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Abstract

Successful development and application of precision oncology approaches require robust eluci-

dation of the genomic landscape of a patient’s cancer and the ability to monitor therapy-induced

genomic changes in the tumour in an inexpensive and minimally invasive manner. Thanks to recent

advances in sequencing technologies, ”liquid biopsy”, the sampling of patient’s bodily fluids such as

blood, is considered as one of the most promising approaches to achieve this goal. In many can-

cer patients, especially those with advanced metastatic disease, deep sequencing of cell-free DNA

(cfDNA) obtained from patient’s blood yields a mixture of reads originating from the normal DNA

and from multiple tumour subclones - called circulating tumour DNA (ctDNA). The ctDNA/cfDNA

ratio and the proportion of ctDNA originating from specific tumour subclones depend on multiple

factors, making comprehensive detection of mutations difficult, especially at early stages of cancer.

We introduce SiNVICT, a computational method for analysis of cfDNA sequencing data.
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Chapter 1

Introduction

One of the most promising areas of precision oncology is the development of custom targeted

therapies tailored for a patient. Successful development and efficient application of such thera-

pies require efficient and inexpensive identification and monitoring of therapy-induced changes in

a patient’s tumour DNA. Unfortunately, especially in advanced stage cancers, the main cause of

cancer’s morbidity and mortality is the development of multiple metastatic lesions, often not easily

accessible for tissue sampling. For example, in prostate cancer more than 90% of metastases occur

in bone and/or deep lymph nodes [5]. Biopsying such sites is associated with significant morbidity

for the patients and thus is not commonly performed.

The existence of circulating cell free DNA (cfDNA) in mammalian blood has been known since

1948 [15]. cfDNA is thought to be released from the dying (necrotic/apoptotic) cells - both normal

and tumour, as has been shown in 1994 when mutated RAS gene fragments were detected in the

blood of cancer patients - see [22]. The non-specific mechanism of generating cfDNA results in

integral representation of all tumour DNA of a patient subject to sampling variability and, possibly,

to tumours access to blood stream. In an earlier study, for example, we observed the presence of

multiple mutated forms of AR (androgen receptor) gene in cfDNA of patients with castrate resistant

prostate cancer (CRPC) [4] that can be best explained by the presence of multiple subpopulations

of cancer cells in each patient’s body. This integral representation of multiple tumour foci/subclones

provides an important advantage to the use of blood plasma as a source of tumour-derived DNA.

Unfortunately, the presence of both normal and tumour DNA in a patient’s blood poses significant

challenges to the analysis of cfDNA sequence data. To make matters worse, tumour DNA is many

times derived from multiple subclones and is thus highly heterogeneous. An earlier study we per-

formed on mutations in CRPC patients [4] demonstrated that cfDNA comprised an average of 4.7%

(IQR1 4.5%) of ctDNA, based on the proportion of reads with mutations in AR. There are several

1IQR: the interquartile range is a measure of variability, based on dividing a data set into quartiles. Quartiles divide a

1



CHAPTER 1. INTRODUCTION 2

somatic and germline mutation callers that have been developed to find single nucleotide variants

(SNVs) as well as indels within a given population using WGSS (Whole Genome Shotgun Sequenc-

ing), as well as to detect specific variants in a patient’s genome through sampling multiple loci from

the same patient. Examples include GATK [16], VarScan2 [10], Freebayes [7], Strelka [21], MuTect

[6], and others. Most of these tools either use a frequentist or Bayesian approach to estimate the

probability of a locus being an actual mutation instead of being a false positive caused by noise (due

to sequencing or mapping errors). Among them, VarScan2 uses several heuristics to reduce the

size of the candidate set and then applies some statistical test like Fisher’s Exact on tumour/benign

pairs to call somatic mutations. It also provides post-processing capability to enable further filter-

ing based on additional factors such as strand bias. Other tools such as Freebayes, MuTect, and

Strelka make use of the prior and posterior probabilities of a location being mutated in a Bayesian

context in order to call mutations. Unfortunately, these tools are not designed to work with (i) se-

quencing data from patients at multiple time points –which is increasing in quantity due to the recent

interest in liquid biopsy (ii) very high read depth (e.g. 20k-30k average, up to 90k and possibly more

in the future with the advances in Deep Amplicon Sequencing and similar sequencing methods),

or, (iii) extremely low dilutions (can be as low as around 0.01% variant allele percentage [14]), or,

(iv) samples with high tumour heterogeneity, or, (v) batches of samples that suffer from systematic

noise.

In order to address problems mentioned above, we introduce SiNVICT a computational tool that

can handle very high read depth and very low dilutions. SiNVICT addressed challenges (i) and (ii)

through the combination of a Poisson model and a number of postprocessing filters such as the

minimum read depth filter. Challenge (v) is addressed through a Signal-to-Noise ratio filter. While

the Poisson model and the postprocessing steps utilised by SiNVICT allow significant improvements

to overcome challenges (iii) and (iv), these can still be considered as open bioinformatics problems.

SiNVICT can be run on a single tumour sample, on a batch of multiple tumour samples, or

on multiple samples from a single patient sequenced at different time points. This feature allows

SiNVICT to process samples from a single patient in multiple cancer stages, as well as a group of

different patients that are being sequenced and analyzed at the same time. In cases where these

samples have similar disease progression and dilution levels, SiNVICT can make use of the Signal-

to-Noise ratio of the batch (explained in more detail in Methods) to characterise the systematic

noise and try to reduce the number of false positives due to the non-uniformity of noise across the

sequenced regions.

We evaluated robustness of SiNVICT on data obtained by two sequencing platforms with dis-

tinct error rates (0.1% substitution in Illumina; 1% indel in IonTorrent), which were applied to the

same tumour samples. Our experiments indicate that SiNVICT is highly sensitive to calls on data

rank-ordered data set into four equal parts. The values that divide each part are called the first, second, and third quartiles;
and they are denoted by Q1, Q2, and Q3, respectively and IQR = Q3 - Q2 [24].
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generated by both sequencing platforms. For example, three previously validated AR (Androgen

Receptor gene) mutations [4] in a mixture of 22RV1 and 49C cell-lines - which were used as ref-

erence in AmpliSeq2 calibration and Illumina calibration experiments - were detected with almost

identical sensitivity by SiNVICT. SiNVICT was also able to detect previously validated mutations

successfully from actual cfDNA sequencing data obtained from castrate resistant prostate cancer

(CRPC) patients. These findings suggest that SiNVICT might be utilised in the analysis of deep

sequencing cancer data obtained from both Ion Torrent and Illumina sequencing technologies.

As importantly, SiNVICT addresses a unique problem and is not comparable to existing popular

SNV and indel callers (e.g. GATK) particularly because such tools typically process a fraction of

the reads in data sets with high sequencing depth - or multiple occurrences of identical reads as

PCR duplicates (for example, in one experiment GATK reduced the depth of coverage from 20K to

300). Identical reads are to be expected in deep amplicon sequencing and this is not necessarily

an artifact of PCR.

2Ion AmpliSeq Targeted Sequencing Technology is a technology offered by Ion Torrent platform for creating custom
targeted ultra-deep sequencing libraries



Chapter 2

Methods

As shown in the flowchart in Figure 2.1 SiNVICT works in three steps: (i) pre-processing of raw

input, (ii) SNV and indel discovery, (iii) post-processing and reporting the final calls. Details are

given in the relevant subsections below.

• Trim Read
• Map	Reads
• Perform	Recalibration
• Perform	Error	Correction

Pre	
Processing

• Perform	Read	Count
• Gather	extra	mapping	statistics
• Call	mutations	using	Poisson	CDF
• Predict	Somatic	and	Germline status

SNV /	Indel
Calling

• Minimum	Read	Depth	Filter
• Strand	Bias	Filter
• Homopolymer Region	Filter
• Signal-to-Noise	Filter

Post	
Processing

Figure 2.1: Overview of SiNVICT data processing pipeline.
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CHAPTER 2. METHODS 5

2.1 Preprocessing Steps

SiNVICT pre-processes and prepares the raw input file from sequencers for actual detection of

SNVs and indels through the following substeps.

Trimming. SiNVICT trims the input reads in order to remove any remaining primers or very low

quality bases at the ends of reads. If the reads have already been properly trimmed and quality

checked, SiNVICT can skip this substep.

Mapping. Once the reads are trimmed, read mapping can be performed using any short read

aligner that allows mapping with indels, i.e. mrFAST-fastHASH [26], BWA [12], etc. SiNVICT sorts

the mapping output with respect to genomic loci.

Recalibration and error correction of low quality mappings. SiNVICT re-calibrates the “base

quality” of low-quality/ambiguous mappings with the goal of improving the mapping accuracy and re-

ducing the noise (errors) introduced by these mappings for downstream analysis. After re-calibration,

SiNVICT performs local assembly to do error correction on the bases. The newly corrected reads

are then re-aligned to the reference genome per the previous sub-step. The final product of this

substep is thus a set of re-calibrated and error-corrected high quality mappings that will be used for

the main part of our method.

We use the tool ABRA [18] for recalibration and error correction of initial mappings. For per-

forming calculations on variant allele frequencies we use the bam-readcount tool which provides

an interface to samtools pileup. This provides detailed statistics for every single location within the

target regions, including the reference base, read depth, variant alleles, base counts for each al-

lele, reads mapped to the forward and reverse strands, average base qualities, average mapping

qualities, the distance of the location from the ends of the read as a fraction, etc.

2.2 Somatic Mutation and Indel Discovery Step

The main goals of SiNVICT are to identify mutations (somatic or germline) from read errors and

to distinguish potential somatic mutations originating from tumour genomes from allelic variation

(due to germline events) in the normal genome. SiNVICT achieves this by calculating for each

potential SNV (or indel without any difference in the model) locus, the probability of the mutation

being real (as a function of the error rate observed for the sequencing platform), as well as that for

the observed allelic distribution being a result of a somatic mutation vs a germline mutation, through

the use of a Poisson model. In other words, SiNVICT returns the p-value (p) and confidence score

(Q = 10 · log10 p) for each potential mutation as well as those for each mutation being somatic.
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In order to calculate the p-values, SiNVICT processes the readcount data to obtain the initial

set of calls. For that SiNVICT uses (i) N : the total number of reads covering a position, (ii) K: the

number of reads that support a mutation for that position, and (iii) r: the average error rate (for each

position, determined by the sequencing platform).

Based on this, SiNVICT calculates p1, the p-value of the mutation as follows [9].

p1 = P (K|λ1) = e−λ1

bKc∑
i=0

λi1
i!

(2.1)

The above Poisson cumulative distribution function (CDF) gives the probability that there is an

actual mutation at a particular position, if out of N reads covering that position, K reads support

a variant allele. Note that given the average error rate r, λ1 = N × r, which gives the expected

number of errors. If the number of reads supporting a mutation (K) is significantly greater than this

value (λ1), then there is a greater probability that an actual mutation has occurred at the current

genomic position.

SiNVICT allows the user to set a threshold for the p-value p1 implicitly via the confidence score

conversion (Q = 10 · log10 p1). SiNVICT will not report calls with confidence score below the user

defined threshold.

Once it has been established that there is an actual mutation at a particular locus, we can

again use the Poisson model to calculate p2, the p-value of the mutation being somatic by setting

λ2 = N/2.

p2 = P (K|λ2) = e−λ2

bKc∑
i=0

λi2
i!

(2.2)

In this case, λ2 is the average number of events per interval in a Poisson distribution andN is the

total number of reads covering a location. The null hypothesis here is that the observed mutation

is germline. In this case, around half (i.e. N/2) of the reads covering this locus are expected to

include the mutation and thus λ2 is set to N/2.

This Poisson model has high sensitivity (on both Illumina and Ion Torrent Proton platforms) and

can introduce many false positives due to the following. Both Illumina and Proton native mutation

callers are designed to run on the mapping data from a single tumour sample, without any con-

sideration for strand bias or the read depth. In addition neither of these callers take into account

systematic noise characteristics during the processing of multiple samples. These result in an infla-

tion in the number of mutation candidates, making further downstream analysis virtually intractable.

In order to reduce the number of the candidates, we apply a number of post-processing steps as

described below.
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2.3 Postprocessing Steps

SiNVICT applies a number of postprocessing filters to the candidate locations to increase its speci-

ficity. SiNVICT provides default values for the parameters of these postprocessing steps based

on the observed characteristics of cfDNA sequencing data used in our experiments, but users can

change these to values better suited for their own data. The postprocessing steps SiNVICT applies

are as follows:

Minimum Read Depth filter. SiNVICT has a filter to discard locations that do not meet the min-

imum read depth. While SiNVICT is intended to be used with ultra-deep sequencing data, some

locations will still have very low coverage due to the limitations of the sequencing technologies.

Thus, the read depth is very often non-uniform across the locations. In ”low coverage” (user de-

fined) regions, the sequencing errors can be mis-interpreted as SNVs or indels and thus are filtered

out.

Strand Bias filter. The strand bias for a genomic location i (see equation 2.3) is defined as the

ratio of the number of reads that are mapped to the forward strand to the total number of reads

mapped for that genomic location.

StrandBiasi =
NumReadsForwardi
NumReadsTotali

(2.3)

If the potential strand bias is outside of the range [0.5 − ε, 0.5 + ε] (for ε < 0.2), then we say

that there is a real strand bias in the associated genomic region. Strand bias could lead to both

false positives and false negatives. However, most of the regions generated by Illumina sequencing

technology have strand bias primarily causing false positives [8]. In contrast, Ion Torrent technology

is known to return only a few regions with real strand bias and for that we only filter regions with

extremely high strand bias value. It should be noted that while the strand-bias filtering can usually be

more conservative for AmpliSeq (Ion Torrent) technology, due to the level of noise in our calibration

experiment, SiNVICT filters a larger number of locations than normally expected.

There is no definitive cut-off for the strand bias values in general but we have obtained good

results for ε = 0.1. The SNV/indel calls for which there is a real strand bias are declared to be of

lower confidence and are filtered out.

Homopolymer Regions Calling SNVs and indels in homopolymer regions are very challenging

because mapping the reads correctly to these regions are very difficult. This source of bias can

cause many false positive calls. To eliminate these false positives, for each location that was called

(as an SNV or indel) earlier, we check the consecutive 3 bases on both sides of this location and

declare it as a lower confidence call (to be filtered out) if either side contains 3 identical bases.
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Figure 2.2: Calculating the Signal to Noise Ratio (SNR) in multiple samples across several genomic
loci. The x-axis depicts 5 loci from a set of samples such that each sample is represented by a
distinct colour. For each location on the x-axis, the corresponding value on the y-axis indicates the
percentage of the most frequent variant allele. The chance of any one of the loci indicated above
having a ”uniform” variant allele frequency distribution across 5 unrelated samples is very low and
thus there must be location dependent noise in the variant allele frequency estimates. Most current
SNV callers will report a potential mutation for one of the samples in locations 1 and 2 while they
will report a potential mutation for 4 out of 5 samples in location 5. They will not make any calls
for locations 3 and 4 because of their negligible measured variant allele frequencies. For the last
position, all samples but one show substantial evidence for a potential mutation when examined
individually. The SNR filter utilized by SiNVICT allows such cases to be filtered out under the
assumption that SNVs are expected to be unique to a few patients among a batch for all practical
purposes.
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Signal to Noise Ratio (SNR) in multiple samples. Different regions of the genome can have

different noise levels because of the sequencing technology (see Figure 2.2). Therefore having

the average noise information for a particular genomic locus across a number of samples can be

very useful in assessing the likelihood of a false positive. As mentioned earlier, SiNVICT is capable

of performing analysis on a cohort of samples. In such cases, SiNVICT calculates and stores

the average noise level for each location across the samples. Consequently, these average noise

values are used to distinguish noisy locations from actual variants, and eventually detect the final

set of SNVs and indels more accurately.

For calling a location an SNV (or indel) in noisy regions, we calculate the Signal to Noise Ratio

(SNR) as the ratio of mean and standard deviation of major variant allele frequency across the

samples within the panel, as per equation 2.4. The mean µi can be calculated as per equation 2.5

and the standard deviation, σi, is given in equation 2.6; in both equations the sum is taken across n

samples in the panel, where i is the current genomic location and j is the current sample.

SNRi =
µi
σi

(2.4)

µi =

n∑
j=1

VariantAllelePercentageij

n
(2.5)

σ2
i =

n∑
j=1

(VariantAllelePercentageij − µi)2

n
(2.6)

Each locus with major variant allele percentage≥ 3× SNR is then declared as a high confidence

variant. The remaining loci are filtered out.

SiNVICT applies each one of the 4 filters in the order they are described above, namely, (1)

Read Depth, (2) Strand Bias, (3) Homopolymer and (4) SNR. Each genomic locus, ”passing” the

first k filters and ”failing” the k + 1st is added to the file associated with the filter it fails. Only the

genomic loci that pass all filters are considered to be high confidence SNVs (or indels) and are

added to the master file.

2.4 Time Series Analysis

SiNVICT also provides the ability to perform time series analysis on cfDNA sequencing data ob-

tained from cancer patients on multiple time points throughout their treatment. The goal here is to

provide the user the ability to assess whether specific mutations appear only in specific time points

or are present in all time points, sometimes with very low prevalence, e.g. in support of the Big Bang

theory of cancer [23]. SiNVICT achieves this in two steps. (i) Genomic loci that were sequenced
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successfully in all time points for a patient and assigned a sufficiently high confidence score (e.g.

>= 90) in at least one of the time points by the Poisson model used by SiNVICT (Equation 2.1)

are chosen; (ii) Among these, only the loci with high read depth (e.g. >= 1000) in all samples

are used so that only the highest confidence regions are considered for the time series analysis.

On each of these loci, rather than relying on the Illumina error rate estimate, SiNVICT calculates

the localized error rate by using the mean VAF (Variant Allele Frequency) from the 10 neighboring

bases (5 on each side). The user can increase the size of the neighborhood (from 10 bases to any

user specified number of bases) used to calculate the localized error rate, at the cost of a higher

running time. By calculating p-value of the detected variant through the use of a localized error rate

(rather than the error rate provided by specs) SiNVICT reduces the position specific and sequence

content based biases in sequencing errors [19]. Based on the localized error rate, SiNVICT then

recalculates the p-value as 1− (1− errn)1/percm , where errn is our error rate estimate and percm is

the percentage of reads that include the mutation.



Chapter 3

Results

In order to evaluate our method, we performed the following experiments: (i) we simulated insilico

cfDNA/ctDNA with varying dilutions to determine SiNVICT’s performance (precision/recall) in SNV

detection, (ii) we mixed 22RV1 and 49C prostate cancer cell-lines and sequenced them with Ion

Torrent and Illumina technologies to emulate various tumour-normal mixture levels to measure SiN-

VICT’s SNV as well as indel detection performance on a mixture of sequencing data, and finally

(iii) we explored the time-series analysis capabilities of SiNVICT on cell-free DNA sequencing data

from castration-resistant prostate cancer patients [25] 1. We compared our method to widely used

SNV callers: MuTect, VarScan2, and Freebayes. In all the experiments, SiNVICT outperforms Free-

bayes. Furthermore, our results show that SiNVICT performs better than MuTect and VarScan2 in

most cases for ultra-deep sequencing data and allows further data exploration such as time-series

analysis on cfDNA sequencing data.

3.1 Simulated Data

3.1.1 SNV calling on simulated data.

We tested all four tools on simulated data obtained from version hg19 -i.e. GRCh37- [17] of the

human reference genome. The parameters that are used to run each tool are provided in Table A.1.

We extracted the exons of the AR gene with BEDTools [20], representing the normal tissue, and

introduced 18 random SNVs to a copy of the original sequence as the ”tumour” tissue. We then

used wgsim (part of Samtools [13]) to simulate ultra-deep sequencing with Illumina MiSeq. We tried

to keep the parameters close to the experimentally observed ones (read length = 145, insert size

1http://www.ebi.ac.uk/ena/data/view/PRJEB11648, http://www.ebi.ac.uk/ena/data/view/PRJEB11658

11
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= 175). We obtained an average read depth of ˜20000 in 7 different tumour-normal mixture levels

(50%, 20%, 10%, 5%, 2.5%, 1%, and 0.5% tumour content level).

SiNVICT was highly sensitive on this simulated data set: it was able to detect all 18 mutations

(as high confidence SNVs) at tumour content levels of 50%, 20%, 10%, 5%, and 2.5%. At tumour

content level of 1%, SiNVICT was able to detect 13 of the 18 mutations; at tumour content level

of 0.5% it detected 12 of the 18 mutations. With respect to specificity, out of 8938 locations in

the corresponding exons, SiNVICT called between 15 and 21 (with an average of 20) locations as

high confidence SNVs, resulting in exactly 3 false positives per sample. Freebayes had high recall

and precision for this dataset down to 10% tumour content level while MuTect and VarScan2 kept

a consistent level of high recall and precision down to 1%. In all the cases, SiNVICT had a higher

precision than MuTect, Freebayes, and VarScan2. In all except one case (tumour content 1%),

SiNVICT had a better recall than VarScan2. See Figure 3.1 and Table A.2 for details.

3.1.2 Indel calling on simulated data.

We also carried out an experiment to check the precision and recall of all tools for indel calling on

simulated data. From the same reference genome used in the previous experiment, we extracted

exons 2-5 of the PIK3CA gene and manually added 4 indels (of size 2 each) and generated five

samples with different tumour-normal mixtures (50%,20%,10%,5%,1%) with average read depth of

˜14000, insert size of 150, and read length of 70. SiNVICT and VarScan2 had perfect precision and

recall on all of the samples. MuTect only missed two indels at 1% level. However, Freebayes only

reported indels on one sample and failed to report anything on the others. See Table A.3 for details.

3.1.3 SNV calling on simulated data with tumour heterogeneity.

We evaluated all methods on a more challenging dataset by building a sample tumour phylogeny

to simulate the effect of tumour heterogeneity. We increased the number of point mutations to 25

and distributed them among 5 clones. Each clone was assigned 5 distinct SNVs out of the 25;

each clone also inherited all mutations from its parent clone. See Figure 3.3 for the topology of the

phylogenetic tree used in this experiment.

We prepared 10 samples, each containing a mixture of normal cells and the above mentioned

clones with normal contamination rates of 90%, to 99% - with unit increments.

For this experiment, we selected genomic regions from 5 distinct chromosomes at approximately

equal sizes whose total length was 31485 base pairs. We extracted these regions with BEDTools

and used wgsim to simulate ultra-deep sequencing with Illumina MiSeq. We kept the parameters

close to the experimentally observed ones (read length = 145, insert size = 175). We obtained an

average read depth of ˜20000 in all samples. We observed that the detection abilities of SiNVICT

for such a heterogeneous case was adequate for higher prevalence clones up to 97% normal mixed
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Figure 3.1: Precision and Recall of SiNVICT, MuTect, Freebayes, and VarScan2 on simulated data.
x-axis represents different samples with different tumour content levels. In each of these simulated
samples, there were 18 manually added SNVs. The total number of bases covered per sample
was 8938. All of the 18 SNVs were successfully detected in samples at tumour content levels of
50%, 20%, 10%, 5%, and 2,5% by SiNVICT and VarScan2. Freebayes can successfully detect the
SNVs at 50% tumour. In all the cases, SiNVICT had a better precision than MuTect, Freebayes,
and VarScan2 however in tumour content of 1% VarScan2 had a better recall (1 more SNV detected
by VarScan2). VarScan2 made relatively more number of false positive calls resulting in its lower
precision. Details about number of calls are provided in Table A.2.
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with 3% tumour. Beyond this level, the variant allele percentage for all clones fell below the 0.6%

level, which resulted in decreased sensitivity. Note that Freebayes, MuTect, and VarScan2 did not

make any calls on this challenging dataset. We believe that this is caused due to the rejection of

the SNV sites by the triallelic site filter commonly used by such tools. Due to the extremely high

read depth we simulated, as well as the highly clonal structure of the samples, most of these SNV

locations show evidence towards more than one possible mutation. SiNVICT only considers the

most frequent non-reference base change and ignores the other lower frequency base changes -

this is most likely the reason why SiNVICT makes calls in the first place where other tools do not.

For instance, at a sample location with a read depth of 80,000 and a reference base A, one might

observe 78,000 reads matching the reference, 1500 reads suggesting an A to T change, and 500

reads suggesting an A to C change. Our results are shown in Figure 3.2 and Table A.4 in more

detail.

3.2 AmpliSeq and Illumina 22RV1-49C Calibration data

In the above experiment, we assumed that the amount of DNA available for our use is unlimited.

Since cfDNA is usually obtained from blood, the amount of DNA available for analysis in reality can

be very low, which will introduce sequencing challenges. In addition to the low amount of DNA, low

tumour content can further complicate the analysis of cfDNA data.

In this second experiment, we simulated such real life scenarios. We used a mixture of two

cell-lines, 22RV1 and 49C, to simulate normal and tumour tissues respectively. While mixing these

cell-lines, we generated samples with varying amounts of DNA (10ng, 5ng, 2.5ng and 1ng for

AmpliSeq and 50ng, 25ng, 10ng, and 5ng for Illumina). For each amount, we mixed the cell-lines in

different proportions to simulate different dilutions (5:1, 10:1, 20:1 and 50:1 for AmpliSeq and 10:1,

20:1 and 50:1 for Illumina). Finally, we generated 16 and 12 samples by IonTorrent Proton and

Illumina MiSeq, respectively. For Illumina we did not generate any sequencing data for 5:1 dilutions.

3.2.1 Experimental design for the cell-line data.

We have used a mixture of prostate cancer cell lines 22RV1 and a LNCaP derivative 49C [2] con-

taining different known mutations as an experimental model. We have used a 14 gene TSCA gene

panel designed using Illumina DesignStudio (http://designstudio.illumina.com/truseqca/project/new)

and targeted 70,929 bases in total (175bp amplicon size). The targeted genes were APC, CDK12,

AR, SPOP, TP53, PTEN, BRCA1, BRCA2, CHEK2, MYC, FOXA1, MED12, HSD3B1, ASXL1. Am-

pliseq panel targeted 19 genes (AR, TP53, BRCA1, BRCA2, MED12, ASXL1, CTNNB1, OR5A1,

PIK3CA, SCN11A, CHD1, KDM6A, SPOP, HSDB3, PTEN, MLL, MYC, CHEK2, FOXA1), had
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Figure 3.2: Precision and Recall of SiNVICT, MuTect, Freebayes, and VarScan2 on simulated data
consisting of 5 clones. To each clone, we added 5 SNVs and each subclone inherited additional
mutations from their parents as shown in Figure 3.3 and the number of bases covered was 31485.
Detection abilities of SiNVICT for such a heterogeneous case was observed to be adequate for
higher prevalence clones up to 97% normal mixed with 3% tumour. Beyond this level, the variant
allele percentage for all clones fell below 0.6%, which resulted in a reduction of sensitivity. Note
that Freebayes, MuTect, and VarScan2 failed to provide any calls for these simulated data sets.
We believe this is caused due to the rejection of the SNV sites by the triallelic site filter commonly
used by such tools. Due to the extremely high read depth we simulated, as well as the highly
clonal structure of the samples, most of these SNV locations show evidence towards more than
one possible mutation. SiNVICT only considers the most frequent non-reference base change
and ignores the other lower frequency base changes - this is most likely the reason why SiNVICT
makes calls in the first place where other tools do not. For instance, at a sample location with a read
depth of 80,000 and a reference base A, one might observe 78,000 reads matching the reference,
1500 reads suggesting an A to T change, and 500 reads suggesting an A to C change. Detailed
information about call statistics are provided in Table A.4



CHAPTER 3. RESULTS 16

Normal

Clone	1
25%

Clone	3
20%

Clone	2
30%

Clone	4
15%

Clone	5
10%

Figure 3.3: Sample phylogenetic tree with 5 clones, randomly selected topology and prevalences to
simulate the conditions of SNV detection for a very heterogeneous tumour.

104.67bp genome footprint and was designed using AmpliSeq Designer applying FFPE param-

eters (amplicon target range 125-175bp). The sequencing was performed at Vancouver Prostate

Centre using MiSeq (KAPA library quantification kit, 25M 2x300bp read kit) and Ion Proton (80M

fragments, Ion PI sequencing reagents kit 200 v3, Ion PI chip kit v3) sequencers according to man-

ufacturer’s instructions. Each library preparation run included negative (no DNA added) control, in

all cases the number of reads from the negative control was negligible (< 5, 000 reads, compared

with > 1, 000, 000 reads for target libraries).

AmpliSeq Calibration Data.

We evaluated the sensitivity of SiNVICT on these 16 samples by examining three previously vali-

dated SNVs (H875Y, F877L and T878A) within the AR gene [4] that belongs to only one of the two

cell-lines. H875Y and T878A are homozygous SNVs while F877L is a heterozygous SNV. We used

F877L and T878A mutations to evaluate the sensitivity of SiNVICT.

SiNVICT successfully detected all three mutations in all dilutions of 10ng, 5ng and 2.5ng. How-

ever it failed to detect the heterozygous F877L mutation at 20:1 and 50:1 dilutions of 1ng which had

observed allele frequencies of 0.07% and 0.83% respectively. The failed case at 50:1 dilution is

likely due to the very low amount of DNA used and the ”tumour” cell-line being highly diluted at this

amount.

In summary, SiNVICT was able to detect 46 of the 48 cases (sensitivity of 95.8%). The lowest
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Table 3.1: SNV calling on AmpliSeq calibration data generated from mixtures of 22RV1 and 49C
cell lines.

DNA Amount

10ng 5ng 2.5ng 1ng

Dilution Mutation STa MTb VSc FBd STa MTb VSc FBd STa MTb VSc FBd STa MTb VSc FBd

5:1
H875Y 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7 3
T878A 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7
F877L 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7

10:1
H875Y 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7 3
T878A 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7
F877L 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7

20:1
H875Y 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
T878A 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7
F877L 3 3 3 7 3 3 3 7 3 3 3 7 7 7 7 7

50:1
H875Y 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
T878A 3 3 3 7 3 3 3 7 3 3 3 7 3 3 3 7
F877L 3 3 3 7 3 3 3 7 3 3 3 7 7 3 3 7

Three previously validated SNVs on the AR gene for the mixture of the 22RV1-49C cell-lines
(H875Y, F877L, and T878A) were used to evaluate the sensitivity of SiNVICT in detection of SNVs
in real data. Varying amounts of DNA (10ng, 5ng, 2.5ng and 1ng) were used to prepare each of the
samples. For each amount, we mixed the two cell-lines in different proportions to simulate different
dilutions (5:1, 10:1, 20:1 and 50:1). The rarest variant which could be successfully detected by
SiNVICT was at 1% expected allele frequency. Note that, expected allele frequency for F877L is
half of that for T878A due to F877L being a heterozygous mutation.
aSiNVICT. b MuTect. c VarScan2. d Freebayes.

observed allele frequency for successful detection of a mutation was 1.24% (F877L, 10ng, 50:1).

SiNVICT failed to detect 2 cases that fell below 1% observed allele freqency (F877L at 20:1-1ng and

F877L at 50:1-1ng). Freebayes only reported the H875Y in all 16 samples and failed to detect other

mutations. Freebayes in total detected 16 out 48 (sensitivity of 33.3%) validated calls. VarScan2

failed to call H875Y mutation in dilutions 5:1 and 10:1. Similar to SiNVICT, it failed to call F877 at

20:1-1ng. Unlike SiNVICT, it reproted F877L at 50:1-1ng sample. VarScan2 in total reported 39 out

of 48 (sensitivity of 81.25%) validated calls. MuTect on this dataset reported 47 out of 48 (sensitivity

of 97.92%) cases. Mutect was the only tool to report F877 at 50:1-1ng. See Table 3.1 for details

about the SNV calls and Tables A.5 and A.6 for details about the read statistics.
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Table 3.2: SNV calling on Illumina calibration data generated from mixtures of 22RV1 and 49C cell
lines.

DNA Amount

50ng 25ng 10ng 5ng

Dilution Mutation STa MTb VSc FBd STa MTb VSc FBd STa MTb VSc FBd STa MTb VSc FBd

10:1
H875Y 3 3 3 3 3 3 7 3 3 3 3 3 3 3 3 3
T878A 3 3 3 7 3 3 3 7 3 3 3 7 3 7 7 7
F877L 3 3 3 7 3 3 3 7 3 3 3 7 3 7 7 7

20:1
H875Y 3 3 3 3 3 3 3 3 3 3 7 3 3 3 3 3
T878A 3 3 3 7 3 3 3 7 3 3 3 3 3 7 7 7
F877L 3 3 3 7 3 3 3 7 3 7 7 7 7 7 7 7

50:1
H875Y 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
T878A 3 3 3 7 3 3 3 7 7 7 7 7 7 7 7 7
F877L 3 3 3 7 3 3 3 7 3 7 7 7 3 3 7 7

aSiNVICT. b MuTect. c VarScan2. d Freebayes.

3.3 Illumina Calibration Data.

We evaluated the sensitivity of SiNVICT on calibration dataset generated through Illumina sequenc-

ing technology by examining the same validated mutations.

As depicted in Table 3.2, SiNVICT had the best performance on this dataset by being able

to detect 33 out of 36 (sensitivity of 91.6%) cases while VarScan2 and Freebayes detected 25

(sensitivity of 69.4%) and 13 (sensitivity of 36.1%) respectively. MuTect was able to detect 28

(sensitivity of 77.77%) out of 36 cases. The lowest recorded mutation that was detected by SiNVICT

had 1% expected allele frequency while the highest undetected mutation had around 0.3% observed

variant allele frequency. We have provided more details about this experiment in Tables A.7 and

A.8.

3.4 Cell-Free DNA from castration-resistant prostate cancer pa-

tients

We obtained two datasets part of a larger study [25] to assess the feasibility of using SiNVICT

on cfDNA from cancer patients. One of these datasets consisted of cfDNA sequencing data from

castration-resistant prostate cancer patients sequenced with the Ion Torrent (AmpliSeq) technology

and the other dataset composed of cfDNA sequencing data from metastatic castration-resistant

prostate cancer patients sequenced with Illumina MiSeq. The AmpliSeq panel covered several
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genes whereas the Illumina panel was limited to the AR gene. More details about the sequencing

panels can be found at http://www.ebi.ac.uk/ena/data/view/PRJEB11659.

First, we performed a basic validation step to ensure that SiNVICT can perform basic SNV calling

in cfDNA using the AmpliSeq dataset with several previously validated mutations by the study. We

were able to reproduce all these mutation calls with SiNVICT (see Table A.9). Given the high VAF

of these mutations and the depths of these locations, the aim of this experiment was not to assess

the sensitivity of SiNVICT, but to make sure it passed a simple preliminary test for handling cfDNA

sequencing data.

We then selected 12 patients from the Illumina dataset belonging to the same parent project that

were sequenced at all three time points of interest - baseline, on-treatment (12-weeks), and pro-

gression - and whose respective samples passed quality checks. These samples were sequenced

to obtain DNA from exons 2-8 of the AR gene. Candidate locations suitable for time series analysis

were selected based on the methodology described in Section 2.4.

We then plotted the variant allele frequencies for these locations for a patient at the three time

points and observed a trend in which one time point shows an increase in the VAF despite the other

two time points showing little evidence of a variant being present (see Figure A.1).

Based on this observation, we tried to assess whether the drug treatment had eliminated some

of the subclones while providing selective advantage to some others that were already present in

minuscule amounts before treatment, through recalculating the p-values based on SiNVICT’s time

series data analysis feature. The recalculated p-values were significantly different than the original

p-values (see Table A.10) implied by the error rate for the (Illumina) sequencing technology, which

might be an indicator of a subclone being present at other time points in very low amounts, making

it difficult to detect by standard (non-time-series) analysis.
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Conclusion

SiNVICT is a highly accurate and sensitive tool for detection of SNVs and short indels in circulating

tumour DNA at very low variant allele percentages. Mutation detection with high read depth is often

difficult due to sequencing errors getting amplified with the Amplicon technology used in most deep

sequencing platforms. SiNVICT is capable of filtering mutation calls by several parameters such

as the minimum read depth, strand bias, etc. We provide more details on the effect of filters on

the experiments performed in table A.11. SiNVICT is also highly customisable, allowing the user to

fine-tune several parameters to achieve the desired level of sensitivity and specificity. Time-series

analysis capabilities of SiNVICT might be utilised to gain insight to how certain drug treatments

affect the overall clonal composition for a patient.

Results obtained from experiments on simulated data suggest that at variant allele percentages

below 0.5%, even increasing the read depth indefinitely will not help with the calls unless the se-

quencing errors are reduced. Results obtained from the cell-line experiments might allow us to

speculate that 25ng/10ng seem to be the safest amounts of DNA (among our calibration samples)

from which a set of reliable calls can be obtained at all dilutions mentioned before. Meanwhile, 5ng

seems to be a logical choice for a lower limit before SNV/indel calling deteriorates significantly.
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Table A.1 Command-lines and parameters used to execute MuTect, VarScan2, and Freebayes
throughout the experiments

Tool Command-Line Parameters

SiNVICT sinvict -t tumor-directory-path -o output-directory-path
–error-rate 0.01
–min-depth 100
–QScoreCutoff 20
–readEndFraction 0.01
–leftStrandBias 0.3 (disabled for AmpliSeq)
–rightStrandBias 0.7 (disabled for AmpliSeq)

MuTect java -Xmx2g -jar mutect.jar
–analysis-type: MuTect
–reference-sequence: hg19.fa

Freebayes freebayes -f reference-genome input-bam > output-vcf –min-alternate-count: 2
–min-coverage: 0
–standard-filters: -m 30 -q 20 -R 0 -S 0
–min-alternate-total: 1

VarScan2 java -jar VarScan.v2.4.1.jar mpileup2snp input-mpileup –min-var-freq 0.001 Min coverage: 8
Min reads2: 2
Min var freq: 0.001
Min avg qual: 15
P-value thresh: 0.01

Table A.2 Precision and Recall on SNV calling for simulated data

SiNVICT MuTect Freebayes VarScan2
Tumour

Content (%) NCa TPb FPc R(%)d P(%)e NC TP FP R(%) P(%) NC TP FP R(%) P(%) NC TP FP R(%) P(%)

50 21 18 3 100.00 85.71 32 18 14 100.00 56.25 21 18 3 100.00 85.71 31 18 13 100.00 58.06
20 21 18 3 100.00 85.71 46 18 28 100.00 39.13 11 8 3 61.11 72.72 41 18 14 100.00 43.90
10 21 18 3 100.00 85.71 35 18 17 100.00 51.43 3 0 3 0.00 0.00 33 18 15 100.00 54.54
5 21 18 3 100.00 85.71 42 18 24 100.00 42.86 3 0 3 0.00 0.00 34 18 16 100.00 52.94

2.5 21 18 3 100.00 85.71 32 12 20 66.66 37.50 3 0 3 0.00 0.00 34 18 16 100.00 52.94
1 16 13 3 72.22 81.25 25 3 22 16.66 12.00 3 0 3 0.00 0.00 26 14 12 77.70 53.84

0.5 15 12 3 66.67 80.00 20 1 19 5.55 5.00 3 0 3 0.00 0.00 27 12 15 66.6 44.44

a NC: Number of Calls. b TP: True Positive. c FP: False Positive. d R: Recall. e P: Precision.
In each of these simulated samples, there were 18 manually added SNVs. The total number of bases covered per sample was 8938. All of the 18 SNVs were successfully detected in samples at
tumour content levels of 50%, 20%, 10%, 5%, and 2,5% by SiNVICT and VarScan2. MuTect was able to detect SNVs with high recall down to 2.5% level as well. Freebayes can successfully detect the
SNVs at 50% tumour. In all the cases, SiNVICT had a better precision than MuTect, Freebayes, and VarScan2 however in tumour content of 1% VarScan2 had a better recall (1 more SNV detected
by VarScan2). VarScan2 made relatively more number of false positive calls resulting in its lower precision.

Table A.3 Precision and Recall on indel calling on simulated data

SiNVICT MuTect Freebayes VarScan2
Tumour

Content (%) NCa TPb FPc R(%)d P(%)e NC TP FP R(%) P(%) NC TP FP R(%) P(%) NC TP FP R(%) P(%)

50 4 4 0 100.00 100.00 4 4 0 100.00 100.00 4 4 0 100.00 100.00 4 4 0 100.00 100.00
20 4 4 0 100.00 100.00 4 4 0 100.00 100.00 0 0 0 0.00 0.00 4 4 0 100.00 100.00
10 4 4 0 100.00 100.00 4 4 0 100.00 100.00 0 0 0 0.00 0.00 4 4 0 100.00 100.00
5 4 4 0 100.00 100.00 4 4 0 100.00 100.00 0 0 0 0.00 0.00 4 4 0 100.00 100.00
1 4 4 0 100.00 100.00 2 2 0 50.00 100.00 0 0 0 0.00 0.00 4 4 0 100.00 100.00

a NC: Number of Calls. b TP: True Positive. c FP: False Positive. d R: Recall. e P: Precision.
In each of these simulated samples, there were 4 manually added indels of size 2. The average read depth was 14000 with insert size of 150 and read length of 70. Freebayes detected all 4 indels
successfully at 50% tumour content level without any false positives and did not make any calls on any other tumour content levels. All 4 indels were successfully detected by SiNVICT and VarScan2
in all samples with no false positives. MuTect only missed two indels at 1% level.
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Table A.4 Precision and Recall on SNV calling on simulated data with tumour heterogeneity

SiNVICT MuTect Freebayes VarScan2
Tumour
Content (%) NCa TPb FPc R(%)d P(%)e NC TP FP R(%) P(%) NC TP FP R(%) P(%) NC TP FP R(%) P(%)

90/2.5/3/2/1.5/1 23 22 1 88.00 95.65 195 0 195 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
91/2.25/2.7/1.8/1.35/0.9 23 22 1 88.00 95.65 169 0 169 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
92/2/2.4/1.6/1.2/0.8 24 21 3 84.00 87.50 188 0 188 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
93/1.75/2.1/1.4/1.05/0.7 22 20 2 80.00 90.91 194 0 194 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
94/1.5/1.8/1.2/0.9/0.6 21 20 1 80.00 95.24 211 0 211 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
95/1.25/1.5/1/0.75/0.5 16 16 0 64.00 100.00 208 0 208 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
96/1/1.2/0.8/0.6/0.4 16 16 0 64.00 100.00 189 0 189 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
97/0.75/0.9/0.6/0.45/0.3 17 16 1 64.00 94.12 175 0 175 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
98/0.5/0.6/0.4/0.3/0.2 10 10 0 40.00 100.00 191 0 191 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00
99/0.25/0.3/0.2/0.15/0.1 10 10 0 40.00 100.00 175 0 175 0.00 0.00 0 0 0 0.00 0.00 0 0 0 0.00 0.00

a NC: Number of Calls. b TP: True Positive. c FP: False Positive. d R: Recall. e P: Precision.
To each clone, we added 5 SNVs and each subclone inherited additional mutations from their parents. The number of bases covered was 31485. Detection abilities of SiNVICT for such a
heterogeneous case was observed to be adequate for higher prevalence clones up to 97% normal mixed with 3% tumour. Beyond this level, the variant allele percentage for all clones fell below 0.6%,
which resulted in a reduction of sensitivity. Note that Freebayes, MuTect, and VarScan2 failed to provide any calls for these simulated data sets.
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Table A.5 AmpliSeq calibration data - expected and observed allele frequencies

DNA Amount

10ng 5ng 2.5ng 1ng

Dilution Mutation EAFa (%) OAFb(%) OAF(%) OAF(%) OAF(%)

5:1
H875Y 80.0 67.6 73.2 62.6 74.1
T878A 20.0 23.3 17.1 26.9 22.2
F877L 10.0 11.6 9.0 14.8 11.3

10:1
H875Y 90.0 63.2 75.4 83.2 71.8
T878A 10.0 16.2 10.6 12.9 5.6
F877L 5.0 7.9 5.0 7.9 2.78

20:1
H875Y 95.0 75.6 73.4 82.2 86.9
T878A 5.0 5.8 5.5 4.0 3.9
F877L 2.5 3.9 2.9 1.7 0.07

50:1
H875Y 98.0 86.6 64.5 84.4 81.9
T878A 2.0 1.8 2.3 3.0 2.8
F877L 1.0 1.24 1.8 1.5 0.83

a EAF: Expected Allele Frequency. b OAF: Observed Allele Frequency.
The discrepancy between the expected and observed allele frequencies at 20:1 dilution level (1ng)
is most likely due to a sudden drop in read depth which occurred during the sequencing of this
sample.
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Table A.6 AmpliSeq Calibration Experiment - Read Statistics for different variants.

T878A(chrX:66943552) F877L (chrX:66943549) H875Y (chrX:66943543)

Dilution DNA (ng) Read A C G T Read A C G T Read A C G T

5:1

10 2917 2236 0 681 0 2769 0 320 0 2449 3271 1 1058 0 2212
5 3365 2791 0 574 0 3153 0 286 1 2866 3762 2 1006 0 2754

2.5 2742 2004 1 737 0 2603 0 385 0 2218 3131 2 1168 1 1960
1 2225 1731 0 494 0 2104 0 238 0 1866 2328 4 598 0 1726

10:1

10 3708 3104 1 602 1 3577 1 283 0 3293 4851 4 1780 0 3067
5 2508 2243 0 265 0 2348 0 119 0 2229 2953 3 724 0 2226

2.5 6220 5416 0 803 1 5894 0 465 0 5429 6412 7 1072 0 5333
1 1979 1868 0 111 0 1898 0 53 0 1845 2558 1 720 1 1836

20:1

10 5247 4943 0 304 0 4378 0 173 2 4203 6221 7 1506 1 4707
5 4969 4697 0 272 0 4068 0 120 0 3948 6192 5 1641 1 4545

2.5 7183 6893 0 290 0 6003 0 102 0 5901 8015 19 1408 0 6588
1 3614 3473 0 141 0 2807 0 2 1 2804 3866 9 499 0 3358

50:1

10 7130 7003 0 127 0 5866 0 73 1 5792 7754 11 1023 3 6717
5 2995 2926 0 69 0 2490 0 44 0 2446 4350 3 1540 0 2807

2.5 4646 4504 0 142 0 3852 0 58 1 3793 5084 6 785 2 4291
1 4006 3893 0 113 0 3241 2 27 0 3212 4585 11 816 0 3758

Reads supporting small indels have not been included in the total read depth.
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Table A.7 Illumina calibration data - expected and observed allele frequencies

DNA Amount

50ng 25ng 10ng 5ng

Dilution Mutation EAFa (%) OAFb(%) OAF(%) OAF(%) OAF(%)

10:1
H875Y 90.0 53.5 46.4 72.8 40.4
T878A 10.0 13.8 25.9 8.8 0.5
F877L 5.0 9.0 11.9 2.0 1.0

20:1
H875Y 95.0 64.2 60.2 47.6 38.1
T878A 5.0 6.9 7.4 27.8 1.1
F877L 2.5 4.4 4.0 0.8 0.00

50:1
H875Y 98.0 61.8 54.1 49.5 65.0
T878A 2.0 4.0 2.0 0.2 0.3
F877L 1.0 1.3 1.6 0.9 1.8

a EAF: Expected Allele Frequency. b OAF: Observed Allele Frequency.

Table A.8 Illumina Calibration Experiment - Read Statistics for different variants.

T878A(chrX:66943552) F877L (chrX:66943549) H875Y (chrX:66943543)

Dilution DNA (ng) Read A C G T Read A C G T Read A C G T

10:1

50 921 796 0 125 0 941 2 85 2 852 1535 4 710 0 821
25 908 673 0 235 0 926 0 110 2 814 1487 0 794 0 690
10 991 904 0 87 0 1015 0 20 0 995 1270 0 345 1 924
5 387 383 0 2 2 402 0 4 0 398 993 2 590 0 401

20:1

50 1496 1392 0 100 4 1519 0 67 0 1452 2222 5 786 0 1427
25 1070 989 0 79 2 1084 2 43 0 1039 1665 4 652 0 1003
10 521 376 0 145 0 532 2 4 0 526 824 1 431 0 392
5 363 359 0 0 4 375 0 0 0 375 992 1 613 0 378

50:1

50 1542 1472 4 62 4 1561 8 20 0 1533 2432 7 922 0 1503
25 1330 1300 2 26 2 1368 1 22 0 1345 2484 2 1139 0 1343
10 442 441 0 0 1 462 4 0 0 458 925 0 465 2 458
5 645 643 0 2 0 654 2 12 0 640 994 2 346 0 646

Reads supporting small indels have not been included in the total read depth.
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Table A.9 Validateda somatic mutations detected by SiNVICT in cfDNA samples (AmpliSeq se-
quencing data) at progression on enzalutamide

Position Ref Alt Function Gene Sample OAF(%) Coverage

chr3:41266097 G A exonic CTNNB1 enza-proton-VC-022-progression 20.0 17592
chr3:41266101 C A exonic CTNNB1 enza-proton-VC-063-progression 24.5 14986
chr3:41266113 C A exonic CTNNB1 enza-proton-VC-017-progression 15.1 20153
chr3:41266137 C T exonic CTNNB1 enza-proton-VC-017-progression 19.3 15932
chr3:178936091 G A exonic PIK3CA enza-proton-VC-019-progression 14.1 14966
chr10:89711902 T G exonic PTEN enza-proton-VC-057-progression 7.7 15418
chr14:38061317 G T exonic FOXA1 enza-proton-VC-056-progression 24.1 6131
chr17:7576572 A C exonic TP53 enza-proton-VC-019-progression 33.4 10250
chr17:7577544 A T exonic TP53 enza-proton-VC-093-progression 35.9 13234
chr17:7578521 G - exonic TP53 enza-proton-VC-085-progression 44.1 7919
chr20:31024102 C T exonic ASXL1 enza-proton-VC-085-progression 18.2 9191
chrX:66931463 T A exonic AR enza-proton-VC-008-progression 52.4 24859
chrX:66931463 T A exonic AR enza-proton-VC-017-progression 44.4 8754
chrX:66931463 T A exonic AR enza-proton-VC-022-progression 21.8 19972
chrX:66931463 T A exonic AR enza-proton-VC-063-progression 28.3 17005
chrX:66943543 C T exonic AR enza-proton-VC-081-progression 6.5 4310

a By Vancouver Prostate Centre (VPC).
The purpose of this experiment was not to test the limits of mutation detection on cfDNA like the
previous cell-line experiments, but rather prove that cfDNA sequencing is a promising technology
for clinical use. Our aim with presenting these results is to demonstrate that SiNVICT does indeed
work on actual cfDNA as well and not only on simulated samples and cell-lines. Note: Our coverage
and OAF statistics might slightly differ from the VPC validation results due to different bioinformatics
software used for mapping, trimming, etc. before running SiNVICT on the data.
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Figure A.1 The y-axis shows the variant allele frequencies for the locations given on the x-axis for
patient VC-007 from the dataset described in Section 3.3 at the three time points shown in the
legend. We observed a trend in which one time point shows an increase in the VAF despite the
other two time points showing little evidence of a variant being present, which might be an indicator
of a subclone being present at other time points in very low amounts, making it difficult to detect by
standard (non-time-series) analysis.
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Table A.10 Time-Series Analysis for VC-007

Baseline On Treatment Progression

Position Ref. Base Depth VAFa (%) p-origb p-newc Depth VAF (%) p-orig p-new Depth VAF (%) p-orig p-new

X:66943542 G 8004 0.024 0.99 0.01489 2736 5.921 10−9 0.00018 8006 0.024 0.99 0.01489
X:66905809 A 8007 14.050 10−9 0.00046 1329 0.598 0.95553 0.00124 6795 0.058 0.99 0.01044
X:66931287 A 8011 4.568 10−9 0.00018 1236 0.402 0.99434 0.01039 8003 0.037 0.99 0.03130
X:66931403 A 8005 0.024 0.99 0.01636 1280 0.0 0.99 1.0 8009 8.303 10−9 9.78 ∗ 10−5

X:66941716 G 8007 0.012 0.99 0.05068 1499 0.466 0.99231 0.00456 8007 2.835 10−9 0.00072
X:66941730 T 8007 0.062 0.99 0.00558 1499 0.133 0.99 0.00697 8007 2.747 10−9 0.00039
X:66905814 A 8007 5.757 10−9 0.00258 1336 0.074 0.99 0.01390 6795 0.0 0.99 1.0
X:66905798 G 8004 0.924 0.76497 0.02081 1337 3.216 9.81 ∗ 10−11 0.00090 6795 0.014 0.99 0.10425
X:66905793 A 8006 18.073 10−9 0.00012 1321 1.121 0.36311 0.00386 6791 0.176 0.99 0.00516
X:66905925 T 8013 0.024 0.99 0.07371 1341 9.395 10−9 0.00011 7812 0.0 0.99 1.0
X:66905920 C 8013 0.087 0.99 0.01869 1341 0.074 0.99 0.12334 7812 6.758 10−9 0.00021
a VAF: Variant Allele Frequency. b p-orig: Original p-value assigned to the location by SiNVICT (see equation 1) prior to time-series analysis.
c p-new: New p-value assigned to the location after doing the time-series analysis as described in Section 2.4.
These locations were selected from patient VC-007 sequenced at all three time points of interest - baseline, on-treatment (12-weeks), and
progression - from the dataset described in Section 3.3. We then plotted the variant allele frequencies for these locations for this patient at the
three time points and observed a trend in which one time point shows an increase in the VAF despite the other two time points showing little
evidence of a variant being present The recalculated p-values were significantly different than the original p-values implied by the error rate
for the (Illumina) sequencing technology, which might be an indicator of a subclone being present at other time points in very low amounts,
making it difficult to detect by standard (non-time-series) analysis.

Table A.11 SiNVICT - Effect of filters on the number of calls.

Experiment Dataset

AmpliSeq Calibration Illumina Calibration Simulation (No Het.) Simulation (With Het.)

Number of Locations (bp)

Total Size of the Panel (Before any calls) 103036 92857 8938 31485
After Poisson CDF 101193 1907 2223 10084
After Min. Read Depth Filter 98420 1874 2223 10084
After Strand Bias Filter 7168 959 21 23
After SNR Filter 90 635 21 3
After Homopolymer Regions Filter 61 506 16 3

We have performed the initial SNV and indel calling with SiNVICT using Poisson CDF with more relaxed settings (confidence score threshold
Q = 20) to maximize sensitivity, which results in a large number of locations called. This may be avoided by using a much higher confidence
score threshold (like Q = 95), but this is not recommended since our layered filtering approach reduces this number in the later stages and the
initially large number of calls can always be returned to later for safety checks. To reduce the number of initial calls, SiNVICT then used our
filters to discard potential false positives. It can be seen that after applying each of our filters, the size of the set of locations called as possible
mutations has been reduced to a feasible number, which can then be manually curated by a specialist. Note-1: Homopolymer Region Filter
is recommended to be only used with AmpliSeq, not Illumina or Illumina based simulations (our simulations were based on Illumina reads,
generated by the program wgsim). The HRF results for all experiments were kept as is, but they were not necessary except for the AmpliSeq
experiment. Note-2: The strand-bias filtering can usually be more conservative for AmpliSeq (Ion Torrent) technology as mentioned in the
Methods section of the text. However, due to the level of noise in our calibration experiment, SiNVICT filters a larger number of locations than
normally expected.
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