
Towards Better User Preference Learning for
Recommender Systems

by

Yao Wu

M.Sc., Chinese Academy of Sciences, 2012

B.Sc., University of Science and Technology of China, 2009

Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Science

c© Yao Wu 2016
SIMON FRASER UNIVERSITY

Summer 2016

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may be reproduced

without authorization under the conditions for “Fair Dealing.” Therefore, limited
reproduction of this work for the purposes of private study, research, education, satire,
parody, criticism, review and news reporting is likely to be in accordance with the law,

particularly if cited appropriately.



Approval

Name: Yao Wu

Degree: Doctor of Philosophy (Computing Science)

Title: Towards Better User Preference Learning for Recommender
Systems

Examining Committee: Chair: Ze-Nian Li
Professor
School of Computing Science

Martin Ester
Senior Supervisor
Professor
School of Computing Science

Jian Pei
Supervisor
Professor
School of Computing Science

Ke Wang
Internal Examiner
Professor
School of Computing Science

George Karypis
External Examiner
Professor
Department of Computer Science &
Engineering
University of Minnesota, Twin Cities

Date Defended: August 11, 2016

ii



Abstract

In recent years, recommender systems have become widely utilized by businesses across industries.

Given a set of users, items, and observed user-item interactions, these systems learn user preferences

by collective intelligence, and deliver proper items under various contexts to improve user engage-

ments and merchant profits. Collaborative Filtering is the most popular method for recommender

systems. The principal idea of Collaborative Filtering is that users might be interested in the items

that are preferred by users with similar preferences. Therefore, learning user preferences is the core

technique of Collaborative Filtering.

In this thesis, we study new methods to help us better understand user preferences from three per-

spectives. We first dive into each rating that users give on the items, and study the reasons behind

the ratings by analyzing user reviews. We propose a unified model that combines the advantages

of aspect-based opinion mining and collaborative filtering, which could extract latent aspects and

sentiments from reviews and learn users’ preferences of different aspects of items collectively. In

our next work, we study the problem from each user’s perspective, and propose a general and flex-

ible model that embraces several popular models as special cases. The new model achieves better

top-N recommendation results on several popular data sets. Finally, we study how to utilize the

general structure of the user-item matrix to better apply collaborative filtering methods. We propose

a co-clustering based method that first partitions the users and items into several overlapping and

focused subgroups, and then applies collaborative filtering methods within each subgroup. The final

recommendations for users are aggregated from the results from the subgroups they are involved in.

Experimental results show that this method could produce better recommendations than other co-

clustering methods and methods that directly apply collaborative filtering on the original user-item

matrix.

Keywords: Recommender Systems; Personalization
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Chapter 1

Introduction

In recent years, recommender systems have become widely utilized by businesses across industries,

and have changed the way how users discover new items. For example, we have noted how Amazon

or similar on-line vendors strive to present each returning users with some suggestions of products

that they might like to buy. These suggestions are not randomly chosen, but are based on the

purchasing decisions by similar customers or some other techniques we will discuss in this thesis.

Recommender systems have contributed a large proportion of the traffic and revenue to a large

number of on-line services. To give an example, LinkedIn’s recommendation systems power more

than 50% of the social connections and job applications that are created by their users, and more

than 80% of a user’s LinkedIn homepage feed is generated by recommendation [42].

Recommender systems use a number of different methodologies. We can generally classify

these methods into the following two categories 1 [27] :

• Content-base Filtering methods make recommendations by examining the contents/properties

of items and user profiles. For instance, if a YouTube user has watched many basketball videos

before, recommending him some more videos with the same genre is a straightforward solu-

tion.

• Collaborative Filtering methods are based on analyzing a large amount of user behaviors and

predict user preferences like by collective intelligence. The principal idea of Collaborative

Filtering is that users might be interested in items that are favorited by users sharing similar

tastes in the past.

Usually, Content-based approaches rely on high quality contents that could accurately describe

users and items in order to make good recommendations. Collaborative Filtering approaches do

not require these contents and therefore it is capable of recommending complex items like movies

and musics without requiring an understanding of the items themselves. In this thesis, we focus our

discussion on the Collaborative Filtering approaches as they have been shown to be able to produce

1Real recommender systems might also use some hybrid methods mixing both of them in production.
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Table 1.1: A sample utility matrix, representing users’ ratings of movies.

Avatar The Godfather The Shawshank Redemption Transformers Star Wars
Alice 5 4
Bob 4 5

Chris 5 4
David 4 1 5 5

more accurate recommendations and have been widely adopted in most successful recommender

systems like Amazon, Netflix, YouTube and LinkedIn.

In a recommender system application, there are two main classes of entities – users and items.

The input data is usually represented as a utility matrix. For each user-item pair, the corresponding

element in the matrix represents the degree of preference of that user for that item. Each user only

knows or has consumed a small subset of all the available items. Therefore, the utility matrix is

usually sparse, meaning that most entries are missing or unknown. An unknown rating implies that

we have no information about the user’s preference for the item. Table 1.1 shows a sample utility

matrix for a movie recommender system. We call the available ratings in the matrix as observed

values. The blanks represent the situation where the user has not rated the movie, and therefore we

do not whether they like the item or not. We call them as missing values. The goal of recommender

systems is to predict the missing values and pick those with highest predicted values to recommend

to users.

Collaborative Filtering methods can be further classified to memory-based and model-base ap-

proaches. Memory-base approaches typically use instant-based methods, such as variants of k-

Nearest-Neighbors on users and items. Although simple, memory-based approaches are still widely

used in a lot of real world systems, since they are easy to implement, scale and interpret. Model-

based approaches apply machine learning models to learn the relationship of the inputs (e.g., users,

items, contexts and features) and desired outputs (e.g., ratings, likes, purchases).

1.1 Research Questions and Contributions

In this thesis, we mainly study the following three research questions raised around the utility matrix

in Table 1.1. Our goal is to better understand user preferences from different perspectives.

1.1.1 Research question from element-wise perspective

If we zoom into each element of the matrix, is a numeric rating good enough to describe user’s

preference?

We highlight this problem in Table 1.2. Both Alice and Chris have rated the movie The Shaw-

shank Redemption with 4 stars, but they might have different reasons – Alice might like its story,

while Chris just likes the movie star Morgan Freeman. If we only use the ratings as input, rec-

2



Table 1.2: Element-wise perspective.

Avatar The Godfather The Shawshank Redemption Transformers Star Wars
Alice 5 4
Bob 4 5

Chris 5 4
David 4 1 5 5

ommender systems would treat the two ratings equally. However, Alice is expecting some new

movies with great stories, and Chris is hoping to watch more movies by Morgan Freeman. How

can we distinguish the differences between them? This question drives us to explore the possibility

of whether we could understand the ratings in a finer level. Fortunately, we have abundant user re-

views available. For example, users like to provide reviews on items they gave bought or consumed

before on Yelp, Amazon, eBay, etc. In these reviews, they prefer to write their feedback on different

aspects of the items. Therefore, we can learn these latent opinions from the reviews and predict

users’ feedback on aspects of some new items.

While previous works on Collaborative Filtering mainly focus on the ratings themselves, few

papers have studied how to utilize the reviews to extract fine-grained user feedback from the reviews.

The main challenge is that users’ opinions are implicitly expressed in the texts, but not explicitly

provided as numeric ratings. In order to achieve this goal, we need to first mine the latent aspects

and opinions from the texts. On the other hand, review understanding has been well studied by

Aspect based Opinion mining, of which the main goal is to extract the latent aspects and latent

sentiments from the reviews. But existing works on Aspect-based Opinion Mining only work on

review-level or product-level. The main limitation is that before they could infer a user’s opinions

on different aspects of an item, they need the review as input. Here comes one problem: how can

we predict a user’s preference on a new item which he has not rated/reviewed yet? Interestingly,

predicting user preferences on future items is just what Collaborative Filtering does.

Given above motivation, in Chapter 3, we propose a unified probabilistic model called Factor-

ized Latent Aspect ModEl (FLAME), which combines the advantages of both collaborative filtering

and aspect-based opinion mining so that the two methods can mutually enhance each other. In the

new framework, we use opinion mining techniques to help us perform collaborative filtering on a

finer level, and meanwhile, we use collaborative filtering to help better extract the latent aspects and

latent opinions, and empower the opinion mining techniques to be able to predict future preferences.

We empirically evaluated the proposed FLAME on a hotel review data set from TripAdvisor2

and a restaurant review data set from Yelp3. Experimental results show that FLAME can effectively

extract meaningful aspects and predict aspect ratings of a user on new items.

2http://www.tripadviosr.com
3http://www.yelp.com

3
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1.1.2 Research question from row-wise perspective

If we look through a user’s view (i.e., a row in the matrix), what is personalized recommendation in

principle?

Table 1.3: Row-wise perspective.

Avatar The Godfather The Shawshank Redemption Transformers Star Wars
Alice 5 4
Bob 4 5

Chris 5 4
David 4 1 5 5

We highlight the problem in Table 1.3. For a user in the recommender systems, we have his

historical behaviors, such as ratings and clicks, and we want to predict his future behaviors on the

items that he has not seen or taken actions. These items which could maximize user engagement or

some other business goals are selected to recommended to users. This problem is known as Top-N

Recommendation. For the user Bob, we know that he likes Sci-Fi movies Transformers and Star

Wars. The question is what other movies he would also like.

This is the most common task in recommender systems, and a lot of work has been done to solve

it. In this thesis, we study this problem from a new perspective and propose a generalized solution

that embraces some popular methods as special cases.

To make the problem easier to understand, we focus our discussion on the implicit feedback

data, but it is worth noting that the techniques that we will discuss and propose also work for

explicit feedback data with slight modifications. In an implicit feedback data set, we are given a

subset of items that a user liked before. The task of recommender systems is to find other items he

might also like. We connect this problem with the Denoising Auto-Encoder, which uses intentional

corruptions of the input during training time. We propose a model called Collaborative Denoising

Auto-Encoder (CDAE). During the training time, we intentionally dropout a random subset of a

user’s favorite item set, and trains the neural network to be able to reconstruct the whole set. When

making recommendation, we use the user’s current favorite set as input, in order to find some other

potentially interesting items for him.

The proposed CDAE model is very flexible that it embraces several popular models such as

Latent Factor Models [23] and SVDPP [22] special cases. The flexibility and the denoising trick

enable CDAE to achieve better performance on top-N recommendation. We carry out comprehen-

sive experiments on the selection of the components and compare CDAE with some state-of-the-art

methods. The details will be shown in Chapter 4.

4



distribution, and thus the insu�ciency of the ratings does
not pose as severe a problem as it could be.

Recently, the release of the more “practical” Yelp rating
dataset1 exposed the problem directly. By permuting the
rows and columns of the rating matrix, it can be rearranged
into a BDF structure with 53 diagonal blocks, with a dom-
inating block and 52 scattered blocks, which is shown in
Fig.1(a). The corresponding bipartite graph of the matrix is
highly disconnected, and these scattered blocks correspond
to the 52 connected components, as shown in Fig.1(b). Ac-
cording to the analysis above, the presence of one single
scattered block increases the global optimal solution space
by O(r!), where r is the number of latent factors used in an
MF algorithm, which is typically assigned between 50 to 100.
The algorithm could converge to any of the global optimal
solutions, although they provide very di↵erent predictions
on the unobserved values.

The essential reason that MF algorithms fail in such cases
is that they only make constraints on the observed values in
a matrix, without any constraints on the predictions of the
unobserved values. In this work, we indicate with theoretical
analysis that, for an MF algorithm to avoid the multiple
global optima problem, and thus to recover the unobserved
values properly, the following two basic conditions should be
satisfied:

1. The number of constraints should be up to the order
of O(r(m + n) log(mn)), where r is the number of la-
tent factors, and m and n are the number of rows and
columns of a matrix.

2. The distribution of the constraints should be nearly
isometric, which means that they should obey certain
large deviation inequalities.

A single observed value can be viewed as a constraint
in MF algorithms; however, the number of observed values
could be far from the above requirement, and they would
not necessarily be nearly isometrically distributed. In this
work, we treat the MF as a subspace fitting problem and
analyze the di↵erence between the solution space and the
ground truth. We propose to augment MF algorithms with
extra constraints constructed from the unobserved values,
which are selected according to some specific distributions.
In this way, our MF model satisfies the above two conditions,
and the algorithm can find a proper solution in a reduced
solution space. Experimental results verify the e↵ect of our
method in improving the prediction accuracy, stability, con-
vergence rate and computational e�ciency.

The paper is structured as follows: In section 2, we in-
troduce some of the related work; In sections 3 and 4 we
give some preliminaries and conduct theoretical analysis of
the solution space, which form the basis of this work, and,
afterwards, we present our method and algorithms; the ex-
perimental results are shown in section 5; finally, the work
is discussed in section 6 and concluded in section 7.

2. RELATED WORK
Latent factor models based on Matrix Factorization (MF)

techniques have long been an important research direction
in Collaborative Filtering (CF)-based recommendations [13,
26]. Recently, the MF approaches have gained great popu-
larity, as they usually outperform traditional methods, and

1http://www.kaggle.com/c/yelp-recsys-2013/

(a) Yelp dataset Matrix (b) Yelp dataset Graph

Figure 1: Structures of Yelp dataset. In the left is
the exampled structure of the rating matrix, and in
the right is the real structure of the scattered blocks.

have achieved state-of-the-art performance [24]. A variety of
MF algorithms have been investigated in di↵erent CF set-
tings, for example, Principle Component Analysis (PCA)
[1], Singular Value Decomposition (SVD) [13], Non-negative
Matrix Factorization (NMF) [14], Max-Margin Matrix Fac-
torization (MMMF) [23, 17], and Probabilistic Matrix Fac-
torization (PMF) [19, 18].

However, despite such empirical success, MF approaches
have mostly been used as heuristics and have little solid the-
oretical analysis other than the guarantees of convergence to
local minima. The most recent work concerning the theoret-
ical properties of MF algorithms is given in [10, 25], which
investigate the optimization algorithms for MF and their
stability with adversarial noise in terms of prediction accu-
racy. However, they do not touch upon the topic of how to
overcome the multiple global optimal problem.

This problem is closely related to the research of matrix
Compressed Sensing (CS) [8, 4], which can be viewed as a
generalized form of matrix completion or matrix factoriza-
tion in that a constraint is not restricted to a single observed
value but instead the linear equations of the observations.
According to the mathematical relationships, the CS prob-
lem is formulated as a rank minimization problem in [3] and
further formulated as a convex optimization problem based
on nuclear norm minimization [6, 5]. Later, [21] investigated
the uniqueness of low-rank matrix completion problems with
the basic tools of rigidity theory. However, the success of CS
relies on the assumption that the constraints are su�cient
and isometrically distributed, which can hardly be satisfied
in the real-world scenarios of CF.

In the e↵ort to tackle this problem, recent work has fo-
cused on the idea of reformulating current MF algorithms
to fit the real distributions of data. [20] attempted to con-
duct CF on non-uniformly sampled matrices using a prop-
erly weighted version of nuclear-norm regularizers, and [15]
proposed a graph theoretic approach for matrix completion
under more realistic power-law distributed samples. [12] ex-
plored the relationships between matrix factorization and
combinatorial algebraic theory. To speed up the process of
rank minimization, [16] proposed the Singular Value Projec-
tion (SVP) algorithm for matrix completion with a�ne con-
straints. However, these approaches make tight assumptions
on the distributions of data, which restricts their application
in practical systems and scenarios. Instead of the traditional
approach of reformulating the algorithms, we attempt to re-
sample the data to alleviate the problem of multiple global
optima, which brings about the advantages of both higher
prediction accuracy and the ability to conveniently integrate
the approach into many MF algorithms.

1190

Figure 1.1: Structures of Yelp dataset [79]. In the left is the exampled structure of the rating matrix,
and in the right is the real structure of the scattered blocks.

1.1.3 Research question from matrix-wise perspective

If we step back and take a look at the whole matrix, can we do better job on recommendation by

leveraging the general structure of the matrix?

Table 1.4: Matrix-wise perspective.

Avatar The Godfather The Shawshank Redemption Transformers Star Wars
Alice 5 4
Bob 4 5

Chris 5 4
David 4 1 5 5

We highlight this problem in Table 1.4. From the example, we can see that there are two main

groups of users with different tastes, i.e., Bob and David like Sci-Fi movies while Alice and Chris

prefer to watch classic movies.

Typical Collaborative Filtering methods measure users’ preferences by their historical behav-

iors over the entire item space. For example, the user-based nearest neighbors method measures

the similarity between pairs of users by their preferences on all the items [46]; Matrix Factoriza-

tion decomposes the whole user-item matrix into two low-rank sub-matrices where the collective

intelligences are represented as latent factors in the model [23]. However, this assumption does not

always hold, especially when the underlying system includes a large set of items of different types.

An illustrating example on the Yelp rating dataset 4 can be found in [79]. By permuting the rows

and columns of the rating matrix, it can be rearranged into a BDF structure with 53 diagonal blocks,

4https://www.yelp.com/dataset_challenge

5

https://www.yelp.com/dataset_challenge


with a dominating block and 52 scattered blocks, which is shown in Figure 1.1. This is because

of the fact that users and items in the data set are located at different places, and people living in

Phoenix are more likely to visit local restaurants rather than a restaurant in New York. Thus users

and items are organized as subgroups, where each subgroup includes a subset of users and items

which are likely to be linked together.

Generally, these subgroups are not disjointed, but heavily overlapping with each other. The

main reason is that users typically have multiple interests and share the same tastes on different

things with different group of people. For instance, one might share the same taste on movies with

his family, while liking the similar musics with his friends. People with similar tastes tend to like

the the same subset of items. Therefore, there exists several overlapping co-clusters in the user-

item matrix, where users and items within the same co-cluster are more connected than with other

users/item outside the co-clusters.

In Chapter 5, we proposed a new co-clustering methods CCCF for collaborative filtering. Com-

paring to previous work, CCCF has several advantages such as scalability, flexibility, interpretability

and extensibility. We experimentally compare CCCF with other co-cluster methods and the methods

that directly apply collaborative filtering methods to the original user-item matrix, and the results

demonstrate the superiority of CCCF.

1.2 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we present some background knowl-

edge on recommender systems, including the problem definition, evaluation measures and main

techniques. We also discuss some related work that tries to improve recommender systems from the

three perspectives we mentioned above. In Chapter 3, we describe the FLAME model in details –

including the motivation, proposed methodology and inference algorithms, as well as some experi-

mental results on two real world data sets. We further point out some potential applications by better

understanding user preferences. In Chapter 4, we study the generic problem of top-N recommen-

dation. With the motivation that we have mentioned above, we propose a generalized framework

CDAE based on neural networks. The effectiveness of CDAE is verified on several popular rec-

ommendation benchmarks. In Chapter 5, we propose a new co-clustering method CCCF for better

performing Collaborative Filtering methods. We conclude this thesis in Chapter 6 with a summary

of our contributions and some future directions that are worth exploring.
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Chapter 2

Background

In this chapter, we will first present some preliminary knowledge on the research of recommender

systems, and then discuss some related work that tries to solve similar problems with ours.

2.1 Preliminaries

What is a Recommender System? – A Recommender selects a product that if acquired by the “buyer”

maximizes value of both “buyer” and “seller” at a given point in time [42].

2.1.1 Notations

In the following, we use U = {u|u = 1, ...,U} to denote the set of users, and I = {i|i = 1, ..., I} to

denote the items. The elements of the utility matrix are represented as M = {(u, i,yui)|(u, i) ∈ O},
where O is the set of observed elements, and yui is user u’s feedback on item i. The remaining

elements in the matrix Ō = {U ×I } \O are the missing values that we need to predict. Let Ou

denote the set of item preferences in the training set for a particular user u, and Ōu is the unobserved

preferences of user u. Items in Ōu are the candidates to be considered to recommended to user u.

In the rest of thesis, we use u to index a user, and i and j to index items. Vectors and matrices are

denoted by bold symbols, where symbols in lower case (e.g., xxx) represent vectors and symbols in

upper case (e.g., XXX) represent matrices. Unless stated differently, xxxi also represents a vector where

i is used to distinguish different vectors. We denote the i-th row of matrix XXX by XXX i and its (i, j)-th

element by XXX i j.

2.1.2 Tasks and Evaluation Measures

Before we start discussing the methodologies, it is essential to make our target clear, i.e., what

goals the recommender systems should achieve. Ideally, the best way to evaluate the recommender

systems is to carry out online A/B testing experiments on real systems with a large amount of user,

measuring the business metrics after deploying different methods. However, online A/B testing is
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usually very expensive and might hurt user experience if the tested models are not optimal. Thus,

offline evaluation is a necessary step to compare candidate methods before doing large scale online

tests. In this subsection, we will review three popular offline evaluation protocols for recommender

systems.

Rating Prediction

The goal of a recommender system is to predict the blanks in the utility matrix. A straightforward

evaluation method is to examine how the system performs on predicting the ratings in the utility

matrix. Rating prediction is widely used in most of the early works of recommender systems and

some competitions such as Netflix Prize and KDD CUP contests. It works as follows. We randomly

hold out a small set of ground-truth ratings in the observed set, train the models on the remaining

subset, and then evaluate the models on the held-out set in terms of the prediction errors of the

ratings.

Two commonly used evaluation measures are the Root of Mean Square Error (RMSE) and Mean

Absolute Error (MAE):

RMSE =

√
∑(u,i)∈T (yui− ŷui)

2

|T |
, (2.1)

MAE =
∑(u,i)∈T |yui− ŷui|

|T |
, (2.2)

where T is the set of held-out ratings.

Item Ranking

Rating prediction considers the square loss or variants as a measure of prediction accuracy. In

reality, for a 5-point rating scale, predicting a true 5 as a 3 is often more costly than predicting a 3

as a 1, although their square loss is the same. More generally, what matters in a recommendation

system is the ranking of items, especially the ranking performance at the top of the list, i.e., the

items the user will actually see.

Several Collaborative Ranking models (e.g., [65, 25]) have been proposed to model the relative

orders of items. Similar to rating prediction, they also hold out a subset of items from the observed

set as test data. Instead of training a point-wise regression/classification model, they apply Learning

to Rank techniques to model the relative orders of items for each user. At last, the models are

evaluated on the test data by some popular measures for Information Retrieval, such as AUC 1,

NDCG 2, MAP 3, etc.
1https://www.kaggle.com/wiki/AreaUnderCurve
2https://www.kaggle.com/wiki/NormalizedDiscountedCumulativeGain
3https://www.kaggle.com/wiki/MeanAveragePrecision
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Top-N Recommendation

In recent years, top-N recommendation has become a more standard approach to evaluate the per-

formance of recommendation methods. For top-N recommendation, we still hold out a subset of

items in the observed set as test set. But differently, we evaluate the models by ranking the items

in both of the test set and the missing set, and examining the Precision and Recall or other metrics

like MAP, NDCG at the top positions of the list. The main idea is that a good recommender model

should rank the items in the test set higher than the items in the missing set.

For each user, given a top-N recommendation list CN,rec, precision and recall are defined as

Precision@N =
|CN,rec

⋂
Cadopted|

N

Recall@N =
|CN,rec

⋂
Cadopted|

|Cadopted|
,

(2.3)

where Cadopted are the items that a user has adopted in the test data. The precision and recall for the

entire recommender system are computed by averaging the precision and recall over all the users,

respectively.

Average precision (AP) is a ranked precision metric that gives larger credit to correctly recom-

mended items in top ranks. AP@N is defined as the average of precisions computed at all positions

with an adopted item, namely,

AP@N =
∑

N
k=1 Precision@k× rel(k)

min{N, |Cadopted|}
, (2.4)

where Precision(k) is the precision at cut-off k in the top-N list CN,rec, and rel(k) is an indicator

function equaling 1 if the item at rank k is adopted, otherwise zero. Finally, Mean Average Precision

(MAP@N) is defined as the mean of the AP scores for all users.

2.2 Related Work

2.2.1 Collaborative Filtering

Most machine learning models can be specified through two components: model definition and

objective function during training. The model definition formulates the relationship between the

inputs (e.g., user ids, item ids, interactions, other features, etc.) and outputs (ratings or implicit

feedback of items). The objective function is what the training process optimizes to find the best

model parameters.

Model-based Collaborative Filtering methods can also be seen in this way. We will review

several commonly used models and objective functions for modern recommender systems.
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Recommender Models

In general, recommender models are defined as

ŷui = Fθθθ (u, i), (2.5)

where ŷui is the predicted preference of user u on item i, and θθθ denotes the model parameters

we need to learn from training data. Different choices of the function Fθθθ correspond to different

assumptions about how the output depends on the input.

Latent Factor Models (LFMs) is a family of popular models used for recommender systems.

They represent the preference ŷui as the dot product of latent factor vectors vvvu and vvvi, representing

the user and the item, respectively [23, 48]. 4

ŷui = vvv>u vvvi (2.6)

LFMs are originated from Matrix Factorization (or Matrix Completion), which usually assume

the user-item utility matrix is generated from a low-rank underlying score matrix. With a small

portion of the elements that we have observed, we could recover the score matrix under some con-

ditions [8]. With the great success of the Matrix Factorization during the Netflix Prize, it has been

extended to a lot of variants in order to consider other information. Some of these variants could not

be explained by the low-rank theory any more, but they all share the same idea – using use latent

factors/vectors to represent users and items.

Feature-aware Models

Typical LFMs use only the utility matrix as input, without knowing what the items/users themselves

are. In some application scenarios, there are informative user/item features that can help us improve

the recommendation. For example, in the application of article recommendation, the content of

the articles is importance information because users usually like articles with specific topics; in the

application of friend recommendation on social networks, the demographic information (e.g., loca-

tion, education, affiliation, etc.) is important to infer the relationship between users. Furthermore,

features are helpful to solve the cold-start problem 5 by incorporating prior knowledges into the

model, e.g., two users from the same company are more likely to know each other than a randomly

chosen pair of users.

There are several ways to extending the above models to consider features. Here we review a

generalized model built on the Latent Factor Model. Other models can also be extended in a similar

manner.
4To simplify notation, we assume that the latent factors are padded with a constant to model the bias.
5The cold-start problem in recommender systems is that for new users/items we do not have enough historical data to

apply Collaborative Filtering methods to make accurate predictions for them.
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We use xxxu (yyyi) denote the feature vector of user u (item i). The feature vector can be a sparse

binary vector of categorical features (e.g., location, education), a TF-IDF representation of the words

in a document, a low-dimensional representation of an image from a Deep Learning framework, or

a combination of them.

Bilinear Model. The preference ŷui is a result of a bilinear model:

ŷui = xxx>u WWWyyyi. (2.7)

Here WWW is a coefficient matrix modeling the interactions between the features from both users and

items. In most cases, the feature vector is high dimensional that the coefficient matrix could be too

large to fit in memory or has too many parameters that might be easily over-fitted to the training

data. To solve this problem, one can use two low-dimensional sub-matrices to approximate the

coefficient matrix with the similar idea of Latent Factor Model.

ŷui = xxx>u UUU>VVV yyyi. (2.8)

Some advanced feature transformations [10] and non-linear kernels [67] can be further applied

to enhance the power of the model. We can also use one-hot encoding 6 representation of user/items

ids as input feature, and then the Latent Factor Models can be thought as a special case. Factorization

Machine [43] can also be formulated as a special case of Bilinear Model.

Context-aware Models

In many applications, one might benefit from incorporating contextual information (such as time,

location, browser session, etc.) into the recommendation process in order to recommend right items

to users in certain circumstances. One approach is to consider the interaction between the user, the

item and the context using a tensor factorization model:

ŷuic = vvvu • vvvi • vvvc (2.9)

where c is the current context such as a time index, and vvvc is its latent factor.

Objective Functions for Recommenders

Objective functions for training recommender models can be roughly grouped into three groups:

point-wise, pair-wise and list-wise. Pair-wise objectives approximates ranking loss by considering

the relative order of the predictions for pairs of items. Point-wise objectives, on the other hand, only

depend on the accuracy of the prediction of individual preferences. List-wise objectives consider

the list of items as a whole and optimize some metrics that focus on the overall quality of list.

6https://en.wikipedia.org/wiki/One-hot
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We note that regardless of the choice of a pair-wise, point-wise or a list-wise objective function,

if one aims at making satisfactory top-N recommendations, it is critical to properly take unobserved

feedback into consideration within the model. Models that only consider the observed feedback fail

to account for the fact that ratings are not missing at random. These models are not suitable for

top-N recommendation [40, 55].

2.2.2 Topic Modeling and Opinion Mining

Topic models are introduced by [6] for learning the hidden dimensions of text. The basic assumption

of topic models is that documents are represented by mixtures of some latent topics where topics

are associated with a multinomial distribution over words of a vocabulary.

The earliest work integrating collaborative filtering with topic model is CTM [59], which is

proposed for article recommendation. CTM simultaneously trains a topic model on the collection

of articles and a latent rating factor model on the ratings of users on articles, while assuming that

the latent factors of items depend on the latent topic distributions of their text.

Much work has been proposed to help users digest and exploit large number of reviews by

aspect-based opinion mining techniques, including information extraction from reviews [30], un-

covering the latent aspects of the review sentences [33], inferring the latent aspect ratings and aspect

weights of each review document [61, 62], aspect-based review summarization for products [30, 28],

etc. These methods either focus on review-level analysis (extracting useful information within each

review) to help users easily find what they need from a piece of review, or make product-level sum-

marization (aggregating the opinions of all the users) to provide an overview of users’ feedback on

a product. Among above work, the Latent Aspect Rating Analysis Model (LARAM) proposed in

[61, 62] is most closest one for our purpose. LARAM assumes the overall rating of a review is

generated by a weighted sum of the latent aspect ratings, which are generated from the words and

the latent topic allocations of the words by a linear regression function. LARAM learns the latent

aspect ratings for each review and aspect weights for each reviewer. The weights represent the im-

portance of the aspects for a reviewer, and can support a wide range of application tasks, such as

aspect-based opinion summarization, personalized entity ranking and recommendation, and review

behavior analysis.

HTF [32] is the first work that tries to understand user ratings in recommender systems by

utilizing review texts. HFT considers latent rating factors of an item as the properties that the

item possesses, and assumes that if a product exhibits a certain property (higher latent rating factor

value), this will correspond to a particular topic being discussed frequently (higher probability in

topic distribution) [32]. HTF first aggregates all the reviews of an item into a single document,

and uses a similar method as Collaborative Topic Regression model [59] to train a topic model and

a latent factor model together. Experiments show HFT can not only predict product ratings more

accurately, but can be also used to facilitate tasks such as genre discovery and to suggest informative

reviews.
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Explicit Factor Model (EFM) [76] uses aspect-based opinion mining techniques explain the

ratings and recommendations explicitly using the aspect features. It first extracts explicit product

features (i.e. aspects) and user opinions by phrase-level sentiment analysis on user reviews, and

then models a user’s rating as a summation of two parts – the utility score on these aspects, and

the utility on the items as the Latent Factor Models do. An important advantage of utilizing explicit

features for recommendation is its ability to provide intuitional and reasonable explanations for both

recommended and dis-recommended items.

2.2.3 Co-Clustering

Partitioning users and items into subgroups for CF has been studied by several previous works,

where user clustering [70], item clustering [39] and user-item co-clustering [14] methods have

been proposed to boost the performance of collaborative filtering. However, in these methods each

user/item is only allowed to be assigned to a single subgroup, so that they are not able to model the

case where users have multiple interests. To address this problem, several other papers [52, 63, 64]

extend the Mixed Membership Stochastic Blockmodels (MMSB) [2] to allow mixed memberships.

In [69], the authors propose a unified framework for improving collaborative filtering via over-

lapping co-clustering, which can be employed for top-N recommendation. It works as follows: 1)

Users and items are first grouped into multiple overlapping subgroups with different weights. 2)

After obtaining the subgroups, any traditional CF method can be applied to each subgroup sepa-

rately to make the predictions for the users on their unrated items in the same subgroup. 3) The

final recommendation list for a user is aggregated from the results in the subgroups that she/he is

involved in. A co-clustering method based one Spectral Clustering and fuzzy K-Means is proposed

to learn these subgroups.

The authors of [77] adopt a similar framework, and propose to partition the user-item matrix

by permuting the rows and columns of the user-item matrix to form Approximate Bordered Block

Diagonal Form (ABBDF) matrices. Two density-based algorithms are designed to transform sparse

user-item utility matrix into ABBDF structures. They propose a general Collaborative Filtering

framework based on these structures to make rating predictions. They also proposed a unified

model LFM [78] that learns ABBDF and Latent Factor Model simultaneously.

The framework used in [69, 77] has several benefits. 1) It partitions the matrix into several

overlapping sub-matrices, which are denser than the original matrix, thus making the CF methods

more feasible. 2) Any CF method can be used in each subgroup. Since the performance of different

methods varies under different scenarios, this allows users to select their favorite CF base methods

for the subgroups. 3) The training of the CF methods in subgroups can be trivially parallelized.
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Chapter 3

FLAME: On Fine-grained Rating
Understanding

Typical collaborative filtering methods take the numeric overall ratings as inputs [23, 48], assuming

that users with the same ratings share the same tastes. However, two users who have assigned the

same 4 stars to a restaurant might have significantly different reasoning; one might like its food

while the other likes its service. Here comes a research problem: can we understand the reasons

behind a rating? In this chapter, we propose a model called FLAME that tries to solve this problem

by utilizing users reviews to help us better understand user preferences on items.

3.1 Background and Overview

Nowadays, products and services offered on most online E-commerce websites are accompanied

by abundant user-generated reviews, which can help users make better decision. For instance, if

a user wants to know more about the battery life of a laptop, comments on the battery life of this

specific laptop by other users are more reliable than those given in the official description of the

product. However, the volume of reviews grows so rapidly that it gets extremely difficult for users

to find useful information in short time. Thus mining useful information out of these huge amount

of reviews has become an important way to improve user satisfaction of these online E-commerce

websites.

Aspect-based opinion mining [29] has attracted a lot of attention recently. Given a collection of

reviews on a set of items, aspect-based opinion mining methods extract major aspects out of every

item based on how often they have been commented by users, and learn users’ sentiment polarities

toward each aspect based on the opinionated words they used in the reviews. Figure 3.1 shows a

sample review from Amazon1. The user assigns a 5-star overall rating, and expresses his opinions

on several aspects of the product. From a set of reviews like this, aspect-based opinion mining

1http://www.amazon.com
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Figure 3.1: A Sample Review On Amazon

methods can automatically extract the aspects of the product, such as performance, display, value

and size, as well as infer latent sentiment scores for each aspect, e.g., 5 stars on its display.

Much work has been proposed to help users digest and exploit large number of reviews by

aspect-based opinion mining techniques, including information extraction from reviews [30], un-

covering the latent aspects of the review sentences [33], inferring the latent aspect ratings and aspect

weights of each review document [61, 62], aspect-based review summarization for products [30, 28],

etc. These methods either focus on review-level analysis (extracting useful information within each

review) to help users easily find what they need from a piece of review, or make product-level sum-

marization (aggregating the opinions of all the users) to provide an overview of users’ feedback on

a product. However, an important factor is typically ignored – preference diversity, i.e., users have

different preferences that their opinions on the same item may differ from each other. For example,

the food of the same restaurant might be delicious for some users but terrible for others. When

choosing restaurants, a user might want to know whether a restaurant meets his own expectation

on the aspect of food. But when facing a large number of reviews expressing various opinions, it

becomes extremely difficult for the user to make the decision: 1) it’s impossible for the user to read

all the reviews even if the fine-grained review-level analysis is provided. 2) the user has no idea of

which reviews are more reliable or which reviewers share similar tastes with him. 3) product-level

summarization is also unreliable since it is generated from reviews by users with different tastes.

To help users better utilize the existing reviews, we argue that a new method is required, which can

learn a user’s personalized preferences on different aspects from his past reviews of other items, and

predict his preferences on the aspects of a given item by mining the opinions by other users with

similar preferences.

In this chapter, we introduce the problem of Personalized Latent Aspect Rating Analysis. Given

a collection of reviews of a set of items by a set of users, the goal is to solve the following two

tasks: a) learn the latent aspects and their word distribution over a pre-defined vocabulary, and the

latent aspect ratings for each review; b) for any user u in the data set, predict the latent aspect ratings

on the items that he has not yet reviewed. Existing aspect-based opinion mining methods such as

[61, 62, 34] are able to solve task a, but are unsuitable for solving task b since they require the text
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of user u’s review for item i as input. Task b is also different from the well-studied rating prediction

problem in recommender systems, the goal of which is to predict the overall rating while we want

to predict the aspect ratings.

To address the problem of Personalized Latent Aspect Rating Analysis, we propose a unified

probabilistic model called Factorized Latent Aspect ModEl (FLAME), which combines the advan-

tages of both collaborative filtering and aspect-based opinion mining so that the two methods can

mutually enhance each other. The general idea of FLAME is that we can learn users’ preferences

based on their past reviews, so that we can collaboratively predict a user’s preference of an as-

pect of an item from the opinions of other users with similar tastes. FLAME improves existing

aspect-based opinion mining methods by being able to infer aspect ratings of users on new items2,

and enhances collaborative filtering methods by leveraging reviews to analyze users’ preferences on

different aspects of items.

We empirically evaluate the proposed FLAME on a hotel review data set from TripAdvisor3 and

a restaurant review data set from Yelp4. Experimental results show that FLAME can effectively

extract meaningful aspects and predict aspect ratings of a user on new items to him.

3.2 Related Work

In this section, we discuss the connections and differences between related work and FLAME. Our

work is related to two research topics: Collaborative Filtering and Aspect-based Opinion Mining.

3.2.1 Collaborative Filtering

Collaborative filtering (CF) is a popular method widely used in recommender systems. The as-

sumption behind collaborative filtering is that a given user is more likely to like items that are liked

by other users with similar tastes. Various state-of-the-art CF methods are based on latent factor

models [23]. Latent factor models assume that a user’s rating on a particular item depends on the

inner dot product of the latent user factors and the latent item factors.

Some work combining collaborative filtering with Topic Models has been proposed to leverage

text information in recommender systems. Topic models are introduced by [6] for learning the

hidden dimensions of text. The basic assumption of topic models is that documents are represented

by mixtures of some latent topics where topics are associated with a multinomial distribution over

words of a vocabulary. The earliest work integrating collaborative filtering with topic model is CTM

[59], which is proposed for article recommendation. CTM simultaneously trains a topic model on

the collection of articles and a latent rating factor model on the ratings of users on articles, while

assuming that the latent factors of items depend on the latent topic distributions of their text. A

recent work [32] proposes a model called HFT, which aims at improving collaborative filtering using

2Note that new items for a user are the items that he has not rated yet.
3http://www.tripadviosr.com
4http://www.yelp.com
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reviews. HFT considers latent rating factors of an item as the properties that the item possesses, and

assumes that if a product exhibits a certain property (higher latent rating factor value), this will

correspond to a particular topic being discussed frequently (higher probability in topic distribution)

[32]. HTF first aggregates all the reviews of an item into a single document, and uses a similar

method as CTM to train a topic model and a latent factor model together.

Different from CTM and HTF which learn topic distributions for each item, our approach learns

for each review its aspect distribution as well as its rating distribution on each aspect.

3.2.2 Aspect-based Opinion Mining

The main task of aspect-based opinion mining is extracting the aspects and learning the aspect

ratings from a collection of reviews of a given item. Most of the early works of opinion mining are

frequency-based approaches [18, 30]. These approaches usually mine the aspects and sentiments

by counting the frequencies of words and their co-occurrences with some pre-defined seed words.

Recently, several methods based on the variants of topic models [6] have been proposed [56, 80,

20, 34, 35] to learn the aspects and sentiments automatically from the data. These work extends

topic models by adding another kind of latent variables to model the latent sentiments of words,

i.e., words in reviews are not only dependent on the topics they belong to, but are also related to

the sentiments of the reviewers. The most related work is the Latent Aspect Rating Analysis Model

(LARAM) [61, 62], which aims at inferring the latent aspect ratings of given reviews. LARAM

assumes the overall rating of a review is generated by a weighted sum of the latent aspect ratings,

and are generated from the words and the latent topic allocations of the words by a linear regression

function. LARAM learns the latent aspect ratings for each review and aspect weights for each

reviewer. It should be noted that the aspect weights in LARAM are different from the personalized

aspect ratings in our problem. The weights in LARAM represent the importance of the aspects for a

reviewer, but personalized tastes represent the ratings/sentiments of users on different aspects. Two

reviewers may share similar aspect weights but have totally different ratings on a given aspect.

The main limitation of above aspect-based opinion mining methods is that they do not consider

user preferences (across multiple reviews and items) in the learning procedures so that they are

unable to predict users’ opinions on other items which they have not written reviews on.

ETF [76] also considers aspect based opinion mining and collaborative filtering simultaneously.

However, ETF employs the aspect-based opinion mining as a preprocessing step, while ours is a

unified model with opinion mining as a part of the model. This enables our approach to be used to

analyze the aspect distributions of the reviews and latent aspect ratings expressed in the reviews as

in [61, 62]. Besides, ETF can not predict users’ preferences on the aspects of items.
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3.3 Problem Definition

We assume as input a collection of reviews of some products from a specific category (e.g. restau-

rant) by a group of reviewers, and each review comes with an overall rating (e.g. 1-5 stars) to

express the overall satisfaction of the reviewer.

Review: A review is a piece of text describing opinions of a reviewer towards a specific item.

Formally, we use D = {d1,d2, ...,dD} to denote a set of review text documents. For each d ∈ D ,

ud ∈U denotes the user who writes review d and id ∈I denotes the reviewed item. We use Du to

denote the set of reviews that user u writes and use Di to denote the set of reviews for item i.

Overall Rating: The overall rating rd of a review document d is a numerical rating indicating

the overall opinion of d, i.e., rd ∈R, where R = {1,2, ...,R}.
Aspect: An aspect is an attribute of the item that has been commented on in a review, e.g.,

“food”, “location” and “service” for a restaurant. In this chapter, we only consider the case that all

the items are from a same category, i.e., they share the same set of aspects. We use a to denote an

aspect, where a ∈A and A = {1,2, ...,A}.
Aspect Rating: The aspect rating rd,a of a review document d is the reviewer ud’s rating towards

to the aspect a of the item id .i It indicates the opinion of the reviewer regarding to the properties of

the corresponding aspect of the item. Note that our method does not need aspect ratings as input,

but instead it infers them from the data.

Personalized Latent Aspect Rating Analysis: Given a collection of reviews of a set of items

by a set of users, the goal is to solve two tasks: a) learn the latent aspects, which represents each

aspect as a distribution on a pre-defined vocabulary, and the latent aspect ratings for each review,

which indicate the opinions of the reviewer towards the aspects of the item; b) predict the latent

aspect ratings for user u on new item i that he has not reviewed.

Some important notations used in this chapter are listed in Table 5.1. We use bold math symbols

xxxi to denote vectors, where the subscript i is used for indexing different vectors. The j-th element

of the vector xxxi is denoted by xxxi[ j].

3.4 Proposed Methodology

To address the problem of Personalized Latent Aspect Rating Analysis, we propose a unified prob-

abilistic model called Factorized Latent Aspect ModEl (FLAME), which combines the advantages

of both collaborative filtering and aspect-based opinion mining so that the two methods can mutu-

ally enhance each other. The general idea of FLAME is that we can learn users’ preferences based

on their past reviews, so that we can collaboratively predict a user’s preference of an aspect of an

item from the opinions of other users with similar tastes. FLAME improves existing aspect-based

opinion mining methods by being able to infer aspect ratings of users on new items5, and enhances

collaborative filtering methods by leveraging reviews to analyze users’ preferences on different as-

5Note that new items for a user are the items that he has not rated yet.
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Table 3.1: Mathematical Notations

Symbol Size Description
U U Users U = {u|u = 1, ...,U}
I I Items I = {i|i = 1, ..., I}
D D Documents D = {d|d =

1, ...,D}
A A Aspects A = {a|a = 1, ...,A}
R R Numerical ratings R = {r|r =

1, ...,R}
φφφ u RK latent vector of user u
φφφ i RK latent vector of item i

φφφ i,a RK latent vector of aspect a of i
ηηη RA background aspect distribution
ηηηu RA aspect distribution of user u
ηηη i RA aspect distribution of item i
βββ a RV word distribution of aspect a
γγγa,r RV word distribution of aspect a and

rating r
θθθ d RA aspect distribution of document

d
ϕϕϕd,a RR rating distribution of aspect a of

document d
at R1 aspect of sentence t
st R1 aspect rating of sentence t

pects of items. In the following, we describe the details of FLAME in the view of the generative

process when users writing reviews.

When writing the review, the reviewer first selects a subset of aspects he wants to comment on.

We assume that each review document d is associated with an aspect distribution θθθ d ∈ RA, which

represents the importances of the aspects in the review. The aspect distribution θθθ d depends on three

factors: the global aspect distribution ηηη0, the aspect distribution of the reviewer ηηηu and the aspect

distribution of the item ηηη i. ηηη0 represents how much each aspect is likely to be mentioned among all

the reviews. ηηηu represents reviewer u’s preferences on the aspects to comment, e.g., if a user cares

more on the value of a hotel, he prefers to mention this aspect in his reviews. ηηη i indicates which

aspects of item i are more likely to be mentioned. Some aspects are more likely to be mentioned

in the reviews of an item. For example, if the food of a restaurant is great, it will receive a lot

of praises of the food in the reviews. On the other hand, if some aspects of an item are terrible,

reviewers would like to criticize on these aspects in their reviews.

Based on this assumption, we define θθθ d using a additive generative methods as follows:

θθθ d [a] =
exp(ηηη0[a]+ηηηu[a]+ηηη i[a])

∑
A
a′=1 exp(ηηη0[a′]+ηηηu[a′]+ηηη i[a′])

(3.1)
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where {ηηη} = {ηηη0,ηηηu,ηηη i|u ∈ U , i ∈ I } are A-dimensional vectors generated from zero-mean

Gaussian distributions.
ηηη0 ∼N (000,ση III)

ηηηu ∼N (000,ση III)

ηηη i ∼N (000,ση III)

(3.2)

For each aspect, the reviewer has a latent sentiment polarity expressing his opinion on that

aspect of the item. We extend Probabilistic Matrix Factorization (PMF) [48] to model the user-

specific aspect ratings. PMF assumes that the user u has a vector of latent factors φφφ u ∈ RK , which

represents his personalized preferences that influence his opinions. Analogously, each item has a

latent vector φφφ i ∈ RK . The overall rating of u for i is generated by the dot product of the user latent

factor and the item latent factor. In our model, to predict user u’s opinion on a specific aspect a of

item i, we assume there is a latent factor φφφ i,a ∈ RK for each aspect a of an item i, and the aspect

rating rd,a of review document d is generated from the dot product of the user latent vector φφφ u and

the item aspect latent vector φφφ i,a
6. The item aspect latent vector φφφ i,a describes the latent properties

of the corresponding aspect of the item.

rd,a ∼N (φφφ>u φφφ i,a,σ
2
a ) (3.3)

To control the model complexity, zero-mean Gaussian priors are placed on the latent factors:

φφφ u ∼N (000,σ2
u III)

φφφ i,a ∼N (000,σ2
i,aIII)

(3.4)

We can not directly use the continuous value rd,a to model the word generative process since we

need discrete ratings to define the aspect-sentiment vocabulary (see Equation 3.11). We introduce

another latent variable ϕϕϕd,a ∈ RR to represent document d’s rating distribution on aspect a, where

ϕϕϕd,a[r] is the probability of p(rd,a = r) and ∑
R
r=1 ϕϕϕd,a[r] = 1. We define ϕϕϕd,a as follows:

ϕϕϕd,a[r] =
N (r|φφφ>u φφφ i,a,σ

2
r,a)

∑
R
r′=1 N (r′|φφφ>u φφφ i,a,σ

2
r,a)

=

exp
(
−(r−φφφ

>
u φφφ i,a)

2

2σ2
r,a

)
∑

R
r′=1 exp

(
−(r′−φφφ

>
u φφφ i,a)

2

2σ2
r,a

) (3.5)

6Note that for simplicity we always assume that there is an extra constant column in user/item latent factors to model
the bias effect.
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Figure 3.2: FLAME in graphical model notation.

We assume the overall rating of document d is generated from the weighted sum of the aspect

ratings, where the aspect weights consist to the aspect distribution of the document.

rd ∼N (∑
a

θθθ d [a]E[rd,a],σ
2
r ) (3.6)

where E[rd,a] = φφφ
>
u φφφ i,a.

For the process of generating words, we follow the assumption in [56, 33, 80] that the words in

one sentence of a review refer to the same aspect. Topics learned under this assumption are local

topics that preserve sentence-level word concurrences [56], while models like LDA [6] produce

global topics that preserve document-level word concurrences. Global topic models are not suitable

for aspect identification. For example, because the words room and location appear together in

most reviews, global topic models are mostly likely to cluster them in the same topic, but local

topic models assume they refer to different topics.

For each sentence t in the review d, we draw an aspect at from the aspect distribution of the

review:

at ∼Multi(θθθ d) (3.7)

and a sentiment rating st ∈ {1,2, ...,R} on the aspect at from the aspect rating distribution:

st ∼Multi(ϕϕϕd,at
) (3.8)

Then, in each sentence t, the reviewer selects a set of words wn ∈ t to express his opinions on

the aspect at . We define an aspect-sentiment multinomial word distribution αααa,s on the vocabulary,

where αααa,s[ j] represents the probability of generating the j-th word from the vocabulary for aspect
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Algorithm 1 Generative process of FLAME.
print Draw ηηη ∼N (000,σ2

η III)
for all u ∈U do

print Draw φφφ u ∼N (000,σ2
u III)

print Draw ηηηu ∼N (000,σ2
η III)

end for
for all i ∈I do

print Draw ηηη i ∼N (000,σ2
η III)

for all a ∈A do
print Draw φφφ i,a ∼N (000,σ2

i,aIII)
end for

end for
for all a ∈A do

print Draw βββ a ∼N (000,σ2
β

III)
for all r ∈R do

print Draw γγγa,r ∼N (000,σ2
γ III)

print Set αααa,r using Equation (3.9)
end for

end for
for all d ∈D do

print Set θθθ d using Equation (3.1)
print Set ϕϕϕd using Equation (3.5)
print Draw rd using Equation (3.6)
// Generate each sentence t in document d
for all t ∈ d do

print Draw at ∼Multi(θθθ d)
print Draw st ∼Multi(ϕϕϕd ,aaat)
// Generate each word n in sentence t
for all n ∈ t do

print Draw wn ∼Multi(αααat ,st )
end for

end for
end for

a and aspect rating s. wn can be an aspect word, e.g., battery, or a sentiment word, e.g., good. So we

assume that αααa,s depends on two factors: βββ a and γγγa,s, where βββ a represents the correlation between

the words and the aspect a, and γγγa,s represents the correlation between the words and the pair of

aspect a and aspect rating s.

αααa,s[ j] =
exp(βββ a[ j]+ γγγa,s[ j])

∑
V
l=1 exp(βββ a[l]+ γγγa,s[l])

(3.9)
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where βββ a and γγγa,r are V -dimensional vectors generated from zero-mean Gaussian distributions.

βββ a ∼N (000,σβ III)

γγγa,r ∼N (000,σγ III)
(3.10)

The word wn is generated as follows:

p(wn|at ,st ,ααα)∼Multi(αααat ,st ) (3.11)

Figure 3.2 shows the graphical representation of FLAME, omitting the priors {σ}. We summa-

rize the generative process in Algorithm 1.

3.4.1 Parameter Estimation

In general, we use an EM-style method to learn the parameters in our model. We adopt a mixture of

maximum a posteriori (MAP) point estimates and Bayesian inference as in [12]. To be specific, we

use a combination of MAP estimation over ΞΞΞ= {{ηηη},{φφφ},βββ ,γγγ} and Bayesian variational inference

over the other latent variables ∆∆∆ = {aaa,sss} to derive a lower bound of the log likelihood of the data,

and maximize the bound with respect to ΞΞΞ and variational parameters. It should be noted that θθθ and

ϕϕϕ are not latent variables in our model. They are fixed given ηηη and φφφ , as shown in Equation (3.1)

and (3.5).

The variational distributions of the latent variables in ∆∆∆ are defined as follows:

q(aaa,sss|πππ,λλλ ) = ∏
d

∏
t∈d

q(at |πππ t)q(st |λλλ t) (3.12)

where πππ t ∈ RA and λλλ t ∈ RR are free multinomial parameters.

We get the lower bound of the log likelihood of the data as follows:

L =∑
d

(
〈log p(rd |φφφ u,φφφ i,a,θθθ d)〉+∑

t∈d

(
〈log p(at |θθθ d)〉

+ 〈log p(st |ϕϕϕd ,at)〉+∑
n∈t
〈log p(wn|at ,st ,βββ ,γγγ)〉

))
+∑

u

(
〈log p(φφφ u|σu)〉+ 〈log p(ηηηu|ση)〉

)
+∑

i

(
〈log p(φφφ i|σi)〉+∑

a
〈log p(φφφ i,a|σi,a)〉

+ 〈log p(ηηη i|ση)〉
)
+ 〈log p(ηηη |ση)〉

+∑
a
〈log p(βββ a|σβ )〉+∑

a
∑
r
〈log p(γγγa,r|σγ)〉

−∑
d

∑
t∈d

(
〈logq(aaat |πππ t)〉+ 〈logq(ssst |λλλ t)〉

)

(3.13)
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where 〈p(ΩΩΩ)〉 denotes the expectation of the probability of p given the distribution q(ΩΩΩ).

3.4.2 Learning the Parameters

In general, the learning procedure can be viewed as coordinate ascent in L , i.e., alternatively opti-

mizing one set of parameters while fixing the others.

Updating πππ: We get the solution of πππ t by setting
∂L[πππt ]

∂πππt
= 0 with the constraint ∑a πππ t [a] = 1.

πππ t [a] ∝ θθθ d [a]∏
r

(
ϕϕϕd,a[r]

λλλ t [r]∏
j

αααa,r[ j]ct, jλλλ t [r]

)
(3.14)

where ct, j is the frequency of the j-th word in sentence t. Since ct, j is sparse, the complexity of

updating πππ t is O(ct ·R ·A), where ct is the number of words in sentence t. The total complexity for

updating πππ in one EM iteration is O(c ·R ·A), where c is the number of words of all the documents.

Updating λλλ : The update procedure of λλλ is similar to that for πππ .

λλλ t [r] ∝ ∏
a

ϕϕϕd,a[r]
πππt [a]∏

j
αααa,r[ j]ct, jπππt [a]

(3.15)

The complexity of updating λλλ in one EM iteration is also O(c ·A ·R).

Updating φφφ u : We can get L[φφφ u]
by only retaining those terms in L that are a function of φφφ u:

L[φφφ u]
= ∑

d∈Du

(
−

(rd−∑a θθθ d [a]φφφ>u φφφ i,a)
2

2σ2
r

+∑
t

∑
a

∑
r

πππ t [a]λλλ t [r] logϕϕϕd,a[r]

)
− φφφ

>
u φφφ u

2σ2
u

(3.16)

The derivative of L[φφφ u]
with respect to φφφ u depends on φφφ u, so we have to use a gradient ascent

based method to update φφφ u.

Updating φφφ i,a:

L[φφφ i,a]
= ∑

d∈Di

(
−

(rd−∑a θθθ d [a]φφφ>u φφφ i,a)
2

2σ2
r

+∑
t∈d

∑
a

∑
r

πππ t [a]λλλ t [r] logϕϕϕd,a[r]

)

−
φφφ
>
i,aφφφ i,a

2σ2
i,a

(3.17)

We also use a gradient ascent based method to update φφφ i,a.
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Updating ηηη:

L[ηηη0]
= ∑

d∈D

(
−

(rd−∑a θθθ d [a]E[rd,a])
2

2σ2
r

+∑
t∈d

∑
a

πππ t [a] logθθθ d [a]
)
−

ηηη>0 ηηη0

2σ2
η

=πππ
>
Dηηη0−

ηηη>0 ηηη0

2σ2
η

− ∑
d∈D

(rd−∑a θθθ d [a]E[rd,a])
2

2σ2
r

− ∑
d∈D

Nd log

(
∑
a′

exp
(
ηηη0[a

′]+ηηηu[a
′]+ηηη i[a

′]
))

(3.18)

where πππD = ∑d∈D ∑t∈d πππ t and Nd = ∑t∈d ∑a πππ t [a] = ∑t∈d 1 is the number of sentences in d.

We apply gradient ascent method to optimize ηηη0. The derivative with respect to ηηη0[a] is :

g(ηηη0[a]) =πππD[a]− ∑
d∈D

Ndθθθ d [a]−
ηηη0[a]

σ2
η

+ ∑
d∈D

(rd−∑a θθθ d [a]E[rd,a])(θθθ d [a])(1−θθθ d [a])
σ2

r

(3.19)

The update formula of ηηηu and ηηη i is similar. The only difference is to replace D in Equation

(3.19) with Du and Di respectively, where Du is the set of reviews of user u and Di is the set of

reviews of item i.

Updating βββ and γγγ:

L[βββ a]
= ccc>a βββ a−

βββ
>
a βββ a

2σ2
β

−∑
d

∑
t∈d

πππ t [a]ct ∑
r

λλλ t [r] log

(
∑

l
exp
(
βββ a[l]+ γγγa,r[l]

)) (3.20)

where ccca[ j] = ∑d ∑t∈d πππ t [a]ct, j, and ct = ∑ j ct, j denotes the number of words in sentence t.

We use Newton’s method to optimize βββ a. The derivative with respect to βββ a is :

g(βββ a) =ccca−∑
r

Ca,rαααa,r−
βββ a

σ2
β

(3.21)

where Ca,r = ∑d ∑t∈d πππ t [a]ctλλλ t [r] represents the expected word counts for each (a,r) combination.

The Hessian matrix is:

H(βββ a) = ∑
r

Ca,rαααa,rααα
>
a,r−diag(∑

r
Ca,rαααa,r +

1
σβ

111) (3.22)

The update formula for βββ a is:

βββ
(t+1)
a = βββ

(t)
a −HHH−1(βββ (t)

a )g(βββ (t)
a ) (3.23)
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We use a linear algorithm for the Hessian matrices with special structure [47, 6, 12], which lets

the complexity of computing HHH−1(βββ a)g(βββ a) be O(V ) instead of O(V 3).

We can also get the derivative and Hessian of γγγa,r as follows:

g(γγγa,r) =ccca,r−Ca,rαααa,r−
γγγa,r

σ2
γ

(3.24)

where ccca,r[ j] = ∑d ∑t∈d πππ t [a]λλλ t [r]ct, j.

H(γγγa,r) =Ca,rαααa,rααα
>
a,r−diag(Ca,rαααa,r +

1
σγ

111) (3.25)

The complexity of updating γγγa,r is also linear in the size of the vocabulary.

Computational Complexity: To conclude, the complexity of one update iteration is O(c ·A ·R+

T ·A ·K+D ·K+(I+U) ·A+A ·R ·V ), where c is the total number of words in the corpus, T is the

number of sentences in the corpus, and D is the number of documents in the corpus. Usually K, A

and R are small constants, so the complexity is linear to the size of the review dataset.

Implementation Notes: An important issue is how to initialize the model. We use the following

initialization steps. Taking the TripAdvisor data set as an example, we initialize βββ a using the names

of the aspect, i.e., we set βββ room,room = 1 for the aspect room, and then learn the aspect distribution

of each sentence only based on the initialized βββ . Similar techniques are also used in [33]. The

aspect ratings of each sentence are initialized using the overall rating of the review. The parameters

{σ} can also be learned using the coordinate ascent-like procedure. We set them manually in our

implementation, e.g., we set σ2
r = 1, σ2

r,a = 0.5, ση = 10, etc. Some optimization techniques, e.g.,

L-BFGS [38] and backtracking line search [7], are applied to accelerate the gradient ascent updates.

3.5 Experimental Evaluation

In this section, we first describe the data sets we used in our experiments and then discuss the

experimental results on different tasks.

3.5.1 Data Sets and Preprocessing

We use two review data sets for our experimental evaluation: the TripAdvisor hotel review data7

and Yelp review data8. In the TripAdvisor data, besides the overall rating, users are also asked to

provide the aspect ratings on 6 pre-defined aspects: Location, Sleep Quality, Room, Service, Value

and Cleanliness, on a scale from 1 star to 5 stars. We use these ground-truth aspect ratings to

evaluate our model on the task of aspect rating prediction. For Yelp data set, we extract a subset

which only contains the reviews on restaurants.

7http://www.cs.cmu.edu/~jiweil/html/hotel-review.html
8http://www.yelp.com/dataset_challenge

26

http://www.cs.cmu.edu/~jiweil/html/hotel-review.html
http://www.yelp.com/dataset_challenge


Table 3.2: Dataset Statistics

TripAdvisor Yelp
# Users 9,419 6,944
# Items 1,904 3,315

# Reviews 66,637 115,290
Density 0.37% 0.50%

# Sentences Per Review 12.60 ± 8.64 11.67 ± 7.80
# Words Per Sentence 7.50 ± 3.76 6.47 ± 4.64

We use the following preprocessing procedure on both of the data sets. We first remove non-

English reviews and reviews with less than 3 sentences or 20 words, and then iteratively remove

users with less than 5 reviews and items with less than 5 reviews. For the text in reviews, we

remove stop words and words that occur in less than 5 reviews, and stem the remaining words using

the PorterStemmer9. After the preprocessing, we have a hotel review data set including 66,637

hotel reviews of 1,904 hotels and a restaurant review data set including 115,290 reviews of 3,315

restaurants. The detailed statistics are listed in Table 3.2.

We randomly split both of the data sets into training and test sets. Specifically, for each user,

we randomly select 20% of his reviews as test examples (For users with less than 10 reviews, we

randomly select 2 reviews as test examples) and put the rest reviews into the training sets. We train

the models on the training data sets and test their performance on the test data sets. We use the

model initialization method and parameters selection strategies as discussed in Section 4.

3.5.2 Quantitative Evaluation

Perplexity on Held-out Reviews

As in standard topic models, we use perplexity of the held-out test data sets to compare the gener-

alization performance of FLAME with some other state-of-the-art models.

Evaluation Measure. Perplexity is a standard measure for topic models to measure how the

model can generate future documents [6]. For review mining, a good aspect-based topic model

should be able to predict what the reviewer will write in a new review, which leads to a lower

perplexity. A strong correlation of the perplexity and accuracy of aspect-based topic models is

shown in [35]. We use a lower bound on perplexity as in [16].

Perplexity(Dtest) = exp
(
−∑d〈log p(wwwd |ΞΞΞ)〉−〈p(∆∆∆d)〉

∑d Nd

)
We compare FLAME with the basic LDA model [6] and the D-LDA model presented in [35]. D-

LDA is a state-of-the-art aspect-based opinion mining model which can be seen as a generalization

of several other models [56, 20]. For D-LDA, we also use the assumption that the words in one

9http://tartarus.org/martin/PorterStemmer/
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Table 3.3: Perplexity on the held-out data sets

TripAdvisor Yelp
LDA-A 1012.80 767.24

LDA-AR 918.07 728.00
D-LDA 771.05 621.24

FLAME 733.12 590.46

sentence refer to the same aspect as in FLAME and other models [35, 56, 20]. In the aspect-based

topic models, we actually use A×R latent topics, so we compare with LDA using both A topics

(LDA-A) and A×R topics (LDA-AR).

For all the models, we use the same parameter settings and stopping criteria. We set R = 5 for

all the aspect-based topic models. We train the models using the reviews in the training sets and

evaluate the perplexity on the test sets. We test various numbers of latent aspects A = {6,12,24}.
Since the relative results are similar, we choose A = 6 for discussion. Table 3.3 shows the perplexity

on test data sets of FLAME and the comparison partners. We can see that D-LDA and FLAME,

which are specifically designed for aspect-based opinion mining, significantly outperform basic

LDA methods. FLAME achieves the best results among all the models on both of the data sets. We

believe this is because FLAME can predict personalized aspect distribution as well as aspect rating

distribution, which other models do not consider.

Aspect Rating Prediction on Held-out Reviews

Since we need the ground-truth aspect ratings to quantitatively compare FLAME with other meth-

ods, we evaluate the aspect rating prediction only on the TripAdvisor data set. In order to align the

latent aspects to the pre-defined aspects in the TripAdvisor data set, we set A to be 6 and use the

initialization techniques discussed in Section 4.

We use the evaluation measures in [61, 62] to evaluate different methods:

• Root Mean Square Error (RMSE) of the predicted aspect ratings compared with the ground-

truth aspect ratings.

• Pearson Correlation inside reviews (ρA) to measure how well the predicted aspect ratings

preserve the relative order of aspects within a review.

ρA =
1
D

D

∑
d=1

ρ(sssd ,sss∗d)

where sss∗d is the ground-truth aspect ratings for document d, and sssd is predicted aspect ratings.

• Pearson Correlation between personalized ranking of items ρI . For each user and each aspect,

we rank the items by their predicted aspect ratings, and measure how the ranked lists preserve
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Table 3.4: Aspect rating prediction on test set of TripAdvisor data

PMF LRR+PMF FLAME
RMSE 0.970 1.000 0.980

ρA N/A 0.110 0.195
ρI 0.304 0.177 0.333

L0/1 0.210 0.238 0.196

the ground truth.

ρI =
1

U ·A

U

∑
u=1

A

∑
a=1

ρ(sssIu,a,sss
∗
Iu,a)

where Iu is the set of items in user u’s test data, sssIu,a is the predicted aspect ratings on the

set of items and sssIu,a is the ground-truth ratings.

• Zero-One Ranking loss (L0/1) [25], which measures the percentage of mis-ordered pairs of

items for each user. It is computed as follows:

∑
u

∑
i, j∈Iu

1
Zu

A

∑
a=1

1[(sssu,i,a− sssu, j,a) · (sss∗u,i,a− sss∗u, j,a)< 0]

where Zu is the number of pairs in user u’s test set, sssu,i,a is the predicted rating of user u of

item i on aspect a, and sss∗u,i,a is the ground-truth aspect rating. We do not choose nDCG since

each user has few samples in the test data (2.2 test samples per user), the values of nDCG

tend to be very close to 1 for all comparison partners.

An intuitive solution of aspect rating prediction is just using the overall rating of the review as

prediction. We use PMF [48] to predict the overall ratings of the reviews in the test set and use

the predicted overall ratings as predictions for aspect ratings. To our best knowledge, [61, 62] are

the only work that predict aspect ratings at review-level. However, they can only predict aspect

ratings based on users’ reviews. In order to predict the aspect ratings in test set, we first apply the

LRR model [61] to extract aspect ratings for each review in the training set, and then use PMF

[48] to train and to predict the aspect ratings in test set (we call it LRR+PMF). We use the code of

LRR provided by the authors. Same training and testing strategies are applied to all the models for

fair comparison. We also test the performance of with different values of the dimensions of latent

factors. The relative results are similar, so we only choose K = 10 for discussion. Table 3.4 presents

the results for aspect rating prediction on the test set. We also highlight the best performance in

each measure in bold.

A general observation is that FLAME outperforms other baseline models on all the measures

except RMSE. It has been discussed in [61] that RMSE is less important than other measures since it

does not reflect how the relative order of the aspect ratings is preserved. ρA measures how a method

preserves the relative order of aspect ratings within a review. PMF uses the same predicted ratings
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for all aspects, so it is not applicable for ρA. ρI and L0/1 are the most important measures for our

task where we want to rank items based on the predicted aspect ratings. PMF outputs exactly the

same item ranking lists for all aspects, thus it is not suitable for real-world applications. We can see

that FLAME gets the best results on the two measures. The gain is especially significant compared

to LRR+PMF, where there are about 90% improvement on ρI and 40% improvement on L0/1.

Note that LRR+PMF does not achieve desirable performance. The reason is that it is a two-step

approach that the errors induced in the first step have significant influence on the performance of

the second step.

3.5.3 Qualitative Evaluation

(a) Location (b) Location 2-star (c) Location 5-star

(d) Service (e) Service 2-star (f) Service 5-star

(g) Room (h) Room 2-star (i) Room 5-star

Figure 3.3: Word-cloud visualization of top words with highest generating probability in βββ and γγγ .
Word size reflects the weight of each word.

In this subsection, we evaluate FLAME on the task of aspect identification. We perform qualita-

tive analysis of the top words obtained by FLAME to see whether FLAME can produce meaningful

aspects.

Figure 3.3 shows the word-cloud visualization of top words (after stemming) with the highest

generating probability in the aspect-rating specific word distributions. The three rows are the top

words in the topic distributions for the aspects location, service and room, respectively. The left

column shows the top words in the aspect-word distributions βββ of the three aspects. The middle
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and right columns show the top words in the aspect-rating-word distributions γγγ . The middle column

shows negative ones (2-star) and the right column shows positive ones (5-star). In general, the top

words generated by FLAME represent meaningful and interpretable topics. We observe that the

top words match our intuition, e.g., words like “location”, “walk”, “street” have higher weights

in the word distribution of aspect location. The middle and right columns show the top words

of the 2-star (γγγa,2) and 5-star (γγγa,5) word distributions of for the three aspects,. The aspect-rating

specific word distribution can automatically learn the sentiment oriented words, e.g., words like

“bad”, “old”, “creepy” and “homeless” have high weights in the 2-star word distribution of the

aspect location, while the words like “view”, “great”, “perfect”, “best” have high weights in the

5-star word distribution of location.

One contribution of FLAME is that the aspect-rating topics have sentiment polarities, i.e., 5-star

topics are more positive than 4-star, and so on. This is different from previous work [56, 34, 36]

where the latent ratings in these models are rating labels which do not correspond to sentiment

polarities.

3.5.4 Further Applications

The detailed analysis on personalized latent aspect ratings enables a wide range of applications.

Here we discuss three sample applications.

Figure 3.4: Aspect Weights. Global represents the values of ηηη0. user-1 and user-2 are the aspect
weights ηηηu of two randomly sampled users, and item-1 and item-2 are the values of ηηη i for two
randomly sampled items.

Aspect Distribution: Since FLAME can infer the aspect weights for users and item, we can

easily use the values of ηηη0, ηηηu and ηηη i for the rating behavior analysis. Figure 3.4 shows some

sample results on TripAdviosr data. From the histogram Global in the figure, we can see that Value

and Room are the most discussed aspects, and most people rarely mention the aspect Sleep. Note
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that the values of ηηηu indicates the biases of users deviating from the global aspect weights. We

can see that user-1 likes to comment on the Location and Sleep, while user-2 cares more about the

Service, Clean and Location. The two users have opposite weights for the aspects Service and Sleep.

Thus, when they are searching for hotels, the aspects they care about are different. It indicates that

letting users choose to rank items based on aspects which they cares about is very useful. The

aspect weights of items can be used to help merchants to improve their services. If a specific aspect

is discussed a lot and most of the reviews are negative, the merchant should think about how to

improve this aspect.

Personalized Review Recommendation: As discussed in Section 1, facing a large number

of reviews expressing different opinions, a user might have no idea of which reviews are reliable.

FLAME can alleviate this problem by sorting the reviews by the similarities between reviewers with

current user. A simple way of computing the similarities between users is to compute the distance

between their latent factors. Since personalized review recommendation is hard to evaluate, we

would like to leave it as a future work on some data sets with ground-truth of user feedback on

reviews.

Recommendation Explanation: Traditional collaborative filtering methods only provide pre-

dicted scores for then items, but can not produce reasonable explanations with the recommendations.

A recent work [76] has shown the possibility of using the aspect weights to generate some explana-

tions. FLAME can produce more persuasive recommendation explanations by the predicted aspect

ratings and some selected reviews written by similar users.

3.6 Conclusion

In this chapter, we introduced the problem of Personalized Latent Aspect Rating Analysis to model

users’ preferences on different aspects. We proposed a unified probabilistic model FLAME which

combines aspect-based opinion mining and collaborative filtering. FLAME extracts aspect ratings

from the review text, and predicts aspect ratings of an item that a user has not yet reviewed based on

aspect ratings within other reviews of the item by other users with similar preferences. Our experi-

mental evaluation on a hotel review data set and a restaurant review data set shows that FLAME can

effectively solve the research problem. The qualitative evaluation shows that FLAME can automat-

ically extract meaningful aspects and sentiment-oriented aspects. We also investigated the ability

of FLAME on the task of generating future review text. Most importantly, our experiments on Tri-

pAdvisor data sets show that FLAME significantly outperforms state-of-the-art methods in terms of

accuracy of aspect rating prediction.
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Chapter 4

CDAE: On Better Top-N
Recommendation

In this chapter, we study the second research question that we asked in Chapter 1: If we look through

a user’s view (i.e., a row in the matrix), what is personalized recommendation in principle?

We present a new model-based collaborative filtering (CF) method for top-N recommendation

called Collaborative Denoising Auto-Encoder (CDAE). CDAE assumes that whatever user-item

interactions are observed are a corrupted version of the user’s full preference set. The model learns

latent representations of corrupted user-item preferences that can best reconstruct the full input. In

other words, during training, we feed the model a subset of a user’s item set and train the model to

recover the whole item set; at prediction time, the model recommends new items to the user given

the existing preference set as input. Training on corrupted data effectively recovers co-preference

patterns. We show that this is an effective approach for collaborative filtering.

Learning from intentionally corrupted input has been widely studied. For instance, Denoising

Auto-Encoders [57] train a one-hidden-layer neural network to reconstruct a data point from the

latent representation of its partially corrupted version. However, to our best knowledge, no previous

work has explored applying the idea to recommender systems.

CDAE generalizes several previously proposed, state-of-the-art collaborative filtering models

(see Section 4.3.2). But its structure is much more flexible. For instance, it is easy to incorpo-

rate non-linearities into the model to achieves better top-N recommendation results. We investigate

the effects of various choices for model components and compare their performance against prior

approaches on three real world data sets. Experimental results show that CDAE consistently out-

performs state-of-the-art top-N recommendation methods by a significant margin on a number of

common evaluation metrics.
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4.1 Background and Overview

4.1.1 Overview of Model-based Recommenders

Most machine learning models can be specified through two components: model definition and

objective function during training. The model definition formulates the relationship between the

input (e.g., user ids, item ids, interactions, other features, etc.) and output (ratings or implicit

feedback of items). The objective function is what the training process optimizes to find the best

model parameters.

Recommender Models

In general, recommender models are defined as

ŷui = Fθθθ (u, i), (4.1)

where ŷui is the predicted preference of user u on item i, and θθθ denotes the model parameters we

need to learn from training data.

Different choices of the function Fθθθ correspond to different assumptions about how the output

depends on the input. Here we review 4 common recommender models.

Latent Factor Model (LFM). LFM models the preference ŷui as the dot product of latent factor

vectors vvvu and vvvi, representing the user and the item, respectively [23, 48]. 1

ŷui = F LFM
vvv (u, i) = vvv>u vvvi (4.2)

In addition, hierarchical latent factor models [1, 75] and the factorization machine [43] can model

interactions between user or item side features.

Similarity Model (SM). The Similarity model [22] models the user’s preference for item i as a

weighted combination of the user’s preference for item j and the item similarity between i and j. It

is a natural extension of an item-based nearest neighbor model. The difference is that SM does not

use predefined forms of item similarity (e.g., Jaccard, Cosine). Instead, it learns a similarity matrix

from data [37].

ŷui = F SM
SSS (u, i) = ∑

j∈Ou\{i}
yu j ·SSS ji (4.3)

Factorized Similarity Model (FSM). The problem with the Similarity Model is that the number

of parameters is quadratic in the number of items, which is usually impractical. A straightforward

solution is to factorize the similarity matrix into two low rank matrices [22, 21].

ŷui = F FSM
ppp,qqq (u, i) =

(
∑

j∈Ou\{i}
yu j · ppp j

)>
qqqi (4.4)

1To simplify notation, we assume that the latent factors are padded with a constant to model the bias.
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LFSM (LFM+FSM). The above models can also be combined. For example, combining LFM and

FSM results in the model SVD++ [22], which proved to be one of the best single models for the

Netflix Prize.

ŷui = F LFSM
ppp,qqq (u, i) =

(
∑

j∈Ou\{i}
yu j · ppp j + pppu

)>
qqqi (4.5)

Objective Functions for Recommenders

Objective functions for training recommender models can be roughly grouped into two groups:

point-wise and pair-wise2. Pair-wise objectives approximates ranking loss by considering the rel-

ative order of the predictions for pairs of items. Point-wise objectives, on the other hand, only

depend on the accuracy of the prediction of individual preferences. Pair-wise functions are usually

considered to be more suitable for optimizing top-N recommendation performance.

Regardless of the choice of a pair-wise or point-wise objective function, if one aims at making

satisfactory top-N recommendations, it is critical to properly take unobserved feedback into account

within the model. Models that only consider the observed feedback fail to account for the fact that

ratings are not missing at random. These models are not suitable for top-N recommendation [40, 55].

Let `(·) denote a loss function and Ω(θθθ) a regularization term that controls model complexity

and encodes any prior information such as sparsity, non-negativity, or graph regularization. We can

write the general forms of objective functions for recommender training as follows.

Point-wise objective function.

∑
(u,i)∈O ′

`point(yui, ŷui)+λΩ(θθθ). (4.6)

Here O ′ denotes an augmented dataset that includes both observed and unobserved user-item pairs.

The problem with using only observed user-item pairs is that users prefer to rate/view/purchase

items they like than those they dislike. In this case, directly optimizing the point-wise objective

function over O leads to a biased model towards to the observed sets [40, 55]. A common solution

is to augment O with a subset of negative user-item pairs 3 from the unobserved set, and train the

model on the augmented set O ′ while re-sampling the subset at the beginning of each epoch of the

training phase. Several strategies for sampling negative user-item pairs are discussed in [40]. O ′ can

also include duplicate samples to simulate feedback with different confidence weights (e.g., [19]).

Pair-wise objective function.

∑
(u,i, j)∈P

`pair(yui j, ŷui j)+λΩ(θθθ), (4.7)

2Some models use list-wise objective functions [65, 54], but they are not as widely adopted as point-wise and pair-wise
objectives.

3Here we use the term negative to denote missing feedback.
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Table 4.1: Overview of related model-based recommenders.

Name Model Objective Function
MF [23] / PMF [48] LFM `SL

point
SVD++ [22] LFSM `SL

point
MMMF [45] LFM `HL

point
WSABIE [66] LFM `HL

pair
BPR-MF [44] LFM `LL

pair
SLIM [37] SM `SL

point
FISM [21] FSM `SL

point , `
SL
pair

WRMF [19] LFM weighted `SL
point

COFI [65] LFM NDCG loss
CLIMF [53] LFM MRR loss

where yui j = yui− yu j, ŷui j = ŷui− ŷu j, and P is a set of triplets sampled from O ′, each of which

includes a user u and a pair of items i and j, where usually i is a positive item and j is a negative

item sampled from the missing set.

For both pair-wise and point-wise objective functions, the choice of the loss function `(·) is

important. Here we list a few commonly used loss functions for both point-wise and pair-wise

objectives for implicit feedback4.

• SQUARE LOSS: `SL(y, ŷ) = 1
2(y− ŷ)2;

• LOG LOSS: `LL(y, ŷ) = log(1+ exp(−y · ŷ));

• HINGE LOSS: `HL(y, ŷ) = max(0,1− y · ŷ);

• CROSS ENTROPY LOSS: `CE(y, ŷ)=−y log(p)−(1−y) log(1− p), where p=σ(ŷ)= 1/(1+

exp(−ŷ)).

For explicit feedback, the loss functions are similar but sightly different (e.g.,[25]).

Table 4.1 summarizes recent models for top-n recommendation that fit this framework. Also,

several recent papers study position-aware pair-wise loss functions (e.g., WARP [66, 67], CLiMF

[53]). Any objective function that fits the described framework can be used along with any model

we described above.

To summarize, the two key components of designing model-based recommenders are: 1) a

suitable way to represent the relations between inputs and outputs. 2) a proper objective function

and a proper way to deal with the relationship between observed and unobserved feedback.

4Note that, for LOG and HINGE losses, the value y for the negative examples should be −1 instead of 0.
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4.1.2 Denoising Auto-Encoders

A classical auto-encoder [3] is typically implemented as a one-hidden-layer neural network that

takes a vector xxx ∈ RD as input and maps it to a hidden representation zzz ∈ RK through a mapping

function

zzz = h(xxx) = σ

(
WWW>xxx+bbb

)
,

where WWW is a D×K weight matrix and bbb∈RK is an offset vector. The resulting latent representation

is then mapped back to a reconstructed vector x̂xx ∈ RD through

x̂xx = σ
(
WWW ′zzz+bbb′

)
.

The reverse mapping may optionally be constrained by tied weights, where WWW ′ =WWW .

The parameters of this model are trained to minimize the average reconstruction error:

arg min
WWW ,WWW ′,bbb,bbb′

1
n

n

∑
i=1

`(xxxi, x̂xxi) , (4.8)

where ` is a loss function such as the square loss or the cross entropy loss mentioned in the previous

subsection.

The Denoising Auto-encoder (DAE) [57] extends the classical auto-encoder by training to re-

construct each data point xxx from its (partially) corrupted version x̃xx. The goal of DAE is to force

the hidden layer to discover more robust features and to prevent it from simply learning the iden-

tity function [57]. The corrupted input x̃ is typically drawn from a conditional distribution p(x̃xx|xxx).
Common corruption choices are the additive Gaussian noise and the multiplicative mask-out/drop-

out noise. Under mask-out/drop-out corruption, one randomly overwrites each of the dimensions of

xxx with 0 with a probability of q:
P(x̃xxd = δxxxd) = 1−q

P(x̃xxd = 0) = q
(4.9)

To make the corruption unbiased, one sets the uncorrupted values to δ = 1/(1− q) times their

original value.

4.2 Related Work

An overview of the model-based collaborative filter methods has been discussed in 4.1.1. In this

section, we discuss the few related works on neural networks for recommender systems.

Restricted Boltzmann Machines (RBM) [49] is the first work that applies neural network models

to recommender systems. However, RBM targets rating prediction, not top-N recommendation, and

its loss function considers only the observed ratings. How to incorporate negative sampling, which

would be required for top-N recommendation, into the training of RBM is technically challenging.
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We do not compare with RBM in our experiments, but test several other neural network baselines

that work for top-N recommendation (see Section 4.4.4).

We also notice that there is a concurrent work AutoRec [51] using the Auto-Encoder for rating

prediction. The main differences are as follows: 1) AutoRec only considers the observed ratings

in the loss function, which does not guarantee the performance for top-N recommendation. 2)

They use the vanilla Auto Encoder model as the structure, while we have proved that introducing

user factors in the model can greatly improve the performance. 3) AutoRec does not employ the

denoising technique, which is a major part of our work.

Another related work is [60], which also uses the Auto-Encoder for recommender systems. This

work studies the particular problem of article recommendation, and improves the well-known model

Collaborative Topic Regression [59] by replacing its Topic Model component by a Bayesian Auto-

Encoder, which is used for learning the latent feature representations for the articles. Different from

this model, our model is generic and addresses the general top-N recommendation problem, and the

inputs are user behaviors instead of item/article features.

4.3 Proposed Methodology

In this section, we introduce a new model – Collaborative Denoising Auto-Encoder (CDAE). The

model learns correlations between the user’s item preference by training on a corrupted version

of the known preference set. A preference set is binary, i.e., containing only information about

whether an item is preferred or not. Therefore, as we will see, CDAE is uniquely suitable for top-N

preference recommendations.

4.3.1 Collaborative Denoising Auto-Encoder

Similar to the standard Denoising Auto-Encoder, CDAE is also represented as a one-hidden-layer

neural network. The key difference is that the input also encodes a latent vector for the user, which

allows CDAE to be a much better recommender model, as we see in section 5.5. Figure 4.1 shows

a sample structure of CDAE. CDAE consists of 3 layers, including the input layer, the hidden layer

and the output layer.

In the input layer, there are in total I + 1 nodes, where each of the first I nodes corresponds to

an item, and the last node is a user-specific node (the red node in the figure), which means the node

and its associated weights are unique for each user u ∈U in the data. We refer to the first I nodes

as item input nodes, and the last node as user input node. Given the historical feedback O by users

on the item set I , we can transform O into the training set containing U instances {yyy1,yyy2, ...,yyyU},
where yyyu = {yu1,yu2, ...,yuI} is the I-dimensional feedback vector of user u on all the item in I . yyyu

is a sparse binary vector that only has |Ou| non-zero values: yui = 1 if i is in the set Ou, otherwise,

yui = 0.

There are K nodes in the hidden layer and these nodes are fully connected to the nodes of the

input layer. Here K is a predefined constant which is usually much smaller than the size of the input
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Figure 4.1: A sample CDAE illustration for a user u. The links between nodes are associated with
different weights. The links with red color are user specific. Other weights are shared across all the
users.

vectors. The hidden layer also has an additional node to model the bias effects (the pink node in the

figure). We use WWW ∈ RI×K to denote the weight matrix between the item input nodes and the nodes

in the hidden layer, and VVV u ∈ RK to denote the weight vector for the user input node. Note that VVV u

is a user-specific vector, i.e., for each of the users we have one unique vector. From another point of

view, WWW i and VVV u can be seen as the distributed representations of item i and user u respectively.

In the output layer, there are I nodes representing reconstructions of the input vector yyyu. The

nodes in the output layer are fully connected with nodes in the hidden layer. The weight matrix

is denoted by WWW ′ ∈ RI×K . We denote the weight vector for the bias node in the hidden layer by

bbb′ ∈RI .

Formally, the inputs of CDAE are the corrupted feedback vector ỹyyu which is generated from

p(ỹyyu|yyyu) as stated in Equation 4.9. Intuitively, the non-zero values in yyyu are randomly dropped out

independently with probability q. The resulting vector ỹyyu is still a sparse vector, where the indexes

of the non-zero values are a subset of those of the original vector.

CDAE first maps the input to a latent representations zzzu, which is computed as follows:5

zzzu = h
(

WWW>ỹyyu +VVV u +bbb
)
, (4.10)

5 Here we compute the hidden representation using the sum of the weight vectors. Other choices such as concatenation
and max pooling are also possible.
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Table 4.2: Sample Mapping Functions. Note that all the operations in this table are element-wise.

h(xxx) Gradient ∂h
∂xxx

Identity xxx 111
Sigmoid σ(xxx) σ(xxx)(111−σ(xxx))

Tanh tanh(xxx) 111− tan2(xxx)

where h(·) is an element-wise mapping function (e.g., identity function h(xxx) = xxx or sigmoid function

h(xxx) = σ(xxx) = 1/(1+ e−xxx)), and bbb ∈ RK is the offset vector.

At the output layer, the latent representation is then mapped back to the original input space to

reconstruct the input vector. The output value ŷui for node i is computed as follows:

ŷui = f
(

WWW ′>i zzzu +b′i
)
, (4.11)

where WWW ′ ∈RI×K and bbb′ are the weight matrix and the offset vector for the output layer, respectively.

f (·) is also a mapping function.

We learn the parameters of CDAE by minimizing the average reconstruction error:

arg min
WWW ,WWW ′,VVV ,bbb,bbb′

1
U

U

∑
u=1

Ep(ỹyyu|yyyu)
[`(ỹyyu, ŷyyu)]+R

(
WWW ,WWW ′,VVV ,bbb,bbb′

)
, (4.12)

where R is the regularization term to control the model complexity. Here we use the squared L2

Norm.

R (·) = λ

2
(
‖WWW‖2

2 +‖WWW ′‖2
2 +‖VVV‖2

2 +‖bbb‖2
2 +‖bbb

′‖2
2
)

(4.13)

We apply Stochastic Gradient Descent (SGD) to learn the parameters. Because the number

of output nodes equals the number of items, the time complexity of one iteration over all users is

O(UIK), which is impractical when the number of users and the number of items are large. Instead

of computing the gradients on all the outputs, we only sample a subset of the negative items Su from

Ōu and compute the gradients on the items in Ou ∪Su. The size of Su is proportional to the size

of Ou. So the overall complexity of the learning algorithm is linear in the size of O and the number

of latent dimensions K. A similar method has been discussed in [15]. An alternative solution is to

build a Hierarchical Softmax tree on the output layer [24], but it requires the loss function on the

output layer to be softmax loss.

Recommendation. At prediction time, CDAE takes user u’s existing reference set (without cor-

ruption) as input, and the items from the candidate set Ōu that have largest prediction values on the

output layer are recommended to him/her.
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4.3.2 Discussion

Components. CDAE is very flexible in that the mapping function h(·), point-wise or pair-wise

objectives, the loss function `(·), and the corruption probability q can all be chosen to suit the appli-

cation. Table 4.2 lists mapping function choices explored in this chapter. As for the loss function, all

the choices discussed in Section 4.1.1, both point-wise and pair-wise, can be used. Different choices

of these functions result in different variants of the model with different representation capabilities.

Our experiments show that no single variant always produces the best results. One benefit of the

proposed general framework is that one can try several variants and find the one that best fits the

task.

Generalization of other models. CDAE is a generalization of latent factor models. The represen-

tations mentioned in Section 4.1.1 can all be interpreted as special cases of this framework.

Specifically, if we choose the identity mapping function for both h(x) and f (x) and not add noise

to the inputs, the output value of ŷui in Equation 4.11 becomes:

ŷui = f
(

WWW ′>i zzzu +b′i
)

=WWW ′>i h
(

WWW>ỹyyu +VVV u +bbb
)
+b′i

∼=WWW ′>i

(
∑

j∈Ou

ỹuiWWW j +VVV u

)
.

(4.14)

In the last step we omit the bias term to make the comparison clearer. We can see that the represen-

tation in Equation 4.14 is equivalent to that in Equation 4.5, i.e., the LFSM model.

If we set the corruption level q to 1, all the non-zero values in the input vector would be dropped

out. We get the following prediction:

ŷui =WWW ′>i VVV u, (4.15)

which is equivalent to the representation in Equation 4.2, i.e., the LFM model. Alternatively, if we

remove the user input node and its associated weights, the resulting model is equivalent to FSM in

Equation 4.4:

ŷui =WWW ′>i

(
∑

j∈Ou

ỹuiWWW j

)
. (4.16)

Another possible mapping function is the linear function h(xxx) = UUU>xxx, where UUU is a K ×K

transform matrix. If we use a user-specific matrix UUUu ∈RK×K on the hidden layer, the representation

becomes

ŷui =WWW ′>i

(
UUU>u

(
∑

j∈Ou

ỹuiWWW j

))
, (4.17)

which is related to the Latent Collaborative Retrieval model proposed in [67].
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Table 4.3: Dataset Statistics

#users #items #dyads density(%)
ML 69K 8.8K 5M 0.82
Netflix 37K 11K 4.8M 1.18
Yelp 9.6K 7K 243K 0.36

Summary. CDAE is a flexible framework for top-N recommendation. It generalizes several very

popular existing methods. The proposed framework is naturally compatible with the denoising trick,

which can further improve the results of recommendation.

4.4 Experimental Results

Our experimental evaluation consists of two parts. First, we study the effects of various choices of

the components of CDAE. Second, we compare CDAE against other state-of-the-art top-N recom-

mendation methods.

4.4.1 Data Sets and Experimental Setup

We use 3 popular data sets: MovieLens 10M (ML)6, Netflix7 and Yelp (from Yelp Dataset Chal-

lenge8 in 2014). For each data set, we keep those with ratings no less than 4 stars and treat all

other ratings as missing entries. Those ratings that are retained are converted to a yui score of 1.

This processing method is widely used in previous work on recommendation with implicit feedback

(e.g., [44, 74, 21]). We iteratively remove users and items with fewer than 5 ratings. For each user,

we randomly hold 20% of the ratings in the test set, and put the other ratings in the training set. The

statistics of the resulting data sets are shown in Table 4.3.

4.4.2 Implementation Details

We perform 5-fold cross validation on the training data sets to select the best hyperparameters for

all the models, and then use the best hyperparameters to train models on the whole training data

sets.

We use Stochastic Gradient Decent (SGD) to learn the parameters for both the proposed method

and comparison partners. AdaGrad [11] is used to automatically adapt the step size during the

learning procedures. We set β = 1 and try different step sizes η ∈ {1,0.1,0.01,0.001} and report

the best result for each model.
6http://grouplens.org/datasets/movielens
7http://www.netflixprize.com
8http://www.yelp.com/dataset_challenge
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For negative sampling, we experiment with different numbers of negative samples and find that

NS = 5 consistently produces good results. This means that, for each user, the number of negative

samples is 5 times the number of observed ratings of this user.

4.4.3 Evaluation Metrics

In the case of top-N recommender systems, we present each user with N items that have the high-

est predicted values but are not adopted by the user in the training data. We evaluate different

approaches based on which of the items are actually adopted by the user in the test data.

Precision and Recall. Given a top-N recommendation list CN,rec, precision and recall are defined

as

Precision@N =
|CN,rec

⋂
Cadopted|

N

Recall@N =
|CN,rec

⋂
Cadopted|

|Cadopted|
,

(4.18)

where Cadopted are the items that a user has adopted in the test data. The precision and recall for the

entire recommender system are computed by averaging the precision and recall over all the users,

respectively.

Mean Average Precision (MAP). Average precision (AP) is a ranked precision metric that gives

larger credit to correctly recommended items in top ranks. AP@N is defined as the average of

precisions computed at all positions with an adopted item, namely,

AP@N =
∑

N
k=1 Precision@k× rel(k)

min{N, |Cadopted|}
, (4.19)

where Precision(k) is the precision at cut-off k in the top-N list CN,rec, and rel(k) is an indicator

function equaling 1 if the item at rank k is adopted, otherwise zero. Finally, Mean Average Precision

(MAP@N) is defined as the mean of the AP scores for all users.

Usually, these metrics are consistent with each other, i.e., if a model performs better than another

model on one metric, it is more likely that it will also produce better results on another metric. Due

to space limits, we mainly show the results of MAP@N with N = {1,5,10} on several evaluation

tasks since it takes the positions into consideration.

4.4.4 Analysis of CDAE Components

The main components of the proposed CDAE model include the types of the mapping functions, the

loss function and the level of corruption. Different choices of these components result in different

variants of the model that make different top-N recommendations. In this subsection, we study these

variants on the 3 data sets.
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For the mapping function, we show results for the identity function and sigmoid function on the

hidden layer and the output layer. (Results for the tanh function are similar to those of the sigmoid

function and hence omitted.) There are 23 = 8 total combinations of choices for the mapping func-

tions (on both layers) and the loss function. Among them, the logistic loss function requires ŷ to be

a value between 0 and 1, so it must be associated with a sigmoid function on the output layer. Note

that the combination of the sigmoid function and the logistic loss is equivalent to the cross entropy

loss discussed in Section 4.1.1. Therefore, we study 4 variants9 of our model in this subsection.

Table 4.4 describes the function choices for each variant.

Table 4.4: Four possible variants of the CDAE model.

Hidden Layer Output Layer Loss Function
M1 Identity Identity Square
M2 Identity Sigmoid Logistic
M3 Sigmoid Identity Square
M4 Sigmoid Sigmoid Logistic

In our extensive experiments, we observed that the pair-wise objective function did not perform

much better than point-wise objectives for CDAE. One possible cause is that for the implicit feed-

back with binary ratings, point-wise loss functions are sufficient for separating those items preferred

by the user and those not preferred. In other words, a well-designed point-wise loss can be discrim-

inating enough to model the user’s preference in these datasets, and the pair-wise loss is not needed.

For this reason, results on pair-wise objective functions are omitted in the rest of this chapter. On

a related note, as we show in section 4.4.5, the BPR model, which uses pair-wise loss, does not

perform better than MF, which uses point-wise loss. Similar results have also been reported in [21].

This might be due to the same reason as for CDAE. Moreover, BPR is designed to optimize for the

AUC, not top-N metrics such as precision, recall, or MAP. Hence, for multiple models for top-N

recommendation, pair-wise loss functions may not be necessary for all data sets.

We train each of the four variants under varying corruption levels (q in Equation 4.9) from

{0,0.2,0.4,0.6,0.8,1}. The number of latent dimensions K is set to 50 unless otherwise stated. The

results on the three data sets are shown in Figure 4.2, 4.3 and 4.4 respectively.

The general observation is that the best model depends on the data set. No single variant of

CDAE always produces the best results. So one should choose the components (mapping function,

objective function, loss function, and corruption level) depending on the data. Consider the two

different extremes of corruption level: q = 0 (no input corruption) and q = 1 (complete input cor-

ruption). For variant M1, the results of q = 0 are much worse than those of q = 1. This indicates

that simply summing up all the input vectors (q = 0) is insufficient for learning good representa-

tions, and is in fact worse than dropping out all of them (q = 1). Note that introducing non-linear

functions can largely alleviate the problem, as evidenced in the results for the other three variants

with q = 0. Adding noise on the input can also prevent this problem (see the results of M1 with
9We omit the results of another 2 variants (replacing the loss functions of M2 and M4 with square loss) since their

performances are similar to those of M2 and M4 respectively.
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Figure 4.2: Model performance comparison on Yelp data.
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Figure 4.3: Model performance comparison on Netflix data.

various corruption levels), which means that the denoising technique can help with learning more

robust representations.
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Figure 4.4: Model performance comparison on MovieLens data.

Table 4.5: Comparison with DAE on the Yelp data.

MAP@1 MAP@5 MAP@10
Model DAE CDAE DAE CDAE DAE CDAE

M1 0.0275 0.0327 0.0164 0.0201 0.0172 0.0210
M2 0.0369 0.0420 0.0225 0.0241 0.0236 0.0254
M3 0.0443 0.0460 0.0270 0.0285 0.0289 0.0303
M4 0.0529 0.0528 0.0315 0.0319 0.0329 0.0334

The denoising technique appears beneficial especially for variants M1 and M2. On the Yelp

data set, all four variants can be improved by adding relatively higher levels of noise (e.g., q = 0.8).

Variant M2 is the best model for the Netflix data set, and setting q = 0.2 and q = 0.4 can slightly

improve the results. On MovieLens data, setting q = 0.8 makes M2 almost as good as M4, the best

model. However, in some cases, the best results are those without any input corruption (q = 0).

In general, M4 produces relatively better results on all three data sets. In particular, it achieves

the best MAP scores on Yelp and MovieLens. This indicates that non-linear functions help to

increase the representation capability of the model, thus improving the recommendations.

Comparison with DAE. A main difference between CDAE and classical DAE is the user-specific

input between the input layer and the hidden layer, namely, the vector VVV u. We study two cases

here – with the user-specific vectors (CDAE) and without the user-specific vectors (DAE). We

conduct experiments on the three data sets, and get relatively similar results. We show the results

on the Yelp data and on the MovieLens data in Table 4.5 and 4.6 respectively. We can see that for
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Table 4.6: Comparison with DAE on the MovieLens data.

MAP@1 MAP@5 MAP@10
Model DAE CDAE DAE CDAE DAE CDAE

M1 0.2807 0.2933 0.1619 0.1730 0.1278 0.1402
M2 0.3134 0.3368 0.1785 0.1900 0.1408 0.1509
M3 0.3270 0.3494 0.1953 0.2099 0.1579 0.1722
M4 0.3625 0.3860 0.2123 0.2252 0.1684 0.1797

Table 4.7: Effects of using tied weights on MovieLens data. “TW” means using tied weights, while
“NTW” means no tied weights.

MAP@1 MAP@5 MAP@10
Model TW NTW TW NTW TW NTW

M1 0.1739 0.2933 0.0983 0.1730 0.0763 0.1402
M2 0.3707 0.3368 0.2086 0.1901 0.1643 0.1509
M3 0.3482 0.3494 0.2044 0.2099 0.1669 0.1722
M4 0.3530 0.3860 0.2007 0.2252 0.1609 0.1797

Table 4.8: Effects of using tied weights on Netflix data. “TW” means using tied weights, while
“NTW” means no tied weights.

MAP@1 MAP@5 MAP@10
Model TW NTW TW NTW TW NTW

M1 0.1172 0.1301 0.0551 0.0695 0.0428 0.0571
M2 0.2567 0.2608 0.1418 0.1431 0.1177 0.1199
M3 0.1172 0.2000 0.0551 0.1162 0.0428 0.1011
M4 0.2287 0.2474 0.1260 0.1370 0.1066 0.1143

models M1 and M2, using user-specific vectors greatly improves the results on the Yelp data. As

the performances of the models get better for M3 and M4, the gain becomes relatively smaller. For

the MovieLens data, using user-specific vectors consistently outperforms the alternative choice.

Tied weights. We study the effects of using tied weights (TW) for the weight matrices, where

we force WWW = WWW ′. Results on MovieLens and Netflix data sets are shown in Table 4.7 and 4.8,

respectively. We refer to the cases of “no tied weights” as NTW. The results on Yelp data are similar

to those on Netflix data, so we omit them here. Other than variant M2 on MovieLens data, the results

of NTW are much better than TW. On Netflix data, NTW consistently outperforms TW by at least

10%. On both data sets, the best MAP scores are from models with NTW (M4+NTW in Table 4.7

and M2+NTW in Table 4.8, respectively). Thus we do not recommended using tied weights for

CDAE.

The number of latent dimensions. We study the effects of the number of latent dimensions K.

Results on Yelp data and Netflix data are shown in Figure 4.5. From the figures, we can see that the

performance increases with larger K, but only up to a point. When K becomes large enough, the

performance no longer improves and can in fact decrease due to overfitting.
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Figure 4.5: The effects of the number of latent dimensions.
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Figure 4.6: MAP scores with different N on the Yelp data set.
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Figure 4.7: MAP scores with different N on the MovieLens data set.

4.4.5 Experimental Comparisons with Previous Models

In this section, we compare CDAE with a number of popular top-N recommendation methods.

Note that comparisons against Denoising Auto-Encoder (DAE) and its non-denoising variant (when

q = 0) are already discussed in Section 4.4.4.
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Figure 4.8: MAP scores with different N on the Netflix data set.
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Figure 4.9: The Recall scores with different N on the Yelp data set.
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Figure 4.10: The Recall scores with different N on the MovieLens data set.
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Figure 4.11: The Recall scores with different N on the Netflix data set.

These baseline methods are:

• POP: Items are recommended based on how many users have rated them.

• ITEMCF [50]: We use Jaccard similarity measure and set the number of nearest neighbor to

50.
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• MF (with negative sampling) [23]: We train the Latent Factor Model with point-wise objec-

tive functions (with square, log, hinge and cross entropy losses) and negative sampling10, and

report the best results.

• BPR [44]: BPR is the state-of-the-art method for recommendation based on implicit feed-

back. As discussed in Section 4.1.1, BPR-MF is a Latent Factor Model with the pair-wise log

loss function. In addition to the log loss used in the original paper [44], we also experiment

with square and hinge loss functions and report the best results.

• FISM [21]: FISM is a variant of FSM with point-wise square loss function11. We also test

log loss and hinge loss and report the best results.

For all the baseline methods, we carefully choose the hyperparameters by cross validation to

ensure fair comparisons. We train the 4 variants of CDAE discussed in Table 4.4 with different

corruption levels, and report the best results. For all the latent factor models (including MF, BPR,

FISM and CDAE), we set the number of latent dimensions to 50 and use an additional dimension

to model the bias. Other implementation details are as discussed in Section 4.4.2.

Figure 4.6, 4.7 and 4.8 show the MAP@N scores of all models on Yelp, MovieLens and Netflix,

respectively. Since Recall is another widely used metric for comparing top-N recommendation

models, we also include plots of the Recall scores on the three data sets in Figure 4.9, 4.10 and 4.11.

In general, the results of MAP and Recall are consistent, i.e., the performance orderings of

models are almost the same. One exception is on the Yelp data, where MF gets better MAP@N

scores than BPR, but BPR has better Recall@N scores.

According to the results of MAP@10 and Recall@10, CDAE consistently outperforms other

compared methods. On the Yelp data, CDAE outperforms the other methods with a large margin

on all the evaluation metrics. The MAP@10 score and Recall@10 score of CDAE are at least

15% better than those of the second best model MF. For the Netflix data set, ITEMCF achieves

much better results than other methods such as MF, BPR and FISM, particularly on the metrics

MAP@1 and Recall@1. CDAE is the only model that can beat ITEMCF on metrics MAP@10 and

Recall@10, where CDAE outperforms ITEMCF by around 10%.

It is surprising to see that BPR and FISM achieve lower MAP scores than MF on Yelp and

Netflix data sets. The only data set on which they achieve better results is MovieLens, but the

performance gains are not significant.

10We note that, for implicit feedback data, MF with negative sampling has the same objective function with WRMF
[19] – both of them assign high confidence on the observed/positive feedback and low cofidence on the missing/negative
feedback. We do not compare with WRMF because its computational speedup trick for ALS only works with squared
loss.

11We also tried the pair-wise loss functions, but the results are not as good as for the point-wise functions. The same
observation is reported in the original paper.
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4.5 Conclusion

In this chapter, we presented the Collaborative Denoising Auto-Encoder (CDAE) for the top-N

recommendation problem. CDAE learns distributed representations of the users and items via for-

mulating the user-item feedback data using a Denoising Auto-Encoder structure. Several previous

work can be seen as special cases of the proposed model. We conducted a comprehensive set of

experiments on three data sets to study how the choice of the model components impacts the per-

formance. We also compared CDAE against several other state-of-the-art top-N recommendation

methods and the results show that CDAE outperforms the rest of the methods by a large margin.

The proposed model enables a wide range of future work on applying neural networks to rec-

ommender systems. Here we list some potential directions.

Deep Neural Network. The neural network structure used in this chapter is shallow. A straightfor-

ward extension is to stack the model as done in the stacked DAE [58]. Our preliminary experiments

on the stacked CDAE do not show significant improvement over CDAE. We plan to investigate the

reason and try to improve it. Also, the idea of marginalized DAE [9] might be able to speed up the

training and improve the performance. It would also be interesting to consider applying other neural

network structures such as Convolutional Neural Networks and Recurrent Neural Networks to this

framework.

Feature-aware Recommendation. User and item features can be important for producing seman-

tically meaningful models and dealing with the cold-start problem. It is worth exploring how to

incorporate user and item features to improve the proposed model.

Context-aware Recommendation. In many applications, one might benefit from incorporating

contextual information (such as time, location, browser session, etc.) into the recommendation

process in order to recommend items to users in certain circumstances. We leave such extensions as

future work.
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Chapter 5

CCCF: On Better Utilizing the Matrix
Structure

Typical Collaborative Filtering methods measure users’ preferences by their historical behaviors

over the entire item space. For example, the user-based nearest neighbors method measures the

similarity between pairs of users by their preferences on all the items; Matrix Factorization decom-

poses the whole user-item matrix into two low-rank sub-matrices where the collective intelligences

are represented as latent factors in the model. However, this assumption does not always hold, es-

pecially when the underlying system includes a large set of items of different types. For example,

an Amazon user share similar tastes on books with a certain group of users, while having similar

preferences with another group of users on movies. Therefore, it is more natural to model the users

and the items using subgroups, where each subgroup includes a set of like-minded users and the

subset of items that they are interested in, and each user/item can be assigned to multiple subgroups

so that users can share their interests with different subsets of users on different subsets of items.

Figure 5.1 plots an example of the underlying co-clusters in a user-item matrix. In this chapter, we

will describe a new method CCCF which uses co-clustering to better utilized the matrix structure to

get better recommendation for users.

5.1 Background and Overview

Partitioning users and items into subgroups for CF has been studied by several previous works,

where user clustering [70], item clustering [39] and user-item co-clustering [14] methods have

been proposed to boost the performance of collaborative filtering. However, in these methods each

user/item is only allowed to be assigned to a single subgroup, so that they are not able to model the

case where users have multiple interests. To address this problem, several other papers [52, 63, 64]

extend the Mixed Membership Stochastic Blockmodels (MMSB) [2] to allow mixed memberships.

However, these methods optimize the accuracy of rating/link prediction instead of the practically

important problem of top-N recommendation.
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Figure 5.1: Illustration on the overlapping co-clusters.

In [69], the authors propose a unified framework for improving collaborative filtering via over-

lapping co-clustering, which can be employed for top-N recommendation. It works as follows: 1)

Users and items are first grouped into multiple overlapping subgroups with different weights. 2)

After obtaining the subgroups, any traditional CF method can be applied to each subgroup sepa-

rately to make the predictions for the users on their unrated items in the same subgroup. 3) The

final recommendation list for a user is aggregated from the results in the subgroups that she/he is

involved in. The authors of [77] adopt a similar framework, and propose to partition the user-item

matrix by permuting the rows and columns of the user-item matrix to form (approximate) Bordered

Block Diagonal matrices.

However, the co-clustering objective function of [69] is based on a weighted graph cut problem,

which partitions the underlying graph into non-overlapping subgroups and minimizes the total costs

associated with the cut edges. Therefore, [69] does not intrinsically learn overlapping subgroups.

Also, solving the weighted graph cut problem has a high computational complexity. In [77], assign-

ments of users and items to subgroups are deterministic and have equal weight, i.e., users are forced

to have equal amount of interest in each subgroup that they are assigned to, thus affiliation strengths

are not modeled.

We argue that in order to model users’ shared interests in different subsets of items, we have to

resort to overlapping co-clustering methods which have the following three properties:

• The proposed method should be able to model the strength of affiliations between users, items

and subgroups by assigning weights to each user and item for each subgroup. As we shall see

later in this work, these weights are critical when aggregating the results from subgroups to

make the final recommendation.
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Table 5.1: Mathematical Notations

Symbol Value Description
yui {0,1} user u’s feedback on item i
φuk [0,1] latent membership of user u in

subgroup k
φik [0,1] latent membership of item i in

subgroup k
θk [0,1] in-group preference strength of

subgroup k
zu→i,k {0,1} membership indicator of user u

in subgroup k when interacting
with item i

zi→u,k {0,1} membership indicator of item i
in subgroup k when interacting
with user u

• The proposed method should be able to model a user’s interest in an item through her/his

affiliations with different subgroups.

• The proposed method should have the property that the more subgroups that a user u and an

item i share, and the higher the affiliation strengths of u and i with the subgroups they share,

the more likely u should be interested in i.

In this chapter, we propose a novel co-clustering method, called CCCF (CO-CLUSTERING FOR

COLLABORATIVE FILTERING). In CCCF, each user/item can belong to multiple subgroups, and

we use an affiliation strength score to denote the strength of the relationship between the user/item

and the corresponding subgroup. CCCF models the probability of a user liking an item as a func-

tion based on subgroup affiliation strengths between users, items and their shared subgroups. If a

user and an item share multiple subgroups, we assume that each such shared subgroup has an in-

dependent chance to trigger the link1 between them [71]. As will be discussed in Section 5.4, the

resulting CCCF model satisfies the three desired properties stated above.

5.2 Related Work

Using co-clustering based methods to improve CF has been studied by several previous works. [70]

uses the K-means algorithm to cluster users into several subgroups and uses the subgroup assign-

ments to smooth the unrated data for each individual user. [14] proposes a scalable CF framework

based on a weighted co-clustering method.

1 Here a link between a user and an item means the user likes the item. If there is no link between them, we treat it as
missing.
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Bayesian Co-Clustering (BCC) [52] adopts the Mixed Membership Stochastic Blockmodels

(MMSB) [2] to the user-item bipartite graph. They assume that there are several latent user clus-

ters and item clusters, and each user/item has mixed memberships to the latent clusters. The link

between a user and an item is generated by the sum of the coefficient weights between the clusters

they belong to. [63] proposes a collapsed Gibbs sampling and a collapsed variational Bayesian al-

gorithm for BCC. [64] further extends BCC to a nonparametric model that can automatically learn

the number of clusters from the data. In [5], the user and item latent factors are described by a non-

parametric mixture of Gaussians based on their cluster allocations. [4] uses additive co-clustering

to build concise model for matrix approximation. In these works, users and items are separately

partitioned into user clusters and item clusters, which is totally different from co-clustering method

used in this chapter which groups users and items into the same clusters in a holistic manner. Also,

these works optimize either the likelihood of the probabilistic mixed membership model on all the

user-item links [52, 63, 64], or the accuracy of the point-wise rating prediction [5, 4], which can not

guarantee good top-N recommendation results as they are optimizing a different goal [44, 55]. On

the other hand, our method can utilize state-of-the-art top-N recommendation models as the base

CF method in subgroups.

The idea of divide-and-conquer has also been used in other related works for collaborative

filtering [31, 26, 25]. Divide Factor Combine (DFC) [31] divides a large-scale matrix factorization

task into smaller subproblems by random row/column selections, solves each subproblem in parallel

using an arbitrary base matrix factorization algorithm, and combines the subproblem solutions using

techniques from randomized matrix approximation. The authors of [26] propose a model called

Local Low-Rank Matrix Approximation (LLORMA), leading to a representation of the observed

matrix as a weighted sum of several local low-rank matrices. They further extend LLORMA to the

Local Collaborative Ranking (LCR) model [25] to consider the relative orders of items. The main

differences from ours are: 1) They partition the user-item matrix by either random row/column

sampling [31] or random anchor points [26, 25], while our goal is to find locally focused subgroups.

2) They focus on the rating prediction [31, 26] and collaborative ranking [25] problems on observed

ratings2 and ignore the fact that ratings are missing not at random. It leads to unsatisfactory top-N

recommendation results [44, 55]. 3) They rely on the matrix factorization techniques, while ours

can apply any CF method in the subgroups. This is important because matrix factorization is not

always the best choice for all the cases, which has also been shown in our experiments (see Section

5.5.3).

The closest works are [69, 77, 78], which propose models that cluster users and items into

the same subgroups. The authors of [69] propose an overlapping user-item co-clustering method

based on a weighted graph-cut optimization problem. The objective function is NP-Hard, and they

propose to optimize a relaxed problem. However, the learning involves solving the top eigenvectors

of a large squared matrix so it cannot scale to large data sets. In [77] and [78], the authors permute

2Although LCR [25] models the orders of items, it still only considers the ranking between observed ratings.
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rows and columns of the user-item rating matrix to form (approximate) Bordered Block Diagonal

(BBD) matrices, and then apply traditional CF to each BBD matrix.

The framework used in our thesis, as well as in [69, 77], has several benefits. 1) It partitions

the matrix into several overlapping sub-matrices, which are denser than the original matrix, thus

making the CF methods more feasible. 2) Any CF method can be used in each subgroup. Since the

performance of different methods varies under different scenarios, this allows users to select their

favorite CF base methods for the subgroups. 3) The training of the CF methods in subgroups can be

trivially parallelized.

As discussed in Section 5.4.4, compared with previous works [69, 77], CCCF has various ben-

efits including scalability, flexibility, interpretability and extensibility.

5.3 Problem Definition

Given a set of users U = {u|u = 1, ...,U}, a set of items I = {i|i = 1, ..., I}, as well as the log of

users’ historical preferences O = (u, i,yui), the goal of recommender systems is to recommend to

each user u a list of items that will maximize her/his satisfaction. Here, yui can be numeric ratings

in the scale of, say, [1,5] or binary values {0,1}.
In this chapter, we mainly focus on the case of implicit feedback, namely, we only have a partial

information of the items that users have viewed/liked, and users’ feedback on other items is missing.

This is the most common scenario in practice. However, the proposed method can also be applied

to other cases with slight modifications. For implicit feedback, all yui in O are 1; and for those

(u′, i′,yu′i′) triples not belonging to O , the corresponding yu′i′’s are missing. We use O ′ to denote

the set of missing triples. The goal of top-N recommendation is to recommend each user a list of N

items that she/he is most likely to like, i.e., to pick the list of missing yu′i′-s for every user which are

most likely to be 1.

Some important notations used in this chapter are listed in Table 5.1. We use u to index a user,

and i and j to index items, and use normal font symbol x to denote scalars and bold math symbols

xxx to denote vectors. The k-th element of vector xxxi is denoted by xik.

5.4 Proposed Methodology

The overall procedure of our method, also used by [69, 77], is as follows:

1. Cluster users and items into subgroups, where users and items can be assigned to multiple

subgroups and each subgroup includes a group of like-minded users and a set of items that

these users are particularly interested in. We present a scalable co-clustering method called

CCCF in Section 5.4.1.

2. In each subgroup, we apply traditional collaborative filtering methods (e.g., ITEMCF, MA-

TRIX FACTORIZATION) to learn users’ preferences over the items within this subgroup. Since
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the learning of CF models in each subgroup is independent from each other, this step can be

easily done in parallel (See Section 5.4.2).

3. For each user, we aggregate the recommendation results from all the subgroups that she/he is

involved in. We discuss the aggregation strategy in Section 5.4.3.

The main differences from previous works [69, 77] lie in step 1 and 3, which will be explained

in detail in Section 5.4.1 and 5.4.3, respectively. In Section 5.4.4, we elaborate the benefits of the

proposed method compared to those related works.

5.4.1 Scalable Co-Clustering for CF

In this subsection, we present Co-Clustering for Collaborative Filtering (CCCF), a co-clustering

model which assigns users and items into overlapping subgroups. Our goal is to find several latent

subgroups, where each subgroup includes a set of like-minded users and the subset of items they are

interested in. We assume that each user/item has a latent membership vector over subgroups. The

memberships reveal users’ latent interests on different types of items and items’ latent properties

that would be consumed by users, respectively. The links between users and items are generated

based on the interactions between users, items and subgroups, i.e., a user has larger chance to like

an item if they both have strong affiliations to the same subgroups.

The two principles of designing CCCF are:

• A user has multiple types of interests so that she/he should be assigned to multiple subgroups

with different strengths. Analogously, items are also allowed to be affiliated to multiple sub-

groups.

• The reason that a user likes an item is explained by the subgroup affiliations, i.e., a user is

more likely to like an item if and only if they belong to same subgroups. And we assume that

the probability of a user liking an item depends on two ingredients: 1) The more overlapping

subgroups a user shares with an item, the higher the probability that the user likes the item is.

2) A link between a user and an item can be explained by a dominant reason, i.e., if a user and

an item both have large affiliation strengths with a single subgroup, it is sufficient to form the

link between them.

We assume there are K subgroups and each user/item has a probability of belonging to each

subgroup. We denote by φuk ∈ [0,1] the affiliation strength of user u to subgroup k, and φik ∈ [0,1]

the affiliation strength of item i to subgroup k. We sample φuk and φik from Beta distributions

parameterized by predefined constants αk1 and αk2.

φuk ∼ Beta(αk1,αk2)

φik ∼ Beta(αk1,αk2)
(5.1)
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Intuitively, φuk represents the probability that user u likes the items in subgroup k. Analogously,

φik is the probability that item i is liked by the users in subgroup k. Items having large memberships

in subgroup k share some latent properties recognized by a group of like-minded users.

The reasons why we use Beta distribution for φuk and φik are: 1) In our work, we define φφφ

as membership variables with values in [0,1], and we do not enforce φφφ u to form a probabilistic

distribution over the set of all the subgroups as the Mixed Membership models (e.g., [2, 52]) do.

Instead, users and items can have large affiliation strengths with multiple subgroups, which has

been shown to be more suitable for modeling overlapping subgroups [71, 72]. 2) Beta distribution

is the conjugate prior of Bernoulli distribution, which we use for the indicator variable z later. This

enables us to perform sampling steps more efficiently.

We assume that each subgroup k has an independent chance θk to trigger the link between user

u and item i if both of them belong to this subgroup, and the overall probability relies on the rate

that at least one of the K event succeeds.

Here θk acts as a parameter to model the strength of connectivity within each subgroup k, mean-

ing that the larger θk is, the more likely it is to form links between users and items within this

subgroup. This parameter can model the fact that in practice, some subgroups are more active than

others. Also, if a user belongs to this subgroup, there is a large chance of her/him liking an item

shared by users within this subgroup, whereas for the less active subgroups, the chance of her/him

liking an item shared by users within the subgroup is lower.

We also place a Beta distribution as the prior of θk:

θk ∼ Beta(β1,β2) . (5.2)

Since our goal in this chapter is to find several focused subgroups, we’d like all the learned θk-s

being close to 1. This prior knowledge can be incorporated into the model by, e.g., setting β1 = 10

and β2 = 1.

For a pair of user u and item i, we use a parameter zu→i,k
3 to denote whether user u belongs to

subgroup k or not when forming the link with item i. zu→i,k is an indicator parameter drawn from a

Bernoulli distribution parameterized by user u’s group affiliation weight φuk. The parameter zi→u,k

which represents item i’s affiliation with subgroup k for the link with user u is defined analogously.

zu→i,k ∼ Bernoulli(φuk)

zi→u,k ∼ Bernoulli(φik)
(5.3)

Then, the probability puik that subgroup k triggers a link between user u and item i is defined as

puik =

θk, if zu→i,k = 1 and zi→u,k = 1

0, otherwise.
(5.4)

3 Here the notation u→ i is used to denote user u’s assignment when forming the link with the item i. Similar notations
are also used in, e.g., [2].
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Note that, if either the user or the item do not belong to subgroup k, the probability of forming a

link via this subgroup is 0.

The overall probability pui that user u likes item i is modeled as the overall success rate of the

K independent events, each of which represents the probability of a subgroup k to trigger the link

between u and i.

pui = 1−∏k(1− puik) = 1−∏k(1−θk)
zu→i,kzi→u,k (5.5)

The link between user u and item i is sampled as follows:

yui ∼ Bernoulli(pui) , (5.6)

where yui = 1 means user u has a link with item i and yui = 0 means the link between them is

missing.

We show the generative process in Algorithm 2. Note that in addition to using the subgroup

affiliations to explain the observed links with yui = 1, the CCCF model also needs to consider the

missing links (where yui = 0) properly to avoid non-meaningful subgroup affiliations. However, the

number of missing links is usually almost as large as U · I due to the data sparsity, which makes it

impractical for large data sets. To address this issue, we randomly sample a subset of the missing

links during the inference, and alternate different subsets in different iterations. Specifically, we

randomly select Nu missing links for each user u, where Nu is proportional to the number of u’s

observed links.

Parameter Estimation

Maximum likelihood estimation is intractable for this model due to the existence of hidden vari-

ables. We use a Markov Chain Monte Carlo (MCMC) method to estimate the parameters where we

iteratively sample unknown variables from their conditional distributions given all the observations

and the other variables fixed.

Denoting the set of items that user u has links with in the training data (including the observed

links and randomly sampled negative links) by Tu, we have the following sampling equation for

zu→i,k (latent variables φφφ have been integrated out):

p(zu→i,k = 1|z¬(u→i,k),yyy,θθθ ,αk1,αk2)

∝
(
n¬i

uk +αk1
)

p(yui|zzz¬(u→i,k),zu→i,k = 1,θθθ),

p(zu→i,k = 0|z¬(u→i,k),yyy,θθθ ,αk1,αk2)

∝
(
nu−1−n¬i

uk +αk2
)

p(yui|zzz¬(u→i,k),zu→i,k = 0,θθθ),

(5.7)

where n¬i
uk = ∑ j∈Tu\{i} 1(zu→ j,k = 1) and nu = |Tu|

Since we sample different subsets of missing links during different iterations, a missing link

might be new at iteration t. In this case, we do not have previous statistics of zu→i,k and zi→u,k to
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Algorithm 2 Generative Process of CCCF.
Require: O , O ′ , ααα and βββ

1: for all k ∈ {1, ...,K} do
2: for all u ∈U do
3: Draw φuk ∼ Beta(αk1,αk2)
4: end for
5: for all i ∈I do
6: Draw φik ∼ Beta(αk1,αk2)
7: end for
8: Draw θk ∼ Beta(β1,β2)
9: end for

10: for all (u, i,yui) ∈ O ∪O ′ do
11: for all k ∈ {1, ...,K} do
12: Draw zu→i,k ∼ Bernoulli(φuk)
13: Draw zi→u,k ∼ Bernoulli(φik)
14: if zu→i,k = 1 and zi→u,k = 1 then
15: Set puik = θk
16: else
17: Set puik = 0
18: end if
19: end for
20: Set pui = 1−∏k(1− puik)
21: Draw yui ∼ Bernoulli(pui)
22: end for

sample their new values according to Equation 5.7. Inspired by the stochastic collapsed variational

Bayesian inference method for Latent Dirichlet Allocation [13], we use some additional burn-in

steps to update these statistics before doing the sampling.

Since it is intractable to directly sample the posterior of each θk, we update these parameters

using Metropolis-Hasting steps, where in each iteration a candidate for the next sample is generated

from a “proposal” distribution. The proposed sample is accepted with some probability, otherwise

the previous sample is duplicated. To be specific, in each iteration we propose each θk’s new value

from θk ∼ Beta(β1,β2) and accept this new value with probability

min

(
1,

P(yyy|zzz,θθθ (t))P(θθθ (t)|βββ )
P(yyy|zzz,θθθ (t−1))P(θθθ (t−1)|βββ )

)
. (5.8)

If the new value is rejected, the previous value is retained.

The overall inference procedure is shown in Algorithm 3. After we get the optimized parameters

θθθ and zzz, the group memberships φφφ can be computed by

φuk =
∑i∈Tu zu→i,k +αk1

nu +αk1 +αk2
, (5.9)
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Algorithm 3 Inference Procedure for CCCF
Require: Randomly initialize zzz. Set each θk = 1.
Ensure: zzz, θθθ , φφφ

1: while not converged or maximum number of iterations do
2: Randomly sample a subset of missing values O ′′ and set the training set as T = O ∪O ′′.
3: for all (u, i,yui) ∈T do
4: for all k ∈ {1, ...,K} do
5: Sample zu→i,k using Equation 5.7.
6: Sample zi→u,k similarly.
7: end for
8: end for
9: while not converged do

10: for all k ∈ {1, ...,K} do
11: Update θk using Equation 5.8
12: end for
13: end while
14: end while
15: Compute φφφ u and φφφ i for all u and i using Equation 5.9 and 5.10.

φik =
∑i∈Ti zi→u,k +αk1

ni +αk1 +αk2
. (5.10)

5.4.2 Collaborative Filtering in Subgroups

After getting the group affiliation strengths, we assign to each subgroup k a threshold εk. If user

u’s (or item i’s) affiliation strength φuk (φik) is larger than εk, we assume that this user/item belongs to

this subgroup. Then, any Collaborative Filtering algorithm can be applied to a subgroup to compute

the prediction ŷk
ui, which represents user u’s preference on item i based on subgroup k.

The choice of the underlying CF methods depends on a lot of factors, such as data sparsity,

complexity, model interpretability and latency of recommendation. One benefit of the framework

is that the method does not rely on a specific CF algorithm. Any CF method of interest can be

used and the framework will likely improve their performances. In our experiments, we choose four

most representative CF models as the base methods applied to the subgroups, and show that the

framework improves their recommendation performances by a significant margin on four real world

data sets.

To make this chapter self-contained, here we discuss the four CF methods which we use in our

experiments. The reason why we choose these methods is that they cover a diverse set of methods

ranging from the simplest solution to state-of-the-art models.

Popularity (POP).. Items are scored by the percentage of users who like them.

yui = ∑
u′

yu′i

|U |
(5.11)
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Though simple, POP is widely used in today’s industry as it is extremely easy to implement. The

disadvantage is that it is not a personalized method and all the users receive the same recommen-

dations. This problem can be solved by the proposed framework. CCCF first partitions users and

items into subgroups. The item popularity within a specific subgroup indicates the popularity among

a small group of people. Using the recommendation method that we will discuss in Section 5.4.3,

CCCF provides users personalized recommendations by aggregated ranking lists of items that are

popular in the subgroups that users are particularly interested in.

ITEMCF. [50]. We use Jaccard correlation as the similarity measure and set the number of nearest

neighbors to 50.

ŷui = ∑
j∈Ou

s(i, j), (5.12)

where s(i, j) is the Jaccard similarity between the set of users who have liked item i and j, respec-

tively.

MF (with negative sampling). [23, 48]. Matrix Factorization, or Latent Factor Model is the most

popular Collaborative Filtering method for recommender systems. The preference of user u on item

i is the dot product of the latent feature vectors of the user and the item, with some bias terms.

ŷui = α +bu +bi +uuu>u vvvi (5.13)

The model parameters, latent factors and bias term, are learned by optimizing the following

objective function.

∑
(u,i)∈T

`(yui, ŷui)+λR(bbb,uuu,vvv), (5.14)

where R is the regularization term.

For implicit feedback, we sample a subset of missing values as negative samples, and re-sample

the subset for each learning iteration.

WARP. [66, 67]. Matrix factorization with the WARP loss [66] is the state-of-the-art method for

top-n recommendation on implicit feedback data, which has been used by many recent works [17,

68]. The main difference between WARP and MF is the objective function. WARP models the

relative orders between items, which is the goal of top-N recommendation.

Another way of making recommendation in the subgroup is just setting ŷk
ui = θk. However, this

makes a strong assumption that users in a subgroups have the same preferences for all the items

within this subgroup, which will result in suboptimal recommendation results. We will discuss this

case in Section 5.4.3 and compare it with other recommendation methods in Section 5.5.3.

5.4.3 Recommendation

The last but not the least question is to how to compute the final recommendation list for each user.

In [69], the authors just keep several subgroups with the largest weights for each user and sum up
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the recommendation scores from the selected subgroups. In [77], the proposed algorithm gets the

final prediction of user u on an item i by averaging the predicted scores of u on i in all subgroups

they share.

However, users and items belong to the subgroups with different weights, and the final recom-

mendation should not ignore the weights. In this chapter, we propose to use an affiliation strength

weighted aggregation function to compute the final recommendations:

ŷui = ∑
k

φuk ·φik ·θk · ŷk
ui (5.15)

This aggregation function matches our motivation of designing the co-clustering method: 1)

The prediction ŷk
ui has a large value if the user and the item both have large affiliation strengths with

this subgroup; 2) The more subgroups the user and the item share, the larger their predicted score

is. The comparison with other aggregation methods is discussed in Section 5.5.3.

We note that for some CF methods (e.g., WARP [66], BPR [44]), the prediction score ŷk
ui is only

a relative measurement (i.e., ŷui > ŷu j means user u prefers item i than j) and unbounded. Before

aggregating the scores, we first scale all the predictions of a user to [0,1].

In this following we also present three other strategies to aggregate the results.

CCCF-PR.. As discussed in Section 5.4.2, the most straightforward way is just using the in-group

strength θk-s as the prediction scores for the subgroups and calculating the overall score as follows:

ŷui = ∑
k

φuk ·φik ·θk (5.16)

Comparing with Equation 5.15, this strategy sets all ŷk
ui to 1. From another point of view, it can be

thought as applying the random prediction (all the items have the same prediction score 1) base

method in the subgroups.

CCCF-AVG.. This is the strategy used in [78], where the average predicted score is taken as the

overall score, ignoring the affiliation strengths of users and items.

ŷui = ∑
k

ŷk
ui/K (5.17)

CCCF-MAX.. As discussed in Section 5, a user would like an item as long as the probability on one

of the subgroup is large enough. Another strategies is to make the prediction using the maximum

score among these subgroups.

ŷui = max
k

ŷk
ui (5.18)

5.4.4 Discussion

In this subsection, we discuss several properties of the proposed model.

63



• Scalability. The complexity of the proposed CCCF method is linear in the number of ob-

served links. On the other side, the objective function of the method proposed in [69] is

NP-hard, and their optimization method for the relaxed objective involves a step of solving

the top eigenvectors of a squared matrix with size M = U + I. To our best knowledge, the

computational complexity of the fastest eigenvalue decomposition solver is O(M2.367) when

the matrix has some special structures [41].

• Flexibility. The structure of the subgroups in CCCF is flexible to model any kind of over-

lapping subgroups where these subgroups can be densely overlapping, hierarchically nested

or non-overlapping. The methods in [78] and [77] are not so flexible since they assume the

subgroups to form (approximate) Bordered Block Diagonal matrices. The method proposed

in [69] uses an objective function of a weighted graph cut problem, which is designed to par-

tition the graph into non-overlapping parts, thus it does not intrinsically discover overlapping

subgroups.

• Interpretability. CCCF is a probabilistic model where the resulting affiliation strengths have

semantic meanings. The strengths are particularly important when aggregating the results

from different subgroups to make final recommendation (see Section 5.4.3). Also, as shown

in Section 5.5, we analyze the top items with the largest affiliation strengths of each subgroup

and find that these items have similar properties (e.g., locations, categories in the Yelp data).

• Extensibility. When we are able to get some useful features for users and items, it is easy

for CCCF to leverage the features in the learning procedure as prior knowledge or super-

visions (e.g., [1], [73]). On one hand, it makes the subgroups even more interpretable by

enforcing that the users/items in the same subgroup share some common features. On the

other hand, features can help dealing with the cold-start problem – some users/items may

have too few connections to be assigned to the right subgroups. It is not straightforward for

the methods of [69] and [77] to achieve this goal.

5.5 Experiments

Our experiments are designed to answer the following two questions: 1) Can the proposed method

improve the accuracy of recommendation? 2) How meaningful are the discovered subgroups?

5.5.1 Data Sets and Preprocessing

We use four publicly available data sets: Last.fm4, MovieLens 10M5, Netflix6 and Yelp7. As dis-

cussed in Section 5.3, we are more interested in the implicit feedback case. We follow the pre-

processing steps that have been used in many recent works (e.g., [44, 74], etc.). For the data sets

4https://grouplens.org/datasets/hetrec-2011/
5https://grouplens.org/datasets/movielens/
6http://www.netflixprize.com/
7http://www.yelp.com/dataset_challenge/
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Table 5.2: Data Statistics
#users #items #dyads #density(%)

Last.fm 1.8K 1.5K 50K 1.76
MovieLens 35K 5.6K 3.4M 1.73
Netflix 46K 13K 8M 1.33
Yelp 2.8K 2.8K 80K 1.02

with explicit ratings, we remove the ratings of less than 4 stars and convert the remaining ratings to

1. Cold-start users/items are not the focus of this chapter, so we remove users and items with less

than 20 ratings. The statistics of the resulting data sets are shown in Table 5.2. For each user, we

randomly hold 20% of her/his feedback in the test data and use the rest of her/his ratings as training

data.

5.5.2 Evaluation Measures

In the case of top-N recommendation, we present each user with N items that have the highest

predicted values and have not been adopted by the user in the training data. We evaluate different

approaches based on which of the items are actually adopted by the user in the test data.

Precision and Recall.. Given a top-N recommendation list CN,rec, precision and recall are defined

as

P@N =
|CN,rec

⋂
Cadopted|

N

R@N =
|CN,rec

⋂
Cadopted|

|Cadopted|
,

(5.19)

where Cadopted are the items that a user has adopted in the test data. The precision and recall for the

entire recommender system are computed by averaging the precision and recall over all the users,

respectively.

F-measure.. The F-measure represents a trade-off between precision and recall. We consider the

Fβ metric, which is defined as

Fβ @N = (1+β
2) · P@N×R@N

β 2 ·P@N +R@N
. (5.20)

where β is a weight to control the balance. In our experiments, we use F1 metric with β = 1. We

also calculate the F1 score for each user and report the average score.

Mean Average Precision (MAP).. Average precision (AP) is a ranked precision metric that gives

larger credit to correctly recommended items in higher positions. AP@N is defined as the average

of precisions computed at all positions with an adopted item, namely,

AP@N =
∑

N
k=1 P@k× rel(k)

min{N, |Cadopted|}
, (5.21)
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where Precision(k) is the precision at cut-off k in the top-N list CN,rec, and rel(k) is an indicator

function equaling 1 if the item at rank k is adopted, otherwise it equals zero. Finally, Mean Average

Precision (MAP@N) is defined as the mean of the AP@N scores of all users.

5.5.3 Accuracy of Top-N Recommendation

Table 5.3: CCCF vs. No Co-Clustering on the Last.fm data

POP ITEMCF MF WARP
NONE CCCF NONE CCCF NONE CCCF NONE CCCF

P@10 0.070 0.134 0.173 0.174 0.152 0.156 0.178 0.187
R@10 0.090 0.176 0.223 0.250 0.204 0.217 0.253 0.264

F1@10 0.078 0.149 0.189 0.198 0.170 0.177 0.203 0.213
MAP@10 0.182 0.355 0.446 0.456 0.399 0.402 0.428 0.442

Table 5.4: CCCF vs. No Co-Clustering on the Netflix data
POP ITEMCF MF WARP

NONE CCCF NONE CCCF NONE CCCF NONE CCCF
P@10 0.189 0.283 0.308 0.312 0.330 0.354 0.347 0.364
R@10 0.047 0.075 0.085 0.085 0.091 0.098 0.095 0.100

F1@10 0.070 0.109 0.123 0.123 0.132 0.142 0.138 0.145
MAP@10 0.348 0.471 0.493 0.505 0.528 0.551 0.538 0.556

Table 5.5: CCCF vs. No Co-Clustering on the Yelp data
POP ITEMCF MF WARP

NONE CCCF NONE CCCF NONE CCCF NONE CCCF
P@10 0.018 0.046 0.048 0.057 0.043 0.046 0.047 0.056
R@10 0.024 0.058 0.062 0.072 0.055 0.058 0.058 0.068

F1@10 0.018 0.046 0.048 0.058 0.044 0.046 0.047 0.055
MAP@10 0.050 0.124 0.142 0.159 0.124 0.131 0.137 0.152

Implementation Details

We choose 4 popular CF methods as the comparison partners, and these 4 methods also serve as

the base methods applied to each subgroup (as discussed in Section 5.4.2). We first train CCCF

on the training data, and then apply the above CF methods in each subgroup. At last, for each

user, we predict her/his preferences on all the unrated items by aggregating the predictions from the

subgroups the user is involved in, and pick the Top-N items with largest predicted values to form

the recommendation list. We set the hyperparameters of CCCF by cross validation on the training

data. We found that the performance is not so sensitive to the choices of α and β . We empirically

set them as: αk1 = 1, αk2 = 1, β1 = 10, β2 = 1 and ε = 0.1. We will study how the choice of K

impacts the performance in Section 5.5.3.
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Figure 5.2: Comparison with other two co-clustering methods on the three data sets.
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Figure 5.3: MAP@10 on the Last.fm and Yelp data with different strategies to aggregate the results
from subgroups. CCCF-PR does not need a base method and we plot it using the dashed line.
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Figure 5.4: MAP@10 on the Last.fm and Netflix data with different numbers of subgroups.

CCCF vs. No Co-Clustering

We first study the performance of CCCF comparing with the CF methods that are directly applied

on the training data without co-clustering.

The results are shown in Table 5.3, 5.4 and 5.5. The overall observation is that CCCF improves

the base methods on most of the cases – the best scores on all the data sets are all from CCCF.

For most of the cases, CCCF improves the corresponding base method by at least 10%. Especially,

combining CCCF with simple recommendation methods like POP can produce fairly good results.

We note that the performance of these CF methods varies a lot on different data sets. For

example, on the Yelp data set, we observe that ITEMCF performs better than MF and WARP; while

WARP is the best method on the Netflix data set. This means that no single CF method can beat all
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others at all times. The advantage of the proposed framework that we do not rely on the underlying

base method, and users of our method are free to configure their favorite predictors in order to adapt

to different scenarios.

CCCF vs. Other Co-Clustering Methods

We compare CCCF against two other co-clustering based methods MCoC [69] and BBDF [77],

which are the most recent co-clustering methods for recommender systems, and adopt the same

three-step framework. For MCoC and BBDF, we carefully choose the best parameters (e.g., the

number of top eigenvectors for MCoC, the density level in BBDF) to ensure fair comparisons. For

both CCCF and MCoC, we set the number of subgroups to 10. The number of subgroups in BBDF

is determined by the density parameter, which is chosen by cross validation.

Figure 5.2 shows the results for F1@10 and MAP@10 on the four data sets. The general ob-

servation is that CCCF outperforms the other two co-clustering methods in most cases. The only

exception is on the Yelp data set, where both MCoC and CCCF achieve a large performance gain

compared to BBDF, and MCoC obtains the best results on this data set. This is likely due to the

fact that the users and items of the Yelp data are isolated by the geographical distance, i.e., they are

more likely to form subgroups by the cities they are in.

Surprisingly, in some cases, MCoC and BBDF even decrease the performance of some of the

base methods on the Last.fm, Netflix and MovieLens data. As discussed in Section 5.4.4, MCoC

is actually optimizing a non-overlapping clustering objective function. So on the data sets that do

not have obvious clustering structures, the clustering result of MCoC fails to boost recommendation

accuracy. The performance of BBDF is not as good as expected on all the data sets except Movie-

Lens. One reason may be that it assumes the user-item matrix follows some specific structure, and

not all the data sets have this property. For example, for the Yelp data set, users and items are more

likely to form non-overlapping clusters, due to the geographical separations of users and items. In

this case, it is impossible for BBDF to find a reasonable bordered-block sub-matrix, which produces

unsatisfactory results.

CCCF vs. Local Low-Rank Matrix Factorization

In this subsection, we compare CCCF with recently proposed Local Low-Rank Matrix Factorization

methods LLORMA[26] and LCR [25]. We note that the original LCR model described in their paper

[25] is not applicable to the implicit feedback data. LCR optimizes the pairwise loss on the pairs

of observed ratings. However, for implicit feedback where all the observed ratings are 1, pairwise

comparisons make no sense. To make the comparison applicable, we modify LCR by applying

the negative sampling strategy, which has also been used for BPR [44] and WARP [67] We set the

number of anchor points of LLORMA and LCR same with the number of subgroups for CCCF, and

select the hyperparameters (e.g., step size and regularization parameter) by cross validation.
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Table 5.6: CCCF vs. Local Low Rank Matrix Factorization on the Yelp data

P@10 R@10
LLORMA 0.0208 0.0306
LCR (with negative sampling) 0.0368 0.0543
WARP 0.0474 0.0582
CCCF + WARP 0.0556 0.0684

Table 5.7: CCCF vs. Local Low Rank Matrix Factorization on the Last.fm data

P@10 R@10
LLORMA 0.042 0.057
LCR (with negative sampling) 0.148 0.201
WARP 0.178 0.253
CCCF + WARP 0.187 0.264

Here we show the results on the Yelp and Last.fm data sets in Table 5.6 and 5.7 (the results on

other two data sets are similar). We can see that the results of LLORMA are far worse than those of

other models. This validates the point that it is critical to consider missing ratings in the model. The

modified LCR model is still not as good as WARP and CCCF+WARP. By analyzing the data and

some intermediate results, we think that the main reasons might be as follows: 1) LCR/LLORMA

chooses anchor points randomly, which might result in selecting some isolating anchor points or

several anchor points from the same clusters, leaving a large number of users and items having

small weights with all the anchor points. These users and items are rarely updated during learning

due to the low weights. 2) The similarity kernel used in LLORMA is defined as the product of user

similarity and item similarity. These two similarities are computed independently.

The co-clusters in CCCF act similarly as the anchor points in LCR. CCCF solves above two

problems by jointly learning focused subgroups and the user/item subgroup affiliations. Combining

the idea of CCCF with LCR to learn a joint Co-Clustering and Matrix Factorization model would

be an interesting future work.

On the Choice of Aggregation Method

As discussed in Section 5.4.3, there are several alternative ways to aggregate recommendations

from subgroups to make final recommendations: CCCF-PR, CCCF-MAX, CCCF-AVG. In this

subsection, we compare these three alternatives with the method we proposed in Equation 5.15

(referred to as CCCF).

The MAP@10 results are shown in Figure 5.3. Here we use the same co-clustering results and

CF base methods. The only difference between the comparisons is the recommendation strategy.

For the base method ITEMCF, CCCF-MAX can provide similar performance as CCCF, but its

results for other methods are not competitive. For the Yelp data, CCCF-PR is outperformed by

other aggregation methods by a large margin. This means that the step of applying a CF method in

the subgroup is necessary. For almost all the cases, CCCF outperforms alternatives, which indicates
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that the steps of applying CF methods in each subgroup and considering the affiliation strengths are

both essential when aggregating the results.

On the Number of Subgroups

In this subsection, we study how the choice of the number of subgroups K impacts the recommen-

dation result. Due to space limits, we only show the results on the Last.fm and Netflix data. The

results on MovieLens and Yelp data show similar trends. The results are shown in Figure 5.4.

We observe that for the Netflix data, setting K to 20 is a good choice where all the four base

methods get best results. The Netflix data is not so sensitive to the number of subgroups. For the

Last.fm data, 10 and 20 are the best choices. Increasing the number decreases the performance.

We note that increasing K would not necessarily increase the recommendation performance.

The user-item matrix is very sparse, and increasing the number of subgroups would keep splitting

large subgroups into several more focused small overlapping groups. Taking an extreme case for

example, we might learn a lot of small subgroups that all of the users and items have links with each

other. This case produces perfect co-clusters, but we do not have new items to recommend to users,

which would hurt the recommendation performance.

5.5.4 Analysis of the Co-Clustering Results

In this section, we conduct a qualitative analysis of the co-clustering results to provide anecdotal

evidence that the discovered subgroups are meaningful.

The goal of our method is to find focused subgroups, where the items in the same subgroup

share some common latent properties that attract a group of like-minded users. Users’ interests are

usually not explicit, and we only have limited information about users in the data sets due to privacy

issues. It is easier and more straightforward to study the item properties because we have more

detailed information about items.

Table 5.8 shows the items with largest affiliation strengths from 3 sample subgroups from 10

total subgroups. We also present their locations and categories to study what these items are. We

can see that the items from each subgroup share similar geographical and semantic properties. The

top items from the first subgroups are all businesses from the city Phoenix, and most of them are

restaurants. We can regard this subgroup as “Restaurants in Phoenix”. Similarly, the top items from

the second subgroup are also restaurants, but they are all in the greater Las Vegas area (Henderson

is a city adjacent to Las Vegas). The third subgroup contains hotels, casinos or attractions in Las

Vegas. The users from this subgroup are more likely to be tourists of Las Vegas, while the users of

the second subgroup may also be the Las Vegas locals.

72



5.6 Conclusion

In this chapter, we proposed the scalable co-clustering method CCCF to improve the performance

of CF-based methods for Top-N recommendation. The intuition of our model is that users may have

different preferences over different subsets of items, where these subsets of items may overlap, and

we explore subgroups of users who share interests over similar subsets of items through overlapping

clustering. Experimental results on four real world data sets demonstrate that CCCF can improve

four representative CF base methods (POP, ITMECF, MF, WARP) by co-clustering, and it also

outperforms other co-clustering based methods (MCoC and BBDF). Qualitative analysis on the

data sets also shows that the discovered subgroups are semantically meaningful.
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Chapter 6

Conclusion

6.1 Summary

Collaborative Filtering is the most popular method for recommender systems. User preference

learning is the key ingredient of Collaborative Filtering methods to serve satisfactory recommenda-

tions. In this thesis, we proposed several new models that help us better understand user preferences

in order to meet users’ need. The contributions of this thesis can be summarized as follows:

• In Chapter 3, we proposed a probabilistic model FLAME, which combines the efforts from

the Aspect-based Opinion Mining and Collaborative Filtering, to help us better understand the

reasons behind a rating. FLAME is one of the earliest works for fine-grained user preference

learning from reviews for recommender systems.

• In Chapter 4, we proposed a neural network model CDAE, which generalizes several popular

models and has more flexible structure, thus making better recommendation results. CDAE

is one of the earliest works that successfully apply and adopt neural network models for

recommender systems.

• In Chapter 5, we proposed a scalable co-clustering model CCCF, which first discovers locally

focused subgroups from the user-item matrix, and then performs collaborative filtering mod-

els within each subgroup. CCCF solves several limitations of previous co-cluster methods,

and enjoys several benefits including scalability, flexibility, interpretability and extensibility.

6.2 Future Directions

The research of this thesis suggests many promising future directions. Here we list some of them.

Opinion Mining and Collaborative Filtering
In Chapter 3, we mainly focused on solving the aspect-based opinion mining problem for the

items from a specific domain, such as hotels or restaurants that we used for experiments. One
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interesting future work is whether we could adopt FLAME to the data sets where we have various

categories of items with different aspects. Also, some websites like TripAdvisor provide the option

of rating some pre-defined aspects. Although these aspect ratings are typically incomplete, they

should be helpful to partially guide the learning of latent aspect ratings. It is worth exploring a

semi-supervised extension of FLAME.

Deep Learning for Recommender Systems
Deep Learning has gained great success in other fields such as computer vision and nature

language processing. However, few work has been done on transferring its success to recommender

systems. CDAE is only a one-hidden-layer neural network. We have tried to extend it to a deep

structure by stacking the auto-encoders, but did not get significant improvement. Several other

works such as [60] use deep learning as an intermediate step to learn the feature representations

of users and items. The power of deep learning is its end-to-end nature. Thus, end-to-end deep

learning frameworks for recommender systems would be the next hot topic.

Co-Clustering for Recommender Systems
A future work for this direction is to combine the idea of CCCF with Locally Collaborative

Ranking (LCR) [25], where when applying the CF methods to the subgroups, the group affiliation

strengths could also considered. Our model is complementary to LCR in the sense that it can

replace the randomized anchor points selection and define the distance function using the joint

user-item affiliation strengths. Also, it would be interesting to incorporate user and item features

into the CCCF model in order to further improve the clustering results and to make them more

interpretable. Besides, the number of subgroups of CCCF is a pre-defined hyperparameter. How to

automatically determine the best number of subgroups using a Bayesian nonparametric method is

also worth exploring.

Cold-start Problem
For new users and items, we do not have enough historical behavior data to apply collaborative

approaches to learn the representations of them. This is a common problem for every existing

recommender system, and also poses challenges on the methods we proposed in this thesis.

Recently, Multi-armed bandit1 methods have been widely used to solve cold-start problem for

recommender systems. The multi-armed bandit problem models an agent that simultaneously at-

tempts to acquire new knowledge (exploration) and optimize his or her decisions based on existing

knowledge (exploitation). An interesting future direction is to apply Multi-armed bandit algorithms

to the problems we studied in this thesis.

1https://en.wikipedia.org/wiki/Multi-armed_bandit
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