/ios
2https://play.google.com
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(a) HTTP packets distribution on the IOS dataset
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(b) HTTP packets distribution on the Android dataset

Figure 6.1: HTTP packets distribution on the two dataset
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Header Field Value
User-Agent BlackTiles/4.52 CFNetwork/711.1.16 Darwin/14.0.0

Path /5/www.france24androidtablette.fr/
Query appname=com.futurebits.instamessage.free

Non-standard Request Fields x-requested-with:uk.co.aifactory.euchrefree
Date Tue, 15 Nov 1994 08:12:31GMT

Table 6.1: Examples of HTTP Header Fields

IOS Android
UA Query Path Addition UA Query Path Addition

‖ I ‖ 8,763 318,276 303,266 98,047 2,455 348,135 275,131 111,566
‖ α ‖ 25 13 13 8 32 17 11 9

Table 6.2: Dataset statistics

For each captured HTTP request, we parse and extract HTTP header fields. All of the
Non-standard request fields are merged to form the Additional field as shown in Section 3.1.
The values of Query and Additional fields are structured data. The values of User-Agent and
Path are unstructured data. Table 6.1 gives some examples of the data in different header
fields. Before mining classification rules, we process the values in each field into sequences
by using some delimiters as discussed in Section 3.1. Table 6.2 shows some statistics of
the dataset. ‖ α ‖ is the average sequence length in the dataset. ‖ I ‖ is the number of
distinct items in the dataset. UA and Addition stands for User-Agent and Additional field,
respectively. Figure 6.1 shows the HTTP packet distributions on the two datasets. In this
figure, we can see that most of the apps in the datasets do not generate a lot of HTTP
traffics. Half of the apps in the IOS dataset have less than 63 HTTP packets. Half of the
apps in the Android dataset have less than 48 HTTP packets.

6.2 Evaluation Metrics

We evaluate our algorithms at app level and HTTP requests level. HTTP requests level
is also regarded as instance level. Given a set of HTTP requests, the classification results
of our system are denoted by P = {(i1, Âi1), . . . , (in, Âin)}, where ij is the id of the j-
th HTTP request and Âij is the predicted app label. The classification results of HTTP
requests generated by app A is denoted by PA. The ground truth is denoted by G =
{(i1,Ai1), . . . , (in,Ain)}, where Aij is the true app label of the j-th HTTP request. If
our system cannot recognize an HTTP request, the output is a special label UK, which
represents unknown.

The precision and recall of our system at HTTP request level is defined as
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Precision = ‖ {i|(i, Â) ∈ P, (j, A) ∈ G, i = j,A = Â} ‖
‖ {i|(i, Â) ∈ P, Â 6= UK} ‖

Recall = ‖ {i|(i, Â) ∈ P, (j,A) ∈ G, i = j,A = Â} ‖
‖ G ‖

Given an app prediction of HTTP request i, p = (i, Â) and the ground truth of the
request, (i,A), p is a wrong prediction if Â 6= UK and Â 6= A. If Â = A, we say p is a
correct prediction. The set of predictions with app label A in P is denoted by PA. Let
correct(PA) be the number of correct predictions and wrong(PA) be the number of wrong
predictions. App A is correctly identified if correct(PA) > 0 and wrong(PA) ≤ N , where
N is a user defined number. In our thesis, we test our method with the strictest case
that N is set to 0. If we increase N to allow more false positives, the precision of our
method at App level is increased as well. The set of apps in the ground truth is denoted
by Ω = {A|(i,A) ∈ G}. The mathematical definition of precision and recall at app level is
defined as

Precision = ‖ {A|A ∈ Ω, correct(PA) > 0, wrong(PA) ≤ N} ‖
‖ {A|A ∈ Ω, correct(PA) ≥ 0} ‖

Recall = ‖ {A|A ∈ Ω, correct(PA) ≥ 0, wrong(PA) ≤ N} ‖
‖ {A|A ∈ Ω} ‖

The precision at HTTP request level is denoted by Precisionreq and the precision at
app level is denoted by Precisionapp. Similarly, we have Recallreq and Recallapp. The four
metrics will be used in the later sections to evaluate the performance of our method.

6.3 Effectiveness of the Generated Rules

Here, we evaluate the quality of the classification rules generated from different header
fields by verifying whether the rules can correctly identify the apps in the datasets at the
per request granularity and at the per app granularity.

To analyze the performances of each rule set, we only use the rules generated from one
specific HTTP header field in each experiment. To make the results more reliable, we do
5-fold cross validation on each dataset and report the average precision and recall. For
example, to evaluate the performance of the Query rules on the IOS dataset, we first split
the IOS dataset into 5 parts. In each trial, one part is regarded as the testing set and the
others are used as the training sets. In the training process, only HTTP query values are
used.

Yao et al. [52] report that the app signatures learned from the User-Agent field are
not related to specific hosts. Hence, when we are mining classification rules from the User-
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Figure 6.2: Performances of rules from different fields on the two dataset
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Head Tail Signatures Field
<productid=> <&> 19943, 20888 Q
<pknm=> <&> ultimatecheats,100pics Q

<x-newrelic-id:> <&> vquduvfacwmfvlvbbq== A
<x-requested-with:> <&> yo.app.free, com.ypg.find A

<ad, /> </> data-wrld, data-plnt P
<ss, /> </> fsbtn2gomobileapp, fsfxnowio P
<ˆ> </, [0-9.]+, cfnetwork> cocoppa, feeddlerrss UA

<[0-9.]+> </, [0-9.]+, $> 36kr, qqlivebrowser UA

Table 6.3: Contexts and their extracted signatures from the IOS and Android datasets. Here
Q, A, P, and UA stands for Query, Additional field, Path, and User-Agent, respectively.

Agent field, we replace all host values in the database with a wildcard .∗. Different from the
User-Agent field, signatures from other fields, such as the Query field and the Path field,
are still related to specific host services. Therefore, we do not change the host values in
those fields.

To find rules from the database of the HTTP header field n, denoted by HDBn, we first
group the records in HDBn by their host values. The group of records with the host m is
denoted by Rmn . If there is only one app in Rmn , the group will be discarded. Because there
is no hope for us to learn the textual structures shared by multiple apps from a dataset
having only one app. Since we have replaced the host values in the database of User-Agent,
all records in the database are in the same group. Then, we apply our algorithm to find
rules in every group. After collecting all of the classification rules, we build a rule-based
classifier with the rules learned from a specific header field.

The performances of the rules from each HTTP header field are shown in Figure 6.2a
and Figure 6.2b. Some learned frequent contexts and their extracted rules are listed in
Table 6.3.

In the IOS dataset, one can see that the rules generated from the User-Agent field have
better performances on both precision and recall than the rules from the other fields. The
reason is that IOS developers are required to put their app identifiers, such as app names, in
the User-Agent field [13]. Our result shows that even though the IOS developer community
has the suggestion, only around 60% of the developers follow the rule. The User-Agent field
does not produce many effective classification rules on the Android dataset. Instead, the
rules from the Additional field becomes the most effective ones on the Android dataset. For
example, one of the contexts mined from this field is C =(<X-Requested-With:>, <&>). It
is found since Android webview includes the package names of apps into X-Requested-With
field [52].

As reported in [33] , it is very common for developers to embed Ad & Analysis services
in their apps, especially in free apps. Some apps may use 5 ad services at the same time.
Most of the third party services require developers to put app identifiers for specific services
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in HTTP queries [48]. Most of the rules we learned from the Query field identify apps from
Ad & Analysis service traffics. Figure 6.2b shows that the rules mined from the Query field
can identify around 36% of the apps. The Query field contributes more in the identification
task of Android apps. Since most Android apps are free, the embedding of ad services is
more common among Android apps. Therefore, more android apps can be detected by the
Query data. The instance level recall in both the IOS dataset and the Android dataset are
small because the flows of Ad & Analysis services only occur in a small fraction of total
traffics [36].

The rules generated from the Path field have similar performances on both datasets.
The reason is that it is very common for both the IOS and Android developers to deploy
their applications on third-party platforms, such as Facebook. The apps deployed on such
platforms typically use the servers from the platform providers to provide their services.
Hence, it is common to see the case where multiple apps are hosted on the same third-party
hosts[13]. The apps hosted on the same servers can be distinguished by the resource files
they use.

6.4 Efficiency Study

In this section, we will give a set of experiments evaluating the efficiency of our method. We
first compare the performance of three versions of our method on the unstructured HTTP
header fields as follows.

• 2-Step: It first find frequent contexts and then applies the frequent contexts to the
whole dataset to generate classification rules.

• 1-Step: 1-Step is the improved version of 2-Step method. It combines the rule
generation step and the frequent contexts mining step. This method can generate
classification rules when mining frequent contexts.

• 1-Step+Upperbound: This is the algorithm pruning low-quality contexts by calcu-
lating upper bounds on the quality scores. The contexts with an upper bound lower
than our predefined threshold will be pruned.

In this experiment, we choose the IOS User-Agent dataset. We test the running time
of these four methods as the data size varies. The parameter settings of the algorithms are
min_support = 0.2, min_quality = 0.2, and K = 1. Figure 6.3 shows the result of the
dataset. It is clear that the 1-Step+Upperbound method is the most efficient method
among the methods generating rules. The running time of the 1-Step method is shorter
than the 2-Step method, since we use the projected database, which is smaller than the
original database, to evaluate the quality of contexts and generate rules on the fly. The
reason the 1-Step+Upperbound method is faster than the 2-Step method is that by
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Figure 6.3: Running time of our method on the IOS User-Agent dataset with varying data
size

pruning contexts using the upper bound we can decrease the number of contexts to be
checked. The speed-up factor of the 1-Step+Upperbound method is increasing with the
increasing size of the training data. The reason that the algorithms are linearly scalable
with respect to the size of training data is that most of the items in the User-Agent field
are only related to a few apps, as shown in Figure 6.4. There are mainly two types of items
in the User-Agent field. One is the system defined words, like Mozilla and CFNetwork.
This type of items is extremely popular among the dataset. They are almost related to
every app in the dataset. But the number of such items is small. Those words form the
textual structure around app signatures. The second type of items is app signatures. Those
items are usually related to a small set of apps. Since most of them are not frequent in
the dataset, when mining frequent contexts, they will be pruned in the first iteration of the
algorithms. Therefore, as the size of the training data increases, the number of frequent
items is not increased a lot.

The running time of our proposed methods with different support threshold is shown
in Figure 6.5. In this experiment, we choose the IOS User-Agent dataset. The number
of training instance is 800,000. Except for the support threshold, the values of the other
parameters remain the same. In the figure, one can see that as the support threshold
increases, the running times of our methods decrease dramatically.
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6.5 Affects of Ensemble Methods

We build a rule-based classifier with the rules learned from a specific header field. There
are four rule-based classifiers in our system. We adopt three commonly used techniques to
combine the classifiers and study the impact of different ensemble methods on our system.
Those ensemble methods are voting, pipeline, and stacking.

• Voting: All rules from different header fields have the same weight.

• Pipeline: The classifier order in our pipeline method is Additional Fields, User-
Agent, Query, and Path. The reason we choose this order is that we prefer to put app
classification rules with high accuracy at early stages of the pipeline. More discussions
about the accuracies of classification rules mined from different HTTP header fields
are provided in Section 6.7. The parameter setting of our method is shown in Table
6.4.

• Stacking: Decision tree (C4.5 [43]) is used as the combiner of stacking method. The
minimum number of instances per leaf of the decision tree is set to 2.

The performances of different ensemble techniques on the two datasets are shown in
Figure 6.6. They show that the performances of different ensemble methods do not have
much difference. One possible explanation is that the 4 base classifiers are so strong that
it is hard to see a significant improvement using ensemble techniques. As shown in Section
6.7, all of the base classifiers achieve a precision more than 98%. Among the three ensemble
methods, the pipeline method achieves the highest precision and a comparable or better
recall on both datasets. The reason for this is that our pipeline is constructed based on
the domain knowledge. For example, we know that the IOS and Android developers are
suggested to put app identifiers in the User-Agent field and the Additional field, respectively.
Therefore, we put the User-Agent rules and the Additional field rules before the Query rules
and the Path rules. Due to the limitation of data size, the stacking method may not be able
to find the best combination of base classifiers. We can see that the stacking method has the
lowest precision comparing to other techniques. One possible reason is that the algorithm
gives more weights to weaker classifiers, such as the classifier with rules from Path field. As
shown in Figure 6.2a and Figure 6.2b, the rules generated from the Path field has a very
high recall and comparable precision to other parts. Therefore, the stacking technique may
assign high weights to it. That weakens the performance of the whole method.

6.6 Comparison with Previous Works

We compare our method with two baseline methods. The first one is the state-of-the-art
solution SAMPLES, which is based on reverse engineering of app execute archives [52]. The
second one is the discriminative pattern-based method.
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(b) Performances of different ensemble techniques on the Android dataset

Figure 6.6: Performances of different ensemble techniques on the two datasets
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The reverse engineering based method obtains candidate app signatures of apps in the
files extracted from executable archives (apk files for Android apps, ipa files for IOS apps).
The method samples a subset of randomly selected applications as training apps. Then, it
builds a repository of all candidate signatures by reverse engineering the executable archives
of the apps. The repository is a hash table with identifier strings as keys and the app id’s
as values. Next, it executes the training apps, one at a time, to produce HTTP flows. The
flows constitute the training set for their supervised methodology. Next, for each flow in
the training set, SAMPLES characterizes the lexical context associated with an identifier
string in terms of three lexical conjuncts: (a) the identifier type, (b) the HTTP header-field
it occurs in, and (c) the prefix/suffix that surrounds such occurrences. Finally, classification
rules are built based on the extracted lexical contexts. In the testing phase, if an HTTP
header field contains both the prefix and suffix parts in an app identification rule, the
substring surrounded by the prefix and suffix parts are extracted. And then it checks if the
substring corresponds to an app in their repository. If found, it reports the corresponding
app as the output.

In their method, if the classification result of an HTTP request is the same as its
originating app or is an app that shares the same app identifier with the originating app,
the classification result is treated as true positive. For example, suppose two apps A and
B share the same signature AIM . Using the signature as an identification rule, all traffics
originated from either A or B containing the signature are regarded as correctly classified
by the rule, even though the method cannot tell the traffic is exactly generated by A

or B. They call this type of identification as fuzzy matching. In our implementation of
SAMPLES, we do not allow fuzzy matching, Since our system does not allow it as well.
The parameter settings of our method are shown in Table 6.4. SAMPLES is configured
using the parameters reported in [52].

Given a support threshold, the discriminative pattern-based method finds all of the
consecutive subsequences uniquely associated with only one app and use those patterns as
classification rules. Suppose the sequence s is uniquely associated with the app A. The rule
created from the sequence s is {s ⇒ A}. In our experiment, the support threshold of this
method is set to 10.

We randomly select 30% HTTP traffics from both the IOS and Android datasets as
testing sets and the rests as training sets. The experiments are repeated 15 times, we
report the average and standard variance of the performance. The result is shown in Figure
6.7.

One can see that our method outperforms SAMPLES on both app recall and instance
recall. We apply the two-sided T-test to evaluate the significance of the experimental
result. We first compare the app recall of the two methods on the IOS dataset. The null
hypothesis is that there is no difference between the app recall of the two methods and the
alternative hypothesis is that our method has a higher app recall than SAMPLES. Since the
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HTTP Field minsup minscore K
User-Agent 0.3 0.3 1

Query 0.3 0.5 3
Path 0.9 0.9 1

Additional Header 0.9 0.9 1

Table 6.4: Parameter Setting on Our Method
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Figure 6.7: Performances of the classification rules learned by different methods
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App	
  Name Signature Header	
  Value Field

Opera	
  web	
  browser OPiOS …OPiOS/10.0.1.90729… User-­‐Agent

掌阅iReader \xe5\x8d\xb3\xe6\x97\xb6\x
e6\xb1\x87\xe7\x8e\x87

\xe5\x8d\xb3\xe6\x97\xb6\xe6\xb1\x87\xe7\
x8e\x87 2.3.0	
  rv:2.3.1	
  …

User-­‐Agent

有道云笔记 %E6%9C%89%E9%81%93%E
4%BA%91%E7%AC%94%E8%
AE%B0

…%E6%9C%89%E9%81%93%E4%BA%91%E7%
AC%94%E8%AE%B0/4.4.1	
  CFNetwork/711.1.…

User-­‐Agent

Background	
  Checks ugmbwuvrcqicufvb X-­‐Newrelic-­‐ID:	
  ugmbwuvrcqicufvb Additional

What's	
  the	
  Word? 12731 appid=12731 Query

Love	
  Theme 9b0b23fd5f004c6ab9f13753
b27dae1e

app_id=9b0b23fd5f004c6ab9f13753b27dae1e Query

Figure 6.8: Signatures not found by SAMPLES

P-value is 0.002846, the result can be considered to be statistically significant. Similarly,
we compare the instance recall of the two methods. Using two-sided T-test, the P-value
is 0.002206. Therefore, the result is statistically significant as well. Comparing the app
recall and the instance recall of the two methods on the Android dataset, the P-values
are 0.001962 and 0.003977, respectively. Since they are smaller than 0.05, the experiment
results on the Android dataset can be considered to be statistically significant. Based on
the above discussion, we can conclude that our proposed method has better app recall and
instance recall than SAMPLES. There are two reasons for the coverage improvement.

First, SAMPLES essentially generates a subset of rules that are generated by our
method. We compare the two sets of the rules generated by our method and SAM-
PLES. We find that 97.4% of the rules generated by SAMPLES are included in our rule
sets. Note that there are still around 3% of the rules cannot be found by our method.
There are two reasons. The training data is not comprehensive enough. When exe-
cuted in emulators, the apps are randomly executed. Some functions of the apps may
only be executed once. Therefore, we cannot see the signatures, related to those func-
tions, appear on multiple dates. According to our criteria, those signatures will be re-
garded as bad ones. Another reason is that some signatures do not appear in frequent
contexts. For example, SAMPLES can find the signature aolipad from the User-Agent,
"##_iPad4,4_unknown_8.1.2_aolipad_en_3.0.35_APL000_llpz", of the app AOL Ra-
dio 3, because the signature is included in the executable archive. In our method, the
context surrounding the signature is C = (<[0-9.]+>, <en>), which is not very frequent
in the dataset. Since the context is discarded in the mining step, there is no hope for us to
find the signatures surrounded by it.

Second, besides simply considering signatures extracted from executable archives, our
method generates rules based on the more sophisticated analysis of HTTP headers. By
modeling the contexts of app signatures, our method can find app signatures that are not

3https://itunes.apple.com/en/app/aol-radio/id281913144
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included in the executable archives of apps. For example, some app signatures that do not
appear in the executable archives of apps are listed in Figure 6.8. The first app in the
figure is Opera 4. It is a very popular web browser on smartphones. The app will put
the signature OPIOS in the User-Agent to show its identity. Since this signature is not
included in the executable archives of the app, SAMPLES cannot find it. The second 5

and the third 6 app in the table are two popular apps in the Chinese app market. The
signature of the second app is the UTF-8 encoding of its Chinese name. The signature of
the third app is the URL encoding of its Chinese name. The two apps put their original
Chinese names instead of the encoded names in their executable archives. When sending
HTTP requests, they encode their names to their predefined formats on the fly. Therefore,
it is not possible for SAMPLES to find the signatures by using their executable archives.
The app Background Checks 7 puts its signature behind the HTTP header X-NewRelic-ID.
X-NewRelic-ID [40] is used to identify performance problems between an application and
any internal or external services. To use the function, the developers are required to put
their account IDs and application IDs of the application as the value of X-NewRelic-ID. In
order to protect the account information, some developers may not put their account ids
explicitly in the executable archives. This may explain the reason the last three signatures
are not in the metadata files of apps.

The Figure 6.7 also shows that our method has a higher app precision and app recall
than the discriminative pattern-based method. The reasons are two folds. First, as shown
in Figure 6.1, most apps do not have a lot of training data. The discriminative pattern-
based method cannot find signatures of the unpopular apps in the training data. Second,
our method has a sophisticated rule pruning technique, which helps to prune low quality
classification rules. When comparing the performance of our method and the discriminative
pattern-based method, we also use the two-sided T-test to evaluate the significance of
the experimental result. The P-values of the difference between the app precision of the
two methods on the IOS dataset and the Android dataset are 0.000421 and 0.0001534,
respectively. The P-values of the difference between the app recall of the two methods on
the IOS dataset and the Android dataset are 0.02874 and 0.03395, respectively. Because
they are all smaller than 0.05, the performance differences between our proposed method and
the discriminative pattern-based method can be considered to be statistically significant.

6.7 Sensitivity to Parameters

In this section, we present the empirical studies on the parameter sensitivity of our method.
We run our algorithms on different HTTP header fields with various parameter settings.

4https://itunes.apple.com/ca/app/opera-mini-web-browser/id363729560
5https://itunes.apple.com/cn/app/zhang-yue-ireader-jie-mi-fan/id463150061
6https://itunes.apple.com/ca/app/you-dao-yun-bi-ji-you-dao/id450748070
7https://itunes.apple.com/us/app/background-checks-beenverified/id342585873
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(d) Instance Recall with K varying

Figure 6.9: Performance of rules from different header fields with varying K

The key parameters of our method are context support threshold, minsupport, context score
threshold, minscore and the number of rules generated from each instance, K. The values
of minsupport and minscore are positive numbers from 0 to 1. The value of K is a positive
number. In each experiment, we fix two of the parameters and vary the other one. The
performance of our method under different parameter settings is evaluated by app level
precision, app level recall, instance level precision, and instance level recall. For each
parameter setting, we do a 5-fold cross validation on the IOS dataset and report the average
precisions and recalls of the 5 trials.

Figure 6.9, Figure 6.10, and Figure 6.11 show the performances of our method in preci-
sion and recall with minsuppor, minscore, and K, varying respectively. There are some clear
trends in the figures. When we increase either the score threshold or the support threshold,
both instance level precision and app level precision are increased. But both instance level
recall and app level recall are decreased. Since we increase the thresholds, more low-quality
rules are pruned. Hence, the precision is increased. However, some good rules may be
discarded as well. Therefore, the recall is decreased. As we increase K, both the app level
recall and the instance level recall are increased. At the same time, both app level precision
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Figure 6.10: Performance of rules from different header fields with varying score

and the instance level precision are decreased. Since we allow more rules to be generated
from each training instance, more rules are mined from the whole dataset. Therefore, the
rule set can cover more cases. But a larger K may introduce noise in the classification rules,
which decreases the accuracy of our system.

In those figures, we can see that the performance of our method is very stable except for
when it is applied to the User-Agent field with minscore changing. Figure 6.10 shows that
both the instance level recall and the app level recall of our method decrease dramatically
when minscore is larger than 0.7. At the same time, both the instance level precision and
the app level precision increase to 1, which is shown in Figure 6.11. This phenomenon indi-
cates that the quality scores of contexts in the User-Agent field are not very high since they
are pruned by the high score threshold. One possible reason is that the informativeness
scores of some app signatures extracted from the User-Agent field are not very high. A low
informativeness score of signatures leads to a low signature quality score. And consequently,
leads to a low context quality score. For example, WAFB News is a good app signature for
the app WAFB Local News. The informativeness score of this signature is not very high,
since it contains a common word News which decreases the informativeness score of the
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(d) Instance Precision with support varying

Figure 6.11: Performance of rules from different header fields with varying support

signature. Even though the informativeness score has that limitation, it is still effective
enough to distinguish good signatures from meaningless ones. For example, the informa-
tiveness score of signature WAFB News is still larger than some meaningless signatures, like
CFNetwork Darwin. Because in the User-Agent data, both words CFNetwork and Darwin
are much more common than the words WAFB, News.

Based on the above experiments, one can increase the recall of our proposed method
by increasing the parameter K or decreasing the parameters minscore and minsupport. We
recommend to set the parameter K to 1 when learning rules from the User-Agent field, the
HTTP Path, and the Addition Header field. When learning rules from the HTTP Query
field, we can use a larger K, such as 3. But the users should not use a too large K. As
shown in Figure 6.9, the precision of our proposed method drops significantly when K is
larger than 3. As for the parameter minscore, we recommend to set it to 0.5 for all types
of training data. Because our proposed method has a reasonable precision and recall when
minscore = 0.5. The parameter minscore should not be larger than 0.7 when learning rules
from the User-Agent field, since it may lead to very poor recall. Similarly, we recommend
to set the parameter minsupport = 0.5.
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Chapter 7

Conclusion

In this thesis, we tackle the problem of classifying mobile network traffics. Mobile network
traffic classification is valuable in many network management tasks, such as capacity plan-
ning and provisioning, traffic engineering, fault diagnosis, application performance, anomaly
detection. We design a structure of app classification rules, which contains a context and a
signature, and a measure to assess the goodness of app signatures and signature contexts.
To efficiently generate classification rules, we propose two algorithms to find classification
rules from structured and unstructured HTTP header fields, respectively. Both algorithms
first find frequent and effective contexts and then generate classification rules based on
the contexts. We also build an ensemble system that can effectively combine rule-based
classifiers learned from different header fields.

We evaluate our method empirically using the data generated by Android and IOS
applications. The experimental results verify the effectiveness of our algorithm.

Even though the experimental results show our method is effective, there are some lim-
itations of it. The method only relies on the analysis of the contents of HTTP packages.
Therefore, our method cannot deal with encrypted data, such as HTTPS traffics. In addi-
tion, when the dataset is large, the data cannot fit into memory. In the future, we will try
to overcome these limitations to improve the algorithms.

As for future work, we can also consider the following directions.

• We can extend our techniques to deal with uncertain data. In this thesis, we only deal
with certain data. In reality, it is common that the contents of packages are changed
due to transmission errors. Some HTTP header fields may contain partial or even
wrong values. In the future, we can extend our algorithm by taking the uncertainty
into consideration, like [18].

• We can extend our algorithm by incrementally mining rules for new apps. Our method
can only find classification rules from static data. This limitation makes it hard for
our method to incrementally learn classification rules for new coming apps. In the
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future, we can improve our algorithm by utilizing techniques provided in [17] and [19]
to incrementally find rules for new apps.

• We can design a distributed version of our algorithm. Our method relies on mining
frequent patterns to construct classification rules. When the data is too large, our
method may suffer from memory and computation resources usage. To tackle this
problem, we can design a distributed version of our algorithm, which can utilize the
power of distributed computing systems.
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